WO2013137452A1 - 有機化合物の除染方法 - Google Patents

有機化合物の除染方法 Download PDF

Info

Publication number
WO2013137452A1
WO2013137452A1 PCT/JP2013/057452 JP2013057452W WO2013137452A1 WO 2013137452 A1 WO2013137452 A1 WO 2013137452A1 JP 2013057452 W JP2013057452 W JP 2013057452W WO 2013137452 A1 WO2013137452 A1 WO 2013137452A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
organic compound
processing
processing gas
decontamination
Prior art date
Application number
PCT/JP2013/057452
Other languages
English (en)
French (fr)
Inventor
智彦 羽柴
Original Assignee
株式会社ウイングターフ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ウイングターフ filed Critical 株式会社ウイングターフ
Priority to EP13761084.6A priority Critical patent/EP2818208B1/en
Priority to CN201380024548.3A priority patent/CN104411371B/zh
Publication of WO2013137452A1 publication Critical patent/WO2013137452A1/ja
Priority to US14/487,926 priority patent/US9452307B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D3/00Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances
    • A62D3/30Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by reacting with chemical agents
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D3/00Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances
    • A62D3/30Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by reacting with chemical agents
    • A62D3/37Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by reacting with chemical agents by reduction, e.g. hydrogenation
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D3/00Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances
    • A62D3/30Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by reacting with chemical agents
    • A62D3/38Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by reacting with chemical agents by oxidation; by combustion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/68Halogens or halogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/72Organic compounds not provided for in groups B01D53/48 - B01D53/70, e.g. hydrocarbons
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D2101/00Harmful chemical substances made harmless, or less harmful, by effecting chemical change
    • A62D2101/02Chemical warfare substances, e.g. cholinesterase inhibitors
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D2101/00Harmful chemical substances made harmless, or less harmful, by effecting chemical change
    • A62D2101/04Pesticides, e.g. insecticides, herbicides, fungicides or nematocides
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D2101/00Harmful chemical substances made harmless, or less harmful, by effecting chemical change
    • A62D2101/20Organic substances
    • A62D2101/22Organic substances containing halogen
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D2101/00Harmful chemical substances made harmless, or less harmful, by effecting chemical change
    • A62D2101/20Organic substances
    • A62D2101/26Organic substances containing nitrogen or phosphorus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/10Oxidants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/102Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/108Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/20Halogens or halogen compounds
    • B01D2257/206Organic halogen compounds
    • B01D2257/2064Chlorine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/55Compounds of silicon, phosphorus, germanium or arsenic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0225Other waste gases from chemical or biological warfare
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/45Gas separation or purification devices adapted for specific applications
    • B01D2259/4583Gas separation or purification devices adapted for specific applications for removing chemical, biological and nuclear warfare agents

