WO2013141104A1 - ケイ素黒鉛複合粒子およびその製造方法 - Google Patents

ケイ素黒鉛複合粒子およびその製造方法 Download PDF

Info

Publication number
WO2013141104A1
WO2013141104A1 PCT/JP2013/056955 JP2013056955W WO2013141104A1 WO 2013141104 A1 WO2013141104 A1 WO 2013141104A1 JP 2013056955 W JP2013056955 W JP 2013056955W WO 2013141104 A1 WO2013141104 A1 WO 2013141104A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon
particles
graphite
composite particles
powder
Prior art date
Application number
PCT/JP2013/056955
Other languages
English (en)
French (fr)
Other versions
WO2013141104A9 (ja
Inventor
山本 浩司
禰宜 教之
永田 辰夫
昭博 八内
藤原 徹
Original Assignee
中央電気工業株式会社
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中央電気工業株式会社, 新日鐵住金株式会社 filed Critical 中央電気工業株式会社
Priority to CN201380012411.6A priority Critical patent/CN104185917B/zh
Priority to JP2014506165A priority patent/JP5798678B2/ja
Priority to KR1020147017857A priority patent/KR101660001B1/ko
Publication of WO2013141104A1 publication Critical patent/WO2013141104A1/ja
Publication of WO2013141104A9 publication Critical patent/WO2013141104A9/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/74Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by peak-intensities or a ratio thereof only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to silicon graphite composite particles and a method for producing the same.
  • silicon particles are particularly attracting attention because a negative electrode having a high discharge capacity can be produced.
  • the silicon particles have an extremely large volume change of about 4 times due to insertion and extraction of lithium ions. For this reason, when charging / discharging is repeated with respect to the battery which uses a silicon particle as a negative electrode active material, the conductive network of a silicon particle will collapse gradually, As a result, the discharge capacity of a battery will fall.
  • silicon graphite composite particles for example, “D, measured by Raman spectroscopy using an argon laser, containing silicon, scaly graphite and carbonaceous material, the content of carbonaceous material being less than 20% by mass.
  • Composite graphite particles in which the ratio ID / IG (R value) of the band 1360 cm ⁇ 1 peak intensity ID and the G band 1580 cm ⁇ 1 peak intensity IG is less than 0.4 for example, see JP-A-2005-243508, “Silicon particles comprising a silicon particle, a graphite material, and a carbonaceous material, subjected to a treatment for imparting a compressive force and a shearing force, and having a coating made of the carbonaceous material on at least a part of the surface; And the like (for example, see Japanese Patent Application Laid-Open No. 2008-235247).
  • An object of the present invention is to provide silicon graphite composite particles that can further improve charge / discharge cycle characteristics of a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery, and a method for producing the same.
  • the silicon graphite composite particles according to one aspect of the present invention include a plurality of scaly graphite particles and silicon particles.
  • a plurality of scaly graphite particles are arranged in layers.
  • the plurality of scaly graphite particles are preferably oriented in the same direction or substantially the same direction.
  • the silicon particles are sandwiched between a plurality of scaly graphite particles.
  • the inventors of the present application have clarified that the above-described silicon graphite composite particles can further improve the charge / discharge cycle characteristics of the nonaqueous electrolyte secondary battery.
  • the inventors of the present application presume this cause as follows.
  • the silicon graphite composite particles are laminated so that the lamination direction of the silicon graphite composite particles is along the electrode thickness direction.
  • the electrode has, for example, a repeating layer of ... // graphite layer / silicon particle layer / graphite layer // graphite layer / silicon particle layer / graphite layer // ... along the electrode thickness direction.
  • the symbol “//” indicates the boundary between the particles, and “/” indicates the boundary between the layers in the silicon graphite composite particles.
  • vertical to an electrode is always provided.
  • the collapse is suppressed by the compressive force, which further improves the charge / discharge cycle characteristics of the nonaqueous electrolyte secondary battery (note that In general, since there are voids in the electrode, it is difficult to suppress the collapse of the electrode when the volume of the silicon graphite composite particles changes in all directions.
  • the silicon particles are sandwiched between a plurality of scaly graphite particles and the silicon particles are adhered to the outer surface of the outermost scaly graphite particles by non-graphitic carbon.
  • the silicon particle content in the silicon graphite composite particles can be increased, and consequently the discharge capacity of a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery. This is because it can contribute to the improvement of the charging capacity.
  • the electrode when an electrode is formed from the electrode mixture slurry containing the above-mentioned silicon graphite composite particles, the electrode includes, for example, along the electrode thickness direction ... // silicon particle layer / graphite layer / silicon particle layer / Repetitive layers of graphite layer / silicon particle layer // silicon particle layer / graphite layer / silicon particle layer / graphite layer / silicon particle layer //...
  • the symbol “//” is a particle ("/" Indicates the boundary line of the layers in the silicon graphite composite particles).
  • the peak intensity I (004) attributed to the “(004) plane” in the X-ray diffraction image of the electrode is preferably within the range of 0.0010 to 0.0300. This is because, if the silicon graphite composite particles satisfy this condition, the degree of orientation of the scaly graphite particles in the electrode becomes good, and the above-described effects can be enjoyed more efficiently.
  • the ratio of the average major axis length to the average length in the stacking direction of the scaly graphite particles is preferably 1.5 or more and 10 or less, preferably 3 or more and 10 or less. More preferably. This is because if the above-mentioned silicon graphite composite particles satisfy this condition, the degree of orientation of the scaly graphite particles in the electrode becomes good, and the above-described effects can be enjoyed more efficiently.
  • the mass ratio of the scaly graphite particles, silicon particles, and non-graphitic carbon is preferably 97 to 60: 1 to 25: 2 to 15, and 97 to 77: 1 to 8: 2. More preferably, it is ⁇ 15.
  • the expression “97 to 60” means 97 or less and 60 or more
  • the expression “1 to 25” means 1 or more and 25 or less (the same applies hereinafter). This is because, if the compounding of the silicon graphite composite particles is as described above, an electrode having an excellent balance of discharge capacity, charge / discharge efficiency, and charge / discharge cycle characteristics can be formed.
  • the method for producing silicon graphite composite particles according to another aspect of the present invention includes a primary composite particle preparation step, a mixed powder preparation step, and a heating step.
  • the primary composite particle preparation step primary composite particles are prepared by applying compressive force and shearing force to the mixed particles of silicon particles and scaly graphite particles.
  • this primary composite particle preparation step it is preferable that a mechanochemical (registered trademark) treatment is performed on the mixed particles of silicon particles and scaly graphite particles.
  • the mixed powder preparation step the primary composite particles and the solid non-graphitic carbon raw material are mixed to prepare a mixed powder.
  • the heating step the mixed powder is heated. As a result, the non-graphitic carbon raw material is melted and adhered to the primary composite particles, and the non-graphitic carbon raw material is further converted into non-graphitic carbon.
  • the above-mentioned silicon graphite composite particles are manufactured by this method for manufacturing silicon graphite composite particles. That is, the silicon graphite composite particles can exhibit the above-described effects.
  • the method for producing silicon graphite composite particles according to another aspect of the present invention includes an intermediate composite particle preparation step and a heating step.
  • the intermediate composite particle preparation step a mixture of silicon particles, scaly graphite particles, and solid non-graphitic carbon raw material is applied with compressive force and shear force at a temperature above the softening point of the non-graphitic carbon raw material.
  • Composite particles are prepared.
  • a mechanochemical (registered trademark) treatment is performed on a mixture of silicon particles, scaly graphite particles and a solid non-graphitic carbon raw material.
  • the melted non-graphitic carbon raw material plays the role of an adhesive and increases the number of scale graphite particles and silicon particles stacked under the condition where compressive force acts.
  • the intermediate composite particles are heated.
  • the non-graphitic carbon raw material is converted to non-graphitic carbon.
  • the above-mentioned silicon graphite composite particles are manufactured by this method for manufacturing silicon graphite composite particles. That is, the silicon graphite composite particles can exhibit the above-described effects.
  • the above-mentioned silicon graphite composite particles can be used as an active material constituting an electrode, particularly an electrode of a nonaqueous electrolyte secondary battery.
  • the non-aqueous electrolyte secondary battery here is represented by a lithium ion secondary battery.
  • FIG. 1 is a schematic side view of silicon graphite composite particles according to an embodiment of the present invention. It is a reflection electron image photograph of the section of silicon graphite composite particles concerning an embodiment of the invention. In the photograph, the gray region indicates scaly graphite particles, and the white region indicates silicon particles. It is a figure which represents typically the structure of the electrode formed in the silicon graphite composite particle which concerns on embodiment of this invention. 6 is a reflected electron image photograph of a cross section of silicon graphite composite particles according to Example 8. FIG. In the photograph, the gray region indicates scaly graphite particles, and the white region indicates silicon particles.
  • silicon graphite composite particle 100 is mainly composed of silicon particles 110, scaly graphite particles 120, and non-graphitic carbon (not shown). Is done.
  • the silicon particles 110 are sandwiched between the plurality of scaly graphite particles 120 and adhere to the outer surface of the scaly graphite particles 120 as the outermost layer of the silicon graphite composite particles 100 (see FIGS. 1 and 2).
  • the silicon particles 110 are preferably as small as possible. This is because it is possible to disperse the stress caused by the volume change accompanying the insertion / release of lithium ions.
  • the particle diameter (ie, median diameter) at a volume fraction of 50% is preferably 2 ⁇ m or less.
  • the oxygen content of the silicon particles 110 is preferably as small as possible from the viewpoint that a sufficient discharge capacity can be secured.
  • the oxygen content in the silicon particles 110 is preferably 20% by mass or less. As this silicon particle 110, you may utilize the cutting waste and grinding waste which generate
  • the scaly graphite particles 120 are arranged in layers, and sandwich the silicon particles 110 as described above (see FIGS. 1 and 2).
  • the scaly graphite particles 120 may be any of natural graphite particles, artificial graphite particles, and quiche graphite particles, but are preferably natural graphite particles from the viewpoint of economical efficiency and securing discharge capacity.
  • As the scale-like graphite particles 120 the above-mentioned mixture of graphite particles may be used.
  • the scaly graphite particles 120 previously heat-treated at a high temperature may be used as the scaly graphite particles.
  • the particle size (that is, the median diameter) of the scaly graphite particles 120 when the volume fraction is 50% is preferably 5 ⁇ m or more and 30 ⁇ m or less.
  • the scaly graphite particles 120 preferably have an aspect ratio of 3 or more and 50 or less.
  • the scaly graphite particles 120 are preferably flexible, highly crystalline, and easily deformable when sandwiching the silicon particles 110. Therefore, the hexagonal mesh plane spacing d002 of the scaly graphite particles 120 used in the embodiment of the present invention is preferably in the range of 0.3354 nm or more and 0.3370 nm or less, and the pellet density is 1.80 g / cm. It is preferably 3 or more and 2.00 g / cm 3 .
  • Non-graphitic carbon attaches silicon particles 110 to scaly graphite particles 120.
  • Non-graphitic carbon is at least one of amorphous carbon and turbostratic carbon.
  • amorphous carbon means that it has short-range order (several atoms to several tens of atoms order) but does not have long-range order (several hundreds to thousands of atoms order).
  • turbostratic carbon refers to carbon.
  • turbulent structure carbon refers to carbon composed of carbon atoms having a turbulent structure parallel to the hexagonal network plane direction but having no crystallographic regularity in the three-dimensional direction. In the X-ray diffraction pattern, hkl diffraction lines corresponding to the 101 plane and the 103 plane do not appear.
  • the silicon graphite composite particles 100 according to the embodiment of the present invention have strong diffraction lines of graphite as a base material, it is difficult to confirm the presence of the turbulent structure carbon by X-ray diffraction. For this reason, it is preferable that the turbostratic structure carbon is confirmed with a transmission electron microscope (TEM) or the like.
  • TEM transmission electron microscope
  • the non-graphitic carbon raw material is a solid non-graphitic carbon raw material, for example, an organic compound such as petroleum pitch powder, coal pitch powder, and thermoplastic resin powder.
  • the raw material for non-graphitic carbon may be a mixture of the aforementioned powders.
  • pitch powder is particularly preferable. This is because the pitch powder is melted and carbonized in the temperature rising process, and as a result, the silicon particles 110 can be suitably immobilized on the scaly graphite particles 120. Pitch powder is preferable from the viewpoint of low irreversible capacity even when fired at low temperature.
  • the heat treatment temperature may be in the range of 800 ° C to 1200 ° C.
  • This heat treatment time is appropriately determined in consideration of the heat treatment temperature and the characteristics of the organic compound, and is typically about 1 hour.
  • the atmosphere during the heat treatment is preferably a non-oxidizing atmosphere (inert gas atmosphere, vacuum atmosphere), and a nitrogen atmosphere is preferred from an economic viewpoint.
  • Amorphous carbon can be formed, for example, by a vapor phase method such as a vacuum deposition method or a plasma CVD method.
  • the mass ratio of the silicon particles 110, the scaly graphite particles 120, and the non-graphitic carbon is 1 to 25:97 to 60: 2 to 15. It is preferably 1 to 8:97 to 77: 2 to 15.
  • the silicon particles 110 can be firmly fixed to the outer surface of the scale-like graphite particles 120 of the outermost layer of the silicon graphite composite particles 100, and the discharge is performed at the time of electrode preparation. This is because the capacity, charge / discharge efficiency, and charge / discharge cycle characteristics can be optimized.
  • the particle diameter (that is, the median diameter) of the silicon graphite composite particles 100 according to the embodiment of the present invention when the volume fraction is 50% is preferably 10 ⁇ m to 35 ⁇ m. This is because when the particle diameter is within this range, the charge / discharge efficiency and the charge / discharge cycle characteristics can be optimized at the time of electrode preparation.
  • the aspect ratio of silicon graphite composite particles 100 according to the present embodiment is preferably in the range of 1.5 or more, 10 or less, more preferably in the range of 3 or more and 10 or less, and still more preferably in the range of 3 or more and 8 or less.
  • the range of 3 to 6 is more preferable, and the range of 3 to 5 is particularly preferable. This is because when the aspect ratio is within this range, the charge / discharge cycle characteristics can be optimized and the electrode can be easily produced.
  • the X-ray diffraction image of the electrode 200 indicated “(004)
  • the ratio of “peak intensity I (110) attributed to (110) plane” to “peak intensity I (004) attributed to plane” is preferably 0.0300 or less, and 0.0200 or less. Is more preferable, 0.0150 or less is further preferable, and 0.0100 or less is particularly preferable. This is because if the silicon graphite composite particles 100 can satisfy this condition, the degree of orientation of the scaly graphite particles 120 in the electrode will be good, and the above-described effects can be enjoyed more efficiently.
  • reference numeral 210 denotes an active material layer
  • reference numeral 220 denotes a current collector.
  • Silicon graphite composite particles 100 according to an embodiment of the present invention are manufactured by any of the following manufacturing methods.
  • silicon graphite composite particles 100 are manufactured through a primary composite particle preparation step, a mixed powder preparation step, and a heating step.
  • a compression force and a shear force are applied to the mixed particles of the silicon particles 110 and the scaly graphite particles 120 by a process such as a mechanochemical (registered trademark) process or a mechanofusion (registered trademark) process.
  • Composite particles are prepared.
  • the mixed particles of the silicon particles 110 and the scaly graphite particles 120 may be put into a mechanochemical system and a mechanofusion system.
  • a process such as a mechanochemical (registered trademark) process or a mechanofusion (registered trademark) process may be performed while mixing both particles.
  • the silicon particles 110 are attached to the surface of the scaly graphite particles 120 with a weak force.
  • mixed powder preparation step primary composite particles and solid non-graphitic carbon raw material are mixed in a solid phase to prepare a mixed powder.
  • the method for mixing the primary composite particles and the solid non-graphitic carbon raw material in the mixed powder preparation step is not particularly limited as long as the method can uniformly mix the particles without destroying them.
  • the mixer include a rotating container type mixer, a fixed container type mixer, an airflow type mixer, and a high-speed flow type mixer.
  • the rotating container type mixer include a V blender.
  • the mixed powder is heated at a temperature of 800 ° C. or higher and 1200 ° C. or lower in a non-oxidizing atmosphere (inert gas atmosphere, vacuum atmosphere, etc.).
  • a non-oxidizing atmosphere in which the non-graphitic carbon raw material is melted and adhered to the primary composite particles, and the non-graphitic carbon raw material is converted to non-graphitic carbon, whereby the target silicon graphite composite particles 100 are obtained.
  • the heating temperature By setting the heating temperature to 1200 ° C. or lower, the amount of silicon carbide (SiC) produced can be suppressed, so that an electrode excellent in discharge capacity can be formed.
  • an electrode having excellent charge / discharge efficiency can be formed.
  • the electrode excellent in the balance of discharge capacity and charging / discharging efficiency can be formed as heating temperature is the said range.
  • silicon graphite composite particles 100 are manufactured through an intermediate composite particle preparation step and a heating step.
  • a mixture of silicon particles 110, scaly graphite particles 120 and a solid non-graphitic carbon raw material is non-treated by a process such as a mechanochemical (registered trademark) process or a mechanofusion (registered trademark) process.
  • Intermediate composite particles are prepared by applying compressive force and shear force at a temperature equal to or higher than the softening point of the graphitic carbon raw material. At this time, the melted non-graphitic carbon raw material plays the role of an adhesive and increases the number of scale graphite particles and silicon particles stacked under the condition where compressive force acts.
  • a mixture of the silicon particles 110, the scaly graphite particles 120, and the solid non-graphitic carbon raw material may be put into a mechanochemical system or a mechanofusion system, or the silicon particles 110, the scaly graphite particles 120, and After each solid non-graphitic carbon raw material is put into the mechanochemical system and mechanofusion system in sequence, the mechanochemical (registered trademark) processing, mechanofusion (registered trademark) processing, etc. can be performed while mixing the particles. Good.
  • the heating step the mixture is heated at a temperature of 800 ° C. or higher and 1200 ° C. or lower in a non-oxidizing atmosphere (inert gas atmosphere, vacuum atmosphere, etc.).
  • a non-oxidizing atmosphere inorganic gas atmosphere, vacuum atmosphere, etc.
