WO2021140304A1 - Système de décontamination chimique de gaz corrosifs - Google Patents

Système de décontamination chimique de gaz corrosifs Download PDF

Info

Publication number
WO2021140304A1
WO2021140304A1 PCT/FR2021/050029 FR2021050029W WO2021140304A1 WO 2021140304 A1 WO2021140304 A1 WO 2021140304A1 FR 2021050029 W FR2021050029 W FR 2021050029W WO 2021140304 A1 WO2021140304 A1 WO 2021140304A1
Authority
WO
WIPO (PCT)
Prior art keywords
pka
acid
composition
base
atmosphere
Prior art date
Application number
PCT/FR2021/050029
Other languages
English (en)
Inventor
Aurélien DUVAL
Joel Blomet
Marie Claude MEYER
Original Assignee
Prevor International
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Prevor International filed Critical Prevor International
Priority to US17/791,774 priority Critical patent/US11839850B2/en
Priority to AU2021206574A priority patent/AU2021206574A1/en
Priority to CA3164299A priority patent/CA3164299A1/fr
Priority to CN202180012921.8A priority patent/CN115087493A/zh
Priority to EP21704851.1A priority patent/EP4087673A1/fr
Priority to MX2022008541A priority patent/MX2022008541A/es
Priority to BR112022013502A priority patent/BR112022013502A2/pt
Publication of WO2021140304A1 publication Critical patent/WO2021140304A1/fr
Priority to US18/357,285 priority patent/US20230364556A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/06Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with moving adsorbents, e.g. rotating beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1493Selection of liquid materials for use as absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/54Nitrogen compounds
    • B01D53/58Ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/68Halogens or halogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/78Liquid phase processes with gas-liquid contact
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/81Solid phase processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/30Alkali metal compounds
    • B01D2251/304Alkali metal compounds of sodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/60Inorganic bases or salts
    • B01D2251/606Carbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/60Inorganic bases or salts
    • B01D2251/61Phosphates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/70Organic acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/80Organic bases or salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/90Chelants
    • B01D2251/902EDTA
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • B01D2252/20494Amino acids, their salts or derivatives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/20Halogens or halogen compounds
    • B01D2257/202Single element halogens
    • B01D2257/2022Bromine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/20Halogens or halogen compounds
    • B01D2257/204Inorganic halogen compounds
    • B01D2257/2042Hydrobromic acid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/20Halogens or halogen compounds
    • B01D2257/204Inorganic halogen compounds
    • B01D2257/2045Hydrochloric acid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/20Halogens or halogen compounds
    • B01D2257/204Inorganic halogen compounds
    • B01D2257/2047Hydrofluoric acid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/302Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/406Ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/06Polluted air

Definitions

  • the invention relates to the field of chemical decontamination of an atmosphere. More specifically, it relates to the use of a composition comprising an acid-base neutralizing agent to decontaminate an atmosphere contaminated with a corrosive gas.
  • the present invention also relates to a decontamination process comprising said composition.
  • decontamination systems based on spraying in the air a solution of ozone, peracetic acid (WO2018143186) or peroxide of dry hydrogen (WO2019133801) can be used.
  • chloro-oxidant solutions based on hypochlorite CIO ions or on hypochlorous acid HCIO have been developed for the decontamination of formaldehyde residues (WO2019150301).
  • gaseous ozone made it possible to decontaminate combinations of firefighters contaminated by carcinogenic products resulting from combustion during a fire (WO 2019113434).
  • polycyclic aromatic hydrocarbons such as benzo (a) pyrene
  • solutions or Liquid dispersions based on cerium salts in water have been developed (WO2019112571).
  • Physiological solutions based on complexed amphoteric agents have also been described for the decontamination of parts of the human or animal body contaminated by a corrosive or irritant product.
  • the present invention relates to the use of a composition comprising at least one acid-base neutralizing agent for decontaminating an atmosphere contaminated by a corrosive gas, said acid-base neutralizing agent having at least 2 pKa and being characterized in that:
  • corrosive gas is meant a gas causing corrosion on contact, that is to say an alteration of a material or alterations of the skin when it comes to living beings (irritations, chemical lesions for example) due to its acidic or basic nature.
  • corrosive gas includes corrosive vapors emitted by certain liquid chemicals.
  • the corrosive gases include acids and bases.
  • Corrosive gases also include gaseous chemicals which on contact with moisture in the air or on the skin hydrolyze to acid or base, such as bromine (Br2) which hydrolyzes to hydrogen bromide ( HBr), a toxic and highly corrosive colorless gas.
  • Corrosive gases also include volatile amines, such as ethanolamines such as for example triethanolamine and alkylamines such as for example diethylamine.
  • Atmosphere is meant an atmosphere of a place capable of accommodating humans or animals such as, for example, a warehouse, a hangar, a building or a room.
  • a contaminated atmosphere can occur in the event of a chemical accident with a gas leak or during leaks or spills of liquid chemicals emitting corrosive vapors. In such cases, the surrounding atmosphere becomes contaminated with these corrosive gases or vapors.
  • the composition according to the invention makes it possible to decontaminate large volumes of atmosphere, as in the case of contamination of a room, warehouse or building.
  • the composition is effective in treating a large gas flow to decontaminate such large atmospheres.
  • a warehouse 1000 m 2 and 6 m high can be decontaminated in 5 min, at a rate of the treatment of 72,000 m 3 / h of air contaminated with the composition according to the invention.
  • composition according to the invention allows decontamination without knowing the parameters of the contaminating gas in question (source of emission, concentration, flow rate, nature).
  • decontamination is meant that the concentration of corrosive gas in the atmosphere has fallen to the threshold or below regulatory values for long-term exposure such as the occupational exposure limit values (OELP) defined by the European Union directives.
  • OELP occupational exposure limit values
  • the Directives 98/24 / EC, 2000/39 / EC, 2006/15 / EC, 2009/161 / EU, (EU) 2017/164, 2004/37 / EC, (EU) 2017/2398 can be cited. and (EU) 2019/130.
  • the value of the regulatory threshold will depend on the nature of the gas.
  • Table 1 below provides the exposure limit value not to be exceeded for an 8 hour exposure, for certain corrosive gases. These values have been defined by European or national directives.
  • the concentration of corrosive gas in the atmosphere is lower or equal to 20 ppm, in particular less than or equal to 10 ppm, more particularly less than or equal to 5 ppm, still more particularly less than or equal to 1 ppm.
  • decontamination is meant that the concentration of corrosive gas in the atmosphere has been reduced by at least 70%, in particular at least 90%, more particularly at least 95%.
  • the decontamination can also be assessed by toxicological values by inhalation such as the Derived no effect level (DNEL) by inhalation over the long term.
  • DNEL Derived no effect level
  • Decontamination can also be assessed by a pH of the residues between 4 and 9, for example with a colored indicator or a pH meter.
  • said acid-base neutralizing agent is a buffer solution and is characterized in that:
  • said acid-base neutralizing agent is characterized in that:
  • said acid-base neutralizing agent is an amphoteric agent.
  • amphoteric agent is meant a chemical species having both the acid function and the basic function and consequently exhibiting at least two dissociation constants (pKa), one corresponding to the acid function and the other corresponding to the basic function.
  • the amphoteric agent is selected from the group consisting of: an amino acid or a salt of an amino acid, a salt of citric acid, a salt of phosphoric acid, a salt of pyrophosphoric acid, a complexed or free salt of ethylenediaminetetraacetic acid (EDTA), a salt of ascorbic acid, or a carbonate.
  • EDTA ethylenediaminetetraacetic acid
  • amphoteric agent is a salt of ascorbic acid, for example sodium ascorbate.
  • the amphoteric agent is an amino acid, for example L-alanine.
  • the amphoteric agent is an EDTA salt, for example disodium EDTA.
  • the amphoteric agent is an amino acid salt, more particularly a glutamate salt, for example sodium glutamate.
  • the amphoteric agent is a carbonate, more particularly a hydrogencarbonate, in particular sodium hydrogencarbonate.
  • the amphoteric agent is used at a concentration of at least 0.01 mol / L and within the solubility limit of the amphoteric agent.
  • it is used at a concentration between 0.01 mol / L and 10 mol / L, in particular between 0.1 and 5 mol / L, more particularly between 0.1 and 2 mol / L, even more particularly at 1 mol / L or 0.5 mol / L.
  • the composition contains two amphoteric agents, as defined above.
  • the two amphoteric agents are a complexed EDTA salt such as a disodium EDTA-Aluminum complex, and an amino acid salt, more particularly a glutamate salt, for example sodium glutamate.
  • said acid-base neutralizing agent is a mixture of at least one base conjugated with an acid and at least one acid conjugated with a base.
  • the conjugate base and the conjugate acid are used at a concentration of at least 0.01 mol / L and within the limit of their solubility.
  • they are used at a concentration of between 0.01 mol / L and 10 mol / L, in particular between 0.1 mol / L and 5 mol / L, more particularly 1 mol / L or 0.5 mol / L.
  • said conjugated acid and said conjugated base are present in an equimolar ratio.
  • said conjugate base is an EDTA-disodium aluminum complex and the conjugated acid is boric acid.
  • EDTA-aluminum disodium complex a disodium salt of a complex based on aluminum and ethylenediaminetetraacetic acid having the general formula [Al (Y ) Bn] c'Dc with B representing OH-, BO 2 , H + , Y representing a tetracarboxylate which can be protonated four times to form ethylenediaminetetraacetic acid, n representing an integer equal to 0, 1, 2 or 3 , D being a counterion, preferably Na +, c being an integer equal to 2 and c 'being a relative number having the same absolute value as c.
  • the acid-base neutralizing agent makes it possible to chelate ligands, in particular fluoride ions. Indeed, certain gases can release ions which have a toxic effect on the body. This is the case with fluoride ions, which may originate in particular from gaseous hydrogen fluoride, which bind to calcium or magnesium in the body during inhalation, and can thus cause a systemic disorder which can lead to cardiac arrest.
  • fluoride ions which may originate in particular from gaseous hydrogen fluoride, which bind to calcium or magnesium in the body during inhalation, and can thus cause a systemic disorder which can lead to cardiac arrest.
  • the neutralizing agent has electrophilic properties such that the fluoride ion F can attach itself to it.
  • the bond between the electrophilic neutralizing agent and F must be stronger than that between F and Ca 2+ or F and Mg 2+ so that F binds preferably to the electrophilic neutralizing agent and not to the calcium or magnesium of the human body.
  • a person skilled in the art knows how to easily select a neutralizing agent as defined above and having an electrophilic force allowing a bond with a fluoride ion stronger than that between a fluoride ion and Ca 2+ and that between a fluoride ion. and Mg 2+ .
  • composition according to the present invention can comprise at least one additive chosen from surfactants, pH indicators, preservatives, and mixtures thereof. Those skilled in the art are able to choose, from among all of these optional additives, both the composition and the quantity of those which will be added to the composition, so that the latter retains all of its properties. .
  • surfactant is understood to mean an agent making it possible to stabilize the composition or to allow it to be mixed with an organic solvent.
  • the surfactant can be hydrophobic with an HLB of 3 to 10 or hydrophilic with an HLB of 11 to 18.
  • the HLB (standing for "hydrophilic lipophilicity balance") of the surfactant or of the mixture of surfactants will be determined by Griffin's method (Griffin WC: Classification of Surf ace- Active Agents by 'HLB,' Journal of the Society of Cosmetic Chemists 1 (1949): 311. Griffin WC: Calculation of HLB Values of Non-lonic Surfactants, Journal of the Society of Cosmetic Chemists 5 (1954): 259).
  • surfactants are ethoxylated fatty alcohols, fatty acids and esters (for example: ceteareth-12, ceteareth-20, ceteareth-33, stearyl cetyl alcohol 20-ethoxylated, 2-polyhydroxystearate polyglyceryl, glyceryl oleate, sorbitan ester, glycerol ester, PEG-mono / di-laurate, PEG-mono / di-stearate, cetearyl isononanoate, glyceryl stearate, etc.), carboxylates, ethoxycarboxylates (for example: sodium / potassium stearate , alkylcarboxylic acid, alkyl polyglycol ether carboxylic acid, polyglycol alkylphenol ether carboxylic acid, carboxymethyl alcohol, ethoxycarboxylate, ethercarboxylate, etc.), octoxynol, capryl caprilyl
  • pH indicator agent is understood to mean a compound which has the capacity to change color as a function of the pH of its surrounding medium.
  • pH indicator agents examples include thymol blue, tropaeolin, bromocresol purple, bromophenol blue, congo red, neutral red, phenolphthalein, thymolphthalein, alizarin yellow R, bromothymol blue, cresol red, methyl violet, malachite green, methyl yellow, congo red, methyl orange, bromocresol green, methyl red, phenol red, alizarin, indigo carmine and mixtures thereof.
  • the term “preservative” is understood to mean an agent making it possible to limit the development of microorganisms within the composition. More particularly, they make it possible to stop or inhibit the growth of microorganisms.
  • concentrations used are bacteriostatic.
  • the combination of an antibacterial (ATB) with an antifungal (ATF) may be necessary.
  • the addition of at least one preservative makes it possible to obtain a composition which does not allow the growth and multiplication of bacteria, fungi and / or molds.
  • preservatives are the para-hydroxybenzoic alkyl ester, isothiazolinone, imidazolidinyl urea, diazolidinyl urea, methylparaben, propylparaben, propylene glycol, bromo-nitro-propanediol, phenoxyethanol , sorbic acid and its salts, benzoic acid and its salts, phenoxyethanol, benzyl alcohol, and mixtures thereof. These compounds are generally between 0.01% and 0.5% of the total weight of the composition.
  • the composition can also be a sterile composition.
  • a sterile composition can be obtained according to methods well known to those skilled in the art. It is then stored under sterile conditions until use.
  • said composition is in the form of a solution, also called liquid.
  • the composition can be in the form of an aqueous solution.
  • said composition comprises from 20% to 99.9 %% water, more particularly from 60 to 95 %%, typically 75%.
  • composition can also be in solution in an organic solvent.
  • said composition comprises from 20 to 99.9% of organic solvent, more particularly from 60 to 95%, typically 75%.
  • the organic solvent can be a fatty acid ester, a linear alkane, a cyclic alkane, a glycol ether, a glycol ether ester.
  • said composition in the form of a solution is formulated in the form of a foam.
  • said composition is in solid form.
  • it can be in the form of solid particles, also called powder.
  • the powder can be diluted in a neutral powder.
  • said composition in solution form or in solid form can be formulated in aerosol form.
  • the term “aerosol” is understood to mean that the composition is in the form of a colloid of liquid drops in suspension in a carrier gas or that it is in the form of a colloid of solid particles in suspension in a gas. vector.
  • the carrier gas is a neutral gas such as nitrogen, air or compressed air.
  • the composition according to the invention described above is sprayed directly into the atmosphere contaminated by corrosive gases.
  • the present invention also relates to a method for decontaminating an atmosphere contaminated by a corrosive gas comprising the following steps:
  • step 1) is initiated manually.
  • step 1) is triggered automatically.
  • Step 1) can be preceded by the detection of a gas in the atmosphere, in particular via a gas detection system.
  • said acid-base neutralizing agent used in step 1) is characterized in that:
  • said acid-base neutralizing agent used in step 1) is an amphoteric agent.
  • the amphoteric agent is chosen from the group consisting of: an amino acid or a salt of an amino acid, a salt of citric acid, a salt of phosphoric acid, a salt of pyrophosphoric acid, a complexed or free salt of ethylenediaminetetraacetic acid (EDTA), a salt of ascorbic acid, or a carbonate.
  • the amphoteric agent is a salt of ascorbic acid, for example sodium ascorbate.
  • the amphoteric agent is an amino acid, for example L-alanine.
  • the amphoteric agent is an EDTA salt, for example disodium EDTA.
  • the amphoteric agent is an amino acid salt, more particularly a glutamate salt, for example sodium glutamate.
  • the amphoteric agent is a carbonate, more particularly a hydrogencarbonate, in particular sodium hydrogencarbonate.
  • the amphoteric agent is used at a concentration of at least 0.01 mol / L and within the solubility limit of the amphoteric agent. For example, it is used at a concentration between 0.01 mol / L and 10 mol / L, in particular between 0.1 and 5 mol / L, more particularly between 0.1 and 2 mol / L, even more particularly at 1 mol / L or 0.5 mol / L.
  • the composition contains two amphoteric agents.
  • the two amphoteric agents are a complexed EDTA salt such as a disodium EDTA-Aluminum complex, and an amino acid salt, more particularly a glutamate salt, for example sodium glutamate.
  • said acid-base neutralizing agent used in step 1) is a mixture of at least one base conjugated with an acid and at least one acid conjugated with a base.
  • the conjugate base and the conjugated acid are used at a concentration of at least 0.01 mol / L and within the limit of their solubility.
  • they are used at a concentration of between 0.01 mol / L and 10 mol / L, in particular between 0.1 mol / L and 5 mol / L, more particularly 1 mol / L or 0.5 mol / L.
  • said conjugated acid and said conjugated base are present in an equimolar ratio.
  • said conjugate base is an EDTA-disodium aluminum complex and the conjugated acid is boric acid.
  • the acid-base neutralizing agent used in step 1) has the ability to chelate ligands, in particular fluoride ions.
  • composition used in step 1) can optionally contain at least one additive chosen from surfactants, pH indicators, preservatives, and mixtures thereof, as defined in the present application.
  • the composition can also be a sterile composition, sterilized according to methods well known to those skilled in the art.
  • the composition used in step 1) is in the form of a solution, such as an aqueous solution or in solution in an organic solvent.
  • it can also be in solid form, in particular in powder form.
  • the composition is sprayed in the form of a solution, in solid form, for example powder, in the form of a foam and / or in aerosol form.
  • the composition can be sprayed using a sprinkler, also called a nozzle.
  • composition can also be sprayed using an atomizing nozzle, which creates a mist.
  • composition can also be sprayed using a spray.
  • Step 2 is a decontamination verification step. For example, this can be carried out by measuring the concentration of contaminating gas (in ppm) in the atmosphere (gas detector), and / or by checking the pH of the residues. If the composition of the invention comprises a pH indicator, the pH verification of step 2) can be done visually using the colored indicators, and it is no longer necessary to measure the pH by another method such as pH. -metry or the use of a pH paper. A residue pH between 4 and 9 is an indicator of effective decontamination. [0104] Step 4) consists in recovering the solid or liquid residues.
  • the residue is picked up with means commonly used by a person skilled in the art, for example using a shovel, a broom, a squeegee or by suction according to the solid or liquid state of the residue.
  • means commonly used by a person skilled in the art for example using a shovel, a broom, a squeegee or by suction according to the solid or liquid state of the residue.
  • a person skilled in the art knows how to adapt the collection means according to the nature of the residue.
  • One of the advantages of the invention is therefore easy recovery of the decontamination residues using everyday utensils.
  • composition according to the invention is that the residues resulting from the decontamination are at a pH between 4 and 9. They are therefore non-corrosive for contaminated premises and non-irritant and non-toxic for people. in charge of their recovery. Their elimination therefore does not require specific and expensive equipment.
  • composition makes it possible to neutralize corrosive gases with the use of a minimum quantity of product and at a lower cost compared to products of the state of the art.
  • composition of the present invention has the advantage of not being dangerous for living organisms: it is non-toxic, non-irritant, non-allergenic, and non-ecotoxic, unlike the products of the state of the art.
  • rinsing of the decontaminated zone to remove the residues of the composition can be carried out as the last step.
  • the present invention also relates to a device for decontaminating an atmosphere contaminated by a corrosive gas comprising at least one means capable of spraying 1 a composition comprising at least one acid-base neutralizing agent to decontaminate an atmosphere contaminated by a gas.
  • a device for decontaminating an atmosphere contaminated by a corrosive gas comprising at least one means capable of spraying 1 a composition comprising at least one acid-base neutralizing agent to decontaminate an atmosphere contaminated by a gas.
  • said acid-base neutralizing agent exhibiting at least 2 pKa and being characterized in that:
  • At least one means one, two, three, four or more.
  • composition is a composition as defined previously in the present application.
  • the composition can be in liquid, solid or aerosol form.
  • the means capable of spraying 1 the composition can be a spray, an atomizing nozzle, a foam generator or a sprinkler.
  • the device comprises two reservoirs 3, each intended to receive the composition in a different form.
  • the device therefore comprises two means capable of spraying 1 the composition, respectively adapted according to the form in which the composition is to be sprayed.
  • the device comprises:
  • a first reservoir intended to receive the composition in solid form, connected to a means suitable for spraying the composition in powder form, and
  • a second reservoir intended to receive the composition in liquid form, connected to means suitable for spraying the composition in liquid or foam form.
  • the device can be a portable device.
  • portable we mean that the device can be moved by humans.
  • the device can be a fixed device.
  • fixed we mean that the device cannot be moved by humans. This is, for example, a device integrated into a building.
  • said at least one spraying means 1 is connected to at least one circuit 2 comprising a fluid, said at least one at least one circuit 2 being itself connected to said at least one reservoir 3 intended to receive the composition, by means of a valve 4.
  • This valve 4 located at the junction of the reservoir 3 and of the circuit 2, then allows the release of the composition in the circuit, then its spraying through the spraying means 1.
  • valve 4 also makes it possible to adjust the rate of release of the composition in a controlled amount.
  • the composition is in liquid form and the fluid in the circuit is a liquid, in particular water or water comprising an antifreeze product.
  • the composition is in solid form, in particular in powder form, and the fluid in the circuit is a liquid, in particular water or water comprising an antifreeze product.
  • the composition is in solid form, in particular in powder form, and the fluid in the circuit is a gas, in particular an inert gas such as nitrogen, air or water. 'pressurized air.
  • the composition is in aerosol form and the fluid in the circuit is a gas, in particular an inert gas such as nitrogen, air or compressed air.
  • circuit 2 is a circuit belonging to a fire extinguishing installation.
  • the tank 3 is directly connected to the circuit of a fire extinguishing installation.
  • This fire extinguishing installation may be pre-existing in the structure in which the fixed device according to the present application is installed.
  • the decontamination device comprises at least one reservoir (3) connected to at least one circuit (2) comprising a fluid, said at least one circuit (2) being a circuit belonging to a fire extinguishing installation.
  • said valve 4 is coupled to a gas detection system 5, in particular via a control automaton 6. This allows automatic actuation thereof.
  • a compartment is provided between the reservoir 3 and the valve 4. This compartment is intended to receive on the one hand the fluid coming from the circuit 2 and on the other hand the composition coming from the reservoir 3. , before release into circuit 2. [0128] When the composition is in liquid form, this compartment makes it possible to dilute the composition before release into circuit 2.
  • composition when said composition is in solid form, for example in powder form, the dissolution or dilution of said composition then takes place in said compartment, prior to its release into circuit 2.
  • the presence of this compartment is optional, the composition, in solid or liquid form, can also be directly released into circuit 2.
  • FIG. 1 Examples of devices are presented in FIG. 1 and Fig. 2. Brief description of the figures Fig. 1
  • FIG. 1 shows a device for decontaminating an atmosphere comprising sprinklers 1 connected to a water circuit 2, itself being connected via a valve 4, to a reservoir 3 capable of receiving a composition in aqueous form, said valve 4 being coupled to a gas detection system 5 via a control automaton 6, for automatic actuation.
  • FIG. 2 shows a device for decontaminating an atmosphere comprising sprinklers 1 connected to the water circuit 2, itself being connected via a valve 4 to a reservoir 3 capable of receiving a composition in solid form, via a valve 4 located at the junction of the reservoir 3 and the water circuit 2, said valve 4 being coupled to a system for detecting gas 5 via a control automaton 6, for automatic actuation.
  • FIG. 3 is a graph showing the evolution of the gaseous HCl concentration (ppm) as a function of the volume (mL) sprayed of a composition comprising a complex of EDTA-aluminum disodium and boric acid in an equimolar mixture at 0 , 1 mol / L.
  • FIG. 4 is a graph showing the evolution of the gaseous HCl concentration (ppm) as a function of the volume (mL) sprayed of a composition comprising a complex of disodium EDTA-Aluminum and sodium glutamate in an equimolar mixture at 0, 5 mol / L.
  • FIG. 5 is a graph showing the evolution of the gaseous NH3 concentration (ppm) as a function of the volume (mL) sprayed of a composition comprising a complex of disodium EDTA-Aluminum and sodium glutamate in an equimolar mixture at 0, 5 mol / L.
  • An aqueous chemical decontamination composition comprising, as neutralizing agent, the following mixture:
  • Figure 3 shows the change in the concentration of gaseous HCL as a function of the volume of the composition sprayed into the atmosphere.
  • the pH of the falling liquid residue is 4, that is to say not very acidic and not corrosive.
  • An aqueous chemical decontamination composition comprising, as neutralizing agent an amphoteric agent, sodium glutamate at a concentration of 1mol / L and whose pKa are 4.15 and 9.58. This composition is sprayed in an atmosphere contaminated with a corrosive acid, such as hydrogen chloride.
  • a corrosive acid such as hydrogen chloride.
  • An aqueous chemical decontamination composition comprising, as neutralizing agent, the following mixture: a conjugate base of an acid: EDTA-disodium aluminum complex whose pKa is 5.87 at a concentration of 0 , 5 mol / L, and
  • the conjugated acid of a base sodium glutamate with a pKa of 9.67 at a concentration of 0.5 mol / L.
  • This composition is sprayed via a pump in an atmosphere contaminated with gaseous HCl, a corrosive acid, manually in an aerosol using a spray with a flow rate of approximately 375 ml / min.
  • Figure 4 shows the change in the concentration of gaseous HCl as a function of the volume of the composition sprayed into the atmosphere.
  • the pH of the falling liquid residue is 7, that is to say a neutral and non-corrosive liquid.
  • An aqueous chemical decontamination composition comprising, as neutralizing agent, the following mixture: a conjugate base of an acid: EDTA-disodium aluminum complex whose pKa is 5.87 at a concentration of 0 , 5 mol / L, and
  • This composition is sprayed via a pump in an atmosphere contaminated with gaseous NH3, a corrosive base, manually in an aerosol with a spray with a flow rate of approximately 375 ml / min.
  • Figure 5 shows the change in the concentration of gaseous NH3 as a function of the volume of the composition sprayed into the atmosphere.
  • the pH of the falling liquid residue is between 7 and 8, that is to say a neutral and non-corrosive liquid.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

La présente invention porte sur l'utilisation d'une composition comprenant au moins un agent neutralisant acido-basique pour décontaminer une atmosphère contaminée par un gaz corrosif, ledit agent neutralisant acido-basique présentant au moins 2 pKa et étant caractérisé en ce que: - pKa1 ≤ pKa 2 - pKa 1 >2 - pKa 2<12 - 4< ½ (pKa 1 +pKa 2) < 10 pKa 1 représentant le plus petit des pKa basiques et pKa 2 représentant le plus grand des pKa acides. La présente invention porte également sur un procédé de décontamination d'une atmosphère contaminée par un gaz corrosif comprenant la pulvérisation dudit agent neutralisant, et sur un dispositif de décontamination.

Description

Système de décontamination chimique de gaz corrosifs
Domaine technique
[0001] L’invention relève du domaine de la décontamination chimique d’une atmosphère. Plus précisément, elle porte sur l’utilisation d’une composition comprenant un agent neutralisant acido-basique pour décontaminer une atmosphère contaminée par un gaz corrosif. La présente invention concerne également un procédé de décontamination comprenant ladite composition. Technique antérieure
[0002] La contamination chimique d’une atmosphère par des gaz corrosifs d’acide ou de base, peut survenir lors d’accidents chimiques, par exemple lorsque des canalisations ou des bombonnes contenant des gaz corrosifs se retrouvent abîmées ou percées. [0003] La contamination chimique d’une atmosphère peut également survenir lors de fuites ou de déversements de produits chimiques liquides émettant des vapeurs corrosives.
[0004] Dans de tels cas, l’atmosphère environnant se retrouve alors contaminée par ces gaz ou vapeurs corrosives. [0005] L’homme de l’art n’a alors que peu d’options pour décontaminer l’atmosphère et la rendre sécurisée et à nouveau apte au travail.
[0006] Lorsque cette contamination chimique a lieu dans un espace clos, il est possible de ventiler, via des ouvertures sur l’extérieur pour évacuer le contaminant, i. e. les gaz ou vapeurs corrosives. Une telle solution présente un inconvénient écologique car cela entraîne le contaminant chimique vers l’extérieur et engendre alors une pollution environnementale. En revanche, une telle solution n’est pas applicable dans le cas d’un espace dépourvu d’ouvertures sur l’extérieur.
[0007] Si l’espace est doté d’un système de ventilation forcée, il est possible d’aspirer l’air contaminé et le faire passer dans un filtre dans lequel le contaminant sera piégé. Cependant, cela requiert un équipement coûteux du bâtiment en amont en cas de potentiels incidents.
[0008] Lors d’incendies émettant des gaz nocifs ou corrosifs, il est assez fréquent que les sapeurs-pompiers réalisent un rideau d’eau de sorte à dissoudre les gaz dans l’eau et ainsi empêcher leur propagation. Cependant, cela a pour conséquence de générer une grande quantité de déchets liquides contaminés et d’inonder totalement la zone touchée.
[0009] Outre, l’utilisation d’éléments naturels, des méthodes de décontamination chimique ont été développées pour décontaminer une atmosphère.
[0010] Ainsi, en cas de contamination biologique de l’atmosphère, par exemple par des microorganismes, des systèmes de décontamination basée sur la pulvérisation dans l’air de solution d’ozone, d’acide peracétique (WO2018143186) ou de peroxyde d’hydrogène sec (WO2019133801) peuvent être utilisés.
[0011] Lorsque la contamination de l’atmosphère est due à un composé organique, il existe des systèmes permettant d’injecter du méthanol gazeux mis au contact d’un catalyseur pour le transformer en radicaux hydroxyl, hydroperoxy ou hydroxymethyl qui vont alors réagir avec le composé organique pour le rendre non toxique (WO2013137452). Ces systèmes nécessitent l’utilisation de méthanol et de radicaux nocifs pour la santé et ne permettent que de dégrader des composés volatils.
[0012] Lors d’une contamination chimique, des solutions de décontamination ont été développées pour les cas où le contaminant est sous forme liquide ou solide.
[0013] Ainsi, des solutions chloro-oxydantes à base d’ions hypochlorite CIO ou d’acide hypochloreux HCIO ont été mises au point pour la décontamination de résidus de formaldéhyde (WO2019150301).
[0014] Il a également été mis en évidence que l’ozone gazeux permettait de décontaminer des combinaisons de pompiers contaminées par des produits cancérigènes issus de combustion lors d’un incendie (WO 2019113434). Pour la décontamination des combinaisons contaminées par des hydrocarbures aromatiques polycycliques tels que le benzo(a)pyrène, des solutions ou dispersions liquides à base de sels de cérium dans l’eau ont été développées (WO2019112571).
[0015] On peut également citer des absorbants chimiques réactifs à base de silice, de charbon actif et de zéolite pour la décontamination d’agents chimiques de guerre sous forme liquide (brevet EP3476474).
[0016] Des solutions physiologiques à base d’agents amphotères complexés ont également été décrites pour la décontamination des parties du corps humain ou animal contaminées par un produit corrosif ou irritant.
[0017] Il était donc nécessaire de développer une méthode pour décontaminer une atmosphère contaminée par des gaz corrosifs reposant sur l’utilisation de produits non toxiques pour l’Homme, facile à mettre en œuvre et permettant d’éviter la propagation de la contamination dans l’environnement.
Exposé de l’invention [0018] La présente invention porte sur l’utilisation d’une composition comprenant au moins un agent neutralisant acido-basique pour décontaminer une atmosphère contaminée par un gaz corrosif, ledit agent neutralisant acido-basique présentant au moins 2 pKa et étant caractérisé en ce que :
- pKa1 £ pKa 2 - pKa 1 >2
- pKa 2<12
- 4< ½ (pKa 1 + pKa 2) < 10 pKa 1 représentant le plus petit des pKa basiques et pKa 2 représentant le plus grand des pKa acides. [0019] Au sens de la présente demande, par « gaz corrosif » on entend un gaz entraînant une corrosion à son contact c’est-à-dire une altération d’un matériau ou des altérations de la peau quand il s’agit d’êtres vivants (irritations, lésions chimiques par exemple) de par son caractère acide ou basique. Au sens de la présente demande, le terme « gaz corrosif » englobe les vapeurs corrosives émises par certains produits chimiques liquides. Ainsi, au sens de l’invention, les gaz corrosifs incluent les acides et les bases. A titre d’exemple, on peut citer l’ammoniac (NH3), le chlorure d’hydrogène (HCl), le trioxyde de soufre, le fluorure d’hydrogène, iodure d’hydrogène, acide acétique, sulfure d’hydrogène, cyanure d’hydrogène. Les gaz corrosifs incluent également les produits chimiques gazeux qui au contact de l’humidité de l’air ou de la peau s’hydrolysent en acide ou en base, tels que le dibrome (Br2) qui s’hydrolyse en Bromure d’hydrogène (HBr), un gaz incolore toxique et hautement corrosif. Les gaz corrosifs incluent aussi les amines volatiles, tels que les éthanolamines comme par exemple le triéthanolamine et les alkylamines comme par exemple la diéthylamine.
[0020] Par « atmosphère » on entend une atmosphère d’un endroit susceptible d’accueillir des êtres humains ou des animaux comme par exemple un entrepôt, un hangar, un bâtiment ou une pièce.
[0021] Une atmosphère contaminée peut survenir dans le cas d’accident chimique avec une fuite de gaz ou lors de fuites ou de déversements de produits chimiques liquides émettant des vapeurs corrosives. Dans de tels cas, l’atmosphère environnant se retrouve alors contaminée par ces gaz ou vapeurs corrosives.
[0022] La composition selon l’invention permet de décontaminer de grands volumes d’atmosphère, comme dans le cas de contamination de pièce, d’entrepôt ou de bâtiment. En cela, la composition est efficace pour traiter un débit de gaz important pour décontaminer de si grandes atmosphères. A titre d’exemple, un entrepôt de 1000 m2 et 6m de haut (entrepôt classique) peut être décontaminé en 5 min, à raison du traitement de 72000 m3/h d’air contaminé avec la composition selon l’invention.
[0023] De plus, la composition selon l’invention permet une décontamination sans connaître les paramètres du gaz contaminant en question (source d’émission, concentration, débit, nature).
[0024] Par « décontamination » on entend que la concentration en gaz corrosif dans l’atmosphère est retombée au seuil ou en dessous de valeurs règlementaires pour une exposition à long terme telles que les valeurs limites d’exposition professionnelle (VLEP) définies par les directives de l’Union Européenne. A cet égard, peuvent être citées les Directives 98/24/CE, 2000/39/EC, 2006/15/EC, 2009/161/EU, (UE) 2017/164, 2004/37/EC, (UE) 2017/2398 et (UE) 2019/130.
[0025] La valeur du seuil réglementaire va dépendre de la nature du gaz.
[0026] Le tableau 1 ci-dessous fournit la valeur limite d’exposition à ne pas dépasser pour une exposition de 8h, pour certains gaz corrosifs. Ces valeurs ont été définies par des directives européennes ou nationales.
Tableau 1 : Valeur limite d’exposition (ppm) à ne pas dépasser pour une exposition de 8h pour certains gaz corrosifs
Figure imgf000007_0001
[0027] Les valeurs limites d’exposition à ne pas dépasser pour une exposition de 8h selon les espèces chimiques peuvent être retrouvées sur le site de l’IFA (L'Institut pour la sécurité et la santé au travail de l'assurance sociale allemande contre les accidents) à l’adresse suivante : https://limitvalue.ifa.dguv.de/ [0028] Ainsi, dans un mode particulier, on entend par « décontamination » que la concentration en gaz corrosif dans l’atmosphère est inférieure ou égale à 20 ppm, en particulier inférieure ou égale à 10 ppm, plus particulièrement inférieure ou égale à 5 ppm, encore plus particulièrement inférieure ou égale à 1 ppm.
[0029] Par « décontamination » on entend que la concentration en gaz corrosif dans l’atmosphère a été diminuée d’au moins 70%, en particulier au moins 90%, plus particulièrement au moins 95%.
[0030] La décontamination peut également être appréciée par des valeurs toxicologiques par inhalation telle que la Derived no effect level (DNEL) par inhalation sur le long terme. Celles-ci sont fournies par les dans les dossiers d’enregistrement REACH des substances suites aux tests réalisés.
[0031] La décontamination peut également être appréciée par un pH des résidus entre 4 et 9, par exemple avec un indicateur coloré ou un pH-mètre.
[0032] Dans un mode de réalisation particulier, ledit agent neutralisant acido- basique est une solution tampon et est caractérisé en ce que :
- pKa1 = pKa 2
- pKa 1 >2
- pKa 2<12
- 4< ½ (pKa 1 + pKa 2) < 10, pKa 1 représentant le plus petit des pKa basiques et pKa 2 représentant le plus grand des pKa acides.
[0033] Dans un mode de réalisation particulier, ledit agent neutralisant acido- basique est caractérisé en ce que :
- pKa1 < pKa 2
- pKa 1 >2
- pKa 2<12
- 4< ½ (pKa 1 + pKa 2) < 10, pKa 1 représentant le plus petit des pKa basiques et pKa 2 représentant le plus grand des pKa acides.
[0034] Dans un mode de réalisation particulier, ledit agent neutralisant acido- basique est un agent amphotère.
[0035] Au sens de la présente demande, par « agent amphotère », on entend une espèce chimique possédant à la fois la fonction acide et la fonction basique et présentant par conséquent au moins deux constantes de dissociation (pKa), l’une correspondant à la fonction acide et l’autre correspondant à la fonction basique.
[0036] Typiquement, l’agent amphotère est choisi dans le groupe consistant en : un acide aminé ou un sel d’un acide aminé, un sel de l’acide citrique, un sel de l’acide phosphorique, un sel de l’acide pyrophosphorique, un sel de l’acide éthylènediaminetétraacétique (EDTA) complexé ou libre, un sel de l’acide ascorbique, ou un carbonate.
[0037] Dans un mode de réalisation particulier, l’agent amphotère est un sel de l’acide ascorbique, par exemple l’ascorbate de sodium.
[0038] Dans un mode de réalisation particulier, l’agent amphotère est un acide aminé, par exemple la L-alanine.
[0039] Dans un mode de réalisation particulier, l’agent amphotère est un sel d’EDTA, par exemple l’EDTA disodique.
[0040] Dans un mode de réalisation particulier, l’agent amphotère est un sel d’acide aminé, plus particulièrement un sel de glutamate, par exemple le glutamate de sodium.
[0041] Dans un mode de réalisation particulier, l’agent amphotère est un carbonate, plus particulièrement un hydrogénocarbonate, notamment l’hydrogénocarbonate de sodium.
[0042] Dans un mode de réalisation particulier, l’agent amphotère, est utilisé à une concentration d’au moins 0.01 mol/L et dans la limite de solubilité de l’agent amphotère. Par exemple, il est utilisé à une concentration entre 0.01 mol/L et 10 mol/L, en particulier entre 0.1 et 5 mol/L, plus particulièrement entre 0.1 et 2 mol/L, encore plus particulièrement à 1 mol/L ou 0.5 mol/L.
[0043] Dans un mode de réalisation particulier, la composition contient deux agents amphotères, tels que définis précédemment.
[0044] Dans un mode de réalisation particulier, les deux agents amphotères sont un sel d’EDTA complexé tel qu’un complexe d’EDTA-Aluminium disodique, et un sel d’acide aminé, plus particulièrement un sel de glutamate, par exemple le glutamate de sodium. [0045] Dans un mode de réalisation particulier, ledit agent neutralisant acido- basique est un mélange d’au moins une base conjuguée d’un acide et d’au moins un acide conjugué d’une base.
[0046] Typiquement, la base conjuguée et l’acide conjugué sont utilisés à une concentration d’au moins 0.01 mol/L et dans la limite de leur solubilité. Par exemple, ils sont utilisés à une concentration comprise entre 0.01 mol/L et 10 mol/L, en particulier entre 0.1 mol/L et 5 mol/L, plus particulièrement 1 mol/L ou 0.5 mol/L.
[0047] Dans un mode de réalisation, ledit acide conjugué et ladite base conjuguée sont présents en ratio équimolaire.
[0048] Dans un mode de réalisation particulier, ladite base conjuguée est un complexe d’EDTA-Aluminium disodique et l’acide conjugué est l’acide borique.
[0049] Au sens de la présente demande, par « complexe d’EDTA-Aluminium disodique », on entend un sel disodique d’un complexe à base d'aluminium et d'acide éthylène diamine tétraacétique présentant la formule générale [AI(Y)Bn]c'Dc avec B représentant OH-, BO2 , H+, Y représentant un tétracarboxylate pouvant être protoné quatre fois pour former l'acide éthylène diamine tétraacétique, n représentant un nombre entier égal à 0, 1 , 2 ou 3, D étant un contre-ion, de préférence Na+, c étant un nombre entier égal 2 et c' étant un nombre relatif ayant la même valeur absolue que c.
[0050] Dans un mode de réalisation, l’agent neutralisant acido-basique permet de chélater des ligands, en particulier des ions fluorures. En effet, certains gaz peuvent libérer des ions ayant un effet toxique sur l’organisme. Tel est le cas des ions fluorures pouvant provenir notamment du fluorure d’hydrogène gazeux, qui se lient au calcium ou au magnésium de l’organisme lors de l’inhalation, et peuvent ainsi entraîner un dérèglement systémique pouvant mener à l’arrêt cardiaque.
[0051] Ainsi, dans un mode de réalisation particulier l’agent neutralisant possède des propriétés d’électrophiles de telle sorte que l’ion fluorure F puisse se fixer dessus. La liaison entre l’agent neutralisant électrophile et F doit être plus forte que celle entre F et Ca2+ ou F et Mg2+ de telle sorte que F se lie préférentiellement à l’agent neutralisant électrophile et non au calcium ou magnésium du corps humain.
[0052] L’Homme du métier sait sélectionner sans difficulté un agent neutralisant tel que défini précédemment et possédant une force électrophile permettant une liaison avec un ion fluorure plus forte que celle entre un ion fluorure et Ca2+ et que celle entre un ion fluorure et Mg2+.
[0053] En outre, la composition selon la présente invention peut comprendre au moins un additif choisi parmi les tensioactifs, les indicateurs de pH, les conservateurs, et leurs mélanges. L'homme du métier est en mesure de choisir, parmi l'ensemble de ces additifs éventuels, aussi bien la composition que la quantité de ceux qui seront ajoutés à la composition, de telle sorte que celle-ci conserve l'ensemble de ses propriétés.
[0054] Au sens de la présente demande, par « tensioactif » on entend un agent permettant de stabiliser la composition ou de permettre son mélange avec un solvant organique.
[0055] L'agent tensio-actif peut être hydrophobe avec un HLB de 3 à 10 ou hydrophile avec un HLB de 11 à 18. Le HLB (de l'anglais « hydrophilic lipophilie balance ») du tensioactif ou du mélange de tensioactifs sera déterminé par la méthode de Griffin (Griffin WC: Classification of Surf ace- Active Agents by 'HLB, ' Journal of the Society of Cosmetic Chemists 1 (1949) : 311. Griffin WC : Calculation of HLB Values of Non-lonic Surfactants, Journal of the Society of Cosmetic Chemists 5 (1954) : 259) .
[0056] Des exemples de tensio-actifs sont les alcools gras éthoxylés, les acides et les esters gras (par exemple : cétéareth-12 , cétéareth-20, cétéareth-33 , stéaryl cétyl alcool 20-éthoxylé, 2-polyhydroxystéarate polyglycéryl , glycéryl oléate, ester de sorbitan, ester de glycérol, PEG-mono/di-laurate, PEG-mono/di-stéarate, cétéaryl isononanoate, glycéryl stéarate, etc.), les carboxylates , les éthoxycarboxylates (par exemple : stéarate de sodium/potassium, acide alkyl- carboxylique, acide carboxylique éther alkyl-polyglycol, acide carboxylique éther polyglycol alkylphénol, alcool carboxyméthylé, éthoxycarboxylate, éthercarboxylate, etc.), l’octoxynol, le capryl caprilyl glucoside, et leurs mélanges. [0057] Dans un mode de réalisation, la composition selon l’invention comprend une quantité de tensio-actif de 0,1% à 10% en poids, de préférence de 0,5 à 5% en poids, et plus préférentiellement encore de 1 à 3% en poids du poids total de la composition.
[0058] Au sens de la présente demande, par « agent indicateur de pH », on entend un composé qui a la capacité de changer de couleur en fonction du pH de son milieu environnant.
[0059] Des exemples d'agents indicateurs de pH sont le bleu de thymol, la tropaeoline, le pourpre de bromocrésol, le bleu de bromophénol, le rouge de congo, le rouge neutre, la phénolphtaléine, le thymolphtaléine, le jaune d'alizarine R, le bleu de bromothymol, le rouge de crésol, le méthyle violet, le vert malachite, le jaune de méthyle, le rouge congo, le méthyle orange, le vert de bromocrésol, le rouge de méthyle, le rouge de phénol, l'alizarine, le carmin d'indigo et leurs mélanges.
[0060] La présence d'un agent indicateur de pH permet de visualiser la neutralisation complète du gaz à dépolluer, en utilisant la juste quantité de composition nécessaire, et ainsi de baisser le coût de la décontamination.
[0061] Au sens de la présente demande, par « conservateur » on entend un agent permettant de limiter le développement des microorganismes au sein de la composition. Plus particulièrement, ils permettent de stopper ou d'inhiber la croissance des microorganismes. Les concentrations utilisées sont bactériostatiques. L'association d'un antibactérien (ATB) à un antifongique (ATF) peut être nécessaire.
[0062] Ainsi, l'ajout d'au moins un agent conservateur permet d'obtenir une composition ne permettant pas la croissance et la multiplication de bactéries, de champignons et/ou de moisissures.
[0063] Des exemples de conservateurs sont l’ester para-hydroxybenzoique d'alkyle, l’isothiazolinone, l’imidazolidinyl urée, le diazolidinyl urée, le méthylparaben, le propylparaben, le propylène glycol, le bromo-nitro-propanediol, le phénoxyéthanol, l’acide sorbique et ses sels, l’acide benzoïque et ses sels, le phénoxyéthanol, l’alcool benzylique, et leurs mélanges. Ces composés sont généralement compris entre 0,01 % et 0,5 % du poids total de la composition.
[0064] Afin de prévenir ou limiter le développement des microorganismes, la composition peut également être une composition stérile. Une composition stérile peut être obtenue selon des procédés bien connus de l’Homme du métier. Elle est ensuite conservée en conditions stériles jusqu’à utilisation.
[0065] Dans un mode de réalisation particulier, ladite composition est sous forme de solution, également dite liquide.
[0066] La composition peut être sous forme de solution aqueuse. En particulier, ladite composition comprend de 20% à 99.9%% d’eau, plus particulièrement de 60 à 95%%, typiquement 75%.
[0067] La composition peut également être en solution dans un solvant organique. En particulier, ladite composition comprend de 20 à 99,9% de solvant organique, plus particulièrement de 60 à 95%, typiquement 75%.
[0068] A titre d’exemple, le solvant organique peut être un ester d’acide gras, un alcane linéaire, un alcane cyclique, un éther de glycol, un ester d’éther de glycol.
[0069] Dans un mode de réalisation, ladite composition sous forme de solution est formulée sous forme de mousse.
[0070] Dans un mode de réalisation, ladite composition est sous forme solide. En particulier, elle peut être sous forme de particules solides, également dites poudre. La poudre peut être diluée dans une poudre neutre.
[0071] Dans un mode de réalisation, ladite composition sous forme de solution ou sous forme solide peut être formulée sous forme d’aérosol.
[0072] Au sens de la présente demande, par « aérosol » on entend que la composition est sous forme de colloïde de gouttes liquide en suspension dans un gaz vecteur ou qu’elle est sous forme de colloïde de particules solides en suspension dans un gaz vecteur. Typiquement, le gaz vecteur est un gaz neutre tel que l’azote, l’air ou l’air comprimé. [0073] Dans un mode de réalisation, la composition selon l’invention précédemment décrite est pulvérisée directement dans l’atmosphère contaminée par des gaz corrosifs.
[0074] La présente invention porte également sur un procédé de décontamination d’une atmosphère contaminée par un gaz corrosif comprenant les étapes suivantes :
1) pulvérisation, directement dans l’atmosphère contaminée, d’une composition comprenant au moins un agent neutralisant acido-basique pour décontaminer une atmosphère contaminée par un gaz corrosif, ledit agent neutralisant acido-basique présentant au moins 2 pKa et étant caractérisé en ce que:
- pKa1 £ pKa 2
- pKa 1 >2
- pKa 2<12
- 4< ½ (pKa 1 +pKa 2) < 10 pKa 1 représentant le plus petit des pKa basiques et pKa 2 représentant le plus grand des pKa acides; puis
2) Vérification de la décontamination ;
3) Eventuellement répétition des étapes 1 et 2 jusqu’à décontamination totale ;
4) Récupération des résidus solides ou liquides ; 5) Optionnellement, rinçage de la zone décontaminée pour supprimer les résidus de la composition.
[0075] Dans un mode de réalisation du procédé, l’étape 1) est déclenchée manuellement.
[0076] Dans un mode de réalisation du procédé, l’étape 1) est déclenchée automatiquement.
[0077] L’étape 1) peut être précédée de la détection d’un gaz dans l’atmosphère, en particulier via un système de détection des gaz.
[0078] Dans un mode de réalisation particulier, ledit agent neutralisant acido- basique utilisé à l’étape 1) est une solution tampon et est caractérisé en ce que : - pKa1 = pKa 2
- pKa 1 >2 - pKa 2<12
- 4< ½ (pKa 1 + pKa 2) < 10, pKa 1 représentant le plus petit des pKa basiques et pKa 2 représentant le plus grand des pKa acides. [0079] Dans un mode de réalisation particulier, ledit agent neutralisant acido- basique utilisé à l’étape 1) est caractérisé en ce que :
- pKa1 < pKa 2
- pKa 1 >2
- pKa 2<12 - 4< ½ (pKa 1 + pKa 2) < 10, pKa 1 représentant le plus petit des pKa basiques et pKa 2 représentant le plus grand des pKa acides.
[0080] Dans un mode de réalisation particulier, ledit agent neutralisant acido- basique utilisé à l’étape 1) est un agent amphotère. En particulier l’agent amphotère est choisi dans le groupe consistant en : un acide aminé ou un sel d’un acide aminé, un sel de l’acide citrique, un sel de l’acide phosphorique, un sel de l’acide pyrophosphorique, un sel de l’acide éthylènediaminetétraacétique (EDTA) complexé ou libre, un sel de l’acide ascorbique, ou un carbonate.
[0081] Dans un mode de réalisation particulier, l’agent amphotère est un sel de l’acide ascorbique, par exemple l’ascorbate de sodium.
[0082] Dans un mode de réalisation particulier, l’agent amphotère est un acide aminé, par exemple la L-alanine.
[0083] Dans un mode de réalisation particulier, l’agent amphotère est un sel d’EDTA, par exemple l’EDTA disodique. [0084] Dans un mode de réalisation particulier, l’agent amphotère est un sel d’acide aminé, plus particulièrement un sel de glutamate, par exemple le glutamate de sodium.
[0085] Dans un mode de réalisation particulier, l’agent amphotère est un carbonate, plus particulièrement un hydrogénocarbonate, notamment l’hydrogénocarbonate de sodium. [0086] Dans un mode de réalisation particulier, l’agent amphotère, est utilisé à une concentration d’au moins 0.01 mol/L et dans la limite de solubilité de l’agent amphotère. Par exemple, il est utilisé à une concentration entre 0.01 mol/L et 10 mol/L, en particulier entre 0.1 et 5 mol/L, plus particulièrement entre 0.1 et 2 mol/L, encore plus particulièrement à 1 mol/L ou 0.5 mol/L.
[0087] Dans un mode de réalisation particulier, la composition contient deux agents amphotères. En particulier, les deux agents amphotères sont un sel d’EDTA complexé tel qu’un complexe d’EDTA-Aluminium disodique, et un sel d’acide aminé, plus particulièrement un sel de glutamate, par exemple le glutamate de sodium.
[0088] Dans un mode de réalisation particulier, ledit agent neutralisant acido- basique utilisé à l’étape 1) est un mélange d’au moins une base conjuguée d’un acide et d’au moins un acide conjugué d’une base.
[0089] Typiquement, la base conjuguée et l’acide conjugué sont utilisés à une concentration d’au moins 0.01 mol/L et dans la limite de leur solubilité. Par exemple, ils sont utilisés à une concentration comprise entre 0.01 mol/L et 10 mol/L, en particulier entre 0.1 mol/L et 5 mol/L, plus particulièrement 1 mol/L ou 0.5 mol/L.
[0090] Dans un mode de réalisation, ledit acide conjugué et ladite base conjuguée sont présents en ratio équimolaire.
[0091] Dans un mode de réalisation particulier, ladite base conjuguée est un complexe d’EDTA-Aluminium disodique et l’acide conjugué est l’acide borique.
[0092] Dans un mode de réalisation, l’agent neutralisant acido-basique utilisé à l’étape 1) possède la possibilité de chélater des ligands, en particulier des ions fluorures.
[0093] En outre, la composition utilisée à l’étape 1) peut éventuellement contenir au moins un additif choisi parmi les tensioactifs, les indicateurs de pH, les conservateurs, et leurs mélanges, tels que définis dans la présente demande. [0094] Afin de prévenir ou limiter le développement des microorganismes, la composition peut également être une composition stérile, stérilisée selon des procédés bien connus de l’Homme du métier.
[0095] Dans un mode de réalisation, la composition utilisée à l’étape 1) est sous forme de solution, telle qu’une solution aqueuse ou en solution dans un solvant organique.
[0096] Dans un mode de réalisation, elle peut également être sous forme solide, en particulier sous forme de poudre.
[0097] Dans un mode de réalisation particulier, la composition est pulvérisée sous forme de solution, sous forme solide par exemple poudre, sous forme de mousse et/ou sous forme aérosol.
[0098] La composition peut être pulvérisée au moyen d’un sprinkler, également appelé gicleur.
[0099] La composition peut également être pulvérisée au moyen d’une buse d’atomisation, qui permet de créer un brouillard.
[0100] La composition peut également être pulvérisée au moyen d’un spray.
[0101] L’Homme du métier sait adapter le moyen de pulvérisation en fonction de la forme de la composition.
[0102] L’Homme du métier sait également adapter le débit de la pulvérisation en fonction de la forme de la pièce, de la hauteur sous plafond et du volume à décontaminer.
[0103] L’étape 2 est une étape de vérification de la décontamination. Par exemple, celle-ci peut être effectuée par une mesure de la concentration en gaz contaminant (en ppm) dans l’atmosphère (détecteur de gaz), et/ou par vérification du pH des résidus. Si la composition de l'invention comprend un indicateur de pH, la vérification de pH de l'étape 2) peut être faite visuellement grâce aux indicateurs colorés, et il n'est plus nécessaire de mesurer le pH par une autre méthode telle que pH-métrie ou l'utilisation d'un papier pH. Un pH des résidus entre 4 et 9 est un indicateur d’une décontamination efficace. [0104] L’étape 4) consiste à la récupération des résidus solides ou liquides. Une fois qu'un résidu est obtenu, le résidu est ramassé avec des moyens couramment utilisés par l'homme du métier, par exemple à l'aide d'une pelle, d’un balai, d’une raclette ou par aspiration selon l’état solide ou liquide du résidu. L’Homme du métier sait adapter le moyen de ramassage en fonction de la nature du résidu. L’un des avantages de l’invention est donc une récupération aisée des résidus de décontamination à l’aide d’ustensiles de la vie courante.
[0105] En particulier, il s’agit de résidus liquides.
[0106] L’un des avantages de la composition selon l’invention est que les résidus issus de la décontamination sont à un pH entre 4 et 9. Ils sont donc non corrosifs pour les locaux contaminés et non irritants et non toxiques pour les personnes en charge de leur récupération. Leur élimination ne nécessite donc pas d’équipements spécifiques et coûteux.
[0107] La composition permet de neutraliser les gaz corrosifs avec une utilisation de quantité minimum de produit et à un coût inférieur par rapport aux produits de l'état de la technique. De plus, la composition de la présente invention à l’avantage de ne pas être dangereuse pour les organismes vivants : elle est non toxique, non irritante, non allergisante, et non écotoxique, contrairement aux produits de l'état de la technique.
[0108] Optionnellement, un rinçage de la zone décontaminée pour supprimer les résidus de la composition peut être réalisé en dernière étape.
[0109] La présente invention porte également sur un dispositif de décontamination d’une atmosphère contaminée par un gaz corrosif comprenant au moins un moyen apte à pulvériser 1 une composition comprenant au moins un agent neutralisant acido-basique pour décontaminer une atmosphère contaminée par un gaz corrosif, ledit agent neutralisant acido-basique présentant au moins 2 pKa et étant caractérisé en ce que:
- pKa1 £ pKa 2
- pKa 1 >2
- pKa 2<12
- 4< ½ (pKa 1 +pKa 2) < 10 pKa 1 représentant le plus petit des pKa basiques et pKa 2 représentant le plus grand des pKa acides, et au moins un réservoir 3 destiné à recevoir ladite composition.
[0110] Au sens de la présente demande, « au moins un » signifie un, deux, trois, quatre ou plus.
[0111] Typiquement, ladite composition est une composition telle que définie précédemment dans la présente demande.
[0112] Comme définie précédemment, la composition peut être sous forme liquide, solide ou aérosol.
[0113] Le moyen apte à pulvériser 1 la composition peut être un spray, une buse d’atomisation, un générateur de mousse ou un sprinkler.
[0114] Dans un mode de réalisation particulier, le dispositif comprend deux réservoirs 3, chacun destiné à recevoir la composition sous une forme différente. Dans un tel mode de réalisation, le dispositif comprend donc deux moyens aptes à pulvériser 1 la composition, respectivement adaptés selon la forme sous laquelle la composition doit être pulvérisée.
[0115] Dans un mode de réalisation plus particulier, le dispositif comprend :
- un premier réservoir destiné à recevoir la composition sous forme solide, relié à un moyen apte à pulvériser la composition sous forme de poudre, et
- un second réservoir destiné à recevoir la composition sous forme liquide, relié à un moyen apte à pulvériser la composition sous forme de liquide ou de mousse.
[0116] Le dispositif peut être un dispositif portatif. Par « portatif », on entend que le dispositif peut être déplacé par l’Homme.
[0117] Alternativement, le dispositif peut être un dispositif fixe. Par « fixe », on entend que le dispositif ne peut pas être déplacé par l’Homme. Il s’agit par exemple d’un dispositif intégré dans un bâtiment.
[0118] Dans un mode de réalisation de dispositif fixe, ledit au moins un moyen de pulvérisation 1 est relié à au moins un circuit 2 comprenant un fluide, ledit au moins un circuit 2 étant lui-même relié audit au moins un réservoir 3 destiné à recevoir la composition, par l’intermédiaire d’une vanne 4. L’actionnement de cette vanne 4 située à la jonction du réservoir 3 et du circuit 2, permet alors la libération de la composition dans le circuit, puis sa pulvérisation à travers le moyen de pulvérisation 1.
[0119] Dans un mode de réalisation particulier, la vanne 4 permet également de régler le débit de la libération de la composition en quantité contrôlée.
[0120] Dans un mode de réalisation particulier, la composition est sous forme liquide et le fluide dans le circuit est un liquide, en particulier de l’eau ou de l’eau comprenant un produit antigel.
[0121] Dans un mode de réalisation particulier, la composition est sous forme solide, en particulier sous forme de poudre, et le fluide dans le circuit est un liquide, en particulier de l’eau ou de l’eau comprenant un produit antigel.
[0122] Dans un mode de réalisation particulier, la composition est sous forme solide, en particulier sous forme de poudre, et le fluide dans le circuit est un gaz, en particulier un gaz neutre tel que l’azote, l’air ou l’air comprimé.
[0123] Dans un mode de réalisation particulier, la composition est sous forme aérosol et le fluide dans le circuit est un gaz, en particulier un gaz neutre tel que l’azote, l’air ou l’air comprimé.
[0124] Dans un mode de réalisation particulier, le circuit 2 est un circuit appartenant à une installation d’extinction d’incendie. Autrement dit, dans ce mode de réalisation le réservoir 3 est directement relié au circuit d’une installation d’extinction d’incendie. En effet, il est bien connu qu’une telle installation comprend entre autres un réseau de canalisations, aboutissant à des moyens de pulvérisation, qui peuvent alors être également utilisées en tant que circuit 2 selon la présente invention. Cette installation d’extinction d’incendie peut être préexistante dans la structure dans laquelle le dispositif fixe selon la présente demande est installé.
[0125] Ainsi, dans un mode de réalisation particulier, le dispositif de décontamination selon la présente invention comprend au moins un réservoir (3) relié à au moins un circuit (2) comprenant un fluide, ledit au moins un circuit (2) étant un circuit appartenant à une installation d’extinction d’incendie.
[0126] Dans un mode de réalisation particulier, ladite vanne 4 est couplée à un système de détection des gaz 5, en particulier via un automate de contrôle 6. Cela permet un actionnement automatique de celle-ci.
[0127] Dans un mode de réalisation particulier, un compartiment est prévu entre le réservoir 3 et la vanne 4. Ce compartiment est destiné à recevoir d’une part le fluide provenant du circuit 2 et d’autre part la composition provenant du réservoir 3, avant libération dans le circuit 2. [0128] Lorsque la composition est sous forme liquide, ce compartiment permet de diluer la composition avant libération dans le circuit 2.
[0129] Lorsque ladite composition est sous forme solide, par exemple sous forme de poudre, la dissolution ou la dilution de ladite composition a alors lieu ledit compartiment, préalablement à sa libération dans le circuit 2. [0130] A noter que la présence de ce compartiment est optionnelle, la composition, sous forme solide ou liquide, pouvant également être directement libérée dans le circuit 2.
[0131] Des exemples de dispositifs sont présentés en Fig. 1 et Fig. 2. Brève description des figures Fig. 1
[0132] [Fig. 1] montre un dispositif de décontamination d’une atmosphère comprenant des sprinklers 1 reliés à un circuit d’eau 2, lui-même étant relié via une vanne 4, à un réservoir 3 apte à recevoir une composition sous forme aqueuse, ladite vanne 4 étant couplée à un système de détection des gaz 5 via un automate de contrôle 6, pour un actionnement automatique.
Fig. 2
[0133] [Fig. 2] montre un dispositif de décontamination d’une atmosphère comprenant des sprinklers 1 reliés au circuit d’eau 2, lui-même étant relié via une vanne 4 à un réservoir 3 apte à recevoir une composition sous forme solide, par l’intermédiaire d’une vanne 4 située à la jonction du réservoir 3 et du circuit d’eau 2, ladite vanne 4 étant couplée à un système de détection des gaz 5 via un automate de contrôle 6, pour un actionnement automatique.
Fig. 3
[0134] [Fig. 3] est un graphique montrant l’évolution de la concentration en HCl gazeux (ppm) en fonction du volume (mL) pulvérisé d’une composition comprenant un complexe d’EDTA-Aluminium disodique et de l’acide borique en mélange équimolaire à 0,1 mol/L.
Fig. 4
[0135] [Fig. 4] est un graphique montrant l’évolution de la concentration en HCl gazeux (ppm) en fonction du volume (mL) pulvérisé d’une composition comprenant un complexe d’EDTA-Aluminium disodique et de glutamate de sodium en mélange équimolaire à 0,5 mol/L.
Fig. 5
[0136] [Fig. 5] est un graphique montrant l’évolution de la concentration en NH3 gazeux (ppm) en fonction du volume (mL) pulvérisé d’une composition comprenant un complexe d’EDTA-Aluminium disodique et de glutamate de sodium en mélange équimolaire à 0,5 mol/L.
Exemples
[0137] Exemple 1
[0138] On prépare une composition aqueuse de décontamination chimique comprenant en tant qu’agent neutralisant, le mélange suivant :
- une base conjuguée d’un acide : complexe d’EDTA-Aluminium disodique dont le pKa est de 5.87 à une concentration de 0,1 mol/L, et
- l’acide conjugué d’une base : Acide borique dont le pKa est de 9,28 à une concentration de 0,1 mol/L. [0139] Cette composition est pulvérisée dans une atmosphère contaminée par du HCl gazeux, un acide corrosif, de façon manuelle en aérosol par un spray de débit d’environ 175ml_/min et dont le gaz vecteur est l’air comprimé.
[0140] Après pulvérisation de la composition, l’atmosphère contaminée a été décontaminée et une teneur en contaminant en dessous du seuil réglementaire (Valeur moyenne d’exposition : 5ppm) a été obtenue.
[0141] La figure 3 montre l’évolution de la concentration en HCL gazeux en fonction du volume de la composition pulvérisée dans l’atmosphère.
[0142] Le pH du résidu liquide qui retombe est de 4, c’est-à-dire peu acide et non corrosif.
[0143] Exemple 2
On prépare une composition aqueuse de décontamination chimique comprenant en tant qu’agent neutralisant un agent amphotère, le glutamate de sodium à une concentration de 1mol/L et dont les pKa sont 4.15 et 9.58. Cette composition est pulvérisée dans une atmosphère contaminée par un acide corrosif, tel que le chlorure d’hydrogène.
[0144] Après pulvérisation de la composition, l’atmosphère contaminée a été décontaminée et une teneur en contaminant en dessous du seuil réglementaire a été obtenue.
[0145] Exemple 3
[0146] On prépare une composition aqueuse de décontamination chimique comprenant en tant qu’agent neutralisant, le mélange suivant : - une base conjuguée d’un acide : complexe d’EDTA-Aluminium disodique dont le pKa est de 5.87 à une concentration de 0,5 mol/L, et
- l’acide conjugué d’une base : glutamate de sodium dont le pKa est de 9.67 à une concentration de 0,5 mol/L. [0147] Cette composition est pulvérisée via une pompe dans une atmosphère contaminée par du HCl gazeux, un acide corrosif, de façon manuelle en aérosol par un spray de débit d’environ 375mL/min.
[0148] Après pulvérisation de la composition, l’atmosphère contaminée a été décontaminée et une teneur en contaminant en dessous du seuil réglementaire (Valeur moyenne d’exposition : 5 ppm) a été obtenue.
[0149] La figure 4 montre l’évolution de la concentration en HCl gazeux en fonction du volume de la composition pulvérisée dans l’atmosphère.
[0150] Le pH du résidu liquide qui retombe est de 7, c’est-à-dire un liquide neutre et non corrosif.
[0151] Exemple 4
[0152] On prépare une composition aqueuse de décontamination chimique comprenant en tant qu’agent neutralisant, le mélange suivant : - une base conjuguée d’un acide : complexe d’EDTA-Aluminium disodique dont le pKa est de 5.87 à une concentration de 0,5 mol/L, et
- l’acide conjugué d’une base : glutamate de sodium dont le pKa est de 9.67 à une concentration de 0,5 mol/L.
[0153] Cette composition est pulvérisée via une pompe dans une atmosphère contaminée par du NH3 gazeux, une base corrosive, de façon manuelle en aérosol par un spray de débit d’environ 375ml_/min.
[0154] Après pulvérisation de la composition, l’atmosphère contaminée a été décontaminée et une teneur en contaminant en dessous du seuil réglementaire (Valeur moyenne d’exposition : 20 ppm) a été obtenue. [0155] La figure 5 montre l’évolution de la concentration en NH3 gazeux en fonction du volume de la composition pulvérisée dans l’atmosphère.
[0156] Le pH du résidu liquide qui retombe est entre 7 et 8, c’est-à-dire un liquide neutre et non corrosif.

Claims

Revendications
[Revendication 1] Utilisation d’une composition comprenant au moins un agent neutralisant acido-basique pour décontaminer une atmosphère contaminée par un gaz corrosif, ledit agent neutralisant acido-basique présentant au moins 2 pKa et étant caractérisé en ce que :
- pKa1 £ pKa 2
- pKa 1 >2
- pKa 2<12
- 4< ½ (pKa 1 +pKa 2) < 10 pKa 1 représentant le plus petit des pKa basiques et pKa 2 représentant le plus grand des pKa acides.
[Revendication 2] Utilisation d’une composition selon la revendication 1 , dans laquelle ledit agent neutralisant acido-basique est un agent amphotère.
[Revendication 3] Utilisation d’une composition selon la revendication 2, dans laquelle l’agent amphotère est choisi dans le groupe consistant en : un acide aminé ou un sel d’un acide aminé, un sel de l’acide citrique, un sel de l’acide phosphorique, un sel de l’acide pyrophosphorique, un sel de l’acide éthylènediaminetétraacétique (EDTA) complexé ou libre, un sel de l’acide ascorbique, ou un carbonate.
[Revendication 4] Utilisation d’une composition selon la revendication 1 , dans ledit agent neutralisant acido-basique est un mélange d’au moins une base conjuguée d’un acide et d’au moins un acide conjugué d’une base.
[Revendication 5] Utilisation d’une composition selon la revendication 4, dans laquelle ledit acide conjugué et ladite base conjuguée sont présents en ratio équimolaire.
[Revendication 6] Utilisation d’une composition selon la revendication 1 , dans laquelle la base conjuguée est un complexe d’EDTA-Aluminium disodique et l’acide conjugué est l’acide borique.
[Revendication 7] Utilisation d’une composition selon la revendication 2 dans laquelle la composition contient deux agents amphotères, en particulier un complexe d’EDTA-Aluminium disodique et du glutamate de sodium.
[Revendication 8] Utilisation d’une composition selon l’une des revendications 1 à 7, dans laquelle ladite composition est sous forme de solution ou sous forme solide.
[Revendication 9] Utilisation d’une composition selon la revendication 8, dans laquelle ladite composition sous forme de solution ou sous forme solide est formulée en aérosol.
[Revendication 10] Utilisation d’une composition selon la revendication 8, dans laquelle ladite composition sous forme de solution est formulée sous forme de mousse.
[Revendication 11] Utilisation d’une composition selon l’une des revendications 1 à 10, dans laquelle ladite composition est pulvérisée directement dans l’atmosphère contaminée par des gaz corrosifs.
[Revendication 12] Procédé de décontamination d’une atmosphère contaminée par un gaz corrosif comprenant les étapes suivantes :
1) pulvérisation, directement dans l’atmosphère contaminée, d’une composition comprenant au moins un agent neutralisant acido-basique pour décontaminer une atmosphère contaminée par un gaz corrosif, ledit agent neutralisant acido-basique présentant au moins 2 pKa et étant caractérisé en ce que:
- pKa1 £ pKa 2
- pKa 1 >2
- pKa 2<12 - 4< ½ (pKa 1 +pKa 2) < 10 pKa 1 représentant le plus petit des pKa basiques et pKa 2 représentant le plus grand des pKa acides; puis
2) Vérification de la décontamination ;
3) Eventuellement répétition des étapes 1 et 2 jusqu’à décontamination totale ; 4) Récupération des résidus solides ou liquides ; 5) Optionnellement, rinçage de la zone décontaminée pour supprimer les résidus de la composition.
[Revendication 13] Dispositif de décontamination d’une atmosphère contaminée par un gaz corrosif comprenant au moins un moyen apte à pulvériser (1) une composition comprenant au moins un agent neutralisant acido-basique pour décontaminer une atmosphère contaminée par un gaz corrosif, ledit agent neutralisant acido-basique présentant au moins 2 pKa et étant caractérisé en ce que:
- pKa1 £ pKa 2 - pKa 1 >2
- pKa 2<12
- 4< ½ (pKa 1 +pKa 2) < 10 pKa 1 représentant le plus petit des pKa basiques et pKa 2 représentant le plus grand des pKa acides, et au moins un réservoir (3) destiné à recevoir ladite composition.
[Revendication 14] Dispositif de décontamination selon la revendication 12, dans lequel ledit au moins un réservoir (3) est relié à au moins un circuit (2) comprenant un fluide, ledit au moins un circuit (2) étant un circuit appartenant à une installation d’extinction d’incendie.
PCT/FR2021/050029 2020-01-10 2021-01-08 Système de décontamination chimique de gaz corrosifs WO2021140304A1 (fr)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US17/791,774 US11839850B2 (en) 2020-01-10 2021-01-08 System for the chemical decontamination of corrosive gases
AU2021206574A AU2021206574A1 (en) 2020-01-10 2021-01-08 System for chemical decontamination of corrosive gases
CA3164299A CA3164299A1 (fr) 2020-01-10 2021-01-08 Systeme de decontamination chimique de gaz corrosifs
CN202180012921.8A CN115087493A (zh) 2020-01-10 2021-01-08 用于化学净化腐蚀性气体的系统
EP21704851.1A EP4087673A1 (fr) 2020-01-10 2021-01-08 Système de décontamination chimique de gaz corrosifs
MX2022008541A MX2022008541A (es) 2020-01-10 2021-01-08 Sistema para la descontaminación química de gases corrosivos.
BR112022013502A BR112022013502A2 (pt) 2020-01-10 2021-01-08 Uso de uma composição, processo e dispositivo de descontaminação de uma atmosfera contaminada por um gás corrosivo
US18/357,285 US20230364556A1 (en) 2020-01-10 2023-07-24 System for the chemical decontamination of corrosive gases

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2000212A FR3106063B1 (fr) 2020-01-10 2020-01-10 Système de décontamination chimique de gaz corrosifs
FRFR2000212 2020-01-10

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US17/791,774 A-371-Of-International US11839850B2 (en) 2020-01-10 2021-01-08 System for the chemical decontamination of corrosive gases
US18/357,285 Continuation US20230364556A1 (en) 2020-01-10 2023-07-24 System for the chemical decontamination of corrosive gases

Publications (1)

Publication Number Publication Date
WO2021140304A1 true WO2021140304A1 (fr) 2021-07-15

Family

ID=70295322

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2021/050029 WO2021140304A1 (fr) 2020-01-10 2021-01-08 Système de décontamination chimique de gaz corrosifs

Country Status (10)

Country Link
US (2) US11839850B2 (fr)
EP (1) EP4087673A1 (fr)
CN (1) CN115087493A (fr)
AU (1) AU2021206574A1 (fr)
BR (1) BR112022013502A2 (fr)
CA (1) CA3164299A1 (fr)
CL (1) CL2022001859A1 (fr)
FR (1) FR3106063B1 (fr)
MX (1) MX2022008541A (fr)
WO (1) WO2021140304A1 (fr)

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2031802A (en) * 1932-05-06 1936-02-25 Ici Ltd Recovery of sulphur dioxide from gas mixtures
US3757488A (en) * 1971-04-27 1973-09-11 Itt Gas removal method and composition
FR2236546A1 (fr) * 1973-07-11 1975-02-07 Stauffer Chemical Co
DE2707935A1 (de) * 1975-07-19 1978-08-31 Heinz Hoelter Vorrichtung und waschloesung zur reinigung von gasen, die so tief 2, hf, no tief x und hcl enthalten
US5270025A (en) * 1991-04-05 1993-12-14 Energy & Environmental Research Corp. Methods for controlling N2 O emissions and for the reduction of NO.sub.x emissions in combustion systems while controlling N2 O emissions
US20120107209A1 (en) * 2010-10-29 2012-05-03 Mecs Inc Regenerative recovery of sulfur dioxide from effluent gases
WO2013137452A1 (fr) 2012-03-16 2013-09-19 株式会社ウイングターフ Procédé de décontamination d'un composé organique
WO2018143186A1 (fr) 2017-01-31 2018-08-09 Sdバイオシステム株式会社 Dispositif de décontamination et procédé de décontamination utilisant ledit dispositif de décontamination
EP3476474A1 (fr) 2017-10-31 2019-05-01 Agency For Defense Development Sorbant réactif à base d'argile activée pour la décontamination d'agents chimiques de guerre (cwa) et procédé de décontamination l'utilisant
WO2019112571A1 (fr) 2017-12-05 2019-06-13 Battelle Memorial Institute Compositions de décontamination et méthodes de décontamination
WO2019113434A1 (fr) 2017-12-08 2019-06-13 Oshkosh Corporation Système de nettoyage à l'ozone
WO2019133801A1 (fr) 2017-12-29 2019-07-04 Tomi Environmental Solutions, Inc. Procédé et système de décontamination de petites enceintes
US10343111B2 (en) * 2014-11-13 2019-07-09 Spartan Energy Services LLC Desulfurization of flue gas from an amine process
WO2019150301A1 (fr) 2018-02-02 2019-08-08 Daniele Tartaro Procédé de réduction de la contamination de composés organiques volatils, en particulier le formaldéhyde
CN110575723A (zh) * 2019-09-04 2019-12-17 韩成刚 控制大气污染及火险的液态风道

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7147822B2 (en) * 2003-07-07 2006-12-12 Sl Parkhurst Corporation Aerosol odor eliminator
FR2960446B1 (fr) * 2010-05-25 2012-07-20 Saint Gobain Quartz Sas Media piegeur pour purificateur d'air
CN207769539U (zh) * 2017-12-27 2018-08-28 环境保护部环境规划院 一种二氧化硫吸收净化设备
KR20200078270A (ko) * 2018-12-23 2020-07-01 서정수 저울이 있는 공기보다 무거운 유해가스 포집기
CN109603772A (zh) * 2019-01-31 2019-04-12 重庆医药高等专科学校 一种用于消除空气中污染物的组合物
CN112763285A (zh) * 2019-11-01 2021-05-07 江苏中粼膜科技有限公司 一种大气污染采样装置
CN211677091U (zh) * 2019-11-26 2020-10-16 河南叁点壹肆环境科技有限公司 一种空气污染防治装置

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2031802A (en) * 1932-05-06 1936-02-25 Ici Ltd Recovery of sulphur dioxide from gas mixtures
US3757488A (en) * 1971-04-27 1973-09-11 Itt Gas removal method and composition
FR2236546A1 (fr) * 1973-07-11 1975-02-07 Stauffer Chemical Co
DE2707935A1 (de) * 1975-07-19 1978-08-31 Heinz Hoelter Vorrichtung und waschloesung zur reinigung von gasen, die so tief 2, hf, no tief x und hcl enthalten
US5270025A (en) * 1991-04-05 1993-12-14 Energy & Environmental Research Corp. Methods for controlling N2 O emissions and for the reduction of NO.sub.x emissions in combustion systems while controlling N2 O emissions
US20120107209A1 (en) * 2010-10-29 2012-05-03 Mecs Inc Regenerative recovery of sulfur dioxide from effluent gases
WO2013137452A1 (fr) 2012-03-16 2013-09-19 株式会社ウイングターフ Procédé de décontamination d'un composé organique
US10343111B2 (en) * 2014-11-13 2019-07-09 Spartan Energy Services LLC Desulfurization of flue gas from an amine process
WO2018143186A1 (fr) 2017-01-31 2018-08-09 Sdバイオシステム株式会社 Dispositif de décontamination et procédé de décontamination utilisant ledit dispositif de décontamination
EP3476474A1 (fr) 2017-10-31 2019-05-01 Agency For Defense Development Sorbant réactif à base d'argile activée pour la décontamination d'agents chimiques de guerre (cwa) et procédé de décontamination l'utilisant
WO2019112571A1 (fr) 2017-12-05 2019-06-13 Battelle Memorial Institute Compositions de décontamination et méthodes de décontamination
WO2019113434A1 (fr) 2017-12-08 2019-06-13 Oshkosh Corporation Système de nettoyage à l'ozone
WO2019133801A1 (fr) 2017-12-29 2019-07-04 Tomi Environmental Solutions, Inc. Procédé et système de décontamination de petites enceintes
WO2019150301A1 (fr) 2018-02-02 2019-08-08 Daniele Tartaro Procédé de réduction de la contamination de composés organiques volatils, en particulier le formaldéhyde
CN110575723A (zh) * 2019-09-04 2019-12-17 韩成刚 控制大气污染及火险的液态风道

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GRIFFIN WC: "Calculation of HLB Values of Non-lonic Surfactants", JOURNAL OF THE SOCIETY OF COSMETIC CHEMISTS, vol. 5, 1954, pages 259
GRIFFIN WC: "Classification of Surface-Active Agents by 'HLB", JOURNAL OF THE SOCIETY OF COSMETIC CHEMISTS, vol. 1, 1949, pages 311

Also Published As

Publication number Publication date
BR112022013502A2 (pt) 2022-09-13
US20230364556A1 (en) 2023-11-16
AU2021206574A1 (en) 2022-08-04
FR3106063B1 (fr) 2022-06-10
CL2022001859A1 (es) 2023-03-31
US11839850B2 (en) 2023-12-12
US20230043563A1 (en) 2023-02-09
EP4087673A1 (fr) 2022-11-16
CA3164299A1 (fr) 2021-07-15
CN115087493A (zh) 2022-09-20
MX2022008541A (es) 2022-10-18
FR3106063A1 (fr) 2021-07-16

Similar Documents

Publication Publication Date Title
CA2300698C (fr) Formulation de decontamination a large spectre et methode d&#39;utilisation
US6569353B1 (en) Reactive decontamination formulation
Singh et al. Decontamination of chemical warfare agents
US8012411B1 (en) Enhanced toxic cloud knockdown spray system for decontamination applications
WO2006054923A1 (fr) Composition moussante multifonctionnelle destinee au traitement special combine de surfaces, de volumes et d&#39;objets visant a enlever des agents dangereux ou substances dangereuses
US20040022867A1 (en) Decontamination formulation with sorbent additive
US20110288360A1 (en) Compositions for neutralization and decontamination of toxic chemical and biological agents
JP2015531613A (ja) 万能表面除染剤
CA3185055A1 (fr) Systeme desinfectant en deux parties comprenant un indicateur de couleur
WO2021140304A1 (fr) Système de décontamination chimique de gaz corrosifs
CA2891419C (fr) Composition de depollution et son utilisation
JP2001310302A (ja) 木材用防腐・防虫処理剤およびそれを用いる木材の処理方法
EP0906773A1 (fr) Composition de décontamination
US11679293B2 (en) Quarternary ammonium halides for treating halogen contamination
RU2555873C1 (ru) Бифункциональная водная загущенная рецептура
RU2815148C2 (ru) Галогениды четвертичного аммония для обработки загрязнений галогенами
US7371714B2 (en) Chemical agent decontamination composition comprising a perfluorinated alkyl bromide
WO2020169931A1 (fr) Composition pour enlever des residus chimiques et ses utilisations
JPS59501394A (ja) 刺激物質および有毒ガスを中和する方法ならびにその方法を実施するための好適な製剤
RU2480325C1 (ru) Состав для обработки древесины и способ обработки древесины этим составом
Kotchman Jr Journal/Book Titla

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21704851

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3164299

Country of ref document: CA

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022013502

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2021206574

Country of ref document: AU

Date of ref document: 20210108

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021704851

Country of ref document: EP

Effective date: 20220810

ENP Entry into the national phase

Ref document number: 112022013502

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220706