Definitions

  • the present invention relates to a method for decontaminating organic compounds, particularly toxic compounds such as chemical weapons.
  • Patent Document 1 a method using a mixed gas of ozone and hydrogen peroxide (Patent Document 1), the toxic compound is decomposed by combustion, and the generated acidic toxic gas is dissolved in an aqueous sodium hydroxide solution.
  • Patent Document 2 Method of neutralization
  • Patent Document 3 Method of evaporating and removing toxic compounds by heating in an airtight heating furnace
  • Patent Document 4 Method for decomposing toxic compounds by irradiation
  • the present invention has been made in view of such circumstances of the prior art, and is a method for efficiently and easily decontaminating a released organic compound, particularly a gaseous organic compound diffused in the atmosphere. It aims at providing the method of decontaminating efficiently and simply by processing in the environment of the diffusion place of a gaseous organic compound in this diffusion place.
  • the invention of claim 1 is a method for decontamination by exposing an organic compound to a processing gas at room temperature, and the processing gas is generated by causing a catalyst to act on methanol gas. It contains hydroxylmethyl radical, hydroperoxy radical, hydrogen radical and hydroxyl radical.
  • the processing gas can be exposed to the processing object at the original position under the natural environment condition of the original position where the processing object exists. That is, the organic compound released from a predetermined source can be decontaminated at the release site under the environmental conditions of the release site of the organic compound, so that it is compared with the conventional method using a heating furnace or a photolysis catalyst.
  • the treatment process can be greatly simplified, and the organic compound can be efficiently decontaminated.
  • hydroxylmethyl radicals, hydroperoxy radicals, hydrogen radicals, and hydroxyl radicals generated by the action of a catalyst on methanol gas have no corrosiveness or persistence, so there is little deterioration of the decontamination equipment and simple equipment maintenance. It is.
  • the processing gas containing these radicals is less toxic than ozone, safety of workers can be ensured.
  • the treatment gas may be exposed to the organic compound, decontamination can be performed regardless of whether the organic compound is gaseous or liquid. Furthermore, when decontaminating an organic compound, it is not necessary to irradiate the organic compound with light or to adjust the temperature of the decontamination environment, so that the organic compound can be decontaminated immediately in any natural environment.
  • the processing gas contains a plurality of radicals, various organic compounds can be decomposed. Furthermore, it is possible to decompose the molecules constituting the compound at a plurality of positions.
  • the invention of claim 2 is characterized in that the organic compound is a gas diffused in the atmosphere.
  • the organic compound gas can be decontaminated by spraying the treatment gas directly into the atmosphere polluted with the organic compound gas. Therefore, even if a highly volatile organic compound diffuses into the atmosphere, it can be quickly contaminated. Processing is possible.
  • hydroxylmethyl radicals, hydroperoxy radicals, hydrogen radicals, and hydroxyl radicals generated by the action of a catalyst on methanol gas are not corrosive or persistent. Deterioration can be prevented. Furthermore, since the process gas has little influence on the human body and biological system, the burden on the environment is small even if it is sprayed directly into the atmosphere.
  • the invention of claim 3 is characterized in that the organic compound is adsorbed on a porous body for decontamination.
  • the invention of claim 4 is characterized in that the organic compound is an organic phosphorus compound or a chlorine compound.
  • the gaseous organic compound diffused in the atmosphere is efficiently and simply treated by treatment at the diffusion site in the environment of the diffusion site of the gaseous organic compound. Can be decontaminated.
  • the decontamination method according to the present invention is a method for decontamination by exposing an organic compound to a processing gas at room temperature.
  • Decontamination refers to the chemical or physical decomposition or removal of the causative agent.
  • a gas containing radical species generated by causing a catalyst to act on methanol gas is used as the processing gas.
  • the radical species generated by such a reaction include a hydroxylmethyl radical, a hydroperoxy radical, a hydrogen radical, and a hydroxyl radical. These radical species are considered to exhibit organic compound resolution.
  • the processing gas may further contain an active species derived from methanol that is not a radical species, such as formaldehyde.
  • the method of exposing the processing gas is, for example, a method of spraying the processing gas in a predetermined area at room temperature.
  • the normal temperature means a room temperature in the case of indoors and an outside temperature in the case of outdoors, and means a natural environment temperature in which the temperature of the processing environment is not artificially adjusted.
  • the organic compound to be decontaminated may be a liquid organic compound or a gaseous organic compound. It may be a highly volatile organic compound that diffuses into the atmosphere.
  • the decontamination method according to the present invention is effective for decontamination of an organic phosphorus compound or a chlorine compound.
  • the organic phosphorus compounds include V agent (VE gas, VG gas, VM gas, VX gas) and G agent (tabun, sarin, soman, ethylsaline, cyclosaline).
  • examples of the chlorine-based compound include leucite, mustard gas, and ethyldichloroarsine.
  • decontamination may be performed by adsorbing an organic compound to the porous body.
  • the porous body is a porous material having physical adsorption ability, and examples thereof include activated carbon, zeolite, and mesoporous silica.
  • the organic compound is adsorbed and fixed to the porous body, and then the processing gas is exposed to the porous body to decontaminate the organic compound.
  • FIG. 1 the appearance of the processing gas generator 1 according to the first embodiment used in the present invention is provided with a processing gas supply pipe 2 on the side of the apparatus, and the concentration of the processing gas on the front of the apparatus.
  • Various operating elements 3 and a status indicator 4 are provided for setting the temperature, processing time, processing gas flow rate, and the like.
  • the processing gas generator 1 includes a processing gas generator 10 and a gas transport system 20 that supplies the processing gas generated by the processing gas generator 10 to a processing target area. And a controller 30.
  • the controller 30 has a function of controlling operations of the processing gas generator 10 and the gas transport system 20.
  • the process gas generator 10 includes a vaporization chamber 12 to which methanol is supplied from a methanol supply source (not shown) through a transfer pipe 11, and a first temperature for heating the vaporization chamber 12 from the surroundings.
  • a regulator 13 a substantially cylindrical catalyst tank 14 connected above the vaporization chamber 12, and a second temperature regulator 15 for heating the catalyst tank 14 from the surroundings are provided.
  • the catalyst tank 14 is filled with the granulated catalyst 16.
  • platinum, copper, aluminum, carbon, or a mixture thereof is used.
  • a predetermined amount of methanol is supplied into the vaporization chamber 12.
  • the methanol supplied to the vaporization chamber 12 is vaporized by heating and supplied to the catalyst tank 14.
  • a radicalization catalytic reaction is caused by the action of a catalyst on methanol gas, and a processing gas containing various radical species such as hydroxylmethyl radical, hydroperoxy radical, hydrogen radical, and hydroxyl radical is generated.
  • the amount of process gas generated depends on the amount of methanol vaporized in the vaporization chamber 12, the amount of methanol gas supplied to the catalyst tank 14, the heating temperature of the catalyst tank 14, and the like.
  • the gas transfer system 20 adjusts the humidity of the process gas to be discharged and the intake pump 21 for process gas transfer that discharges the outside air or the process gas (process gas or a mixed gas of the process gas and the outside air) from the process gas supply pipe 2. And a temperature controller 23 for adjusting the temperature of the discharged processing gas.
  • the intake pump 21, the humidity controller 22, and the temperature controller 23 are controlled by a controller 30.
  • the controller 30 controls the processing gas generator 10 to control the concentration of the processing gas to be discharged within a predetermined range, and controls the humidity controller 22 and the temperature controller 23 to discharge the processing gas.
  • the humidity and temperature are controlled within a predetermined range.
  • a processing gas generation device 1 ′ provided with a gas discharge system 40 for discharging exhaust gas after further decomposing the organic compound from the processing target area may be used.
  • the appearance of the processing gas generator 1 ′ according to the second embodiment includes a processing gas supply pipe 2 and an exhaust gas discharge pipe 5 on the side surface of the apparatus, and the concentration of the processing gas on the front of the apparatus.
  • Various operation elements 3 for setting temperature, processing time, processing gas flow rate, and the like and a status indicator 4 are provided.
  • This processing gas generator 1 ' is effective when the processing target area is a closed space.
  • symbol is attached
  • the processing gas generator 1 ′ includes a processing gas generator 10, a gas transport system 20 that supplies a processing gas generated by the processing gas generator 10 to a processing target area, a controller 30, and the like. And a gas discharge system 40.
  • the gas exhaust system 40 includes an exhaust gas treatment device 41 provided in the processing gas generator, an exhaust pump 42, and a recirculation air passage 43.
  • the exhaust pump 42 When the exhaust pump 42 is driven, the exhaust gas after the decomposition treatment is sucked into the exhaust gas discharge pipe 5 from the area to be treated, and after being inactivated by the exhaust gas treatment device 41, is discharged from the discharge side of the exhaust pump 42.
  • the inactivated exhaust gas discharged from the exhaust pump 42 is discharged to the outside of the processing gas generator 1 ′, or the reflux air connecting the exhaust port side of the exhaust pump 42 and the intake port side of the intake pump 21.
  • the air is supplied to the intake pump 21 through the passage 43.
  • the exhaust gas treatment device 41 and the exhaust pump 42 are controlled by the controller 30 in the same manner as the processing gas generator 10, the intake pump 21, the humidity controller 22, and the temperature controller 23.
  • the gas conveyance system 20 of the process gas generators 1 and 1 ′ includes the humidity controller 22 and the temperature controller 23, the process to be supplied to the processing target area.
  • the humidity controller 22 and the temperature controller 23 may not be provided.
  • the processing gas generator 1 ′ When decontaminating the organic compound gas that is a pollutant, first, the processing gas generator 1 ′ is carried near the structure 50 having the organic compound gas generation source. At this time, a chemical indicator for confirming the organic compound gas decontamination status is appropriately disposed at a predetermined location inside the structure 50 so that the entire area inside the structure 50 becomes a processing target area.
  • the installation position of the processing gas generator 1 ′ is preferably a place where an operator can easily see the chemical indicator.
  • the tip of the processing gas supply pipe 2 and the tip of the exhaust gas discharge pipe 5 are inserted into the structure 50 from an appropriate gap 51 of the structure 50.
  • a tubular member 53 such as a rubber tube or a metal tube is appropriately connected to the processing gas supply pipe 2 and the exhaust gas discharge pipe 5.
  • a blocking member 52 such as a tape or a filler is provided in the gap of the structure 50 including the gap 51 into which the processing gas supply pipe 2 and the exhaust gas discharge pipe 5 are inserted.
  • a tape is used as the closing member 52 to cover the gap 51 and the gap of the communication port.
  • the processing target area may not be sealed and some air gaps may be left.
  • the worker operates the processing gas generator 1 ′ in the organic compound decomposition processing mode using the operator 3. That is, the processing gas is supplied into the structure 50 that is the processing target area, and the organic compound gas is decontaminated at room temperature.
  • the intake pump 21 and the processing gas generator 10 are driven and controlled by the controller 30, whereby the processing gas is supplied to the processing target area at a predetermined concentration and a predetermined flow rate.
  • the humidity controller 22 and the temperature controller 23 may be operated as necessary, and the humidity and temperature of the processing gas may be adjusted as appropriate under the control of the controller 30.
  • a heating device may be carried into the processing target area, and after adjusting the temperature in the processing target area, the processing gas may be supplied to decontaminate the organic compound gas.
  • the operation of the generator 1 ′ is switched from the organic compound decomposition treatment mode to the exhaust gas discharge mode. Thereby, discharge of exhaust gas is started.
  • the processing gas generator 10 is stopped, and the intake pump 21 and the exhaust pump 42 are driven and controlled by the controller 30 to exhaust the exhaust gas in the processing target area.
  • the exhaust gas exhausted from the structure 50 that is the area to be processed is processed by the exhaust gas processor 41, and the processed exhaust gas is introduced into the intake pump via the exhaust pump 42 and supplied to the structure 50 again.
  • the processing gas concentration in the processing target area is reduced to a predetermined value by repeating the gas circulation process in which the exhaust gas in the processing target area is processed by the exhaust gas processing device 41 and then supplied again to the processing target area for a predetermined time.
  • the operator 3 stops the operation of the processing gas generation device 1 ′ in the exhaust gas discharge mode.
  • the worker After completion of the above series of operations, the worker removes the processing gas supply pipe 2 and the exhaust gas discharge pipe 5 from the structure 50 that was the processing target area, and removes the closing member 52 that has filled the gap in the structure 50. .
  • the processing gas generation device 1 ′ according to the second embodiment is used in the closed space, but instead, the processing gas generation device 1 according to the first embodiment may be used.
  • the intake pump 21 of the processing gas generator 1 is configured so as to be able to perform processing gas supply to the closed space and exhaust gas exhaust (repetition of exhaust gas exhaust or exhaust gas exhaust and outside air supply) and control. Under the control of the vessel 30, the intake pump 21 may be caused to exhaust not only the processing gas but also the exhaust gas.
  • the generation source of the organic compound gas exists in the closed space called the structure 50, and the organic compound gas is removed from the closed space using the processing gas generator 1 'according to the second embodiment.
  • the processing gas generation according to the first embodiment is performed instead of the processing gas generation device 1 ′ according to the second embodiment.
  • the apparatus 1 may be used to decontaminate organic compound gas that diffuses into the open space. That is, the worker appropriately arranges the chemical indicator in the processing target area where the organic compound gas is detected, and operates the processing gas generator 1 in the organic compound decomposition processing mode until the chemical indicator drops to a predetermined value. Supply process gas. When the organic compound gas decreases to a predetermined value, the operation of the processing gas generator 1 is stopped. At this time, the exhaust gas after decontamination of the organic compound gas is diffused into the outside air.
  • the method according to the present invention As described above, if the method according to the present invention is used, it is only necessary to directly expose the processing gas to the released processing object, so that it is compared with the conventional method using ozone, a heating furnace or a photolysis catalyst.
  • the treatment process can be greatly simplified, and the decontamination of organic compounds can be carried out promptly in any natural environment.
  • hydroxylmethyl radical, hydroperoxy radical, hydrogen radical, hydroxyl radical generated by causing a catalyst to act on methanol gas is used as the processing gas, and the processing gas is corrosive. Since there is no persistence, the decontamination apparatus is hardly deteriorated and the maintenance of the apparatus is simple.
  • all objects such as personnel decontamination, decontamination of equipment such as weapons and vehicles, regional decontamination of roads, facilities decontamination of buildings and subways, and precision equipment decontamination Decontamination is possible.
  • the processing gas was exposed in a state where the organic compound gas was diffused in the air.
  • a porous adsorbent such as activated carbon was disposed in the area to be treated, and the organic compound was placed on the porous adsorbent.
  • the organic compound gas may be decontaminated by exposing the porous adsorbent to a processing gas.
  • the organic compound gas is decontaminated.
  • the liquid organic compound can be decontaminated similarly to the organic compound gas by exposing the liquid organic compound to the treatment gas.
  • Examples of the decontamination method according to the present invention are shown below. Here, the case where it applies to the decontamination of sarin, mustard gas, and VX gas is illustrated.
  • Gas collection tube TENAX collection tube (manufactured by GL Sciences)
  • Processing gas generator Methanol radical gas (MR) generator (manufactured by Wing Turf)
  • Exposure conditions temperature 20 °C, humidity 90%
  • the gas sampling device includes a processing target gas system for ventilating a sarin-containing gas formed by a rubber tube (inner diameter: 3.0 mm), and methanol radical gas (MR) via a Y-type joint inserted into the processing target gas system.
  • a processing target gas system for ventilating a sarin-containing gas formed by a rubber tube (inner diameter: 3.0 mm), and methanol radical gas (MR) via a Y-type joint inserted into the processing target gas system.
  • MR methanol radical gas
  • a sarin gas generator was connected to the upstream end of the rubber tube forming the gas system to be treated.
  • the sarin gas generating device generates sarin gas by bringing an air stream formed by driving an intake pump of the gas sampling device into contact with liquid sarin.
  • a processing gas supply pipe of the MR generator was connected to the upstream end of the rubber tube forming the MR system.
  • the suction pump of the gas sampling device was driven, and sarin gas was vented to the gas system to be treated so that the flow rate at a position upstream of the Y-type joint was 1 L / min.
  • the MR generator was operated and a gas of MR 1000 ppm was vented at a flow rate of 5 L / min.
  • the MR flowing through the MR system was supplied to the gas system to be treated in which sarin gas was passed through the Y-type joint.
  • the gas after MR addition was collected for 60 minutes with the TENAX collection tube provided in the downstream end of the process target gas system. The same operation was performed for mustard gas and VX gas.
  • the method of the present invention can be efficiently decontaminated under the in-situ environmental conditions in which the organic compound is present, so that it is particularly effective for purifying the atmosphere in which the gaseous organic compound has diffused.
  • the method of the present invention can be used effectively not only for the atmosphere but also for the purification of contaminated soil and contaminated water because the treatment gas may be directly exposed to the organic compound that is a contaminant.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Analytical Chemistry (AREA)
  • Emergency Management (AREA)
  • Toxicology (AREA)
  • Business, Economics & Management (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)
  • Treating Waste Gases (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Catalysts (AREA)

Abstract

 有機化合物、特に、大気中に拡散したガス状の有機化合物を、原位置の環境条件のもと、原位置における処理により効率的かつ簡易に除染する方法を提供する。 有機化合物を処理ガスに常温で暴露することにより除染する方法であって、前記処理ガスが、メタノールガスに触媒を作用させることにより発生するヒドロキシルメチルラジカル、ヒドロペルオキシラジカル、水素ラジカル、ヒドロキシルラジカルを含む。

Description

有機化合物の除染方法
 本発明は、有機化合物、特に、化学兵器等の毒性化合物を除染する方法に関する。
 所定の発生源から放出される有機化合物には、一般毒性や発癌性など人体に影響を与えるものがある。特に、化学兵器として使用される毒性化合物は、人体への影響力が大きい。そこで、かかる毒性化合物汚染からの環境修復が大きな課題となっている。従来、このような毒性化合物の除染方法として、オゾンと過酸化水素の混合ガスを用いる方法(特許文献1)、毒性化合物を燃焼により分解し、発生した酸性の有毒ガスを水酸化ナトリウム水溶液により中和する方法(特許文献2)、気密状態の加熱炉内で加熱することにより毒性化合物を蒸発除去する方法(特許文献3)、光触媒を含有する除染剤を散布した後に紫外線を含む光を照射することにより毒性化合物を分解する方法(特許文献4)がある。
 しかし、引用文献1のオゾンを用いる方法では、オゾンが腐食性を有しているため、処理装置の劣化が著しくメンテナンスが煩雑という問題がある。また、特許文献2、3では、毒性化合物を燃焼させるための加熱炉を有する大掛かりな装置が必要である。また、毒性化合物を燃焼させた後の分解物も有害であるため、さらに中和するという工程が必要であり、操作が煩雑である。一方、特許文献4では、除染剤の散布方法は簡易であるが、紫外線を含む光を照射しなければ毒性化合物の分解は進行せず、暗所下では分解できないという問題がある。
特開2012-024385号公報 特開2003-310792号公報 特開2005-199236号公報 特開2011-078902号公報
 本発明は、このような従来技術の事情に鑑みなされたものであって、放出された有機化合物を効率的かつ簡易に除染する方法、特に、大気中に拡散した気体状有機化合物を、該気体状有機化合物の拡散場所の環境下、該拡散場所にて処理することにより効率的かつ簡易に除染する方法を提供することを目的とする。
 上記目的を達成するため、請求項1の発明は、有機化合物を処理ガスに常温で暴露することにより除染する方法であって、前記処理ガスが、メタノールガスに触媒を作用させることにより発生するヒドロキシルメチルラジカル、ヒドロペルオキシラジカル、水素ラジカル、ヒドロキシルラジカルを含むことを特徴とする。
 この方法によれば、処理ガスを、処理対象物の存在する原位置の自然環境条件下にて該原位置において、前記処理対象物に暴露させることができる。すなわち、所定の発生源から放出された有機化合物を、該有機化合物の放出場所の環境条件下、該放出場所にて除染できるので、加熱炉や光分解触媒を使用する従来の方法と比較して、処理工程を大幅に簡素化でき、有機化合物の効率的な除染が可能となる。また、メタノールガスに触媒を作用させることにより発生するヒドロキシルメチルラジカル、ヒドロペルオキシラジカル、水素ラジカル、ヒドロキシルラジカルには腐食性、残留性がないため、除染装置の劣化が少なく、装置のメンテナンスが簡易である。さらに、これらのラジカルを含む処理ガスは、オゾンと比較して中毒性が低いので、作業員の安全を確保することができる。
 また、処理ガスを有機化合物に暴露させればよいので、有機化合物が気体状であっても液体状であっても除染できる。さらに、有機化合物を除染するにあたり、有機化合物への光照射や、除染環境の温度調節を施す必要はないので、あらゆる自然環境下にて、即時に有機化合物の除染を実施できる。
 また、処理ガスには複数のラジカルが含まれているので、多様な有機化合物を分解できる。さらに、化合物を構成する分子を複数位置で分解することが可能である。
 請求項2の発明は、前記有機化合物が、大気中に拡散した気体であることを特徴とする。
 以上の態様では、処理ガスを有機化合物ガスで汚染された大気中に直接散布すれば、有機化合物ガスの除染ができるので、揮発性の高い有機化合物が大気中に拡散しても迅速な汚染処理が可能である。また、メタノールガスに触媒を作用させることにより発生するヒドロキシルメチルラジカル、ヒドロペルオキシラジカル、水素ラジカル、ヒドロキシルラジカルには腐食性、残留性がないので、大気中に直接散布しても周囲の構造物の劣化を防止できる。さらに、前記処理ガスは人体や生物系への影響が小さいので、大気中に直接散布しても環境に与える負荷は小さい。
 請求項3の発明は、前記有機化合物を多孔質体に吸着させて除染することを特徴とする。
 以上の態様では、有機化合物を多孔質体に吸着させるので、除染の信頼性が大幅に向上する。
 請求項4の発明は、前記有機化合物が、有機リン系化合物又は塩素系化合物であることを特徴とする。
 本発明の有機化合物の除染方法によれば、大気中に拡散した気体状有機化合物を、該気体状有機化合物の拡散場所の環境下、該拡散場所にて処理することにより効率的かつ簡易に除染することができる。
本発明に係る除染方法にて使用する処理ガス発生装置の第1実施形態を示す外観斜視図である。 第1実施形態に係る処理ガス発生装置の構成図である。 第1実施形態に係る処理ガス発生器の構成図である。 本発明に係る除染方法にて使用する処理ガス発生装置の第2実施形態を示す外観斜視図である。 第2実施形態に係る処理ガス発生装置の構成図である。 本発明の使用例を示す構成図である。 本発明の実施例の結果を示す図である。
 本発明に係る除染方法は、有機化合物を処理ガスに常温で暴露することにより除染する方法である。除染とは、汚染の原因物質を化学的または物理的に分解するか、除去することをいう。
 本発明では、処理ガスとして、メタノールガスに触媒を作用させることにより発生するラジカル種を含むガスが使用される。かかる反応によって生じるラジカル種は、ヒドロキシルメチルラジカル、ヒドロペルオキシラジカル、水素ラジカル、ヒドロキシルラジカルを含む。これらのラジカル種が、有機化合物分解能を発揮すると考えられる。なお、処理ガスにはさらに、ラジカル種ではないメタノール由来の活性種、例えばホルムアルデヒドが含まれていてもよい。
 処理ガスを暴露する方法は、例えば、処理ガスを所定の区域に常温にて散布する方法である。なお、常温とは、屋内の場合は室温、屋外の場合は外気温のことであり、処理環境の温度を人為的に調整していない自然環境温度を意味する。
 除染される有機化合物は、液体状有機化合物でもよく、気体状有機化合物でもよい。揮発性の高い有機化合物であって、大気中に拡散する化合物であってもよい。本発明に係る除染方法は、具体的には、有機リン系化合物又は塩素系化合物の除染に有効である。有機リン系化合物として、例えば、V剤(VEガス、VGガス、VMガス、VXガス)、G剤(タブン、サリン、ソマン、エチルサリン、シクロサリン)が挙げられる。また、塩素系化合物として、例えば、ルイサイト、マスタードガス、エチルジクロロアルシンが挙げられる。