  • the non-graphitic carbon raw material is converted into non-graphitic carbon, and the target silicon graphite composite particles 100 are obtained.
  • the heating temperature By setting the heating temperature to 1200 ° C. or lower, the amount of silicon carbide (SiC) produced can be suppressed, so that an electrode excellent in discharge capacity can be formed.
  • an electrode having excellent charge / discharge efficiency can be formed.
  • the electrode excellent in the balance of discharge capacity and charging / discharging efficiency can be formed as heating temperature is the said range.
  • AMS-30F manufactured by Hosokawa Micron Corporation
  • the average particle size of the scaly natural graphite powder can be determined by the same method as described in “ ⁇ Characteristic evaluation of silicon graphite composite particles> (1) Measurement of particle size” below.
  • the pellet density of scaly natural graphite powder is calculated
  • the mass ratio of the primary composite particles and the coal-based pitch powder (softening point 86 ° C, average particle size 20 ⁇ m, residual carbon ratio 50% after heating at 1000 ° C) is 97.6: 4.
  • the mixed powder was prepared by charging the primary composite particles and the coal-based pitch powder into a container rotating V-type mixer (V blender).
  • ⁇ Characteristic evaluation of silicon graphite composite particles (1) Measurement of particle size The volume-based particle size distribution of the silicon graphite composite particles was measured by a light scattering diffraction method using a laser diffraction / scattering particle size distribution analyzer (LA-910, manufactured by Horiba, Ltd.). Thereafter, the particle size (median diameter) at a volume fraction of 50% was determined using the obtained particle size distribution. As a result, the particle diameter was 25 ⁇ m (see Table 1).
  • the coating film was punched into a disk shape having a diameter of 13 mm. Then, the disk was pressed by a press molding machine to produce an electrode having an electrode density of 1.70 ⁇ 0.02 g / cm 3 .
  • the electrode density of the obtained electrode is obtained by measuring the thickness of the disk (part excluding the copper foil) and measuring the volume by measuring the thickness with a micrometer.
  • Electrode assembly was prepared by disposing the above electrode and a counter Li metal foil on both sides of a polyolefin separator. And the electrolyte solution was inject
  • the doping capacity and dedoping capacity at this time correspond to the charging capacity and discharging capacity when this electrode is used as the negative electrode of the lithium ion secondary battery, and these were used as charging capacity and discharging capacity.
  • the discharge capacity of the non-aqueous test cell according to this example was 405 mAh / g (see Table 1). Since the ratio of dedoping capacity / doping capacity corresponds to the ratio of discharge capacity / charge capacity of the lithium ion secondary battery, this ratio was defined as charge / discharge efficiency.
  • the charge / discharge efficiency of the non-aqueous test cell according to this example was 92.0% (see Table 1).
  • Cycle characteristics were measured using a coin-type non-aqueous test cell configured in the same manner as described above.
  • this test cell after the second cycle, after doping with a constant current of 1.33 mA until the potential difference becomes 5 mV with respect to the counter electrode (corresponding to charging), while maintaining 5 mV, with a constant voltage until 50 ⁇ A is reached. Continued dope. Next, dedoping was performed at a constant current of 1.33 mA until the potential difference became 1.5 V (corresponding to discharge), and the dedoping capacity was measured. The dedope capacity at this time was defined as the discharge capacity.
  • Doping and dedoping are repeated 31 times under the same conditions as described above, and the cycle characteristics are determined by the ratio (capacity maintenance ratio) of the “discharge capacity at the time of dedoping at the 31st cycle” to the “discharge capacity at the time of undoping at the 2nd cycle”. Evaluated. In addition, if this capacity maintenance rate is 90% or more, it can be considered that it is favorable as a practical battery.
  • the capacity maintenance rate of the non-aqueous test cell according to this example was 96.8% (see Table 1).
  • the degree of orientation of scaly natural graphite particles in silicon graphite composite particles is determined using a reflection X-ray powder X-ray diffraction method. .
  • the pressed disk-shaped electrode prepared in “(2-1) Electrode preparation” above is fixed to a non-reflective plate with double-sided tape, and RINT-1200V manufactured by Rigaku is used to make copper (Cu) Is measured by irradiating a disk electrode with CuK ⁇ rays at a tube voltage of 40 kV and a tube current of 30 mA.
  • the peaks are separated to obtain a powder X-ray diffraction spectrum by CuK ⁇ 1 rays.
  • the intensities of the (004) plane diffraction peak with 2 ⁇ in the range of 52 to 57 ° and the (110) plane diffraction peak with 2 ⁇ in the range of 75 to 80 ° are determined.
  • the degree of orientation of the scaly natural graphite particles in the silicon graphite composite particles is calculated by dividing the diffraction peak intensity of the (110) plane by the diffraction peak intensity of the (004) plane.
  • the degree of orientation of the scaly natural graphite particles in the silicon graphite composite particles according to this example was 0.0075 (see Table 1). The smaller the degree of orientation, the higher the orientation of the scaly natural graphite particles in the silicon graphite composite particles.
  • the scaly natural graphite powder and the silicon powder are mixed so that the mass ratio of the scaly natural graphite powder to the silicon powder is 86.6: 4.3.
  • Example 2 except that the primary composite particles and the coal-based pitch powder were mixed so that the mass ratio of the primary composite particles and the coal-based pitch powder was 90.9: 18.2 in “2) Preparation of the mixed powder”.
  • the target silicon graphite composite particles were obtained in the same manner as in Example 1, and the characteristics of the silicon graphite composite particles were evaluated in the same manner as in Example 1.
  • the mass ratio of the scaly natural graphite powder, the silicon powder, and the non-graphitic carbon in the silicon graphite composite particles was 86.6: 4.3: 9.1 (see Table 1).
  • the particle diameter of the silicon graphite composite particles when the volume fraction was 50% was 29 ⁇ m.
  • the aspect ratio of the silicon graphite composite particles was 4.4.
  • the degree of orientation of the scaly natural graphite particles in the silicon graphite composite particles was 0.0095.
  • the discharge capacity of the non-aqueous test cell was 462 mAh / g, the charge / discharge efficiency was 90.6%, and the capacity retention rate was 94.9% (see Table 1).
  • the scaly natural graphite powder and the silicon powder are mixed so that the mass ratio of the scaly natural graphite powder to the silicon powder is 82.8: 4.2.
  • Example 2 except that the primary composite particles and the coal-based pitch powder were mixed so that the mass ratio of the primary composite particles to the coal-based pitch powder was 87.0: 26.0 in “2) Preparation of the mixed powder”.
  • the target silicon graphite composite particles were obtained in the same manner as in Example 1, and the characteristics of the silicon graphite composite particles were evaluated in the same manner as in Example 1.
  • the mass ratio of the scaly natural graphite powder, the silicon powder and the non-graphitic carbon in the silicon graphite composite particles was 82.8: 4.2: 13.0 (see Table 1).
  • the particle diameter of the silicon graphite composite particles when the volume fraction was 50% was 30 ⁇ m.
  • the aspect ratio of the silicon graphite composite particles was 3.8.
  • the degree of orientation of the scaly natural graphite particles in the silicon graphite composite particles was 0.0120.
  • the discharge capacity of the non-aqueous test cell was 458 mAh / g, the charge / discharge efficiency was 90.1%, and the capacity retention rate was 95.0% (see Table 1).
  • the scaly natural graphite powder and the silicon powder are mixed so that the mass ratio of the scaly natural graphite powder to the silicon powder is 84.0: 6.7.
  • Example 2 except that the primary composite particles and the coal-based pitch powder were mixed so that the mass ratio of the primary composite particles and the coal-based pitch powder was 90.7: 18.6 in “2) Preparation of the mixed powder”.
  • the target silicon graphite composite particles were obtained in the same manner as in Example 1, and the characteristics of the silicon graphite composite particles were evaluated in the same manner as in Example 1.
  • the mass ratio of the scaly natural graphite powder, silicon powder, and non-graphitic carbon in the silicon graphite composite particles was 84.0: 6.7: 9.3 (see Table 1).
  • the particle diameter of the silicon graphite composite particles when the volume fraction was 50% was 29 ⁇ m.
  • the aspect ratio of the silicon graphite composite particles was 4.3.
  • the degree of orientation of the scaly natural graphite particles in the silicon graphite composite particles was 0.0091.
  • the discharge capacity of the non-aqueous test cell was 525 mAh / g, the charge / discharge efficiency was 90.4%, and the capacity retention rate was 93.1% (see Table 1).
  • the scaly natural graphite powder and the silicon powder are mixed so that the mass ratio of the scaly natural graphite powder to the silicon powder is 83.3: 7.5, and “( Example 2 except that the primary composite particles and the coal-based pitch powder were mixed so that the mass ratio of the primary composite particles and the coal-based pitch powder was 90.8: 18.4 in “2) Preparation of the mixed powder”.
  • the target silicon graphite composite particles were obtained in the same manner as in Example 1, and the characteristics of the silicon graphite composite particles were evaluated in the same manner as in Example 1.
  • the mass ratio of the scaly natural graphite powder, the silicon powder, and the non-graphitic carbon in the silicon graphite composite particles was 83.3: 7.5: 9.2 (see Table 1).
  • the particle diameter of the silicon graphite composite particles when the volume fraction was 50% was 28 ⁇ m.
  • the aspect ratio of the silicon graphite composite particles was 4.3.
  • the degree of orientation of the scaly natural graphite particles in the silicon graphite composite particles was 0.0087.
  • the discharge capacity of the non-aqueous test cell was 548 mAh / g, the charge / discharge efficiency was 90.2%, and the capacity retention rate was 92.0% (see Table 1).
  • the scaly natural graphite powder and the silicon powder are mixed so that the mass ratio of the scaly natural graphite powder to the silicon powder is 82.6: 8.3, and “( Example 2 except that the primary composite particles and the coal-based pitch powder were mixed so that the mass ratio of the primary composite particles and the coal-based pitch powder was 90.9: 18.2 in “2) Preparation of the mixed powder”.
  • the target silicon graphite composite particles were obtained in the same manner as in Example 1, and the characteristics of the silicon graphite composite particles were evaluated in the same manner as in Example 1.
  • the mass ratio of the scaly natural graphite powder, silicon powder, and non-graphitic carbon in the silicon graphite composite particles was 82.6: 8.3: 9.1 (see Table 1).
  • the particle diameter of the silicon graphite composite particles when the volume fraction was 50% was 28 ⁇ m.
  • the aspect ratio of the silicon graphite composite particles was 4.2.
  • the degree of orientation of the scaly natural graphite particles in the silicon graphite composite particles was 0.0088.
  • the discharge capacity of the non-aqueous test cell was 564 mAh / g, the charge / discharge efficiency was 89.7%, and the capacity retention rate was 88.1% (see Table 1).
  • the particle diameter of the silicon graphite composite particles when the volume fraction was 50% was 25 ⁇ m.
  • the aspect ratio of the silicon graphite composite particles was 5.4.
  • the degree of orientation of the scaly natural graphite particles in the silicon graphite composite particles was 0.0070.
  • the discharge capacity of the non-aqueous test cell was 470 mAh / g, the charge / discharge efficiency was 90.0%, and the capacity retention rate was 84.0% (see Table 1).
  • the dry powder was put into a graphite crucible, and the dry powder was heated at a temperature of 450 ° C. for 1 hour in a nitrogen stream. This dry powder aggregates into a lump after heating. And after grind
  • the mixture was put into a mechanofusion system (AMS-30F manufactured by Hosokawa Micron Corporation), and the pulverized product was mechanochemically treated at a peripheral speed of 20 m / s for 30 minutes.
  • the mechanochemically treated pulverized product was put into a graphite crucible, and the pulverized product was heated at 1000 ° C. for 1 hour in a nitrogen stream to obtain a target control powder.
  • the mass ratio of the scaly natural graphite powder, silicon powder and non-graphitic carbon in this control powder was 86.6: 4.3: 9.1 (see Table 1).
  • the particle diameter of the control powder when the volume fraction was 50% was 33 ⁇ m.
  • the aspect ratio of the control powder was 2.7.
  • the degree of orientation of the scaly natural graphite particles in the control powder was 0.0320. From this degree of orientation, it became clear that the scaly natural graphite particles of the control powder were not oriented in the same direction but were oriented in a random direction.
  • the discharge capacity of the non-aqueous test cell was 458 mAh / g, the charge / discharge efficiency was 89.3%, and the capacity retention rate was 89.2% (see Table 1).
  • scaly natural graphite powder, silicon powder and coal-based pitch are mixed in a liquid phase using tetrahydrofuran as a solvent.
  • the silicon particles are insufficiently dispersed, and the scaly natural graphite particles are granulated while facing a random direction.
  • silicon particles and scaly natural graphite particles are heated after being coated with a coal-based pitch, and in a state where the flexible graphite is hard and difficult to deform, the pulverized product is subjected to mechanochemical treatment. A compressive force and shear force are applied.
  • the silicon particles cannot be sufficiently sandwiched between the scaly natural graphite particles, and the scaly natural graphite particles remain in a random direction. Therefore, it is presumed that the charge / discharge cycle characteristics of the non-aqueous test cell according to this comparative example are inferior to the charge / discharge cycle characteristics of the non-aqueous test cell according to the example.
  • Example 3 Except for mixing the scaly natural graphite powder and the silicon powder so that the mass ratio of the scaly natural graphite powder to the silicon powder is 86.6: 4.3 in “(1) Preparation of primary composite particles”.
  • primary composite particles were prepared.
  • the primary composite particle and the coal-based pitch powder (softening point 86 ° C., average particle size 20 ⁇ m, residual carbon ratio after heating at 1000 ° C. 50%) are primary composite so that the mass ratio is 90.9: 18.2.
  • Particles and coal-based pitch powder were added to tetrahydrofuran and mixed well to prepare a dispersion. Subsequently, the dispersion was dried to obtain a dry powder.
  • the dry powder was put into a graphite crucible, and the dry powder was heated at a temperature of 1000 ° C. for 1 hour in a nitrogen stream. The heated dry powder was crushed until 98% by mass or more passed through a sieve having an opening of 75 ⁇ m to obtain a target control powder.
  • the mass ratio of the scaly natural graphite powder, silicon powder and non-graphitic carbon in this control powder was 86.6: 4.3: 9.1 (see Table 1).
  • the particle diameter of the control powder at a volume fraction of 50% was 35 ⁇ m.
  • the aspect ratio of the control powder was 2.3.
  • the degree of orientation of the scaly natural graphite particles in the control powder was 0.0350. From this degree of orientation, it became clear that the scaly natural graphite particles of the control powder were not oriented in the same direction but were oriented in a random direction.
  • the discharge capacity of the non-aqueous test cell was 463 mAh / g, the charge / discharge efficiency was 90.5%, and the capacity retention rate was 88.1% (see Table 1).
  • the scaly natural graphite powder and the scaly natural graphite powder, the silicon powder, and the coal-based pitch powder have a mass ratio of 78.3: 12.5: 18.4.
  • the target silicon graphite composite particles were obtained in the same manner as in Example 7 except that silicon powder and coal-based pitch powder were added to the circulation type mechanofusion system, and the characteristics of the silicon graphite composite particles were evaluated in the same manner as in Example 1. went.
  • the mass ratio of the scaly natural graphite powder, silicon powder, and non-graphitic carbon in the silicon graphite composite particles was 78.3: 12.5: 9.2 (see Table 2).
  • the particle diameter of the silicon graphite composite particles when the volume fraction was 50% was 37 ⁇ m.
  • the aspect ratio of the silicon graphite composite particles was 2.7.
  • the degree of orientation of the scaly natural graphite particles in the silicon graphite composite particles was 0.0093.
  • the discharge capacity of the non-aqueous test cell was 695 mAh / g, the charge / discharge efficiency was 90.7%, and the capacity retention rate was 92.2% (see Table 2).
  • the particle diameter of the silicon graphite composite particles when the volume fraction was 50% was 25 ⁇ m.
  • the aspect ratio of the silicon graphite composite particles was 2.5.
  • the degree of orientation of the scaly natural graphite particles in the silicon graphite composite particles was 0.0070.
  • the discharge capacity of the non-aqueous test cell was 482 mAh / g, the charge / discharge efficiency was 91.0%, and the capacity retention rate was 96.5% (see Table 2).
  • the target silicon graphite composite particles were obtained in the same manner as in Example 7, and the characteristics of the silicon graphite composite particles were evaluated in the same manner as in Example 1.
  • the mass ratio of the scaly natural graphite powder, silicon powder, and non-graphitic carbon in the silicon graphite composite particles was 78.3: 12.5: 9.2 (see Table 2).
  • the particle diameter of the silicon graphite composite particles when the volume fraction was 50% was 29 ⁇ m.
  • the aspect ratio of the silicon graphite composite particles was 2.5.
  • the degree of orientation of the scaly natural graphite particles in the silicon graphite composite particles was 0.0060.
  • the discharge capacity of the non-aqueous test cell was 685 mAh / g, the charge / discharge efficiency was 90.5%, and the capacity retention rate was 91.5% (see Table 2).
  • the target silicon graphite composite particles were obtained, and the characteristics of the silicon graphite composite particles were evaluated in the same manner as in Example 1.
  • the mass ratio of the scaly natural graphite powder, the silicon powder, and the non-graphitic carbon in the silicon graphite composite particles was 73.2: 17.6: 9.2 (see Table 2).
  • the particle diameter of the silicon graphite composite particles when the volume fraction was 50% was 29 ⁇ m.
  • the aspect ratio of the silicon graphite composite particles was 2.8.
  • the degree of orientation of the scaly natural graphite particles in the silicon graphite composite particles was 0.0078.
  • the discharge capacity of the non-aqueous test cell was 799 mAh / g, the charge / discharge efficiency was 90.1%, and the capacity retention rate was 89.5% (see Table 2).
  • the target silicon graphite composite particles were obtained, and the characteristics of the silicon graphite composite particles were evaluated in the same manner as in Example 1.
  • the mass ratio of the scaly natural graphite powder, the silicon powder, and the non-graphitic carbon in the silicon graphite composite particles was 88.6: 4.4: 7.0 (see Table 2).
  • the particle diameter of the silicon graphite composite particles when the volume fraction was 50% was 19 ⁇ m.
  • the aspect ratio of the silicon graphite composite particles was 2.2.
  • the degree of orientation of the scaly natural graphite particles in the silicon graphite composite particles was 0.0075.
  • the discharge capacity of the non-aqueous test cell was 480 mAh / g, the charge / discharge efficiency was 90.0%, and the capacity retention rate was 95.0% (see Table 2).
  • the target silicon graphite composite particles were obtained, and the characteristics of the silicon graphite composite particles were evaluated in the same manner as in Example 1.
  • the mass ratio of the scaly natural graphite powder, silicon powder and non-graphitic carbon in the silicon graphite composite particles was 74.5: 12.5: 13.0 (see Table 2).
  • the particle diameter of the silicon graphite composite particles when the volume fraction was 50% was 23 ⁇ m.
  • the aspect ratio of the silicon graphite composite particles was 1.5.
  • the degree of orientation of the scaly natural graphite particles in the silicon graphite composite particles was 0.0210.
  • the discharge capacity of the non-aqueous test cell was 664 mAh / g, the charge / discharge efficiency was 89.5%, and the capacity retention rate was 90.0% (see Table 2).
  • the silicon graphite composite particles according to the examples of the present invention effectively improve the charge / discharge cycle characteristics of the lithium ion secondary battery when used as the negative electrode active material of the lithium ion secondary battery. Became clear.

Abstract

 本発明の課題は、リチウムイオン二次電池等の非水電解質二次電池の充放電サイクル特性をさらに向上させることができるケイ素黒鉛複合粒子およびその製造方法を提供することにある。本発明に係るケイ素黒鉛複合粒子100は、複数の鱗片状黒鉛粒子120およびケイ素粒子110を備える。複数の鱗片状黒鉛粒子は、層状に配列する。ケイ素粒子は、複数の鱗片状黒鉛粒子に挟み込まれる。そして、このケイ素黒鉛複合粒子から電極密度1.70±0.02g/cmの電極を作製したとき、その電極のX線回折像おいて「(004)面に帰属されるピークの強度I(004)」に対する「(110)面に帰属されるピークの強度I(110)」の比が0.0010以上0.0300以下の範囲内であることが好ましい。

Description

ケイ素黒鉛複合粒子およびその製造方法
 本発明は、ケイ素黒鉛複合粒子およびその製造方法に関する。
 従来、リチウムイオン二次電池の負極活物質として一般的に黒鉛、ケイ素、スズの粒子等が用いられている。これらの負極活物質の中でも、高放電容量の負極を作製することができることからケイ素粒子が特に注目されている。しかし、ケイ素粒子は、リチウムイオンの吸蔵・放出に伴う体積変化が約4倍と極めて大きい。このため、ケイ素粒子を負極活物質とする電池に対して充放電が繰り返されると、ケイ素粒子の導電ネットワークが徐々に崩壊し、その結果、電池の放電容量が低下してしまう。
 そこで、近年、リチウムイオン二次電池の負極の「放電容量の向上」および「充放電サイクルによる放電容量低下の抑制」の両立を目的として「黒鉛にケイ素を複合化させたケイ素黒鉛複合粒子」が提案されている。このようなケイ素黒鉛複合粒子としては、例えば、「ケイ素、鱗片状黒鉛および炭素質物を含有し、炭素質物の含有量が20質量%未満であり、アルゴンレーザーを用いたラマン分光法により測定したDバンド1360cm-1ピーク強度IDとGバンド1580cm-1ピーク強度IGの比ID/IG(R値)が0.4未満である複合黒鉛粒子(例えば、特開2005-243508号公報等参照)」、「ケイ素粒子、黒鉛質材料および炭素質材料からなり、圧縮力およびせん断力を付与する処理が施されて、炭素質材料からなる被膜を表面の少なくとも一部に有するケイ素粒子と、黒鉛質材料とが密着している構造を有する複合材料(例えば、特開2008-235247号公報等参照)」等が挙げられる。
特開2005-243508号公報 特開2008-235247号公報
 しかし、上述のケイ素黒鉛複合粒子を負極活物質としたリチウムイオン二次電池の充放電サイクル特性は十分であるとは言い難い。
 本発明の課題は、リチウムイオン二次電池等の非水電解質二次電池の充放電サイクル特性をさらに向上させることができるケイ素黒鉛複合粒子およびその製造方法を提供することにある。
 本発明の一局面に係るケイ素黒鉛複合粒子は、複数の鱗片状黒鉛粒子およびケイ素粒子を備える。複数の鱗片状黒鉛粒子は、層状に配列する。なお、複数の鱗片状黒鉛粒子は、同一方向または略同一方向に配向するのが好ましい。ケイ素粒子は、複数の鱗片状黒鉛粒子に挟み込まれる。
 本願発明者らは、鋭意研究の結果、上述のようなケイ素黒鉛複合粒子が非水電解質二次電池の充放電サイクル特性をさらに向上させることができることを明らかにした。本願発明者らは、この原因を以下の通りに推測している。
 本願発明に係るケイ素黒鉛複合粒子を含む電極合剤スラリーから電極を形成する場合、ケイ素黒鉛複合粒子の積層方向が電極厚み方向に沿うようにケイ素黒鉛複合粒子が積層する。この結果、その電極には、例えば、電極厚み方向に沿って・・・//黒鉛層/ケイ素粒子層/黒鉛層//黒鉛層/ケイ素粒子層/黒鉛層//・・・の繰り返し層が形成される(前述中、「//」の記号は、粒子間の境界線を示し、「/」はケイ素黒鉛複合粒子内の層の境界線を示す。)。このような電極構造によりケイ素黒鉛複合粒子の体積変化が電極厚み方向に集中することになる。そして、電池内部では、電極に垂直な方向に沿って電極を圧縮する力が常に付与されている。このため、このケイ素黒鉛複合粒子を電極活物質とする電極は、その圧縮力により崩壊が抑制されることになり、延いては非水電解質二次電池の充放電サイクル特性をさらに向上させる(なお、通常、電極には空隙が存在するため、ケイ素黒鉛複合粒子があらゆる方向に体積変化すると、電極の崩壊を抑制することは難しい。)。
 上述のケイ素黒鉛複合粒子では、ケイ素粒子が複数の鱗片状黒鉛粒子に挟み込まれると共に、ケイ素粒子が非黒鉛質炭素により最外層の鱗片状黒鉛粒子の外表面上に付着されることが好ましい。ケイ素黒鉛複合粒子をこのような構造にすることにより、ケイ素黒鉛複合粒子中のケイ素粒子含有量を増加させることができ、延いてはリチウムイオン二次電池等の非水電解質二次電池の放電容量・充電容量の向上に貢献することができるからである。
 ちなみに、上述のケイ素黒鉛複合粒子を含む電極合剤スラリーから電極を形成する場合、その電極には、例えば、電極厚み方向に沿って・・・//ケイ素粒子層/黒鉛層/ケイ素粒子層/黒鉛層/ケイ素粒子層//ケイ素粒子層/黒鉛層/ケイ素粒子層/黒鉛層/ケイ素粒子層//・・・の繰り返し層が形成される(前述中、「//」の記号は、粒子間の境界線を示し、「/」はケイ素黒鉛複合粒子内の層の境界線を示す。)。
 上述のケイ素黒鉛複合粒子から電極密度1.70±0.02g/cmの電極を作製したとき、その電極のX線回折像おいて「(004)面に帰属されるピークの強度I(004)」に対する「(110)面に帰属されるピークの強度I(110)」の比が0.0010以上0.0300以下の範囲内であることが好ましい。ケイ素黒鉛複合粒子がこの条件を満たせば、電極内における鱗片状黒鉛粒子の配向度が良好となり、上述の効果をより効率的に享受することができるからである。
 上述のケイ素黒鉛複合粒子において、鱗片状黒鉛粒子の積層方向の平均長さに対する平均長軸長さの比(いわゆるアスペクト比)が1.5以上10以下であることが好ましく、3以上10以下であることがより好ましい。上述のケイ素黒鉛複合粒子がこの条件を満たせば、電極内における鱗片状黒鉛粒子の配向度が良好となり、上述の効果をより効率的に享受することができるからである。
 上述のケイ素黒鉛複合粒子において、鱗片状黒鉛粒子、ケイ素粒子および非黒鉛質炭素の質量比は97~60:1~25:2~15であることが好ましく、97~77:1~8:2~15であることがより好ましい。ここで、「97~60」との表記は97以下60以上を意味し、「1~25」との表記は1以上25以下を意味する(以下同じ)。ケイ素黒鉛複合粒子の配合がこの通りであれば、放電容量、充放電効率および充放電サイクル特性のバランスに優れた電極を形成することができるからである。
 本発明の他の局面に係るケイ素黒鉛複合粒子の製造方法は、一次複合粒子調製工程、混合粉末調製工程および加熱工程を備える。一次複合粒子調製工程では、ケイ素粒子および鱗片状黒鉛粒子の混合粒子に圧縮力およびせん断力が付与されて一次複合粒子が調製される。この一次複合粒子調製工程では、ケイ素粒子および鱗片状黒鉛粒子の混合粒子に対してメカノケミカル(登録商標)処理が行われることが好ましい。混合粉末調製工程では、一次複合粒子と固体の非黒鉛質炭素原料とが混合されて混合粉末が調製される。加熱工程では、混合粉末が加熱処理される。その結果、一次複合粒子に非黒鉛質炭素原料が溶融付着させられて、さらに非黒鉛質炭素原料が非黒鉛質炭素に変換される。
 このケイ素黒鉛複合粒子の製造方法により、上述のケイ素黒鉛複合粒子が製造される。すなわち、このケイ素黒鉛複合粒子は、上述の効果を発現することができる。
 本発明の他の局面に係るケイ素黒鉛複合粒子の製造方法は、中間体複合粒子調製工程および加熱工程を備える。中間体複合粒子調製工程では、ケイ素粒子、鱗片状黒鉛粒子および固体の非黒鉛質炭素原料の混合物に、非黒鉛質炭素原料の軟化点以上の温度で圧縮力およびせん断力が付与されて中間体複合粒子が調製される。この中間体複合粒子調製工程では、ケイ素粒子、鱗片状黒鉛粒子および固体の非黒鉛質炭素原料の混合物に対してメカノケミカル(登録商標)処理が行われることが好ましい。圧縮力が作用する状況下で、溶融した非黒鉛質炭素原料が接着剤の役割を果たして鱗片黒鉛粒子とケイ素粒子の積層数を増加させるからである。加熱工程では、中間体複合粒子が加熱処理される。その結果、非黒鉛質炭素原料が非黒鉛質炭素に変換される。
 このケイ素黒鉛複合粒子の製造方法により、上述のケイ素黒鉛複合粒子が製造される。すなわち、このケイ素黒鉛複合粒子は、上述の効果を発現することができる。
 上述のケイ素黒鉛複合粒子は、電極、特に非水電解質二次電池の電極を構成する活物質として使用することができる。ここにいう非水電解質二次電池は、リチウムイオン二次電池に代表される。
本発明の実施の形態に係るケイ素黒鉛複合粒子の模式的側面図である。 本発明の実施の形態に係るケイ素黒鉛複合粒子の断面の反射電子像写真である。なお、写真中、灰色の領域が鱗片状黒鉛粒子を示し、白色の領域がケイ素粒子を示している。 本発明の実施の形態に係るケイ素黒鉛複合粒子に形成される電極の構造を模式的に表す図である。 実施例8に係るケイ素黒鉛複合粒子の断面の反射電子像写真である。なお、写真中、灰色の領域が鱗片状黒鉛粒子を示し、白色の領域がケイ素粒子を示している。
100   ケイ素黒鉛複合粒子
110   ケイ素粒子
120   鱗片状黒鉛粒子
200   電極
210   活物質層
220   集電体
 本発明の実施の形態に係るケイ素黒鉛複合粒子100は、図1および図2に示されるように、主に、ケイ素粒子110、鱗片状黒鉛粒子120および非黒鉛質炭素(図示せず)から構成される。
 ケイ素粒子110は、複数の鱗片状黒鉛粒子120に挟み込まれると共に、ケイ素黒鉛複合粒子100の最外層の鱗片状黒鉛粒子120の外表面に付着する(図1および図2参照)。このケイ素粒子110は、粒子径ができるだけ小さい方が好ましい。リチウムイオンの吸蔵・放出に伴う体積変化によって生じる応力を分散することができるからである。具体的には、体積分率50%時の粒子径(すなわちメジアン径)が2μm以下であることが好ましい。このケイ素粒子110の酸素含有量は、放電容量を十分に確保することができるという観点から、できるだけ少ない方が好ましい。具体的には、ケイ素粒子110中の酸素含有量は20質量%以下であることが好ましい。このケイ素粒子110として、シリコンウエハ製造時に発生する切削屑や研削屑を利用してもよい。
 鱗片状黒鉛粒子120は、層状に配列しており、上述の通り、ケイ素粒子110を挟み込む(図1および図2参照)。この鱗片状黒鉛粒子120は、天然黒鉛粒子、人造黒鉛粒子、キッシュ黒鉛粒子のいずれでもよいが、経済性および放電容量確保の観点から天然黒鉛粒子であることが好ましい。鱗片状黒鉛粒子120として、上述の黒鉛粒子の混合物が用いられてもかまわない。鱗片状黒鉛粒子120を予め高温で熱処理したものを鱗片状黒鉛粒子として使用しても差し支えない。鱗片状黒鉛粒子120の体積分率50%時の粒子径(すなわちメジアン径)は5μm以上30μm以下であることが好ましい。また、この鱗片状黒鉛粒子120は、アスペクト比が3以上50以下であることが好ましい。本発明の実施の形態において、鱗片状黒鉛粒子120は、ケイ素粒子110を挟み込むに当たり、柔軟性に富み、高結晶であり、しかも易変形性を有することが好ましい。このため、本発明の実施の形態において使用される鱗片状黒鉛粒子120の六角網平面間隔d002は0.3354nm以上0.3370nm以下の範囲内であることが好ましく、ペレット密度が1.80g/cm以上2.00g/cmであることが好ましい。
