WO2013137273A1 - 非水電解質二次電池および電池パック - Google Patents

非水電解質二次電池および電池パック Download PDF

Info

Publication number
WO2013137273A1
WO2013137273A1 PCT/JP2013/056860 JP2013056860W WO2013137273A1 WO 2013137273 A1 WO2013137273 A1 WO 2013137273A1 JP 2013056860 W JP2013056860 W JP 2013056860W WO 2013137273 A1 WO2013137273 A1 WO 2013137273A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
lithium
secondary battery
electrolyte secondary
aqueous electrolyte
Prior art date
Application number
PCT/JP2013/056860
Other languages
English (en)
French (fr)
Inventor
秀郷 猿渡
博道 栗山
松野 真輔
大 山本
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Priority to CN201380002500.2A priority Critical patent/CN103718370B/zh
Priority to EP13761007.7A priority patent/EP2827431A4/en
Publication of WO2013137273A1 publication Critical patent/WO2013137273A1/ja
Priority to US14/164,511 priority patent/US20140141323A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/044Activating, forming or electrochemical attack of the supporting material
    • H01M4/0445Forming after manufacture of the electrode, e.g. first charge, cycling
    • H01M4/0447Forming after manufacture of the electrode, e.g. first charge, cycling of complete cells or cells stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/446Initial charging measures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/10Temperature sensitive devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • Embodiments of the present invention relate to a non-aqueous electrolyte secondary battery and a battery pack having the non-aqueous electrolyte secondary battery.
  • a non-aqueous electrolyte secondary battery including a titanium composite oxide in which a lithium occlusion / release reaction proceeds at a potential higher than 0.5 V with respect to Li / Li + at a negative electrode is a non-aqueous electrolyte secondary battery using a carbon material as a negative electrode.
  • the volume change of the active material accompanying charging / discharging is small and the operating potential at the time of charging / discharging is high.
  • a non-aqueous electrolyte secondary battery including a titanium composite oxide in the negative electrode has a high operating potential
  • a coating that inhibits side reactions is formed on the surface of the carbon negative electrode.
  • SEI solid electrolyte interface
  • An object of the present invention is to provide a non-aqueous electrolyte secondary battery excellent in charge / discharge cycle and a battery pack having the non-aqueous electrolyte secondary battery.
  • the non-aqueous electrolyte secondary battery of the embodiment includes a positive electrode, a negative electrode, a separator disposed between the positive electrode and the negative electrode, and a non-aqueous electrolyte.
  • the negative electrode is Li / Li + as an active material. On the other hand, it contains a titanium composite oxide in which a lithium occlusion / release reaction proceeds at a potential higher than 0.5 V, and the non-aqueous electrolyte contains at least one element selected from B and S.
  • the negative electrode has a Li / C composition ratio of 0.20 to 0.50 and a Li / Ti composition ratio of 0.5 to 5.0 with respect to the elemental composition of the surface measured by X-ray photoelectron spectroscopy.
  • the nonaqueous electrolyte secondary battery of the embodiment includes a titanium composite oxide in which a negative electrode has an active material and a lithium occlusion / release reaction proceeds at a potential higher than 0.5 V vs Li / Li + , and the nonaqueous electrolyte includes B and S.
  • the negative electrode has a Li / C composition ratio of 0.20 to 0.50 with respect to the elemental composition of the surface measured by X-ray photoelectron spectroscopy, and a Li / Ti composition ratio of 0 The condition of 0.5 to 5.0 is satisfied, and the charge / discharge cycle characteristics are greatly improved.
  • Examples of the X-ray photoelectron spectrometer include, but are not particularly limited to, the AXIS series manufactured by Shimadzu Corporation.
  • the Li / C composition ratio is smaller than 0.20, the resistance is too large and it is difficult to obtain the effect of improving the cycle characteristics.
  • the Li / C composition ratio is greater than 0.50, the resistance increase with the progress of the cycle is large, and it is difficult to obtain the effect of improving the cycle characteristics.
  • the Li / Ti composition ratio is smaller than 0.5, the resistance increase with the progress of the cycle is large, and it is difficult to obtain the effect of improving the cycle characteristics.
  • the Li / Ti composition ratio is larger than 5, the resistance is too large and it is difficult to obtain the effect of improving the cycle characteristics.
  • the Li / Ti composition ratio is more preferably in the range of 0.6 to 4.5.
  • the content of B or S in the nonaqueous electrolyte is preferably in the range of 1 ⁇ 10 ⁇ 5 to 2 wt%.
  • the above-described Li / C composition ratio of the negative electrode surface is 0.20 to 0.50 and the Li / Ti composition ratio is 0.5 to 0.5%. It becomes difficult to make it within the range of 5.0.
  • the content of B or S is greater than 10 wt%, the resistance of the electrolyte solution itself increases, the Li / C composition ratio is less than 0.20, or the Li / Ti composition ratio is greater than 5.0. There is a tendency to increase, and it becomes difficult to obtain the effect of improving the cycle characteristics.
  • Examples of the titanium composite oxide in which the lithium occlusion / release reaction proceeds at a potential higher than 0.5 V vs Li / Li + which is a negative electrode active material include, for example, lithium titanate represented by the chemical formula Li 4 + x Ti 5 O 12. It is done.
  • the negative electrode active material preferably has an average particle diameter in the range of 0.05 to 2 ⁇ m and a specific surface area in the range of 2 to 25 m 2 / g. If the average particle size is smaller than 0.05 ⁇ m, the crystallinity of the active material itself is lowered, and if it is larger than 2 ⁇ m, the lithium ion diffusion distance in the active material becomes too large, so that it is difficult to obtain the effect of improving the cycle characteristics.
  • the specific surface area is smaller than 2 m 2 / g, the resistance of the battery itself is increased.
  • the specific surface area is larger than 25 m 2 / g, the increase in resistance with the progress of the cycle is increased, and it is difficult to obtain the effect of improving the cycle characteristics.
  • the average particle diameter of the negative electrode active material is synonymous with the 50% frequency diameter. This is measured by, for example, a laser diffraction / scattering type / particle size / particle size distribution measuring apparatus.
  • An example of the apparatus is a Nikkiso Microtrack.
  • the specific surface area of the negative electrode active material is measured by a specific surface area / pore distribution measuring device using a gas adsorption phenomenon.
  • the apparatus include an automatic specific surface area / pore distribution measuring apparatus (BELSORP-mini) manufactured by Nippon Bell.
  • the positive electrode has a current collector and a positive electrode layer (positive electrode active material layer) supported on one or both sides of the current collector and containing a positive electrode active material, a conductive agent, and a binder.
  • a positive electrode active material layer for example, a conductive agent and a binder are added to a powdered positive electrode active material, suspended in an appropriate solvent, and the suspension (slurry) is applied to a current collector, dried and pressed. It is produced by forming a strip electrode.
  • the positive electrode active material includes manganese dioxide (MnO 2 ), iron oxide, copper oxide, nickel oxide, Li a MnO 2 , lithium cobalt composite oxide (Li a CoM h O 2 , where M is Al, Cr, Mg and At least one element or two or more elements selected from the group consisting of Fe, 0 ⁇ h ⁇ 0.1, a lithium manganese cobalt composite oxide (eg, LiMn 1- gh Co g M h O 2 , wherein M is at least one element selected from the group consisting of Al, Cr, Mg, and Fe, 0 ⁇ g ⁇ 0.5, lithium manganese nickel composite oxide (for example, LiMn j Ni j M 1 ⁇ 2j O 2, wherein M is at least one or more element selected Co, Cr, Al, from the group consisting of Mg and Fe, 1/3 ⁇ j ⁇ 1/2, LiMn / 3 Ni 1/3 Co 1/3 O 2 , LiMn 1/2 Ni 1/2 O 2), spinel type lithium-mangan
  • a and b are preferably 0 ⁇ a ⁇ 1.2 and 0 ⁇ b ⁇ 1.
  • Other positive electrode active materials include conductive polymer materials such as polyaniline and polypyrrole, disulfide polymer materials, organic materials such as sulfur (S) and carbon fluoride, and inorganic materials.
  • More preferable positive electrode active materials are lithium cobalt composite oxide, lithium manganese nickel composite oxide, spinel type lithium manganese composite oxide, spinel type lithium manganese nickel composite oxide, lithium manganese cobalt composite oxide, and lithium iron phosphate. .
  • the average particle diameter of the positive electrode active material is desirably 1 ⁇ m or more and 20 ⁇ m or less.
  • the binder include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), and fluorine-based rubber.
  • the positive electrode active material layer may contain a conductive agent.
  • the conductive agent include carbonaceous materials such as acetylene black, carbon black, and graphite.
  • the mixing ratio of the positive electrode active material, the conductive agent, and the binder is preferably 73 to 95% by weight of the positive electrode active material, 3 to 20% by weight of the conductive agent, and 2 to 7% by weight of the binder.
  • the positive electrode current collector is preferably formed of aluminum foil or aluminum alloy foil.
  • the aluminum foil and the aluminum alloy foil desirably have an average crystal grain size of 50 ⁇ m or less, more preferably 30 ⁇ m or less, and still more preferably 5 ⁇ m or less.
  • the average crystal grain size is 50 ⁇ m or less, the strength of the aluminum foil or aluminum alloy foil can be dramatically increased, the positive electrode can be densified with a high press pressure, and the battery capacity is increased. be able to.
  • the average crystal grain size of the aluminum foil and the aluminum alloy foil changes under complex influences from a plurality of factors such as material structure, impurities, processing conditions, heat treatment history, and annealing conditions.
  • the crystal grain size can be adjusted by combining the above factors in the production process of the current collector.
  • the thickness of the aluminum foil and the aluminum alloy foil is preferably 20 ⁇ m or less, and more preferably 15 ⁇ m or less.
  • the purity of the aluminum foil is preferably 99% by mass or more.
  • As the aluminum alloy an alloy containing elements such as magnesium, zinc and silicon is preferable.
  • the content of transition metals such as iron, copper, nickel and chromium is preferably 1% by mass or less.
  • Negative electrode The negative electrode includes a current collector and a negative electrode layer (negative electrode active material layer) that is supported on one or both surfaces of the current collector and includes a negative electrode active material, a conductive agent, and a binder.
  • a negative electrode active material layer that is supported on one or both surfaces of the current collector and includes a negative electrode active material, a conductive agent, and a binder.
  • a conductive agent and a binder are added to a powdered negative electrode active material, these are suspended in an appropriate solvent, and this suspension (slurry) is applied to a current collector, dried and pressed. It is produced by forming a strip electrode.
  • the negative electrode current collector is preferably formed of, for example, copper foil, aluminum foil, or aluminum alloy foil.
  • the aluminum foil or aluminum alloy foil constituting the negative electrode current collector desirably has an average crystal grain size of 50 ⁇ m or less, more preferably 30 ⁇ m or less, and still more preferably 5 ⁇ m or less.
  • the average crystal grain size can be determined by the method described above. When the average crystal grain size is 50 ⁇ m or less, the strength of the aluminum foil or aluminum alloy foil can be dramatically increased. For this reason, it is possible to increase the negative electrode capacity by increasing the pressure during pressing to increase the density of the negative electrode active material layer. Further, it is possible to prevent the current collector from being dissolved and corroded in an overdischarge cycle under a high temperature environment (40 ° C. or higher). For this reason, an increase in negative electrode impedance can be suppressed. Furthermore, output characteristics, quick charge, and charge / discharge cycle characteristics can also be improved.
  • the average crystal grain size of aluminum foil or aluminum alloy foil changes under complex influences from several factors such as material structure, impurities, processing conditions, heat treatment history, and annealing conditions.
  • the crystal grain size can be adjusted by combining the above factors in the production process of the current collector.
  • the thickness of the aluminum foil or aluminum alloy foil is desirably 20 ⁇ m or less, more preferably 15 ⁇ m or less.
  • the aluminum foil preferably has a purity of 99% by mass or more.
  • the aluminum alloy is preferably an alloy containing elements such as magnesium, zinc, and silicon. Transition metals such as iron, copper, nickel and chromium contained as alloy components are preferably 1% by mass or less.
  • the negative electrode active material includes a titanium composite oxide in which a lithium storage / release reaction proceeds at a potential higher than 0.5 V vs Li / Li + .
  • a titanium composite oxide in which the occlusion and release reaction of lithium proceeds at a potential higher than 0.5 V vs Li / Li + is, for example, Li 4 + x Ti 5 O 12 Spinel type lithium titanate, ramsteride type Li 2 + x Ti 3 O 7 (x varies in the range of ⁇ 1 ⁇ x ⁇ 3 by charge / discharge reaction), Ti and P, V, Sn, Cu , Metal composite oxides containing at least one element selected from the group consisting of Ni and Fe.
  • Examples of the metal composite oxide containing at least one element selected from the group consisting of Ti and P, V, Sn, Cu, Ni, and Fe include TiO 2 —P 2 O 5 , TiO 2 —V 2. O 5 , TiO 2 —P 2 O 5 —SnO 2 , TiO 2 —P 2 O 5 —MO (M is at least one element selected from the group consisting of Cu, Ni and Fe).
  • This metal complex oxide has a low crystallinity and preferably has a microstructure in which a crystal phase and an amorphous phase coexist or exist alone. Such a microstructured metal composite oxide can greatly improve the cycle performance.
  • These metal composite oxides change to lithium titanium composite oxides when lithium is inserted by charging. Among lithium titanium composite oxides, spinel type lithium titanate is preferable because of its excellent cycle characteristics.
  • the negative electrode active material may contain other active materials, and examples thereof include carbonaceous materials and metal compounds.
  • Examples of the carbonaceous material include natural graphite, artificial graphite, coke, vapor grown carbon fiber, mesophase pitch carbon fiber, spherical carbon, and resin-fired carbon. More preferable carbonaceous materials include vapor grown carbon fiber, mesophase pitch carbon fiber, and spherical carbon.
  • the carbonaceous material preferably has a (002) plane spacing d002 of 0.34 nm or less by X-ray diffraction.
  • metal compound metal sulfide or metal nitride can be used.
  • metal sulfide titanium sulfide such as TiS 2
  • molybdenum sulfide such as MoS 2
  • iron sulfide such as FeS, FeS 2
  • Li x FeS 2 can be used.
  • metal nitride for example, lithium cobalt nitride (for example, Li s Co t N, 0 ⁇ s ⁇ 4, 0 ⁇ t ⁇ 0.5) can be used.
  • binder examples include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), fluorine rubber, and styrene butadiene rubber.
  • the blending ratio of the negative electrode active material, the conductive agent and the binder is preferably in the range of 73 to 96% by weight of the negative electrode active material, 2 to 20% by weight of the conductive agent, and 2 to 7% by weight of the binder.
  • Nonaqueous electrolyte includes a nonaqueous solvent and an electrolyte salt dissolved in the nonaqueous solvent.
  • the polymer may be contained in the non-aqueous solvent.
  • electrolyte salt examples include LiPF 6 , LiBF 4 , Li (CF 3 SO 2 ) 2 N (bistrifluoromethanesulfonylamidolithium; commonly known as LiTFSI), LiCF 3 SO 3 (commonly known as LiTFS), and Li (C 2 F 5 SO 2 ).
  • LiBETI bis pentafluoroethanesulfonyl amide lithium; called LiBETI
  • LiClO 4 LiAsF 6 , LiSbF 6, bisoxalato Lato lithium borate (LiB (C 2 O 4) 2 ( known as LiBOB))
  • LiBOB bisoxalato Lato lithium borate
  • difluoro tri-fluoro-2
  • lithium salts such as -oxide-2-trifluoro-methylpropionate (2-)-0,0) lithium borate (LiBF 2 OCOOC (CF 3 ) 2 ) (commonly called LiBF 2 (HHIB))
  • HHIB lithium borate
  • These electrolyte salts may be used alone or in combination of two or more.
  • LiPF 6 and LiBF 4 are preferable.
  • the electrolyte salt concentration is preferably 1 to 3 mol / L. Such regulation of the electrolyte concentration makes it possible to further improve the performance when a high load current is passed while suppressing the influence of an increase in viscosity due to an increase in the electrolyte salt concentration.
  • the non-aqueous solvent is not particularly limited.
  • PC propylene carbonate
  • EC ethylene carbonate
  • DME 1,2-dimethoxyethane
  • GBL ⁇ -butyrolactone
  • THF tetrahydrofuran
  • 2-MeHF 2 -Use methyltetrahydrofuran
  • 1,3-dioxolane 1,3-dioxolane
  • sulfolane 1,3-dioxolane
  • sulfolane acetonitrile (AN)
  • DEC diethyl carbonate
  • DMC dimethyl carbonate
  • MEC methyl ethyl carbonate
  • DPC dipropyl carbonate
  • solvents may be used alone or in combination of two or more.
  • An additive may be added to this non-aqueous electrolyte.
  • an additive is not specifically limited, Vinylene carbonate (VC), vinylene acetate (VA), vinylene butyrate, vinylene hexanate, vinylene crotonate, catechol carbonate, etc. are mentioned.
  • the concentration of the additive is preferably in the range of 0.1% by weight to 3% by weight with respect to 100% by weight of the nonaqueous electrolyte. A more preferable range is 0.5% by weight or more and 1% by weight or less.
  • the non-aqueous electrolyte of the embodiment includes B or S.
  • the compound containing B include lithium tetrafluoroborate (LiBF 4 ), lithium bis (oxalato) lithium borate (LiBOB), lithium difluoro (oxalato) borate (LiBF 2 C 2 O 4 ), and bis (malonato) boric acid.
  • Lithium, lithium bis (succinate) borate, and difluoro (trifluoro-2-oxide-2-trifluoro-methylpropionate (2-)-0,0) lithium borate are preferred.
  • Compounds containing S include ethylene sulfite, propylene sulfite, 1,2-ethane sultone, 1,3-propane sultone, 1,4-butane sultone, 1,5-pentane sultone, 1,3-propene sultone, 1,4 -Butylene sultone is preferred.
  • the separator is not particularly limited as long as it has insulating properties, and a porous film or a nonwoven fabric made of a polymer such as polyolefin, cellulose, polyethylene terephthalate, and vinylon can be used.
  • a porous film or a nonwoven fabric made of a polymer such as polyolefin, cellulose, polyethylene terephthalate, and vinylon can be used.
  • One type of separator material may be used, or two or more types may be used in combination.
  • Exterior member As the exterior member, a laminate film having a thickness of 0.5 mm or less or a metal container having a thickness of 1 mm or less is used.
  • the metal container is more preferably 0.5 mm or less in thickness.
  • Examples of the shape of the exterior member that is, the battery shape, include a flat type (thin type), a square type, a cylindrical type, a coin type, and a button type.
  • the battery can be applied to, for example, a small-sized application loaded on a portable electronic device or the like, and a large-sized application loaded on a two-wheel to four-wheeled vehicle or the like.
  • the laminate film a multilayer film in which a metal layer is interposed between resin layers is used.
  • the metal layer is preferably an aluminum foil or an aluminum alloy foil for weight reduction.
  • a polymer material such as polypropylene (PP), polyethylene (PE), nylon, polyethylene terephthalate (PET) can be used.
  • the laminate film can be formed into the shape of an exterior member by sealing by heat sealing.
  • Metal containers are made of aluminum or aluminum alloy.
  • the aluminum alloy an alloy containing elements such as magnesium, zinc and silicon is preferable.
  • transition metals such as iron, copper, nickel and chromium are contained in the alloy, the amount is preferably 100 ppm or less.
  • Example A-1 ⁇ Preparation of positive electrode> LiNi 0.6 Co 0.2 Mn 0.2 O 2 was prepared as a positive electrode active material, graphite and acetylene black as a conductive agent, and PVdF as a binder.
  • NMP N-methylpyrrolidone
  • This slurry was applied to both sides of a current collector made of aluminum foil having a thickness of 15 ⁇ m, dried, and press-molded to produce a positive electrode having a positive electrode active material layer on both sides of the current collector.
  • the positive electrode active material layer on one side has a thickness of 50 ⁇ m and a density of 3.30 g / cm 3 .
  • ⁇ Production of negative electrode> Li 4 Ti 5 O 12 having an average particle size of 0.9 ⁇ m and a specific surface area of 8 m 2 / g as a negative electrode active material, graphite as a conductive agent, and PVdF as a binder were prepared.
  • NMP N-methylpyrrolidone
  • the slurry was applied to both sides of a 15 ⁇ m thick aluminum foil current collector, dried, and press-molded to produce a negative electrode having a negative electrode active material layer on both sides of the current collector.
  • the negative electrode active material layer on one side has a thickness of 65 ⁇ m and a density of 2.40 g / cm 3 .
  • a non-aqueous electrolyte secondary battery having the structure shown in FIG. 1 was produced.
  • a container 10 having a bottomed rectangular cylindrical body made of aluminum having a thickness of 0.3 mm, and a positive electrode terminal 13 and an aluminum terminal in which a negative electrode terminal 12 is inserted by caulking through an insulating resin 14.
  • a lid 11 was prepared. After impregnating a separator 2 made of a cellulose nonwoven fabric with a thickness of 15 ⁇ m with a non-aqueous electrolyte, the positive electrode 3 is covered with the separator 2, and the negative electrode 1 is stacked so as to face the positive electrode 3 with the separator 2 interposed therebetween.
  • a spiral electrode group having lead tabs extending from the positive electrode 3 and the negative electrode 1 was produced. This electrode group was pressed into a flat shape.
  • the positive electrode lead tab 5 of the electrode group formed into a flat shape is connected to one end of the positive electrode terminal 13 of the lid body 11, the negative electrode lead tab 4 is connected to one end of the negative electrode terminal 12, and the electrode group is passed through the opening of the container together with the lid body 11.
  • the lid 11 was welded to the opening of the container 10 after being inserted into the inside. Through these steps, a nonaqueous electrolyte secondary battery having the structure shown in FIG. 1 and having a thickness of 3.0 mm, a width of 35 mm, and a height of 62 mm was manufactured.
  • the obtained nonaqueous electrolyte secondary battery was charged to 2.8 V at a current value of 0.2 C in a 25 ° C. environment, discharged to 0.5 V at a current value of 0.2 C, and then left for 24 hours in a 70 ° C. environment. Aging was performed. This battery was charged to 2.4 V in a 25 ° C. environment. The battery was disassembled and the surface element composition of the negative electrode extracted was measured by X-ray photoelectron spectroscopy. As a result, the Li / C composition ratio was 0.33, and the Li / Ti composition ratio was 1.2.
  • the battery disassembly method will be described. Place the charged battery in a glove box under an argon atmosphere, scrape the sealing (welding) part of the sealing plate and outer package with a file to peel off the sealing plate and outer package, and generate the power generation site (positive electrode / separator / negative electrode) Take out the laminate consisting of The lead portion is removed so as not to short-circuit the power generation site, and the laminate is decomposed into a positive electrode, a separator, and a negative electrode.
  • the obtained negative electrode is washed with, for example, methyl ethyl carbonate solvent to remove the Li salt on the negative electrode surface and then dried to obtain an analytical sample. Further, the obtained negative electrode is put into a solvent to dissolve the binder, the negative electrode active material layer is peeled from the current collector, and the peeled material is filtered to extract the negative electrode active material.
  • Examples A-2 to 3, B-1 to 7, C-1 to 7, D-1 to 2 A battery was prepared in the same manner as in Example A-1, except that the negative electrode active material, the electrolyte composition, and the aging conditions after charging were changed as shown in Tables 1 and 2.
  • the aging conditions are changed.
  • the additive is changed.
  • the Li salt is changed.
  • the negative electrode active material is changed.
  • Example A-1 A non-aqueous electrolyte secondary battery similar to that in Example A-1 was prepared, and the obtained non-aqueous electrolyte secondary battery was charged to 2.8 V at a current value of 0.2 C in a 25 ° C. environment. The current was discharged to 1.5V. This battery was charged to 2.4 V in a 25 ° C. environment. The battery was disassembled and the surface element composition of the negative electrode extracted was measured by X-ray photoelectron spectroscopy. As a result, the Li / C composition ratio was 0.73, and the Li / Ti composition ratio was 0.4.
  • a charge / discharge cycle test was performed in which the obtained battery was charged to 2.6 V at 2 C and discharged to 2.2 V at 2 C in a 60 ° C. environment.
  • the battery capacity after 50000 cycles was 92% for the battery of Example A-1, compared with 58% for the battery of Comparative Example A-1.
  • Comparative Example A-2 Comparative Example D-1, 2
  • a battery was prepared in the same manner as in Example A-1, except that the negative electrode active material and the aging conditions after charging were changed as shown in Tables 1 and 2.
  • the aging conditions are changed.
  • the negative electrode active material is changed.
  • each of Examples A-1 to 3, B-1 to 7, C-1 to 7, and D-1 to 2 has a cycle capacity maintenance rate of 70% or more, and a charge / discharge cycle. Improved properties were observed.
  • the battery pack has one or more non-aqueous electrolyte secondary batteries (unit cells) described above.
  • unit cells non-aqueous electrolyte secondary batteries
  • each unit cell is electrically connected in series or in parallel.
  • FIGS. 1-10 Such a battery pack will be described with reference to FIGS.
  • a plurality of unit cells 21 composed of flat type nonaqueous electrolyte secondary batteries are laminated so that the negative electrode terminal 12 and the positive electrode terminal 13 extending to the outside are aligned in the same direction, and are fastened with an adhesive tape 22 and assembled.
  • a battery 23 is configured. These unit cells 21 are electrically connected to each other in series as shown in FIG.
  • the printed wiring board 24 is disposed to face the side surface of the unit cell 21 from which the negative electrode terminal 12 and the positive electrode terminal 13 extend. As shown in FIG. 3, a thermistor 25, a protection circuit 26, and a terminal 27 for energizing external devices are mounted on the printed wiring board 24. An insulating plate (not shown) is attached to the surface of the protection circuit board 24 facing the assembled battery 23 in order to avoid unnecessary connection with the wiring of the assembled battery 23.
  • the positive electrode side lead 28 is connected to the positive electrode terminal 13 located in the lowermost layer of the assembled battery 23, and the tip thereof is inserted into the positive electrode side connector 29 of the printed wiring board 24 and electrically connected thereto.
  • the negative electrode side lead 30 is connected to the negative electrode terminal 12 positioned at the uppermost layer of the assembled battery 23, and the tip thereof is inserted into the negative electrode side connector 31 of the printed wiring board 24 and electrically connected thereto.
  • These connectors 29 and 31 are connected to the protection circuit 26 through wirings 32 and 33 formed on the printed wiring board 24.
  • the thermistor 25 detects the temperature of the unit cell 21, and the detection signal is transmitted to the protection circuit 26.
  • the protection circuit 26 can cut off the plus side wiring 34a and the minus side wiring 34b between the protection circuit 26 and the energization terminal 27 to the external device under a predetermined condition.
  • the predetermined condition is, for example, when the temperature detected by the thermistor 25 is equal to or higher than a predetermined temperature.
  • the predetermined condition is when the overcharge, overdischarge, overcurrent, etc. of the cell 21 are detected. This detection of overcharge or the like is performed for each single cell 21 or the entire single cell 21.
  • the battery voltage may be detected, or the positive electrode potential or the negative electrode potential may be detected.
  • a lithium electrode used as a reference electrode is inserted into each unit cell 21.
  • a wiring 35 for voltage detection is connected to each single cell 21, and a detection signal is transmitted to the protection circuit 26 through these wirings 35.
  • Protective sheets 36 made of rubber or resin are disposed on the three side surfaces of the assembled battery 23 excluding the side surfaces from which the positive electrode terminal 13 and the negative electrode terminal 12 protrude.
  • the assembled battery 23 is stored in a storage container 37 together with each protective sheet 36 and the printed wiring board 24. That is, the protective sheet 36 is disposed on each of the inner side surface in the long side direction and the inner side surface in the short side direction of the storage container 37, and the printed wiring board 24 is disposed on the inner side surface on the opposite side in the short side direction.
  • the assembled battery 23 is located in a space surrounded by the protective sheet 36 and the printed wiring board 24.
  • the lid 38 is attached to the upper surface of the storage container 37.
  • a heat shrink tape may be used for fixing the assembled battery 23.
  • protective sheets are arranged on both side surfaces of the assembled battery, the heat shrinkable tube is circulated, and then the heat shrinkable tube is thermally contracted to bind the assembled battery.
  • FIGS. 2 and 3 show a configuration in which the unit cells 21 are connected in series, but in order to increase the battery capacity, they may be connected in parallel.
  • the assembled battery packs can be connected in series or in parallel.
  • the mode of the battery pack is appropriately changed depending on the application.
  • those in which cycle characteristics with large current characteristics are desired are preferable.
  • Specific examples include a power source for a digital camera, a vehicle for a two- to four-wheel hybrid electric vehicle, a two- to four-wheel electric vehicle, an assist bicycle, and the like.
  • the vehicle-mounted one is suitable.
  • the negative electrode active material Li 4 Ti 5 O 12 used in the series of Example A, the series of Example B, and the series of Example C had an average operating potential of 1.55V.
  • the negative electrode active material TiO 2 used in Example D-1 and Comparative Example D-1 had an average operating potential of 1.50V.
  • the average working potential of TiO 2 (B) used in Example D-2 and Comparative Example D-2 was 1.60V.
  • Comparative Example A-1 Comparative Example D-1 and Comparative Example D-2
  • the produced nonaqueous electrolyte secondary battery was charged to 2.8 V at a current value of 0.2 C in a 25 ° C. environment, and 0
  • the battery was discharged to 2.4 V with a current value of 2 C. That is, aging was not performed in these comparative examples. Therefore, the cycle capacity retention rate was lower than that of the nonaqueous electrolyte secondary battery of the example.
  • Comparative Example A-2 the produced nonaqueous electrolyte secondary battery was charged to 2.8 V at a current value of 0.2 C in a 25 ° C. environment, and discharged to 2.4 V at a current value of 0.2 C. Aging was performed by leaving it in an 80 ° C. environment for 12 hours. In Comparative Example A-2, since the aging was performed without performing sufficient discharge, the cycle capacity retention rate was lower than that of the nonaqueous electrolyte secondary battery of the example.
  • the nonaqueous electrolytes included in the nonaqueous electrolyte secondary batteries of the above examples and comparative examples have a content of at least one element selected from B and S in the range of 1 ⁇ 10 ⁇ 5 to 10 wt%. is there. For this reason, in the nonaqueous electrolyte secondary batteries of the above examples and comparative examples, it is considered that there is little difference in cycle characteristics due to the resistance of the nonaqueous electrolyte.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 実施形態の非水電解質二次電池は、正極と、負極と、正極と負極との間に配置されたセパレータと、非水電解質とを具備し、前記負極は活物質として、Li/Liに対して0.5Vより高い電位でリチウムの吸蔵放出反応が進行するチタン複合酸化物を含み、前記非水電解質はBおよびSから選択される少なくとも1種の元素を含む。前記負極はX線光電子分光によって測定される表面の元素組成についてLi/C組成比が0.20~0.50であり、Li/Ti組成比が0.5~5.0である。

Description

非水電解質二次電池および電池パック
 本発明の実施形態は、非水電解質二次電池およびこの非水電解質二次電池を有する電池パックに関する。
 負極にLi/Liに対して0.5Vより高い電位でリチウムの吸蔵放出反応が進行するチタン複合酸化物を含む非水電解質二次電池は、負極に炭素材料を用いた非水電解質二次電池に比べ、充放電に伴う活物質の体積変化が小さいことおよび充放電時の作動電位が高いことから、充放電サイクル特性に優れるという特徴を有する。
 一方で、チタン複合酸化物を負極に含む非水電解質二次電池は作動電位が高いため、炭素負極表面には形成される、副反応を阻害する被膜(いわゆるsolid electrolyte interface[SEI])が、チタン複合酸化物負極表面には形成されにくいという問題がある。
特開2007-53083号公報 特開2008-91327号公報
 本発明の課題は、充放電サイクルに優れた非水電解質二次電池と、この非水電解質二次電池を有する電池パックとを提供することを目的とする。
 実施形態の非水電解質二次電池は、正極と、負極と、正極と負極との間に配置されたセパレータと、非水電解質とを具備し、前記負極は活物質として、Li/Liに対して0.5Vより高い電位でリチウムの吸蔵放出反応が進行するチタン複合酸化物を含み、前記非水電解質はBおよびSから選択される少なくとも1種の元素を含む。前記負極はX線光電子分光によって測定される表面の元素組成についてLi/C組成比が0.20~0.50であり、Li/Ti組成比が0.5~5.0である。
実施形態の非水電解質二次電池の一部を破断して示す正面図。 他の実施形態に係る電池パックの斜視図。 他の実施形態に係る電池パックの接続状態を示す回路図。
 以下、実施形態について説明する。
 実施形態の非水電解質二次電池は、負極が活物質として0.5V vs Li/Liより高い電位でリチウムの吸蔵放出反応が進行するチタン複合酸化物を含み、非水電解質がBおよびSから選択される少なくとも1種の元素を含み、負極はX線光電子分光によって測定される表面の元素組成についてLi/C組成比が0.20~0.50であり、Li/Ti組成比が0.5~5.0であるという条件を満たし、充放電サイクル特性が大幅に改善されている。
 X線光電子分光分析装置としては例えば島津製作所製AXISシリーズが挙げられるが、特に限定されない。
 負極表面の元素組成が上記の条件を満たす場合、炭素負極について論じられるいわゆるSEIに相当する被膜が形成された状態にあると考えられる。
 Li/C組成比が0.20より小さい場合には、抵抗が大きすぎてサイクル特性改善の効果が得られにくい。Li/C組成比が0.50より大きい場合には、サイクル経過に伴う抵抗増加が大きく、サイクル特性改善の効果が得られにくい。
 Li/Ti組成比が0.5より小さい場合には、サイクル経過に伴う抵抗増加が大きく、サイクル特性改善の効果が得られにくい。Li/Ti組成比が5よりも大きい場合には、抵抗が大きすぎてサイクル特性改善の効果が得られにくい。Li/Ti組成比は0.6から4.5の範囲であることがより好ましい。
 非水電解質中のBまたはSの含有率は1×10-5~2wt%の範囲内であることが好ましい。BまたはSの含有率が1×10-5wt%より小さいと、負極表面の状態を上述したLi/C組成比が0.20~0.50でLi/Tiの組成比が0.5~5.0の範囲内にすることが困難になる。BまたはSの含有率が10wt%よりも大きいと電解液自身の抵抗が大きくなること、Li/Cの組成比が0.20より小さくなるか、またはLi/Tiの組成比が5.0より大きくなる傾向があり、サイクル特性改善の効果が得られにくくなる。
 負極活物質である、0.5V vs Li/Liより高い電位でリチウムの吸蔵放出反応が進行するチタン複合酸化物としては、たとえば化学式Li4+xTi12で表されるチタン酸リチウムが挙げられる。負極活物質は、平均粒径が0.05~2μmの範囲内であり、比表面積が2~25m/gの範囲内であることが好ましい。平均粒径が0.05μmよりも小さいと活物質自身の結晶性が低くなり、2μmよりも大きいと活物質内のリチウムイオン拡散距離が大きくなりすぎるため、サイクル特性改善の効果が得られにくい。比表面積が2m/gよりも小さいと電池自身の抵抗が高くなり、25m/gよりも大きいとサイクル経過に伴う抵抗増加が大きくなるため、サイクル特性改善の効果が得られにくい。
 本明細書において、負極活物質の平均粒径とは50%頻度径と同義である。これは例えばレーザー回折・散乱式・粒径・粒度分布測定装置で測定される。前記装置として例えば日機装製マイクロトラックが挙げられる。
 負極活物質の比表面積はガス吸着現象を利用する比表面積/細孔分布測定装置により測定される。前記装置として例えば日本ベル製自動比表面積/細孔分布測定装置(BELSORP-mini)が挙げられる。
 さらに、実施形態に係る非水電解質二次電池の構成部材を説明する。
 1)正極
 正極は、集電体と、この集電体の片面または両面に担持され、正極活物質、導電剤および結着剤を含む正極層(正極活物質層)とを有する。この正極は、例えば粉末状の正極活物質に導電剤および結着剤を添加し、これらを適当な溶媒に懸濁させ、この懸濁物(スラリー)を集電体に塗布、乾燥、プレスして帯状電極にすることにより作製される。
 正極活物質には、二酸化マンガン(MnO)、酸化鉄、酸化銅、酸化ニッケル、LiMnO、リチウムコバルト複合酸化物(LiCoM、ここでMはAl,Cr,MgおよびFeよりなる群から選択される少なくとも1つまたは2つ以上の元素、0≦h≦0.1)、リチウムマンガンコバルト複合酸化物(例えばLiMn1-g-hCo、ここでMはAl,Cr,MgおよびFeよりなる群から選択される少なくとも1つまたは2つ以上の元素、0≦g≦0.5)、リチウムマンガンニッケル複合酸化物(例えばLiMnNi1-2j、ここでMはCo,Cr,Al,MgおよびFeよりなる群より選択される少なくとも1つまたは2つ以上の元素、1/3≦j≦1/2、LiMn1/3Ni1/3Co1/3、LiMn1/2Ni1/2)、スピネル型リチウムマンガン複合酸化物(例えばLiMn2-b、ここでMはAl,Cr,NiおよびFeよりなる群から選択される少なくとも1つまたは2つ以上の元素)、スピネル型リチウムマンガンニッケル複合酸化物(例えばLiMn2-bNi)、オリビン構造を有するリチウムリン酸化物(例えばLiFePO、LiFe1-bMnPO、LiCoPOなど)、硫酸鉄(Fe(SO)、バナジウム酸化物(例えばV)を挙げることができる。ここで、a、bは0<a≦1.2、0≦b≦1であることが好ましい。他の正極活物質として、ポリアニリンやポリピロールなどの導電性ポリマー材料、ジスルフィド系ポリマー材料、イオウ(S)、フッ化カーボンなどの有機材料および無機材料も挙げられる。
 より好ましい正極活物質は、リチウムコバルト複合酸化物、リチウムマンガンニッケル複合酸化物、スピネル型リチウムマンガン複合酸化物、スピネル型リチウムマンガンニッケル複合酸化物、リチウムマンガンコバルト複合酸化物、リチウムリン酸鉄である。
 正極活物質の平均粒径は、1μm以上20μm以下であることが望ましい。
 正極活物質層に結着剤を含有させる場合、結着剤として例えばポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、フッ素系ゴムを挙げることができる。
 正極活物質層には、導電剤を含有させてもよい。導電剤としては、例えば、アセチレンブラック、カーボンブラック、黒鉛等の炭素質物を挙げることができる。
 正極活物質、導電剤および結着剤の配合割合は、正極活物質73~95重量%、導電剤3~20重量%、結着剤2~7重量%にすることが好ましい。
 正極集電体は、アルミニウム箔またはアルミニウム合金箔で形成することが望ましい。アルミニウム箔およびアルミニウム合金箔は、50μm以下、より好ましくは30μm以下、更に好ましくは5μm以下の平均結晶粒径を有することが望ましい。平均結晶粒径が50μm以下であると、アルミニウム箔またはアルミニウム合金箔の強度を飛躍的に増大させることができ、正極を高いプレス圧で高密度化することが可能になり、電池容量を増大させることができる。
 平均結晶粒径は次のようにして求められる。集電体表面の組織を光学顕微鏡で組織観察し、1mm×1mm内に存在する結晶粒の数nを求める。このnを用いてS=1×10/n(μm)から平均結晶粒子面積Sを求める。得られたSの値から下記(A)式により平均結晶粒径d(μm)を算出する。
    d=2(S/π)1/2       (A)
 アルミニウム箔およびアルミニウム合金箔の平均結晶粒径は、材料組織、不純物、加工条件、熱処理履歴、および焼鈍条件など複数の因子から複雑な影響を受けて変化する。結晶粒径は、集電体の製造工程の中で、前記諸因子を組合せて調整することが可能である。
 アルミニウム箔およびアルミニウム合金箔の厚さは、20μm以下が好ましく、15μm以下がより好ましい。アルミニウム箔の純度は99質量%以上が好ましい。アルミニウム合金としては、マグネシウム、亜鉛、ケイ素、などの元素を含む合金が好ましい。一方、鉄、銅、ニッケル、クロムなどの遷移金属の含有率は1質量%以下にすることが好ましい。
 2)負極
 負極は、集電体と、この集電体の片面または両面に担持され、負極活物質、導電剤および結着剤を含む負極層(負極活物質層)とを有する。この負極は、例えば粉末状の負極活物質に導電剤および結着剤を添加し、これらを適当な溶媒に懸濁させ、この懸濁物(スラリー)を集電体に塗布、乾燥、プレスして帯状電極にすることにより作製される。
 負極集電体は、例えば銅箔、アルミニウム箔またはアルミニウム合金箔で形成することが望ましい。負極集電体を構成するアルミニウム箔またはアルミニウム合金箔は、50μm以下、より好ましくは30μm以下、更に好ましくは5μm以下の平均結晶粒径を有することが望ましい。平均結晶粒径は、上述した方法で求めることができる。平均結晶粒径が50μm以下であると、アルミニウム箔またはアルミニウム合金箔の強度を飛躍的に増大させることができる。このため、プレス時の圧力を高めて負極活物質層を高密度化して負極容量を増大させることができる。また、高温環境下(40℃以上)における過放電サイクルでの集電体の溶解・腐食劣化を防ぐことができる。このため、負極インピーダンスの上昇を抑制することができる。さらに、出力特性、急速充電、充放電サイクル特性も向上させることができる。
 アルミニウム箔またはアルミニウム合金箔の平均結晶粒径は、材料組織、不純物、加工条件、熱処理履歴、ならびに焼鈍条件など複数の因子から複雑な影響を受けて変化する。結晶粒径は、集電体の製造工程の中で、前記諸因子を組合せて調整することが可能である。
 アルミニウム箔またはアルミニウム合金箔の厚さは、20μm以下、より好ましくは15μm以下であることが望ましい。アルミニウム箔は99質量%以上の純度を有することが好ましい。アルミニウム合金は、マグネシウム、亜鉛、ケイ素などの元素を含む合金であることが好ましい。合金成分として含まれる鉄、銅、ニッケル、クロムなどの遷移金属は1質量%以下にすることが好ましい。
 負極活物質は、0.5V vs Li/Liより高い電位でリチウムの吸蔵放出反応が進行するチタン複合酸化物を含む。0.5V vs Li/Liより高い電位でリチウムの吸蔵放出反応が進行するチタン複合酸化物は、例えばLi4+xTi12(xは充放電反応により-1≦x≦3の範囲で変化する)で表されるスピネル型チタン酸リチウム、ラムステライド型Li2+xTi(xは充放電反応により-1≦x≦3の範囲で変化する)、TiとP、V、Sn、Cu、NiおよびFeよりなる群から選択される少なくとも1種類の元素を含有する金属複合酸化物などが挙げられる。TiとP、V、Sn、Cu、NiおよびFeよりなる群から選択される少なくとも1種類の元素を含有する金属複合酸化物としては、例えば、TiO-P、TiO-V、TiO-P-SnO、TiO-P-MO(MはCu、NiおよびFeよりなる群から選択される少なくとも1つの元素)を挙げることができる。この金属複合酸化物は、結晶性が低く、結晶相とアモルファス相が共存またはアモルファス相単独で存在したミクロ構造であることが好ましい。このようなミクロ構造の金属複合酸化物は、サイクル性能を大幅に向上させることができる。これらの金属複合酸化物は、充電によりリチウムが挿入されることでリチウムチタン複合酸化物に変化する。リチウムチタン複合酸化物のうち、スピネル型チタン酸リチウムがサイクル特性に優れ、好ましい。
 負極活物質はその他の活物質を含んでもよく、例えば炭素質物または金属化合物が挙げられる。
 炭素質物としては、例えば天然黒鉛、人造黒鉛、コークス、気相成長炭素繊維、メソフェーズピッチ系炭素繊維、球状炭素、樹脂焼成炭素を挙げることができる。より好ましい炭素質物として、気相成長炭素繊維、メソフェーズピッチ系炭素繊維、球状炭素が挙げられる。炭素質物は、X線回折による(002)面の面間隔d002が0.34nm以下であることが好ましい。
 金属化合物としては、金属硫化物、金属窒化物を用いることができる。金属硫化物としては例えばTiSのような硫化チタン、例えばMoSのような硫化モリブデン、例えばFeS、FeS、LiFeSのような硫化鉄を用いることができる。金属窒化物としては、例えばリチウムコバルト窒化物(例えばLiCoN、0<s<4,0<t<0.5)を用いることができる。
 結着剤としては、例えばポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、フッ素系ゴム、スチレンブタジエンゴムなどが挙げられる。
 負極活物質、導電剤および結着剤の配合割合は、負極活物質73~96重量%、導電剤2~20重量%、結着剤2~7重量%の範囲にすることが好ましい。
 3)非水電解質
 非水電解質は、非水溶媒と、この非水溶媒に溶解される電解質塩を含む。非水溶媒中にポリマーを含んでいてもよい。
 電解質塩は、例えばLiPF、LiBF、Li(CFSON(ビストリフルオロメタンスルホニルアミドリチウム;通称LiTFSI)、LiCFSO(通称LiTFS)、Li(CSON(ビスペンタフルオロエタンスルホニルアミドリチウム;通称LiBETI)、LiClO、LiAsF、LiSbF、ビスオキサラトホウ酸リチウム(LiB(C(通称LiBOB))、ジフルオロ(トリフルオロ-2-オキシド-2-トリフルオロ-メチルプロピオナト(2-)-0,0)ホウ酸リチウム(LiBFOCOOC(CF)(通称LiBF(HHIB)))のようなリチウム塩を用いることができる。これらの電解質塩は一種類で使用してもよいし二種類以上を混合して用いてもよい。特にLiPF、LiBFが好ましい。
 電解質塩濃度は、1~3モル/Lにすることが好ましい。このような電解質濃度の規定によって、電解質塩濃度の上昇による粘度増加の影響を抑えつつ、高負荷電流を流した場合の性能をより向上することが可能になる。
 非水溶媒は、特に限定されるものではないが、例えばプロピレンカーボネート(PC)、エチレンカーボネート(EC)、1,2-ジメトキシエタン(DME)、γ-ブチロラクトン(GBL)、テトラヒドロフラン(THF)、2-メチルテトラヒドロフラン(2-MeHF)、1,3-ジオキソラン、スルホラン、アセトニトリル(AN)、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、メチルエチルカーボネート(MEC)、ジプロピルカーボネート(DPC)を用いることができる。これらの溶媒は一種類で使用してもよいし二種類以上を混合して用いてもよい。
 この非水電解質に添加剤を添加してもよい。添加剤は、特に限定されないが、ビニレンカーボネート(VC)、ビニレンアセテート(VA)、ビニレンブチレート、ビニレンヘキサネート、ビニレンクロトネート、およびカテコールカーボネート等が挙げられる。添加剤の濃度は、非水電解質100重量%に対して0.1重量%以上、3重量%以下の範囲が好ましい。さらに好ましい範囲は、0.5重量%以上、1重量%以下である。
 実施形態の非水電解質にはBまたはSが含まれる。Bを含む化合物としては4フッ化ホウ酸リチウム(LiBF)、ビス(オキサラト)ホウ酸リチウム(LiBOB)、ジフルオロ(オキサラト)ホウ酸リチウム(LiBF)、ビス(マロナト)ホウ酸リチウム、ビス(スクシナート)ホウ酸リチウム、ジフルオロ(トリフルオロ-2-オキシド-2-トリフルオロ-メチルプロピオナト(2-)-0,0)ホウ酸リチウムが好ましい。Sを含む化合物としてはエチレンサルファイト、プロピレンサルファイト、1,2-エタンスルトン、1,3-プロパンスルトン、1,4-ブタンスルトン、1,5-ペンタンスルトン、1,3-プロペンスルトン、1,4-ブチレンスルトンが好ましい。
 4)セパレータ
 セパレータは、絶縁性を有するものであれば特に限定されないが、ポリオレフィン、セルロース、ポリエチレンテレフタレート、およびビニロンのようなポリマーからなる多孔質フィルム又は不織布を用いることができる。セパレータの材料は1種類であってもよく、2種類以上を組合せて用いてもよい。
 5)外装部材
 外装部材は、厚さ0.5mm以下のラミネートフィルム又は厚さ1mm以下の金属製容器が用いられる。金属製容器は、厚さ0.5mm以下であることがより好ましい。
 外装部材の形状すなわち電池形状は、扁平型(薄型)、角型、円筒型、コイン型、ボタン型等が挙げられる。また、電池は、例えば携帯用電子機器等に積載される小型用途、二輪乃至四輪の自動車等に積載される大型用途のいずれにも適用することができる。
 ラミネートフィルムとしては、樹脂層間に金属層を介在した多層フィルムが用いられる。金属層としては、軽量化のためにアルミニウム箔またはアルミニウム合金箔が好ましい。樹脂層としては、例えばポリプロピレン(PP)、ポリエチレン(PE)、ナイロン、ポリエチレンテレフタレート(PET)等の高分子材料を用いることができる。ラミネートフィルムは、熱融着によりシールを行って外装部材の形状に成形することができる。
 金属製容器は、アルミニウム又はアルミニウム合金等から作られる。アルミニウム合金としては、マグネシウム、亜鉛、ケイ素等の元素を含む合金が好ましい。合金中に鉄、銅、ニッケル、クロム等の遷移金属が含む場合、その量は100ppm以下にすることが好ましい。
 以下に実施例を説明するが、本発明の主旨を超えない限り、本発明は以下に掲載する実施例に限定されるものでない。
 (実施例A-1)
 <正極の作製>
 正極活物質としてLiNi0.6Co0.2Mn0.2、導電剤としてグラファイトおよびアセチレンブラック、結着剤としてPVdFを用意した。正極活物質85重量部、アセチレンブラック5重量部、グラファイト5重量部およびPVdF5重量部の混合物をN-メチルピロリドン(NMP)に分散させてスラリーを調製した。このスラリーを厚さ15μmのアルミニウム箔からなる集電体の両面に塗布、乾燥し、さらにプレス成形して、集電体の両面に正極活物質層を有する正極を作製した。片面の正極活物質層は厚さが50μmで密度が3.30g/cmである。
 <負極の作製>
 負極活物質として平均粒径が0.9μmで比表面積が8m/gのLiTi12、導電剤としてグラファイト、結着剤としてPVdFを用意した。負極活物質90重量部、グラファイト5重量部およびPVdF5重量部の混合物をN-メチルピロリドン(NMP)に分散させてスラリーを調製した。このスラリーを厚さ15μmのアルミニウム箔の集電体の両面に塗布、乾燥し、さらにプレス成形して、集電体の両面に負極活物質層を有する負極を作製した。片面の負極活物質層は厚さが65μmで密度が2.40g/cmである。
 <非水電解質の調製>
 プロピレンカーボネート(PC)とジエチルカーボネート(DEC)とを体積比1:2の割合で混合した混合溶媒に、12wt%のLiPF、3wt%のLiBF、および1wt%のプロパンスルトンを混合して非水電解質を調製した。