 また、有機化合物を多孔質体に吸着させて除染してもよい。多孔質体とは、物理吸着能を有する多孔質材料であり、例えば、活性炭、ゼオライト、メソポーラスシリカなどがある。この方法では、有機化合物を多孔質体に吸着・固定させてから、処理ガスを多孔質体に暴露して、有機化合物を除染する。
 以下では、本実施形態に係る除染方法を実施するための好適な装置の例を、図面を参照しつつ詳細に説明する。
(第1実施形態)
 本発明にて使用する第1実施形態に係る処理ガス発生装置1の外観は、図1に示すように、装置側面部に処理ガス供給管2を備え、装置前面部には、処理ガスの濃度、温度、処理時間、処理ガス流量等を設定するための各種操作子3や状態表示器4が設けられている。
 第1実施形態に係る処理ガス発生装置1は、図2に示すように、処理ガス発生器10と、この処理ガス発生器10で発生させた処理ガスを処理対象区域に供給するガス搬送系20と、制御器30とを備えている。制御器30は、処理ガス発生器10およびガス搬送系20の動作を制御する機能を備えている。
 上記処理ガス発生器10には、図3に示すように、メタノール供給源(図示せず)から搬送管11を通してメタノールが供給される気化室12と、気化室12を周囲から加熱する第1温度調節器13と、気化室12の上方に接続された略円筒状の触媒槽14と、触媒槽14を周囲から加熱する第2温度調節器15とが設けられている。触媒槽14には、粒状化した触媒16が充填されている。触媒16には、白金、銅、アルミニウム、炭素またはこれらの混合物が用いられる。
 処理ガス発生器10にて処理ガスを発生させる際、まず気化室12内に所定量のメタノールが供給される。気化室12に供給されたメタノールは、加熱により気化されて触媒槽14に供給される。触媒槽14内では、メタノールガスに触媒が作用することによりラジカル化触媒反応が起き、ヒドロキシルメチルラジカル、ヒドロペルオキシラジカル、水素ラジカル、ヒドロキシルラジカル等の各種ラジカル種を含む処理ガスが発生する。処理ガスの発生量は、気化室12におけるメタノールの気化量、触媒槽14に供給されるメタノールガスの量、触媒槽14の加熱温度等に依存する。
 ガス搬送系20は、外気または処理ガス(処理ガスまたは処理ガスと外気との混合気体)を処理ガス供給管2から排出させる処理ガス搬送用の吸気ポンプ21と、排出する処理ガスの湿度を調節する湿度調節器22と、排出する処理ガスの温度を調節する温度調節器23とを有する。吸気ポンプ21、湿度調節器22及び温度調節器23は、制御器30により制御されている。
 制御器30は、処理ガス発生器10を制御することにより、排出する処理ガスの濃度を所定の範囲に制御しつつ、湿度調節器22、温度調節器23を制御することにより、排出する処理ガスの湿度、温度を所定の範囲に制御する。
(第2実施形態)
 本発明では、上記した処理ガス発生装置1に代えて、さらに処理対象区域から有機化合物を分解処理した後の排ガスを排出するガス排出系40を設けた処理ガス発生装置1´を用いてもよい。この第2実施形態に係る処理ガス発生装置1´の外観は、図4に示すように、装置側面部に処理ガス供給管2と排ガス排出管5とを備え、装置前面部に処理ガスの濃度、温度、処理時間、処理ガス流量等を設定するための各種操作子3や状態表示器4を備えている。この処理ガス発生装置1´は、処理対象区域が閉鎖空間のときに効果的である。なお、第1実施形態に係る処理ガス発生装置1と同一の構成には同じ符号を付す。
 処理ガス発生装置1´は、図5に示すように、処理ガス発生器10と、処理ガス発生器10で発生させた処理ガスを処理対象区域に供給するガス搬送系20と、制御器30と、ガス排出系40とを備えている。ガス排出系40は、処理ガス発生装置内部に設けられた排ガス処理器41と、排気ポンプ42と、還流空気通路43とを備えている。
 排気ポンプ42を駆動させると、分解処理後の排ガスは処理対象区域から排ガス排出管5へと吸気され、排ガス処理器41にて不活性化処理後、排気ポンプ42の排出側から排出される。排気ポンプ42から排出された不活性化処理後の排ガスは、処理ガス発生装置1´の外部に放出されるか、排気ポンプ42の排気口側と吸気ポンプ21の吸気口側をつないだ還流空気通路43を介して吸気ポンプ21に供給される。
 排ガス処理器41及び排気ポンプ42は、処理ガス発生器10、吸気ポンプ21、湿度調節器22及び温度調節器23と同じく、制御器30により制御されている。
 なお、上記第1及び第2実施形態に係る処理ガス発生装置1、1´のガス搬送系20は、湿度調節器22と温度調節器23とを備えていたが、処理対象区域に供給する処理ガスの温度及び湿度を所定の範囲に制御する必要がない場合には、湿度調節器22、温度調節器23を設けなくてもよい。
 次に、上記処理ガス発生装置1、1´による有機化合物除染方法について説明する。有機化合物除染における処理対象区域での作業、処理ガス発生装置1、1´の操作は、専門の作業員が行う。ここでは、第2実施形態に係る処理ガス発生装置1´を用いて、工場、処分場等の閉鎖空間内において、所定の発生源から拡散した有機化合物ガスの除染方法を例に、図6を用いて説明する。
 汚染物質である有機化合物ガスの除染に際し、まず、有機化合物ガス発生源を有する構造物50近くに処理ガス発生装置1´を搬入する。このとき、構造物50の内部全域が処理対象区域となるように、有機化合物ガス除染状況を確認するためのケミカルインジケータを構造物50内部の所定箇所に適宜配置する。処理ガス発生装置1´の設置位置は、作業員がケミカルインジケータを視認しやすい場所とするのが好ましい。次に、前記構造物50の適当な空隙部51から処理ガス供給管2の先端と排ガス排出管5の先端を構造物50内部に向けて挿入する。このとき、処理ガス発生装置1´と構造物50の空隙部51との間隔に距離があって処理ガス供給管2と排ガス排出管5の先端が構造物50内部に到達しない場合には、図6に示すように、処理ガス供給管2と排ガス排出管5に適宜ゴムチューブ、金属管などの管状部材53を接続する。
 その後、有機化合物の除染効率を向上させるために、処理ガス供給管2と排ガス排出管5を挿入した空隙部51を含め、構造物50の空隙にテープや充填材等の閉塞用部材52を施して空隙を埋める。図6では、閉塞用部材52としてテープを用いて、空隙部51及び通用口の空隙を目張りしている。ただし、処理ガスの供給により構造物50内部の気圧が過度に高くなるのを防止するために、処理対象区域は密閉せずに若干の空隙は残しておいてもよい。
 次に、作業員は、操作子3にて処理ガス発生装置1´を有機化合物分解処理モードにして運転させる。すなわち、処理ガスが処理対象区域である構造物50内部に供給されて、有機化合物ガスが室温にて除染されていく。このとき、排気ポンプ42は停止させつつ、吸気ポンプ21、処理ガス発生器10が制御器30により駆動制御されることにより、所定濃度、所定流量にて処理ガスが処理対象区域に供給される。