 非黒鉛質炭素は、ケイ素粒子110を鱗片状黒鉛粒子120に付着される。非黒鉛質炭素は、非晶質炭素および乱層構造炭素の少なくともいずれかである。なお、ここで「非晶質炭素」とは、短距離秩序(数原子~十数個原子オーダー)を有しても、長距離秩序(数百~数千個の原子オーダー)を有さない炭素をいう。ここで「乱層構造炭素」とは、六角網平面方向に平行な乱層構造を有するが、三次元方向には結晶学的規則性が見られない炭素原子からなる炭素をいう。X線回折図形では101面、103面に対応するhkl回折線は現れない。ただし、本発明の実施の形態に係るケイ素黒鉛複合粒子100は、基材である黒鉛の回折線が強いため、X線回折によって乱層構造炭素の存在を確認することが難しい。このため、乱層構造炭素は、透過型電子顕微鏡(TEM)等で確認されることが好ましい。
 この乱層構造炭素は、非黒鉛質炭素の原料を焼成することによって得られる。本発明の実施の形態において、非黒鉛質炭素の原料は、固体の非黒鉛質炭素の原料であって、例えば、石油系ピッチ粉末、石炭系ピッチ粉末、熱可塑性樹脂粉末等の有機化合物である。非黒鉛質炭素の原料は、上述の粉末の混合物であってもよい。これらの中でも、ピッチ粉末が特に好ましい。ピッチ粉末は、昇温過程で溶融すると共に炭化され、その結果、ケイ素粒子110を鱗片状黒鉛粒子120に好適に固定化することができるからである。ピッチ粉末は、低温焼成されても不可逆容量が小さいという観点から好ましい。焼成における熱処理条件の一例として、熱処理温度を800℃から1200℃の範囲内とすることが挙げられる。この熱処理時間は、熱処理温度および有機化合物の特性等を加味して適宜決定され、典型的には1時間程度である。熱処理時の雰囲気は非酸化雰囲気(不活性ガス雰囲気、真空雰囲気)であることが好ましく、経済的観点から窒素雰囲気が好ましい。非晶質炭素は、例えば、真空蒸着法やプラズマCVD法等の気相法により形成することができる。
 そして、本発明の実施の形態に係るケイ素黒鉛複合粒子100において、上述のケイ素粒子110、鱗片状黒鉛粒子120および非黒鉛質炭素の質量比は、1~25:97~60:2~15であることが好ましく、1~8:97~77:2~15であることがより好ましい。ケイ素黒鉛複合粒子100をこの組成とすることにより、ケイ素黒鉛複合粒子100の最外層の鱗片状黒鉛粒子120の外表面にケイ素粒子110を強固に固定化することができると共に、電極作製時において放電容量、充放電効率および充放電サイクル特性を好適化することができるからである。
 本発明の実施の形態に係るケイ素黒鉛複合粒子100の体積分率50%時の粒子径(すなわちメジアン径)は10μm以上35μm以下であることが好ましい。粒子径がこの範囲であると、電極作製時において充放電効率および充放電サイクル特性を好適化することができるからである。
 本実施の形態に係るケイ素黒鉛複合粒子100のアスペクト比、すなわち、鱗片状黒鉛粒子120の積層方向の平均長さ(図1の「H」に相当)に対する平均長軸長さ(図1の「W」に相当)の比は1.5以上10以下の範囲内であることが好ましく、3以上10以下の範囲内であることがより好ましく、3以上8以下の範囲内であることがさらに好ましく、3以上6以下の範囲内であることがさらに好ましく、3以上5以下の範囲内であることが特に好ましい。アスペクト比がこの範囲であると、充放電サイクル特性を好適化することができると共に、容易に電極を作製することができるからである。
 本実施の形態に係るケイ素黒鉛複合粒子100から電極密度1.70±0.02g/cmの電極を作製したとき(図3参照)、その電極200のX線回折像おいて「(004)面に帰属されるピークの強度I(004)」に対する「(110)面に帰属されるピークの強度I(110)」の比が0.0300以下であることが好ましく、0.0200以下であることがより好ましく、0.0150以下であることがさらに好ましく、0.0100以下であることが特に好ましい。このケイ素黒鉛複合粒子100がこの条件を満たすことができれば、電極内における鱗片状黒鉛粒子120の配向度が良好となり、上述の効果をより効率的に享受することができるからである。なお、図3中、符号210は活物質層を示し、符号220は集電体を示す。
 <ケイ素黒鉛複合粒子の製造>
 本発明の実施の形態に係るケイ素黒鉛複合粒子100は、以下に示すいずれかの製造方法により製造される。
 (1)第1の製造方法
 第1の製造方法では、一次複合粒子調製工程、混合粉末調製工程および加熱工程を経てケイ素黒鉛複合粒子100が製造される。
 一次複合粒子調製工程では、メカノケミカル(登録商標)処理、メカノフュージョン(登録商標)処理等の処理により、ケイ素粒子110および鱗片状黒鉛粒子120の混合粒子に圧縮力およびせん断力が付与されて一次複合粒子が調製される。なお、このとき、ケイ素粒子110および鱗片状黒鉛粒子120の混合粒子がメカノケミカルシステム、メカノフュージョンシステムに投入されてもよいし、ケイ素粒子110および鱗片状黒鉛粒子120それぞれを順にメカノケミカルシステム、メカノフュージョンシステムに投入した後に、両粒子を混合しながらメカノケミカル(登録商標)処理、メカノフュージョン(登録商標)処理等の処理を行ってもよい。なお、一次複合粒子では、ケイ素粒子110が弱い力で鱗片状黒鉛粒子120の表面に付着している。
 混合粉末調製工程では、一次複合粒子と固体の非黒鉛質炭素原料とが固相混合されて混合粉末が調製される。
 混合粉末調製工程において一次複合粒子と固体の非黒鉛質炭素原料とを混合する方法としては、粒子を破壊せずに均一に混合することができる方法であれば、特に限定されない。例えば、通常の混合機を用いる方法がある。混合機としては、例えば、回転容器型混合機、固定容器型混合機、気流型混合機、高速流動型混合機などが挙げられる。回転容器型混合機としては、例えば、Vブレンダーが挙げられる。
 加熱工程では、非酸化雰囲気下(不活性ガス雰囲気下、真空雰囲気下等)で混合粉末が800℃以上1200℃以下の温度で加熱処理される。この結果、一次複合粒子に非黒鉛質炭素原料が溶融付着され、さらに非黒鉛質炭素原料が非黒鉛質炭素に変換され、目的のケイ素黒鉛複合粒子100が得られる。加熱温度を1200℃以下とすることにより、炭化ケイ素(SiC)の生成量を抑制することができるため、放電容量に優れた電極を形成することができる。加熱温度を800℃以上とすることにより、充放電効率に優れた電極を形成することができる。このように、加熱温度が上記範囲であると、放電容量および充放電効率のバランスに優れた電極を形成することができる。
 (2)第2の製造方法
 第2の製造方法では、中間体複合粒子調製工程および加熱工程を経てケイ素黒鉛複合粒子100が製造される。
 中間体複合粒子調製工程では、メカノケミカル(登録商標)処理、メカノフュージョン(登録商標)処理等の処理により、ケイ素粒子110、鱗片状黒鉛粒子120および固体の非黒鉛質炭素原料の混合物に、非黒鉛質炭素原料の軟化点以上の温度で圧縮力およびせん断力が付与されて中間体複合粒子が調製される。このとき、圧縮力が作用する状況下で、溶融した非黒鉛質炭素原料が接着剤の役割を果たして鱗片黒鉛粒子とケイ素粒子の積層数を増加させる。なお、このとき、ケイ素粒子110、鱗片状黒鉛粒子120および固体の非黒鉛質炭素原料の混合物がメカノケミカルシステム、メカノフュージョンシステムに投入されてもよいし、ケイ素粒子110、鱗片状黒鉛粒子120および固体の非黒鉛質炭素原料それぞれを順にメカノケミカルシステム、メカノフュージョンシステムに投入した後に、それら粒子を混合しながらメカノケミカル(登録商標)処理、メカノフュージョン(登録商標)処理等の処理を行ってもよい。
 加熱工程では、非酸化雰囲気下(不活性ガス雰囲気下、真空雰囲気下等)で混合物が800℃以上1200℃以下の温度で加熱処理される。この結果、非黒鉛質炭素原料が非黒鉛質炭素に変換され、目的のケイ素黒鉛複合粒子100が得られる。加熱温度を1200℃以下とすることにより、炭化ケイ素(SiC)の生成量を抑制することができるため、放電容量に優れた電極を形成することができる。加熱温度を800℃以上とすることにより、充放電効率に優れた電極を形成することができる。このように、加熱温度が上記範囲であると、放電容量および充放電効率のバランスに優れた電極を形成することができる。
 <ケイ素黒鉛複合粒子の特徴>
 本発明の実施の形態に係るケイ素黒鉛複合粒子100は、非水電解質二次電池の電極活物質として使用されると、その充放電サイクル特性をさらに向上させることができる。
 <実施例および比較例>
 以下、実施例および比較例を示して、本発明について詳述する。
 <ケイ素黒鉛複合粒子の製造>
 (1)一次複合粒子の調製
 先ず、鱗片状天然黒鉛粉末(株式会社中越黒鉛工業所製、平均粒径:23μm、d002:0.3355nm、ペレット密度:1.91g/cm)とケイ素粉末(平均粒径:0.5μm)との質量比が95.7:1.9となるように、鱗片状天然黒鉛粉末とケイ素粉末とを、ローターとインナーピースとの隙間を5mmとした循環型メカノフュージョンシステム(ホソカワミクロン株式会社製AMS-30F)に投入した後、その混合粉末を周速20m/sで15分間、メカノケミカル処理して、一次複合粒子を調製した。
 鱗片状天然黒鉛粉末の平均粒子径は、下記「<ケイ素黒鉛複合粒子の特性評価>(1)粒子径の測定」に記載の方法と同様の方法により求めることができる。
 また、鱗片状天然黒鉛粉末のペレット密度は、次の方法により求められる。
 1.00gの鱗片状天然黒鉛粉末を直径15mmの金型に充填し、その金型を一軸プレス機で加圧力8.7kNで5秒間加圧した後、その加圧力を0.15kNまで弱めてそのときの変位を読み取る。加圧速度は10mm/秒とする。また、鱗片状天然黒鉛粉末を上記金型に充填せずに、その金型を同一軸プレス機で加圧力8.7kNまで加圧した後、その加圧力を0.15kNまで弱めてそのときの変位を求める。この変位をリファレンスとする。そして、鱗片状天然黒鉛粉末の充填時の変位とリファレンス変位との差を試料厚みとして求め、この厚みから圧縮密度すなわちペレット密度を計算する。
 (2)混合粉末の調製
 次いで、一次複合粒子と石炭系ピッチ粉末(軟化点86℃、平均粒径20μm、1000℃加熱後の残炭率50%)との質量比が97.6:4.8となるように、一次複合粒子と石炭系ピッチ粉末とを容器回転V型混合機(Vブレンダー)に投入して混合粉末を調製した。
 (3)石炭系ピッチ粉末の加熱処理
 続いて、混合粉末を黒鉛るつぼに投入した後、その混合粉末を窒素気流中、1000℃の温度で1時間加熱し、石炭系ピッチ粉末を溶融させて一次複合粒子に付着させ、さらに非黒鉛質炭素に変換させた。
 (4)解砕処理
 最後に、加熱処理後の混合粉末を、その98質量%以上が目開き75μmの篩を通過するまで解砕して目的のケイ素黒鉛複合粒子を得た。なお、このケイ素黒鉛複合粒子における鱗片状天然黒鉛粉末、ケイ素粉末および非黒鉛質炭素の質量比は、95.7:1.9:2.4であった(表1参照)。
 <ケイ素黒鉛複合粒子の特性評価>
 (1)粒子径の測定
 レーザー回折/散乱式粒度分布計(株式会社堀場製作所製LA-910)を用いて光散乱回折法によりケイ素黒鉛複合粒子の体積基準の粒度分布を測定した。その後、得られた粒度分布を用いて体積分率50%時の粒子径(メジアン径)を求めた。その結果、同粒子径は、25μmであった(表1参照)。
 (2)電池特性評価
 (2-1)電極作製
 上述のケイ素黒鉛複合粒子にCMC(カルボキシメチルセルロースナトリウム)粉末と、SBR(スチレン-ブタジエンゴム)の水性分散液と、水とを配合して電極合剤スラリーを得た。ここで、CMC及びSBRは結着剤である。ケイ素黒鉛複合粒子、CMCおよびSBRの配合比は、質量比で98.0:1.0:1.0であった。そして、この電極合剤スラリーを、厚み17μmの銅箔(集電体)上にドクターブレード法により塗布した(塗布量は10~11mg/cm2であった)。塗布液を乾燥させて塗膜を得た後、その塗膜を直径13mmのディスク状に打ち抜いた。そして、そのディスクをプレス成形機により加圧して、1.70±0.02g/cm3の電極密度を有する電極を作製した。なお、得られた電極の電極密度は、マイクロメータにより厚みを測定して体積を算出すると共に、そのディスク(銅箔を除いた部分)の質量を計測することにより得られる。
 (2-2)電池作製
 ポリオレフィン製セパレーターの両側に上述の電極と対極のLi金属箔とを配置して電極組立体を作製した。そして、その電極組立体の内部に電解液を注入してセルサイズ2016のコイン型非水試験セルを作製した。なお、電解液の組成は、エチレンカーボネート(EC):エチルメチルカーボネート(EMC):ジメチルカーボネート(DMC):ビニレンカーボネート(VC):フルオロエチレンカーボネート(FEC):LiPF6=23:4:48:1:8:16(質量比)とした。
 (2-3)放電容量、充放電効率および充放電サイクルの評価
 この非水試験セルにおいて、先ず、0.33mAの電流値で、対極に対して電位差0(ゼロ)Vになるまで定電流ドープ(電極へのリチウムイオンの挿入、リチウムイオン二次電池の充電に相当)を行った後、さらに0Vを保持したまま、5μAになるまで定電圧で対極に対してドープを続け、ドープ容量を測定した。次に、0.33mAの定電流で、電位差1.5Vになるまで脱ドープ(電極からのリチウムイオンの離脱、リチウムイオン二次電池の放電に相当)を行い、脱ドープ容量を測定した。このときのドープ容量、脱ドープ容量は、この電極をリチウムイオン二次電池の負極として用いた時の充電容量、放電容量に相当するので、これを充電容量、放電容量とした。本実施例に係る非水試験セルの放電容量は、405mAh/gであった(表1参照)。脱ドープ容量/ドープ容量の比は、リチウムイオン二次電池の放電容量/充電容量の比に相当するので、この比を充放電効率とした。本実施例に係る非水試験セルの充放電効率は、92.0%であった(表1参照)。
 サイクル特性の測定は、上記と同様に構成されたコイン型の非水試験セルを用いて行った。この試験セルにおいて、2サイクル目以降、1.33mAの定電流で、対極に対して電位差5mVになるまでドープした後(充電に相当)、さらに5mVを保持したまま、50μAになるまで定電圧でドープを続けた。次に、1.33mAの定電流で、電位差1.5Vになるまで脱ドープを行って(放電に相当)、脱ドープ容量を測定した。このときの脱ドープ容量を放電容量とした。
 上述と同一条件でドープと脱ドープとを31回繰り返し、「2サイクル目の脱ドープ時の放電容量」に対する「31サイクル目の脱ドープ時の放電容量」の比率(容量維持率)によりサイクル特性を評価した。なお、この容量維持率が90%以上であれば、実用電池として良好であると見なすことができる。なお、本実施例に係る非水試験セルの容量維持率は、96.8%であった(表1参照)。
 (3)アスペクト比の測定
 上記「(2-1)電極作製」で作製した加圧前のディスク状電極を樹脂に埋め込んだ後、その樹脂を切断し、切断面を研磨した。その切断面(電極断面)を光学顕微鏡で観察して、ケイ素黒鉛複合粒子50個の寸法を計測し、各ケイ素黒鉛複合粒子につきアスペクト比(鱗片状天然黒鉛粒子の積層方向の平均長さに対する平均長軸長さの比)を算出する。そして、その50個のケイ素黒鉛複合粒子のアスペクト比を平均して、ケイ素黒鉛複合粒子のアスペクト比とする。なお、本実施例に係るケイ素黒鉛複合粒子のアスペクト比は、5.2であった。
 (4)ケイ素黒鉛複合粒子中の鱗片状天然黒鉛粒子の配向度の測定
 ケイ素黒鉛複合粒子中の鱗片状天然黒鉛粒子の配向度は、反射回折式の粉末X線回折法を利用して求められる。具体的には、上記「(2-1)電極作製」で作製した加圧後のディスク状電極を無反射板に両面テープで固定すると共に、リガク製RINT-1200Vを用いて、銅(Cu)をターゲットとし、管電圧40kV、管電流30mAでCuKα線をディスク状電極に照射して測定する。その後、ピーク分離し、CuKα1線による粉末X線回折スペクトルを得る。2θが52~57°の範囲内にある(004)面の回折ピークと、2θが75~80°の範囲内にある(110)面の回折ピークの各々の強度を求める。そして、(110)面の回折ピーク強度を(004)面の回折ピーク強度で除してケイ素黒鉛複合粒子中の鱗片状天然黒鉛粒子の配向度を算出する。本実施例に係るケイ素黒鉛複合粒子中の鱗片状天然黒鉛粒子の配向度は、0.0075であった(表1参照)。なお、この配向度が小さい程、ケイ素黒鉛複合粒子中の鱗片状天然黒鉛粒子の配向性が高くなる。
 「(1)一次複合粒子の調製」において鱗片状天然黒鉛粉末とケイ素粉末との質量比が86.6:4.3となるように鱗片状天然黒鉛粉末とケイ素粉末とを混ぜ合わせ、「(2)混合粉末の調製」において一次複合粒子と石炭系ピッチ粉末との質量比が90.9:18.2となるように一次複合粒子と石炭系ピッチ粉末とを混ぜ合わせた以外は、実施例1と同様にして目的のケイ素黒鉛複合粒子を得、実施例1と同様にしてケイ素黒鉛複合粒子の特性評価を行った。なお、このケイ素黒鉛複合粒子における鱗片状天然黒鉛粉末、ケイ素粉末および非黒鉛質炭素の質量比は、86.6:4.3:9.1であった(表1参照)。
 ケイ素黒鉛複合粒子の体積分率50%時の粒子径は、29μmであった。ケイ素黒鉛複合粒子のアスペクト比は、4.4であった。ケイ素黒鉛複合粒子中の鱗片状天然黒鉛粒子の配向度は、0.0095であった。非水試験セルの放電容量は462mAh/gであり、充放電効率は90.6%であり、容量維持率は94.9%であった(表1参照)。
 「(1)一次複合粒子の調製」において鱗片状天然黒鉛粉末とケイ素粉末との質量比が82.8:4.2となるように鱗片状天然黒鉛粉末とケイ素粉末とを混ぜ合わせ、「(2)混合粉末の調製」において一次複合粒子と石炭系ピッチ粉末との質量比が87.0:26.0となるように一次複合粒子と石炭系ピッチ粉末とを混ぜ合わせた以外は、実施例1と同様にして目的のケイ素黒鉛複合粒子を得、実施例1と同様にしてケイ素黒鉛複合粒子の特性評価を行った。このケイ素黒鉛複合粒子における鱗片状天然黒鉛粉末、ケイ素粉末および非黒鉛質炭素の質量比は、82.8:4.2:13.0であった(表1参照)。
 ケイ素黒鉛複合粒子の体積分率50%時の粒子径は、30μmであった。ケイ素黒鉛複合粒子のアスペクト比は、3.8であった。ケイ素黒鉛複合粒子中の鱗片状天然黒鉛粒子の配向度は、0.0120であった。非水試験セルの放電容量は458mAh/gであり、充放電効率は90.1%であり、容量維持率は95.0%であった(表1参照)。
 「(1)一次複合粒子の調製」において鱗片状天然黒鉛粉末とケイ素粉末との質量比が84.0:6.7となるように鱗片状天然黒鉛粉末とケイ素粉末とを混ぜ合わせ、「(2)混合粉末の調製」において一次複合粒子と石炭系ピッチ粉末との質量比が90.7:18.6となるように一次複合粒子と石炭系ピッチ粉末とを混ぜ合わせた以外は、実施例1と同様にして目的のケイ素黒鉛複合粒子を得、実施例1と同様にしてケイ素黒鉛複合粒子の特性評価を行った。このケイ素黒鉛複合粒子における鱗片状天然黒鉛粉末、ケイ素粉末および非黒鉛質炭素の質量比は、84.0:6.7:9.3であった(表1参照)。
 ケイ素黒鉛複合粒子の体積分率50%時の粒子径は、29μmであった。ケイ素黒鉛複合粒子のアスペクト比は、4.3であった。ケイ素黒鉛複合粒子中の鱗片状天然黒鉛粒子の配向度は、0.0091であった。非水試験セルの放電容量は525mAh/gであり、充放電効率は90.4%であり、容量維持率は93.1%であった(表1参照)。
 「(1)一次複合粒子の調製」において鱗片状天然黒鉛粉末とケイ素粉末との質量比が83.3:7.5となるように鱗片状天然黒鉛粉末とケイ素粉末とを混ぜ合わせ、「(2)混合粉末の調製」において一次複合粒子と石炭系ピッチ粉末との質量比が90.8:18.4となるように一次複合粒子と石炭系ピッチ粉末とを混ぜ合わせた以外は、実施例1と同様にして目的のケイ素黒鉛複合粒子を得、実施例1と同様にしてケイ素黒鉛複合粒子の特性評価を行った。なお、このケイ素黒鉛複合粒子における鱗片状天然黒鉛粉末、ケイ素粉末および非黒鉛質炭素の質量比は、83.3:7.5:9.2であった(表1参照)。
 ケイ素黒鉛複合粒子の体積分率50%時の粒子径は、28μmであった。ケイ素黒鉛複合粒子のアスペクト比は、4.3であった。ケイ素黒鉛複合粒子中の鱗片状天然黒鉛粒子の配向度は、0.0087であった。非水試験セルの放電容量は548mAh/gであり、充放電効率は90.2%であり、容量維持率は92.0%であった(表1参照)。
 「(1)一次複合粒子の調製」において鱗片状天然黒鉛粉末とケイ素粉末との質量比が82.6:8.3となるように鱗片状天然黒鉛粉末とケイ素粉末とを混ぜ合わせ、「(2)混合粉末の調製」において一次複合粒子と石炭系ピッチ粉末との質量比が90.9:18.2となるように一次複合粒子と石炭系ピッチ粉末とを混ぜ合わせた以外は、実施例1と同様にして目的のケイ素黒鉛複合粒子を得、実施例1と同様にしてケイ素黒鉛複合粒子の特性評価を行った。このケイ素黒鉛複合粒子における鱗片状天然黒鉛粉末、ケイ素粉末および非黒鉛質炭素の質量比は、82.6:8.3:9.1であった(表1参照)。
 ケイ素黒鉛複合粒子の体積分率50%時の粒子径は、28μmであった。ケイ素黒鉛複合粒子のアスペクト比は、4.2であった。ケイ素黒鉛複合粒子中の鱗片状天然黒鉛粒子の配向度は、0.0088であった。非水試験セルの放電容量は564mAh/gであり、充放電効率は89.7%であり、容量維持率は88.1%であった(表1参照)。
(比較例1)
 「(1)一次複合粒子の調製」において鱗片状天然黒鉛粉末とケイ素粉末との質量比が95.3:4.7となるように鱗片状天然黒鉛粉末とケイ素粉末とを混ぜ合わせ、「(2)混合粉末の調製」、「(3)石炭系ピッチ粉末の加熱処理」および「(4)解砕処理」を行わなかった以外は、実施例1と同様にして対照粉末(すなわち一次複合粒子)を得、実施例1と同様にして対照粉末の特性評価を行った。なお、この対照粉末における鱗片状天然黒鉛粉末、ケイ素粉末および非黒鉛質炭素の質量比は、95.3:4.7:0.0であった(表1参照)。
 ケイ素黒鉛複合粒子の体積分率50%時の粒子径は、25μmであった。ケイ素黒鉛複合粒子のアスペクト比は、5.4であった。ケイ素黒鉛複合粒子中の鱗片状天然黒鉛粒子の配向度は、0.0070であった。非水試験セルの放電容量は470mAh/gであり、充放電効率は90.0%であり、容量維持率は84.0%であった(表1参照)。
(比較例2)
 鱗片状天然黒鉛粉末(株式会社中越黒鉛工業所製、平均粒径:23μm、d002:0.3355nm、ペレット密度:1.91g/cm)、ケイ素粉末(平均粒径:0.5μm)および石炭系ピッチ粉末(軟化点86℃、平均粒径20μm、1000℃加熱後の残炭率50%)の質量比が86.6:4.3:18.2となるように鱗片状天然黒鉛粉末、ケイ素粉末および石炭系ピッチ粉末をテトラヒドロフランに加えてよく混合し、分散液を調製した。この分散液を乾燥させて乾燥粉末を得、その乾燥粉末を黒鉛るつぼに投入した後、その乾燥粉末を窒素気流中、450℃の温度で1時間、加熱した。この乾燥粉末は加熱後、凝集して塊となる。そして、この加熱後の乾燥凝集塊をその98質量%以上が目開き75μmの篩を通過するまでコーヒーミルで粉砕した後、その粉砕物を、ローターとインナーピースとの隙間を5mmとした循環型メカノフュージョンシステム(ホソカワミクロン株式会社製AMS-30F)に投入し、その粉砕物を周速20m/sで30分間、メカノケミカル処理した。その後、メカノケミカル処理済みの粉砕物を黒鉛るつぼに投入し、窒素気流中、1000℃で1時間、その粉砕物を加熱して目的の対照粉末を得た。なお、この対照粉末における鱗片状天然黒鉛粉末、ケイ素粉末および非黒鉛質炭素の質量比は、86.6:4.3:9.1であった(表1参照)。
 そして、実施例1と同様にして対照粉末の特性評価を行ったところ、対照粉末の体積分率50%時の粒子径は、33μmであった。対照粉末のアスペクト比は、2.7であった。対照粉末中の鱗片状天然黒鉛粒子の配向度は、0.0320であった。なお、この配向度から、対照粉末の鱗片状天然黒鉛粒子は、同一方向に配向しておらずランダムな方向に向いていることが明らかとなった。非水試験セルの放電容量は458mAh/gであり、充放電効率は89.3%であり、容量維持率は89.2%であった(表1参照)。
 この比較例では、上述の通り、鱗片状天然黒鉛粉末、ケイ素粉末および石炭系ピッチがテトラヒドロフランを溶媒として液相で混合される。その結果、ケイ素粒子の分散が不十分となると共に、鱗片状天然黒鉛粒子がランダムな方向を向いたまま造粒される。また、この比較例では、ケイ素粒子および鱗片状天然黒鉛粒子に石炭系ピッチを被覆させてから加熱しており、柔軟な黒鉛が硬く変形しにくくなった状態で、その粉砕物にメカノケミカル処理により圧縮力・せん断力を付与している。このため、ケイ素粒子を鱗片状天然黒鉛粒子で十分に挟み込むことができず、鱗片状天然黒鉛粒子がランダムな方向を向いたままとなる。したがって、本比較例に係る非水試験セルの充放電サイクル特性が、実施例に係る非水試験セルの充放電サイクル特性よりも劣ったものと推察される。
(比較例3)
 「(1)一次複合粒子の調製」において鱗片状天然黒鉛粉末とケイ素粉末との質量比が86.6:4.3となるように鱗片状天然黒鉛粉末とケイ素粉末とを混ぜ合わせた以外は、実施例1と同様にして一次複合粒子を調製した。次いで、一次複合粒子と石炭系ピッチ粉末(軟化点86℃、平均粒径20μm、1000℃加熱後の残炭率50%)との質量比が90.9:18.2となるように一次複合粒子および石炭系ピッチ粉末をテトラヒドロフランに加えてよく混合し、分散液を調製した。続いて、この分散液を乾燥させて乾燥粉末を得、その乾燥粉末を黒鉛るつぼに投入した後、その乾燥粉末を窒素気流中、1000℃の温度で1時間、加熱した。そして、この加熱後の乾燥粉体を、その98質量%以上が目開き75μmの篩を通過するまで解砕して目的の対照粉末を得た。なお、この対照粉末における鱗片状天然黒鉛粉末、ケイ素粉末および非黒鉛質炭素の質量比は、86.6:4.3:9.1であった(表1参照)。
 そして、実施例1と同様にして対照粉末の特性評価を行ったところ、対照粉末の体積分率50%時の粒子径は、35μmであった。対照粉末のアスペクト比は、2.3であった。対照粉末中の鱗片状天然黒鉛粒子の配向度は、0.0350であった。なお、この配向度から、対照粉末の鱗片状天然黒鉛粒子は、同一方向に配向しておらずランダムな方向に向いていることが明らかとなった。非水試験セルの放電容量は463mAh/gであり、充放電効率は90.5%であり、容量維持率は88.1%であった(表1参照)。
Figure JPOXMLDOC01-appb-T000001
 <ケイ素黒鉛複合粒子の製造>
 (1)中間体複合粒子の調製
 先ず、鱗片状天然黒鉛粉末(株式会社中越黒鉛工業所製、平均粒径:23μm、d002:0.3355nm、ペレット密度:1.91g/cm)とケイ素粉末(平均粒径:0.5μm)と石炭系ピッチ粉末(軟化点86℃、平均粒径20μm、1000℃加熱後の残炭率50%)の質量比が88.6:4.4:14.0となるように、鱗片状天然黒鉛粉末とケイ素粉末と石炭系ピッチ粉末を、ローターとインナーピースとの隙間を5mmとした循環型メカノフュージョンシステム(ホソカワミクロン株式会社製AMS-30F)に投入した後、温度を95℃~130℃に調整しながら、その混合粉末を回転数2600rpmで15分間、メカノケミカル処理して、中間体複合粒子を調製した。
 (2)石炭系ピッチ粉末の加熱処理
 次いで、中間体複合粒子を黒鉛るつぼに投入した後、その中間体複合粒子を窒素気流中、1000℃の温度で1時間加熱し、石炭系ピッチ粉末を非黒鉛質炭素に変換させた。
 (3)解砕処理
 最後に、加熱処理後の中間体複合粒子を、その98質量%以上が目開き75μmの篩を通過するまで解砕して目的のケイ素黒鉛複合粒子を得た。なお、このケイ素黒鉛複合粒子における鱗片状天然黒鉛粉末、ケイ素粉末および非黒鉛質炭素の質量比は、88.6:4.4:7.0であった(表2参照)。
 <ケイ素黒鉛複合粒子の特性評価>
 実施例1と同様にして、得られたケイ素黒鉛複合粒子につき(1)粒子径の測定、(2)電池特性評価、(3)アスペクト比の測定、(4)ケイ素黒鉛複合粒子中の鱗片状天然黒鉛粒子の配向度の測定を行った。その結果、ケイ素黒鉛複合粒子の体積分率50%時の粒子径は、34μmであった。ケイ素黒鉛複合粒子のアスペクト比は、3.5であった。ケイ素黒鉛複合粒子中の鱗片状天然黒鉛粒子の配向度は、0.0061であった。非水試験セルの放電容量は481mAh/gであり、充放電効率は92.1%であり、容量維持率は97.0%であった(表2参照)。
 「(1)中間体複合粒子の調製」において鱗片状天然黒鉛粉末とケイ素粉末と石炭系ピッチ粉末の質量比が78.3:12.5:18.4となるように鱗片状天然黒鉛粉末とケイ素粉末と石炭系ピッチ粉末を循環型メカノフュージョンシステムに投入した以外は、実施例7と同様にして目的のケイ素黒鉛複合粒子を得、実施例1と同様にしてケイ素黒鉛複合粒子の特性評価を行った。なお、このケイ素黒鉛複合粒子における鱗片状天然黒鉛粉末、ケイ素粉末および非黒鉛質炭素の質量比は、78.3:12.5:9.2であった(表2参照)。
 ケイ素黒鉛複合粒子の体積分率50%時の粒子径は、37μmであった。ケイ素黒鉛複合粒子のアスペクト比は、2.7であった。ケイ素黒鉛複合粒子中の鱗片状天然黒鉛粒子の配向度は、0.0093であった。非水試験セルの放電容量は695mAh/gであり、充放電効率は90.7%であり、容量維持率は92.2%であった(表2参照)。
 「(1)中間体複合粒子の調製」において鱗片状天然黒鉛粉末(株式会社中越黒鉛工業所製、平均粒径:23μm、d002:0.3355nm、ペレット密度:1.91g/cm)を鱗片状天然黒鉛粉末(株式会社中越黒鉛工業所製、平均粒径:15μm、d002:0.3356nm、ペレット密度:1.89g/cm)に代えた以外は、実施例7と同様にして目的のケイ素黒鉛複合粒子を得、実施例1と同様にしてケイ素黒鉛複合粒子の特性評価を行った。なお、このケイ素黒鉛複合粒子における鱗片状天然黒鉛粉末、ケイ素粉末および非黒鉛質炭素の質量比は、88.6:4.4:7.0であった(表2参照)。
 ケイ素黒鉛複合粒子の体積分率50%時の粒子径は、25μmであった。ケイ素黒鉛複合粒子のアスペクト比は、2.5であった。ケイ素黒鉛複合粒子中の鱗片状天然黒鉛粒子の配向度は、0.0070であった。非水試験セルの放電容量は482mAh/gであり、充放電効率は91.0%であり、容量維持率は96.5%であった(表2参照)。
 「(1)中間体複合粒子の調製」において鱗片状天然黒鉛粉末(株式会社中越黒鉛工業所製、平均粒径:23μm、d002:0.3355nm、ペレット密度:1.91g/cm)を鱗片状天然黒鉛粉末(株式会社中越黒鉛工業所製、平均粒径:15μm、d002:0.3356nm、ペレット密度:1.89g/cm)に代えた上で、鱗片状天然黒鉛粉末とケイ素粉末と石炭系ピッチ粉末の質量比が78.3:12.5:18.4となるように鱗片状天然黒鉛粉末とケイ素粉末と石炭系ピッチ粉末を循環型メカノフュージョンシステムに投入した以外は、実施例7と同様にして目的のケイ素黒鉛複合粒子を得、実施例1と同様にしてケイ素黒鉛複合粒子の特性評価を行った。なお、このケイ素黒鉛複合粒子における鱗片状天然黒鉛粉末、ケイ素粉末および非黒鉛質炭素の質量比は、78.3:12.5:9.2であった(表2参照)。
 ケイ素黒鉛複合粒子の体積分率50%時の粒子径は、29μmであった。ケイ素黒鉛複合粒子のアスペクト比は、2.5であった。ケイ素黒鉛複合粒子中の鱗片状天然黒鉛粒子の配向度は、0.0060であった。非水試験セルの放電容量は685mAh/gであり、充放電効率は90.5%であり、容量維持率は91.5%であった(表2参照)。
 「(1)中間体複合粒子の調製」において鱗片状天然黒鉛粉末(株式会社中越黒鉛工業所製、平均粒径:23μm、d002:0.3355nm、ペレット密度:1.91g/cm)を鱗片状天然黒鉛粉末(株式会社中越黒鉛工業所製、平均粒径:15μm、d002:0.3356nm、ペレット密度:1.89g/cm)に代え、鱗片状天然黒鉛粉末とケイ素粉末と石炭系ピッチ粉末の質量比が73.2:17.6:18.4となるように鱗片状天然黒鉛粉末とケイ素粉末と石炭系ピッチ粉末を循環型メカノフュージョンシステムに投入した以外は、実施例7と同様にして目的のケイ素黒鉛複合粒子を得、実施例1と同様にしてケイ素黒鉛複合粒子の特性評価を行った。なお、このケイ素黒鉛複合粒子における鱗片状天然黒鉛粉末、ケイ素粉末および非黒鉛質炭素の質量比は、73.2:17.6:9.2であった(表2参照)。
 ケイ素黒鉛複合粒子の体積分率50%時の粒子径は、29μmであった。ケイ素黒鉛複合粒子のアスペクト比は、2.8であった。ケイ素黒鉛複合粒子中の鱗片状天然黒鉛粒子の配向度は、0.0078であった。非水試験セルの放電容量は799mAh/gであり、充放電効率は90.1%であり、容量維持率は89.5%であった(表2参照)。
 「(1)中間体複合粒子の調製」において鱗片状天然黒鉛粉末(株式会社中越黒鉛工業所製、平均粒径:23μm、d002:0.3355nm、ペレット密度:1.91g/cm)を鱗片状天然黒鉛粉末(株式会社中越黒鉛工業所製、平均粒径:10μm、d002:0.3357nm、ペレット密度:1.82g/cm)に代え、鱗片状天然黒鉛粉末とケイ素粉末と石炭系ピッチ粉末の質量比が88.6:4.4:14.0となるように鱗片状天然黒鉛粉末とケイ素粉末と石炭系ピッチ粉末を循環型メカノフュージョンシステムに投入した以外は、実施例7と同様にして目的のケイ素黒鉛複合粒子を得、実施例1と同様にしてケイ素黒鉛複合粒子の特性評価を行った。なお、このケイ素黒鉛複合粒子における鱗片状天然黒鉛粉末、ケイ素粉末および非黒鉛質炭素の質量比は、88.6:4.4:7.0であった(表2参照)。
 ケイ素黒鉛複合粒子の体積分率50%時の粒子径は、19μmであった。ケイ素黒鉛複合粒子のアスペクト比は、2.2であった。ケイ素黒鉛複合粒子中の鱗片状天然黒鉛粒子の配向度は、0.0075であった。非水試験セルの放電容量は480mAh/gであり、充放電効率は90.0%であり、容量維持率は95.0%であった(表2参照)。
 「(1)中間体複合粒子の調製」において鱗片状天然黒鉛粉末(株式会社中越黒鉛工業所製、平均粒径:23μm、d002:0.3355nm、ペレット密度:1.91g/cm)を鱗片状天然黒鉛粉末(株式会社中越黒鉛工業所製、平均粒径:10μm、d002:0.3357nm、ペレット密度:1.82g/cm)に代え、鱗片状天然黒鉛粉末とケイ素粉末と石炭系ピッチ粉末の質量比が74.5:12.5:26.0となるように鱗片状天然黒鉛粉末とケイ素粉末と石炭系ピッチ粉末を循環型メカノフュージョンシステムに投入した以外は、実施例7と同様にして目的のケイ素黒鉛複合粒子を得、実施例1と同様にしてケイ素黒鉛複合粒子の特性評価を行った。なお、このケイ素黒鉛複合粒子における鱗片状天然黒鉛粉末、ケイ素粉末および非黒鉛質炭素の質量比は、74.5:12.5:13.0であった(表2参照)。
 ケイ素黒鉛複合粒子の体積分率50%時の粒子径は、23μmであった。ケイ素黒鉛複合粒子のアスペクト比は、1.5であった。ケイ素黒鉛複合粒子中の鱗片状天然黒鉛粒子の配向度は、0.0210であった。非水試験セルの放電容量は664mAh/gであり、充放電効率は89.5%であり、容量維持率は90.0%であった(表2参照)。
Figure JPOXMLDOC01-appb-T000002
 上述の結果より、本発明の実施例に係るケイ素黒鉛複合粒子は、リチウムイオン二次電池の負極活物質として使用されると、そのリチウムイオン二次電池の充放電サイクル特性を有効に改善することが明らかとなった。

Claims (12)

  1.  層状に配列する複数の鱗片状黒鉛粒子と、
     前記複数の鱗片状黒鉛粒子に挟み込まれるケイ素粒子と
    を備える、ケイ素黒鉛複合粒子。
  2.  前記ケイ素粒子は、前記複数の鱗片状黒鉛粒子に挟み込まれると共に、最外層の前記鱗片状黒鉛粒子の外表面上に非黒鉛質炭素により付着される、
    請求項1に記載のケイ素黒鉛複合粒子。
  3.  電極密度1.70±0.02g/cmの電極を作製したときの前記電極のX線回折像おいて「(004)面に帰属されるピークの強度I(004)」に対する「(110)面に帰属されるピークの強度I(110)」の比が0.0010以上0.0300以下の範囲内である
    請求項1または2に記載のケイ素黒鉛複合粒子。
  4.  前記鱗片状黒鉛粒子の積層方向の平均長さに対する平均長軸長さの比が1.5以上10以下である
    請求項1から3のいずれかに記載のケイ素黒鉛複合粒子。
  5.  前記鱗片状黒鉛粒子の積層方向の平均長さに対する平均長軸長さの比が3以上10以下である
    請求項4に記載のケイ素黒鉛複合粒子。
  6.  前記鱗片状黒鉛粒子、前記ケイ素粒子および前記非黒鉛質炭素の質量比が97~60:1~25:2~15である
    請求項1から5のいずれかに記載のケイ素黒鉛複合粒子。
  7.  前記鱗片状黒鉛粒子、前記ケイ素粒子および前記非黒鉛質炭素の質量比が97~77:1~8:2~15である
    請求項6に記載のケイ素黒鉛複合粒子。
  8.  ケイ素粒子および鱗片状黒鉛粒子の混合粒子に圧縮力およびせん断力を付与して一次複合粒子を調製する一次複合粒子調製工程と、
     前記一次複合粒子と固体の非黒鉛質炭素原料とを混合させて混合粉末を調製する混合粉末調製工程と、
     前記混合粉末を加熱処理する加熱工程と
    を備える、ケイ素黒鉛複合粒子の製造方法。
  9.  ケイ素粒子、鱗片状黒鉛粒子および固体の非黒鉛質炭素原料の混合物に、前記非黒鉛質炭素原料の軟化点以上の温度で圧縮力およびせん断力を付与して中間体複合粒子を調製する中間体複合粒子調製工程と、
     前記中間体複合粒子を加熱処理する加熱工程と
    を備える、ケイ素黒鉛複合粒子の製造方法。
  10.  請求項8または9に記載のケイ素黒鉛複合粒子の製造方法により得られるケイ素黒鉛複合粒子。
  11.  請求項1、2、3、4、5、6、7及び10のいずれかに記載のケイ素黒鉛複合粒子を活物質とする電極。
  12.  請求項11に記載の電極を備える非水電解質二次電池。
PCT/JP2013/056955 2012-03-22 2013-03-13 ケイ素黒鉛複合粒子およびその製造方法 WO2013141104A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380012411.6A CN104185917B (zh) 2012-03-22 2013-03-13 硅-石墨复合颗粒及其制造方法
JP2014506165A JP5798678B2 (ja) 2012-03-22 2013-03-13 ケイ素黒鉛複合粒子およびその製造方法ならびに電極およびその電極を備える非水電解質二次電池
KR1020147017857A KR101660001B1 (ko) 2012-03-22 2013-03-13 규소 흑연 복합 입자 및 그 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012065680 2012-03-22
JP2012-065680 2012-03-22

Publications (2)

Publication Number Publication Date
WO2013141104A1 true WO2013141104A1 (ja) 2013-09-26
WO2013141104A9 WO2013141104A9 (ja) 2014-07-24

Family

ID=49222564

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/056955 WO2013141104A1 (ja) 2012-03-22 2013-03-13 ケイ素黒鉛複合粒子およびその製造方法

Country Status (4)

Country Link
JP (1) JP5798678B2 (ja)
KR (1) KR101660001B1 (ja)
CN (1) CN104185917B (ja)
WO (1) WO2013141104A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015019994A1 (ja) * 2013-08-05 2015-02-12 昭和電工株式会社 リチウムイオン電池用負極材及びその用途
WO2015041063A1 (ja) * 2013-09-17 2015-03-26 中央電気工業株式会社 ケイ素相含有物黒鉛複合粒子およびその製造方法
JP2015060642A (ja) * 2013-09-17 2015-03-30 中央電気工業株式会社 ケイ素酸化物黒鉛複合粒子およびその製造方法
JP2015164127A (ja) * 2014-01-31 2015-09-10 三菱化学株式会社 非水系二次電池負極用炭素材、非水系二次電池用負極及び非水系二次電池
JP2016027557A (ja) * 2014-06-25 2016-02-18 Jfeケミカル株式会社 リチウムイオン二次電池用負極材料の製造方法
JP2016186914A (ja) * 2015-03-27 2016-10-27 三菱化学株式会社 非水系二次電池負極用複合黒鉛粒子、非水系二次電池用負極及び非水系二次電池
KR20170009830A (ko) 2014-03-26 2017-01-25 미쓰비시 가가꾸 가부시키가이샤 비수계 이차 전지 부극용 복합 흑연 입자, 비수계 이차 전지 부극용 활물질 및 비수계 이차 전지
US9947921B2 (en) 2015-06-23 2018-04-17 Panasonic Intellectual Property Management Co., Ltd. Silicon-carbon composite material including layered carbon and silicon particles

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108666566B (zh) 2017-03-31 2021-08-31 华为技术有限公司 一种制备电极材料的方法、电极材料及电池
CN107522487B (zh) * 2017-07-07 2020-02-18 中国人民解放军国防科学技术大学 具有SiC掺杂层的石墨材料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09249407A (ja) * 1996-03-14 1997-09-22 Toyota Central Res & Dev Lab Inc 黒鉛複合物およびその製造方法
JP2005243508A (ja) * 2004-02-27 2005-09-08 Jfe Chemical Corp リチウムイオン二次電池負極材料用複合黒鉛粒子、負極およびリチウムイオン二次電池
JP2008186732A (ja) * 2007-01-30 2008-08-14 Nippon Carbon Co Ltd リチウム二次電池用負極活物質、それを使用した負極及び製造方法
JP2008235247A (ja) * 2007-02-21 2008-10-02 Jfe Chemical Corp リチウムイオン二次電池用負極材料およびその製造方法、リチウムイオン二次電池用負極ならびにリチウムイオン二次電池
JP2013077511A (ja) * 2011-09-30 2013-04-25 Dainippon Printing Co Ltd リチウムイオン二次電池用負極板の製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1319195C (zh) * 2003-09-26 2007-05-30 杰富意化学株式会社 复合粒子、使用该复合粒子的锂离子二次电池的负极材料、负极以及锂离子二次电池
JP4623283B2 (ja) * 2004-03-26 2011-02-02 信越化学工業株式会社 珪素複合体粒子及びその製造方法並びに非水電解質二次電池用負極材
US7790316B2 (en) * 2004-03-26 2010-09-07 Shin-Etsu Chemical Co., Ltd. Silicon composite particles, preparation thereof, and negative electrode material for non-aqueous electrolyte secondary cell
JP2007227239A (ja) * 2006-02-24 2007-09-06 Sanyo Electric Co Ltd リチウム二次電池用負極及びリチウム二次電池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09249407A (ja) * 1996-03-14 1997-09-22 Toyota Central Res & Dev Lab Inc 黒鉛複合物およびその製造方法
JP2005243508A (ja) * 2004-02-27 2005-09-08 Jfe Chemical Corp リチウムイオン二次電池負極材料用複合黒鉛粒子、負極およびリチウムイオン二次電池
JP2008186732A (ja) * 2007-01-30 2008-08-14 Nippon Carbon Co Ltd リチウム二次電池用負極活物質、それを使用した負極及び製造方法
JP2008235247A (ja) * 2007-02-21 2008-10-02 Jfe Chemical Corp リチウムイオン二次電池用負極材料およびその製造方法、リチウムイオン二次電池用負極ならびにリチウムイオン二次電池
JP2013077511A (ja) * 2011-09-30 2013-04-25 Dainippon Printing Co Ltd リチウムイオン二次電池用負極板の製造方法

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015019994A1 (ja) * 2013-08-05 2017-03-02 昭和電工株式会社 リチウムイオン電池用負極材及びその用途
WO2015019994A1 (ja) * 2013-08-05 2015-02-12 昭和電工株式会社 リチウムイオン電池用負極材及びその用途
US10109848B2 (en) 2013-08-05 2018-10-23 Showa Denko K.K. Negative electrode material for lithium ion batteries and use thereof
WO2015041063A1 (ja) * 2013-09-17 2015-03-26 中央電気工業株式会社 ケイ素相含有物黒鉛複合粒子およびその製造方法
JP2015060642A (ja) * 2013-09-17 2015-03-30 中央電気工業株式会社 ケイ素酸化物黒鉛複合粒子およびその製造方法
JP2015164127A (ja) * 2014-01-31 2015-09-10 三菱化学株式会社 非水系二次電池負極用炭素材、非水系二次電池用負極及び非水系二次電池
KR20170009830A (ko) 2014-03-26 2017-01-25 미쓰비시 가가꾸 가부시키가이샤 비수계 이차 전지 부극용 복합 흑연 입자, 비수계 이차 전지 부극용 활물질 및 비수계 이차 전지
US10680238B2 (en) 2014-03-26 2020-06-09 Mitsubishi Chemical Corporation Method to prepare composite graphite particles for nonaqueous secondary battery negative electrode, active material for nonaqueous secondary battery negative electrode, and nonaqueous secondary battery
US11245108B2 (en) 2014-03-26 2022-02-08 Mitsubishi Chemical Corporation Method to prepare composite graphite particles for nonaqueous secondary battery negative electrode, active material for nonaqueous secondary battery negative electrode, and nonaqueous secondary battery
KR20220025130A (ko) 2014-03-26 2022-03-03 미쯔비시 케미컬 주식회사 비수계 이차 전지 부극용 복합 흑연 입자, 비수계 이차 전지 부극용 활물질 및 비수계 이차 전지
US11605810B2 (en) 2014-03-26 2023-03-14 Mitsubishi Chemical Corporation Method to prepare composite graphite particles for nonaqueous secondary battery negative electrode, active material for nonaqueous secondary battery negative electrode, and nonaqueous secondary battery
KR20230119033A (ko) 2014-03-26 2023-08-14 미쯔비시 케미컬 주식회사 비수계 이차 전지 부극용 복합 흑연 입자, 비수계 이차전지 부극용 활물질 및 비수계 이차 전지
JP2016027557A (ja) * 2014-06-25 2016-02-18 Jfeケミカル株式会社 リチウムイオン二次電池用負極材料の製造方法
JP2016186914A (ja) * 2015-03-27 2016-10-27 三菱化学株式会社 非水系二次電池負極用複合黒鉛粒子、非水系二次電池用負極及び非水系二次電池
US9947921B2 (en) 2015-06-23 2018-04-17 Panasonic Intellectual Property Management Co., Ltd. Silicon-carbon composite material including layered carbon and silicon particles

Also Published As

Publication number Publication date
KR101660001B1 (ko) 2016-09-26
JP5798678B2 (ja) 2015-10-21
CN104185917A (zh) 2014-12-03
KR20140106626A (ko) 2014-09-03
CN104185917B (zh) 2016-11-09
WO2013141104A9 (ja) 2014-07-24
JPWO2013141104A1 (ja) 2015-08-03

Similar Documents

Publication Publication Date Title
JP5798678B2 (ja) ケイ素黒鉛複合粒子およびその製造方法ならびに電極およびその電極を備える非水電解質二次電池
EP2081243B1 (en) Negative electrode material for lithium ion secondary battery and method for producing the same
JP6432519B2 (ja) 非水系二次電池負極用炭素材、非水系二次電池用負極及び非水系二次電池
KR100951388B1 (ko) 탄소재료, 그 제조방법 및 용도
JP5413645B2 (ja) リチウム二次電池用負極材の製造方法
JP5365674B2 (ja) 炭素材料の製造方法
WO2015019993A1 (ja) 複合体の製造方法及びリチウムイオン電池用負極材
KR101661050B1 (ko) 복합 흑연질 재료 및 그 제조 방법, 리튬 이온 2차 전지용 부극 재료, 리튬 이온 2차 전지용 부극 및 리튬 이온 2차 전지
WO2015125784A1 (ja) リチウムイオン2次電池用負極活物質およびその製造方法
KR100702980B1 (ko) 복합입자, 및 이것을 이용한 리튬이온 이차전지의 부극재료, 부극 및 리튬이온 이차전지
US20130337334A1 (en) Electrode material having a high capacity
KR102179257B1 (ko) 리튬 이온 2차전지용 부극재, 부극 및 리튬 이온 2차전지
WO2015041063A1 (ja) ケイ素相含有物黒鉛複合粒子およびその製造方法
JP6476814B2 (ja) 非水系二次電池負極用炭素材、それを用いた非水系二次電池用負極及び非水系二次電池
JP2004210634A (ja) 複合黒鉛粒子、その製造方法、リチウムイオン二次電池負極材、リチウムイオン二次電池負極およびリチウムイオン二次電池
JP2015164127A (ja) 非水系二次電池負極用炭素材、非水系二次電池用負極及び非水系二次電池
JP2008305661A (ja) リチウムイオン二次電池用負極材とその製造方法
JP2008282547A (ja) リチウムイオン二次電池用負極材とその製造方法
JP2016115418A (ja) ケイ素黒鉛複合粒子の使用方法、非水系二次電池用黒鉛負極の放電容量改良材、混合粒子、電極および非水電解質二次電池
KR20150138265A (ko) 리튬이온 이차전지 음극용 비정질 탄소재료 및 흑연질 탄소재료, 이들을 이용한 리튬이온 이차전지, 및 리튬이온 이차전지 음극용 탄소재료의 제조방법
JP2009158105A (ja) リチウムイオン二次電池の負極材用複合炭素材料の製造方法
KR100935129B1 (ko) 탄소재료, 그 제조방법 및 용도
JP2009110968A (ja) 黒鉛質粒子、リチウムイオン二次電池、そのための負極材料および負極
JP2016091762A (ja) ケイ素黒鉛複合粒子およびその製造方法
JP2016066418A (ja) 電極活物質材料、電極、電池、及び、電極活物質材料の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13765116

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014506165

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147017857

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13765116

Country of ref document: EP

Kind code of ref document: A1