WO2022054415A1 - リチウムイオン二次電池 - Google Patents

リチウムイオン二次電池 Download PDF

Info

Publication number
WO2022054415A1
WO2022054415A1 PCT/JP2021/027133 JP2021027133W WO2022054415A1 WO 2022054415 A1 WO2022054415 A1 WO 2022054415A1 JP 2021027133 W JP2021027133 W JP 2021027133W WO 2022054415 A1 WO2022054415 A1 WO 2022054415A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
lithium
active material
ion secondary
secondary battery
Prior art date
Application number
PCT/JP2021/027133
Other languages
English (en)
French (fr)
Inventor
巧 日浅
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2022547425A priority Critical patent/JP7524956B2/ja
Priority to CN202180062042.6A priority patent/CN116114077A/zh
Publication of WO2022054415A1 publication Critical patent/WO2022054415A1/ja
Priority to US18/118,465 priority patent/US20230246179A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This technology relates to lithium-ion secondary batteries.
  • lithium-ion secondary batteries Due to the widespread use of various electronic devices such as mobile phones, the development of lithium-ion secondary batteries is underway as a power source that is compact and lightweight and can obtain high energy density.
  • a lithium ion secondary battery provided with an electrolytic solution containing an aqueous solvent (so-called aqueous electrolytic solution) has been developed, and various studies have been conducted on the configuration of the lithium ion secondary battery. It has been done.
  • an aqueous electrolyte containing lithium ion, an imide anion and a metal cation and having a PH of 3 to 12 is used ().
  • Patent Document 1 In order to realize a self-supporting electrode that does not include a binder and a current collector, a composite material containing electrode active material particles in a three-dimensional crosslinked network structure of carbon nanotubes is used, and a battery is used in the main body containing the composite material. The tab is fixed (see, for example, Patent Document 2).
  • a negative electrode active material containing a Ti-containing composite oxide is used, and Hg or the like is present on the surface of the negative electrode containing the negative electrode active material (for example, Patent Document). See 3.).
  • a non-woven fabric formed of a fibrous active electrode material is used as an electrode (see, for example, Patent Document 4).
  • a carbon coat layer is provided on the surface of the negative electrode active material containing titanium oxide (see, for example, Patent Document 5).
  • Lithium titanate having macropores is used as an electrode active material for a power storage device in order to obtain excellent rate characteristics (see, for example, Patent Document 6).
  • the lithium ion secondary battery of one embodiment of the present technology includes a positive electrode that occludes and releases lithium ions, a negative electrode that contains a negative electrode active material that occludes and releases the lithium ions, and an electrolytic solution that contains an aqueous solvent.
  • the negative electrode active material contains a titanium-containing compound, and the electrolytic solution has a pH of 11 or more.
  • another lithium ion secondary battery of one embodiment of the present technology is arranged between the positive electrode space and the negative electrode space, and is arranged inside a partition wall that allows lithium ions to pass through and the positive electrode space thereof, and exhibits lithium ions.
  • a positive electrode that is stored and discharged a negative electrode that is arranged inside the negative electrode space and contains a negative electrode active material that stores and releases lithium ions, a positive electrode electrolyte that is housed inside the positive electrode space and contains an aqueous solvent, and a negative electrode space thereof. It is housed inside the above and is provided with a negative electrode electrolytic solution containing an aqueous solvent.
  • the negative electrode active material contains a titanium-containing compound, the positive electrode electrolyte has a pH of less than 11, and the negative electrode electrolyte has a pH of 11 or more.
  • the ratio of the sum of the detected amounts of lithium, titanium, tin, zirconium and bismuth and indium to the sum of the detected amounts of all metal elements was 99. Atomic% or more.
  • all metal elements are all metal elements that can be analyzed (detected) by using the X-ray photoelectron spectroscopic analysis method, and more specifically, the first of the long periodic table. All metallic elements (including lithium) belonging to Group 1 to Group 17.
  • the ratio is the average value of the 10 ratios calculated at each of the above 10 locations.
  • the negative electrode active material of the negative electrode contains a titanium-containing compound
  • the electrolytic solution containing an aqueous solvent has a pH of 11 or more
  • an X-ray photoelectron spectroscopic analysis method is performed. Since the ratio when the surface of the negative electrode is analyzed using the above range is in the above range, excellent charge / discharge characteristics can be obtained.
  • the negative electrode active material of the negative electrode contains a titanium-containing compound
  • the positive electrode electrolytic solution containing an aqueous solvent has a pH of less than 11, and is aqueous. Since the negative electrode electrolytic solution containing the solvent has a pH of 11 or more and the ratio when the surface of the negative electrode is analyzed using the X-ray photoelectron spectroscopic analysis method is in the above range, excellent charge / discharge characteristics can be obtained. Can be done.
  • the effect of the present technology is not necessarily limited to the effect described here, and may be any effect of a series of effects related to the present technology described later.
  • the lithium ion secondary battery described here is a secondary battery that utilizes the storage and release of lithium ions, and includes an electrolytic solution (aqueous electrolyte solution) that is a liquid electrolyte containing an aqueous solvent together with a positive electrode and a negative electrode. ..
  • an electrolytic solution aqueous electrolyte solution
  • the charge / discharge reaction proceeds by utilizing the storage / discharge of lithium ions, so that the battery capacity can be obtained.
  • FIG. 1 shows a cross-sectional configuration of the lithium ion secondary battery of the first embodiment.
  • this lithium ion secondary battery includes an exterior member 11, a positive electrode 12, a negative electrode 13, and an electrolytic solution 14.
  • the electrolytic solution 14 is lightly shaded.
  • the upper side in FIG. 1 is the upper side of the lithium ion secondary battery
  • the lower side in FIG. 1 is the lower side of the lithium ion secondary battery.
  • the exterior member 11 is a substantially box-shaped member having an internal space S for accommodating the positive electrode 12, the negative electrode 13, the electrolytic solution 14, and the like.
  • the exterior member 11 contains any one or more of metal materials, glass materials, polymer compounds, and the like.
  • the exterior member 11 may be a rigid metal can, a glass case, a plastic case, or the like, or may be a flexible (or flexible) metal foil, a polymer film, or the like.
  • the positive electrode 12 is arranged in the internal space S and occludes and discharges lithium ions.
  • the positive electrode 12 includes a positive electrode current collector 12A having a pair of surfaces and a positive electrode active material layer 12B formed on both surfaces of the positive electrode current collector 12A.
  • the positive electrode active material layer 12B may be formed on only one side of the positive electrode current collector 12A on the side where the positive electrode 12 faces the negative electrode 13.
  • the positive electrode current collector 12A may be omitted. Therefore, the positive electrode 12 may be only the positive electrode active material layer 12B.
  • the positive electrode current collector 12A supports the positive electrode active material layer 12B, and contains any one or more of conductive materials such as a metal material, a carbon material, and a conductive ceramic material.
  • conductive materials such as a metal material, a carbon material, and a conductive ceramic material.
  • metallic materials include titanium, aluminum and their alloys.
  • conductive ceramic material are indium tin oxide (ITO) and the like.
  • ITO indium tin oxide
  • the material for forming the positive electrode current collector 12A has insolubility, poor solubility and corrosion resistance with respect to the electrolytic solution 14, and also has low reactivity with the positive electrode active material. Therefore, the positive electrode current collector 12A preferably contains the above-mentioned metal material, that is, titanium, aluminum, an alloy thereof, and the like. This is because the positive electrode current collector 12A is less likely to deteriorate even if a lithium ion secondary battery is used.
  • the positive electrode current collector 12A may be a conductor plated so that any one or more of the above-mentioned metal materials, carbon materials, and conductive ceramic materials cover the surface.
  • the material of the conductor is not particularly limited as long as it has conductivity.
  • the positive electrode active material layer 12B contains any one or more of the positive electrode active materials that occlude and release lithium ions. However, the positive electrode active material layer 12B may further contain a positive electrode binder, a positive electrode conductive agent, and the like.
  • the positive electrode active material contains a lithium-containing compound and the like.
  • the type of the lithium-containing compound is not particularly limited, and specific examples thereof include a lithium composite oxide and a lithium phosphoric acid compound.
  • the lithium composite oxide is an oxide containing lithium and one or more kinds of transition metal elements as constituent elements, and the lithium phosphate compound contains lithium and one or more kinds of transition metal elements. It is a phosphoric acid compound contained as a constituent element.
  • the type of the transition metal element is not particularly limited, but specifically, nickel, cobalt, manganese, iron and the like.
  • lithium composite oxide having a layered rock salt type crystal structure LiNiO 2 , LiCoO 2 , LiCo 0.98 Al 0.01 Mg 0.01 O 2 , LiNi 0.5 Co 0.2 Mn 0.3 O 2 , LiNi 0.8 Co 0.15 Al 0.05 O 2 , LiNi 0.33 Co 0.33 Mn 0.33 O 2 , Li 1.2 Mn 0.52 Co 0.175 Ni 0.1 O 2 and Li 1.15 (Mn 0.65 Ni 0.22 Co 0.13 ) O 2 .
  • lithium composite oxide having a spinel-type crystal structure include LiMn 2 O 4 .
  • lithium phosphoric acid compound having an olivine type crystal structure examples include LiFePO 4 , LiMnPO 4 , LiMn 0.5 Fe 0.5 PO 4 , LiMn 0.7 Fe 0.3 PO 4 and LiMn 0.75 Fe 0.25 PO 4 .
  • the positive electrode binder contains any one or more of synthetic rubber and polymer compounds.
  • synthetic rubber are styrene-butadiene rubber and the like.
  • polymer compound include polyvinylidene fluoride and polyimide.
  • the positive electrode conductive agent contains any one or more of conductive materials such as carbon materials, and specific examples of the carbon materials are graphite, carbon black, acetylene black, ketjen black and the like. ..
  • the conductive material may be a metal material, a conductive ceramic material, a conductive polymer, or the like.
  • the negative electrode 13 is arranged in the internal space S so as to be separated from the positive electrode 12, and stores and discharges lithium ions.
  • the negative electrode 13 includes a negative electrode current collector 13A having a pair of surfaces and a negative electrode active material layer 13B formed on both surfaces of the negative electrode current collector 13A.
  • the negative electrode active material layer 13B may be formed on only one side of the negative electrode current collector 13A on the side where the negative electrode 13 faces the positive electrode 12.
  • the negative electrode 13 Since one or both of the negative electrode current collector 13A and the negative electrode active material layer 13B constituting the negative electrode 13 have a specific metal material on the surface, the negative electrode 13 is a strongly alkaline electrolytic solution described later. It exhibits properties that are difficult to react with and dissolve in 14.
  • This specific metal material is a material containing a specific kind of metal element as a constituent element, and more specifically, any one kind or two or more kinds of titanium, tin, zirconium, bismuth and indium are constituent elements. It is a material contained as.
  • the type of the specific metal material may be only one type or two or more types.
  • the specific metal material may be a simple substance (single metal), an alloy, an oxide (metal oxide which is a conductor), or two or more of them.
  • Specific examples of the oxide are oxides containing any one or more of the above-mentioned metal elements such as titanium as constituent elements, and more specifically, titanium oxide and the like.
  • the negative electrode current collector 13A and the negative electrode active material layer 13B constituting the negative electrode 13 have a non-specific metal material on the surface
  • the negative electrode 13 is strongly alkaline. It exhibits the property of being easily reacted and dissolved in the electrolytic solution 14 of the above.
  • This non-specific metal material is a material containing a metal element other than the above-mentioned specific metal element as a constituent element, and more specifically, any of aluminum, copper, lead, zinc, magnesium, iron and the like. It is a material containing one kind or two or more kinds as constituent elements.
  • One or both of the negative electrode current collector 13A and the negative electrode active material layer 13B have a specific metal material on the surface, if the appropriate conditions regarding the element ratio A described later are satisfied, strong alkaline electrolysis is performed. This is because the negative electrode 13 is less likely to react and dissolve in the liquid 14, so that the constituent atoms of the negative electrode 13 are less likely to be eluted in the electrolytic solution 14. As a result, the electrolytic solution 14 is less likely to deteriorate and decompose, so that the charge / discharge characteristics of the lithium ion secondary battery are less likely to deteriorate. The details of the element ratio A will be described later.
  • one or both of the negative electrode current collector 13A and the negative electrode active material layer 13B have a material containing titanium as a constituent element as a specific metal material on the surface. This is because the negative electrode 13 is difficult to sufficiently react and dissolve with the strongly alkaline electrolytic solution 14, so that the electrolytic solution 14 is sufficiently difficult to deteriorate and decompose.
  • both the negative electrode current collector 13A and the negative electrode active material layer 13B preferably have a specific metal material on the surface, and more preferably have a material containing titanium as a constituent element on the surface. This is because the negative electrode 13 is less likely to react and dissolve with respect to the strongly alkaline electrolytic solution 14, so that the electrolytic solution 14 is less likely to deteriorate and decompose.
  • the negative electrode current collector 13A when only one of the negative electrode current collector 13A and the negative electrode active material layer 13B has a specific metal material on the surface, the negative electrode current collector 13A has the specific metal material on the surface. It is more preferable to have a material containing titanium as a constituent element on the surface. Since the negative electrode current collector 13A has a high affinity for the negative electrode active material (titanium-containing compound described later), the negative electrode active material layer 13B easily adheres stably to the negative electrode current collector 13A and its negative electrode. This is because the charge / discharge reaction tends to proceed stably in the active material layer 13B.
  • the surface of one or both of the negative electrode current collector 13A and the negative electrode active material layer 13B may be coated with a specific metal material.
  • the surfaces of one or both of the negative electrode current collector 13A and the negative electrode active material layer 13B may be plated with a specific metal material.
  • one or both of the negative electrode current collector 13A and the negative electrode active material layer 13B may further contain a non-specific metal material as long as it has a specific metal material on the surface, or the non-specific metal material thereof may be further contained. It may contain materials other than metallic materials.
  • the negative electrode current collector 13A supports the negative electrode active material layer 13B, and contains any one or more of the conductive materials.
  • the conductive material is a metal material, a carbon material, a conductive ceramic material, etc., and specific examples of the metal material include stainless steel (SUS), titanium, zinc, tin, lead, and two or more kinds of alloys thereof. Is.
  • connection terminal portion 13AT is not formed on a part of the negative electrode current collector 13A (connection terminal portion 13AT), and the connection terminal portion 13AT is led out to the outside of the exterior member 11.
  • the lead-out direction of the connection terminal portion 13AT is not particularly limited, but specifically, it is the same as the lead-out direction of the connection terminal portion 12AT.
  • the negative electrode active material layer 13B contains any one or more of the negative electrode active materials that occlude and release lithium ions. However, the negative electrode active material layer 13B may further contain a negative electrode binder, a negative electrode conductive agent, and the like.
  • the details regarding the negative electrode binder are the same as the details regarding the positive electrode binder, and the details regarding the negative electrode conductive agent are the same as the details regarding the positive electrode conductive agent.
  • the negative electrode conductive agent is a metal material, it is preferable that the metal material has the above-mentioned specific metal material on the surface.
  • the negative electrode active material contains any one or more of the titanium-containing compounds. This is because even when the strongly alkaline electrolytic solution 14 is used, the charge / discharge reaction can easily proceed smoothly and stably. It is preferable that the negative electrode active material has the above-mentioned specific metal material on the surface.
  • This titanium-containing compound is a general term for compounds containing titanium as a constituent element, and specifically, it is a titanium oxide, a lithium titanium composite oxide, a titanium phosphorus oxide, a lithium titanium phosphoric acid compound, a hydrogen titanium compound, or the like. ..
  • Titanium oxide is a compound represented by the formula (1) (so-called titanium oxide), that is, bronze-type titanium oxide or the like.
  • This titanium oxide is one or more of anatase-type, rutile-type and brookite-type titanium oxide (TiO 2 ).
  • the titanium oxide may be a composite oxide containing one or more of phosphorus, vanadium, tin, copper, nickel, iron, cobalt and the like as constituent elements together with titanium.
  • Specific examples of this composite oxide include TIM 2 -P 2 O 5 , TiO 2 -V 2 O 5 , TiO 2 -P 2 O 5 -SnO 2 , and TIM 2 -P 2 O 5 -MeO.
  • Me is any one or more of Cu, Ni, Fe, Co and the like.
  • the titanium oxide is preferably anatase-type titanium oxide. This is because the anatase-type titanium oxide is stable with respect to the strongly alkaline electrolytic solution 14, so that the lithium ion secondary battery operates (charges / discharges) stably.
  • the lithium titanium composite oxide is any one or more of the compounds represented by the formulas (2) to (4), that is, rams delight type lithium titanate and the like.
  • M1 represented by the formula (2) is a metal element that can be a divalent ion.
  • M2 represented by the formula (3) is a metal element that can be a trivalent ion.
  • M3 represented by the formula (4) is a metal element that can be a tetravalent ion.
  • M1 is at least one of Mg, Ca, Cu, Zn and Sr. X satisfies 0 ⁇ x ⁇ 1/3.
  • Specific examples of the compound represented by the formula (2) are Li 3.75 Ti 4.875 Mg 0.375 O 12 and the like.
  • Specific examples of the compound represented by the formula (3) are LiCrTiO 4 and the like.
  • Specific examples of the compound represented by the formula (4) are Li 4 Ti 5 O 12 and Li 4 Ti 4.95 Nb 0.05 O 12 .
  • titanium phosphate oxide are titanium phosphate (TiP 2 O 7 ) and the like.
  • lithium-titanium phosphoric acid compound include LiTi 2 (PO 4 ) 3 .
  • titanium hydrogen hydrogen compound include H 2 Ti 3 O 7 (3TIO 2.1H 2 O), H 6 Ti 12 O 27 (3TIO 2 ⁇ 0.75H 2 O), and H 2 Ti 6 O 13 ( 3TIO 2 ⁇ ). 0.5H 2 O), H 2 Ti 7 O 15 (3TIO 2 ⁇ 0.43H 2 O) and H 2 Ti 12 O 25 (3Tio 2 ⁇ 0.25H 2 O).
  • the titanium-containing compound is preferably one or both of a titanium oxide and a lithium titanium composite oxide, and more preferably a titanium oxide. This is because the charge / discharge reaction proceeds sufficiently even when the strongly alkaline electrolytic solution 14 is used.
  • the negative electrode active material may further contain any one or more of the other compounds that do not contain titanium as a constituent element, in addition to the above-mentioned titanium-containing compound.
  • the types of other compounds are not particularly limited, but alkali metal titanium composite oxides (however, excluding the above-mentioned lithium titanium composite oxides) and alkali metal titanium phosphate compounds (however, the above-mentioned lithium titanium composite oxides are used. Excludes), niobium-containing compounds, vanadium-containing compounds, iron-containing compounds, molybdenum-containing compounds, etc.
  • the niobium-containing compound is a lithium niobium composite oxide, a hydrogen niobium compound, a titanium niobium composite oxide, or the like.
  • the material corresponding to the niobium-containing compound is excluded from the titanium-containing compound.
  • Specific examples of the lithium niobium composite oxide include LiNbO 2 .
  • Specific examples of the hydrogen niobium compound are H 4 Nb 6 O 17 and the like.
  • Specific examples of the titanium niobium composite oxide include TiNb 2 O 7 and Ti 2 Nb 10 O 29 .
  • lithium may be intercalated in the titanium-niobium composite oxide.
  • Vanadium-containing compounds include vanadium oxides and alkali metal vanadium composite oxides. However, the material corresponding to the vanadium-containing compound is excluded from each of the titanium-containing compound and the niobium-containing compound. Specific examples of vanadium oxide are vanadium dioxide (VO 2 ) and the like. Specific examples of the lithium vanadium composite oxide, which is an alkali metal vanadium composite oxide, are LiV 2 O 4 and LiV 3 O 8 .
  • the iron-containing compound is iron hydroxide or the like. However, the material corresponding to the iron-containing compound is excluded from each of the titanium-containing compound, the niobium-containing compound and the vanadium-containing compound.
  • Specific examples of iron hydroxide are iron oxyhydroxide (FeOOH) and the like.
  • the iron oxyhydroxide may be ⁇ -iron oxyhydroxide, ⁇ -iron oxyhydroxide, ⁇ -iron oxyhydroxide, ⁇ -iron oxyhydroxide, or any of them. Any two or more of them may be used.
  • Molybdenum-containing compounds include molybdenum oxides and cobalt molybdenum composite oxides. However, the material corresponding to the molybdenum-containing compound is excluded from each of the titanium-containing compound, niobium-containing compound, vanadium-containing compound and iron-containing compound. Specific examples of the molybdenum oxide are molybdenum dioxide (MoO 2 ) and the like. Specific examples of the cobalt molybdenum composite oxide are CoMoO 4 and the like.
  • the negative electrode 13 may or may not contain a carbon material.
  • the case where the negative electrode 13 described here contains a carbon material means that the negative electrode current collector 13A contains carbon as a constituent element, the negative electrode current collector 13A contains a carbon coating layer, and the negative electrode activity.
  • the carbon coating layer may cover the entire surface of the negative electrode current collector 13A, or may cover only a part of the surface of the negative electrode current collector 13A. In the latter case, a plurality of carbon coating layers separated from each other may cover the surface of the negative electrode current collector 13A.
  • the details regarding the coverage range of the carbon coating layer described here are related to the case where the carbon coating layer covers the surface of the negative electrode active material layer 13B and the case where the carbon coating layer covers the surface of the negative electrode active material layer. Is the same.
  • the negative electrode 13 does not contain a carbon material. This is because the hydrogen overvoltage of the carbon material is low, and if the negative electrode 13 contains the carbon material, the aqueous solvent in the electrolytic solution 14 is likely to be decomposed on the surface of the negative electrode 13. Therefore, in order to suppress the decomposition reaction of the aqueous solvent, it is preferable that the negative electrode 13 does not contain a carbon material.
  • the content of the carbon material in the negative electrode 13 is preferably as small as possible.
  • the ratio of the weight of the carbon material to the weight of the negative electrode 13 is preferably less than 0.1% by weight. This is because the aqueous solvent is less likely to decompose on the surface of the negative electrode 13.
  • the value of the carbon ratio C is a value rounded off to the second decimal place.
  • the electrolytic solution 14 is housed in the internal space S, and is an aqueous electrolytic solution containing an aqueous solvent as described above. That is, the electrolytic solution 14 is a solution in which an ionizable substance that can be ionized is dissolved or dispersed in an aqueous solvent.
  • the electrolytic solution 14 contains one or more of the ionic substances that can be ionized in the aqueous solvent together with the aqueous solvent. More specifically, the electrolytic solution 14 contains lithium ions that are occluded and released in each of the positive electrode 12 and the negative electrode 13.
  • the type of the aqueous solvent is not particularly limited, but specifically, pure water or the like.
  • the type of the ionic substance is not particularly limited, but specifically, any one or two or more of acids, bases, electrolyte salts and the like.
  • Specific examples of the acid include carbonic acid, oxalic acid, nitric acid, sulfuric acid, hydrochloric acid, acetic acid and citric acid.
  • the electrolyte salt is a salt containing cations and anions, and more specifically, any one or more of lithium salts.
  • the lithium salt include lithium carbonate, lithium oxalate, lithium nitrate, lithium sulfate, lithium chloride, lithium acetate, lithium citrate, lithium hydroxide and imide salt.
  • the imide salt includes bis (fluorosulfonyl) imide lithium and bis (trifluoromethanesulfonyl) imide lithium.
  • the electrolytic solution 14 has a pH of 11 or more as described above, and therefore has a strong alkalinity. This is because the lithium ions easily move in the electrolytic solution 14, so that the charge / discharge reaction easily proceeds.
  • This pH value is a value rounded off to the first decimal place, and the definition of the pH value described here is the same thereafter.
  • the electrolyte salt is lithium hydroxide or the like. This is because the pH of the electrolytic solution 14 tends to be 11 or higher, so that the strongly alkaline electrolytic solution 14 can be easily and stably realized.
  • the content of the ionic substance, that is, the concentration (mol / kg) of the electrolytic solution 14 is not particularly limited and can be set arbitrarily. Specifically, the concentration of the electrolytic solution 14 is preferably 0.2 mol / kg to 4 mol / kg. This is because the strongly alkaline electrolytic solution 14 is easily and stably realized.
  • the electrolyte salt may further contain any one or more of the other metal salts in addition to the above-mentioned lithium salt.
  • the types of other metal salts are not particularly limited, and specific examples thereof include alkali metal salts (excluding lithium salts), alkaline earth metal salts, and transition metal salts. Specific examples of alkali metal salts include sodium salts and potassium salts. Specific examples of alkaline earth metal salts include calcium salts and magnesium salts.
  • the electrolytic solution 14 is a saturated solution of the electrolyte salt. This is because lithium ions are likely to be stably stored and discharged during charging / discharging, so that the charging / discharging reaction is likely to proceed stably.
  • the electrolytic solution 14 is a saturated solution of the electrolyte salt
  • the internal space S is the surface of the positive electrode 12 and the inner wall surface of the exterior member 11 in the electrolytic solution 14. Since the electrolyte salt is precipitated, when the electrolyte solution 14 (liquid) and the electrolyte salt precipitate (solid) coexist in the internal space S, the electrolyte solution 14 is a saturated solution of the electrolyte salt. it is conceivable that.
  • a surface analysis method such as X-ray photoelectron spectroscopy (XPS) can be used, and a composition analysis method such as inductively coupled plasma (ICP) emission spectroscopy can be used. be able to.
  • XPS X-ray photoelectron spectroscopy
  • ICP inductively coupled plasma
  • [Element ratio A] Specifically, when the surfaces of the negative electrode active material layer 13B and the negative electrode current collector 13A were analyzed using XPS, the ratio of the detected amount of the second element group to the detected amount of the first element group (element ratio A). (Atomic%)) is 99 atomic% or more.
  • the first element group is a series of metal elements that can be constituent elements of the negative electrode current collector 13A and the negative electrode active material layer 13B, and more specifically, as described above, has a long periodic period. All metal elements (including lithium) belonging to Group 1 to Group 17 in the table. Therefore, the detected amount of the first element group is the sum of the detected amounts of all the metal elements.
  • the second element group includes a series of metal elements constituting the above-mentioned specific metal material and lithium among a series of elements that can be constituent elements of the negative electrode current collector 13A and the negative electrode active material layer 13B.
  • this series of metal elements is one or more of titanium, tin, zirconium, bismuth and indium.
  • the detected amount of the second element group is the sum of the detected amounts of any one or more of titanium, tin, zirconium, bismuth and indium, and the detected amount of lithium.
  • the value of the element ratio A is a value rounded off to the first decimal place.
  • lithium is contained in both the first element group and the second element group because lithium ions are stored in the negative electrode 13 in the lithium ion secondary battery, so XPS is used in the negative electrode active material layer 13B. This is because lithium can be detected when the surface is analyzed, and lithium can be detected when the surface of the negative electrode current collector 13A is analyzed using XPS.
  • the element ratio A is an average value calculated based on the surface analysis result of the negative electrode 13 using XPS as described above.
  • the element ratio A is the average value of the 10 element ratios A calculated at each of the above 10 locations.
  • the negative electrode 13 includes the negative electrode current collector 13A and the negative electrode active material layer 13B.
  • the element ratio A is calculated by the procedure described below.
  • any nine points on the surface of the negative electrode active material layer 13B are analyzed.
  • Any one point on the surface of the negative electrode current collector 13A is analyzed.
  • Arbitrary 9 locations on the surface of the negative electrode active material layer 13B are 9 locations sufficiently separated from each other on the surface of the negative electrode active material layer 13B. Further, any one place on the surface of the negative electrode current collector 13A is a portion of the negative electrode current collector 13A where the negative electrode active material layer 13B is not formed (connection terminal portion 13AT or the like).
  • the element ratio A is 9 element ratios A calculated at 9 points in the negative electrode active material layer 13B and 1 element ratio A calculated at 1 place in the negative electrode current collector 13A. It is an average value of 10 element ratios A in total.
  • the element ratio A of 99 atomic% or more is the abundance of metal elements constituting the specific metal material with respect to the constituent materials (constituent elements) on the surface of the negative electrode 13 (negative electrode current collector 13A and negative electrode active material layer 13B). Is sufficiently large with respect to the abundance of metal elements constituting the non-characteristic metal material.
  • the constituent atoms of the negative electrode 13 are less likely to elute into the strongly alkaline electrolytic solution 14, so that the electrolytic solution 14 is less likely to deteriorate and decompose. Therefore, even if the strongly alkaline electrolytic solution 14 is used, the charge / discharge reaction is likely to proceed stably, and the discharge capacity is less likely to decrease even if the charge / discharge is repeated.
  • analysis software When calculating the element ratio A based on the surface analysis results of the negative electrode active material layer 13B and the negative electrode current collector 13A using XPS, commercially available analysis software may be used.
  • the type of analysis software is not particularly limited, but specifically, there is a SpecSurf manufactured by JEOL Ltd., which calculates the atomic fraction based on the peak area of the XPS spectrum for each constituent element.
  • the third element group is titanium and lithium among a series of metal elements constituting the above-mentioned specific metal material. Therefore, the detected amount of the third element group is the sum of the detected amount of titanium and the detected amount of lithium.
  • the value of the element ratio B is a value rounded off to the first decimal place.
  • the element ratio B is an average value calculated based on the surface analysis results of the negative electrode 13 (negative electrode current collector 13A and negative electrode active material layer 13B) using XPS, similarly to the element ratio A described above.
  • the reason why the element ratio B is 99 atomic% or more is that the constituent atoms of the negative electrode 13 are less likely to be eluted by the strongly alkaline electrolytic solution 14, so that the electrolytic solution 14 is less likely to be deteriorated and decomposed. Therefore, even if the strongly alkaline electrolytic solution 14 is used, the charge / discharge reaction can proceed more stably, and even if the charge / discharge is repeated, the discharge capacity is less likely to decrease.
  • the procedure is the same as the above-mentioned procedure for calculating the element ratio A.
  • each of the positive electrode 12 and the negative electrode 13 is prepared and the electrolytic solution 14 is prepared, and then the lithium ion secondary battery is manufactured.
  • the positive electrode active material, the positive electrode binder and the positive electrode conductive agent are mixed with each other to obtain a positive electrode mixture.
  • the positive electrode mixture is added to the solvent to prepare a paste-like positive electrode mixture slurry.
  • This solvent may be an aqueous solvent or an organic solvent.
  • the positive electrode mixture slurry is applied to both sides of the positive electrode current collector 12A (excluding the connection terminal portion 12AT), and then the positive electrode mixture slurry is dried to form the positive electrode active material layer 12B.
  • the positive electrode active material layer 12B may be compression-molded using a roll press machine or the like. In this case, the positive electrode active material layer 12B may be heated, or compression molding may be repeated a plurality of times. As a result, the positive electrode 12 is manufactured.
  • the negative electrode active material layers 13B are formed on both sides of the negative electrode current collector 13A by the same procedure as the procedure for manufacturing the positive electrode 12 described above. Specifically, the negative electrode binder and the negative electrode conductive agent are mixed with the negative electrode active material containing the titanium-containing compound to form a negative electrode mixture, and then the negative electrode mixture is added to the solvent to form a paste. Prepare a negative electrode mixture slurry. Subsequently, the negative electrode mixture slurry is applied to both sides of the negative electrode current collector 13A (excluding the connection terminal portion 13AT), and then the negative electrode mixture slurry is dried to form the negative electrode active material layer 13B. After that, the negative electrode active material layer 13B may be compression-molded. As a result, the negative electrode 13 is manufactured.
  • the positive electrode 12 and the negative electrode 13 are housed in the internal space S of the exterior member 11.
  • the connection terminal portions 12AT and 13AT are led out to the outside of the exterior member 11.
  • the electrolytic solution 14 is supplied to the internal space S from the injection hole (not shown) communicated with the internal space S. As a result, the electrolytic solution 14 is filled in the internal space S. After that, the injection hole is sealed.
  • electrolytic solution 14 is housed in the internal space S in which each of the positive electrode 12 and the negative electrode 13 is housed, a lithium ion secondary battery using one type of aqueous electrolytic solution (electrolyte solution 14) is completed.
  • the negative electrode active material of the negative electrode 13 contains a titanium-containing compound
  • the electrolytic solution 14 containing an aqueous solvent has a pH of 11 or more
  • the element ratio A is 99 atoms. % Or more.
  • the constituent atoms of the negative electrode 13 are less likely to elute into the strongly alkaline electrolytic solution 14, so that the electrolytic solution 14 deteriorates and decomposes. It becomes difficult to do.
  • the strongly alkaline electrolytic solution 14 is used together with the negative electrode 13 containing the titanium-containing compound, the charge / discharge reaction is likely to proceed stably, and the discharge capacity is less likely to decrease even if the charge / discharge is repeated. Therefore, excellent charge / discharge characteristics can be obtained.
  • the constituent atoms of the negative electrode 13 are less likely to be eluted by the strongly alkaline electrolytic solution 14, so that a higher effect can be obtained.
  • the electrolytic solution 14 is less likely to be deteriorated and decomposed, so that a higher effect can be obtained.
  • the concentration of the electrolytic solution 14 is 0.2 mol / kg to 4 mol / kg, the strongly alkaline electrolytic solution 14 is easily and stably realized, so that a higher effect can be obtained.
  • the titanium-containing compound contains one or both of the titanium oxide and the lithium-titanium composite oxide, the charge / discharge reaction proceeds sufficiently even if the strongly alkaline electrolytic solution 14 is used, so that the effect is higher. Can be obtained.
  • the titanium oxide contains anatase-type titanium oxide, a high voltage can be obtained, so that a higher effect can be obtained.
  • the negative electrode 13 contains the negative electrode active material layer 13B and the surface of the negative electrode active material layer 13B is analyzed using XPS, the constituent atoms of the negative electrode active material layer 13B become the strongly alkaline electrolytic solution 14. Since it is difficult to sufficiently elute, a higher effect can be obtained.
  • the negative electrode 13 further contains the negative electrode current collector 13A and the surfaces of the negative electrode active material layer 13B and the negative electrode current collector 13A are analyzed using XPS, the negative electrode active material layer is analyzed. Since not only the constituent atoms of 13B but also the constituent atoms of the negative electrode current collector 13A are less likely to be eluted in the strongly alkaline electrolytic solution 14, a higher effect can be obtained.
  • FIG. 2 shows a cross-sectional configuration of the lithium ion secondary battery of the second embodiment.
  • the lithium ion secondary battery of the second embodiment has the same configuration as the above-mentioned configuration of the lithium ion secondary battery of the first embodiment (FIG. 1), except as described below.
  • this lithium ion secondary battery is newly provided with a partition wall 15, and is provided with a positive electrode electrolytic solution 16 and a negative electrode electrolytic solution 17 instead of the electrolytic solution 14.
  • the positive electrode electrolytic solution 16 is lightly shaded, and the negative electrode electrolytic solution 17 is darkly shaded.
  • the exterior member 11 has two spaces (positive electrode chamber S1 which is a positive electrode space and negative electrode chamber S2 which is a negative electrode space) separated by a partition wall 15.
  • the partition wall 15 is arranged between the positive electrode 12 and the negative electrode 13, and the internal space of the exterior member 11 is separated into the positive electrode chamber S1 and the negative electrode chamber S2. As a result, the positive electrode 12 and the negative electrode 13 are separated from each other via the partition wall 15 and face each other via the partition wall 15.
  • the partition wall 15 is a substance (excluding anions) such as lithium ions (cations) that are occluded and released in each of the positive electrode 12 and the negative electrode 13 without allowing anions to permeate between the positive electrode chamber S1 and the negative electrode chamber S2. To be transparent. This is because the mixing of the positive electrode electrolytic solution 16 and the negative electrode electrolytic solution 17 is prevented. That is, the partition wall 15 allows lithium ions to permeate from the positive electrode chamber S1 toward the negative electrode chamber S2, and also allows lithium ions to permeate from the negative electrode chamber S2 toward the positive electrode chamber S1.
  • the partition wall 15 contains one or both of an ion exchange membrane and a solid electrolyte membrane.
  • the ion exchange membrane is a porous membrane (cation exchange membrane) capable of transmitting lithium ions.
  • the solid electrolyte membrane has the conductivity of lithium ions. This is because the permeability of lithium ions is improved in the partition wall 15.
  • the partition wall 15 contains an ion exchange membrane rather than a solid electrolyte membrane. This is because each of the aqueous solvent in the positive electrode electrolytic solution 16 and the aqueous solvent in the negative electrode electrolytic solution 17 easily permeates the inside of the partition wall 15, so that the lithium ion conductivity is improved inside the partition wall 15.
  • the positive electrode 12 is arranged inside the positive electrode chamber S1 to occlude and release lithium ions
  • the negative electrode 13 is arranged inside the negative electrode chamber S2 to occlude and release lithium ions.
  • the negative electrode 13 contains a titanium-containing compound as the negative electrode active material.
  • Each of the positive electrode electrolytic solution 16 and the negative electrode electrolytic solution 17 is an aqueous electrolytic solution containing an aqueous solvent.
  • the positive electrode electrolyte 16 is housed inside the positive electrode chamber S1
  • the negative electrode electrolyte 17 is housed inside the negative electrode chamber S2. Therefore, the positive electrode electrolytic solution 16 and the negative electrode electrolytic solution 17 are separated from each other via the partition wall 15 so as not to be mixed with each other.
  • the positive electrode electrolyte 16 is housed inside the positive electrode chamber S1, it is in contact with the positive electrode 12 without being in contact with the negative electrode 13.
  • the negative electrode electrolytic solution 17 is housed inside the negative electrode chamber S2, it is in contact with the negative electrode 13 without being in contact with the positive electrode 12.
  • the pH of the positive electrode electrolyte 16 and the pH of the negative electrode electrolyte 17 are different from each other.
  • the negative electrode electrolytic solution 17 in contact with the negative electrode 13 has a pH of 11 or more, similar to the electrolytic solution 14 in the first embodiment.
  • the positive electrode electrolytic solution 16 in contact with the positive electrode 12 has a pH of less than 11.
  • the composition of each of the positive electrode electrolytic solution 16 and the negative electrode electrolytic solution 17 (type of aqueous solvent, type and concentration of ionic substance, etc.) can be arbitrarily set.
  • the positive electrode electrolyte 16 has a pH of less than 11, and the negative electrode electrolyte 17 has a pH of 11 or more, as compared with the case where the pH of both is equal to each other. This is because the decomposition potential of the aqueous solvent shifts due to the difference in pH. As a result, the potential window of the aqueous solvent is expanded while the decomposition reaction of the aqueous solvent is thermodynamically suppressed during charging and discharging. Therefore, while a high voltage is obtained, the charge / discharge reaction utilizing the occlusion / discharge of lithium ions proceeds sufficiently and stably.
  • composition formula (type of electrolyte salt) of the negative electrode electrolyte 17 is different from the composition formula (type of electrolyte salt) of the positive electrode electrolyte 16. This is because the above-mentioned magnitude relationship regarding pH is easily satisfied.
  • the pH values of the positive electrode electrolyte 16 and the negative electrode electrolyte 17 are not particularly limited.
  • the pH of the negative electrode electrolyte 17 is preferably 12 or more, and more preferably 13 or more. This is because the pH of the negative electrode electrolytic solution 17 becomes sufficiently high, so that the above-mentioned magnitude relationship regarding pH can be easily satisfied. Further, since the difference between the pH of the positive electrode electrolytic solution 16 and the pH of the negative electrode electrolytic solution 17 becomes sufficiently large, it becomes easy to maintain the magnitude relationship between the pH of both.
  • the pH of the positive electrode electrolyte 16 is preferably 3 to 8, more preferably 4 to 8, and even more preferably 4 to 6. This is because the difference between the pH of the positive electrode electrolyte 16 and the pH of the negative electrode electrolyte 17 becomes sufficiently large, so that the magnitude relationship between the pH of both can be easily maintained. Further, since the exterior member 11 is less likely to be corroded and the battery components such as the positive electrode current collector 12A and the negative electrode current collector 13A are less likely to be corroded, the electrochemical durability (stability) of the lithium ion secondary battery is increased. Is improved.
  • one or both of the positive electrode electrolyte 16 and the negative electrode electrolyte 17 is preferably a saturated solution of the electrolyte salt (lithium salt), as in the electrolyte 14 of the first embodiment.
  • the charge / discharge reaction lithium ion occlusion / discharge reaction
  • the method of confirming whether or not each of the positive electrode electrolytic solution 16 and the negative electrode electrolytic solution 17 is a saturated solution of a lithium salt is the same as the method of confirming whether or not the electrolytic solution 14 is a saturated solution of a lithium salt. ..
  • the physical properties of the negative electrode 13 are optimized in order to obtain excellent charge / discharge characteristics, as in the case of the lithium ion secondary battery of the first embodiment described above. That is, the element ratio A when the surfaces of the negative electrode active material layer 13B and the negative electrode current collector 13A are analyzed using XPS is 99 atomic% or more. In this case, the element ratio B is preferably 99 atomic% or more.
  • the procedure for manufacturing the lithium ion secondary battery is the same as the procedure for manufacturing the lithium ion secondary battery in the first embodiment described above, except that the procedure will be described below.
  • the pH of the positive electrode electrolyte 16 is set to less than 11 and the pH of the negative electrode electrolyte 17 is set to 11 or more by adjusting conditions such as the type and concentration (mol / kg) of the ionic substance. ..
  • an exterior member 11 (positive electrode chamber S1 and negative electrode chamber S2) to which a partition wall 15 is attached is prepared in advance.
  • the positive electrode 12 is housed inside the positive electrode chamber S1 and the connection terminal portion 12AT is led out to the outside of the positive electrode chamber S1.
  • the negative electrode 13 is housed inside the negative electrode chamber S2, and the connection terminal portion 13AT is led out to the outside of the negative electrode chamber S2.
  • the positive electrode electrolytic solution 16 is supplied to the inside of the positive electrode chamber S1 from the positive electrode injection hole (not shown) communicated with the positive electrode chamber S1, and the negative electrode injection hole (not shown) communicated with the negative electrode chamber S2.
  • the negative electrode electrolytic solution 17 is supplied to the inside of the negative electrode chamber S2. After that, each of the positive electrode injection hole and the negative electrode injection hole is sealed. As a result, the positive electrode electrolytic solution 16 is housed inside the positive electrode chamber S1 in which the positive electrode 12 is arranged, and the negative electrode electrolytic solution 17 is housed inside the negative electrode chamber S2 in which the negative electrode 13 is arranged. Therefore, a lithium ion secondary battery using two types of aqueous electrolytic solutions (positive electrode electrolytic solution 16 and negative electrode electrolytic solution 17) is completed.
  • the negative electrode active material of the negative electrode 13 contains a titanium-containing compound
  • the positive electrode electrolytic solution 16 containing an aqueous solvent has a pH of less than 11
  • the negative electrode containing an aqueous solvent has a pH of less than 11
  • the negative electrode containing an aqueous solvent has a pH of 11 or more
  • the element ratio A is 99 atomic% or more. Therefore, excellent charge / discharge characteristics can be obtained for the same reason as that of the lithium ion secondary battery of the first embodiment described above.
  • the other actions and effects of the lithium ion secondary battery are the same as the other actions and effects of the lithium ion secondary battery in the first embodiment.
  • the negative electrode 13 includes the negative electrode current collector 13A together with the negative electrode active material layer 13B.
  • the negative electrode 13 does not include the negative electrode current collector 13A (excluding the connection terminal portion 13AT), it may include only the negative electrode active material layer 13B.
  • the element ratio A is calculated by analyzing any 10 points on the surface of the negative electrode active material layer 13B.
  • the negative electrode active material layer 13B is formed by using the coating method. That is, in the step of forming the negative electrode active material layer 13B, a paste-like negative electrode mixture slurry containing a negative electrode binder and a negative electrode conductive agent together with a negative electrode active material containing a titanium-containing compound is applied to both surfaces of the negative electrode current collector 13A. , The negative electrode mixture slurry is dried.
  • the negative electrode active material layer 13B may be formed by using a sintering method instead of the coating method. That is, in the step of forming the negative electrode active material layer 13B, the negative electrode mixture slurry may be applied, the negative electrode mixture slurry may be dried, and then the negative electrode mixture slurry may be fired at a high temperature. As a result, the negative electrode active material in the negative electrode mixture slurry is sintered, so that the negative electrode active material layer 13B is formed.
  • a negative electrode active material containing a titanium-containing compound and polyethylene oxide which is a negative electrode binder
  • a negative electrode mixture is added to the solvent to form a paste.
  • the negative electrode mixture slurry is calcined in an oxygen atmosphere.
  • the firing temperature is not particularly limited, but specifically, it is 500 ° C. to 1200 ° C. Since the firing time is not particularly limited, it can be set arbitrarily.
  • the negative electrode active material in the negative electrode mixture slurry is sintered, and the negative electrode active material is fixed to the surface of the negative electrode current collector 13A, so that the negative electrode active material layer 13B is formed.
  • the negative electrode active material layer 13B is formed by the sintering method, it is not necessary to contain one or both of the negative electrode binder and the negative electrode conductive agent in the negative electrode mixture slurry.
  • the negative electrode active material is sintered, so that the negative electrode active material is fixed to the negative electrode current collector 13A without using the negative electrode binder, and the negative electrode conductive material is not used. This is because the electrical conductivity of the negative electrode active material layer 13B is ensured.
  • the lithium ion secondary battery further includes a separator 20, which is interposed between the electrolyte layers 18 and 19.
  • the electrolyte layer 18 is arranged between the positive electrode 12 and the separator 20, and the electrolyte layer 19 is arranged between the negative electrode 13 and the separator 20. That is, the electrolyte layer 18 is adjacent to each of the positive electrode 12 and the separator 20, and the electrolyte layer 19 is adjacent to each of the negative electrode 13 and the separator 20.
  • each of the electrolyte layers 18 and 19 contains a polymer compound together with the electrolytic solution 14, and the electrolytic solution 14 is held by the polymer compound.
  • the type of the polymer compound is not particularly limited, but specifically, any one or more of polyvinylidene fluoride, polyethylene oxide and the like.
  • each of the electrolyte layers 18 and 19 is lightly shaded.
  • the separator 20 is an insulating porous film that allows lithium ions to permeate while separating the electrolyte layers 18 and 19 from each other, and contains a polymer compound such as polyethylene.
  • a sol-like precursor solution is prepared by mixing the solvent together with the electrolyte solution 14 and the polymer compound, and then the precursor solution is applied to the surface of the positive electrode 12.
  • the procedure for forming the electrolyte layer 19 is the same as the procedure for forming the electrolyte layer 18 except that the precursor solution is applied to the surface of the negative electrode 13.
  • the electrolyte layer 21 is arranged between the positive electrode 12 and the partition wall 15, and the electrolyte layer 22 is arranged between the negative electrode 13 and the partition wall 15. That is, the electrolyte layer 21 is adjacent to each of the positive electrode 12 and the partition wall 15, and the electrolyte layer 22 is adjacent to each of the negative electrode 13 and the partition wall 15.
  • the electrolyte layer 21 contains a polymer compound together with the positive electrode electrolytic solution 16, and the positive electrode electrolytic solution 16 is held by the polymer compound.
  • the electrolyte layer 22 contains a polymer compound together with the negative electrode electrolyte 17, and the negative electrode electrolyte 17 is held by the polymer compound. Details regarding the types of polymer compounds are as described above. In FIG. 4, the electrolyte layer 21 containing the positive electrode electrolyte 16 is lightly shaded, and the electrolyte layer 22 containing the negative electrode electrolyte 17 is heavily shaded.
  • a sol-like precursor solution is prepared by mixing the solvent together with the positive electrode electrolyte 16 and the polymer compound, and then the precursor solution is applied to the surface of the positive electrode 12.
  • a sol-like precursor solution is prepared by mixing the solvent together with the negative electrode electrolyte 17 and the polymer compound, and then the precursor solution is applied to the surface of the negative electrode 13.
  • the application (application example) of the lithium ion secondary battery is not particularly limited.
  • the lithium ion secondary battery used as a power source may be a main power source for electronic devices and electric vehicles, or may be an auxiliary power source.
  • the main power source is a power source that is preferentially used regardless of the presence or absence of another power source.
  • the auxiliary power supply is a power supply used in place of the main power supply or a power supply that can be switched from the main power supply.
  • lithium-ion secondary batteries Specific examples of applications for lithium-ion secondary batteries are as follows. Electronic devices such as video cameras, digital still cameras, mobile phones, laptop computers, headphone stereos, portable radios and portable information terminals. A storage device such as a backup power supply and a memory card. Power tools such as electric drills and saws. It is a battery pack installed in electronic devices. Medical electronic devices such as pacemakers and hearing aids. It is an electric vehicle such as an electric vehicle (including a hybrid vehicle). It is a power storage system such as a household or industrial battery system that stores power in case of an emergency. In these applications, one lithium ion secondary battery may be used, or a plurality of lithium ion secondary batteries may be used.
  • the battery pack may use a single battery or an assembled battery.
  • the electric vehicle is a vehicle that operates (runs) using a lithium ion secondary battery as a driving power source, and may be a hybrid vehicle that also has a drive source other than the lithium ion secondary battery.
  • household electric products and the like can be used by using the power stored in a lithium ion secondary battery which is a power storage source.
  • the use of the lithium ion secondary battery may be other than the series of uses exemplified here.
  • a lithium ion secondary battery using one kind of water-based electrolytic solution (electrolyte solution 14) shown in FIG. 1 was manufactured by the following procedure.
  • the negative electrode active material layer 13B was formed by using the coating method.
  • 89 parts by mass of the negative electrode active material (titanium-containing compound) and 11 parts by mass of the negative electrode binder (polyvinylidene fluoride) were mixed with each other to obtain a negative electrode mixture.
  • 89 parts by mass of the negative electrode active material (titanium-containing compound), 10 parts by mass of the negative electrode binder (polyvinylidene fluoride), and 1 part by mass of the negative electrode conductive agent (carbon black (CB) which is a carbon material) are mixed with each other. The mixture was made into a negative electrode mixture.
  • Titanium-containing compounds include anatase-type titanium oxide (TIM 2 ), which is a titanium oxide, lithium-titanium composite oxide (Li 4 Ti 5 O 12 (LTO)), and a carbon layer (carbon), which is a carbon material.
  • TIM 2 anatase-type titanium oxide
  • Li 4 Ti 5 O 12 LTO
  • carbon carbon
  • a negative electrode mixture was added to a solvent (N-methyl-2-pyrrolidone which is an organic solvent), and then the solvent was stirred to prepare a paste-like negative electrode mixture slurry.
  • the negative electrode active material layer 13B was formed. As a result, the negative electrode 13 was manufactured.
  • Example 6 the negative electrode active material layer 13B was formed by using the sintering method.
  • the negative electrode active material anatase-type titanium oxide which is a titanium-containing compound
  • 11 parts by mass of the negative electrode binder polyethylene oxide
  • a surfactant was added to the solvent (pure water which is an aqueous solvent) together with the negative electrode mixture, and then the solvent was stirred to prepare a paste-like negative electrode mixture slurry.
  • the carbon ratio C (% by weight) with respect to the negative electrode 13 is as shown in Table 1. Further, after surface analysis of the negative electrode 13 (negative electrode current collector 13A and negative electrode active material layer 13B) using XPS, the element ratios A and B (atomic%) are determined based on the surface analysis results using the above analysis software. As a result of calculation, the results shown in Table 1 were obtained.
  • An ionic substance was added to an aqueous solvent (pure water), and then the aqueous solvent was stirred to prepare an electrolytic solution 14.
  • the types of ionic substances and the concentration (mol / kg) and pH of the electrolytic solution 14 are as shown in Table 1. In this case, the pH of the electrolytic solution 14 was set to 11 or higher.
  • the ionic substance lithium hydroxide (LiOH) and lithium carbonate (Li 2 CO 3 ), which are electrolyte salts (lithium salts), were used.
  • each of the positive electrode 12 and the negative electrode 13 was housed in the internal space S of the exterior member 11 (glass beaker) made of glass.
  • the connection terminal portions 12AT and 13AT were led out to the outside of the exterior member 11.
  • a reference electrode silver-silver chloride electrode
  • the electrolytic solution 14 was supplied to the internal space S. As a result, the electrolytic solution 14 was accommodated in the internal space S, so that the lithium ion secondary battery was completed.
  • a lithium ion secondary battery was manufactured by the same procedure except that an aluminum (Al) foil and a copper (Cu) foil were used as the negative electrode current collector 13A. Further, by using lithium nitrate (LiNO 3 ) as an ionic substance, a lithium ion secondary battery was manufactured by the same procedure except that the pH of the electrolytic solution 14 was set to less than 11. The types of ionic substances and the concentration (mol / kg) and pH of the electrolytic solution 14 are as shown in Table 1.
  • charge / discharge efficiency (%) (discharge capacity / charge capacity) ⁇ 100.
  • the voltage is constantly charged until the voltage reaches ⁇ 1.3 V at a current of 1 C, and the voltage reaches ⁇ 1.0 V at a current of 1 C. After the constant current was discharged to, the constant voltage was discharged until the current reached 0.1 C at the voltage of ⁇ 1.0 V.
  • 1C is a current value that can completely discharge the battery capacity (theoretical capacity) in 1 hour
  • 0.1C is a current value that can completely discharge the battery capacity in 10 hours.
  • the voltage is constantly charged until the voltage reaches -1.65V with a current of 1C, and the voltage reaches -1.35V with a current of 1C. After the constant current was discharged until the current reached 0.1 C, the constant voltage was discharged at the voltage of ⁇ 1.35 V.
  • the pH of the electrolytic solution 14 is 11 or more, it is caused by using a metal material composed of metal elements (Al, Cu) constituting the non-specific metal material as the forming material of the negative electrode current collector 13A.
  • a metal material composed of metal elements (Al, Cu) constituting the non-specific metal material As the forming material of the negative electrode current collector 13A.
  • the element ratio A is less than 99 atomic% (Comparative Examples 1 and 2), the lithium ion secondary battery cannot be charged or discharged, or the lithium ion secondary battery can be charged or discharged. Even so, the charge / discharge efficiency was significantly reduced.
  • the element ratio A is 99 atomic% or more due to the fact that a metal material composed of a metal element (Ti) constituting the specific metal material is used as the forming material of the negative electrode current collector 13A, but the electrolytic solution 14 has an element ratio A of 99 atomic% or more.
  • the pH was less than 11 (Comparative Example 3)
  • the lithium ion secondary battery could not be charged and discharged.
  • the element ratio A is 99 atomic% or more and electrolysis due to the fact that a metal material composed of a metal element (Ti) constituting the specific metal material is used as the forming material of the negative electrode current collector 13A.
  • a metal material composed of a metal element (Ti) constituting the specific metal material is used as the forming material of the negative electrode current collector 13A.
  • the tendency explained below was obtained.
  • the negative electrode active material of the negative electrode 13 contains a titanium-containing compound
  • the electrolytic solution 14 containing an aqueous solvent has a pH of 11 or more
  • the element ratio A is 99 atomic% or more.
  • the lithium ion secondary battery could be charged and discharged, and high charge / discharge efficiency was also obtained. Therefore, excellent charge / discharge characteristics were obtained in the lithium ion secondary battery.
  • the configuration of the lithium ion secondary battery of the present technology has been described above with reference to one embodiment and examples. However, the configuration of the lithium ion secondary battery of the present technology is not limited to the configuration described in one embodiment and the embodiment, and can be variously modified.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

二次電池は、リチウムイオンを吸蔵放出する正極と、そのリチウムイオンを吸蔵放出する負極活物質を含む負極と、水性溶媒を含む電解液とを備える。負極活物質は、チタン含有化合物を含み、電解液は、11以上であるpHを有する。X線光電子分光分析法を用いて負極の表面を分析した際、全ての金属元素の検出量の和に対するリチウム、チタン、スズ、ジルコニウム、ビスマスおよびインジウムのそれぞれの検出量の和の割合は、99原子%以上である。

Description

リチウムイオン二次電池
 本技術は、リチウムイオン二次電池に関する。
 携帯電話機などの多様な電子機器が普及しているため、小型かつ軽量であると共に高エネルギー密度を得ることが可能である電源としてリチウムイオン二次電池の開発が進められている。このリチウムイオン二次電池としては、水性溶媒を含む電解液(いわゆる水系電解液)を備えたリチウムイオン二次電池が開発されており、そのリチウムイオン二次電池の構成に関しては、様々な検討がなされている。
 具体的には、充放電時において水系電解液の電気分解を抑制するために、リチウムイオン、イミド系アニオンおよび金属カチオンを含むと共に3~12であるPHを有する水系電解液が用いられている(例えば、特許文献1参照。)。バインダおよび集電体を含まない自立電極を実現するために、カーボンナノチューブの三次元架橋網目構造中に電極活物質粒子が含有された複合材料が用いられており、その複合材料を含む本体に電池タブが固定されている(例えば、特許文献2参照。)。優れた充放電効率および貯蔵性能を得るために、Ti含有複合酸化物を含む負極活物質が用いられており、その負極活物質を含む負極の表面にHgなどが存在してる(例えば、特許文献3参照。)。
 可撓性電池化学セルを実現するために、繊維状活性電極材料により形成された不織布が電極として用いられている(例えば、特許文献4参照。)。サイクル安定性を確保するために、チタン酸化物を含む負極活物質の表面にカーボンコート層が設けられている(例えば、特許文献5参照。)。優れたレート特性を得るために、マクロポアを有するチタン酸リチウムが蓄電デバイスの電極活物質として用いられている(例えば、特許文献6参照。)。
特開2019-121537号公報 特開2019-075367号公報 特開2019-169458号公報 特開2014-107276号公報 特開2019-053931号公報 国際公開第2010/137582号パンフレット
 水系電解液を備えたリチウムイオン二次電池の電池特性に関する様々な検討がなされているが、そのリチウムイオン二次電池の充放電特性は未だ十分でないため、改善の余地がある。
 よって、優れた充放電特性を得ることが可能であるリチウムイオン二次電池が望まれている。
 本技術の一実施形態のリチウムイオン二次電池は、リチウムイオンを吸蔵放出する正極と、そのリチウムイオンを吸蔵放出する負極活物質を含む負極と、水性溶媒を含む電解液とを備えたものである。負極活物質はチタン含有化合物を含み、電解液は11以上であるpHを有する。X線光電子分光分析法を用いて負極の表面を分析した際、全ての金属元素の検出量の和に対するリチウム、チタン、スズ、ジルコニウム、ビスマスおよびインジウムのそれぞれの検出量の和の割合は、99原子%以上である。
 また、本技術の一実施形態の他のリチウムイオン二次電池は、正極空間と負極空間との間に配置され、リチウムイオンを透過させる隔壁と、その正極空間の内部に配置され、リチウムイオンを吸蔵放出する正極と、その負極空間の内部に配置され、リチウムイオンを吸蔵放出する負極活物質を含む負極と、その正極空間の内部に収容され、水性溶媒を含む正極電解液と、その負極空間の内部に収容され、水性溶媒を含む負極電解液とを備えたものである。負極活物質はチタン含有化合物を含み、正極電解液は11未満であるpHを有し、負極電解液は11以上であるpHを有する。X線光電子分光分析法を用いて負極の表面を分析した際、全ての金属元素の検出量の和に対するリチウム、チタン、スズ、ジルコニウムおよびビスマスおよびインジウムのそれぞれの検出量の和の割合は、99原子%以上である。
 ここで、「全ての金属元素」とは、X線光電子分光分析法を用いて分析(検出)可能である全ての金属元素であり、より具体的には、長周期型周期表のうちの第1族~第17族に属する全ての金属元素(リチウムを含む。)である。
 また、上記した割合を算出するために、X線光電子分光分析法を用いて負極の表面を分析する場合には、その負極の表面のうちの任意の10箇所を分析する。これにより、割合は、上記した10箇所のそれぞれにおいて算出された10個の割合の平均値である。なお、X線光電子分光分析法を用いた分析手順および割合の算出手順のそれぞれの詳細に関しては、後述する。
 本技術の一実施形態のリチウムイオン二次電池によれば、負極の負極活物質がチタン含有化合物を含み、水性溶媒を含む電解液が11以上であるpHを有し、X線光電子分光分析法を用いて負極の表面を分析した際の割合が上記した範囲であるので、優れた充放電特性を得ることができる。
 また、本技術の一実施形態の他のリチウムイオン二次電池によれば、負極の負極活物質がチタン含有化合物を含み、水性溶媒を含む正極電解液が11未満であるpHを有し、水性溶媒を含む負極電解液が11以上であるpHを有し、X線光電子分光分析法を用いて負極の表面を分析した際の割合が上記した範囲であるので、優れた充放電特性を得ることができる。
 なお、本技術の効果は、必ずしもここで説明された効果に限定されるわけではなく、後述する本技術に関連する一連の効果のうちのいずれの効果でもよい。
本技術の第1実施形態のリチウムイオン二次電池の構成を表す断面図である。 本技術の第2実施形態のリチウムイオン二次電池の構成を表す断面図である。 変形例1のリチウムイオン二次電池の構成を表す断面図である。 変形例2のリチウムイオン二次電池の構成を表す断面図である。
 以下、本技術の一実施形態に関して、図面を参照しながら詳細に説明する。なお、説明する順序は、下記の通りである。

 1.第1実施形態(リチウムイオン二次電池)
  1-1.構成
  1-2.物性
  1-3.動作
  1-4.製造方法
  1-5.作用および効果
 2.第2実施形態(リチウムイオン二次電池)
  2-1.構成
  2-2.物性
  2-3.動作
  2-4.製造方法
  2-5.作用および効果
 3.変形例
 4.リチウムイオン二次電池の用途
<1.第1実施形態(リチウムイオン二次電池)>
 まず、本技術の第1実施形態のリチウムイオン二次電池に関して説明する。
 ここで説明するリチウムイオン二次電池は、リチウムイオンの吸蔵放出を利用する二次電池であり、正極および負極と共に、水性溶媒を含む液状の電解質である電解液(水系電解液)を備えている。このリチウムイオン二次電池では、リチウムイオンの吸蔵放出を利用して充放電反応が進行するため、電池容量が得られる。
<1-1.構成>
 図1は、第1実施形態のリチウムイオン二次電池の断面構成を表している。このリチウムイオン二次電池は、図1に示したように、外装部材11と、正極12と、負極13と、電解液14とを備えている。図1では、電解液14に淡い網掛けを施している。
 以下の説明では、図1中の上側をリチウムイオン二次電池の上側とすると共に、図1中の下側をリチウムイオン二次電池の下側とする。
[外装部材]
 外装部材11は、正極12、負極13および電解液14などを収納するための内部空間Sを有する略箱状の部材である。
 この外装部材11は、金属材料、ガラス材料および高分子化合物などのうちのいずれか1種類または2種類以上を含んでいる。具体的には、外装部材11は、剛性を有する金属缶、ガラスケースおよびプラスチックケースなどでもよいし、柔軟性(または可撓性)を有する金属箔および高分子フィルムなどでもよい。
[正極]
 正極12は、内部空間Sに配置されており、リチウムイオンを吸蔵放出する。ここでは、正極12は、一対の面を有する正極集電体12Aと、その正極集電体12Aの両面に形成された正極活物質層12Bとを含んでいる。ただし、正極活物質層12Bは、正極12が負極13に対向する側において正極集電体12Aの片面だけに形成されていてもよい。
 なお、正極集電体12Aは、省略されてもよい。このため、正極12は、正極活物質層12Bだけでもよい。
(正極集電体)
 正極集電体12Aは、正極活物質層12Bを支持しており、金属材料、炭素材料および導電性セラミックス材料などの導電性材料のうちのいずれか1種類または2種類以上を含んでいる。金属材料の具体例は、チタン、アルミニウムおよびそれらの合金などである。導電性セラミックス材料の具体例は、酸化インジウムスズ(ITO)などである。ここでは、正極集電体12Aの一部(接続端子部12AT)に正極活物質層12Bが形成されておらずに、その接続端子部12ATが外装部材11の外部に導出されている。
 中でも、正極集電体12Aの形成材料は、電解液14に対して不溶性、難溶性および耐食性を有していると共に、正極活物質に対して低反応性を有していることが好ましい。このため、正極集電体12Aは、上記した金属材料を含んでいることが好ましく、すなわちチタン、アルミニウムおよびそれらの合金などを含んでいることが好ましい。リチウムイオン二次電池を使用しても正極集電体12Aが劣化しにくくなるからである。
 なお、正極集電体12Aは、上記した金属材料、炭素材料および導電性セラミックス材料のうちのいずれか1種類または2種類以上が表面を被覆するように鍍金された導電体でもよい。導電体の材質は、導電性を有していれば、特に限定されない。
(正極活物質層)
 正極活物質層12Bは、リチウムイオンを吸蔵放出する正極活物質のうちのいずれか1種類または2種類以上を含んでいる。ただし、正極活物質層12Bは、さらに、正極結着剤および正極導電剤などを含んでいてもよい。
 正極活物質は、リチウム含有化合物などを含んでいる。リチウム含有化合物の種類は、特に限定されないが、具体的には、リチウム複合酸化物およびリチウムリン酸化合物などである。リチウム複合酸化物は、リチウムと1種類または2種類以上の遷移金属元素とを構成元素として含む酸化物であると共に、リチウムリン酸化合物は、リチウムと1種類または2種類以上の遷移金属元素とを構成元素として含むリン酸化合物である。遷移金属元素の種類は、特に限定されないが、具体的には、ニッケル、コバルト、マンガンおよび鉄などである。
 層状岩塩型の結晶構造を有するリチウム複合酸化物の具体例は、LiNiO、LiCoO、LiCo0.98Al0.01Mg0.01、LiNi0.5 Co0.2 Mn0.3 、LiNi0.8 Co0.15Al0.05、LiNi0.33Co0.33Mn0.33、Li1.2 Mn0.52Co0.175 Ni0.1 およびLi1.15(Mn0.65Ni0.22Co0.13)Oなどである。スピネル型の結晶構造を有するリチウム複合酸化物の具体例は、LiMnなどである。オリビン型の結晶構造を有するリチウムリン酸化合物の具体例は、LiFePO、LiMnPO、LiMn0.5 Fe0.5 PO、LiMn0.7 Fe0.3 POおよびLiMn0.75Fe0.25POなどである。
 正極結着剤は、合成ゴムおよび高分子化合物などのうちのいずれか1種類または2種類以上を含んでいる。合成ゴムの具体例は、スチレンブタジエン系ゴムなどである。高分子化合物の具体例は、ポリフッ化ビニリデンおよびポリイミドなどである。
 正極導電剤は、炭素材料などの導電性材料のうちのいずれか1種類または2種類以上を含んでおり、その炭素材料の具体例は、黒鉛、カーボンブラック、アセチレンブラックおよびケッチェンブラックなどである。ただし、導電性材料は、金属材料、導電性セラミックス材料および導電性高分子などでもよい。
[負極]
 負極13は、正極12から離隔されるように内部空間Sに配置されており、リチウムイオンを吸蔵放出する。ここでは、負極13は、一対の面を有する負極集電体13Aと、その負極集電体13Aの両面に形成された負極活物質層13Bとを含んでいる。ただし、負極活物質層13Bは、負極13が正極12に対向する側において負極集電体13Aの片面だけに形成されていてもよい。
 負極13を構成している負極集電体13Aおよび負極活物質層13Bのうちの一方または双方は、特定金属材料を表面に有しているため、その負極13は、後述する強アルカリ性の電解液14に対して反応および溶解しにくい性質を発現する。この特定金属材料は、特定の種類の金属元素を構成元素として含む材料であり、より具体的には、チタン、スズ、ジルコニウム、ビスマスおよびインジウムのうちのいずれか1種類または2種類以上を構成元素として含む材料である。特定金属材料の種類は、1種類だけでもよいし、2種類以上でもよい。
 ただし、特定金属材料は、単体(金属単体)でもよいし、合金でもよいし、酸化物(伝導体である金属酸化物)でもよいし、それらの2種類以上でもよい。酸化物の具体例は、上記したチタンなどの金属元素のうちのいずれか1種類または2種類以上を構成元素として含む酸化物であり、より具体的には、酸化チタンなどである。
 これに対して、負極13を構成している負極集電体13Aおよび負極活物質層13Bのうちの一方または双方が非特定金属材料を表面に有していると、その負極13は、強アルカリ性の電解液14に対して反応および溶解しやすい性質を発現する。この非特定金属材料は、上記した特定の金属元素以外の他の金属元素を構成元素として含む材料であり、より具体的には、アルミニウム、銅、鉛、亜鉛、マグネシウムおよび鉄などのうちのいずれか1種類または2種類以上を構成元素として含む材料である。
 負極集電体13Aおよび負極活物質層13Bのうちの一方または双方が特定金属材料を表面に有しているのは、後述する元素割合Aに関する適正条件が満たされていると、強アルカリ性の電解液14に対して負極13が反応および溶解しにくくなるため、その電解液14中に負極13の構成原子が溶出されにくくなるからである。これにより、電解液14が劣化および分解しにくくなるため、リチウムイオン二次電池の充放電特性が低下しにくくなる。なお、元素割合Aの詳細に関しては、後述する。
 中でも、負極集電体13Aおよび負極活物質層13Bのうちの一方または双方は、特定金属材料として、チタンを構成元素として含む材料を表面に有していることが好ましい。強アルカリ性の電解液14に対して負極13が十分に反応および溶解しにくくなるため、その電解液14が十分に劣化および分解しにくくなるからである。
 特に、負極集電体13Aおよび負極活物質層13Bの双方は、特定金属材料を表面に有していることが好ましく、チタンを構成元素として含む材料を表面に有していることがより好ましい。強アルカリ性の電解液14に対して負極13がより反応および溶解しにくくなるため、その電解液14がより劣化および分解しにくくなるからである。
 また、負極集電体13Aおよび負極活物質層13Bのうちの一方だけが特定金属材料を表面に有している場合には、その負極集電体13Aは、特定金属材料を表面に有していることが好ましく、チタンを構成元素として含む材料を表面に有していることがより好ましい。負極集電体13Aが負極活物質(後述するチタン含有化合物)に対して高い親和性を有するため、負極活物質層13Bが負極集電体13Aに対して安定に密着しやすくなると共に、その負極活物質層13Bにおいて充放電反応が安定に進行しやすくなるからである。
 なお、負極集電体13Aおよび負極活物質層13Bのうちの一方または双方の表面は、特定金属材料により被覆されていてもよい。この場合において、負極集電体13Aおよび負極活物質層13Bのうちの一方または双方の表面は、特定金属材料により鍍金されていてもよい。
 また、負極集電体13Aおよび負極活物質層13Bのうちの一方または双方は、特定金属材料を表面に有していれば、さらに、非特定金属材料を含んでいてもよいし、その非特定金属材料以外の他の材料を含んでいてもよい。
(負極集電体)
 負極集電体13Aは、負極活物質層13Bを支持しており、導電性材料のうちのいずれか1種類または2種類以上を含んでいる。この導電性材料は、金属材料、炭素材料および導電性セラミックス材料などであり、その金属材料の具体例は、ステンレス鋼(SUS)、チタン、亜鉛、スズ、鉛およびそれらの2種類以上の合金などである。
 ここでは、負極集電体13Aの一部(接続端子部13AT)に負極活物質層13Bが形成されておらずに、その接続端子部13ATが外装部材11の外部に導出されている。接続端子部13ATの導出方向は、特に限定されないが、具体的には、接続端子部12ATの導出方向と同様である。
(負極活物質層)
 負極活物質層13Bは、リチウムイオンを吸蔵放出する負極活物質のうちのいずれか1種類または2種類以上を含んでいる。ただし、負極活物質層13Bは、さらに、負極結着剤および負極導電剤などを含んでいてもよい。負極結着剤に関する詳細は、正極結着剤に関する詳細と同様であると共に、負極導電剤に関する詳細は、正極導電剤に関する詳細と同様である。なお、負極導電剤が金属材料である場合には、その金属材料は、上記した特定金属材料を表面に有していることが好ましい。
 負極活物質は、チタン含有化合物のうちのいずれか1種類または2種類以上を含んでいる。強アルカリ性の電解液14を用いた場合においても、充放電反応が円滑かつ安定に進行しやすくなるからである。この負極活物質は、上記した特定金属材料を表面に有していることが好ましい。
 このチタン含有化合物とは、チタンを構成元素として含む化合物の総称であり、具体的には、チタン酸化物、リチウムチタン複合酸化物、チタンリン酸化物、リチウムチタンリン酸化合物および水素チタン化合物などである。
 チタン酸化物は、式(1)で表される化合物(いわゆる酸化チタン)であり、すなわちブロンズ型の酸化チタンなどである。
 TiO ・・・(1)
(wは、1.85≦w≦2.15を満たす。)
 このチタン酸化物は、アナターゼ型、ルチル型およびブルッカイト型の酸化チタン(TiO)のうちのいずれか1種類または2種類以上である。ただし、チタン酸化物は、チタンと共にリン、バナジウム、スズ、銅、ニッケル、鉄およびコバルトなどのうちのいずれか1種類または2種類以上を構成元素として含む複合酸化物でもよい。この複合酸化物の具体例は、TiO-P、TiO-V、TiO-P-SnOおよびTiO-P-MeOなどである。ただし、Meは、Cu、Ni、FeおよびCoなどのうちのいずれか1種類または2種類以上である。
 中でも、チタン酸化物は、アナターゼ型の酸化チタンであることが好ましい。アナターゼ型の酸化チタンは強アルカリ性の電解液14に対して安定であるため、リチウムイオン二次電池が安定に動作(充放電)するからである。
 リチウムチタン複合酸化物は、式(2)~式(4)のそれぞれで表される化合物のうちのいずれか1種類または2種類以上であり、すなわちラムスデライト型のチタン酸リチウムなどである。式(2)に示したM1は、2価イオンになり得る金属元素である。式(3)に示したM2は、3価イオンになり得る金属元素である。式(4)に示したM3は、4価イオンになり得る金属元素である。
 Li[LiM1(1-3x)/2Ti(3+x)/2 ]O ・・・(2)
(M1は、Mg、Ca、Cu、ZnおよびSrのうちの少なくとも1種である。xは、0≦x≦1/3を満たす。)
 Li[LiM21-3yTi1+2y]O ・・・(3)
(M2は、Al、Sc、Cr、Mn、Fe、GeおよびYのうちの少なくとも1種である。yは、0≦y≦1/3を満たす。)
 Li[Li1/3 M3Ti(5/3)-z ]O ・・・(4)
(M3は、V、ZrおよびNbのうちの少なくとも1種である。zは、0≦z≦2/3を満たす。)
 式(2)に示した化合物の具体例は、Li3.75Ti4.875 Mg0.375 12などである。式(3)に示した化合物の具体例は、LiCrTiOなどである。式(4)に示した化合物の具体例は、LiTi12およびLiTi4.95Nb0.0512などである。
 チタンリン酸化物の具体例は、リン酸チタン(TiP)などである。リチウムチタンリン酸化合物の具体例は、LiTi(POなどである。水素チタン化合物の具体例は、HTi(3TiO・1HO)、HTi1227(3TiO・0.75HO)、HTi13(3TiO・0.5HO)、HTi15(3TiO・0.43HO)およびHTi1225(3TiO・0.25HO)などである。
 中でも、チタン含有化合物は、チタン酸化物およびリチウムチタン複合酸化物のうちの一方または双方であることが好ましく、チタン酸化物であることがより好ましい。強アルカリ性の電解液14を用いた場合においても、充放電反応が十分に進行するからである。
 なお、負極活物質は、上記したチタン含有化合物と共に、さらに、チタンを構成元素として含んでいない他の化合物のうちのいずれか1種類または2種類以上を含んでいてもよい。この他の化合物の種類は、特に限定されないが、アルカリ金属チタン複合酸化物(ただし、上記したリチウムチタン複合酸化物を除く。)、アルカリ金属チタンリン酸化合物(ただし、上記したリチウムチタン複合酸化物を除く。)、ニオブ含有化合物、バナジウム含有化合物、鉄含有化合物およびモリブデン含有化合物などである。
 ニオブ含有化合物は、リチウムニオブ複合酸化物、水素ニオブ化合物およびチタンニオブ複合酸化物などである。ただし、ニオブ含有化合物に該当する材料は、チタン含有化合物から除かれる。リチウムニオブ複合酸化物の具体例は、LiNbOなどである。水素ニオブ化合物の具体例は、HNb17などである。チタンニオブ複合酸化物の具体例は、TiNbおよびTiNb1029などである。ただし、チタンニオブ複合酸化物には、リチウムがインターカレートされていてもよい。
 バナジウム含有化合物は、バナジウム酸化物およびアルカリ金属バナジウム複合酸化物などである。ただし、バナジウム含有化合物に該当する材料は、チタン含有化合物およびニオブ含有化合物のそれぞれから除かれる。バナジウム酸化物の具体例は、二酸化バナジウム(VO)などである。アルカリ金属バナジウム複合酸化物であるリチウムバナジウム複合酸化物の具体例は、LiVおよびLiVなどである。
 鉄含有化合物は、鉄水酸化物などである。ただし、鉄含有化合物に該当する材料は、チタン含有化合物、ニオブ含有化合物およびバナジウム含有化合物のそれぞれから除かれる。鉄水酸化物の具体例は、オキシ水酸化鉄(FeOOH)などである。ただし、オキシ水酸化鉄は、α-オキシ水酸化鉄でもよいし、β-オキシ水酸化鉄でもよいし、γ-オキシ水酸化鉄でもよいし、δ-オキシ水酸化鉄でもよいし、それらのうちの任意の2種類以上でもよい。
 モリブデン含有化合物は、モリブデン酸化物およびコバルトモリブデン複合酸化物などである。ただし、モリブデン含有化合物に該当する材料は、チタン含有化合物、ニオブ含有化合物、バナジウム含有化合物および鉄含有化合物のそれぞれから除かれる。モリブデン酸化物の具体例は、二酸化モリブデン(MoO)などである。コバルトモリブデン複合酸化物の具体例は、CoMoOなどである。
(炭素材料の有無)
 なお、負極13は、炭素材料を含んでいてもよいし、炭素材料を含んでいなくてもよい。ここで説明する負極13が炭素材料を含んでいる場合とは、負極集電体13Aが炭素を構成元素として含んでいる場合、負極集電体13Aが炭素被覆層を含んでいる場合、負極活物質層13Bが負極導電剤として炭素材料を含んでいる場合、負極活物質層13Bが炭素被覆層を含んでいる場合および負極活物質が炭素被覆層を含んでいる場合などである。
 ただし、炭素被覆層は、負極集電体13Aの表面の全体を被覆していてもよいし、その負極集電体13Aの表面の一部だけを被覆していてもよい。後者の場合には、互いに離隔された複数の炭素被覆層が負極集電体13Aの表面を被覆していてもよい。ここで説明した炭素被覆層の被覆範囲に関する詳細は、その炭素被覆層が負極活物質層13Bの表面を被覆している場合および炭素被覆層が負極活物質層の表面を被覆している場合に関しても同様である。
 中でも、負極13は、炭素材料を含んでいないことが好ましい。炭素材料の水素過電圧は低いため、負極13中に炭素材料が含まれていると、その負極13の表面において電解液14中の水性溶媒が分解しやすくなるからである。よって、水性溶媒の分解反応を抑制するためには、負極13は炭素材料を含んでいないことが好ましい。
 一方、負極13が炭素材料を含んでいる場合には、その負極13中における炭素材料の含有量は、できるだけ小さいことが好ましい。具体的には、負極13の重量に対する炭素材料の重量の割合(炭素割合C(重量%))は、0.1重量%未満であることが好ましい。負極13の表面において水性溶媒が分解しにくくなるからである。この炭素割合Cは、炭素割合C(重量%)=(炭素材料の重量/負極13の重量)×100という計算式に基づいて算出される。この炭素割合Cの値は、小数点第二位の値を四捨五入した値である。
[電解液]
 電解液14は、内部空間Sに収容されており、上記したように、水性溶媒を含む水系電解液である。すなわち、電解液14は、水性溶媒中において電離可能であるイオン性物質が溶解または分散されている溶液である。
 具体的には、電解液14は、水性溶媒と共に、その水性溶媒中において電離可能であるイオン性物質のうちのいずれか1種類または2種類以上を含んでいる。より具体的には、電解液14は、正極12および負極13のそれぞれにおいて吸蔵放出されるリチウムイオンを含んでいる。
 水性溶媒の種類は、特に限定されないが、具体的には、純水などである。イオン性物質の種類は、特に限定されないが、具体的には、酸、塩基および電解質塩などのうちのいずれか1種類または2種類以上である。酸の具体例は、炭酸、シュウ酸、硝酸、硫酸、塩酸、酢酸およびクエン酸などである。
 電解質塩は、カチオンおよびアニオンを含む塩であり、より具体的には、リチウム塩のうちのいずれか1種類または2種類以上である。リチウム塩の具体例は、炭酸リチウム、シュウ酸リチウム、硝酸リチウム、硫酸リチウム、塩化リチウム、酢酸リチウム、クエン酸リチウム、水酸化リチウムおよびイミド塩などである。このイミド塩は、ビス(フルオロスルホニル)イミドリチウムおよびビス(トリフルオロメタンスルホニル)イミドリチウムなどである。
 特に、電解液14は、上記したように、11以上であるpHを有しているため、強アルカリ性を有している。電解液14中においてリチウムイオンが移動しやすくなるため、充放電反応が進行しやすくなるからである。このpHの値は、小数点第一位の値を四捨五入した値であり、ここで説明したpHの値の定義は、以降においても同様である。
 このため、中でも、電解質塩は、水酸化リチウムなどであることが好ましい。電解液14のpHが11以上になりやすいため、強アルカリ性の電解液14が容易かつ安定に実現されるからである。
 イオン性物質の含有量、すなわち電解液14の濃度(mol/kg)は、特に限定されないため、任意に設定可能である。具体的には、電解液14の濃度は、0.2mol/kg~4mol/kgであることが好ましい。強アルカリ性の電解液14が容易かつ安定に実現されるからである。
 なお、電解質塩は、上記したリチウム塩と共に、さらに、他の金属塩のうちのいずれか1種類または2種類以上を含んでいてもよい。他の金属塩の種類は、特に限定されないが、具体的には、アルカリ金属塩(リチウム塩を除く)、アルカリ土類金属塩および遷移金属塩などである。アルカリ金属塩の具体例は、ナトリウム塩およびカリウム塩などである。アルカリ土類金属塩の具体例は、カルシウム塩およびマグネシウム塩などである。
 ここで、電解液14は、電解質塩の飽和溶液であることがより好ましい。充放電時においてリチウムイオンが安定に吸蔵放出されやすくなるため、充放電反応が安定に進行しやすくなるからである。
 電解液14が電解質塩の飽和溶液であるか否かを確認するためには、リチウムイオン二次電池を解体したのち、内部空間Sにおいて電解質塩が析出しているか否かを調べればよい。この内部空間Sとは、具体的には、電解液14の液中、正極12の表面および外装部材11の内壁面などである。電解質塩が析出しているため、内部空間Sにおいて電解液14(液体)と電解質塩の析出物(固体)とが共存している場合には、その電解液14が電解質塩の飽和溶液であると考えられる。なお、析出物の組成を調べるためには、X線光電子分光分析法(XPS)などの表面分析法を用いることができると共に、誘導結合プラズマ(ICP)発光分光分析法などの組成分析法を用いることができる。
<1-2.物性>
 このリチウムイオン二次電池では、優れた充放電特性を得るために、負極13の物性が適正化されている。
[元素割合A]
 具体的には、XPSを用いて負極活物質層13Bおよび負極集電体13Aのそれぞれの表面を分析した際、第1元素群の検出量に対する第2元素群の検出量の割合(元素割合A(原子%))は、99原子%以上である。
 ここで、第1元素群とは、負極集電体13Aおよび負極活物質層13Bのそれぞれの構成元素となり得る一連の金属元素であり、より具体的には、上記したように、長周期型周期表のうちの第1族~第17族に属する全ての金属元素(リチウムを含む。)である。このため、第1元素群の検出量は、全ての金属元素の検出量の総和である。
 一方、第2元素群とは、負極集電体13Aおよび負極活物質層13Bのそれぞれの構成元素となり得る一連の元素のうち、上記した特定金属材料を構成する一連の金属元素と、リチウムとである。この一連の金属元素は、上記したように、チタン、スズ、ジルコニウム、ビスマスおよびインジウムのうちのいずれか1種類または2種類以上である。
 このため、第2元素群の検出量は、チタン、スズ、ジルコニウム、ビスマスおよびインジウムのうちのいずれか1種類または2種類以上の検出量の和と、リチウムの検出量との総和である。
 よって、元素割合Aは、元素割合A(原子%)=(第2元素群の検出量/第1元素群の検出量)×100という計算式に基づいて算出される。この元素割合Aの値は、小数点第一位の値を四捨五入した値である。
 なお、リチウムが第1元素群および第2元素群の双方に含まれているのは、リチウムイオン二次電池では負極13においてリチウムイオンが吸蔵されるため、XPSを用いて負極活物質層13Bの表面を分析した際にリチウムが検出され得ると共に、XPSを用いて負極集電体13Aの表面を分析した際にリチウムが検出され得るからである。
 ただし、元素割合Aは、上記したように、XPSを用いた負極13の表面分析結果に基づいて算出される平均値である。XPSを用いて負極13の表面を分析する場合には、その負極13の表面のうちの任意の10箇所を分析する。これにより、元素割合Aは、上記した10箇所のそれぞれにおいて算出された10個の元素割合Aの平均値である。
 ここでは、上記したように、負極13が負極集電体13Aおよび負極活物質層13Bを含んでいる。この場合には、以下で説明する手順により、元素割合Aを算出する。
 具体的には、XPSを用いて負極活物質層13Bおよび負極集電体13Aのそれぞれの表面を分析する場合には、その負極活物質層13Bの表面のうちの任意の9箇所を分析すると共に、その負極集電体13Aの表面のうちの任意の1箇所を分析する。
 負極活物質層13Bの表面のうちの任意の9箇所とは、その負極活物質層13Bの表面において互いに十分に離隔された9個の場所とする。また、負極集電体13Aの表面のうちの任意の1箇所とは、負極集電体13Aのうちの負極活物質層13Bが形成されていない部分(接続端子部13ATなど)とする。
 このため、元素割合Aは、負極活物質層13Bうちの9箇所において算出された9個の元素割合Aと、負極集電体13Aのうちの1箇所において算出された1個の元素割合Aとを合計した10個の元素割合Aの平均値である。
 元素割合Aが99原子%以上であるのは、負極13(負極集電体13Aおよび負極活物質層13B)の表面の構成材料(構成元素)に関して、特定金属材料を構成する金属元素の存在量が非特性金属材料を構成する金属元素の存在量に対して十分に大きくなるからである。これにより、負極13の構成原子が強アルカリ性の電解液14に溶出しにくくなるため、その電解液14が劣化および分解しにくくなる。よって、強アルカリ性の電解液14を用いても充放電反応が安定に進行しやすくなると共に、充放電を繰り返しても放電容量が減少しにくくなる。
 なお、XPSを用いた負極活物質層13Bおよび負極集電体13Aのそれぞれの表面分析結果に基づいて元素割合Aを算出する場合には、市販の解析ソフトウェアを用いてもよい。解析ソフトウェアの種類は、特に限定されないが、具体的には、各構成元素に関するXPSスペクトルのピーク面積に基づいて原子分率を算出する日本電子株式会社(JEOL)製のSpecSurfなどである。
[元素割合B]
 特に、XPSを用いて負極活物質層13Bおよび負極集電体13Aのそれぞれの表面を分析した際、第1元素群の検出量に対する第3元素群の検出量の割合(元素割合B(原子%))は、99原子%以上であることが好ましい。
 第3元素群とは、上記した特定金属材料を構成する一連の金属元素のうちのチタンと、リチウムとである。このため、第3元素群の検出量は、チタンの検出量と、リチウムの検出量との総和である。
 よって、元素割合Bは、元素割合B(原子%)=(第3元素群の検出量/第1元素群の検出量)×100という計算式に基づいて算出される。この元素割合Bの値は、小数点第一位の値を四捨五入した値である。
 ただし、元素割合Bは、上記した元素割合Aと同様に、XPSを用いた負極13(負極集電体13Aおよび負極活物質層13B)の表面分析結果に基づいて算出される平均値である。
 元素割合Bが99原子%以上であるのは、負極13の構成原子が強アルカリ性の電解液14により溶出しにくくなるため、その電解液14がより劣化および分解しにくくなる。よって、強アルカリ性の電解液14を用いても充放電反応がより安定に進行しやすくなると共に、充放電を繰り返しても放電容量がより減少しにくくなる。
 なお、XPSを用いた負極活物質層13Bおよび負極集電体13Aのそれぞれの表面分析結果に基づいて元素割合Bを算出する場合には、上記した元素割合Aを算出する手順と同様である。
<1-3.動作>
 リチウムイオン二次電池の充電時には、正極12からリチウムイオンが放出されると、そのリチウムイオンが電解液14を介して負極13に移動する。これにより、負極13においてリチウムイオンが吸蔵される。
 一方、リチウムイオン二次電池の放電時には、負極13からリチウムイオンが放出されると、そのリチウムイオンが電解液14を介して正極12に移動する。これにより、正極12においてリチウムイオンが吸蔵される。
<1-4.製造方法>
 リチウムイオン二次電池を製造する場合には、以下で説明するように、正極12および負極13のそれぞれを作製すると共に電解液14を調製したのち、リチウムイオン二次電池を作製する。
[正極の作製]
 最初に、正極活物質、正極結着剤および正極導電剤を互いに混合させることにより、正極合剤とする。続いて、溶媒に正極合剤を投入することにより、ペースト状の正極合剤スラリーを調製する。この溶媒は、水性溶媒でもよいし、有機溶剤でもよい。最後に、正極集電体12A(接続端子部12ATを除く。)の両面に正極合剤スラリーを塗布したのち、その正極合剤スラリーを乾燥させることにより、正極活物質層12Bを形成する。こののち、ロールプレス機などを用いて正極活物質層12Bを圧縮成型してもよい。この場合には、正極活物質層12Bを加熱してもよいし、圧縮成型を複数回繰り返してもよい。これにより、正極12が作製される。
[負極の作製]
 上記した正極12の作製手順と同様の手順により、負極集電体13Aの両面に負極活物質層13Bを形成する。具体的には、チタン含有化合物を含む負極活物質と共に負極結着剤および負極導電剤を互いに混合させることにより、負極合剤としたのち、溶媒に負極合剤を投入することにより、ペースト状の負極合剤スラリーを調製する。続いて、負極集電体13A(接続端子部13ATを除く。)の両面に負極合剤スラリーを塗布したのち、その負極合剤スラリーを乾燥させることにより、負極活物質層13Bを形成する。こののち、負極活物質層13Bを圧縮成型してもよい。これにより、負極13が作製される。
[電解液の調製]
 水性溶媒にイオン性物質を添加する。これにより、水性溶媒中においてイオン性物質が分散または溶解されるため、電解液14が調製される。この場合には、イオン性物質の種類および濃度(mol/kg)などの条件を調整することにより、電解液14のpHを11以上とする。
[リチウムイオン二次電池の組み立て]
 最初に、外装部材11の内部空間Sに正極12および負極13を収納する。この場合には、外装部材11の外部に接続端子部12AT,13ATのそれぞれを導出させる。
 続いて、内部空間Sに連通された注入孔(図示せず)から、その内部空間Sに電解液14を供給する。これにより、内部空間Sに電解液14が充填される。こののち、注入孔を封止する。
 よって、正極12および負極13のそれぞれが収納されている内部空間Sに電解液14が収容されるため、1種類の水系電解液(電解液14)を用いたリチウムイオン二次電池が完成する。
<1-5.作用および効果>
 このリチウムイオン二次電池によれば、負極13の負極活物質がチタン含有化合物を含んでおり、水性溶媒を含む電解液14が11以上であるpHを有しており、元素割合Aが99原子%以上である。
 この場合には、上記したように、元素割合Aが適正化されることに応じて、負極13の構成原子が強アルカリ性の電解液14に溶出しにくくなるため、その電解液14が劣化および分解しにくくなる。これにより、チタン含有化合物を含む負極13と共に強アルカリ性の電解液14を用いても、充放電反応が安定に進行しやすくなると共に、充放電を繰り返しても放電容量が減少しにくくなる。よって、優れた充放電特性を得ることができる。
 特に、元素割合Bが99原子%以上であれば、負極13の構成原子が強アルカリ性の電解液14により溶出しにくくなるため、より高い効果を得ることができる。
 また、負極13が炭素材料を含んでいると共に、炭素割合Cが0.1重量%未満であれば、電解液14がより劣化および分解しにくくなるため、より高い効果を得ることができる。
 また、電解液14の濃度が0.2mol/kg~4mol/kgであれば、強アルカリ性の電解液14が容易かつ安定に実現されるため、より高い効果を得ることができる。
 また、チタン含有化合物がチタン酸化物およびリチウムチタン複合酸化物のうちの一方または双方を含んでいれば、強アルカリ性の電解液14を用いても充放電反応が十分に進行するため、より高い効果を得ることができる。
 この場合には、チタン酸化物がアナターゼ型の酸化チタンを含んでいれば、高い電圧が得られるため、より高い効果を得ることができる。
 また、負極13が負極活物質層13Bを含んでいると共に、XPSを用いて負極活物質層13Bの表面が分析されれば、その負極活物質層13Bの構成原子が強アルカリ性の電解液14に十分に溶出しにくくなるため、より高い効果を得ることができる。
 この場合には、負極13がさらに負極集電体13Aを含んでいると共に、XPSを用いて負極活物質層13Bおよび負極集電体13Aのそれぞれの表面が分析されれば、その負極活物質層13Bの構成原子だけでなく負極集電体13Aの構成原子も強アルカリ性の電解液14に溶出しにくくなるため、さらに高い効果を得ることができる。
<2.第2実施形態(リチウムイオン二次電池)>
 次に、本技術の第2実施形態のリチウムイオン二次電池に関して説明する。
<2-1.構成>
 図2は、第2実施形態のリチウムイオン二次電池の断面構成を表している。この第2実施形態のリチウムイオン二次電池は、以下で説明することを除いて、上記した第1実施形態のリチウムイオン二次電池の構成(図1)と同様の構成を有している。
 このリチウムイオン二次電池は、図2に示したように、新たに隔壁15を備えていると共に、電解液14の代わりに正極電解液16および負極電解液17を備えている。図2では、正極電解液16に淡い網掛けを施していると共に、負極電解液17に濃い網掛けを施している。
 外装部材11は、隔壁15により離隔された2個の空間(正極空間である正極室S1および負極空間である負極室S2)を有している。
 隔壁15は、正極12と負極13との間に配置されており、外装部材11の内部空間を正極室S1および負極室S2に分離している。これにより、正極12および負極13は、隔壁15を介して互いに離隔されていると共に、その隔壁15を介して互いに対向している。
 この隔壁15は、正極室S1と負極室S2との間において、アニオンを透過させずに、正極12および負極13のそれぞれにおいて吸蔵放出されるリチウムイオン(カチオン)などの物質(アニオンを除く。)を透過させる。正極電解液16と負極電解液17との混合が防止されるからである。すなわち、隔壁15は、正極室S1から負極室S2に向けてリチウムイオンを透過させると共に、負極室S2から正極室S1に向けてリチウムイオンを透過させる。
 具体的には、隔壁15は、イオン交換膜および固体電解質膜のうちの一方または双方を含んでいる。イオン交換膜は、リチウムイオンを透過可能な多孔質膜(陽イオン交換膜)である。固体電解質膜は、リチウムイオンの伝導性を有している。隔壁15においてリチウムイオンの透過性が向上するからである。
 中でも、隔壁15は、固体電解質膜よりもイオン交換膜を含んでいることが好ましい。正極電解液16中の水性溶媒および負極電解液17中の水性溶媒のそれぞれが隔壁15の内部に浸透しやすくなるため、その隔壁15の内部においてリチウムイオン伝導性が向上するからである。
 正極12は、正極室S1の内部に配置されており、リチウムイオンを吸蔵放出すると共に、負極13は、負極室S2の内部に配置されており、リチウムイオンを吸蔵放出する。この負極13は、上記したように、負極活物質としてチタン含有化合物を含んでいる。
 正極電解液16および負極電解液17のそれぞれは、水性溶媒を含む水系電解液である。正極電解液16は、正極室S1の内部に収容されていると共に、負極電解液17は、負極室S2の内部に収容されている。このため、正極電解液16および負極電解液17は、互いに混合されないように隔壁15を介して互いに分離されている。
 すなわち、正極電解液16は、正極室S1の内部に収容されているため、負極13に接触しておらずに正極12に接触している。一方、負極電解液17は、負極室S2の内部に収容されているため、正極12に接触しておらずに負極13に接触している。
 正極電解液16のpHと負極電解液17のpHとは、互いに異なっている。具体的には、負極13に接触している負極電解液17は、第1実施形態における電解液14と同様に、11以上であるpHを有している。これに対して、正極12に接触している正極電解液16は、11未満であるpHを有している。このpHに関する大小関係が満たされていれば、正極電解液16および負極電解液17のそれぞれの組成(水性溶媒の種類、イオン性物質の種類および濃度など)は、任意に設定可能である。
 正極電解液16が11未満であるpHを有していると共に、負極電解液17が11以上であるpHを有しているのは、両者のpHが互いに等しい場合などと比較して、両者のpHの差異に起因して水性溶媒の分解電位がシフトするからである。これにより、充放電時において水性溶媒の分解反応が熱力学的に抑制されながら、その水性溶媒の電位窓が拡大する。よって、高い電圧が得られながら、リチウムイオンの吸蔵放出を利用した充放電反応が十分かつ安定に進行する。
 中でも、負極電解液17の組成式(電解質塩の種類)は、正極電解液16の組成式(電解質塩の種類)と異なっていることが好ましい。上記したpHに関する大小関係が満たされやすくなるからである。
 上記したpHに関する大小関係が満たされていれば、正極電解液16および負極電解液17のそれぞれのpHの値は、特に限定されない。
 中でも、負極電解液17のpHは、12以上であることが好ましく、13以上であることがより好ましい。負極電解液17のpHが十分に大きくなるため、上記したpHに関する大小関係が満たされやすくなるからである。また、正極電解液16のpHと負極電解液17のpHとの差異が十分に大きくなるため、両者のpHの大小関係が維持されやすくなるからである。
 また、正極電解液16のpHは、3~8であることが好ましく、4~8であることがより好ましく、4~6であることがさらに好ましい。正極電解液16のpHと負極電解液17のpHとの差異が十分に大きくなるため、両者のpHの大小関係が維持されやすくなるからである。また、外装部材11が腐食されにくくなると共に、正極集電体12Aおよび負極集電体13Aなどの電池構成部材が腐食されにくくなるため、リチウムイオン二次電池の電気化学的耐久性(安定性)が向上するからである。
 なお、正極電解液16および負極電解液17のうちの一方または双方は、第1実施形態の電解液14と同様に、電解質塩(リチウム塩)の飽和溶液であることが好ましい。充放電時において充放電反応(リチウムイオンの吸蔵放出反応)が安定に進行するからである。正極電解液16および負極電解液17のそれぞれがリチウム塩の飽和溶液であるか否かを確認する方法は、電解液14がリチウム塩の飽和溶液であるか否かを確認する方法と同様である。
<2-2.物性>
 このリチウムイオン二次電池では、上記した第1実施形態のリチウムイオン二次電池と同様に、優れた充放電特性を得るために負極13の物性が適正化されている。すなわち、XPSを用いて負極活物質層13Bおよび負極集電体13Aのそれぞれの表面を分析した際の元素割合Aは、99原子%以上である。この場合には、さらに、元素割合Bは99原子%以上であることが好ましい。
<2-3.動作>
 リチウムイオン二次電池の充電時には、正極12からリチウムイオンが放出されると、そのリチウムイオンが正極電解液16、隔壁15および負極電解液17を介して負極13に移動する。これにより、負極13においてリチウムイオンが吸蔵される。
 一方、リチウムイオン二次電池の放電時には、負極13からリチウムイオンが放出されると、そのリチウムイオンが負極電解液17、隔壁15および正極電解液16を介して正極12に移動する。これにより、正極12においてリチウムイオンが吸蔵される。
<2-4.製造方法>
 このリチウムイオン二次電池の製造手順は、以下で説明する事を除いて、上記した第1実施形態におけるリチウムイオン二次電池の製造手順と同様である。
 正極電解液16および負極電解液17のそれぞれを調製する場合には、水性溶媒にイオン性物質を添加する。この場合には、イオン性物質の種類および濃度(mol/kg)などの条件を調整することにより、正極電解液16のpHを11未満とすると共に、負極電解液17のpHを11以上とする。
 リチウムイオン二次電池を組み立てる場合には、最初に、あらかじめ隔壁15が取り付けられた外装部材11(正極室S1および負極室S2)を準備する。続いて、正極室S1の内部に正極12を収納すると共に、その正極室S1の外部に接続端子部12ATを導出させる。また、負極室S2の内部に負極13を収納すると共に、その負極室S2の外部に接続端子部13ATを導出させる。最後に、正極室S1に連通された正極注入孔(図示せず)から、その正極室S1の内部に正極電解液16を供給すると共に、負極室S2に連通された負極注入孔(図示せず)から、その負極室S2の内部に負極電解液17を供給する。こののち、正極注入孔および負極注入孔のそれぞれを封止する。これにより、正極12が配置されている正極室S1の内部に正極電解液16が収容されると共に、負極13が配置されている負極室S2の内部に負極電解液17が収容される。よって、2種類の水系電解液(正極電解液16および負極電解液17を用いたリチウムイオン二次電池が完成する。
<2-5.作用および効果>
 このリチウムイオン二次電池によれば、負極13の負極活物質がチタン含有化合物を含んでおり、水性溶媒を含む正極電解液16が11未満であるpHを有しており、水性溶媒を含む負極電解液17が11以上であるpHを有しており、元素割合Aが99原子%以上である。よって、上記した第1実施形態のリチウムイオン二次電池と同様の理由により、優れた充放電特性を得ることができる。
 このリチウムイオン二次電池に関する他の作用および効果は、第1実施形態におけるリチウムイオン二次電池に関する他の作用および効果と同様である。
<3.変形例>
 リチウムイオン二次電池の構成は、以下で説明するように、適宜、変更可能である。ただし、以下で説明する一連の変形例のうちの任意の2種類以上は、互いに組み合わされてもよい。
[変形例1]
 第1実施形態および第2実施形態のそれぞれでは、負極13が負極活物質層13Bと共に負極集電体13Aを含んでいる。しかしながら、負極13は、負極集電体13A(接続端子部13ATを除く。)を含んでいないため、負極活物質層13Bだけを含んでいてもよい。この場合には、XPSを用いた負極13の表面分析において、負極活物質層13Bの表面のうちの任意の10箇所が分析されることにより、元素割合Aが算出される。
 この場合においても、元素割合Aに関して上記した適正条件が満たされているため、同様の効果を得ることができる。
[変形例2]
 第1実施形態および第2実施形態のそれぞれでは、塗布法を用いて負極活物質層13Bを形成している。すなわち、負極活物質層13Bの形成工程において、チタン含有化合物を含む負極活物質と共に負極結着剤および負極導電剤を含むペースト状の負極合剤スラリーを負極集電体13Aの両面に塗布したのち、その負極合剤スラリーを乾燥させている。
 しかしながら、塗布法の代わりに焼結法を用いて負極活物質層13Bを形成してもよい。すなわち、負極活物質層13Bの形成工程において、負極合剤スラリーを塗布すると共に、その負極合剤スラリーを乾燥させたのち、その負極合剤スラリーを高温で焼成してもよい。これにより、負極合剤スラリー中の負極活物質が焼結されるため、負極活物質層13Bが形成される。
 詳細には、チタン含有化合物を含む負極活物質と共に負極結着剤であるポリエチレンオキサイドなどを互いに混合させることにより、負極合剤としたのち、溶媒に負極合剤を投入することにより、ペースト状の負極合剤スラリーを調製する。続いて、負極合剤スラリーを塗布したのち、酸素雰囲気中において負極合剤スラリーを焼成する。焼成温度は、特に限定されないが、具体的には、500℃~1200℃である。焼成時間は、特に限定されないため、任意に設定可能である。これにより、負極合剤スラリー中の負極活物質が焼結されると共に、その負極活物質が、負極集電体13Aの表面に固定されるため、負極活物質層13Bが形成される。
 なお、焼結法を用いて負極活物質層13Bを形成する場合には、負極合剤スラリー中に負極結着剤および負極導電剤のうちの一方または双方を含有させなくてもよい。焼結法を用いる場合には負極活物質が焼結されるため、負極結着剤を用いなくても負極集電体13Aに負極活物質が固定されると共に、負極導電剤を用いなくても負極活物質層13Bの電気伝導性が確保されるからである。
 この場合においても、元素割合Aに関して上記した適正条件が満たされているため、同様の効果を得ることができる。
[変形例3]
 第1実施形態では、図1に示したように、液状の電解質である電解液14を用いた。しかしながら、図1に対応する図3に示したように、電解液14の代わりに、ゲル状の電解質である電解質層18,19を用いてもよい。図3に示したリチウムイオン二次電池の構成は、以下で説明することを除いて、図1に示したリチウムイオン二次電池の構成と同様である。
 ここでは、リチウムイオン二次電池は、さらに、セパレータ20を備えており、そのセパレータ20は、電解質層18,19の間に介在している。これにより、電解質層18は、正極12とセパレータ20との間に配置されていると共に、電解質層19は、負極13とセパレータ20との間に配置されている。すなわち、電解質層18は、正極12およびセパレータ20のそれぞれに隣接されていると共に、電解質層19は、負極13およびセパレータ20のそれぞれに隣接されている。
 具体的には、電解質層18,19のそれぞれは、電解液14と共に高分子化合物を含んでおり、その電解液14は、高分子化合物により保持されている。高分子化合物の種類は、特に限定されないが、具体的には、ポリフッ化ビニリデンおよびポリエチレンオキサイドなどのうちのいずれか1種類または2種類以上である。図3では、電解質層18,19のそれぞれに淡い網掛けを施している。
 セパレータ20は、電解質層18,19を互いに離隔させながらリチウムイオンを透過させる絶縁性の多孔質膜であり、ポリエチレンなどの高分子化合物を含んでいる。
 電解質層18を形成する場合には、電解液14および高分子化合物と共に溶媒を互いに混合させることにより、ゾル状の前駆溶液を調製したのち、正極12の表面に前駆溶液を塗布する。電解質層19の形成手順は、負極13の表面に前駆溶液を塗布することを除いて、電解質層18の形成手順と同様である。
 この場合においても、正極12と負極13との間において電解質層18,19を介してリチウムイオンが移動可能になるため、図1に示した場合と同様の効果を得ることができる。
[変形例4]
 第2実施形態では、図2に示したように、液状の電解質である正極電解液16および負極電解液17を用いた。しかしながら、図2に対応する図4に示したように、正極電解液16および負極電解液17の代わりに、ゲル状の電解質である電解質層21,22を用いてもよい。図4に示したリチウムイオン二次電池の構成は、以下で説明することを除いて、図2に示したリチウムイオン二次電池の構成と同様である。
 ここでは、電解質層21は、正極12と隔壁15との間に配置されていると共に、電解質層22は、負極13と隔壁15の間に配置されている。すなわち、電解質層21は、正極12および隔壁15のそれぞれに隣接されていると共に、電解質層22は、負極13および隔壁15のそれぞれに隣接されている。
 具体的には、電解質層21は、正極電解液16と共に高分子化合物を含んでおり、その正極電解液16は、高分子化合物により保持されている。電解質層22は、負極電解液17と共に高分子化合物を含んでおり、その負極電解液17は、高分子化合物により保持されている。高分子化合物の種類に関する詳細は、上記した通りである。図4では、正極電解液16を含んでいる電解質層21に淡い網掛けを施していると共に、負極電解液17を含んでいる電解質層22に濃い網掛けを施している。
 電解質層21を形成する場合には、正極電解液16および高分子化合物と共に溶媒を互いに混合させることにより、ゾル状の前駆溶液を調製したのち、正極12の表面に前駆溶液を塗布する。電解質層22を形成する場合には、負極電解液17および高分子化合物と共に溶媒を互いに混合することにより、ゾル状の前駆溶液を調製したのち、負極13の表面に前駆溶液を塗布する。
 この場合においても、正極12と負極13との間において電解質層21,22を介してリチウムイオンが移動可能になるため、図4に示した場合と同様の効果を得ることができる。
<4.リチウムイオン二次電池の用途>
 リチウムイオン二次電池の用途(適用例)は、特に限定されない。電源として用いられるリチウムイオン二次電池は、電子機器および電動車両などの主電源でもよいし、補助電源でもよい。主電源とは、他の電源の有無に関係なく、優先的に用いられる電源である。補助電源は、主電源の代わりに用いられる電源、または主電源から切り替えられる電源である。
 リチウムイオン二次電池の用途の具体例は、以下の通りである。ビデオカメラ、デジタルスチルカメラ、携帯電話機、ノート型パソコン、ヘッドホンステレオ、携帯用ラジオおよび携帯用情報端末などの電子機器である。バックアップ電源およびメモリーカードなどの記憶用装置である。電動ドリルおよび電動鋸などの電動工具である。電子機器などに搭載される電池パックである。ペースメーカおよび補聴器などの医療用電子機器である。電気自動車(ハイブリッド自動車を含む。)などの電動車両である。非常時などに備えて電力を蓄積しておく家庭用または産業用のバッテリシステムなどの電力貯蔵システムである。これらの用途では、1個のリチウムイオン二次電池が用いられてもよいし、複数個のリチウムイオン二次電池が用いられてもよい。
 電池パックは、単電池を用いてもよいし、組電池を用いてもよい。電動車両は、リチウムイオン二次電池を駆動用電源として作動(走行)する車両であり、そのリチウムイオン二次電池以外の駆動源を併せて備えたハイブリッド自動車でもよい。家庭用の電力貯蔵システムでは、電力貯蔵源であるリチウムイオン二次電池に蓄積された電力を利用して家庭用の電気製品などを使用可能である。
 もちろん、リチウムイオン二次電池の用途は、ここで例示した一連の用途以外の他の用途でもよい。
 本技術の実施例に関して説明する。
<実施例1~6および比較例1~3>
 以下で説明するように、リチウムイオン二次電池を製造したのち、そのリチウムイオン二次電池の電池特性を評価した。
[リチウムイオン二次電池の製造]
 以下の手順により、図1に示した1種類の水系電解液(電解液14)を用いたリチウムイオン二次電池を製造した。
(正極の作製)
 最初に、正極活物質(リチウムリン酸化合物であるLiFePO(LFP))91質量部と、正極結着剤(ポリフッ化ビニリデン)3質量部と、正極導電剤(黒鉛)6質量部とを互いに混合させることにより、正極合剤とした。続いて、溶媒(有機溶剤であるN-メチル-2-ピロリドン)に正極合剤を投入したのち、その溶媒を撹拌することにより、ペースト状の正極合剤スラリーを調製した。最後に、コーティング装置を用いて、接続端子部12ATを除いた正極集電体12A(厚さ=10μmであるチタン箔)の両面に正極合剤スラリーを塗布したのち、その正極合剤スラリーを乾燥させることにより、正極活物質層12Bを形成した。これにより、正極12が作製された。
(負極の作製)
 実施例1~5では、塗布法を用いて負極活物質層13Bを形成した。この場合には、最初に、負極活物質(チタン含有化合物)89質量部と、負極結着剤(ポリフッ化ビニリデン)11質量部とを互いに混合させることにより、負極合剤とした。また、負極活物質(チタン含有化合物)89質量部と、負極結着剤(ポリフッ化ビニリデン)10質量部と、負極導電剤(炭素材料であるカーボンブラック(CB))1質量部とを互いに混合させることにより、負極合剤とした。
 チタン含有化合物としては、チタン酸化物であるアナターゼ型の酸化チタン(TiO)と、リチウムチタン複合酸化物である(LiTi12(LTO))と、炭素材料であるカーボン層(炭素被覆層)により表面が被覆されたリチウムチタン複合酸化物(LiTi12(CLTO))とを用いた。
 続いて、溶媒(有機溶剤であるN-メチル-2-ピロリドン)に負極合剤を投入したのち、その溶媒を撹拌することにより、ペースト状の負極合剤スラリーを調製した。最後に、コーティング装置を用いて、接続端子部13ATを除いた負極集電体13A(厚さ=10μmであるチタン(Ti)箔)の両面に負極合剤スラリーを塗布したのち、その負極合剤スラリーを乾燥させることにより、負極活物質層13Bを形成した。これにより、負極13が作製された。
 実施例6では、焼結法を用いて負極活物質層13Bを形成した。この場合には、最初に、負極活物質(チタン含有化合物であるアナターゼ型の酸化チタン)89質量部と、負極結着剤(ポリエチレンオキサイド)11質量部とを互いに混合させることにより、負極合剤とした。続いて、溶媒(水性溶媒である純水)に負極合剤と共に界面活性剤を投入したのち、その溶媒を撹拌することにより、ペースト状の負極合剤スラリーを調製した。続いて、コーティング装置を用いて、接続端子部13ATを除いた負極集電体13A(厚さ=10μmであるチタン箔)の両面に負極合剤スラリーを塗布したのち、その負極合剤スラリーを乾燥させた。最後に、酸素雰囲気中において負極合剤スラリーを焼成(焼成温度=700℃,焼成時間=1時間)することにより、負極活物質層13Bを形成した。これにより、負極13が作製された。
 負極13に関する炭素割合C(重量%)は、表1に示した通りである。また、XPSを用いて負極13(負極集電体13Aおよび負極活物質層13B)を表面分析したのち、上記した解析ソフトウェアを用いて表面分析結果に基づいて元素割合A,B(原子%)を算出したところ、表1に示した結果が得られた。
(電解液の調製)
 水性溶媒(純水)にイオン性物質を投入したのち、その水性溶媒を撹拌することにより、電解液14を調製した。イオン性物質の種類と、電解液14の濃度(mol/kg)およびpHとは、表1に示した通りである。この場合には、電解液14のpHを11以上とした。イオン性物質としては、電解質塩(リチウム塩)である水酸化リチウム(LiOH)および炭酸リチウム(LiCO)を用いた。
(リチウムイオン二次電池の組み立て)
 最初に、ガラス製である外装部材11(ガラスビーカー)の内部空間Sに正極12および負極13のそれぞれを収納した。この場合には、外装部材11の外部に接続端子部12AT,13ATのそれぞれを導出させた。続いて、内部空間Sに参照電極(銀-塩化銀電極)を設置した。最後に、内部空間Sに電解液14を供給した。これにより、内部空間Sに電解液14が収容されたため、リチウムイオン二次電池が完成した。
[比較用のリチウムイオン二次電池の製造]
 負極集電体13Aとしてアルミニウム(Al)箔および銅(Cu)箔を用いたことを除いて同様の手順により、リチウムイオン二次電池を製造した。また、イオン性物質として硝酸リチウム(LiNO)を用いることにより、電解液14のpHを11未満としたことを除いて同様の手順により、リチウムイオン二次電池を製造した。イオン性物質の種類と、電解液14の濃度(mol/kg)およびpHとは、表1に示した通りである。
[電池特性の評価]
 リチウムイオン二次電池の電池特性として充放電特性(充放電の可否および充放電効率)を評価したところ、表1に示した結果が得られた。
 充放電の可否を調べる場合には、リチウムイオン二次電池を充放電させることができるか否か、すなわち充電容量および放電容量の双方が得られるか否かを調べた。
 リチウムイオン二次電池を充放電させることができた場合には、充放電効率(%)=(放電容量/充電容量)×100という計算式に基づいて、その充放電効率を算出した。
 ここで、負極活物質としてチタン酸化物を用いた場合には、1Cの電流で電圧が-1.3Vに到達するまで定電流充電したと共に、1Cの電流で電圧が-1.0Vに到達するまで定電流放電したのち、その-1.0Vの電圧で電流が0.1Cに到達するまで定電圧放電した。1Cとは、電池容量(理論容量)を1時間で放電しきる電流値であると共に、0.1Cとは、電池容量を10時間で放電しきる電流値である。
 また、負極活物質としてリチウムチタン複合酸化物を用いた場合には、1Cの電流で電圧が-1.65Vに到達するまで定電流充電したと共に、1Cの電流で電圧が-1.35Vに到達するまで定電流放電したのち、その-1.35Vの電圧で電流が0.1Cに到達するまで定電圧放電した。
Figure JPOXMLDOC01-appb-T000001
[考察]
 表1に示したように、充放電効率は、負極13の物性(元素割合A)および電解液14の物性(pH)に応じて変動した。
 具体的には、電解液14のpHは11以上であるが、負極集電体13Aの形成材料として非特定金属材料を構成する金属元素(Al,Cu)からなる金属材料を用いたことに起因して元素割合Aが99原子%未満である場合(比較例1,2)には、リチウムイオン二次電池を充放電させることができないか、そのリチウムイオン二次電池を充放電させることができたとしても充放電効率が著しく低下した。
 また、負極集電体13Aの形成材料として特定金属材料を構成する金属元素(Ti)からなる金属材料を用いたことに起因して元素割合Aは99原子%以上であるが、電解液14のpHが11未満である場合(比較例3)には、リチウムイオン二次電池を充放電させることができなかった。
 これに対して、負極集電体13Aの形成材料として特定金属材料を構成する金属元素(Ti)からなる金属材料を用いたことに起因して元素割合Aが99原子%以上であると共に、電解液14のpHが11以上である場合(実施例1~6)には、リチウムイオン二次電池を充放電させることができたと共に、充放電効率が増加した。
 この場合には、特に、以下で説明する傾向が得られた。第1に、元素割合Bが99原子%以上であると、高い充放電効率が得られた。第2に、炭素割合Cが0.1原子%未満であると、充放電効率がより増加した。第3に、電解液14の濃度が0.2mol/kg~4mol/kgであると、充放電効率がより増加した。第4に、負極活物質としてチタン酸化物(アナターゼ型の酸化チタン)を用いると、充放電効率がより増加した。
[まとめ]
 表1に示した結果から、負極13の負極活物質がチタン含有化合物を含んでおり、水性溶媒を含む電解液14が11以上であるpHを有しており、元素割合Aが99原子%以上であると、リチウムイオン二次電池を充放電させることができたと共に、高い充放電効率も得られた。よって、リチウムイオン二次電池において優れた充放電特性が得られた。
 以上、一実施形態および実施例を挙げながら、本技術のリチウムイオン二次電池の構成に関して説明した。しかしながら、本技術のリチウムイオン二次電池の構成は、一実施形態および実施例において説明された構成に限られず、種々に変形可能である。
 本明細書中に記載された効果は、あくまで例示であるため、本技術の効果は、本明細書中に記載された効果に限定されない。よって、本技術に関して他の効果が得られてもよい。

Claims (9)

  1.  リチウムイオンを吸蔵放出する正極と、
     前記リチウムイオンを吸蔵放出する負極活物質を含む負極と、
     水性溶媒を含む電解液と
     を備え、
     前記負極活物質は、チタン含有化合物を含み、
     前記電解液は、11以上であるpHを有し、
     X線光電子分光分析法を用いて前記負極の表面を分析した際、全ての金属元素の検出量の和に対する、リチウム、チタン、スズ、ジルコニウム、ビスマスおよびインジウムのそれぞれの検出量の和の割合は、99原子%以上である、
     リチウムイオン二次電池。
  2.  前記X線光電子分光分析法を用いて前記負極の表面を分析した際、前記全ての金属元素の検出量の和に対する、前記リチウムおよび前記チタンのそれぞれの検出量の和の割合は、99原子%以上である、
     請求項1記載のリチウムイオン二次電池。
  3.  前記負極は、さらに、炭素材料を含み、
     前記負極の重量に対する前記炭素材料の重量の割合は、0.1重量%未満である、
     請求項1または請求項2に記載のリチウムイオン二次電池。
  4.  前記電解液の濃度は、0.2mol/kg以上4mol/kg以下である、
     請求項1ないし請求項3のいずれか1項に記載のリチウムイオン二次電池。
  5.  前記チタン含有化合物は、式(1)で表されるチタン酸化物および式(2)~式(4)のそれぞれで表されるリチウムチタン複合酸化物のうちの少なくとも1種を含む、
     請求項1ないし請求項4のいずれか1項に記載のリチウムイオン二次電池。
     TiO ・・・(1)
    (wは、1.85≦w≦2.15を満たす。)
     Li[LiM1(1-3x)/2Ti(3+x)/2 ]O ・・・(2)
    (M1は、Mg、Ca、Cu、ZnおよびSrのうちの少なくとも1種である。xは、0≦x≦1/3を満たす。)
     Li[LiM21-3yTi1+2y]O ・・・(3)
    (M2は、Al、Sc、Cr、Mn、Fe、GeおよびYのうちの少なくとも1種である。yは、0≦y≦1/3を満たす。)
     Li[Li1/3 M3Ti(5/3)-z ]O ・・・(4)
    (M3は、V、ZrおよびNbのうちの少なくとも1種である。zは、0≦z≦2/3を満たす。)
  6.  前記チタン酸化物は、アナターゼ型の酸化チタンを含む、
     請求項5記載のリチウムイオン二次電池。
  7.  前記負極は、前記負極活物質を含む負極活物質層を備え、
     前記X線光電子分光分析法を用いて前記負極活物質層の表面が分析される、
     請求項1ないし請求項6のいずれか1項に記載のリチウムイオン二次電池。
  8.  前記負極は、さらに、前記負極活物質層を支持する負極集電体を備え、
     前記X線光電子分光分析法を用いて前記負極活物質層および前記負極集電体のそれぞれの表面が分析される、
     請求項7記載のリチウムイオン二次電池。
  9.  正極空間と負極空間との間に配置され、リチウムイオンを透過させる隔壁と、
     前記正極空間の内部に配置され、前記リチウムイオンを吸蔵放出する正極と、
     前記負極空間の内部に配置され、前記リチウムイオンを吸蔵放出する負極活物質を含む負極と、
     前記正極空間の内部に収容され、水性溶媒を含む正極電解液と、
     前記負極空間の内部に収容され、前記水性溶媒を含む負極電解液と
     を備え、
     前記負極活物質は、チタン含有化合物を含み、
     前記正極電解液は、11未満であるpHを有し、
     前記負極電解液は、11以上であるpHを有し、
     X線光電子分光分析法を用いて前記負極の表面を分析した際、全ての金属元素の検出量の和に対する、リチウム、チタン、スズ、ジルコニウム、ビスマスおよびインジウムのそれぞれの検出量の和の割合は、99原子%以上である、
     リチウムイオン二次電池。
PCT/JP2021/027133 2020-09-10 2021-07-20 リチウムイオン二次電池 WO2022054415A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022547425A JP7524956B2 (ja) 2020-09-10 2021-07-20 リチウムイオン二次電池
CN202180062042.6A CN116114077A (zh) 2020-09-10 2021-07-20 锂离子二次电池
US18/118,465 US20230246179A1 (en) 2020-09-10 2023-03-07 Lithium-ion secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-151932 2020-09-10
JP2020151932 2020-09-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/118,465 Continuation US20230246179A1 (en) 2020-09-10 2023-03-07 Lithium-ion secondary battery

Publications (1)

Publication Number Publication Date
WO2022054415A1 true WO2022054415A1 (ja) 2022-03-17

Family

ID=80632521

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/027133 WO2022054415A1 (ja) 2020-09-10 2021-07-20 リチウムイオン二次電池

Country Status (4)

Country Link
US (1) US20230246179A1 (ja)
JP (1) JP7524956B2 (ja)
CN (1) CN116114077A (ja)
WO (1) WO2022054415A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009094034A (ja) * 2007-10-12 2009-04-30 Gs Yuasa Corporation:Kk 水系リチウム二次電池
WO2013137273A1 (ja) * 2012-03-15 2013-09-19 株式会社 東芝 非水電解質二次電池および電池パック
WO2017135323A1 (ja) * 2016-02-01 2017-08-10 株式会社 東芝 二次電池、組電池、電池パック、及び車両
JP6383038B1 (ja) * 2017-03-22 2018-08-29 株式会社東芝 二次電池、電池パック及び車両
JP2019057373A (ja) * 2017-09-20 2019-04-11 株式会社東芝 二次電池、電池パック及び車両

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009094034A (ja) * 2007-10-12 2009-04-30 Gs Yuasa Corporation:Kk 水系リチウム二次電池
WO2013137273A1 (ja) * 2012-03-15 2013-09-19 株式会社 東芝 非水電解質二次電池および電池パック
WO2017135323A1 (ja) * 2016-02-01 2017-08-10 株式会社 東芝 二次電池、組電池、電池パック、及び車両
JP6383038B1 (ja) * 2017-03-22 2018-08-29 株式会社東芝 二次電池、電池パック及び車両
JP2019057373A (ja) * 2017-09-20 2019-04-11 株式会社東芝 二次電池、電池パック及び車両

Also Published As

Publication number Publication date
US20230246179A1 (en) 2023-08-03
CN116114077A (zh) 2023-05-12
JP7524956B2 (ja) 2024-07-30
JPWO2022054415A1 (ja) 2022-03-17

Similar Documents

Publication Publication Date Title
WO2020218456A1 (ja) 二次電池
US9583751B2 (en) Battery with an anode preload with consumable metals
JP5170260B2 (ja) 水系電解液電池の負極構造、及び、当該負極構造を備えた水系電解液電池
US8835027B2 (en) Positive electrodes for lithium batteries
US9130228B2 (en) Lithium ion oxygen battery
JP5761098B2 (ja) 活物質及びこれを用いたリチウムイオン二次電池
KR101219395B1 (ko) 리튬이차전지용 양극재료 및 그의 제조방법
JP5904543B2 (ja) コンバージョン反応により充放電を行うリチウム二次電池用活物質、該活物質を用いたリチウム二次電池
US9966602B2 (en) Metal cyanometallates
WO2023013585A1 (ja) リチウムイオン二次電池用負極およびリチウムイオン二次電池
WO2022054415A1 (ja) リチウムイオン二次電池
WO2022054416A1 (ja) 二次電池
WO2022107391A1 (ja) 二次電池、二次電池制御システムおよび電池パック
JP2007115507A (ja) 負極活物質及び水系リチウム二次電池
JP2006040572A (ja) 水系リチウム二次電池用正極活物質及び水系リチウム二次電池
JP7343116B1 (ja) 二次電池
JP2022148675A (ja) 二次電池用正極活物質および前記正極活物質を用いたフッ化物イオン二次電池
JP2006040571A (ja) 水系リチウム二次電池用正極活物質及び水系リチウム二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21866375

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022547425

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21866375

Country of ref document: EP

Kind code of ref document: A1