 有機化合物ガスの除染にあたり、必要に応じて、湿度調節器22、温度調節器23を稼動させて、制御器30による制御のもと処理ガスの湿度、温度を適宜調節してもよい。また、処理対象区域内に加熱装置を搬入して、処理対象区域内の温度調節を行ったうえで処理ガスを供給し、有機化合物ガスの除染を行ってもよい。
 そして、所定時間経過後、ケミカルインジケータにて構造物50内部に拡散した有機化合物ガスの分解及び発生源からの有機化合物の放出停止が確認できたら、作業員は、操作子3にて、処理ガス発生装置1´の運転を有機化合物分解処理モードから排ガス排出モードに切り替える。これにより、排ガスの排出が開始される。つまり、処理ガス発生器10を停止させ、吸気ポンプ21、排気ポンプ42が制御器30により駆動制御されることにより処理対象区域内の排ガスを排気する。処理対象区域である構造物50内から排気された排ガスは、排ガス処理器41で処理され、処理された排ガスは排気ポンプ42を介して吸気ポンプに導入されて、再び構造物50内に供給される。このように、処理対象区域内の排ガスを排ガス処理器41で処理してから処理対象区域に再度供給するガス循環工程を所定時間繰り返すことで、処理対象区域内の処理ガス濃度を所定値まで低減させる。作業員は、所定値まで処理ガス濃度が低下したことを確認したら、操作子3にて、処理ガス発生装置1´の排ガス排出モードの運転を停止させる。
 上記一連の作業終了後、作業員は、処理ガス供給管2と排ガス排出管5を処理対象区域であった構造物50から外し、構造物50の空隙を埋めていた閉塞用部材52を除去する。
 上記の有機化合物除染方法では、閉鎖空間に第2実施形態に係る処理ガス発生装置1´を用いたが、これに代えて、第1実施形態に係る処理ガス発生装置1を用いてもよい。すなわち、処理ガス発生装置1の吸気ポンプ21が、閉鎖空間への処理ガスの供給と排ガスの排気(排ガスの排気または排ガスの排気と外気の供給との繰り返し)とを実施できるよう構成し、制御器30による制御のもと吸気ポンプ21に処理ガスの吸気だけでなく排ガスの排気も行わせてもよい。
 また、上記の有機化合物除染方法では、有機化合物ガスの発生源が構造物50という閉鎖空間に存在し、第2実施形態に係る処理ガス発生装置1´を用いて有機化合物ガスを該閉鎖空間において除染したが、有機化合物ガス発生源が、屋外等、開放空間に存在する場合には、第2実施形態に係る処理ガス発生装置1´に代えて、第1実施形態に係る処理ガス発生装置1を用いて開放空間に拡散する有機化合物ガスを除染してもよい。すなわち、作業員は、有機化合物ガスが検出される処理対象区域にケミカルインジケータを適宜配置し、ケミカルインジケータが所定値に低下するまで処理ガス発生装置1を有機化合物分解処理モードにて運転させて、処理ガスを供給する。有機化合物ガスが所定値まで低下したら処理ガス発生装置1の運転を停止させる。このとき、有機化合物ガスの除染後の排ガスは、外気中に拡散される。
 上記のように、本発明に係る方法を使用すれば、放出された処理対象物に処理ガスを直接暴露させればよいので、オゾンや加熱炉や光分解触媒を使用する従来法と比較して、処理工程が大幅に簡素化でき、また、あらゆる自然環境下にて有機化合物の除染を速やかに実施できる。
 また、本発明に係る方法では、処理ガスとして、メタノールガスに触媒を作用させることにより発生するヒドロキシルメチルラジカル、ヒドロペルオキシラジカル、水素ラジカル、ヒドロキシルラジカルを使用しており、かかる処理ガスには腐食性、残留性がないため、除染装置の劣化が少なく、装置のメンテナンスが簡易である。また、処理ガスの安全性が高いため、人員除染、武器・車両等の装備品除染、道路等の地域除染、ビル・地下鉄等の施設除染、精密器材除染等のあらゆる対象物への除染が可能である。
 なお、上記の除染方法では、有機化合物ガスが空気中に拡散した状態で処理ガスを暴露させたが、処理対象区域に活性炭などの多孔質吸着体を配置し、多孔質吸着体に有機化合物ガスを吸着させてから、該多孔質吸着体を処理ガスに暴露させて有機化合物ガスを除染してもよい。また、上記の除染方法では、有機化合物ガスを除染したが、液体状有機化合物を処理ガスに暴露させることで、有機化合物ガスと同様に、液体状有機化合物を除染できる。
 以下に、本発明に係る除染方法の実施例を示す。ここでは、サリン、マスタードガス、VXガスの除染に適用した場合を例示する。
・ガス捕集管:TENAX捕集管(GLサイエンス(株)製)
・処理ガス発生装置:メタノールラジカルガス(MR)発生装置((株)ウイングターフ社製)
・暴露条件:温度20℃、湿度90%
 ガスサンプリング装置は、ゴムチューブ(内径3.0mm)にて形成したサリン含有ガスを通気させる処理対象ガス系と、前記処理対象ガス系に挿入されたY型継手を介してメタノールラジカルガス(MR)を処理対象ガス系に導入する、ゴムチューブ(内径3.0mm)にて形成したMR系と、処理対象ガス系の下流側末端に設けたTENAX捕集管と、TENAX捕集管の下流に設けた吸気ポンプと、を有する構成とした。このとき、Y型継手とTENAX捕集管との間のゴムチューブ(内径3.0mm)の長さは30cmとした。
 そして、処理対象ガス系を形成するゴムチューブの上流側末端にサリンガス発生装置を接続した。サリンガス発生装置とは、前記ガスサンプリング装置の吸気ポンプを駆動して形成された空気の気流を液体状のサリンに接触させることで、サリンガスを発生させるものである。また、MR系を形成するゴムチューブの上流側末端には、MR発生装置の処理ガス供給管を接続した。
 ガスサンプリング装置の吸気ポンプを駆動させて、処理対象ガス系に、Y型継手よりも上流側の位置における流速が1L/minとなるようサリンガスを通気した。MR系には、MR発生装置を運転させてMR1000ppmのガスを流速5L/minにて通気した。MR系を流れるMRは、Y型継手を介してサリンガスが通気した処理対象ガス系に供給した。そして、処理対象ガス系の下流側末端に設けたTENAX捕集管にて、MR添加後のガスを60分間捕集した。マスタードガス、VXガスについても、同様の操作を行った。
 次に、それぞれの試料について液状濃度と気状濃度を測定した。測定結果を図7に示す。
 図7に示すように、MRガスを供給することにより、サリン、マスタードガス、VXガスの液状濃度が減少していくことが確認された。特に、サリンについては、供給開始30分でほぼ分解し、60分で完全に分解することが確認された。
 本発明の方法は、有機化合物の存在する原位置の環境条件のもと、該原位置において、効率的に有機化合物を除染できるので、特に、ガス状有機化合物が拡散した大気の浄化に有効に利用できる。また、本発明の方法は、汚染物質である有機化合物に直接処理ガスを暴露させればよいので、大気だけではなく汚染土壌及び汚染水の浄化にも有効に利用できる。
1、1´    処理ガス発生装置
10      処理ガス発生器
20      ガス搬送系
30      制御器
40      ガス排出系

Claims (4)

  1.  有機化合物を処理ガスに常温で暴露することにより除染する方法であって、前記処理ガスが、メタノールガスに触媒を作用させることにより発生するヒドロキシルメチルラジカル、ヒドロペルオキシラジカル、水素ラジカル、ヒドロキシルラジカルを含むことを特徴とする、除染方法。
  2.  前記有機化合物が、大気中に拡散した気体であることを特徴とする、請求項1に記載の除染方法。
  3.  前記有機化合物を多孔質体に吸着させて除染することを特徴とする、請求項1又は2に記載の除染方法。
  4.  前記有機化合物が、有機リン系化合物又は塩素系化合物であることを特徴とする、請求項1から3のいずれか1項に記載の除染方法。
PCT/JP2013/057452 2012-03-16 2013-03-15 有機化合物の除染方法 WO2013137452A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP13761084.6A EP2818208B1 (en) 2012-03-16 2013-03-15 Decontamination method for organic compound
CN201380024548.3A CN104411371B (zh) 2012-03-16 2013-03-15 有机化合物的清除污染方法
US14/487,926 US9452307B2 (en) 2012-03-16 2014-09-16 Decontamination method for organic compound

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-060394 2012-03-16
JP2012060394A JP5721107B2 (ja) 2012-03-16 2012-03-16 有機化合物の除染方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/487,926 Continuation US9452307B2 (en) 2012-03-16 2014-09-16 Decontamination method for organic compound

Publications (1)

Publication Number Publication Date
WO2013137452A1 true WO2013137452A1 (ja) 2013-09-19

Family

ID=49161347

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/057452 WO2013137452A1 (ja) 2012-03-16 2013-03-15 有機化合物の除染方法

Country Status (5)

Country Link
US (1) US9452307B2 (ja)
EP (1) EP2818208B1 (ja)
JP (1) JP5721107B2 (ja)
CN (1) CN104411371B (ja)
WO (1) WO2013137452A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021140304A1 (fr) 2020-01-10 2021-07-15 Prevor International Système de décontamination chimique de gaz corrosifs

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1133569A (ja) * 1997-07-15 1999-02-09 Ebara Corp 有機塩素化合物を含有する汚水の処理方法
JP2001259073A (ja) * 2000-03-23 2001-09-25 Toshiba Corp 有害有機塩素化合物の除去方法及びその装置
JP2003220375A (ja) * 2002-01-29 2003-08-05 Nagasaki Ryoden Tecnica Kk 有機塩素化合物の分解方法
JP2003310792A (ja) 2002-04-25 2003-11-05 Mitsubishi Heavy Ind Ltd 毒性化合物処理装置及び処理方法
JP2004261631A (ja) * 2002-02-04 2004-09-24 Idemitsu Kosan Co Ltd 難分解性物質の分解方法、並びにこれを用いた吸着剤の再生方法、排水の処理方法
JP2005199236A (ja) 2004-01-19 2005-07-28 Kobe Steel Ltd 化学剤汚染土壌の無害化処理方法およびその装置
JP2006167359A (ja) * 2004-12-20 2006-06-29 Sharp Corp 有害ガス除去フィルタおよび空気調和機
JP2009255078A (ja) * 2008-03-28 2009-11-05 Mitsui Eng & Shipbuild Co Ltd 有機リン系農薬含有水の処理装置および処理方法
JP2010051692A (ja) * 2008-08-29 2010-03-11 Wiz Systems Corp 滅菌ガス発生装置、その滅菌ガス発生装置に適用される触媒カートリッジ、並びに滅菌処理装置
JP2011041483A (ja) * 2009-08-19 2011-03-03 Wingturf Co Ltd 核酸分解剤および核酸分解法
JP2011078902A (ja) 2009-10-06 2011-04-21 National Institute Of Advanced Industrial Science & Technology 化学兵器剤の除染剤、除染方法および除染装置
JP2012024385A (ja) 2010-07-26 2012-02-09 Ihi Corp 有毒物質の除染装置及び除染方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4345104A (en) * 1981-06-30 1982-08-17 Union Carbide Corporation Process for the production of ethylene glycol
US5332563A (en) * 1988-10-24 1994-07-26 The Regents Of The University Of California Yellow phosphorus process to convert toxic chemicals to non-toxic products
US5236672A (en) * 1991-12-18 1993-08-17 The United States Of America As Represented By The United States Environmental Protection Agency Corona destruction of volatile organic compounds and toxics
CN1649647A (zh) * 2002-04-24 2005-08-03 斯特里斯公司 活性氧化蒸气处理系统和方法
JP2005111002A (ja) * 2003-10-08 2005-04-28 National Institute Of Advanced Industrial & Technology メタノール、エタノールまたはホルムアルデヒドに由来する活性種を含む処理ガスのインジケーター
CN101018570B (zh) * 2004-08-10 2011-05-04 生命媒介株式会社 杀菌方法及杀菌装置
CA2603560A1 (en) * 2007-09-21 2009-03-21 Marten Hebert Continuous flow water treatment devices and methods
US8242323B2 (en) * 2007-10-31 2012-08-14 Ravi Jain Detoxification of chemical agents
CN101838075A (zh) * 2009-03-16 2010-09-22 中国科学院生态环境研究中心 一种有效处理有机磷农药废水的工艺
CN101891200B (zh) * 2009-05-21 2012-12-05 江西赛维Ldk太阳能高科技有限公司 一种利用自由基的强氧化作用对硅粉中残留杂质进行处理的方法
JP2011033569A (ja) 2009-08-05 2011-02-17 Mitsubishi Electric Corp 配電盤用機器