 <電池の組み立て>
 図1に示す構造を有する非水電解質二次電池を製造した。厚さ0.3mmのアルミニウムからなる有底矩形状筒体の容器10と、正極端子13が挿着されるとともに負極端子12が絶縁性の樹脂14を介してかしめにより挿着されたアルミニウム製の蓋体11を用意した。非水電解質を厚さ15μmのセルロース製不織布からなるセパレータ2に含浸させた後、このセパレータ2で正極3を覆い、セパレータ2を介して正極3と対向するように負極1を重ね、渦巻状に捲回して、正極3および負極1からそれぞれ延出したリードタブを有する渦巻状の電極群を作製した。この電極群をプレスして扁平状に成形した。扁平状に成形した電極群の正極リードタブ5を蓋体11の正極端子13の一端に接続し、負極リードタブ4を負極端子12の一端に接続し、電極群を蓋体11とともに容器の開口部を通してその内部に挿入し、蓋体11を容器10の開口部に溶接した。これらの工程により、図1に示す構造を有する、厚さ3.0mm、幅35mm、高さ62mmの非水電解質二次電池を製造した。
 得られた非水電解質二次電池を25℃環境において0.2Cの電流値で2.8Vまで充電し、0.2Cの電流値で0.5Vまで放電した後に、70℃環境で24時間放置してエージングを行った。この電池を25℃環境で2.4Vまで充電した。この電池を解体し、抜き出した負極についてX線光電子分光によって表面元素組成を測定した。その結果、Li/C組成比が0.33、Li/Ti組成比が1.2であった。
 ここで、電池の解体方法について説明する。充電状態の電池をアルゴン雰囲気下のグローブボックスに入れ、封止板と外装体のシール(溶接)部分をやすり等で削って封止板と外装体をきりはがし、発電部位(正極/セパレータ/負極からなる積層物)を取り出す。この発電部位を短絡させないようにリード部分を取外し、積層物を正極とセパレータおよび負極それぞれに分解する。得られた負極を例えばメチルエチルカーボネート溶媒で洗浄することで負極表面のLi塩を除去した後に乾燥することで分析試料とする。また、得られた負極を溶媒に投入して結着材を溶解させ、集電体から負極活物質層を剥離し、その剥離物をろ過することで負極活物質を抽出する。
 (実施例A-2~3、B-1~7、C-1~7、D-1~2)
 負極活物質、電解液組成、充電後のエージング条件を、表1および表2に示したように変化させた以外は実施例A-1と同様の電池を作製した。 
 実施例Aのシリーズではエージング条件を変化させている。 
 実施例Bのシリーズでは添加剤を変化させている。 
 実施例CのシリーズではLi塩を変化させている。 
 実施例Dのシリーズでは負極活物質を変化させている。
 (比較例A-1)
 実施例A-1と同様の非水電解質二次電池を作製し、得られた非水電解質二次電池を25℃環境において0.2Cの電流値で2.8Vまで充電し、0.2Cの電流値で1.5Vまで放電した。この電池を25℃環境において2.4Vまで充電した。この電池を解体し、抜き出した負極についてX線光電子分光によって表面元素組成を測定した。その結果、Li/C組成比が0.73、Li/Tiの組成比が0.4であった。
 得られた電池を60℃環境において2Cで2.6Vまで充電し、2Cで2.2Vまで放電するという充放電サイクル試験を実施した。50000サイクル後の電池容量はその初期に対し、実施例A-1の電池は92%であるのに対し、比較例A-1の電池は58%であった。
 (比較例A-2、比較例D-1,2)
 負極活物質、充電後のエージング条件を、表1および表2に示したように変化させた以外は実施例A-1と同様の電池を作製した。 
 比較例Aのシリーズではエージング条件を変化させている。 
 比較例Dのシリーズでは負極活物質を変化させている。
 表2からわかるように、実施例A-1~3、B-1~7、C-1~7、D-1~2はいずれも、サイクル容量維持率が70%以上であり、充放電サイクル特性の改善が認められた。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 次に、他の実施形態に係る電池パックについて説明する。電池パックは、上述した非水電解質二次電池(単電池)を1個または複数有する。複数の単電池を備える場合、各単電池は電気的に直列もしくは並列に接続されている。このような電池パックを図2および図3を参照して説明する。
 扁平型非水電解質二次電池から構成される複数の単電池21は、外部に延出した負極端子12および正極端子13が同じ向きに揃えられるように積層され、粘着テープ22で締結されて組電池23を構成している。これらの単電池21は、図3に示すように互いに電気的に直列に接続されている。
 プリント配線基板24は、負極端子12および正極端子13が延出する単電池21側面に対向して配置されている。プリント配線基板24には、図3に示すようにサーミスタ25、保護回路26および外部機器への通電用端子27が搭載されている。なお、組電池23と対向する保護回路基板24の面には組電池23の配線との不要な接続を回避するために絶縁板(図示せず)が取り付けられている。
 正極側リード28は、組電池23の最下層に位置する正極端子13に接続され、その先端はプリント配線基板24の正極側コネクタ29に挿入されて電気的に接続されている。負極側リード30は、組電池23の最上層に位置する負極端子12に接続され、その先端はプリント配線基板24の負極側コネクタ31に挿入されて電気的に接続されている。これらのコネクタ29,31は、プリント配線基板24に形成された配線32,33を通して保護回路26に接続されている。
 サーミスタ25は、単電池21の温度を検出し、その検出信号は保護回路26に送信される。保護回路26は、所定の条件で保護回路26と外部機器への通電用端子27との間のプラス側配線34aおよびマイナス側配線34bを遮断できる。所定の条件とは、例えばサーミスタ25の検出温度が所定温度以上になったときである。また、所定の条件とは単電池21の過充電、過放電、過電流等を検出したときである。この過充電等の検出は、個々の単電池21もしくは単電池21全体について行われる。個々の単電池21を検出する場合、電池電圧を検出してもよいし、正極電位もしくは負極電位を検出してもよい。後者の場合、個々の単電池21中に参照極として用いるリチウム電極が挿入される。図2および図3の場合、単電池21それぞれに電圧検出のための配線35を接続し、これら配線35を通して検出信号が保護回路26に送信される。
 正極端子13および負極端子12が突出する側面を除く組電池23の三側面には、ゴムもしくは樹脂からなる保護シート36がそれぞれ配置されている。
 組電池23は、各保護シート36およびプリント配線基板24と共に収納容器37内に収納される。すなわち、収納容器37の長辺方向の両方の内側面と短辺方向の内側面それぞれに保護シート36が配置され、短辺方向の反対側の内側面にプリント配線基板24が配置される。組電池23は、保護シート36およびプリント配線基板24で囲まれた空間内に位置する。蓋38は、収納容器37の上面に取り付けられている。
 なお、組電池23の固定には粘着テープ22に代えて、熱収縮テープを用いてもよい。この場合、組電池の両側面に保護シートを配置し、熱収縮チューブを周回させた後、熱収縮チューブを熱収縮させて組電池を結束させる。
 図2および図3では単電池21を直列接続した形態を示したが、電池容量を増大させるためには並列に接続してもよい。組み上がった電池パックを直列、並列に接続することもできる。
 また、電池パックの態様は用途により適宜変更される。電池パックの用途としては、大電流特性でのサイクル特性が望まれるものが好ましい。具体的には、デジタルカメラの電源用や、二輪乃至四輪のハイブリッド電気自動車、二輪乃至四輪の電気自動車、アシスト自転車等の車載用が挙げられる。特に、車載用が好適である。
 上記実施例Aのシリーズ、実施例Bのシリーズおよび実施例Cのシリーズで使用した負極活物質LiTi12は、平均作動電位が1.55Vであった。上記実施例D-1および比較例D-1で使用した負極活物質TiOは、平均作動電位が1.50Vであった。上記実施例D-2および比較例D-2で使用したTiO(B)は、平均作動電位が1.60Vであった。
 上記比較例A-1、比較例D-1および比較例D-2では、作製した非水電解質二次電池を、25℃環境において、0.2Cの電流値で2.8Vまで充電し、0.2Cの電流値で2.4Vまで放電した。すなわち、これらの比較例ではエージングを行わなかった。そのため、サイクル容量維持率が実施例の非水電解質二次電池に比べて低かった。
 上記比較例A-2では、作製した非水電解質二次電池を25℃環境において0.2Cの電流値で2.8Vまで充電し、0.2Cの電流値で2.4Vまで放電した後に、80℃環境で12時間放置してエージングを行った。この比較例A-2では、十分な放電を行わずにエージングを行ったために、サイクル容量維持率が実施例の非水電解質二次電池に比べて低かった。
 以下に、上記実施例および比較例の非水電解質二次電池が具備する非水電解質中のBおよびSの含有率について説明する。
 上記実施例および比較例の非水電解質二次電池が具備する非水電解質は、BおよびSから選択される少なくとも1種の元素の含有率が、1×10-5~10wt%の範囲内にある。そのため、上記実施例および比較例の非水電解質二次電池において、非水電解質の抵抗によるサイクル特性の違いは少ないと考えられる。
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
 1…負極、2…セパレータ、3…正極、4…負極リードタブ、5…正極リードタブ、10…容器、11…蓋体、12…負極端子、13…正極端子、21…単電池、23…組電池、24…プリント配線基板、25…サーミスタ、26…保護回路、37…収納容器、38…蓋。

Claims (7)

  1.  正極と、負極と、前記正極と前記負極との間に配置されたセパレータと、非水電解質とを具備する非水電解質二次電池において、
     前記負極は活物質として、Li/Liに対して0.5Vより高い電位でリチウムの吸蔵放出反応が進行するチタン複合酸化物を含み、
     前記非水電解質はBおよびSから選択される少なくとも1種の元素を含み、
     前記負極はX線光電子分光によって測定される表面の元素組成についてLi/C組成比が0.20~0.50であり、Li/Ti組成比が0.5~5.0であることを特徴とする非水電解質二次電池。
  2.  前記非水電解質中の前記少なくとも1種の元素の含有率が1×10-5~10wt%であることを特徴とする請求項1に記載の非水電解質二次電池。
  3.  0.5V vs Li/Liより高い電位でリチウムの吸蔵放出反応が進行する前記チタン複合酸化物は、化学式Li4+xTi12(-1≦x≦3)で表されるチタン酸リチウムであり、前記チタン酸リチウムの平均粒径が0.05~2μmであり、前記チタン酸リチウムの比表面積が2~25m/gであることを特徴とする請求項1または2に記載の非水電解質二次電池。
  4.  前記非水電解質は、4フッ化ホウ酸リチウム(LiBF)、ビス(オキサラト)ホウ酸リチウム(LiBOB)、ジフルオロ(オキサラト)ホウ酸リチウム(LiBF)、ビス(マロナト)ホウ酸リチウム、ビス(スクシナート)ホウ酸リチウム、およびジフルオロ(トリフルオロ-2-オキシド-2-トリフルオロ-メチルプロピオナト(2-)-0,0)ホウ酸リチウムからなる群より選択される少なくとも1種を含むことを特徴とする請求項1ないし3のいずれか1項に記載の非水電解質二次電池。
  5.  前記非水電解質は、エチレンサルファイト、プロピレンサルファイト、1,2-エタンスルトン、1,3-プロパンスルトン、1,4-ブタンスルトン、1,5-ペンタンスルトン、1,3-プロペンスルトン、1,4-ブチレンスルトンからなる群より選択される少なくとも1種を含むことを特徴とする請求項1ないし4のいずれか1項に記載の非水電解質二次電池。
  6.  前記非水電解質は、30~90wt%のプロピレンカーボネートを含むことを特徴とする請求項1ないし5のいずれか1項に記載の非水電解質二次電池。
  7.  請求項1ないし6のいずれか1項に記載の非水電解質二次電池を有することを特徴とする電池パック。
PCT/JP2013/056860 2012-03-15 2013-03-12 非水電解質二次電池および電池パック WO2013137273A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380002500.2A CN103718370B (zh) 2012-03-15 2013-03-12 非水电解质二次电池和电池组
EP13761007.7A EP2827431A4 (en) 2012-03-15 2013-03-12 NONAQUEOUS ELECTROLYTE RECHARGEABLE BATTERY AND BATTERY ELEMENT BLOCK
US14/164,511 US20140141323A1 (en) 2012-03-15 2014-01-27 Nonaqueous electrolyte secondary battery and battery pack

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-058951 2012-03-15
JP2012058951 2012-03-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/164,511 Continuation US20140141323A1 (en) 2012-03-15 2014-01-27 Nonaqueous electrolyte secondary battery and battery pack

Publications (1)

Publication Number Publication Date
WO2013137273A1 true WO2013137273A1 (ja) 2013-09-19

Family

ID=49161179

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/056860 WO2013137273A1 (ja) 2012-03-15 2013-03-12 非水電解質二次電池および電池パック

Country Status (5)

Country Link
US (1) US20140141323A1 (ja)
EP (1) EP2827431A4 (ja)
JP (1) JPWO2013137273A1 (ja)
CN (1) CN103718370B (ja)
WO (1) WO2013137273A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015187964A (ja) * 2014-03-13 2015-10-29 株式会社Gsユアサ 非水電解液蓄電素子及びそれを備えた蓄電装置
JP2016035902A (ja) * 2014-07-31 2016-03-17 株式会社東芝 非水電解質電池及び電池パック
JP2016035901A (ja) * 2014-07-31 2016-03-17 株式会社東芝 非水電解質電池、非水電解質電池の製造方法及び電池パック
CN106537654A (zh) * 2014-07-14 2017-03-22 丰田自动车株式会社 制造非水二次电池的方法
JP2018049836A (ja) * 2014-09-10 2018-03-29 株式会社東芝 負極
WO2022054415A1 (ja) * 2020-09-10 2022-03-17 株式会社村田製作所 リチウムイオン二次電池

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013033595A1 (en) 2011-09-02 2013-03-07 E. I. Du Pont De Nemours And Company Lithium ion battery
US9979050B2 (en) 2011-09-02 2018-05-22 Solvay Sa Fluorinated electrolyte compositions
WO2013180783A1 (en) 2012-06-01 2013-12-05 E. I. Du Pont De Nemours And Company Fluorinated electrolyte compositions
EP2856540A1 (en) 2012-06-01 2015-04-08 E. I. Du Pont de Nemours and Company Lithium- ion battery
HUE046573T2 (hu) 2013-04-04 2020-03-30 Solvay Nemvizes elektrolit készítmények
WO2017154908A1 (ja) * 2016-03-07 2017-09-14 株式会社 東芝 非水電解質電池及び電池パック

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003163029A (ja) * 2001-11-27 2003-06-06 Matsushita Electric Ind Co Ltd 非水電解質二次電池
JP2007042440A (ja) * 2005-08-03 2007-02-15 Sanyo Electric Co Ltd リチウム二次電池
JP2007053083A (ja) 2005-07-21 2007-03-01 Matsushita Electric Ind Co Ltd 非水電解質二次電池及びその製造方法
JP2008091327A (ja) 2006-09-05 2008-04-17 Gs Yuasa Corporation:Kk 非水電解質電池及びその製造方法
JP2013045759A (ja) * 2011-08-26 2013-03-04 Toshiba Corp 非水電解質二次電池及びその製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4346565B2 (ja) * 2004-03-30 2009-10-21 株式会社東芝 非水電解質二次電池
US8168330B2 (en) * 2006-04-11 2012-05-01 Enerdel, Inc. Lithium titanate cell with reduced gassing
JP5066831B2 (ja) * 2006-05-12 2012-11-07 株式会社Gsユアサ 非水電解質二次電池
WO2008029899A1 (fr) * 2006-09-05 2008-03-13 Gs Yuasa Corporation Cellule électrolytique non aqueuse et procédé pour la fabriquer
JP4284348B2 (ja) * 2006-09-27 2009-06-24 株式会社東芝 非水電解質電池、電池パック及び自動車
JP5226967B2 (ja) * 2007-04-27 2013-07-03 株式会社オハラ リチウム二次電池およびリチウム二次電池用の電極
JP5428407B2 (ja) * 2009-03-10 2014-02-26 日産自動車株式会社 リチウムイオン二次電池用負極およびこれを用いたリチウムイオン二次電池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003163029A (ja) * 2001-11-27 2003-06-06 Matsushita Electric Ind Co Ltd 非水電解質二次電池
JP2007053083A (ja) 2005-07-21 2007-03-01 Matsushita Electric Ind Co Ltd 非水電解質二次電池及びその製造方法
JP2007042440A (ja) * 2005-08-03 2007-02-15 Sanyo Electric Co Ltd リチウム二次電池
JP2008091327A (ja) 2006-09-05 2008-04-17 Gs Yuasa Corporation:Kk 非水電解質電池及びその製造方法
JP2013045759A (ja) * 2011-08-26 2013-03-04 Toshiba Corp 非水電解質二次電池及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2827431A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015187964A (ja) * 2014-03-13 2015-10-29 株式会社Gsユアサ 非水電解液蓄電素子及びそれを備えた蓄電装置
CN106537654A (zh) * 2014-07-14 2017-03-22 丰田自动车株式会社 制造非水二次电池的方法
JP2016035902A (ja) * 2014-07-31 2016-03-17 株式会社東芝 非水電解質電池及び電池パック
JP2016035901A (ja) * 2014-07-31 2016-03-17 株式会社東芝 非水電解質電池、非水電解質電池の製造方法及び電池パック
JP2018049836A (ja) * 2014-09-10 2018-03-29 株式会社東芝 負極
US10355273B2 (en) 2014-09-10 2019-07-16 Kabushiki Kaisha Toshiba Nonaqueous electrolyte battery
US10910643B2 (en) 2014-09-10 2021-02-02 Kabushiki Kaisha Toshiba Nonaqueous electrolyte battery
WO2022054415A1 (ja) * 2020-09-10 2022-03-17 株式会社村田製作所 リチウムイオン二次電池

Also Published As

Publication number Publication date
JPWO2013137273A1 (ja) 2015-08-03
EP2827431A4 (en) 2015-11-18
US20140141323A1 (en) 2014-05-22
CN103718370B (zh) 2016-06-15
CN103718370A (zh) 2014-04-09
EP2827431A1 (en) 2015-01-21

Similar Documents

Publication Publication Date Title
US9843044B2 (en) Positive electrode
JP5514332B2 (ja) 正極、非水電解質電池及び電池パック
WO2013137273A1 (ja) 非水電解質二次電池および電池パック
JP5286054B2 (ja) 非水電解質二次電池
JP4213687B2 (ja) 非水電解質電池及び電池パック
JP5049680B2 (ja) 非水電解質電池及び電池パック
JP5159681B2 (ja) 非水電解質電池
JP6130053B1 (ja) 組電池及び電池パック
JP6441125B2 (ja) 非水電解質電池及び電池パック
JP5611845B2 (ja) 非水電解質二次電池、電池パック及び自動車
JP6305112B2 (ja) 非水電解質電池及び電池パック
WO2016021596A1 (ja) リチウム二次電池およびその製造方法
WO2015137138A1 (ja) 非水電解質電池及び電池パック
JP5865951B2 (ja) 非水電解質電池及び電池パック
JP5646661B2 (ja) 正極、非水電解質電池及び電池パック
JP6054540B2 (ja) 正極活物質、非水電解質電池及び電池パック
WO2015140992A1 (ja) 非水電解質二次電池用正極、非水電解質二次電池および電池パック
CN111788719B (zh) 电极、非水电解质电池及电池包
JP5361940B2 (ja) 非水電解質電池および電池パック

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014504939

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13761007

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2013761007

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013761007

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE