WO2013135817A1 - Automate et procédé automatisé de culture cellulaire - Google Patents

Automate et procédé automatisé de culture cellulaire Download PDF

Info

Publication number
WO2013135817A1
WO2013135817A1 PCT/EP2013/055244 EP2013055244W WO2013135817A1 WO 2013135817 A1 WO2013135817 A1 WO 2013135817A1 EP 2013055244 W EP2013055244 W EP 2013055244W WO 2013135817 A1 WO2013135817 A1 WO 2013135817A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell expansion
expansion bag
cells
culture
cell
Prior art date
Application number
PCT/EP2013/055244
Other languages
English (en)
Inventor
Philippe Henon
Claire Saucourt
Patrick Gasse
Alain Sundas
Pierre SUGRANES
Amandine Verdier
Frédéric DEMONCHY
Original Assignee
Cellprothera
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cellprothera filed Critical Cellprothera
Priority to AU2013234310A priority Critical patent/AU2013234310B2/en
Priority to BR112014022647-4A priority patent/BR112014022647B1/pt
Priority to CN201380024260.6A priority patent/CN104302757A/zh
Priority to SG11201405632PA priority patent/SG11201405632PA/en
Priority to KR1020147028709A priority patent/KR102169062B1/ko
Priority to JP2014561451A priority patent/JP6215852B2/ja
Priority to RU2014137564A priority patent/RU2644231C2/ru
Publication of WO2013135817A1 publication Critical patent/WO2013135817A1/fr
Priority to IL234608A priority patent/IL234608B/en
Priority to ZA2014/07287A priority patent/ZA201407287B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/14Bags
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/26Constructional details, e.g. recesses, hinges flexible
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M27/00Means for mixing, agitating or circulating fluids in the vessel
    • C12M27/10Rotating vessel
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M27/00Means for mixing, agitating or circulating fluids in the vessel
    • C12M27/16Vibrating; Shaking; Tilting
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/12Means for regulation, monitoring, measurement or control, e.g. flow regulation of temperature
    • C12M41/14Incubators; Climatic chambers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/48Automatic or computerized control

Definitions

  • the present invention relates to a cell culture automaton, in particular for the culture of stem cells (of the CD34 + type, for example), as well as to a cell culture method using this automaton.
  • cell therapy is the least advanced in terms of industrialization. There is therefore an important need to find a technology capable of producing cells in sufficient quantity and under optimal conditions for the use of these cells for therapeutic applications.
  • Some cell therapy methods require a culture or amplification of stem cells before their reinjection into a patient, because the quantities taken out are sometimes insufficient to have a therapeutic effect. It is essential to guarantee the integrity of the therapeutic properties of the cells during their culture.
  • the proposed solutions for culturing stem cells ex vivo are artisanal, highly empirical and inefficient.
  • Membrane infusion bioreactors hollow fiber bioreactors, bed bioreactors are known, for example. fluidized, and micro-bioreactors with continuous perfusion of O2, nutrient medium and growth factors (see application WO 00/7341 1).
  • US-A1 -2008 / 01 18977 discloses a therapeutic protocol for reconstructing the heart of a patient after an infarction.
  • the reconstruction is obtained by injecting into the patient's heart specific stem cells (CD34 + ), isolated from a blood sample, amplified ex vivo and purified after culture.
  • CD34 + heart specific stem cells
  • the present invention aims in particular to provide a technology capable of ensuring the culture, amplification or expansion of this type of cells, and to also bring significant improvements in terms of standardization, traceability and control for operations which are mostly performed manually in the prior art.
  • a cell culture automat comprising reservoirs of culture medium, growth factors and cells to be cultured, a thermostatically controlled incubator in which is housed a cell culture container or cell expansion, and a control computer system including data acquisition and data recording means and intended to regulate the culture conditions in the chamber and to control fluid distribution valves in a predefined sequence, characterized in that it comprises a device for supporting and agitating the cell culture or expansion vessel which is controlled by the computer system and which is housed in the enclosure, and in that the container is formed by a pocket having at least one orifice input connected to the above-mentioned reservoirs and an outlet orifice connected to means for recovering and storing the cells after cultivation, these means of e storage and reservoirs being located outside the enclosure and being connected to the openings of the cell expansion bag by conduits which form with the cell expansion bag a pre-assembled module placed in the enclosure and passing through a wall element of the enclosure, so as to allow feeding the cell expansion bag in culture medium, growth factors and cells to be cultured, and recovering the
  • the automaton according to the invention essentially has the function of automating the steps of the biological culture protocol and the management of the environmental conditions (temperature control, CO2 level, etc.) of culture of the cells of the incubator, in order to produce an optimal cell amplification yield. It also has the function of ensuring the distribution of the culture medium, growth factors and cells to be cultivated to a cell expansion bag (which can have a relatively large volume) located in the incubator, by the control of means such as valves and pumps. The automaton furthermore ensures the agitation of the cell expansion bag as well as the transfer of the cells after culture, from the cell expansion bag to the storage means.
  • the automaton according to the invention can make it possible to generate large quantities of cells, such as stem cells, from cells taken from a patient.
  • the bag in which the cell culture is carried out may have a volume greater than 100 ml, 200 ml, 300 ml, 500 ml, and which is for example about 650 ml or more (1 L, 2L, 3L, etc.).
  • Stem cell culture in a pocket of this type makes it possible to generate cells in an amount sufficient to perform cell therapy in a patient, such as, for example, a patient having undergone an infarction, according to the biological protocol described in US Pat. A1 -2008/01 18977.
  • the cell expansion bag preferably comprises flexible liquid-tight and gas-permeable walls. It preferably has a good permeability to oxygen and carbon dioxide, which allows good aeration of the contents of the bag without opening thereof and therefore without risk of contamination of its contents.
  • the pocket comprises the following permeability characteristics (per day at 37 ° C): O2 (gas) * 418, CO2 (gas) * 966, N2 (gas) * 157, and H2O (liquid) * 0.05.
  • the cell expansion bag preferably has little affinity with chemicals and biologicals, particularly with the cells to be cultured, and does not absorb such products.
  • the pouch is for example formed of a thin film of FEP copolymer (fluoro-ethylene-propylene).
  • the pocket may consist of different types of ports (modifiable interfaces) including, for example, FEP fir connectors. They are assembled to the pocket to limit the risk of contamination.
  • the automaton is intended to perform the cell culture and includes all the means and all the resources to achieve this culture, without the need for an operator to handle valves, replace bags or tanks, etc.
  • the cell culture is carried out according to a precise biological protocol which is entirely managed by the computer system, which makes it possible, for example, to control the valves, the stirring device, and to regulate the environmental conditions in the enclosure of the incubator.
  • the operator can inform the computer system with patient identification data, cells removed and the nature and provenance of the different tanks or pockets, so that all these data are recorded in the computer system.
  • the invention thus makes it possible to produce biological protocols with very good reproducibility and to ensure accurate traceability and control of the protocols and means used.
  • HMI human-machine interface
  • the cell expansion bag is housed in the enclosure and comprises at least two ports that are connected to conduits that pass through a wall element of the incubator, and which are connected to the tanks and the storage means connected to outside the enclosure.
  • the cell expansion bag and ducts form a pre-assembled, single-use module that is easily installed and replaced by the operator. At least a portion of the contents of the tanks located outside the enclosure is intended to be distributed in the cell expansion bag located in the enclosure, whose content after culture is intended to be transferred to the storage means out of the enclosure, all these fluid distribution operations being performed by keeping the chamber of the closed incubator through the conduits that pass through a wall element of the incubator, which ensures in the enclosure of optimal environmental conditions for the duration of the biological protocol and to limit the risk of contamination of the cell culture medium.
  • the cell expansion bag comprises a sampling orifice which is connected by a conduit to sampling means located outside the chamber, this duct passing through the aforementioned wall element of the enclosure and forming part of of the preassembled module.
  • the cell expansion bag thus comprises three orifices having different functions (recovery and sampling feed) and which are connected to different conduits.
  • the incubator comprises a cabinet comprising an opening and a door for sealing this opening, means for passing the aforementioned conduits being mounted on the peripheral edge of this opening and having substantially parallel grooves housing ducts, these grooves being intended to be covered by the door when in the closed position.
  • the ducts can be easily engaged (and withdrawn) from these ducts by an operator when the door is open, by translation of the ducts in a direction perpendicular to the longitudinal axes of the grooves, which facilitates the assembly of the consumables.
  • the reservoirs of growth factors and cells to be cultured are preferably formed by pockets which are located higher than the inlet of the cell expansion bag so that the contents of each of the media pockets Culture and cells to grow can flow by gravity to the cell expansion bag. This ensures the integrity of the cells and growth factors as they are transferred to the cell expansion bag.
  • the use of a pump or any mechanical means to circulate the cells and growth factors in the ducts could indeed damage them.
  • the storage means may comprise one or two pockets which are at least partly lower than the outlet of the cell expansion bag so that, after culture, the contents of the cell expansion bag can flow by gravity to the pocket or pockets of the storage means. This also makes it possible to guarantee the integrity of the cells after culture, during their recovery.
  • the automaton may comprise a peristaltic pump for controlling the culture medium supply of the cell expansion bag and reservoirs of growth factors and cells to be cultivated, with a view to rinsing these reservoirs.
  • the peristaltic pump has the advantage of not coming directly into contact with the culture medium, which avoids any risk of contamination of this medium.
  • the automaton may further comprise two air trap pockets, one of which is connected to the reservoirs of growth and cells to be cultivated, and the other of which is connected to the cell expansion bag, and which are intended to collect and store the air contained in the ducts, the cell expansion bag and / or the tanks.
  • the ducts are formed by flexible pipes, at least some of which pass through valves which are intended, in the closed position, to pinch these pipes.
  • Each tubing is for example intended to be engaged in a groove of a valve in a simple manner by the operator, for example by translation in a direction substantially perpendicular to the longitudinal axis of the tubing.
  • the support and agitation device may comprise a support plate of the cellular expansion bag, which is rotatably mounted about a first horizontal axis and which is movable about this axis between a substantially horizontal cell culture position. and a substantially vertical position of recovery of cells after culture. This latter position facilitates the recovery of the cells after culturing, these cells flowing directly by gravity into the aforementioned storage means.
  • the tray may be rotatably mounted about a second horizontal axis around which the tray is intended to oscillate for agitation and homogenization of the contents of the cell expansion bag.
  • the first and second axes of rotation of the plate are preferably parallel.
  • the plate carries valves for controlling the supply of the cell expansion bag, for recovering the contents of this bag, and for taking samples from this bag.
  • the support and agitation device may further comprise a vertical arm having at its upper end means for hooking an air trap bag connected to the cell expansion bag.
  • the storage means are advantageously rotatably mounted about a horizontal axis and are movable around this axis between a substantially vertical position and a substantially horizontal position in which these means are entirely located below the cell expansion bag. This ensures that all the cells in the cell expansion bag will be transferred by gravity into the storage means.
  • the sterility required at the level of the complete CD34 + cell conditioning chain requires the use and installation of consumables in the form of a cell culture kit. for single use.
  • the present invention therefore also relates to a cell culture kit, preferably sterile and disposable, for a cell culture machine, characterized in that it comprises at least one cell expansion bag and flexible connection tubes of the pocket to other pockets or reservoirs, tubing and cell expansion bag being pre-assembled and the cell expansion bag comprising an inlet port, an outlet port and optionally a sampling port.
  • a cell culture kit preferably sterile and disposable, for a cell culture machine, characterized in that it comprises at least one cell expansion bag and flexible connection tubes of the pocket to other pockets or reservoirs, tubing and cell expansion bag being pre-assembled and the cell expansion bag comprising an inlet port, an outlet port and optionally a sampling port.
  • the kit may further comprise all the connections necessary for the connections of the tubes to each other and with the bags and / or tanks, as well as the means connected to the third port of the cell expansion bag to allow cell samples to be taken. All these elements can be part of the pre-assembled module mentioned above.
  • the inlet of the cell expansion bag is connected by tubings to the inlet and outlet ports of the growth factor bag, and to the inlet and outlet ports of the bag. of cells to cultivate.
  • the inlet port of the cell expansion bag is further intended to be connected to an outlet port of the cell expansion bag.
  • the kit may further include two air trap pockets, one of which is connected to the outlet ports of the air bag pockets. growth and cells to grow, and the other is connected to the inlet of the cell expansion bag.
  • the kit may also include one or two cell recovery pockets after culture, which are connected by tubing to the outlet port of the cell expansion bag.
  • the pockets of growth factors and cells to be cultured and those forming an air trap have an internal volume of about 150 ml
  • the cell expansion bag has a theoretical volume of about 3000 ml.
  • the two recovery pouches each have a volume of about 600 ml.
  • the distribution pocket of the culture medium may have a volume of about 1000 ml.
  • the kit forms or constitutes a closed circuit which, once installed for a cell culture, includes all the resources necessary for this culture without requiring the addition of any product or the intervention of an operator. This limits the risk of contamination of the kit and the culture medium.
  • the invention also relates to a support and agitation device for a cell culture machine, characterized in that it comprises a support plate of a cell expansion bag, this plate carrying three valves and being mounted in rotation around a first horizontal axis for tilting the plate from a substantially horizontal position to a substantially vertical position, and a second horizontal axis around which the plate is intended to oscillate for agitation and homogenization of the contents of the cellular expansion bag, the device also comprising controlled means for tilting the plate around the aforementioned horizontal axes.
  • the device may comprise a vertical arm having at its upper end means for hooking an air trap pocket.
  • the invention also relates to an automated cell culture method, by means of an automaton as described above, characterized in that it comprises the steps of:
  • the method according to the invention may comprise one or more of the following steps:
  • step a) a step of installing the pre-assembled module by mounting the cell expansion bag on the stirring device, by mounting the ducts in the passage means of the incubator and in the valves , and connecting these ducts to tanks or pockets,
  • step a a step of evacuation of the air contained in the conduits by passage of culture medium from the culture medium reservoir to the air trap pocket or pockets;
  • step a After feeding the cell expansion cell pocket in growth factors in step a), a step of rinsing the growth factor reservoir by passing culture medium into the reservoir and then discharging its contents until to the cell expansion bag;
  • step a after feeding the cell expansion bag into cells to be cultured in step a), a step of rinsing the cell reservoir to be cultivated by passing culture medium into this reservoir and then discharging its contents until to the cell expansion bag; during step c), one or more sampling steps of the contents of the cell expansion bag, each of which is preceded by a step of tilting the support plate from a horizontal crop position to at an inclined position in which the sampling port of the bag represents the lowest point of the bag;
  • step c) a step of removing the reservoirs of culture medium, growth factors and cells to be cultivated, by cutting and welding or pinching the conduit or the connecting pipe of these reservoirs to the orifice inlet of the cell expansion bag;
  • step d to tilt the tray in a substantially vertical position so that the outlet of the cell expansion bag is the lowest point of the pocket.
  • the invention finally relates to a use of an automaton, a kit, or a device as described above, for the culture of CD34 + type stem cells or blood mononuclear cells, such as, for example, lymphocytes.
  • Stem cells can come from one or more sources, such as umbilical cord blood, bone marrow, and whole blood.
  • FIGS. 1 and 2 are schematic perspective views of the cell culture machine according to the invention, the controller comprising a cabinet defining an enclosure which is closed in Figure 1 and open in Figure 2;
  • FIG. 3 is a very schematic view of the automaton of FIGS. 1 and 2, without the computer system;
  • FIG. 4 is a very diagrammatic view of the components carried by a stirring device of the automaton of FIGS. 1 and 2;
  • FIG. 5 is a schematic view of a cell culture kit according to the invention.
  • FIG. 6 is a schematic perspective view of means for the passage of fluid conduits of the automaton of FIGS. 1 and 2;
  • FIG. 7 is a schematic perspective view of the stirring device according to the invention.
  • FIGS. 8 and 9 are diagrammatic perspective views of the device of FIG. 7 and represent two different inclination positions of the plate of this device;
  • FIG. 10 is another schematic perspective view of the stirring device of Figure 7, with partial tearing of the cowling of this device;
  • FIG. 1 1 is a schematic perspective view of the plate and controlled switching means of the plate of the device of Figure 7, seen from below;
  • FIGS. 12 and 13 are schematic perspective views of a controlled rotation locking system of the plate of the device of Figure 7, the locking system being active in Figure 1 1 and inactive in Figure 12;
  • FIG. 14 is a flowchart showing steps of a cell culture method according to the invention.
  • Figures 15 to 24 are views corresponding to Figure 3 and showing steps of the method according to the invention.
  • FIGS. 1 and 2 represent an exemplary embodiment of the cell culture automaton 10 according to the invention, this automaton being particularly but not exclusively intended for the culture of stem cells, for example according to the protocol described in US-A1 -2008 / 01/18977, the contents of which are incorporated herein by reference.
  • the automaton 10 essentially comprises three elements:
  • a pouch support frame 18 (not shown) containing the media necessary for culturing the cells, and carrying means (valves 20, pump 22, etc.) for dispensing and regulating the flow of fluids between the pockets, and
  • a computer system 24 connected to the incubator 12 and the means 20, 22 for their control as well as for the data entry and recording and the management of the biological protocol.
  • the incubator 12, the frame 18 and the computer system 24 are arranged next to each other on a support 26 which is mounted on wheels, the frame 18 being located between the computer system 24 and the incubator 12.
  • the computer system 24 comprises data acquisition and recording means, data processing means, display means, and means for transmitting control signals and control of the incubator. 12 and means 20, 22 of the frame 18.
  • the computer system 24 comprises a touch screen display and data entry.
  • the controller manufacturer may have a maximum level of access rights, by means of a specific password, to access all the information stored in the computer system 24, while an administrator and an operator having lower access levels will have access, via specific passwords, to certain information only.
  • the computer system 24 is advantageously connected to a computer network via a connection such as Ethernet or Wifi for example, so that information contained in the system 24 can be accessed from a computer station of the network, remote from the controller 10 , and possibly that actions may be required and commanded to the controller from this position.
  • the computer system 24 controls for example the opening and closing of the valves 20, which are for example all-or-nothing type, the regulation of the flow rate of the pump 22, the regulation of the heating of the enclosure 14 of the incubator 12 (For example, it has a temperature of about 37 ° C) and the supply of gas to the enclosure, such as CO2 (at a rate of about 5% for example).
  • the system 24 can regulate other parameters if necessary inside the enclosure 12, to define optimal environmental conditions for cell culture.
  • connection means of the computer system 24 to the means 18, 20 and the incubator 12, the heating and gas supply means of the incubator 12, and the power supply means are not shown in the drawings.
  • the frame 18 has a parallelepipedal shape and comprises a front vertical face 28 on which are diagrammatically drawn rectangles 30 representing the positions of tanks of biological media, in the form of pockets, as well as lines 32 representing the location of fluid conduits ( s) between these pockets.
  • This front face 28 comprises four drawn rectangles which inform an operator of the nature of each of the pockets which must be positioned at these rectangles, these pockets belonging to a consumables kit which will be described in more detail in this section. following.
  • a first large rectangle is drawn at the top left of the front face 28 of the frame 18 and represents the position of a pocket containing a culture medium (pocket referenced 34 in Figure 3).
  • Three smaller rectangles 30 are drawn at the top right of the face 28 and respectively represent the positions of a pocket of growth factors, a cell pocket to be cultured, and an air trap pocket (which are respectively referenced 36, 38 and 40 in FIG.
  • the middle portion of the front face 28 of the frame 18 comprises mounting holes of the above-mentioned valves 20 and pump 22, each of these elements (valves and pump) being situated on a line 32 representing a fluid conduit, which is formed by a flexible tubing of the consumables kit.
  • the lower part of the front face 28 carries two coplanar plates 42 and arranged next to each other. These plates 42 are pivotally mounted by their lower ends around the same horizontal axis extending parallel to the front face 28.
  • the plates 42 are movable in rotation about this axis between a vertical position (shown in Figures 1 and 2) in which they extend parallel and at a short distance from the front face 28, and a horizontal position in which they can bear on the support 26.
  • Rectangles 44 are drawn on the front faces of the plates 42 when in the vertical position. These rectangles 44 inform the operator of the nature of the pockets that must be carried by these plates 42. Bags for recovery and storage of the cells after culture (referenced 46 in FIG. 3) are intended to be carried by these plates 42.
  • the pockets 34, 36, 38, 40 and 46 of the consumables kit are intended to be fixed or hooked on the front face 28 of the frame 18 and on the plates 42 by appropriate means which are not shown.
  • the incubator 12 comprises a cabinet defining the enclosure 14 and having an opening which can be closed in a sealed manner by a double door, these two doors 48, 50 being pivotally mounted on one side of the opening, for example the right side.
  • the internal door 48 is a glass door intended in the closed position to bear on a peripheral seal 52 of the opening of the cabinet, the seal 52 being visible in Figure 6.
  • the outer door 50 is insulated and carries a seal device intended to bear on the peripheral edge of the opening of the cabinet.
  • the computer system 24 may be connected to sensors for detecting the position (open or closed) of each door 48, 50, and may control the locking of these doors, in particular during the incubation and cell culture phase.
  • the enclosure 14 of the incubator 12 has for example an internal volume of about 200 L.
  • the consumables kit is disposable for a cell culture and comprises the bags 34, 36, 38, 40 and 46 and the aforementioned tubes, as well as a cell expansion bag. 54 and a second pocket 56 forming an air trap, these pockets 54, 56 being carried by the stirring device 16 which will be described in more detail in the following, with reference to FIGS. 7 to 13.
  • the cell expansion bag 54 which is better visible in FIGS. 4 and 5, may have an internal volume greater than 500 ml, and which is, for example, 650 ml, and comprises three orifices, a sampling orifice 58 connected by a tubing 60 to sampling means 62, an outlet port 64 connected by a tubular 66 to the cell recovery pouches 46 after culture, and an inlet port 68 connected by tubings to the pockets 34, 36, 38 and 56.
  • the inlet port 68 of the cell expansion bag 54 is connected by a tubing 70 to an inlet port of the bag 34 of culture medium.
  • the pockets 36 and 38 of growth factors and cells to be cultivated each comprise an inlet orifice which is connected to one end of a tubing 72 whose other end is connected to the tubing 70, and an outlet port which is connected to one end of a tubing 74 whose other end is connected to the tubing 70 (downstream of the connection point or the tubings 72 to the tubing 70).
  • the bag 40 comprises two orifices which are connected by tubings 76 to the tubings 74, and the pocket 56 forming an air trap comprises an orifice connected by a tubing 78 to the tubing 70, in the vicinity of the inlet port 68 of the pocket 54 ( Figures 4 and 5).
  • the cell expansion bag 54 and tubings 60, 66, 70, 72, 74, 76 and 78 are preferably pre-assembled and are provided sterile.
  • Pockets 34, 36, 38, 40, 46 and 56 are also provided sterile.
  • the bags 40, 46 and 56 are supplied empty and may be pre-assembled with the cell expansion bag 54 to the aforementioned tubings.
  • the pocket 38 of cells to be cultivated is also supplied empty and can be pre-assembled to the tubings or connected to the tubings during the installation of the kit in the automaton.
  • the bag 38 may be filled with a medium containing the cells to be cultivated before or after installation of the kit in the automaton.
  • the pockets 34 and 36 are preferably provided filled respectively with culture medium and growth factors.
  • All connections of the tubings and tubings to the pockets, as well as the sampling means, are also preferably part of a pre-assembled module which is schematically shown in FIG. 5, the pockets 34, 36 and 38 which do not necessarily part of this module being represented in dashed lines.
  • the pockets 36, 38, 40 and 56 have a capacity of about 150 ml, the pockets 46 have a capacity of about 600 ml, and the pocket 34 of culture medium has a capacity of about 1000 ml about.
  • the bag 38 comprises cells of this type derived from the sample on a patient and possibly isolated and purified, and the growth factors of the bag 36 are cytokines. .
  • the cellular expansion bag 54 and the pocket 56 forming an air trap are carried by the stirring device 16 and are housed in the enclosure 14 of the incubator 12 ( Figure 3).
  • the other pockets 34, 36, 38, 40 and 46 and the sampling means 62 are located outside the enclosure 14.
  • tubings 60, 66 and 70 for connecting the cell expansion bag 54 to the elements situated outside the chamber 14 pass through an organ of the incubator, which allows the enclosure 14 to be sealed tightly, this member being shown in FIGS. 3 and 6.
  • This member is a wall element formed by a block 80 of material
  • Block 80 has a substantially planar shape and extends in a vertical plane.
  • It comprises a rear face bearing on the peripheral edge of the opening of the cabinet and a front face on which are formed the grooves 82, which have a substantially horizontal orientation and extend over the entire transverse dimension of the block.
  • the grooves 82 have a substantially circular cross section and have an internal diameter slightly greater than that of the tubes 60, 66, 70. These tubes are intended to be engaged completely in these grooves and to possibly pass through cuts 84 of the peripheral seal
  • the peripheral edge of the inner door 48 is intended to bear on the seal 52 and to cover the parts of the pipes 60, 66, 70 extending in the aforementioned cuts 84 of the seal 52
  • the peripheral seal of the outer door 50 is intended to bear on the front face of the block and to cover the grooves 82 and the portions of the pipes 60, 66, 70 extending in these grooves.
  • the lower groove of the block 80 forms a passage 66 of the tubing connecting the cell expansion bag 54 to the recovery pockets 46
  • the middle groove forms a passage of the connecting tubing 60 of the bag 54 to the sampling means 62
  • the upper groove forms a passage of the tubing 70 connecting the bag 54 to the pockets 34, 36, 38 and 40.
  • the tubing 70 is engaged in the pump 22 in the vicinity of the bag 34 of culture medium, this pump being a peristaltic pump to avoid the risk of contamination of this medium.
  • valves 20 are solenoid valves which are twelve in the example shown, referenced 86 to 108 in FIG.
  • the pipes 66, 60, 70 and 78 are respectively engaged in four valves 86, 88, 90 and 92 which are carried by the stirring device 16 (FIGS. 3 and 4).
  • the portion of the tubing 70 located outside the chamber 14 is engaged in two valves 94 and 96 at a distance from one another and a 94 is located near the bag 34 of culture medium.
  • the other valve 96 is situated downstream of the connection of the tubing 70 to the tubings 72 and upstream of the connection of the tubing 70 to the tubings 74.
  • tubings 72 connected to the inlet ports of the pockets 36 and 38 are engaged in valves 98 and 100, respectively, and the tubings 74 connected to the outlet ports of the pockets 36 and 38 are engaged in valves 102 and 104, respectively.
  • the pipes 76 connected to the pocket 40 forming an air trap are each engaged in a valve 106, 108.
  • the pump 22 and the valves preferably comprise a transverse groove for mounting a tubing by translation in a direction perpendicular to the longitudinal axis of the tubing or groove.
  • the pockets 34, 36, 38, 40 and 56 and the tubings 40, 72, 74, 76, 78 for connecting these pockets to the cell expansion bag 54 are all located above this pocket 54 when the latter is arranged horizontally.
  • the pockets 46, the sampling means 62 and the tubings 60, 66 connecting these elements to the cell expansion bag 54 are all located below this bag 54 when the latter is disposed horizontally.
  • the pockets 36, 38 and 56 are substantially located in the same horizontal plane which is situated below a horizontal plane in which the pockets 34 and 40 are located.
  • the supplies kit can be installed in the controller as follows.
  • the doors 48, 50 of the incubator 12 are open.
  • the pockets 34, 36, 38, 40, 46 are attached to the frame and the pocket 56 is hooked on the arm of the stirring device 16.
  • the pocket 54 is laid flat on the stirring device 16.
  • the tubing 70 is engaged in the valves 94, 96 and in the pump 22, the pipes 72 are engaged in the valves 98, 100, the pipes 74 are engaged in the valves 102, 104 and the pipes 76 are engaged in the valves 106, 108
  • the pipes 66, 60, 70 and 78 are engaged respectively in the valves 86, 88, 90 and 92 carried by the device 1 6, then the tubings 66, 60 and 70 are respectively engaged in the grooves 82 of the block 80.
  • tubings are connected to the pockets that are not already pre-assembled to the tubings, then the doors 48, 50 of the incubator 12 are closed.
  • the stirring device 16 comprises a support plate 1 10 for the cellular expansion bag 54 (not shown in FIGS. 7 to 13), this plate being rotatably mounted around a first horizontal axis A for the displacement of the plateau from a substantially horizontal position shown in Figures 7 and 1 1 to a substantially vertical position shown in Figures 8 and 10 (the plate 1 10 can adopt any position between these extreme positions, such as a position shown in 9 in which it is inclined at approximately 45 ° with respect to a horizontal plane), and around a second axis horizontal B around which the plate 1 10 is intended to oscillate (over an angular range of +/- 8 °) to stir and homogenize the contents of the cell expansion bag.
  • the plate 1 10 has a rectangular shape whose dimensions are slightly greater than those of the cell expansion bag 54 (of
  • the tray 1 comprises peripheral retaining rims 1 12 of the bag and is perforated so that the face of the bag 54 pressed against the tray can be directly exposed at least in part to the environmental conditions that prevail in the enclosure 14 of the incubator 12.
  • the plate 1 10 comprises at one of its ends, corresponding to one of the short sides of the plate, a hook 1 14 for fixing the cell expansion bag 54, this hook being intended to represent the highest point of the device 1 6 when the plate is in a vertical position (FIG.
  • the plate 1 10 comprises at its end opposite the hook 1 14 three mounting holes of the valves 86, 88, 90 above.
  • the device 16 comprises a U-shaped part 1 16 whose free ends of the two lateral branches are hinged on pins 1 18 fixed on the lateral edges of the end of the plate 1 carrying the valves 86,
  • pivots 1 18 are aligned and define the first aforementioned axis A rotation of the plate 1 10.
  • the branches of the U-shaped part 1 16 carry, substantially in the middle, pivots 120 which are hinged to a frame 122 of the device 16, these pivots 120 being aligned and defining the aforementioned second axis B of rotation of the plate 1 10.
  • the part 1 16 U extends along three sides of the tray, namely the longer sides and the small side carrying the hook 1 14.
  • the displacement of the plate 1 10 around the axis A is ensured by a cylinder 124 which is mounted between the branches of the U-shaped part 1 16 and whose cylinder is fixed to the middle part of this part 1 16 and the piston rod is fixed to the end of the plate carrying the valves 86, 88 and 90.
  • the piston rod of the jack 124 is articulated on an axis carried by a yoke 121 fixed on the end of the plate 1 carrying the valves, this axis being substantially horizontal.
  • the cylinder of the jack 124 is articulated on a substantially vertical axis carried by a first yoke 123 which is itself articulated on a substantially horizontal axis carried by a second yoke 125, this second yoke 125 being fixed on the middle part of the piece 1 16, substantially in the middle.
  • the plate 1 1 0 When the piston rod of the cylinder 124 is in the extended position, the plate 1 1 0 is in its substantially horizontal position shown in FIGS. 7 and 11. When the piston rod of the jack 124 is in the fully retracted position, the plate 1 10 is in its substantially vertical position shown in Figures 8 and 10. In the case of Figure 9, the piston rod of the cylinder 124 is partially retracted or exit.
  • the displacement of the plate around the axis B is provided by an electric motor 126 whose output shaft drives via a belt 127 a drive wheel of one of the pivots 120 carried by the piece 1 16 in U shape (figure 10).
  • Motor 126 is attached to frame 122 of the device by appropriate means.
  • the frame 122 of the stirring device 16 carries a system 129 for blocking the rotation of the plate 1 10 around the axis B, this system 129 having a retractable finger 131 which cooperates with an element 133 carried by the U-shaped piece 1 16 for locking the plate.
  • the finger 131 is movable from an extended position shown in FIG. 12 to a retracted position shown in FIG. 13, the movement of this finger being controlled by the computer system 24.
  • the element 133 carried by the U-shaped piece 1 16 has an elongated shape and comprises a first end secured to one of the pivots 120 of the part and a second end having a notch in which is intended to engage the finger 131 to block the rotation of the plate 1 10 about the axis B.
  • the finger 131 is deployed ( Figure 12)
  • the lateral faces of the notch of the element 133 can abut on the finger thus preventing any rotation of the plate about the axis B.
  • the finger is in the retracted position ( Figure 13 )
  • the part 1 16 and the plate 1 10 can be moved in rotation about the axis B.
  • the blocking of the rotation of the tray 1 10 about the axis B can be activated by the computer system 24 when the tray is moved around the axis A to an inclined or vertical position, for a sample or recovering cells from the cell expansion bag 54, to prevent the tray from moving around the B-axis due to the force exerted on one side of the tray by the weight of the cell expansion bag .
  • the stirring device 16 also comprises a vertical arm 1 28 fixing the above-mentioned valve 92 and hooking the pocket 56 forming an air trap.
  • the valve 92 is located substantially at mid-height of the arm 128 and the upper end of the arm comprises a hook 130 for fixing the pocket 56 (FIGS. 7 to 9).
  • the device 16 further comprises sensors 132 for position of the plate 1 10 around the axes A and / or B, which are carried by the frame 122.
  • Fig. 14 is a flowchart showing steps of the method according to the invention.
  • a first step 130 of the method consists in entering and recording, by means of the computer system 24, culture parameters specific to the biological protocol.
  • the input is performed by an operator, the parameters entered being for example the identification of the patient, the identification of the consumables kit, the volume of the cell expansion bag 54, etc.
  • the computer system 24 can be equipped with a barcode reader, the kit of Consumables may include a barcode directly informing the computer system 24 with the number and nature of the kit and the volume of each pocket.
  • the method includes a second step 132 of installing the consumable kit in the controller 10, as described above.
  • This installation can be guided and supervised by the computer system 24.
  • the installation can be done in several substeps, the computer system 24 displaying instructions for installation to the operator by indicating to him to validate or invalidate the realization of a sub-step and the transition to the next sub-step.
  • These sub-steps are for example:
  • valves 94, 96 the computer system 24 then controls the opening of the valves 94, 96 which are then closed as soon as the operator has validated this substep )
  • the method according to the invention comprises a third test step 134 called "self-test" in which the computer system 24 checks the proper functioning of the valves and the tilting means (jack 124 and motor 126) of the plate 1 10 of the device.
  • the operation of the incubator 12 can be implicitly controlled at the initiation of the biological protocol, the latter being able to be initiated only if the temperature and the CO2 level, for example, in the chamber 14 are stabilized at the same time. incubation setpoints.
  • the method according to the invention comprises another fluid distribution step 136, which comprises several substeps schematically represented in FIGS. 15 to 19.
  • the first sub-step of the distribution step 136 is shown in FIG. 15 and consists in evacuating the air contained in the pipes 70, 72, 74.
  • the valves 94, 96, 106 and 108 are open and the pump 22 is actuated by the computer system 24 so that culture medium flows from the pocket 34 in the pipes 70, 72, 74 to the pocket 40 forming an air trap.
  • the tubings 70, 72, 74 are then filled with culture medium and the bag 40 is at least partially filled with culture medium.
  • the pump 22 is set at a predetermined flow rate and operates for a predetermined time, at the end of which the pump is stopped and the valves 94, 96, 106 and 108 are closed.
  • the second sub-step of the distribution step 136 is shown in FIG. 16 and consists in evacuating the air contained in the pipes 70 and 78.
  • the valves 94, 96 and 92 are open and the pump 22 is actuated. by the computer system 24 so that culture medium flows from the pocket 34 in the pipes 70, 78 to the pocket 56 forming an air trap.
  • the tubing 78 then fills with culture medium and the pocket 56 fills at least partially with culture medium.
  • the pump 22 is set to a predetermined flow rate and operates for a predetermined time, at the end of which the pump is stopped and the valves 94, 96 and 92 are closed.
  • the third sub-step of the distribution step 136 is shown in FIG. 17 and consists in feeding the cell expansion bag 54 into a culture medium.
  • the valves 94, 96 and 90 are open and the pump 22 is actuated by the computer system 24 so that culture medium flows from the pocket 34 to the pocket 54.
  • the pocket 54 then fills with culture medium.
  • the pump 22 is set to a predetermined flow rate and operates for a predetermined time according to the parameters of the biological protocol specifying the volume of culture medium to be dispensed to the pocket 54 as well as its feed rate.
  • the pump 22 is then stopped and the valves 94, 96, 90 are closed.
  • the fourth sub-step of dispensing step 136 is shown in FIG. 18 and consists of feeding the cell expansion bag 54 with growth factors and then rinsing the growth factor pocket 36 with culture medium and evacuating the contents of this bag 36 to the cell expansion bag 54.
  • the valves 104 and 90 are open, so that the medium containing the growth factors flows by gravity from the bag 36 until to the pocket 54 while circulating in the pipes 74 and 70 (arrows 138).
  • the pocket 54 fills in growth factors.
  • the valves 104 and 90 are open for a predetermined time depending on the volume of medium containing the growth factors to be dispensed to the bag 54. At the end of this period, the valves 104 and 90 are closed.
  • valves 94 and 100 are then opened and the pump 22 is actuated (according to a predetermined flow rate and duration) to supply the bag 36 in a culture medium with a view to rinsing it.
  • the valves 94 and 100 are closed and the valves 104 and 90 are opened again so that the rinsing product contained in the bag 36 flows by gravity to the cell expansion bag 54.
  • the valves 104 and 90 are open for a predetermined time depending on the volume of this rinsing product to be dispensed at the pocket 54. At the end of this period, the valves 104 and 90 are closed.
  • phase of rinsing the bag 36 and discharging the rinsing product to the cell expansion bag 54 may be repeated one or more times according to the parameters of the biological protocol, for example that all the growth factors contained originally in the pocket 36 are found in the pocket 54.
  • the fifth sub-step of the distribution step 136 is shown in FIG. 19 and consists in feeding the cell expansion bag 54 into cells to be cultivated and then rinsing the bag 38 containing these cells with culture medium and evacuating the cell. contents of this pocket 38 to the cell expansion bag 54, in a manner similar to that carried out in the fourth substep.
  • the valves 102 and 90 are open, so that the medium containing the cells to be cultivated flows by gravity from the bag 38 to the bag 54 by circulating in the tubings 74 and 70 (arrows 140).
  • the pocket 54 fills in cells to be cultivated.
  • valves 102 and 90 are then closed and the valves 94 and 98 are open and the pump 22 is actuated (according to a predetermined flow rate and duration) to supply the bag 38 to a culture medium for rinsing it.
  • the valves 94 and 98 are closed and the valves 102 and 90 are opened again so that the rinsing product contained in the bag 38 flows by gravity to the cell expansion bag 54.
  • the valves 102 and 90 are then closed.
  • the distribution step 136 of the method may be followed by a step of homogenizing the contents of the cell expansion bag 54, which is schematically represented in FIG. 20.
  • the computer system 24 controls the device stirring 16 so as to that the plate 1 10 oscillates around the axis B, as explained above (arrows 142).
  • the amplitude, frequency, duration and periods (resting agitation, agitation, etc.) of these oscillations are determined according to the parameters of the biological protocol.
  • the method according to the invention then comprises an incubation step 144 which can last several days and for example ten days.
  • an incubation step 144 which can last several days and for example ten days.
  • the contents of the cell expansion bag 54 can be homogenized, by moving the plate in rotation about the axis B as explained above.
  • This homogenization (periods, frequency, amplitude) is determined by the parameters of the protocol independently of the homogenization step following the distribution step 136.
  • the operator can perform one or more samples 146 in the cell expansion bag 54 (FIGS. 14 and 22). Some of these levies may be imposed by the computer system. There are, for example, three such compulsory deductions that can be made just after the distribution step, three days after the start of incubation step 144, and seven days after the start of this step. samples may be made at the will of the operator, the computer system may invite the operator to perform these optional samples.
  • the computer system 24 When the operator confirms to the computer system 24 that he is ready to take a sample, the computer system actuates the jack 124 so that the plate 1 10 of the stirring device 16 is rotated around the axis A until at an inclined position, for example approximately 45 °, with respect to a horizontal plane, as is schematically represented in FIGS. 9 and 22.
  • the computer system 24 can then detect the correct position of the plate 1 10 via the sensors of the device 16 .
  • the computer system 24 controls the opening of the valve 88 so that a portion of the contents of the cell expansion bag 54 flows by gravity from the pocket 54 in the tubing 60 to the sampling means 62 located outside the chamber 14 of the incubator 12.
  • the operator can effector the sampling of the cell expansion bag 54 via a syringe 148 equipped with connecting means of the "Luer lock" type which are engaged in the sampling means 62.
  • the valve 88 is closed and the plate 1 10 of the stirring device 16 is brought back to a substantially horizontal position.
  • the operator can then perform analyzes of the sample taken, the results 148 of these analyzes can be entered and recorded in the computer system 24 by the operator.
  • the operator can also remove a portion of the consumables kit (first withdrawal phase 150 of the consumables - Figures 14 and 21).
  • the elements of the kit of consumables that can be removed are all the pockets (34, 36, 38, 40) and tubings (72, 74, 76) connected to the tubing 70.
  • the operator must cut the tubing 70 into upstream of its crossing of the aforementioned block 80 and must at the same time weld or pinch the free end cut of the tubing 70 remaining in the chamber 14 of the incubator 12, to prevent contamination of the cell expansion bag.
  • This operation can be performed by the operator by means of a suitable cutting plier sealing the end of the tubing during its cutting.
  • valves 94 to 108 are then opened to allow the removal by the operator of the pipes 70, 72, 74, 76 of these valves and the pump 22 ( Figure 21). Once the operator has confirmed the removal of these elements to the computer system 24, the latter controls the closing of the valves 94 to 108.
  • the method according to the invention further comprises a step of recovering the cells after culturing (FIGS. 14, 23 and 24).
  • the computer system 24 blocks the rotation of the plate 1 10 around the axis B and actuates the jack 124 so that the plate 1 10 of the device stirring 16 moves around the axis A to a substantially vertical position shown in Figures 8, 23 and 24.
  • the computer system 24 can then detect the correct position of the plate 1 10 via the sensors of the device 16.
  • the computer system 24 then controls the opening of the valve 86 so that the contents of the cell expansion bag 54 flow by gravity from the pocket 54 into the two recovery pockets 46 while flowing in the tubing 66. ( Figure 23).
  • the plates 42 carried by the frame 18 and on which are hung the recovery pockets 46 can be moved from their vertical position shown in Figures 2 and 23 to their horizontal position shown schematically in Figure 24, either manually by the operator or by the intermediate means of displacement controlled by the computer system 24.
  • the tilting of the plates 46 allows the pockets 46 to be entirely located below the pocket 54 and at least a portion of the tubing 66 so that the If the operator has confirmed to the computer system 24 that the sampling is complete, this system controls the closure of the valve 86 and the deployment of the valve. cylinder so that the plate 1 10 returns to substantially horizontal position.
  • the pockets 46 are then removed from the controller 10 for possible treatment of the cells and the reinjection of these cells into the body of a patient for cell therapy for example.
  • the tubing 66 can be cut and welded by the aforementioned clamp or the pockets 46 are disconnected from the tubing 66.
  • the last step of the process consists of a second withdrawal phase 154 of the consumables of the automaton 10, the pockets 54, 56 and the remaining tubings 66, 60, 70 and 78 being removed.
  • the computer system 24 controls the opening of the valves 86, 88, 90 and 92 to allow the withdrawal by the operator of the tubings 66, 60, 70 and 78. Once that the operator has confirmed the withdrawal of these elements to the computer system 24, the latter controls the closing of the valves 86, 88, 90 and 92.
  • the computer system can edit a crop report, this report can include the following information to ensure good traceability of the protocol: manufacturer-specific information (the PLC identification number, the version of the software of operation of the computer system, the version of the software of supervision of the biological protocol), all the parameters of the protocol since at least one of these parameters is not at its default value, the set culture parameters, the actions performed by the operator (including the date of each action in the format yyyymmddThhmiss, the author of this action via a connection identifier, the nature of the action via a coding to be defined in default of an ambiguous wording), "system” events (including the date of the event in the format yyyymmddThhmiss, the nature of the event (alarm, user alert , failure detection, etc.) via a coding to be defined in the absence of an ambiguous wording), the results of analysis of samples (including the date of each sample, the author of the sample, the analysis results of the sample , etc.), and graft information to ensure good trace

Abstract

Automate (10) de culture cellulaire, comprenant des réservoirs de milieu de culture, de facteurs de croissance et de cellules à cultiver, un incubateur (12) à enceinte (14) thermostatée dans laquelle est logé un récipient de culture des cellules, et un système informatique (24) de commande, caractérisé en ce qu'il comprend un dispositif (16) de support et d'agitation du récipient de culture qui est logé dans l'enceinte, et en ce que le récipient de culture est formé par une poche comportant au moins un orifice d'entrée relié aux réservoirs précités et un orifice de sortie relié à des moyens (42) de récupération et de stockage des cellules après culture, ces moyens de stockage et les réservoirs étant situés à l'extérieur de l'enceinte et étant reliés aux orifices de la poche d'expansion cellulaire par des conduits qui forment avec la poche d'expansion cellulaire un module pré-assemblé et qui traversent un élément de paroi de l'enceinte,de façon à permettre d'alimenter la poche d'expansion cellulaire en milieu de culture, en facteurs de croissance et en cellules à cultiver, et de récupérer le contenu de la poche d'expansion cellulaire dans les moyens de stockage, en maintenant l'enceinte fermée.

Description

Automate et procédé automatisé de culture cellulaire
La présente invention se rapporte à un automate de culture cellulaire, en particulier pour la culture de cellules souches (du type CD34+ par exemple), ainsi qu'à un procédé de culture cellulaire utilisant cet automate.
Parmi les domaines faisant appel à la culture cellulaire, celui de la thérapie cellulaire est le moins avancé en termes d'industrialisation. Il existe donc un besoin important de trouver une technologie capable de produire des cellules en quantité suffisante et dans des conditions optimales en vue de l'utilisation de ces cellules pour des applications thérapeutiques.
Certains procédés de thérapie cellulaire nécessitent une culture ou amplification de cellules souches avant leur réinjection chez un patient, car les quantités prélevées sont parfois insuffisantes pour avoir un effet thérapeutique. Il est indispensable de garantir l'intégrité des propriétés thérapeutiques des cellules pendant leur culture. Dans la technique actuelle, les solutions proposées pour cultiver les cellules souches ex vivo sont artisanales, très empiriques et peu efficaces.
De plus, la technique actuelle ne permet pas de produire des cellules souches en quantité suffisante pour des applications thérapeutiques. Il existe donc un réel besoin de développer une technologie du type bioréacteur ayant une géométrie compacte et permettant de cultiver des cellules en grande quantité.
On a déjà proposé d'utiliser des bioréacteurs pour la culture de cellules souches. Cependant, la phase d'amplification reste une étape essentiellement manuelle et les conditions environnementales pour la culture des cellules (température, CO2, etc.) ne sont pas contrôlées avec une grande précision.
On connaît par exemple des bioréacteurs avec perfusion à membrane, des bioréacteurs à fibres creuses, des bioréacteurs sur lit fluidisé, et des micro-bioréacteurs avec perfusion continue d'O2, de milieu nutritif et de facteurs de croissance (cf. demande WO 00/7341 1 ).
La demande US-A1 -2008/01 18977 décrit un protocole thérapeutique permettant de reconstruire le cœur d'un patient après un infarctus. La reconstruction est obtenue en injectant au niveau du cœur du patient des cellules souches spécifiques (CD34+), isolées à partir d'un prélèvement sanguin, amplifiées ex vivo et purifiées après culture.
La présente invention a notamment pour but de fournir une technologie capable d'assurer la culture, l'amplification ou l'expansion de ce type de cellules, et d'apporter également de nettes améliorations en termes de standardisation, de traçabilité et de contrôle pour des opérations qui sont pour la plupart réalisées manuellement dans la technique antérieure.
Elle propose à cet effet un automate de culture cellulaire, comprenant des réservoirs de milieu de culture, de facteurs de croissance et de cellules à cultiver, un incubateur à enceinte thermostatée dans laquelle est logé un récipient de culture des cellules ou d'expansion cellulaire, et un système informatique de commande incluant des moyens de saisie et d'enregistrement de données et destiné à réguler les conditions de culture dans l'enceinte et à piloter des vannes de distribution de fluides selon une séquence prédéfinie, caractérisé en ce qu'il comprend un dispositif de support et d'agitation du récipient de culture ou d'expansion cellulaire qui est commandé par le système informatique et qui est logé dans l'enceinte, et en ce que le récipient est formé par une poche comportant au moins un orifice d'entrée relié aux réservoirs précités et un orifice de sortie relié à des moyens de récupération et de stockage des cellules après culture, ces moyens de stockage et les réservoirs étant situés à l'extérieur de l'enceinte et étant reliés aux orifices de la poche d'expansion cellulaire par des conduits qui forment avec la poche d'expansion cellulaire un module pré-assemblé posé dans l'enceinte et qui traversent un élément de paroi de l'enceinte, de façon à permettre d'alimenter la poche d'expansion cellulaire en milieu de culture, en facteurs de croissance et en cellules à cultiver, et de récupérer le contenu de la poche d'expansion cellulaire dans les moyens de stockage, en maintenant l'enceinte fermée.
L'automate selon l'invention a essentiellement pour fonction d'automatiser les étapes du protocole biologique de culture et la gestion des conditions environnementales (contrôle de la température, du taux de CO2, etc.) de culture des cellules de l'incubateur, afin de produire un rendement optimal d'amplification cellulaire. Il a également pour fonction d'assurer la distribution du milieu de culture, des facteurs de croissance et des cellules à cultiver à une poche d'expansion cellulaire (qui peut avoir un volume relativement important) située dans l'incubateur, par la commande de moyens tels que des vannes et des pompes. L'automate assure en outre l'agitation de la poche d'expansion cellulaire ainsi que le transfert des cellules après culture, depuis la poche d'expansion cellulaire jusqu'aux moyens de stockage.
L'automate selon l'invention peut permettre de générer de grandes quantités de cellules, telles que des cellules souches, à partir de cellules prélevées sur un patient. La poche dans laquelle est réalisée la culture cellulaire peut avoir un volume supérieur à 100 ml, 200 ml, 300 ml, 500 ml, et qui est par exemple de 650 ml environ voire plus (1 L, 2L, 3L, etc.). La culture de cellules souches dans une poche de ce type permet de générer des cellules en quantité suffisante pour réaliser une thérapie cellulaire chez un patient, tel par exemple qu'un patient ayant subi un infarctus, selon le protocole biologique décrit dans la demande US-A1 -2008/01 18977.
La poche d'expansion cellulaire comprend de préférence des parois souples étanches aux liquides et perméables aux gaz. Elle présente de préférence une bonne perméabilité à l'oxygène et au dioxyde de carbone, ce qui permet une bonne aération du contenu de la poche sans ouverture de celle-ci et donc sans risque de contamination de son contenu. Dans un exemple particulier de réalisation de la poche, elle comprend les caractéristiques de perméabilité suivantes (en ce par jour, à 37°C) : O2 (gaz) * 418, CO2 (gaz) * 966, N2 (gaz) * 157, et H2O (liquide) * 0,05.
La poche d'expansion cellulaire a de préférence peu d'affinité avec des produits chimiques et biologiques, en particulier avec les cellules à cultiver, et n'absorbent pas de tels produits. La poche est par exemple formée d'un film mince en copolymère FEP (fluoro-éthylène-propylène). La poche peut être constituée de différents types de ports (interfaces modifiables) dont, par exemple, des raccords sapin en FEP. Ils sont assemblés à la poche pour limiter les risques de contamination.
L'automate est destiné à réaliser la culture cellulaire et inclut tous les moyens et toutes les ressources pour réaliser cette culture, sans nécessité pour un opérateur de manipuler de vannes, remplacer des poches ou des réservoirs, etc. La culture cellulaire est réalisée selon un protocole biologique précis qui est entièrement géré par le système informatique, qui permet par exemple de commander les vannes, le dispositif d'agitation, et de réguler les conditions environnementales dans l'enceinte de l'incubateur. L'opérateur peut renseigner le système informatique avec des données d'identification du patient, des cellules prélevées et la nature et la provenance des différents réservoirs ou poches, afin que toutes ces données soient enregistrées dans le système informatique. L'invention permet ainsi de réaliser des protocoles biologiques avec une très bonne reproductibilité et d'assurer une traçabilité et un contrôle précis des protocoles et moyens utilisés.
Le contrôle et la traçabilité des étapes du protocole biologique peuvent être assurés par le système informatique et une interface homme- machine (IHM) appropriée, qui permettent par exemple de :
- définir un procédé de culture automatisé dans lequel les paramètres propres au protocole biologique de culture ne sont pas modifiables,
- assurer une bonne sécurité en limitant l'accès aux données du système informatique, par l'identification de l'utilisateur et la nécessité d'un mot de passe (conformément à la réglementation 21 CFR Part 1 1 de la FDA), - autoriser un enregistrement des événements et des différentes étapes du procédé, et
- établir une édition de rapports (comprenant des résultats d'analyse de prélèvement et d'analyse a posteriori des caractéristiques du greffon par exemple).
La poche d'expansion cellulaire est logée dans l'enceinte et comprend au moins deux orifices qui sont reliées à des conduits qui passent à travers un élément de paroi de l'incubateur, et qui sont reliés aux réservoirs et aux moyens de stockage reliés à l'extérieur de l'enceinte. La poche d'expansion cellulaire et les conduits forment un module préassemblé, à usage unique, qui est mis en place et remplacé facilement par l'opérateur. Au moins une partie du contenu des réservoirs situés à l'extérieur de l'enceinte est destinée à être distribuée dans la poche d'expansion cellulaire située dans l'enceinte, dont le contenu après culture est destiné à être transféré dans les moyens de stockage situés hors de l'enceinte, toutes ces opérations de distribution de fluides étant réalisées en maintenant l'enceinte de l'incubateur fermée grâce aux conduits qui traversent un élément de paroi de l'incubateur, ce qui permet de garantir dans l'enceinte des conditions environnementales optimales pendant toute la durée du protocole biologique et de limiter les risques de contamination du milieu de culture des cellules.
Avantageusement, la poche d'expansion cellulaire comprend un orifice de prélèvement qui est relié par un conduit à des moyens de prélèvement situés à l'extérieur de l'enceinte, ce conduit traversant l'élément de paroi précité de l'enceinte et faisant partie du module préassemblé. La poche d'expansion cellulaire comprend ainsi trois orifices ayant des fonctions différentes (alimentation récupération et prélèvement) et qui sont reliés à des conduits différents.
Dans un mode de réalisation de l'invention, l'incubateur comprend une armoire comportant une ouverture et une porte de fermeture étanche de cette ouverture, des moyens de passage des conduits précités étant montés sur le bord périphérique de cette ouverture et comportant des gorges sensiblement parallèles de logement des conduits, ces gorges étant destinées à être recouvertes par la porte lorsqu'elle est en position fermée. Les conduits peuvent être aisément engagés (et retirés) de ces conduits par un opérateur quand la porte est ouverte, par translation des conduits dans une direction perpendiculaire aux axes longitudinaux des gorges, ce qui facilite le montage des consommables.
Les réservoirs de facteurs de croissance et de cellules à cultiver sont de préférence formés par des poches qui sont situées plus haut que l'orifice d'entrée de la poche d'expansion cellulaire de façon à ce que le contenu de chacune des poches de milieu de culture et de cellules à cultiver puisse s'écouler par gravité jusqu'à la poche d'expansion cellulaire. Ceci permet de garantir l'intégrité des cellules et des facteurs de croissance lors de leur transfert jusqu'à la poche d'expansion cellulaire. L'utilisation d'une pompe ou d'un moyen mécanique quelconque pour faire circuler les cellules et les facteurs de croissance dans les conduits risquerait en effet de les endommager.
Les moyens de stockage peuvent comprendre une ou deux poches qui sont au moins en partie situées plus bas que l'orifice de sortie de la poche d'expansion cellulaire de façon à ce que, après culture, le contenu de la poche d'expansion cellulaire puisse s'écouler par gravité jusqu'à la ou les poches des moyens de stockage. Ceci permet également de garantir l'intégrité des cellules après culture, lors de leur récupération
L'automate peut comprendre une pompe péristaltique de commande de l'alimentation en milieu de culture de la poche d'expansion cellulaire et des réservoirs de facteurs de croissance et de cellules à cultiver, en vue du rinçage de ces réservoirs. La pompe péristaltique a l'avantage de ne pas venir directement au contact du milieu de culture, ce qui évite tout risque de contamination de ce milieu.
L'automate peut en outre comprendre deux poches formant piège à air, dont l'une est reliée aux réservoirs de facteurs de croissance et de cellules à cultiver, et dont l'autre est reliée à la poche d'expansion cellulaire, et qui sont destinées à collecter et stocker l'air contenu dans les conduits, la poche d'expansion cellulaire et/ou les réservoirs.
Avantageusement, les conduits sont formés par des tubulures souples, dont au moins certaines traversent des vannes qui sont destinées, en position de fermeture, à pincer ces tubulures. Chaque tubulure est par exemple destinée à être engagée dans une gorge d'une vanne de façon simple par l'opérateur, par exemple par translation dans une direction sensiblement perpendiculaire à l'axe longitudinal de la tubulure.
Le dispositif de support et d'agitation peut comprendre un plateau de support de la poche d'expansion cellulaire, qui est monté rotatif autour d'un premier axe horizontal et qui est déplaçable autour de cet axe entre une position sensiblement horizontale de culture des cellules et une position sensiblement verticale de récupération des cellules après culture. Cette dernière position facilite la récupération des cellules après culture, ces cellules s'écoulant directement par gravité dans les moyens de stockage précités.
Le plateau peut être monté rotatif autour d'un second axe horizontal autour duquel le plateau est destiné à osciller pour l'agitation et l'homogénéisation du contenu de la poche d'expansion cellulaire. Les premier et second axes de rotation du plateau sont de préférence parallèles.
De préférence, le plateau porte des vannes de commande de l'alimentation de la poche d'expansion cellulaire, de récupération du contenu de cette poche, et de prélèvement d'échantillons de cette poche.
Le dispositif de support et d'agitation peut en outre comprendre un bras vertical comportant à son extrémité supérieure des moyens d'accrochage d'une poche formant piège à air reliée à la poche d'expansion cellulaire.
Les moyens de stockage sont avantageusement montés rotatifs autour d'un axe horizontal et sont déplaçables autour de cet axe entre une position sensiblement verticale et une position sensiblement horizontale dans laquelle ces moyens sont entièrement situés en dessous de la poche d'expansion cellulaire. Ceci permet de garantir que l'intégralité des cellules contenues dans la poche d'expansion cellulaire sera transférée par gravité dans les moyens de stockage.
A titre d'exemple, dans le cas particulier de culture de cellules souches CD34+, la stérilité exigée au niveau de la chaîne complète de conditionnement des cellules CD34+ impose l'utilisation et l'installation de consommables sous forme d'un kit de culture cellulaire à usage unique.
La présente invention concerne donc également un kit de culture cellulaire, de préférence stérile et à usage unique, pour un automate de culture cellulaire, caractérisé en ce qu'il comprend au moins une poche d'expansion cellulaire et des tubulures souples de liaison de la poche à d'autres poches ou réservoirs, les tubulures et la poche d'expansion cellulaire étant pré-assemblées et la poche d'expansion cellulaire comprenant un orifice d'entrée, un orifice de sortie et éventuellement un orifice de prélèvement.
Le kit peut en outre comprendre tous les raccords nécessaires aux liaisons des tubulures entre elles et avec les poches et/ou réservoirs, ainsi que les moyens reliés au troisième orifice de la poche d'expansion cellulaire pour autoriser des prélèvements de cellules. Tous ces éléments peuvent faire partie du module pré-assemblé précité.
Avantageusement, l'orifice d'entrée de la poche d'expansion cellulaire est relié par des tubulures à des orifices d'entrée et de sortie de la poche de facteurs de croissance, et à des orifices d'entrée et de sortie de la poche de cellules à cultiver. L'orifice d'entrée de la poche d'expansion cellulaire est en outre destiné à être reliée à un orifice de sortie de la poche d'expansion cellulaire.
Le kit peut comprendre en outre deux poches formant piège à air dont l'une est reliée aux orifices de sortie des poches de facteurs de croissance et de cellules à cultiver, et dont l'autre est reliée à l'orifice d'entrée de la poche d'expansion cellulaire.
Le kit peut également comprendre une ou deux poches de récupération des cellules après culture, qui sont reliées par des tubulures à l'orifice de sortie de la poche d'expansion cellulaire.
Dans un exemple de réalisation de l'invention, les poches de facteurs de croissance et de cellules à cultiver et celles formant piège à air ont un volume interne de 150 ml environ, la poche d'expansion cellulaire a un volume théorique de 3000 ml environ, et les deux poches de récupération ont chacune un volume de 600 ml environ. La poche de distribution du milieu de culture peut avoir un volume de 1000 ml environ.
Avantageusement, le kit forme ou constitue un circuit fermé qui, une fois installé pour une culture cellulaire, comprend toutes les ressources nécessaires pour cette culture sans nécessiter l'ajout d'un produit quelconque ou l'intervention d'un opérateur. Ceci permet de limiter les risques de contamination du kit et du milieu de culture.
L'invention concerne encore un dispositif de support et d'agitation pour un automate de culture cellulaire, caractérisé en ce qu'il comprend un plateau de support d'une poche d'expansion cellulaire, ce plateau portant trois vannes et étant monté en rotation autour d'un premier axe horizontal pour le basculement du plateau depuis une position sensiblement horizontale jusqu'à une position sensiblement verticale, et un second axe horizontal autour duquel le plateau est destiné à osciller pour l'agitation et l'homogénéisation du contenu de la poche d'expansion cellulaire, le dispositif comprenant également des moyens commandés de basculement du plateau autour des axes horizontaux précités.
Le dispositif peut comprendre un bras vertical comportant à son extrémité supérieure des moyens d'accrochage d'une poche formant piège à air. L'invention concerne également un procédé automatisé de culture cellulaire, au moyen d'un automate tel que décrit ci-dessus, caractérisé en ce qu'il comprend les étapes consistant à :
a) alimenter la poche d'expansion cellulaire en milieu de culture, en facteurs de croissance puis en cellules à cultiver, en maintenant l'enceinte de l'incubateur fermée ;
b) agiter la poche d'expansion cellulaire en vue de l'homogénéisation de son contenu ;
c) maintenir la poche d'expansion cellulaire dans des conditions d'incubation pendant une durée de plusieurs jours ; et
d) récupérer le contenu de la poche d'expansion cellulaire dans les moyens de stockage, en maintenant l'enceinte fermée.
Le procédé selon l'invention peut comprendre une ou plusieurs des étapes suivantes :
- avant l'étape a), une étape d'installation du module pré-assemblé en montant la poche d'expansion cellulaire sur le dispositif d'agitation, en montant les conduits dans les moyens de passage de l'incubateur et dans les vannes, et en connectant ces conduits aux réservoirs ou poches,
- avant l'étape a), une étape d'évacuation de l'air contenu dans les conduits par passage de milieu de culture depuis le réservoir de milieu de culture jusqu'à la ou les poches formant piège à air ;
- après l'alimentation de la poche d'expansion cellulaire en facteurs de croissance à l'étape a), une étape de rinçage du réservoir de facteurs de croissance en faisant passer du milieu de culture dans ce réservoir puis en évacuant son contenu jusqu'à la poche d'expansion cellulaire ;
- après l'alimentation de la poche d'expansion cellulaire en cellules à cultiver à l'étape a), une étape de rinçage du réservoir de cellules à cultiver en faisant passer du milieu de culture dans ce réservoir puis en évacuant son contenu jusqu'à la poche d'expansion cellulaire ; - pendant l'étape c), une ou plusieurs étapes de prélèvement d'échantillon du contenu de la poche d'expansion cellulaire, qui sont chacune précédées d'une étape de basculement du plateau de support d'une position horizontale de culture jusqu'à une position inclinée dans laquelle l'orifice de prélèvement de la poche représente le point le plus bas de la poche ;
- avant l'étape c), une étape de retrait des réservoirs de milieu de culture, de facteurs de croissance et de cellules à cultiver, en coupant et en soudant ou pinçant le conduit ou la tubulure de liaison de ces réservoirs à l'orifice d'entrée de la poche d'expansion cellulaire ;
- avant ou pendant l'étape d), à basculer le plateau dans une position sensiblement verticale de façon à ce que l'orifice de sortie de la poche d'expansion cellulaire représente le point le plus bas de la poche.
L'invention concerne enfin une utilisation d'un automate, d'un kit, ou d'un dispositif tel que décrit ci-dessus, pour la culture de cellules souches du type CD34+ ou de cellules mononuclées du sang, telles que par exemple des lymphocytes. Les cellules souches peuvent provenir d'une ou plusieurs sources, comme plus particulièrement le sang de cordon ombilical, la moelle osseuse et le sang total.
L'invention sera mieux comprise et d'autres détails, avantages et caractéristiques de l'invention apparaîtront plus clairement à la lecture de la description suivante faite à titre d'exemple non limitatif et en référence aux dessins annexés dans lesquels :
- les figures 1 et 2 sont des vues schématiques en perspective de l'automate de culture cellulaire selon l'invention, cet automate comportant une armoire définissant une enceinte qui est fermée en figure 1 et ouverte en figure 2 ;
- la figure 3 est une vue très schématique de l'automate des figures 1 et 2, sans le système informatique ; - la figure 4 est une vue très schématique des composants portés par un dispositif d'agitation de l'automate des figures 1 et 2 ;
- la figure 5 est une vue schématique d'un kit de culture cellulaire selon l'invention ;
- la figure 6 est une vue schématique en perspective de moyens de passage de conduits de fluide de l'automate des figures 1 et 2 ;
- la figure 7 est une vue schématique en perspective du dispositif d'agitation selon l'invention ;
- les figures 8 et 9 sont des vues schématiques en perspective du dispositif de la figure 7 et représentent deux positions d'inclinaison différentes du plateau de ce dispositif ;
- la figure 10 est une autre vue schématique en perspective du dispositif d'agitation de la figure 7, avec arrachement partiel du capotage de ce dispositif ;
- la figure 1 1 est une vue schématique en perspective du plateau et de moyens commandés de basculement du plateau du dispositif de la figure 7, vus de dessous ;
- les figures 12 et 13 sont vues schématiques en perspective d'un système commandé de blocage de rotation du plateau du dispositif de la figure 7, ce système de blocage étant actif en figure 1 1 et inactif en figure 12 ;
- la figure 14 est un organigramme montrant des étapes d'un procédé de culture cellulaire selon l'invention ; et
les figures 15 à 24 sont des vues correspondant à la figure 3 et représentant des étapes du procédé selon l'invention.
On se réfère d'abord aux figures 1 et 2 qui représentent un exemple de réalisation de l'automate 10 de culture cellulaire selon l'invention, cet automate étant particulièrement mais non exclusivement destiné à la culture de cellules souches, par exemple selon le protocole biologique décrit dans la demande US-A1 -2008/01 18977 dont le contenu est incorporé ici par référence. Dans l'exemple représenté, l'automate 10 comprend essentiellement trois éléments :
- un incubateur 12 à enceinte 14 thermostatée dans laquelle est logé un dispositif 16 de support et d'agitation d'une poche d'expansion cellulaire (non représentée),
- un bâti 18 de support de poches (non représentées) contenant les milieux nécessaires à la culture des cellules, et portant des moyens (vannes 20, pompe 22, etc.) de distribution et de réglage de débit de fluides entre les poches, et
- un système informatique 24 relié à l'incubateur 12 et aux moyens 20, 22 pour leur commande ainsi que pour la saisie et l'enregistrement de données et la gestion du protocole biologique.
Dans l'exemple représenté, l'incubateur 12, le bâti 18 et le système informatique 24 sont disposés l'un à côté de l'autre sur un support 26 qui est monté sur roulettes, le bâti 18 étant situé entre le système informatique 24 et l'incubateur 12.
De façon typique, le système informatique 24 comprend des moyens de saisie et d'enregistrement de données, des moyens de traitement des données, des moyens d'affichage, et des moyens d'émission de signaux de commande et de pilotage de l'incubateur 12 et des moyens 20, 22 du bâti 18. De préférence, le système informatique 24 comprend un écran tactile d'affichage et de saisie de données.
Pour limiter l'accès aux données préenregistrées dans le système informatique 24, plusieurs niveaux de sécurité peuvent être mis en place. Le constructeur de l'automate peut avoir un droit d'accès de niveau maximal, au moyen d'un mot de passe spécifique, de façon à accéder à toutes les informations enregistrées dans le système informatique 24, alors qu'un administrateur et un opérateur ayant des niveaux d'accès inférieurs auront accès, via des mots de passe spécifiques, à certaines informations seulement. Le système informatique 24 est avantageusement relié à un réseau informatique via une connexion du type Ethernet ou Wifi par exemple, de façon à ce que des informations contenues dans le système 24 puissent être accessibles depuis un poste informatique du réseau, distant de l'automate 10, et éventuellement que des actions puissent être requises et commandées à l'automate depuis ce poste.
Le système informatique 24 commande par exemple l'ouverture et la fermeture des vannes 20, qui sont par exemple du type tout ou rien, le réglage du débit de la pompe 22, la régulation du chauffage de l'enceinte 14 de l'incubateur 12 (pour qu'elle ait par exemple une température de l'ordre de 37°C environ) et l'alimentation de l'enceinte en gaz, tels que du CO2 (à un taux d'environ 5% par exemple). Le système 24 peut assurer la régulation d'autres paramètres si nécessaire à l'intérieur de l'enceinte 12, pour définir des conditions environnementales optimales pour la culture des cellules.
Pour plus de clarté, les moyens de connexion du système informatique 24 aux moyens 18, 20 et à l'incubateur 12, les moyens de chauffage et d'alimentation en gaz de l'incubateur 12, et les moyens d'alimentation électrique ne sont pas représentés dans les dessins.
Le bâti 18 a une forme parallélépipédique et comprend une face verticale avant 28 sur laquelle sont schématiquement dessinés des rectangles 30 représentant les positions de réservoirs de milieux biologiques, sous forme de poches, ainsi que des lignes 32 représentant l'emplacement de conduits de fluide(s) entre ces poches.
La partie supérieure de cette face avant 28 comprend quatre rectangles 30 dessinés qui renseignent un opérateur sur la nature de chacune des poches qui doivent être positionnées au niveau de ces rectangles, ces poches appartenant à un kit de consommables qui sera décrit plus en détail dans ce qui suit.
Un premier rectangle de grande dimension est dessiné en haut à gauche de la face avant 28 du bâti 18 et représente la position d'une poche contenant un milieu de culture (poche référencée 34 en figure 3). Trois rectangles 30 de plus petites dimensions sont dessinés en haut à droite de la face 28 et représentent respectivement les positions d'une poche de facteurs de croissance, d'une poche de cellules à cultiver, et d'une poche formant piège à air (qui sont respectivement référencées 36, 38 et 40 en figure 3).
La partie médiane de la face avant 28 du bâti 18 comprend des orifices de montage des vannes 20 et de la pompe 22 précitées, chacun de ces éléments (vannes et pompe) étant situé sur une ligne 32 représentant un conduit de fluide, qui est formé par une tubulure souple du kit de consommables.
La partie inférieure de la face avant 28 porte deux plaques 42 coplanaires et disposées l'une à côte de l'autre. Ces plaques 42 sont montées pivotantes par leurs extrémités inférieures autour d'un même axe horizontal s'étendant parallèlement à la face avant 28. Les plaques 42 sont déplaçables en rotation autour de cet axe entre une position verticale (représentée en figures 1 et 2) dans laquelle elles s'étendent parallèlement et à faible distance de la face avant 28, et une position horizontale dans laquelle elles peuvent prendre appui sur le support 26.
Des rectangles 44 sont dessinés sur les faces avant des plaques 42, lorsqu'elles sont en position verticale. Ces rectangles 44 renseignent l'opérateur sur la nature des poches qui doivent être portées par ces plaques 42. Des poches de récupération et de stockage des cellules après culture (référencées 46 en figure 3) sont destinées à être portées par ces plaques 42.
Les poches 34, 36, 38, 40 et 46 du kit de consommables sont destinées à être fixées ou accrochées sur la face avant 28 du bâti 18 et sur les plaques 42 par des moyens appropriés qui ne sont pas représentés.
L'incubateur 12 comprend une armoire définissant l'enceinte 14 et comportant une ouverture qui peut être fermée de manière étanche par une double porte, ces deux portes 48, 50 étant montées pivotantes sur un des côtés de l'ouverture, par exemple le côté droit.
La porte interne 48 est une porte en verre destinée en position de fermeture à prendre appui sur un joint périphérique 52 de l'ouverture de l'armoire, ce joint 52 étant visible en figure 6. La porte externe 50 est calorifugée et porte un joint périphérique destinée à prendre appui sur le bord périphérique de l'ouverture de l'armoire.
Le système informatique 24 peut être relié à des capteurs de détection de la position (ouverte ou fermée) de chaque porte 48, 50, et peut commander le verrouillage de ces portes en particulier pendant la phase d'incubation et de culture des cellules.
L'enceinte 14 de l'incubateur 12 a par exemple un volume interne de 200 L environ.
Dans l'exemple représenté aux figures 3 à 5, le kit de consommables est à usage unique pour une culture cellulaire et comprend les poches 34, 36, 38, 40 et 46 et les tubulures précitées, ainsi qu'une poche d'expansion cellulaire 54 et une seconde poche 56 formant piège à air, ces poches 54, 56 étant portées par le dispositif d'agitation 16 qui sera décrit plus en détail dans ce qui suit, en référence aux figures 7 à 13.
La poche d'expansion cellulaire 54 mieux visible aux figures 4 et 5 peut avoir un volume interne supérieur à 500 ml, et qui est par exemple de 650 ml, et comprend trois orifices, un orifice de prélèvement 58 relié par une tubulure 60 à des moyens de prélèvement 62, un orifice de sortie 64 relié par une tubulure 66 aux poches 46 de récupération des cellules après culture, et un orifice d'entrée 68 reliée par des tubulures aux poches 34, 36, 38 et 56.
L'orifice d'entrée 68 de la poche d'expansion cellulaire 54 est relié par une tubulure 70 à un orifice d'entrée de la poche 34 de milieu de culture. Les poches 36 et 38 de facteurs de croissance et de cellules à cultiver comprennent chacune un orifice d'entrée qui est relié à une extrémité d'une tubulure 72 dont l'autre extrémité est raccordée à la tubulure 70, et un orifice de sortie qui est relié à une extrémité d'une tubulure 74 dont l'autre extrémité est raccordée à la tubulure 70 (en aval du ou des points de connexion des tubulures 72 à la tubulure 70). La poche 40 comprend deux orifices qui sont reliés par des tubulures 76 aux tubulures 74, et la poche 56 formant piège à air comprend un orifice relié par une tubulure 78 à la tubulure 70, au voisinage de l'orifice d'entrée 68 de la poche 54 (figures 4 et 5).
La poche d'expansion cellulaire 54 et les tubulures 60, 66, 70, 72, 74, 76 et 78 sont de préférence pré-assemblées et sont fournies stériles. Les poches 34, 36, 38, 40, 46 et 56 sont également fournies stériles. Les poches 40, 46 et 56 sont fournies vides et peuvent être pré-assemblées avec la poche d'expansion cellulaire 54 aux tubulures précitées. La poche 38 de cellules à cultiver est également fournie vide et peut être préassemblée aux tubulures ou bien connectée aux tubulures lors de l'installation du kit dans l'automate. La poche 38 peut être remplie d'un milieu contenant les cellules à cultiver avant ou après l'installation du kit dans l'automate. Les poches 34 et 36 sont de préférence fournies remplies, respectivement de milieu de culture et de facteurs de croissance.
Tous les raccords des tubulures et des tubulures aux poches, ainsi que les moyens de prélèvement, font également de préférence partie d'un module pré-assemblé qui est schématiquement représenté en figure 5, les poches 34, 36 et 38 qui ne font pas nécessairement partie de ce module étant représentées en traits pointillés.
Les poches 36, 38, 40 et 56 ont une contenance de l'ordre de 150 ml environ, les poches 46 ont une contenance de 600 ml environ, et la poche 34 de milieu de culture a une contenance de l'ordre de 1000 ml environ.
Dans le cas où l'automate 10 est utilisé pour cultiver des cellules souches CD34+, la poche 38 comprend des cellules de ce type issues du prélèvement sur un patient et éventuellement isolées et purifiées, et les facteurs de croissance de la poche 36 sont des cytokines.
La poche d'expansion cellulaire 54 et la poche 56 formant piège à air sont portées par le dispositif d'agitation 16 et sont logées dans l'enceinte 14 de l'incubateur 12 (figure 3). Les autres poches 34, 36, 38, 40 et 46 et les moyens de prélèvement 62 sont situés à l'extérieur de l'enceinte 14.
Les tubulures 60, 66 et 70 de liaison de la poche d'expansion cellulaire 54 aux éléments situés à l'extérieur de l'enceinte 14 passent à travers un organe de l'incubateur, qui autorise la fermeture étanche de l'enceinte 14, cet organe étant représenté aux figures 3 et 6.
Cet organe est un élément de paroi formé par un bloc 80 de matière
(par exemple plastique) qui est fixé sur le bord périphérique de l'ouverture de l'armoire de l'incubateur 12 et qui comprend trois gorges 82 parallèles d'engagement et de passage des tubulures 60, 66, 70 précitées. Ces gorges 82 sont sensiblement rectilignes et à distance les unes des autres.
Le bloc 80 a une forme sensiblement plane et s'étend dans un plan vertical.
Il comprend une face arrière en appui sur le bord périphérique de l'ouverture de l'armoire et une face avant sur laquelle sont formées les gorges 82, qui ont une orientation sensiblement horizontale et s'étendent sur toute la dimension transversale du bloc.
Les gorges 82 ont une section sensiblement circulaire et ont un diamètre interne légèrement supérieur à celui des tubulures 60, 66, 70. Ces tubulures sont destinées à être engagées complètement dans ces gorges et à passer éventuellement à travers des découpes 84 du joint périphérique
52 du bord de l'ouverture de l'armoire.
En position de fermeture de l'enceinte 14, le bord périphérique de la porte interne 48 est destiné à prendre appui sur le joint 52 et à recouvrir les parties des tubulures 60, 66, 70 s'étendant dans les découpes 84 précitées du joint 52, et le joint périphérique de la porte externe 50 est destiné à venir en appui sur la face avant du bloc et à recouvrir les gorges 82 et les parties des tubulures 60, 66, 70 s'étendant dans ces gorges.
Dans l'exemple représenté, la gorge inférieure du bloc 80 forme un passage de la tubulure 66 de liaison de la poche d'expansion cellulaire 54 aux poches de récupération 46, la gorge médiane forme un passage de la tubulure 60 de liaison de la poche 54 aux moyens de prélèvement 62, et la gorge supérieure forme un passage de la tubulure 70 de liaison de la poche 54 aux poches 34, 36, 38 et 40.
Comme cela est représenté en figure 3, la tubulure 70 est engagée dans la pompe 22 au voisinage de la poche 34 de milieu de culture, cette pompe étant une pompe péristaltique pour éviter les risques de contamination de ce milieu.
Les vannes 20 précitées sont des électrovannes qui sont au nombre de douze dans l'exemple représenté, référencées de 86 à 108 en figure 3.
Les tubulures 66, 60, 70 et 78 sont engagées respectivement dans quatre vannes 86, 88, 90 et 92 qui sont portées par le dispositif d'agitation 16 (figures 3 et 4).
La partie de la tubulure 70 située à l'extérieur de l'enceinte 14 est engagée dans deux vannes 94 et 96 à distance l'une de l'autre et dont une 94 est située à proximité de la poche 34 de milieu de culture. L'autre vanne 96 est située en aval de la connexion de la tubulure 70 aux tubulures 72 et en amont de la connexion de la tubulure 70 aux tubulures 74.
Les tubulures 72 reliées aux orifices d'entrée des poches 36 et 38 sont engagées dans des vannes 98 et 100, respectivement, et les tubulures 74 reliées aux orifices de sortie des poches 36 et 38 sont engagées dans des vannes 102 et 104, respectivement.
Les tubulures 76 reliées à la poche 40 formant piège à air sont chacune engagées dans une vanne 106, 108.
La pompe 22 et les vannes comprennent de préférence une gorge transversale de montage d'une tubulure par translation dans une direction perpendiculaire à l'axe longitudinal de la tubulure ou de la gorge.
Comme cela est schématiquement représenté en figure 3 et visible en figure 2, les poches 34, 36, 38, 40 et 56 et les tubulures 40, 72, 74, 76, 78 de liaison de ces poches à la poche d'expansion cellulaire 54 sont toutes situées au dessus de cette poche 54 lorsque cette dernière est disposée horizontalement. Les poches 46, les moyens de prélèvement 62 et les tubulures 60, 66 de liaison de ces éléments à la poche d'expansion cellulaire 54 sont tous situés au dessous de cette poche 54 lorsque cette dernière est disposée horizontalement.
Les poches 36, 38 et 56 sont sensiblement situées dans un même plan horizontal qui est situé en dessous d'un plan horizontal dans lequel sont situées les poches 34 et 40.
Le kit de consommables peut être installé dans l'automate de la façon suivante. Les portes 48, 50 de l'incubateur 12 sont ouvertes. Les poches 34, 36, 38, 40, 46 sont accrochées sur le bâti et la poche 56 est accrochée sur le bras du dispositif d'agitation 16. La poche 54 est posée à plat sur le dispositif d'agitation 16. La tubulure 70 est engagée dans les vannes 94, 96 ainsi que dans la pompe 22, les tubulures 72 sont engagées dans les vannes 98, 100, les tubulures 74 sont engagées dans les vannes 102, 104 et les tubulures 76 sont engagées dans les vannes 106, 108. Les tubulures 66, 60, 70 et 78 sont engagées respectivement dans les vannes 86, 88, 90 et 92 portées par le dispositif 1 6, puis les tubulures 66, 60 et 70 sont engagées respectivement dans les gorges 82 du bloc 80. Les tubulures sont connectées aux poches qui ne sont pas déjà préassemblées aux tubulures, puis les portes 48, 50 de l'incubateur 12 sont refermées.
On se réfère désormais aux figures 7 à 13 qui représente un mode de réalisation du dispositif d'agitation 16 selon l'invention.
Le dispositif d'agitation 16 comprend un plateau 1 10 de support de la poche d'expansion cellulaire 54 (non représentée aux figures 7 à 13), ce plateau étant monté mobile en rotation autour d'un premier axe horizontal A pour le déplacement du plateau depuis une position sensiblement horizontale représentée en figures 7 et 1 1 jusqu'à une position sensiblement verticale représentée en figures 8 et 10 (le plateau 1 10 pouvant adopter n'importe quelle position entre ces positions extrêmes, telle qu'une position représentée en figure 9 dans laquelle il est incliné à 45° environ par rapport à un plan horizontal), et autour d'un second axe horizontal B autour duquel le plateau 1 10 est destiné à osciller (sur une plage angulaire de +/- 8° environ) pour agiter et homogénéiser le contenu de la poche d'expansion cellulaire.
Le plateau 1 10 a une forme rectangulaire dont les dimensions sont légèrement supérieures à celles de la poche d'expansion cellulaire 54 (de
40 cm environ de longueur et de 22 cm environ de largeur) qui est destinée à être posée à plat sur le plateau. Le plateau 1 10 comprend des rebords périphériques 1 12 de retenue de la poche et est perforé pour que la face de la poche 54 appuyée contre le plateau puisse être directement exposée au moins en partie aux conditions environnementales qui régnent dans l'enceinte 14 de l'incubateur 12.
Le plateau 1 10 comprend à l'une de ses extrémités, correspondant à l'un des petits côtés du plateau, un crochet 1 14 de fixation de la poche d'expansion cellulaire 54, ce crochet étant destiné à représenter le point le plus haut du dispositif 1 6 lorsque le plateau est en position verticale (figure
8). Le plateau 1 10 comprend à son extrémité opposée au crochet 1 14 trois orifices de montage des vannes 86, 88, 90 précitées.
Le dispositif 16 comprend une pièce 1 16 en U dont les extrémités libres des deux branches latérales sont articulées sur des pivots 1 18 fixés sur les bords latéraux de l'extrémité du plateau 1 10 portant les vannes 86,
88, 90. Ces pivots 1 18 sont alignés et définissent le premier axe A précité de rotation du plateau 1 10.
Les branches de la pièce 1 16 en U portent, sensiblement en leur milieu, des pivots 120 qui sont articulés sur un châssis 122 du dispositif 16, ces pivots 120 étant alignés et définissant le second axe B précité de rotation du plateau 1 10.
Lorsque le plateau 1 10 est en position sensiblement horizontale
(figure 7), la pièce 1 16 en U s'étend le long de trois côtés du plateau, à savoir les côtés de plus grande longueur et le petit côté portant le crochet 1 14.
Le déplacement du plateau 1 10 autour de l'axe A est assuré par un vérin 124 qui est monté entre les branches de la pièce 1 16 en U et dont le cylindre est fixé à la partie médiane de cette pièce 1 16 et la tige de piston est fixée à l'extrémité du plateau portant les vannes 86, 88 et 90.
Comme cela est visible aux figures 10 et 1 1 , la tige de piston du vérin 124 est articulée sur un axe porté par une chape 121 fixée sur l'extrémité du plateau 1 10 portant les vannes, cet axe étant sensiblement horizontal. Le cylindre du vérin 124 est articulé sur un axe sensiblement vertical porté par une première chape 123 qui est elle-même articulée sur un axe sensiblement horizontal porté par une deuxième chape 125, cette deuxième chape 125 étant fixée sur la partie médiane de la pièce 1 16, sensiblement en son milieu.
Lorsque la tige de piston du vérin 124 est en position sortie, le plateau 1 1 0 est dans sa position sensiblement horizontale représentée aux figures 7 et 1 1 . Lorsque la tige de piston du vérin 124 est en position complètement rentrée, le plateau 1 10 est dans sa position sensiblement verticale représentée aux figures 8 et 10. Dans le cas de la figure 9, la tige de piston du vérin 124 est partiellement rentrée ou sortie.
Le déplacement du plateau autour de l'axe B est assuré par un moteur électrique 126 dont l'arbre de sortie entraîne par l'intermédiaire d'une courroie 127 une roue d'entraînement de l'un des pivots 120 portés par la pièce 1 16 en U (figure 10). Le moteur 126 est fixé au châssis 122 du dispositif par des moyens appropriés.
Comme cela est représenté aux figures 12 et 13, le châssis 122 du dispositif d'agitation 16 porte un système 129 de blocage de la rotation du plateau 1 10 autour de l'axe B, ce système 129 comportant un doigt rétractable 131 qui coopère avec un élément 133 porté par la pièce 1 16 en U pour le blocage du plateau.
Le doigt 131 est déplaçable depuis une position sortie représentée en figure 12 jusqu'à une position rentrée représentée en figure 13, le déplacement de ce doigt étant commandé par le système informatique 24.
L'élément 133 porté par la pièce 1 16 en U a une forme allongée et comprend une première extrémité solidaire de l'un des pivots 120 de la pièce et une seconde extrémité comportant une encoche dans laquelle est destiné à être engagé le doigt 131 pour bloquer la rotation du plateau 1 10 autour de l'axe B. Lorsque le doigt 131 est déployé (figure 12), les faces latérales de l'encoche de l'élément 133 peuvent venir en butée sur le doigt empêchant ainsi toute rotation du plateau autour de l'axe B. Lorsque le doigt est en position rentrée (figure 13), la pièce 1 16 et le plateau 1 10 peuvent être déplacés en rotation autour de l'axe B.
Le blocage de la rotation du plateau 1 10 autour de l'axe B peut être activé par le système informatique 24 lorsque le plateau est déplacé autour de l'axe A jusqu'à une position inclinée ou verticale, en vue d'un prélèvement ou de la récupération des cellules de la poche d'expansion cellulaire 54, pour éviter que le plateau ne se déplace autour de l'axe B du fait de la force exercée d'un côté du plateau par le poids de la poche d'expansion cellulaire.
Le dispositif d'agitation 16 comprend également un bras vertical 1 28 de fixation de la vanne 92 précitée et d'accrochage de la poche 56 formant piège à air. La vanne 92 est située sensiblement à mi-hauteur du bras 128 et l'extrémité supérieure du bras comprend un crochet 130 de fixation de la poche 56 (figures 7 à 9).
Le dispositif 16 comprend en outre des capteurs 132 de position du plateau 1 10 autour des axes A et/ou B, qui sont portés par le châssis 122.
La figure 14 est un organigramme représentant des étapes du procédé selon l'invention.
Une première étape 130 du procédé consiste à saisir et enregistrer au moyen du système informatique 24 des paramètres de culture propres au protocole biologique. La saisie est réalisée par un opérateur, les paramètres saisis étant par exemple l'identification du patient, l'identification du kit de consommables, le volume de la poche d'expansion cellulaire 54, etc. Pour faciliter la saisie de ces paramètres, le système informatique 24 peut être équipé d'un lecteur de codes barres, le kit de consommables pouvant comprendre un code barres renseignant directement le système informatique 24 avec le numéro et la nature du kit ainsi que le volume de chaque poche.
Le procédé comprend une seconde étape 132 d'installation du kit de consommables dans l'automate 10, comme cela est décrit dans ce qui précède. Cette installation peut être guidée et supervisée par le système informatique 24. L'installation peut se faire en plusieurs sous-étapes, le système informatique 24 affichant des consignes d'installation à l'opérateur en lui indiquant de valider ou d'invalider la réalisation d'une sous-étape et le passage à la sous-étape suivante. Ces sous-étapes sont par exemple :
- le placement des différentes poches sur le bâti 18 et dans l'enceinte 14 de l'incubateur 12,
- le placement des tubulures 70 de la poche 34 du milieu de culture dans les vannes 94, 96 (le système informatique 24 commande alors l'ouverture des vannes 94, 96 qui sont ensuite fermées dès que l'opérateur a validé cette sous-étape),
- le placement des tubulures 72, 74, 76 de la poche 36 de facteurs de croissance et de la poche 40 formant piège à air dans les vannes 98, 102 et 106 (le système informatique 24 commande l'ouverture de ces vannes qui sont ensuite fermées dès que l'opérateur a validé cette sous-étape),
- le placement des tubulures 72, 74, 76 de la poche 38 de cellules à cultiver et de la poche 40 formant piège à air dans les vannes 100, 104 et 108 (le système informatique 24 commande l'ouverture de ces vannes qui sont ensuite fermées dès que l'opérateur a validé cette sous-étape),
- le placement de la tubulure 78 de la poche 56 formant piège à air dans la vanne 92 (le système informatique 24 commande l'ouverture de cette vanne qui est ensuite fermée dès que l'opérateur a validé cette sous- étape), et
- le placement des tubulures 70, 60, 66, les unes après les autres, dans les vannes 90, 88 et 86 (le système informatique 24 commande l'ouverture de chacune de ces vannes, les unes après les autres, qui sont ensuite fermées dès que l'opérateur a validé chaque sous-étape).
Le procédé selon l'invention comprend une troisième étape 134 de test appelée « autotest » lors de laquelle le système informatique 24 contrôle le bon fonctionnement des vannes ainsi que des moyens de basculement (vérin 124 et moteur 126) du plateau 1 10 du dispositif d'agitation 16. Le fonctionnement de l'incubateur 12 peut être implicitement contrôlé à l'initiation du protocole biologique, ce dernier ne pouvant être initié que si la température et le taux de CO2, par exemple, dans l'enceinte 14 sont stabilisés aux valeurs de consigne d'incubation.
Le procédé selon l'invention comprend une autre étape 136 de distribution des fluides, qui comprend plusieurs sous-étapes schématiquement représentées aux figures 15 à 19.
La première sous-étape de l'étape 136 de distribution est représentée en figure 15 et consiste à évacuer l'air contenu dans les tubulures 70, 72, 74. Pour cela, les vannes 94, 96, 106 et 108 sont ouvertes et la pompe 22 est actionnée par le système informatique 24 pour que du milieu de culture circule depuis la poche 34 dans les tubulures 70, 72, 74 jusqu'à la poche 40 formant piège à air. Les tubulures 70, 72, 74 se remplissent alors de milieu de culture et la poche 40 se remplit au moins partiellement de milieu de culture. La pompe 22 est réglée à un débit prédéterminé et fonctionne pendant une durée prédéterminée, à la fin de laquelle la pompe est arrêtée et les vannes 94, 96, 106 et 108 sont fermées.
La seconde sous-étape de l'étape 136 de distribution est représentée en figure 16 et consiste à évacuer l'air contenu dans les tubulures 70 et 78. Pour cela, les vannes 94, 96 et 92 sont ouvertes et la pompe 22 est actionnée par le système informatique 24 pour que du milieu de culture circule depuis la poche 34 dans les tubulures 70, 78 jusqu'à la poche 56 formant piège à air. La tubulure 78 se remplit alors de milieu de culture et la poche 56 se remplit au moins partiellement de milieu de culture. La pompe 22 est réglée à un débit prédéterminé et fonctionne pendant une durée prédéterminée, à la fin de laquelle la pompe est arrêtée et les vannes 94, 96 et 92 sont fermées.
La troisième sous-étape de l'étape 136 de distribution est représentée en figure 17 et consiste à alimenter la poche d'expansion cellulaire 54 en milieu de culture. Les vannes 94, 96 et 90 sont ouvertes et la pompe 22 est actionnée par le système informatique 24 pour que du milieu de culture circule depuis la poche 34 jusqu'à la poche 54. La poche 54 se remplit alors de milieu de culture. La pompe 22 est réglée à un débit prédéterminé et fonctionne pendant une durée prédéterminé selon les paramètres du protocole biologique spécifiant le volume de milieu de culture à distribuer à la poche 54 ainsi que son débit d'alimentation. La pompe 22 est ensuite arrêtée et les vannes 94, 96, 90 sont fermées.
La quatrième sous-étape de l'étape 136 de distribution est représentée en figure 18 et consiste à alimenter la poche d'expansion cellulaire 54 en facteurs de croissance puis à rincer la poche 36 de facteurs de croissance avec du milieu de culture et à évacuer le contenu de cette poche 36 vers la poche d'expansion cellulaire 54. Dans un premier temps, les vannes 104 et 90 sont ouvertes, de façon à de que le milieu contenant les facteurs de croissance s'écoule par gravité depuis la poche 36 jusqu'à la poche 54 en circulant dans les tubulures 74 et 70 (flèches 138). La poche 54 se remplit en facteurs de croissance. Les vannes 104 et 90 sont ouvertes pendant une durée prédéterminée en fonction du volume de milieu contenant les facteurs de croissance à distribuer à la poche 54. A l'issue de cette durée, les vannes 104 et 90 sont fermées. Les vannes 94 et 100 sont ensuite ouvertes et la pompe 22 est actionnée (selon un débit et une durée prédéterminés) pour alimenter la poche 36 en milieu de culture en vue de son rinçage. Les vannes 94 et 100 sont fermées et les vannes 104 et 90 sont à nouveau ouvertes pour que le produit de rinçage contenu dans la poche 36 s'écoule par gravité jusqu'à la poche d'expansion cellulaire 54. Les vannes 104 et 90 sont ouvertes pendant une durée prédéterminée en fonction du volume de ce produit de rinçage à distribuer à la poche 54. A l'issue de cette durée, les vannes 104 et 90 sont refermées. Ces phases de rinçage de la poche 36 et d'évacuation du produit de rinçage vers la poche d'expansion cellulaire 54 peuvent être répétées une ou plusieurs fois selon les paramètres du protocole biologique, afin par exemple que l'intégralité des facteurs de croissance contenus à l'origine dans la poche 36 se retrouvent dans la poche 54.
La cinquième sous-étape de l'étape 136 de distribution est représentée en figure 19 et consiste à alimenter la poche d'expansion cellulaire 54 en cellules à cultiver puis à rincer la poche 38 contenant ces cellules avec du milieu de culture et à évacuer le contenu de cette poche 38 vers la poche d'expansion cellulaire 54, d'une façon similaire à celle réalisée lors de la quatrième sous-étape. Dans un premier temps, les vannes 102 et 90 sont ouvertes, de façon à ce que le milieu contenant les cellules à cultiver s'écoule par gravité depuis la poche 38 jusqu'à la poche 54 en circulant dans les tubulures 74 et 70 (flèches 140). La poche 54 se remplit en cellules à cultiver. Les vannes 102 et 90 sont ensuite fermées et les vannes 94 et 98 sont ouvertes et la pompe 22 est actionnée (selon un débit et une durée prédéterminés) pour alimenter la poche 38 en milieu de culture en vue de son rinçage. Les vannes 94 et 98 sont fermées et les vannes 102 et 90 sont à nouveau ouvertes pour que le produit de rinçage contenu dans la poche 38 s'écoule par gravité jusqu'à la poche d'expansion cellulaire 54. Les vannes 102 et 90 sont ensuite fermées. Ces phases de rinçage de la poche 38 et d'évacuation du produit de rinçage vers la poche d'expansion cellulaire 54 peuvent être répétées une ou plusieurs fois selon les paramètres du protocole biologique, afin par exemple que toutes les cellules à cultiver contenues à l'origine dans la poche 36 se retrouvent dans la poche 54.
L'étape de distribution 136 du procédé peut être suivie d'une étape d'homogénéisation du contenu de la poche d'expansion cellulaire 54, qui est schématiquement représentée en figure 20. Lors de cette étape, le système informatique 24 commande le dispositif d'agitation 16 de façon à ce que le plateau 1 10 oscille autour de l'axe B, comme expliqué dans ce qui précède (flèches 142). L'amplitude, la fréquence, la durée et les périodes (agitation repos, agitation, etc.) de ces oscillations sont déterminées en fonction des paramètres du protocole biologique.
Le procédé selon l'invention comprend ensuite une étape d'incubation 144 qui peut durer plusieurs jours et par exemple une dizaine de jours. Périodiquement, selon les paramètres du protocole, le contenu de la poche d'expansion cellulaire 54 peut être homogénéisé, en déplaçant en rotation le plateau autour de l'axe B comme expliqué ci-dessus. Cette homogénéisation (périodes, fréquence, amplitude) est déterminée par les paramètres du protocole de façon indépendante de l'étape d'homogénéisation suivant l'étape de distribution 136.
Pendant l'étape d'incubation 144, l'opérateur peut effectuer un ou plusieurs prélèvements 146 dans la poche d'expansion cellulaire 54 (figures 14 et 22). Certains de ces prélèvements peuvent être imposés par le système informatique. Ces prélèvements obligatoires sont par exemple au nombre de trois et peuvent être effectués juste après l'étape de distribution, trois jours après le début de l'étape d'incubation 144, et sept jours après le début de cette étape 144. D'autres prélèvements peuvent être réalisés à la volonté de l'opérateur, le système informatique pouvant inviter l'opérateur à réaliser ces prélèvements facultatifs.
Lorsque l'opérateur confirme au système informatique 24 qu'il est prêt à effectuer un prélèvement, le système informatique actionne le vérin 124 pour que le plateau 1 10 du dispositif d'agitation 16 soit déplacé en rotation autour de l'axe A jusqu'à une position inclinée, par exemple de 45° environ, par rapport à un plan horizontal, comme cela est schématiquement représenté en figure 9 et 22. Le système informatique 24 peut alors détecter la bonne position du plateau 1 10 via les capteurs du dispositif 16.
Le système informatique 24 commande l'ouverture de la vanne 88 de façon à ce qu'une partie du contenu de la poche d'expansion cellulaire 54 s'écoule par gravité depuis la poche 54 dans la tubulure 60 jusqu'aux moyens de prélèvement 62 situés à l'extérieur de l'enceinte 14 de l'incubateur 12. L'opérateur peut effecteur le prélèvement d'un échantillon de la poche d'expansion cellulaire 54 par l'intermédiaire d'une seringue 148 équipée de moyens de connexion du type « Luer lock » qui sont engagés dans les moyens de prélèvement 62. Après le prélèvement, la vanne 88 est fermée et le plateau 1 10 du dispositif d'agitation 16 est ramené dans une position sensiblement horizontale.
L'opérateur peut alors procéder à des analyses de l'échantillon prélevé, les résultats 148 de ces analyses pouvant être saisis et enregistrés dans le système informatique 24 par l'opérateur.
Pendant l'étape d'incubation 144, l'opérateur peut également retirer une partie du kit de consommables (première phase de retrait 150 des consommables - figures 14 et 21 ). Les éléments du kit de consommables qui peuvent être retirés sont toutes les poches (34, 36, 38, 40) et tubulures (72, 74, 76) reliées à la tubulure 70. Pour cela, l'opérateur doit couper la tubulure 70 en amont de sa traversée du bloc 80 précité et doit en même temps souder ou pincer l'extrémité libre coupée de la tubulure 70 restant dans l'enceinte 14 de l'incubateur 12, pour éviter toute contamination de la poche d'expansion cellulaire. Cette opération peut être réalisée par l'opérateur au moyen d'une pince coupante appropriée réalisant la fermeture étanche de l'extrémité de la tubulure lors de sa coupe. Les vannes 94 à 108 sont alors ouvertes pour autoriser le retrait par l'opérateur des tubulures 70, 72, 74, 76 de ces vannes ainsi que de la pompe 22 (figure 21 ). Une fois que l'opérateur a confirmé le retrait de ces éléments au système informatique 24, ce dernier commande la fermeture des vannes 94 à 108.
Le procédé selon l'invention comprend en outre une étape de récupération 152 des cellules après culture (figures 14, 23 et 24). A l'issue de l'étape d'incubation 144 et sur demande de l'opérateur, le système informatique 24 bloque la rotation du plateau 1 10 autour de l'axe B et actionne le vérin 124 pour que le plateau 1 10 du dispositif d'agitation 16 se déplace autour de l'axe A jusqu'à une position sensiblement verticale représentée aux figures 8, 23 et 24. Le système informatique 24 peut alors détecter la bonne position du plateau 1 10 via les capteurs du dispositif 16.
Le système informatique 24 commande ensuite l'ouverture de la vanne 86 de façon à ce que le contenu de la poche d'expansion cellulaire 54 s'écoule par gravité depuis la poche 54 dans les deux poches de récupération 46 en circulant dans la tubulure 66 (figure 23).
Les plaques 42 portées par le bâti 18 et sur lesquelles sont accrochées les poches de récupération 46 peuvent être déplacées depuis leur position verticale représentée aux figures 2 et 23 à leur position horizontale représentée schématiquement en figure 24, soit manuellement par l'opérateur soit par l'intermédiaire de moyens de déplacement commandés par le système informatique 24. Le basculement des plaques 46 permet aux poches 46 d'être entièrement situées en dessous de la poche 54 et d'au moins une partie de la tubulure 66 de façon à ce que le contenu de la poche d'expansion cellulaire 54 soit si possible intégralement transféré dans les poches de récupération 46. Lorsque l'opérateur a confirmé au système informatique 24 que le prélèvement est terminé, ce système commande la fermeture de la vanne 86 et le déploiement du vérin de façon à ce que le plateau 1 10 revienne en position sensiblement horizontale.
Les poches 46 sont alors retirées de l'automate 10 en vue d'un traitement éventuel des cellules et de la réinjection de ces cellules dans le corps d'un patient pour une thérapie cellulaire par exemple. Pour cela, la tubulure 66 peut être coupée et soudée par la pince précitée ou les poches 46 sont déconnectées de la tubulure 66.
La dernière étape du procédé consiste en une seconde phase de retrait 154 des consommables de l'automate 10, les poches 54, 56 et les tubulures restantes 66, 60, 70 et 78 étant retirées. Pour cela, le système informatique 24 commande l'ouverture des vannes 86, 88, 90 et 92 pour autoriser le retrait par l'opérateur des tubulures 66, 60, 70 et 78. Une fois que l'opérateur a confirmé le retrait de ces éléments au système informatique 24, ce dernier commande la fermeture des vannes 86, 88, 90 et 92.
Lorsque le protocole biologique est terminé, le système informatique peut éditer un rapport de culture, ce rapport pouvant comprendre les informations suivantes pour assurer une bonne traçabilité du protocole : des informations propres au constructeur (le numéro d'identification de l'automate, la version du logiciel de fonctionnement du système informatique, la version du logiciel de supervision du protocole biologique), l'ensemble des paramètres du protocole dès lors que l'un au moins de ces paramètres n'est pas à sa valeur par défaut, l'ensemble des paramètres de culture, les actions effectuées par l'opérateur (comprenant la date de chaque action au format aaaammjjThhmiss, l'auteur de cette action via un identifiant de connexion, la nature de l'action via une codification à définir à défaut d'un libellé équivoque), des événements « système » (comprenant la date de l'événement au format aaaammjjThhmiss, la nature de l'événement (alarme, alerte utilisateur, détection de défaillance, etc.) via une codification à définir à défaut d'un libellé équivoque), des résultats d'analyse de prélèvements (comprenant la date de chaque prélèvement, l'auteur du prélèvement, les résultats d'analyse du prélèvement, etc.), et des informations du greffon (issues de l'analyse des cellules récupérées après culture). Ce rapport de culture peut être accessible par le poste informatique du réseau précité.

Claims

REVENDICATIONS
1 . Automate (10) de culture cellulaire, comprenant des réservoirs (34, 36, 38) de milieu de culture, de facteurs de croissance et de cellules à cultiver, un incubateur (12) à enceinte (14) thermostatée dans laquelle est logé un récipient (54) de culture des cellules ou d'expansion cellulaire, et un système informatique (24) de commande incluant des moyens de saisie et d'enregistrement de données et destiné à réguler les conditions de culture dans l'enceinte et à piloter des vannes (20) de distribution de fluides selon une séquence prédéfinie, caractérisé en ce qu'il comprend un dispositif (16) de support et d'agitation du récipient de culture ou d'expansion cellulaire qui est commandé par le système informatique et qui est logé dans l'enceinte, et en ce que le récipient est formé par une poche (54) comportant au moins un orifice d'entrée (68) relié aux réservoirs précités et un orifice de sortie (64) relié à des moyens (46) de récupération et de stockage des cellules après culture, ces moyens de stockage et les réservoirs étant situés à l'extérieur de l'enceinte et étant reliés aux orifices de la poche d'expansion cellulaire par des conduits (66, 70, 72, 74) qui forment avec la poche d'expansion cellulaire un module pré-assemblé posé dans l'enceinte et qui traversent un élément de paroi de l'enceinte, de façon à permettre d'alimenter la poche d'expansion cellulaire en milieu de culture, en facteurs de croissance et en cellules à cultiver, et de récupérer le contenu de la poche d'expansion cellulaire dans les moyens de stockage, en maintenant l'enceinte fermée.
2. Automate selon la revendication 1 , caractérisé en ce que la poche d'expansion cellulaire (54) comprend en outre un orifice de prélèvement (58) qui est relié par un conduit (60) à des moyens de prélèvement (62) situés à l'extérieur de l'enceinte (14), ce conduit traversant la partie précitée de l'incubateur et faisant partie du module pré-assemblé.
3. Automate selon la revendication 1 ou 2, caractérisé en ce que l'incubateur (12) comprend une armoire comportant une ouverture et équipée d'une porte (50) de fermeture étanche de cette ouverture, des moyens (80) de passage des conduits (60, 66, 70) précités étant montés sur le bord périphérique de cette ouverture et comportant des gorges (82) sensiblement parallèles d'engagement des conduits, ces gorges étant destinées à être recouvertes par la porte lorsqu'elle est en position fermée.
4. Automate selon l'une des revendications précédentes, caractérisé en ce que les réservoirs de facteurs de croissance et de cellules à cultiver sont formés par des poches (36, 38) qui sont situées plus haut que l'orifice d'entrée (68) de la poche d'expansion cellulaire (54) de façon à ce que le contenu de chacune des poches de facteurs de croissance et de cellules à cultiver puisse s'écouler par gravité jusqu'à la poche d'expansion cellulaire.
5. Automate selon l'une des revendications précédentes, caractérisé en ce que les moyens de stockage comprennent une ou deux poches (46) qui sont au moins en partie situées plus bas que l'orifice de sortie (64) de la poche d'expansion cellulaire (54) de façon à ce que, après culture, le contenu de la poche d'expansion cellulaire puisse s'écouler par gravité jusqu'à la ou les poches des moyens de stockage.
6. Automate selon l'une des revendications précédentes, caractérisé en ce que la poche d'expansion cellulaire (54) comprend des parois souples étanches aux liquides et perméables aux gaz, en particulier au CO2, et ayant de préférence des propriétés limitant au maximum l'adhérence des cellules à cultiver avec les parois de la poche.
7. Automate selon l'une des revendications précédentes, caractérisé en ce qu'il comprend une pompe péristaltique (22) de commande de l'alimentation en milieu de culture de la poche d'expansion cellulaire (54) et des réservoirs (36, 38) de facteurs de croissance et de cellules à cultiver, en vue du rinçage de ces réservoirs.
8. Automate selon l'une des revendications précédentes, caractérisé en ce qu'il comprend deux poches (40, 56) formant piège à air, dont l'une est reliée aux réservoirs (36, 38) de facteurs de croissance et de cellules à cultiver, et dont l'autre est reliée à la poche d'expansion cellulaire (54), et qui sont destinées à collecter et stocker l'air contenu dans les conduits (70, 72, 74), la poche d'expansion cellulaire (54) et/ou les réservoirs (36, 38).
9. Automate selon l'une des revendications précédentes, caractérisé en ce que les conduits sont formés par des tubulures souples (60, 66, 70, 72, 74, 76, 78), dont au moins certaines traversent des vannes (86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108) qui sont destinées, en position de fermeture, à pincer ces tubulures.
10. Automate selon l'une des revendications précédentes, caractérisé en ce que le dispositif (16) de support et d'agitation comprend un plateau (1 10) de support de la poche d'expansion cellulaire (54), qui est monté rotatif autour d'un premier axe horizontal (A) et qui est déplaçable autour de cet axe entre une position sensiblement horizontale de culture des cellules et une position sensiblement verticale de récupération des cellules après culture.
1 1 . Automate selon la revendication 10, caractérisé en ce que le plateau (1 10) est monté rotatif autour d'un second axe horizontal (B) autour duquel le plateau est destiné à osciller pour l'agitation et l'homogénéisation du contenu de la poche d'expansion cellulaire.
12. Automate selon la revendication 10 ou 1 1 , caractérisé en ce que le plateau (1 10) porte des vannes (86, 88, 90) de commande de l'alimentation de la poche d'expansion cellulaire (54), de récupération du contenu de cette poche, et de prélèvement d'échantillons de cette poche.
13. Automate selon l'une des revendications 10 à 12, caractérisé en ce que le dispositif (16) de support et d'agitation comprend un bras vertical (128) comportant à son extrémité supérieure des moyens (130) d'accrochage d'une poche (56) formant piège à air reliée à la poche d'expansion cellulaire (54).
14. Automate selon l'une des revendications précédentes, caractérisé en ce que les moyens de stockage (46) sont montés rotatifs autour d'un axe horizontal et sont déplaçables autour de cet axe entre une position sensiblement verticale et une position sensiblement horizontale dans laquelle ces moyens sont entièrement situés en dessous de la poche d'expansion cellulaire.
15. Kit de culture cellulaire stérile et à usage unique pour un automate (10) de culture cellulaire, caractérisé en ce qu'il comprend au moins une poche (54) de culture et des tubulures souples (60, 66, 70, 72, 74) de liaison de la poche à d'autres poches ou réservoirs, les tubulures et la poche d'expansion cellulaire étant pré-assemblées et la poche d'expansion cellulaire comprenant un orifice d'entrée (68), un orifice de sortie (64) et éventuellement un orifice de prélèvement (58).
16. Kit selon la revendication 15, caractérisé en ce que l'orifice d'entrée (68) de la poche d'expansion cellulaire (54) est relié par des tubulures (70, 72, 74) à des orifices d'entrée et de sortie d'une poche (36) de facteurs de croissance, et à des orifices d'entrée et de sortie d'une poche (38) de cellules à cultiver.
17. Kit selon la revendication 16, caractérisé en ce qu'il comprend en outre deux poches (40, 56) formant piège à air dont l'une est reliée aux orifices de sortie des poches (36, 38) de facteurs de croissance et de cellules à cultiver, et dont l'autre est reliée à l'orifice d'entrée (68) de la poche d'expansion cellulaire (54).
18. Kit selon l'une des revendications 15 à 17, caractérisé en ce qu'il comprend une ou deux poches (46) de récupération des cellules après culture, qui sont reliées par des tubulures (66) à l'orifice de sortie (64) de la poche d'expansion cellulaire (54).
19. Dispositif (16) de support et d'agitation pour un automate (10) de culture cellulaire, caractérisé en ce qu'il comprend un plateau (1 10) de support d'une poche d'expansion cellulaire (54), ce plateau portant trois vannes (86, 88, 90) et étant monté en rotation autour d'un premier axe horizontal (A) pour le basculement du plateau depuis une position sensiblement horizontale jusqu'à une position sensiblement verticale, et un second axe horizontal (B) autour duquel le plateau est destiné à osciller pour l'agitation et l'homogénéisation du contenu de la poche d'expansion cellulaire, le dispositif comprenant également des moyens (124, 126) commandés de basculement du plateau autour des axes horizontaux précités.
20. Dispositif selon la revendication 19, caractérisé en ce qu'il comprend un bras vertical (128) comportant à son extrémité supérieure des moyens (130) d'accrochage d'une poche (56) formant piège à air.
21 . Procédé automatisé de culture cellulaire au moyen d'un automate (10) selon l'une des revendications 1 à 14, caractérisé en ce qu'il comprend les étapes consistant à :
a) alimenter la poche d'expansion cellulaire (54) en milieu de culture, en facteurs de croissance puis en cellules à cultiver, en maintenant l'enceinte (14) de l'incubateur (12) fermée ;
b) agiter la poche d'expansion cellulaire en vue de l'homogénéisation de son contenu ;
c) maintenir la poche d'expansion cellulaire dans des conditions d'incubation pendant une durée de plusieurs jours ; et
d) récupérer le contenu de la poche d'expansion cellulaire dans les moyens de stockage (46), en maintenant l'enceinte fermée.
22. Procédé selon la revendication 21 , caractérisé en ce qu'il comprend :
- avant l'étape a), une étape d'installation du module pré-assemblé en montant la poche d'expansion cellulaire (54) sur le dispositif d'agitation (16), en montant les conduits (60, 66, 70, 72, 74) dans les moyens de passage (80) de l'incubateur (12) et dans les vannes (20), et en connectant ces conduits aux réservoirs ou poches (34,
36, 38), et/ou
- avant l'étape a), une étape d'évacuation de l'air contenu dans les conduits (70, 72, 74) par passage de milieu de culture depuis le réservoir (34) de milieu de culture jusqu'à la ou les poches (40, 56) formant piège à air ; et/ou - après l'alimentation de la poche d'expansion cellulaire en facteurs de croissance à l'étape a), une étape de rinçage du réservoir (36) de facteurs de croissance en faisant passer du milieu de culture dans ce réservoir puis en évacuant son contenu jusqu'à la poche d'expansion cellulaire (54) ; et/ou
- après l'alimentation de la poche d'expansion cellulaire en cellules à cultiver à l'étape a), une étape de rinçage du réservoir (38) de cellules à cultiver en faisant passer du milieu de culture dans ce réservoir puis en évacuant son contenu jusqu'à la poche d'expansion cellulaire (54) ; et/ou
- pendant l'étape c), une ou plusieurs étapes de prélèvement d'échantillon du contenu de la poche d'expansion cellulaire (54), qui sont chacune précédées d'une étape de basculement du plateau de support (1 10) d'une position horizontale de culture jusqu'à une position inclinée dans laquelle l'orifice de prélèvement (58) de la poche représente le point le plus bas de la poche ; et/ou
- avant l'étape c), une étape de retrait des réservoirs (34, 36, 38) de milieu de culture, de facteurs de croissance et de cellules à cultiver, en coupant et en soudant ou pinçant le conduit ou la tubulure (70) de liaison de ces réservoirs à l'orifice d'entrée (68) de la poche d'expansion cellulaire (54) ; et/ou
- avant ou pendant l'étape d), à basculer le plateau (1 10) dans une position sensiblement verticale de façon à ce que l'orifice de sortie (64) de la poche d'expansion cellulaire (54) représente le point le plus bas de la poche.
23. Utilisation d'un automate selon l'une des revendications 1 à 14, d'un kit selon l'une des revendications 15 à 18, ou d'un dispositif selon la revendication 19 ou 20, pour la culture de cellules souches du type CD34+ ou de cellules mononuclées du sang, telles que par exemple des lymphocytes.
24. Utilisation selon la revendication 23, caractérisée en ce que les cellules souches proviennent d'une ou plusieurs sources comme plus particulièrement, le sang de cordon ombilical, la moelle osseuse et le sang total.
PCT/EP2013/055244 2012-03-15 2013-03-14 Automate et procédé automatisé de culture cellulaire WO2013135817A1 (fr)

Priority Applications (9)

Application Number Priority Date Filing Date Title
AU2013234310A AU2013234310B2 (en) 2012-03-15 2013-03-14 Automated device and automated process for cell culture
BR112014022647-4A BR112014022647B1 (pt) 2012-03-15 2013-03-14 dispositivo automatizado e processo automatizado de cultura celular
CN201380024260.6A CN104302757A (zh) 2012-03-15 2013-03-14 用于细胞培养的自动化设备和自动化方法
SG11201405632PA SG11201405632PA (en) 2012-03-15 2013-03-14 Automated device and automated process for cell culture
KR1020147028709A KR102169062B1 (ko) 2012-03-15 2013-03-14 세포 배양용 자동화 장치 및 자동화 공정
JP2014561451A JP6215852B2 (ja) 2012-03-15 2013-03-14 細胞培養の自動装置及び方法
RU2014137564A RU2644231C2 (ru) 2012-03-15 2013-03-14 Автомат и автоматизированный способ культивирования клеток
IL234608A IL234608B (en) 2012-03-15 2014-09-11 Automated device and automated process for growing cells
ZA2014/07287A ZA201407287B (en) 2012-03-15 2014-10-08 Automated apparatus and method of cell culture

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP12305310.0A EP2639294A1 (fr) 2012-03-15 2012-03-15 Automate et procédé automatisé de culture cellulaire
EP12305310.0 2012-03-15

Publications (1)

Publication Number Publication Date
WO2013135817A1 true WO2013135817A1 (fr) 2013-09-19

Family

ID=47891706

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/055244 WO2013135817A1 (fr) 2012-03-15 2013-03-14 Automate et procédé automatisé de culture cellulaire

Country Status (13)

Country Link
US (1) US10676705B2 (fr)
EP (1) EP2639294A1 (fr)
JP (1) JP6215852B2 (fr)
KR (1) KR102169062B1 (fr)
CN (2) CN104302757A (fr)
AU (1) AU2013234310B2 (fr)
BR (1) BR112014022647B1 (fr)
CA (1) CA2780722C (fr)
IL (1) IL234608B (fr)
RU (1) RU2644231C2 (fr)
SG (1) SG11201405632PA (fr)
WO (1) WO2013135817A1 (fr)
ZA (1) ZA201407287B (fr)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017032847A1 (fr) * 2015-08-25 2017-03-02 General Electric Company Perfectionnements introduits dans un appareil de biofabrication et/ou s'y rapportant
WO2017032831A1 (fr) * 2015-08-25 2017-03-02 General Electric Company Améliorations concernant un appareil de biofabrication
WO2017032829A1 (fr) * 2015-08-25 2017-03-02 General Electric Company Améliorations concernant un appareil de biofabrication
WO2017032830A1 (fr) * 2015-08-25 2017-03-02 General Electric Company Améliorations concernant un appareil de biofabrication
JP2017513512A (ja) * 2014-04-28 2017-06-01 ビババイオセル エスピーエー 自動細胞培養及び回収装置
WO2017220948A1 (fr) 2016-06-24 2017-12-28 Cellprothera Cassette et automate de culture cellulaire
WO2018199799A1 (fr) * 2017-04-27 2018-11-01 Рубен Вагеевич ОГАНЕСЯН Bioréacteur universel pour la croissance de structures d'ingénierie tissulaire
RU2673312C1 (ru) * 2017-12-11 2018-11-23 Закрытое акционерное общество "Дидактические Системы" Комплект учебного оборудования для монтажа, наладки и эксплуатации автоматических линий и мехатронных систем; способ сборки такого комплекта

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2997703B1 (fr) * 2012-11-07 2016-12-30 Biomerieux Sa Procede de traitement d'au moins un echantillon biologique
US10676707B2 (en) 2013-09-12 2020-06-09 Universal Bio Research Co., Ltd. Culture system and culture method
JP6444619B2 (ja) * 2014-05-30 2018-12-26 オリンパス株式会社 培地交換システム
WO2015191429A1 (fr) * 2014-06-09 2015-12-17 Abbvie, Inc. Ensemble flacon d'incubateur pour culture cellulaire
EP2975111B1 (fr) * 2014-07-14 2018-05-16 Sartorius Stedim Biotech GmbH Dispositif de mélange d'un contenu d'un récipient
CN106715676A (zh) * 2014-09-26 2017-05-24 泰尔茂比司特公司 按计划供养
CN104403944B (zh) * 2014-11-06 2016-11-30 广州蓝日生物科技有限公司 用于卵细胞体外受精和卵裂培养的自动化装置及方法
US10731122B2 (en) 2015-01-30 2020-08-04 Toyo Seikan Group Holdings, Ltd. Cell culture method and cell culture apparatus
AU2016218037B2 (en) * 2015-02-09 2020-12-17 Univercells Technologies S.A. System, apparatus and method for the production of cells and/or cell products
US9714405B2 (en) * 2015-04-14 2017-07-25 Pall Corporation Bioprocessing container tube system and method of use
JP6008013B1 (ja) * 2015-04-27 2016-10-19 東洋製罐グループホールディングス株式会社 細胞培養装置
US10883078B2 (en) * 2015-05-25 2021-01-05 Nipro Corporation Culturing device
JP6870610B2 (ja) * 2015-05-25 2021-05-12 ニプロ株式会社 培養装置
EP3305887B1 (fr) 2015-05-25 2021-04-07 Nipro Corporation Dispositif et procédé de concentration permettant de concentrer une suspension de cellules
EP3377981B1 (fr) * 2015-11-18 2023-10-11 Thrive Bioscience, Inc. Incubateur pour culture cellulaire
JP6724649B2 (ja) * 2016-08-16 2020-07-15 東洋製罐グループホールディングス株式会社 細胞培養装置
CN109642201A (zh) * 2016-08-26 2019-04-16 株式会社Ihi 细胞培养系统、培养单元、自动细胞培养装置以及输送用细胞培养装置
CN106497784B (zh) * 2016-09-01 2019-03-22 奥凯(苏州)生物技术有限公司 一种实现培养液和废液交换的压力控制系统及其压力控制方法
CN106497783B (zh) * 2016-09-01 2019-03-22 奥凯(苏州)生物技术有限公司 一种动态循环细胞培养器及细胞培养方法
CA3035829A1 (fr) * 2016-09-12 2018-03-15 Juno Therapeutics, Inc. Ensembles de poches de bioreacteur de perfusion
WO2018122089A1 (fr) * 2016-12-28 2018-07-05 Ge Healthcare Bio-Sciences Ab Particules magnétiques de liaison à l'immunoglobuline
US20190345430A1 (en) * 2017-01-08 2019-11-14 Cesca Therapeteutics, Inc. Devices and methods for bio-processing cellular samples
WO2018148346A1 (fr) 2017-02-10 2018-08-16 Lonza Ltd. Système et procédé de culture de cellules
CN107904167B (zh) * 2017-11-15 2023-06-06 中国航天员科研训练中心 细胞自动扩增培养设备
CN107904166B (zh) * 2017-11-15 2023-06-06 中国航天员科研训练中心 能实现能实时地线监测和远程监控的细胞培养系统
CN108142212A (zh) * 2018-01-03 2018-06-12 河南天蚕生物科技有限公司 一种高效虫草菌扩培装置
WO2019195826A1 (fr) * 2018-04-07 2019-10-10 Lumacyte, LLC Échantillonneur automatique fluidique et incubateur
CN110643509A (zh) * 2018-06-26 2020-01-03 深圳市北科生物科技有限公司 一种高适应性全自动细胞培养系统及其方法
KR102299920B1 (ko) * 2018-10-16 2021-09-09 (주)세포바이오 배지 제조장치
US10775395B2 (en) * 2018-10-18 2020-09-15 Arctoris Limited System and method of performing a biological experiment with adaptive cybernetic control of procedural conditions
JP7270734B2 (ja) * 2018-11-16 2023-05-10 アイキシンノ・リミテッド 複数の均一設計保管モジュールを有する、生物学材料の処理用システム
RU190367U1 (ru) * 2018-11-19 2019-06-28 Федеральное государственное бюджетное образовательное учреждение высшего образования "Амурская государственная медицинская академия" Министерства здравоохранения Российской Федерации Устройство для культивирования клеток млекопитающих на тканеинженерных конструкциях
CN109401970A (zh) * 2018-12-19 2019-03-01 南京比瑞生物科技有限公司 一种多功能t瓶全自动、全封闭干细胞扩增、诱导分化系统
JP2021000005A (ja) * 2019-06-20 2021-01-07 シンフォニアテクノロジー株式会社 細胞培養装置
CN110540937A (zh) * 2019-09-09 2019-12-06 英诺维尔智能科技(苏州)有限公司 一种适用于gmp合规自动化生产的多隔舱单元培养系统
CN110989458B (zh) * 2019-12-23 2022-01-28 深圳赛动生物自动化有限公司 干细胞自动化制备控制系统及其控制方法
CN113832028A (zh) * 2020-06-24 2021-12-24 上海医药集团生物治疗技术有限公司 一种全自动细胞培养系统及培养方法
CN111893042B (zh) * 2020-07-29 2021-11-30 吉林大学 一种医学实验专用恒温细胞培养箱
CN111944681A (zh) * 2020-08-12 2020-11-17 德州职业技术学院(德州市技师学院) 一种微生物样本储存装置
US11299700B1 (en) 2021-02-19 2022-04-12 Acequia Biotechnology, Llc Bioreactor containers and methods of growing hairy roots using the same
CN113136314B (zh) * 2021-05-14 2022-02-25 唐山师范学院 一种微生物培养一体化设备
CN113640502A (zh) * 2021-06-18 2021-11-12 浙江理工大学 一种提高草木染色牢度的实验方法
CN113549542B (zh) * 2021-07-19 2022-08-23 华北理工大学 一种微生物菌种的扩培装置及方法
CN113736629A (zh) * 2021-09-09 2021-12-03 侯孟信 一种生物治疗细胞分子监测系统
CN114085776A (zh) * 2021-11-24 2022-02-25 湖南开启时代生物科技有限责任公司 一种贴壁细胞培养系统
WO2023098791A1 (fr) * 2021-12-01 2023-06-08 南京金斯瑞生物科技有限公司 Système de commande pour thérapie cellulaire et son procédé de commande
WO2023113186A1 (fr) * 2021-12-15 2023-06-22 (주)로봇앤드디자인 Dispositif de distribution d'objets
KR102598572B1 (ko) * 2021-12-15 2023-11-07 (주)로봇앤드디자인 대상물 공급 장치
CN114987842A (zh) * 2022-06-08 2022-09-02 深圳市爱康生物科技股份有限公司 血袋托盘及其驱动装置
CN115504046A (zh) * 2022-08-17 2022-12-23 上海人工智能研究院有限公司 脱袋装置的脱袋方法、控制系统以及电子设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4829002A (en) * 1986-05-12 1989-05-09 Baxter International Inc. System for metering nutrient media to cell culture containers and method
US20030064503A1 (en) * 2000-05-10 2003-04-03 Abuljadayel Ilham Mohamed Saleh Saeed Device
DE102006022652A1 (de) * 2006-05-12 2007-11-15 Sartorius Biotech Gmbh Inkubator und Verfahren zur geregelten Befeuchtung und Temperierung
EP1944359A1 (fr) * 2005-11-01 2008-07-16 Medinet., Co. Ltd. Agitateur pour culture cellulaire et systeme de culture agitee pour procede de culture cellulaire
EP1978089A1 (fr) * 2006-01-17 2008-10-08 Hitachi Medical Corporation Procédé de culture cellulaire et système de culture automatique utilisant ce procédé
WO2011005773A2 (fr) * 2009-07-06 2011-01-13 Genentech, Inc. Procédé de culture de cellules eucaryotes
EP2325297A2 (fr) * 2009-11-02 2011-05-25 Banc De Sang I Teixits Procédure pour l'expansion polarisée de lignées indifférenciées ou de myéloïde

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3163404A (en) * 1962-10-09 1964-12-29 Scientific Industries Rotary apparatus for agitating fluids
DE3788026T2 (de) * 1986-08-27 1994-04-21 Kawasumi Lab Inc Verfahren und Vorrichtung zur Kultivierung von Zellen.
US5763266A (en) * 1989-06-15 1998-06-09 The Regents Of The University Of Michigan Methods, compositions and devices for maintaining and growing human stem and/or hematopoietics cells
RU2005778C1 (ru) * 1990-11-15 1994-01-15 Головное конструкторское бюро научно-производственного объединения "Энергия" им.акад.С.П.Королева Установка для культивирования клеток или микроорганизмов
GB2284909B (en) * 1992-07-13 1996-11-13 Pall Corp Automated system and method for processing biological fluid
US5424209A (en) * 1993-03-19 1995-06-13 Kearney; George P. Automated cell culture and testing system
US5352213A (en) 1993-11-16 1994-10-04 Woodard Robert W Intravenous fluid flow monitor
FR2794130B1 (fr) 1999-05-26 2003-01-03 Bertin Technologies Sa Procede et dispositif de culture de cellules a applications multiples
CN101386839A (zh) * 2000-05-10 2009-03-18 特里施泰姆贸易(塞浦路斯)有限公司 一种设备
US20040110274A1 (en) 2002-12-02 2004-06-10 Ilya Feygin Apparatus for stacking, repositioning, agitating and knocking
KR101139090B1 (ko) * 2003-12-18 2012-04-30 가부시키가이샤 가네카 세포 배양 장치
WO2006005360A1 (fr) * 2004-07-12 2006-01-19 Sorin Group Italia S.R.L. Dispositifs et procedes de culture de cellules humaines
CN101300340A (zh) * 2005-11-01 2008-11-05 迈世耐特股份公司 细胞培养装置、细胞培养方法、细胞培养程序及细胞培养系统
US20080118977A1 (en) 2006-11-22 2008-05-22 Institut De Recherche En Hematologie Et Transplantation Process to cary out a cellular cardiomyoplasty
JP4403169B2 (ja) 2006-12-15 2010-01-20 株式会社日立製作所 細胞培養装置及びその制御方法
EP2129764B1 (fr) * 2007-03-05 2018-10-10 Terumo BCT, Inc. Système d'expansion cellulaire et procédés d'utilisation
CN101668843A (zh) * 2007-04-27 2010-03-10 东洋制罐株式会社 细胞培养装置、细胞培养体系及细胞培养方法
EP2373779A4 (fr) * 2008-11-18 2012-12-19 Ravindranath Gandlur Système de bioréacteur jetable
US9738863B2 (en) * 2011-02-23 2017-08-22 Ge Healthcare Bio-Sciences Ab Bioreactor including a rocking device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4829002A (en) * 1986-05-12 1989-05-09 Baxter International Inc. System for metering nutrient media to cell culture containers and method
US20030064503A1 (en) * 2000-05-10 2003-04-03 Abuljadayel Ilham Mohamed Saleh Saeed Device
EP1944359A1 (fr) * 2005-11-01 2008-07-16 Medinet., Co. Ltd. Agitateur pour culture cellulaire et systeme de culture agitee pour procede de culture cellulaire
EP1978089A1 (fr) * 2006-01-17 2008-10-08 Hitachi Medical Corporation Procédé de culture cellulaire et système de culture automatique utilisant ce procédé
DE102006022652A1 (de) * 2006-05-12 2007-11-15 Sartorius Biotech Gmbh Inkubator und Verfahren zur geregelten Befeuchtung und Temperierung
WO2011005773A2 (fr) * 2009-07-06 2011-01-13 Genentech, Inc. Procédé de culture de cellules eucaryotes
EP2325297A2 (fr) * 2009-11-02 2011-05-25 Banc De Sang I Teixits Procédure pour l'expansion polarisée de lignées indifférenciées ou de myéloïde

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017513512A (ja) * 2014-04-28 2017-06-01 ビババイオセル エスピーエー 自動細胞培養及び回収装置
US10995312B2 (en) 2015-08-25 2021-05-04 Global Life Sciences Solutions Usa Llc Biomanufacturing apparatus
WO2017032829A1 (fr) * 2015-08-25 2017-03-02 General Electric Company Améliorations concernant un appareil de biofabrication
WO2017032830A1 (fr) * 2015-08-25 2017-03-02 General Electric Company Améliorations concernant un appareil de biofabrication
WO2017032831A1 (fr) * 2015-08-25 2017-03-02 General Electric Company Améliorations concernant un appareil de biofabrication
WO2017032847A1 (fr) * 2015-08-25 2017-03-02 General Electric Company Perfectionnements introduits dans un appareil de biofabrication et/ou s'y rapportant
US10995310B2 (en) 2015-08-25 2021-05-04 Global Life Sciences Solutions Usa Llc Biomanufacturing apparatus
US11326142B2 (en) 2015-08-25 2022-05-10 Global Life Sciences Solutions Usa Llc Biomanufacturing apparatus
WO2017220948A1 (fr) 2016-06-24 2017-12-28 Cellprothera Cassette et automate de culture cellulaire
FR3053051A1 (fr) * 2016-06-24 2017-12-29 Cellprothera Cassette et automate de culture cellulaire
US11840682B2 (en) 2016-06-24 2023-12-12 Cellprothera Cell culture cassette and automated apparatus
WO2018199799A1 (fr) * 2017-04-27 2018-11-01 Рубен Вагеевич ОГАНЕСЯН Bioréacteur universel pour la croissance de structures d'ingénierie tissulaire
RU2673312C1 (ru) * 2017-12-11 2018-11-23 Закрытое акционерное общество "Дидактические Системы" Комплект учебного оборудования для монтажа, наладки и эксплуатации автоматических линий и мехатронных систем; способ сборки такого комплекта

Also Published As

Publication number Publication date
JP2015513347A (ja) 2015-05-11
JP6215852B2 (ja) 2017-10-18
BR112014022647B1 (pt) 2020-10-20
SG11201405632PA (en) 2014-10-30
IL234608B (en) 2021-03-25
ZA201407287B (en) 2016-05-25
CN104302757A (zh) 2015-01-21
US10676705B2 (en) 2020-06-09
CA2780722A1 (fr) 2013-09-15
AU2013234310B2 (en) 2017-11-30
RU2644231C2 (ru) 2018-02-08
CN113832029A (zh) 2021-12-24
US20130244322A1 (en) 2013-09-19
IL234608A0 (en) 2014-11-30
KR20150006422A (ko) 2015-01-16
AU2013234310A1 (en) 2014-10-02
RU2014137564A (ru) 2016-05-10
EP2639294A1 (fr) 2013-09-18
KR102169062B1 (ko) 2020-10-22
CA2780722C (fr) 2022-08-30

Similar Documents

Publication Publication Date Title
WO2013135817A1 (fr) Automate et procédé automatisé de culture cellulaire
JP4732187B2 (ja) 自動培養装置
BE1016793A4 (fr) Procede de culture de cellules et dispositif permettant sa mise en oeuvre.
JP6424447B2 (ja) 細胞培養方法、及び細胞培養システム
EP0479635B1 (fr) Conteneur médical climatisé
CA3029072A1 (fr) Cassette et automate de culture cellulaire
US11242504B2 (en) Aseptic bioreactor sampling system
US5614412A (en) Apparatus for carrying flexible containers and method of transferring fluids to containers
EP3442986A2 (fr) Bioréacteur à lit fixe avec système de pompe/tube à débit constant
US20140196791A1 (en) Method and apparatus for the use of micro-carriers in a disposable bioreactor system
WO2016019476A1 (fr) Procede pour alimenter en gaz un environnement affecte a la culture cellulaire artificielle et dispositif pour la mise en ceuvre de ce procede
GB2599320A (en) System and method for centralized fluid management and culture control
WO2001014514A1 (fr) Dispositif a usage biologique, notamment pour la culture cellulaire
CA2779859A1 (fr) Procede pour l'expansion et/ou la conservation de cellules par enrichissement en gaz du milieu de culture
FR3061633A1 (fr) Dispositif et procede de conservation et de transport d'au moins un tissu humain ou animal en vue d'une greffe ou d'une experience ex vivo
FR3065966A1 (fr) Systeme de culture et de recolte de microalgues
WO2004016291A1 (fr) Appareil autonome de sterilisation d'objets.
WO2000073411A1 (fr) Procede et dispositif de culture de cellules a applications multiples
FR3137923A1 (fr) Installation de culture de tissu cellulaire
WO1995028187A1 (fr) Hepato-dialyseur extra-corporel utilisant le foie preleve d'un etre vivant et procede d'hepato-dialyse utilisant cet appareil
BE1004599A5 (fr) Procede et dispositif de separation de particules a partir d'un milieu fluide.
WO2009019408A1 (fr) Dispositif de prelevement d'un echantillon, et procede mis en oeuvre dans ce dispositif
FR2868946A1 (fr) Poche a boucle d'echantillonnage
WO2024047302A1 (fr) Installation de traitement, notamment pour le traitement par fermentation de déchets organiques
FR3048979A1 (fr) Dispositif de conservation et de mise en culture de cellules, telles que des cellules tumorales, apres leur prelevement

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13709895

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014561451

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2013234310

Country of ref document: AU

Date of ref document: 20130314

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147028709

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2014137564

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014022647

Country of ref document: BR

122 Ep: pct application non-entry in european phase

Ref document number: 13709895

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112014022647

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140912