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1133569A (ja) * 1997-07-15 1999-02-09 Ebara Corp 有機塩素化合物を含有する汚水の処理方法
JP2001259073A (ja) * 2000-03-23 2001-09-25 Toshiba Corp 有害有機塩素化合物の除去方法及びその装置
JP2003220375A (ja) * 2002-01-29 2003-08-05 Nagasaki Ryoden Tecnica Kk 有機塩素化合物の分解方法
JP2004261631A (ja) * 2002-02-04 2004-09-24 Idemitsu Kosan Co Ltd 難分解性物質の分解方法、並びにこれを用いた吸着剤の再生方法、排水の処理方法
JP2003310792A (ja) 2002-04-25 2003-11-05 Mitsubishi Heavy Ind Ltd 毒性化合物処理装置及び処理方法
JP2005199236A (ja) 2004-01-19 2005-07-28 Kobe Steel Ltd 化学剤汚染土壌の無害化処理方法およびその装置
JP2006167359A (ja) * 2004-12-20 2006-06-29 Sharp Corp 有害ガス除去フィルタおよび空気調和機
JP2009255078A (ja) * 2008-03-28 2009-11-05 Mitsui Eng & Shipbuild Co Ltd 有機リン系農薬含有水の処理装置および処理方法
JP2010051692A (ja) * 2008-08-29 2010-03-11 Wiz Systems Corp 滅菌ガス発生装置、その滅菌ガス発生装置に適用される触媒カートリッジ、並びに滅菌処理装置
JP2011041483A (ja) * 2009-08-19 2011-03-03 Wingturf Co Ltd 核酸分解剤および核酸分解法
JP2011078902A (ja) 2009-10-06 2011-04-21 National Institute Of Advanced Industrial Science & Technology 化学兵器剤の除染剤、除染方法および除染装置
JP2012024385A (ja) 2010-07-26 2012-02-09 Ihi Corp 有毒物質の除染装置及び除染方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2818208A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021140304A1 (fr) 2020-01-10 2021-07-15 Prevor International Système de décontamination chimique de gaz corrosifs
FR3106063A1 (fr) 2020-01-10 2021-07-16 Prevor International Système de décontamination chimique de gaz corrosifs
US11839850B2 (en) 2020-01-10 2023-12-12 Prevor International System for the chemical decontamination of corrosive gases

Also Published As

Publication number Publication date
JP2013192621A (ja) 2013-09-30
CN104411371A (zh) 2015-03-11
US20150005566A1 (en) 2015-01-01
EP2818208B1 (en) 2018-04-18
EP2818208A4 (en) 2015-11-04
JP5721107B2 (ja) 2015-05-20
EP2818208A1 (en) 2014-12-31
US9452307B2 (en) 2016-09-27
CN104411371B (zh) 2016-11-02

Similar Documents

Publication Publication Date Title
KR101206360B1 (ko) 화학 작용제 또는 생물학 작용제의 처리장치 및 방법
EP1500404B1 (en) Sterilisation with ozone, humidity and unsaturated compound
JP3461328B2 (ja) ガス処理装置及びその方法
US7045096B2 (en) Sterilization and detoxification of confined spaces
JP5735761B2 (ja) 有毒物質の除染装置
KR101033291B1 (ko) 살균기능을 겸하는 악취제거 탈취탑 및 이의 이용방법
JP2005528930A (ja) 二酸化塩素を燻蒸剤として使用する方法
JP4538452B2 (ja) 戦争兵器を中和するための活性化蒸着処理
US20050019210A1 (en) Parametric decontamination of bio-contaminated facities using chlorine dioxide gas
KR20110037876A (ko) 기체의 정화기구
JP2006524551A5 (ja)
CN1791442A (zh) 用于中和战剂的活化蒸汽处理
JP5721107B2 (ja) 有機化合物の除染方法
EP4209723A1 (en) Device for generating hydroxyl radicals
CN113766936A (zh) 气体处理装置以及气体处理方法
JP3384464B2 (ja) 揮発性有機塩素化合物の処理方法
JP5918590B2 (ja) 排ガス中のダイオキシン類分解処理方法及び処理装置
JP2010269032A (ja) 新規除染方法及び装置
JP2008253613A (ja) ポリ塩化ビフェニル又はダイオキシン類を処理する作業エリアの雰囲気浄化方法及び浄化システム
KR100966662B1 (ko) 새집증후군 제거장치 및 제거방법
KR101084371B1 (ko) 토양복원 공정상 발생되는 휘발성 유기화합물의 철함유 토양광물을 이용한 산화적 직접분해 제거방법
JPWO2014203319A1 (ja) 二酸化塩素ガス処理構造、二酸化塩素ガス処理装置、滅菌装置および環境浄化装置
KR101684295B1 (ko) 생화학무기 제독방법
JP2010279883A (ja) 揮発性有機化合物の浄化装置及びその浄化方法
JP2018019884A (ja) 過酸化水素ガスの分解除去方法および分解除去装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13761084

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013761084

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE