WO2013145815A1 - スパイラル管押出成形方法及びスパイラル管押出成形機 - Google Patents

スパイラル管押出成形方法及びスパイラル管押出成形機 Download PDF

Info

Publication number
WO2013145815A1
WO2013145815A1 PCT/JP2013/050930 JP2013050930W WO2013145815A1 WO 2013145815 A1 WO2013145815 A1 WO 2013145815A1 JP 2013050930 W JP2013050930 W JP 2013050930W WO 2013145815 A1 WO2013145815 A1 WO 2013145815A1
Authority
WO
WIPO (PCT)
Prior art keywords
spiral
mandrel
die
tube
bearing
Prior art date
Application number
PCT/JP2013/050930
Other languages
English (en)
French (fr)
Inventor
満 小浦場
Original Assignee
株式会社Lixil
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Lixil filed Critical 株式会社Lixil
Priority to CN201380016542.1A priority Critical patent/CN104203442B/zh
Publication of WO2013145815A1 publication Critical patent/WO2013145815A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • B21C23/02Making uncoated products
    • B21C23/04Making uncoated products by direct extrusion
    • B21C23/08Making wire, bars, tubes
    • B21C23/085Making tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • B21C23/002Extruding materials of special alloys so far as the composition of the alloy requires or permits special extruding methods of sequences
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • B21C23/02Making uncoated products
    • B21C23/04Making uncoated products by direct extrusion
    • B21C23/08Making wire, bars, tubes
    • B21C23/10Making finned tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C25/00Profiling tools for metal extruding
    • B21C25/02Dies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C25/00Profiling tools for metal extruding
    • B21C25/04Mandrels

Definitions

  • the present invention relates to a spiral tube extrusion method and a spiral tube extrusion machine.
  • the following patent document 1 discloses the following technique as an extrusion molding method of a spiral tube in which a spiral groove is formed. That is, a plug having a truncated conical shape with a bolt at the end of the mandrel of the port hole die, with the smaller diameter side of the trimmed face facing the billet side, the larger diameter side of the conical bottom surface facing the extrusion direction, and the side surface being a tapered surface.
  • a spiral forming protrusion is disposed on the tapered surface of the plug surface for forming the inner peripheral surface of the pipe material.
  • the tubular material is extruded in a straight direction between the mandrel and the die cap, and the spiral shaped projection is forcedly brought into contact with the inner peripheral surface of the tubular material at a longitudinal intermediate position of the truncated cone-shaped plug.
  • the plug is forcibly rotated, and a spiral groove having a spiral shape in the longitudinal direction is formed on the inner peripheral surface of the tube material by a forming protrusion.
  • a spiral tube having a series of spiral grooves formed on the inner peripheral surface can be extruded, and a conventional copper tube can be used as a heat exchanger tube for a heat exchanger of an air conditioner or a refrigerator, or as a heat exhaust tube for floor heating.
  • a spiral pipe excellent in mass productivity at low cost using, for example, an aluminum or aluminum alloy pipe.
  • the use of a truncated conical plug in which a spirally formed forming ridge is formed on the surface of the tapered surface complicates the manufacture of the plug.
  • the diameter can be reduced to, for example, 1 cm or less even if it can be used for a relatively large diameter spiral tube. It is not necessarily suitable for extrusion molding of a spiral tube having an inner diameter of.
  • the pipe inner peripheral surface is forced to come into contact with the spiral forming ridge of the plug to forcibly rotate the plug, and the spiral groove is formed in the pipe inner peripheral surface.
  • the spiral groove forming portion of the pipe material rotates so as to rotate in the plug rotation direction.
  • it is necessary to rotate the winder according to the rotation of the tube material so that the processing of the tube material after extrusion is complicated.
  • the twist angle of the spiral groove tends to be reduced, and if the extrusion speed is increased so as to increase the twist angle, the shape of the pipe material is collapsed, resulting in an extrusion failure. Tend.
  • the present invention has been made in view of such circumstances, and the solution is to extrude a highly accurate spiral tube as easily as possible, including tubes with a small diameter and a large helix angle. It is possible to provide a spiral tube extrusion molding method capable of preventing rotation of a pipe material when forming a spiral groove, and a spiral tube extrusion molding machine suitably used for extrusion molding of the spiral tube Is to provide.
  • a mandrel having a male bearing for forming the inner peripheral surface thereof fixed to the tip in the extrusion direction, and for forming the outer peripheral surface of the tube so as to surround the male bearing.
  • the die is provided with a female bearing. Then, both the mandrel and the die are forcibly rotated, and the tube material is extruded in the straight direction under the forcible rotation, and a longitudinal spiral groove is continuously formed on one or both of the inner and outer peripheral surfaces.
  • the invention according to claim 1 is a mandrel that has a male bearing for forming the inner peripheral surface of the pipe material at the front end in the direction of extruding the pipe material and is rotatably arranged, and the longitudinal direction of the male bearing outside the extruding direction of the pipe material.
  • a spiral tube extrusion method characterized by continuously forming a helical groove in the longitudinal direction of the tube material on one or both of the inner and outer peripheral surfaces of the tube material by extruding the tube material in a straight line direction under forced rotation of both the mandrel and the die. It is what.
  • the invention described in claim 2 is characterized in that the forming ridge forming the spiral groove of the male bearing and / or the female bearing is formed by a plurality of linear ridges parallel to the extrusion direction.
  • the strips arranged on the male bearing and / or the female bearing are arranged in a number of straight lines parallel to the tube material extrusion direction.
  • the invention described in claim 3 performs the forced rotation of the mandrel and the die in the opposite directions of the same speed or different speeds to cancel the torque generated in the mandrel and the die, thereby
  • a spiral groove with a large torsion angle, that is, a high-density arrangement, is ensured by ensuring that straightness is ensured and the torsion angle in the spiral groove accompanying the rotation of the forming ridge is expanded as much as possible compared to the non-rotating one.
  • the invention described in claim 4 is the one in which the twist angle of the spiral groove accompanying the rotation of the forming protrusion is non-rotating by performing the forced rotation of the mandrel and the die in the reverse direction at the same speed.
  • the forced rotation in the reverse direction of the mandrel and the die is performed at the same speed.
  • the spiral tube extrusion molding method according to claim 3 is used.
  • the invention according to claim 5 is a heat exchange inner surface spiral that can be suitably used for an air conditioner, a heat exchanger tube for a heat exchanger of a refrigerator, an exhaust heat pipe for floor heating, or the like.
  • the tube material is made into an internally spiral grooved tube material for heat exchange by arranging a molding protrusion on the outer periphery of the male bearing of the mandrel.
  • the invention according to claim 6 is a male-type bearing for forming the inner peripheral surface of the pipe material at the front end in the tube material extruding direction so as to provide a spiral tube extrusion molding machine suitably used for extruding the spiral pipe.
  • a mandrel that is rotatably arranged and has a female bearing for molding the outer peripheral surface of the pipe material that surrounds all or part of the longitudinal direction outside the tube extrusion direction of the male bearing.
  • a spiral tube extrusion molding machine comprising: a die, a molding protrusion arranged on the male bearing and / or a female bearing, and a driving means for forcibly rotating both the mandrel and the die. It is.
  • the present invention uses these as means for solving the above problems as the gist of the invention.
  • the invention according to claim 1 is directed to a mandrel in which a male bearing for forming an inner peripheral surface thereof is fixed at the front end in the extrusion direction when the tube material is extruded, and the male bearing.
  • the invention described in claim 2 is characterized in that the forming ridge forming the spiral groove of the male bearing and / or the female bearing is formed by a plurality of linear ridges parallel to the extrusion direction.
  • the formation of the strip can be performed as easily and reliably as possible.
  • the invention described in claim 3 performs the forced rotation of the mandrel and the die in the opposite directions of the same speed or different speeds to cancel the torque generated in the mandrel and the die, thereby
  • a spiral groove with a large torsion angle, that is, a high-density arrangement, is ensured by ensuring that straightness is ensured and the torsion angle in the spiral groove accompanying the rotation of the forming ridge is expanded as much as possible compared to the non-rotating one. It can be formed efficiently.
  • the invention described in claim 4 performs the counterclockwise rotation of the mandrel and the die at the same speed, thereby canceling the torque and twisting angle of the spiral groove accompanying the rotation of the forming ridge. It is possible to enlarge the twist angle as much as possible by enlarging the twist angle to double that of the non-rotating one.
  • the invention according to claim 5 is a heat exchange inner surface spiral that can be suitably used for an air conditioner, a heat exchanger tube for a heat exchanger of a refrigerator, an exhaust heat pipe for floor heating, or the like.
  • a grooved tube material can be obtained easily and reliably.
  • the invention according to claim 6 can provide a spiral tube extrusion molding machine suitably used for extrusion molding of the spiral tube.
  • reference numeral 1 denotes a spiral tube in which a spiral groove 11 is formed on the inner peripheral surface to form an inner surface spiral grooved tube material.
  • reference numeral 2 denotes a spiral tube extrusion molding machine for extruding the spiral tube 1, and a mandrel 23 having a male bearing 231 for forming a tube inner peripheral surface at the tip in the tube material extrusion direction, And a die 24 having a female bearing 241 for forming the outer peripheral surface of the pipe material that surrounds all or part of the longitudinal direction outside the male material 231 in the direction of pushing out the pipe material.
  • a molding protrusion 25 is arranged on the male bearing 231 and / or the female bearing 241.
  • the spiral tube 1 is then spirally extruded in the longitudinal direction of one or both of the inner and outer peripheral surfaces of the tube by extrusion-molding the tube in the straight direction under the forced rotation of both the mandrel 23 and the die 24 using the spiral tube extruder 2.
  • This can be mass-produced by an extrusion method in which the spiral groove 11 having a shape is continuously formed.
  • the inner surface spiral grooved tube material 1 (spiral tube 1) is provided with a molding protrusion 25 on the outer periphery of the male bearing 231 of the mandrel 23 of the spiral tube extrusion molding machine 2 as shown in FIG.
  • the spiral tube 1 formed by being arranged and extruded is used for heat exchange.
  • the molding protrusion 25 is disposed on the male bearing 231 of the former mandrel 23 among the male bearing 231 of the mandrel 23 and the female bearing 241 of the die 24, while the die 24
  • the spiral groove 11 is formed on the inner peripheral surface of the tubular member having a hollow cross section by extruding the female bearing 241 of the female bearing 241 with the spiral tube extrusion molding machine 2 having a smooth surface without disposing the forming protrusion 25.
  • the outer peripheral surface is a smooth cylindrical surface.
  • the above-mentioned forming ridge 25 is formed by a number of straight ridges parallel to the tube material extrusion direction.
  • the spiral groove 11 having a spiral shape in the longitudinal direction of the pipe material is formed by the straight protrusions by forcibly rotating the mandrel 23 provided with the forming protrusions 25. That is, when the mandrel 23 is rotated, the tubular material extruded in the straight direction receives the torque associated with the rotation of the mandrel at the forming ridge position on the inner peripheral surface thereof, so that this rotates in the rotation direction of the mandrel 23. Will rotate.
  • both the die 24 for forming the outer peripheral surface of the tube material together with the mandrel 23 are forcibly rotated, and the extrusion of the mandrel 23 is performed by the rotation of the die 24. It cancels out so as to cancel each other, so that the straightness of the tube material traveling in the straight direction is ensured.
  • the extruded tube material can be extruded in a straight line without rotating toward the front (front end side in the extrusion direction) of the spiral tube extrusion molding machine 2.
  • the above-mentioned forced rotation in the reverse direction is performed in the reverse direction of the same speed or a different speed, so that the above torque can be effectively canceled and the straightness of the pipe material can be reliably ensured.
  • the forced rotation in the reverse direction is performed at the same speed, so that in addition to canceling torque and ensuring straightness of the tube material, the spiral along with the rotation of the forming protrusion 25 is performed.
  • the twisting angle of the grooves 11 is enlarged so as to increase as compared with that of the non-rotating one, thereby increasing the arrangement density of the spiral grooves 11 as much as possible. Thereby, the heat exchange efficiency was improved as much as possible in the spiral tube 1 as the heat exchange inner surface spiral grooved tube material of this example.
  • the forced rotation needs to be performed in the reverse direction, but the rotation speed is preferably the same.
  • the rotation speed depends on the pipe material to be extruded, that is, the extrusion and the inside and outside of the spiral tube 1 depending on the diameter and cross-sectional shape of the spiral tube 1, the heating temperature and the surface condition of the bearings 231 and 241 in the spiral tube extruder 2. Therefore, it is necessary to adjust the speed of one side to be faster and the other to be slowed to make it different speed in order to absorb the resistance difference and secure the above-mentioned torque cancellation and straight tube straightness. It may become.
  • the rotational speed of the different speed is in the inner peripheral spiral grooved tube material having several tens of grooves on the inner peripheral surface, and the lengths of the mandrel 23 of the spiral tube extrusion machine 2 and the bearings 231 and 241 of the die 24. If they are equal, it may be adjusted so that the rotational speed difference is about several to 20%. Further, when the resistance difference is relatively small, the difference in the rotational speed is preferably about 10% or less. As described above, there is a case where the torque cancellation, the straightness of the tube material, and the twist angle can be effectively ensured by setting the mandrel 23 and the die 24 to different speeds in accordance with the resistance difference between the inner and outer extrusion molding.
  • an aluminum or aluminum alloy such as an A1070 aluminum alloy having an aluminum purity of 99.7% or more, was extruded using a 30-ton press extrusion machine under extrusion conditions of a die temperature and a billet heating temperature of 450 to 500 ° C.
  • a spiral tube 1 having the cross-sectional shape of FIG. 3 was obtained.
  • the spiral tube 1 has a shape having an outer diameter of 9.5 mm, a thickness of 0.5 mm, a number of grooves of 50, a groove height of 0.3 mm, and a groove width of 0.27 mm.
  • the following results could be obtained for extrusion molding of the spiral tube 1.
  • the twist angle of the spiral groove was 12.2 °.
  • the twist angle of the spiral groove was 29.9 °.
  • the twist angle of the spiral groove was 6 °.
  • the twist angle of the spiral groove was 12.9 °.
  • the tip of the spiral tube 1 was pulled with a puller, but since there was no rotation of the tube material, all of them had a beautiful shape with no deformation or distortion in the longitudinal direction as shown in the cross-sectional shape shown in the figure.
  • the spiral tube extrusion molding machine 2 has a male bearing 231 for forming the inner peripheral surface of the tube material at the front end in the tube material extrusion direction, and is rotatably arranged for the above-described extrusion method.
  • the mandrel 23 is provided.
  • the spiral tube extrusion molding machine 2 has a female bearing 241 for forming the outer peripheral surface of the pipe material that surrounds all or part of the longitudinal direction outside the tube material extrusion direction of the male bearing 231 and is also rotatably arranged. .
  • the spiral tube extrusion molding machine 2 is provided with a die 24, the male bearing 231 and / or the female bearing 241, and in this example, the molding protrusion 25 disposed on the male bearing 231, and the mandrel 23. And the drive means 3 which forcibly rotates both the die
  • the spiral tube extrusion machine 2 is particularly for aluminum or aluminum alloy.
  • the spiral tube extrusion molding machine 2 accommodates a heated aluminum billet 26 in a billet accommodating portion of a container 21, and a ram (through a dummy block 221 with a mandrel 23 penetrating through a through hole in the center of the aluminum billet 26.
  • the aluminum billet 26 is pressurized by 22 (which may be called a stem).
  • the spiral tube is extruded onto a table (not shown) by the male bearing 231 of the mandrel 23 and the female bearing 241 of the die 24. Further, the formed spiral tube is wound around a wheel 27 that is rotatable at the tube crossing direction of a winder disposed at the front end of the table in the extrusion direction.
  • the mandrel 23 having the male bearing 231 and the die 24 having the female bearing 241 of the spiral tube extrusion molding machine 2 are subjected to electric discharge machining on a long steel material or a block steel material, respectively.
  • 23 and the die 24 are produced by integrally molding the bearings 231 and 241.
  • the male bearing 231 formed separately on the mandrel 23 can be screwed and arranged.
  • troubles such as deformation of the male bearing 231 upon application of pressure may occur. Sex remains. Therefore, it is preferable that the mandrel 23 and the die 24 that are constantly subjected to the applied pressure are integrally formed as described above.
  • the female bearing 241 of the die 24 is disposed so as to surround all or part of the male bearing 231 of the mandrel 23, and the positional relationship of the arrangement is adopted.
  • the male bearing 231 and the female bearing 241 may have the same length, and may be disposed so as to be in a completely enclosed state in which the positional relationship faces each other. Further, when the male bearing 231 and the female bearing 241 have different lengths, the male bearing 231 is shorter than the female bearing 241, that is, partially surrounded so as to be positioned on the ram 22 side.
  • the forced rotation of the mandrel 23 having the male bearing 231 and the die 24 having the female bearing 241 in the reverse direction is performed by the electric motor 3 in this example.
  • the electric motor 3 of this example is disposed on the mandrel 23 and the die 24, and a pair of the electric motors 3 are arranged on the spiral tube extrusion molding machine 2 so that the mandrel 23 and the die 24 can be independently driven to rotate. Then, by controlling the rotational speeds of the electric motors 3, the mandrel 23 and the die 24 are rotated at the same speed or different speeds. Further, by mechanically changing the rotation direction of one electric motor 3, both are rotated in the opposite direction, and the forced rotation in the opposite direction is performed at the same speed or different speed.
  • FIG. 4 to 6 show another example of the pipe material according to another example, that is, the spiral pipe 1.
  • FIG. 4 shows an example of an outer surface spiral grooved tube material in which the spiral groove 11 is arranged on the outer peripheral surface in the number of dozens, especially 50, instead of the spiral groove on the inner peripheral surface.
  • FIG. 5 shows an example of a spiral grooved tube material in which four spiral grooves 11 are arranged at an angular position of 90 degrees on the outer peripheral surface in a small number of 90 degrees in addition to the spiral groove on the inner peripheral surface.
  • FIG. 6 shows an example of a tube material with both inner and outer spiral grooves in which a large number of spiral grooves 11 are arranged on the outer peripheral surface in addition to the inner spiral groove 11.
  • the forming ridge 25 in particular, a large number of linear ridges may be arranged in the die-shaped female bearing 241 in the same manner as described above in the tube material pushing direction.
  • the male bearing 231 of the mandrel 23 may be a smooth surface. Further, the extrusion molding in FIGS. 4 and 5 may be performed in accordance with the one in FIG.
  • the spiral tube, its tube material, the spiral groove, the mandrel, the male bearing, the die, the female bearing, the forming protrusion, and the straight line used as necessary.
  • Each specific shape, structure, material, relationship between them, addition to these, etc., such as the protrusions and driving means can be in various forms as long as they do not contradict the gist of the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Extrusion Of Metal (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

 押出成形時の先端回転を防止しつつ螺旋溝を有するスパイラル管を押出成形することを課題とする。 管材押出方向先端に管材内周面成形用の雄型ベアリング231を有するマンドレル23と、その外側で長手方向全部又は一部を囲繞する管材外周面成形用の雌型ベアリング241を有するダイ24を備えるとともに上記雄型ベアリング231及び/又は雌型ベアリングに成形突条25を配置したスパイラル管押出成形機2を用いて、マンドレル23及びダイ24双方を逆方向に強制回転して管材を直進方向に押出成形して管材の内外周面の少なくとも一方に長手方向螺旋状をなす螺旋溝11を連続形成する。マンドレル23とダイ24の強制回転を逆方向とすることによって管材へのトルクを相殺して押出成形時の先端回転を防止する。

Description

スパイラル管押出成形方法及びスパイラル管押出成形機
 本発明は、スパイラル管押出成形方法及びスパイラル管押出成形機に関する。
 螺旋溝を形成したスパイラル管の押出成形方法として、例えば下記特許文献1には次のような技術が開示されている。即ち、ポートホールダイスのマンドレル先端にボルトによって、裁頭円錐形にして、裁頭の径小側をビレット側に、円錐底面の径大側を押出方向に向けて側面をテーパー面とするプラグを回転自在に配置するとともに該プラグ表面のテーパー面に管材内周面成形用にして螺旋形の成形突条を配置する。そして、管材をマンドレルとダイキャップの間で直進方向に押出成形し、裁頭円錐形のプラグの長手方向中間位置でその螺旋形の成形突条を管材の内周面に強制接触させて該管材の進行に伴って該プラグを強制回転するとともに管材の内周面に成形突条による長手方向に螺旋状をなす螺旋溝を連続成形する。
特開2009-220153号公報
 この場合、内周面に一連の螺旋溝を形成したスパイラル管を押出成形することができ、エアコンディショナーや冷凍機の熱交換器用伝熱管、床暖房の排熱用配管等として、従前の銅管に代えて、例えばアルミ乃至アルミ合金の管を用いた低コストにして量産性に優れたスパイラル管を提供することができる。
 しかし乍ら、一方で、従来の技術では、テーパー面の表面に螺旋形をなす成形突条を形成した裁頭円錐形のプラグを用いることによって、該プラグの製作が煩雑化する。また、裁頭円錐形のプラグに、そのテーパー面長手方向中間位置で管材内周面を接触させることから、比較的径大のスパイラル管には用い得ても、例えば1cm以下のように径小の内径を有するスパイラル管の押出成形には必ずしも適したものとはいえない。さらに、直進する管材内周面をプラグの螺旋形をなす成形突条に強制接触させてプラグを強制回転するとともに管材内周面に螺旋溝を成形するため、プラグの回転に伴なって管材がトルクを受けるため、管材の螺旋溝成形部分がプラグ回転方向に連れ回りするように回転する結果、管材の押出方向先端を牽引するプラーを回転する必要が生じる。管材の巻取り機を設置したものにあっては、同じく巻取り機を管材の回転に応じて回転する必要が生じるから、押出成形後の管材処理が煩雑化する。また、管材の進行に応じてプラグの回転を行うため、螺旋溝のねじれ角が小さくなる傾向を招き、ねじれ角を大きくするように押出速度を早めると管材の形状が崩れたりする押出不良を招く傾向がある。従って、比較的径大にしてねじれ角の比較的小さな管材の押出成形をなし得ても、径小にしてねじれ角の大きな管材の押出成形には適当であるとはいえないこと等の問題点が残されている。
 本発明はかかる事情に鑑みてなされたもので、その解決課題とするところは、径小にしてねじれ角の大きな管材を含めて、可及的簡易にして高精度なスパイラル管を確実に押出成形することができるとともに螺旋溝の成形に際して管材の回転を防止し得るようにしたスパイラル管押出成形方法を提供することにあり、また、該スパイラル管の押出成形に好適に用いられるスパイラル管押出成形機を提供することにある。
 上記課題に沿って本発明では、管材の押出成形に際して、その内周面成形用の雄型ベアリングを押出方向先端に固定したマンドレルと、該雄型ベアリングを囲繞するように管材の外周面成形用の雌型ベアリングを配置したダイを備える。そしてこれらマンドレル及びダイの双方を強制回転し、該強制回転下で管材を直進方向に押出成形し、その内外周面の一方又は双方に長手方向の螺旋溝を連続形成するようにする。これによって、径小にしてねじれ角の大きな管材を含めて、可及的簡易にして高精度なスパイラル管を確実に押出成形し得るようにしたものである。
  即ち、請求項1に記載の発明を、管材押出方向先端に管材内周面成形用の雄型ベアリングを有して回転自在に配置したマンドレルと、該雄型ベアリングの管材押出方向外側でその長手方向全部又は一部を囲繞する管材外周面成形用の雌型ベアリングを有して同じく回転自在に配置したダイを備えるとともに上記雄型ベアリング及び/又は雌型ベアリングに成形突条を配置し、上記マンドレル及びダイ双方の強制回転下で管材を直進方向に押出成形して管材内外周面一方又は双方に管材長手方向に螺旋状をなす螺旋溝を連続形成することを特徴とするスパイラル管押出成形方法としたものである。
 請求項2に記載の発明は、上記に加えて、雄型ベアリング及び/又は雌型ベアリングの螺旋溝を形成する成形突条を、押出方向に平行な多数直線の突条によるものとして該成形突条の形成を可及的簡易且つ確実に行い得るものとするように、これを、上記雄型ベアリング及び/又は雌型ベアリングに配置した成形突条を、管材押出方向に向けて平行多数の直線突条によって形成してなることを特徴とする請求項1に記載のスパイラル管押出成形方法としたものである。
 請求項3に記載の発明は、同じく上記に加えて、上記マンドレルとダイの強制回転を相互に同速乃至異速の逆方向に行うことによって、マンドレルとダイに生じるトルクを相殺して管材の直進性を確実に確保するとともに成形突条の回転に伴う螺旋溝におけるねじれ角を非回転のものに比して可及的に拡大してねじれ角の大きな、即ち、高密度配置の螺旋溝を効率よく形成し得るものとするように、これを、上記マンドレルとダイの強制回転を、同速乃至異速の逆方向に行うことを特徴とする請求項1又は2に記載のスパイラル管押出成形方法としたものである。
 請求項4に記載の発明は、同じく上記に加えて、マンドレルとダイの逆方向の強制回転を同速に行うことによって、上記成形突条の回転に伴う螺旋溝のねじれ角を非回転のものに比して倍増するように拡大し、螺旋溝の配置密度を可及的に大とするように、これを、上記マンドレルとダイの逆方向の強制回転を、同速に行うことを特徴とする請求項3に記載のスパイラル管押出成形方法としたものである。
 請求項5に記載の発明は、同じく上記に加えて、スパイラル管を、エアコンディショナー、冷凍機の熱交換器用伝熱管乃至床暖房の排熱用配管等に好適に使用可能の熱交換用内面螺旋溝付き管材を簡易且つ確実に得られるものとするように、これを、上記マンドレルの雄型ベアリングの外周に成形突条を配置することによって、管材を熱交換用内面螺旋溝付き管材とすることを特徴とする請求項1、2、3又は4に記載のスパイラル管押出成形方法としたものである。
 請求項6に記載の発明は、上記スパイラル管を押出成形するに好適に用いられるスパイラル管押出成形機を提供するように、これを、管材押出方向先端に管材内周面成形用の雄型ベアリングを有して回転自在に配置したマンドレルと、該雄型ベアリングの管材押出方向外側でその長手方向全部又は一部を囲繞する管材外周面成形用の雌型ベアリングを有して同じく回転自在に配置したダイと、上記雄型ベアリング及び/又は雌型ベアリングに配置した成形突条と、上記マンドレル及びダイ双方を強制回転する駆動手段を備えてなることを特徴とするスパイラル管押出成形機としたものである。
 本発明はこれらをそれぞれ発明の要旨として上記課題解決の手段としたものである。
 本発明は以上のとおりに構成したから、請求項1に記載の発明は、管材の押出成形に際して、その内周面成形用の雄型ベアリングを押出方向先端に固定したマンドレルと、該雄型ベアリングを囲繞するように管材の外周面成形用の雌型ベアリングを配置したダイを備えるとともにこれらマンドレル及びダイの双方を強制回転し、該強制回転下で管材を直進方向に押出成形し、その内外周面の一方又は双方に長手方向の螺旋溝を連続形成するようにすることによって、径小にしてねじれ角の大きな管材を含めて、可及的簡易にして高精度なスパイラル管を確実に押出成形し得るようにしたスパイラル管押出成形方法を提供することができる。
 請求項2に記載の発明は、上記に加えて、雄型ベアリング及び/又は雌型ベアリングの螺旋溝を形成する成形突条を、押出方向に平行な多数直線の突条によるものとして該成形突条の形成を可及的簡易且つ確実に行い得るものとすることができる。
 請求項3に記載の発明は、同じく上記に加えて、上記マンドレルとダイの強制回転を相互に同速乃至異速の逆方向に行うことによって、マンドレルとダイに生じるトルクを相殺して管材の直進性を確実に確保するとともに成形突条の回転に伴う螺旋溝におけるねじれ角を非回転のものに比して可及的に拡大してねじれ角の大きな、即ち、高密度配置の螺旋溝を効率よく形成し得るものとすることができる。
 請求項4に記載の発明は、同じく上記に加えて、マンドレルとダイの逆方向の強制回転を同速に行うことによって、上記トルクの打ち消しとねじれ角を成形突条の回転に伴う螺旋溝のねじれ角を非回転のものに比して倍増するように拡大し、螺旋溝の配置密度を可及的に大とすることができる。
 請求項5に記載の発明は、同じく上記に加えて、スパイラル管を、エアコンディショナー、冷凍機の熱交換器用伝熱管乃至床暖房の排熱用配管等に好適に使用可能の熱交換用内面螺旋溝付き管材を簡易且つ確実に得られるものとすることができる。
 請求項6に記載の発明は、上記スパイラル管を押出成形するに好適に用いられるスパイラル管押出成形機を提供することができる。
スパイラル管押出成形機の概要を示す側面図である。 マンドレルとダイによる螺旋溝形成の状態を示す部分拡大図である。 内面螺旋溝付き管材の例を示す縦断面図である。 外面螺旋溝付き管材の例を示す縦断面図である。 内外両面螺旋溝付き管材を示す縦断面図である。 他の例の内外両面螺旋溝付き管材の例を示す縦断面図である。
 以下図面の例に従って本発明を更に具体的に説明する。図中1は、内周面に螺旋溝11を形成して内面螺旋溝付管材としたスパイラル管である。図中2は該スパイラル管1を押出成形するスパイラル管押出成形機であり、管材押出方向先端に管材内周面成形用の雄型ベアリング231を有して回転自在に配置したマンドレル23と、該雄型ベアリング231の管材押出方向外側でその長手方向全部又は一部を囲繞する管材外周面成形用の雌型ベアリング241を有して同じく回転自在に配置したダイ24とを備える。また、上記雄型ベアリング231及び/又は雌型ベアリング241には成形突条25が配置されている。そしてスパイラル管1は、スパイラル管押出成形機2を用いて、上記マンドレル23及びダイ24双方の強制回転下で管材を直進方向に押出成形して管材内外周面一方又は双方に管材長手方向に螺旋状をなす螺旋溝11を連続形成する押出成形方法によって、これを量産し得るようにしてある。
 本例にあって上記内面螺旋溝付管材1(スパイラル管1)は、例えば図3に示すように、スパイラル管押出成形機2の上記マンドレル23の雄型ベアリング231の外周に成形突条25を配置して押出成形して形成したスパイラル管1を熱交換用のものとして使用する。即ち、本例のスパイラル管1は、マンドレル23の雄型ベアリング231とダイ24の雌型ベアリング241のうち、前者のマンドレル23の雄型ベアリング231に上記成形突条25を配置する一方、ダイ24の雌型ベアリング241を、該成形突条25を配置することなく平滑面であるスパイラル管押出成形機2で押出成形することによって、断面中空円形の管材の内周面に上記螺旋溝11を形成し、外周面を平滑な円筒面をなすようにしてある。
 上記成形突条25は、これを、管材押出方向に向けて平行多数の直線突条によって形成してある。該直線突条によって、上記管材長手方向に螺旋状をなす螺旋溝11を形成するのは、該成形突条25を備えたマンドレル23を強制回転することによってこれを行うものとしてある。即ち、該マンドレル23を回転すると、直進方向に押出成形される管材は、その内周面に成形突条位置でマンドレルの回転に伴うトルクを受けて、これがマンドレル23の回転方向につれ回りするように回転することになる。さらに、該管材の押出成形に際して上記マンドレル23とともに管材外周面を成形するダイ24の双方を強制回転して、該強制回転下の押出成形とすることによってマンドレル23回転のトルクをダイ24の回転によって相殺するように打ち消して、直進方向に進行する管材の直進性を確保するようにしてある。これによって押出成形した管材は、スパイラル管押出成形機2の前方(押出方向先端側)に向けて回転することなく直進した状態の押出成形をなし得る。
 上記逆方向の強制回転は、これを、同速乃至異速の逆方向に行うものとして、上記トルクの有効な相殺とこれによる管材直進性の確実な確保を行うようにしてある。本例にあって、該逆方向の強制回転は、これを、同速に行うものとすることによって、トルクの相殺と管材直進性の確保に加えて、上記成形突条25の回転に伴う螺旋溝11のねじれ角を、非回転のものに比して増大するように拡大して螺旋溝11の配置密度を可及的に大としている。これにより、本例の熱交換用内面螺旋溝付き管材としたスパイラル管1として、その熱交換効率を可及的に向上した。
 強制回転は逆方向に行うことが必要であるところ、その回転速度は同速とすることが好ましい。ただし、該回転速度は、押出成形する管材、即ち、スパイラル管1の径や断面形状、スパイラル管押出成形機2におけるベアリング231、241の加熱温度や表面状態等によってスパイラル管1の内外における押出成形の抵抗差が変化するために、該抵抗差を吸収して上記トルクの相殺と管材直進性を確保する上で、一方を早く、他方を遅くして異速とするように調整することが必要となる場合がある。一般に、異速とする回転速度は、内周面に数十の溝数とする内周螺旋溝付管材にあって、スパイラル管押出成形機2のマンドレル23とダイ24のベアリング231、241長さを同等とした場合、数%~20%程度の回転速度の差とするように調整すればよい。また、抵抗差が比較的小さいときには該回転速度の差は、これを10%程度以下とするのが好ましい。このように内外の押出成形の抵抗差に応じて、マンドレル23とダイ24を異速とすることによって、上記トルク相殺、管材直進性、ねじれ角を有効に確保することができる場合がある。
 実験により、30トンプレスの押出成形機を用いてアルミ乃至アルミ合金、例えばアルミ純度99.7%以上のA1070アルミ合金を、ダイス温度及びビレット加熱温度450~500℃の押出条件で押出成形して、図3の断面形状のスパイラル管1を得た。スパイラル管1は、外径9.5mm、肉厚0.5mm、溝数50、溝高さ0.3mm、溝幅0.27mmなる形状を備えている。このスパイラル管1を押出成形するについて、例えば次のような結果を得ることができた。
  第一の例ではラム速2mm/sでマンドレル、ダイを60rpmの同速で逆方向に回転したとき、螺旋溝のねじれ角は12.2°であった。
  第二の例ではラム速2mm/sでマンドレル、ダイを120rpmの同速で回転したとき、螺旋溝のねじれ角は29.9°であった。
  第三の例ではラム速4mm/sでマンドレル、ダイを60rpmの同速で回転したとき、螺旋溝のねじれ角は6°であった。
  第四の例ではラム速4mm/sでマンドレル、ダイを120rpmの同速で回転したとき、螺旋溝のねじれ角は12.9°であった。
  このとき、スパイラル管1の先端をプラーで牽引したが、管材の回転が全くないため、いずれも図示する断面形状のように長手方向に変形や歪のない美麗な形状のものであった。因みに上記条件下にあって、マンドレルとダイは、これを50乃至120rpm程度の回転数の逆回転とするのが、螺旋溝のねじれ角を比較的大きく確保する上で有効であると認められる。
 図1及び図2に示すようにスパイラル管押出成形機2は、上記押出成形方法用のものとして、管材押出方向先端に管材内周面成形用の雄型ベアリング231を有して回転自在に配置したマンドレル23を備える。またスパイラル管押出成形機2には該雄型ベアリング231の管材押出方向外側でその長手方向全部又は一部を囲繞する管材外周面成形用の雌型ベアリング241を有して同じく回転自在に配置した。さらに、スパイラル管押出成形機2にはダイ24と、上記雄型ベアリング231及び/又は雌型ベアリング241、本例にあっては雄型ベアリング231に配置した成形突条25を備えるとともに上記マンドレル23及びダイ24双方を強制回転する駆動手段3を備えている。そしてスパイラル管押出成形機2は特にアルミ乃至アルミ合金用のものである。
 スパイラル管押出成形機2は、コンテナ21のビレット収容部に加熱したアルミビレット26を収容し、該アルミビレット26中央の透孔にマンドレル23を貫通配置した状態で、ダミーブロック221を介してラム(ステムといってもよい)22によって該アルミビレット26を加圧する。これによって、上記マンドレル23の雄型ベアリング231とダイ24の雌型ベアリング241によってスパイラル管を、図示省略のテーブル上に向けて押出成形する。さらに成形されたスパイラル管は、該テーブルの押出方向先端に配置した巻き取り機の管材交差方向回転自在のホイール27に巻き取られる。
 本例にあって、スパイラル管押出成形機2の上記雄型ベアリング231を有するマンドレル23、雌型ベアリング241を有するダイ24は、それぞれ長尺鋼材乃至ブロック鋼材に放電加工を施すことによって、これらマンドレル23、ダイ24に各ベアリング231、241を一体成形したものとして作製される。例えば、マンドレル23に別体に形成した雄型ベアリング231を螺着配置することも可能であるが、場合によって、押出成形時に雄型ベアリング231が加圧力を受けて変形する等のトラブルが生じる可能性が残る。従って、加圧力を常時受けることになるマンドレル23やダイ24は、これらを上記のように一体成形したものとすることが好ましい。
 ダイ24の雌型ベアリング241は、マンドレル23の雄型ベアリング231の外側でその全部又は一部を囲繞するように配置して、その配置の位置関係とするものとしてある。雄型ベアリング231と雌型ベアリング241はこれらを同一長さとして、その位置関係を相互に対面した全部囲繞の状態とするように囲繞配置してもよい。また、雄型ベアリング231と雌型ベアリング241を異長とした場合には、雄型ベアリング231の先端が雌型ベアリング241より短寸、即ち、ラム22側に位置するように一部囲繞の状態とするように囲繞配置することが好ましい。一方、該異長とした一部囲繞の状態とするについて、雄型ベアリング231の先端が雌型ベアリング241より押出方向に突出するように配置すると、押出成形した管材における螺旋溝11の長手方向に向けたねじり角が小さくなる傾向を招くので、かかる囲繞配置は、これを避けるようにすることが好ましい。
 雄型ベアリング231を有するマンドレル23及び雌型ベアリング241を有するダイ24の逆方向の強制回転は、本例にあって電動モーター3によって、これを行うものとしてある。本例の電動モーター3は、該マンドレル23及びダイ24にそれぞれ設置して該マンドレル23及びダイ24を単独に回転駆動自在とするようにスパイラル管押出成形機2に一対配置してある。そして各電動モーター3の各回転速度をコントロールすることによって、マンドレル23及びダイ24の同速乃至異速の回転を行う。また、一方の電動モーター3の回転方向を機械的に変換することによって双方を逆方向に回転するようにして、上記同速乃至異速にして逆方向の強制回転を行うようにしてある。
 図4乃至図6は、他の例にかかる管材、即ちスパイラル管1の他の例を示すものである。図4は上記内周面の螺旋溝に代えて、多数にして数十、特に50本として外周面に螺旋溝11を配置した外面螺旋溝付き管材の例である。図5は上記内周面の螺旋溝に加えて、外周面に少数にして90度の角度位置に、特に4本として螺旋溝11を配置した螺旋溝付き管材の例である。また図6は、上記内面螺旋溝11に加えて、外周面に各多数の螺旋溝11を配置した内外両面螺旋溝付き管材とした例である。外周面に螺旋溝11を形成するときは、上記に準じてダイの雌型ベアリング241に同様に成形突条25、特に管材押出方向に向けて平行多数の直線突条を配置すればよい。また、内周面に螺旋溝を形成しないときは、マンドレル23の雄型ベアリング231を平滑面とすればよい。また、図4及び図5の押出成形は、上記図3のものに準じてこれを行えばよい。
 図示した例は以上のとおりとしたが、本発明の実施に当って、スパイラル管、その管材、螺旋溝、マンドレル、雄型ベアリング、ダイ、雌型ベアリング、成形突条、必要に応じて用いる直線突条、駆動手段等の各具体的形状、構造、材質、これらの関係、これらに対する付加等は、上記発明の要旨に反しない限り様々な形態のものとすることができる。
  1 スパイラル管
  11 螺旋溝
  2 スパイラル管押出成形機
  21 コンテナ
  22 ラム
  221 ダミーブロック
  23 マンドレル
  231 雄型ベアリング
  24 ダイ
  241 雌型ベアリング
  25 成形突条
  26 アルミビレット
  27 ホイール
  3 電動モーター(駆動手段)

Claims (6)

  1.  管材押出方向先端に管材内周面成形用の雄型ベアリングを有して回転自在に配置したマンドレルと、該雄型ベアリングの管材押出方向外側でその長手方向全部又は一部を囲繞する管材外周面成形用の雌型ベアリングを有して同じく回転自在に配置したダイを備えるとともに上記雄型ベアリング及び/又は雌型ベアリングに成形突条を配置し、上記マンドレル及びダイ双方の強制回転下で管材を直進方向に押出成形して管材内外周面一方又は双方に管材長手方向に螺旋状をなす螺旋溝を連続形成することを特徴とするスパイラル管押出成形方法。
  2.  上記雄型ベアリング及び/又は雌型ベアリングに配置した成形突条を、管材押出方向に向けて平行多数の直線突条によって形成してなることを特徴とする請求項1に記載のスパイラル管押出成形方法。
  3.  上記マンドレルとダイの強制回転を、同速乃至異速の逆方向に行うことを特徴とする請求項1又は2に記載のスパイラル管押出成形方法。
  4.  上記マンドレルとダイの逆方向の強制回転を、同速に行うことを特徴とする請求項3に記載のスパイラル管押出成形方法。
  5.  上記マンドレルの雄型ベアリングの外周に成形突条を配置することによって、管材を熱交換用内面螺旋溝付き管材とすることを特徴とする請求項1、2、3又は4に記載のスパイラル管押出成形方法。
  6.  管材押出方向先端に管材内周面成形用の雄型ベアリングを有して回転自在に配置したマンドレルと、該雄型ベアリングの管材押出方向外側でその長手方向全部又は一部を囲繞する管材外周面成形用の雌型ベアリングを有して同じく回転自在に配置したダイと、上記雄型ベアリング及び/又は雌型ベアリングに配置した成形突条と、上記マンドレル及びダイ双方を強制回転する駆動手段を備えてなることを特徴とするスパイラル管押出成形機。
PCT/JP2013/050930 2012-03-29 2013-01-18 スパイラル管押出成形方法及びスパイラル管押出成形機 WO2013145815A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201380016542.1A CN104203442B (zh) 2012-03-29 2013-01-18 螺旋管的挤制成形方法及螺旋管的挤制成形机

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-075539 2012-03-29
JP2012075539A JP5871269B2 (ja) 2012-03-29 2012-03-29 スパイラル管押出成形方法及びスパイラル管押出成形機

Publications (1)

Publication Number Publication Date
WO2013145815A1 true WO2013145815A1 (ja) 2013-10-03

Family

ID=49259101

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/050930 WO2013145815A1 (ja) 2012-03-29 2013-01-18 スパイラル管押出成形方法及びスパイラル管押出成形機

Country Status (3)

Country Link
JP (1) JP5871269B2 (ja)
CN (1) CN104203442B (ja)
WO (1) WO2013145815A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114798796A (zh) * 2022-05-25 2022-07-29 中北大学 一种弱各向异性高强韧镁合金板材旋转挤压成形模具

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105710180B (zh) * 2016-04-22 2017-08-11 燕山大学 一种带有内螺旋曲面的细长筒零件扭转成形法
CN111495998B (zh) * 2019-01-31 2021-09-21 张文浩 一种金属及金属基复合材料成形装置
US11134760B2 (en) * 2019-06-27 2021-10-05 Titan Company Limited System and method for manufacturing hollow tubular jewellery
CN116638324B (zh) * 2023-07-27 2023-09-19 江苏金诺化工装备有限公司 一种复合盘管式换热器盘管组件生产设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09295040A (ja) * 1996-05-10 1997-11-18 Hitachi Cable Ltd 内面加工金属管の製造方法
JPH10258308A (ja) * 1997-03-18 1998-09-29 Hitachi Cable Ltd 内面螺旋フィン付管の製造方法及びその製造装置
JP2006247734A (ja) * 2005-03-14 2006-09-21 Japan Science & Technology Agency 中空材のねじり加工法
JP2009172657A (ja) * 2008-01-25 2009-08-06 National Institute Of Advanced Industrial & Technology 高性能マグネシウム合金部材及びその製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3404203A (en) * 1963-05-03 1968-10-01 Dow Chemical Co Method of extruding bi-helically oriented thermoplastic tube
CH564827A5 (ja) * 1971-05-21 1975-07-31 Tenge Hans Werner
GB1573196A (en) * 1975-12-15 1980-08-20 Sumito Electric Ind Ltd Method and apparatus for extruding polytetrafluoroethlene tubing
JPS5468763A (en) * 1977-11-11 1979-06-02 Tateyama Aluminum Kogyo Kk Extruding and molding of spirally shaped material
JP3119023B2 (ja) * 1993-04-15 2000-12-18 石川島播磨重工業株式会社 ねじれ体の押出成形方法および押出成形装置
JPH10166032A (ja) * 1996-12-11 1998-06-23 Hitachi Cable Ltd 内面螺旋フィン付金属管の製造方法
CN1313793C (zh) * 2003-02-28 2007-05-02 日立电线株式会社 螺旋形内开槽金属管及其制造方法
JP2009220153A (ja) * 2008-03-17 2009-10-01 Aisin Keikinzoku Co Ltd 内面螺旋溝付管の製造方法及びその装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09295040A (ja) * 1996-05-10 1997-11-18 Hitachi Cable Ltd 内面加工金属管の製造方法
JPH10258308A (ja) * 1997-03-18 1998-09-29 Hitachi Cable Ltd 内面螺旋フィン付管の製造方法及びその製造装置
JP2006247734A (ja) * 2005-03-14 2006-09-21 Japan Science & Technology Agency 中空材のねじり加工法
JP2009172657A (ja) * 2008-01-25 2009-08-06 National Institute Of Advanced Industrial & Technology 高性能マグネシウム合金部材及びその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114798796A (zh) * 2022-05-25 2022-07-29 中北大学 一种弱各向异性高强韧镁合金板材旋转挤压成形模具
CN114798796B (zh) * 2022-05-25 2023-12-26 中北大学 一种弱各向异性高强韧镁合金板材旋转挤压成形模具

Also Published As

Publication number Publication date
JP5871269B2 (ja) 2016-03-01
CN104203442A (zh) 2014-12-10
JP2013202664A (ja) 2013-10-07
CN104203442B (zh) 2016-03-02

Similar Documents

Publication Publication Date Title
WO2013145815A1 (ja) スパイラル管押出成形方法及びスパイラル管押出成形機
JP2009220153A (ja) 内面螺旋溝付管の製造方法及びその装置
CN111420992B (zh) 一种轴向内筋筒形件的定径轧制成形方法
WO2012157768A1 (ja) 管材製造装置、管材製造方法、および、管材
US20020104350A1 (en) Apparatus for manufacturing internal grooved tube
CN102019321A (zh) 一种整体螺旋翅片管辊轧刀具及整体螺旋翅片管辊轧机
WO2015186695A1 (ja) 管材製造装置、管材製造方法、および、管材
US20120011916A1 (en) Machine for the expansion of pipes
JP2005297062A (ja) 内面螺旋溝付管の製造方法及びその装置
JPS58184012A (ja) 曲がり形材の製造方法
JP3111896B2 (ja) 内面加工金属管の製造方法
JP4628858B2 (ja) 二重管の製造方法、およびその装置
JPH0952113A (ja) 異形管の製造方法
CN201855871U (zh) 整体螺旋翅片管辊轧刀具及整体螺旋翅片管辊轧机
JPH10166036A (ja) 内面溝付管の製造方法及びその装置
JP2003126916A (ja) 螺旋溝付管の製造方法およびその製造装置
JPH10166034A (ja) 多孔偏平管の製造方法
CN218580031U (zh) 一种对高效管进行预压硬化、翅片化的装置
JPS58187681A (ja) 溝付管およびその製造方法
JPS61266121A (ja) 内面溝付管の加工装置
JP3743342B2 (ja) 螺旋状内面溝付管及びその製造方法
KR100508281B1 (ko) 열간금속 연속압출전조 가공장치 및 가공방법
JP2008241217A (ja) 熱交換器の製造方法及びこの製造方法によって製造した熱交換器
KR101435360B1 (ko) 트위스트 알루미늄 배관 형성을 위한 금형
JPS6188918A (ja) 伝熱管の製造装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13770272

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13770272

Country of ref document: EP

Kind code of ref document: A1