WO2013131778A2 - Apparatus for production of high purity carbon monoxide - Google Patents

Apparatus for production of high purity carbon monoxide Download PDF

Info

Publication number
WO2013131778A2
WO2013131778A2 PCT/EP2013/053780 EP2013053780W WO2013131778A2 WO 2013131778 A2 WO2013131778 A2 WO 2013131778A2 EP 2013053780 W EP2013053780 W EP 2013053780W WO 2013131778 A2 WO2013131778 A2 WO 2013131778A2
Authority
WO
WIPO (PCT)
Prior art keywords
solid oxide
oxide electrolysis
stack
gas separation
compartment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/EP2013/053780
Other languages
English (en)
French (fr)
Other versions
WO2013131778A3 (en
Inventor
Friis Claus PEDERSEN
Bøgild John HANSEN
Thomas Rostrup-Nielsen
Ulrik Jens NIELSEN
Henrik Olsson
Kim Hedegaard Andersen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topsoe AS
Original Assignee
Haldor Topsoe AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Haldor Topsoe AS filed Critical Haldor Topsoe AS
Priority to EA201491624A priority Critical patent/EA201491624A1/ru
Priority to EP13708114.7A priority patent/EP2823087B1/en
Priority to AU2013229699A priority patent/AU2013229699B2/en
Priority to ES13708114T priority patent/ES2877849T3/es
Priority to CN201380013115.8A priority patent/CN104220645B/zh
Priority to KR1020147026422A priority patent/KR102080571B1/ko
Priority to CA2866312A priority patent/CA2866312C/en
Priority to DK13708114.7T priority patent/DK2823087T3/da
Priority to US14/382,948 priority patent/US9284651B2/en
Priority to JP2014560305A priority patent/JP6192669B2/ja
Publication of WO2013131778A2 publication Critical patent/WO2013131778A2/en
Publication of WO2013131778A3 publication Critical patent/WO2013131778A3/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/10Preparation of carboxylic acids or their salts, halides or anhydrides by reaction with carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/23Carbon monoxide or syngas
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/05Pressure cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present invention concerns an apparatus for production of high purity carbon monoxide, CO, based on electrolysis of carbon dioxide, C02 in combination with a high purity C02 feedstock and gas cleaning operation at temperatures above -100°C.
  • Solid Oxide Electrolysis Cells, SOEC are used for the electrolysing.
  • the proposed invention relates to the production of CO of high purity where the purification relies on simple, low cost purification techniques that do not involve cryogenic tech ⁇ niques .
  • the product gas (CO + H2) is then purified to high purity CO (typically > 99%) in different steps, for instance including a final cryogenic state to separate H2 from the CO and to re ⁇ move possible impurities of N2 and Ar .
  • an object of the present invention to provide an SOEC apparatus and method to produce CO at a lower cost than the presently known techniques. It is a further object of the present invention to provide an SOEC apparatus and method to produce CO at a low cost and at a high purity without the use of cryogenic techniques.
  • the invention relates to a CO production and purification method which is based on C02 electrolysis in combination with simple and in-expensive 'room temperature' gas cleaning and gas separation methods.
  • This invention makes it technically and economically feasible to produce high purity CO in small quantities, for example at the consumption site or at local distribution centres.
  • C02 electrolysis is less known than water electrolysis as fewer techniques are available for C02 electrolysis.
  • One technology which is very efficient for C02 electrolysis is Solid Oxide Electrolysis Cells.
  • the principle of the C02 electrolyser is that C02 (possibly including some CO) is fed to the electrolyser cathode. As current is applied, the C02 is converted to CO to provide an output stream with a high concentration of CO.
  • the output will be con ⁇ verted CO and unconverted C02. If needed, the unconverted C02 can be removed in a C0/C02 separator operating at tempera- tures above -100°C to produce the final high purity CO.
  • an embodiment of this invention includes: ⁇ The use of high purity C02 as feedstock for the electro ⁇ lyser
  • Solvent absorption involves a cyclical process in which C02 or CO is absorbed from a gas stream directed into a liquid, typically water or an amine. Typically, C02 is removed and the processed gas stream is then the final purified CO stream. The absorbent liquid can be processed to remove the C02, which can then be re-used for further electrolysis. The resulting C02-free liquid is used again for absorption and the process continues. This technique is fairly widely used in a range of applications, but it needs a large amount of power to regenerate the solvent. Adsorption is based on a cyclical process in which C02 or CO is adsorbed from a gas stream on to the surface of a solid, typically a mineral zeolite.
  • PSA pressure swing adsorbers
  • Membranes made of polymers or ceramics can be used to effec ⁇ tively sieve out C02 or CO from gas streams.
  • the membrane ma ⁇ terial is specifically designed to preferentially separate the molecules in the mixture.
  • a range of configurations ex- ists either simply as gas separation devices or incorporating liquid absorption stages. This process has not yet been ap ⁇ plied on a large scale and there are challenges related to the composition and temperature of the input gases. Further ⁇ more, the selectivity of the membranes is limited and many recycles will typically be needed to obtain high purity (e.g > 99.5%) gas output.
  • Condensation techniques use low temperatures to cool and con ⁇ dense the C02 from the electrolyser gas streams. Using two coolers where C02 is condensed at one (e.g. at -90°C) and C02 is released from the other (e.g. at -40 C) would allow con- tinuous operation of a condensating C02 removal unit.
  • this invention has a dedicated electro ⁇ lyser design which is used to remove the necessary amount of C02 from the CO + C02 stream.
  • the current which can be applied to all cells in the stack is limited by the flow across the one cell with the minimum flow, such that the maximum current corresponds to a 100% conversion in the cell with minimum flow. If current is applied which would correspond to a conversion rate above 100% for this minimum flow cell, the current would introduce structural changes in the minimum flow cell and the cell would deteriorate quickly together with the stack. Typically this leads to maximum conversion rates of 80% for 70-cell stacks and 90% for 10-cell stacks.
  • the C02 separator can be of any known art as well as a further SOEC as will be disclosed in the following.
  • the separated C02 can be recycled to the input side of the SOEC electrolyser .
  • a scheme which allows SOEC stacks to operate with very high conversion rates to directly produce CO output stream of very high puri- ty (e.g. larger than 90% and e.g. larger than 99%) .
  • This em ⁇ bodiment is based on the individual control of the current across each cell based on monitoring of the voltage across each cell.
  • the voltage across an SOEC cell can be expressed as: where I C eii and R ce ii are the current and resistivity of the relevant cell, respectively.
  • p C o2 Pco and p 0 2 are the partial pressures (in bar) of C02, CO and 02 respectively.
  • an SOEC stack is used for direct production of high purity CO. This is done by monitor ⁇ ing the voltage across each cell and individually adjusting the current across each cell to give a desired cell voltage corresponding to a desired level of C02.
  • This current adjustment scheme can be realised in many ways. This could be by providing a relatively large common current and then removing surplus current with a diode or more flexi ⁇ bly with a transistor and a transistor current controlling circuit. A more energy efficient alternative would be to pro ⁇ vide a relatively low common current and then add additional current (e.g. based on switch mode technology) to obtain the desired cell voltage.
  • additional current e.g. based on switch mode technology
  • the 15% C02 and 85% CO is con- verted to high purity CO e.g. 99.7% CO and 0.3% C02 in a stack where current is controlled individually for the dif ⁇ ferent cells or cell groups.
  • This embodiment is cost effec ⁇ tive as it provides a relative low cost, traditional SOEC stack for the bulk of the C02 conversion and the relative more expensive individual voltage and current control SOEC stack for a small part of the conversion.
  • the main source of such potential impurities is leakages in the SOEC stack. This can be leakages between the cathode and the anode side of the stack and it can be leakages between the stack and the external atmosphere as indicated in fig.5. These types of leakage are often experienced in Solid Oxide stacks. Leakages are caused partly by imperfect sealings be- tween cells and interconnects and partly because small cracks in solid oxide cell electrolytes may easily exist after pro ⁇ duction or may evolve during the system lifetime. If the electrolyser operates with pure oxygen on the anode side, leakages between the anode and the cathode side will not affect the purity of the produced gas (defined as C02 concentration + CO concentration) as oxygen will combust with CO to form C02) .
  • the oxygen side (the an ⁇ ode) is flushed with C02 to reduce the oxygen concentration without reducing the C02 + CO purity of the SOEC output gas- ses even if the SOEC stack is subject to internal leakage.
  • the SOEC stack or stacks are enclosed in a closed compartment which is flushed with C02. This implies that the C02 + CO pu ⁇ rity of the SOEC output gasses are maintained even if the SOEC stack is subject to external leakage.
  • Compartment P0 can further be purged with CO 2 where the purge stream after addition of air is passed through a catalytic oxidation step, see Figure 6.
  • the catalytic oxidation step should comprise a catalyst active in the oxidation reaction between CO and 0 2 .
  • the catalyst could for example be a noble metal catalyst such as Pt and/or Pd optionally combined with V 2 O 5 and WO 3 on an alumina or T1O 2 based carrier.
  • the catalyst should operate above 100 C, preferably between 150 and 250 C to assure elim ⁇ ination of CO emitted to the local environment.
  • the absolute pressure in compartment denoted P0 can be chosen to be set below atmospheric pressure to assure that CO leaking into P0 cannot escape to the surroundings un ⁇ der any circumstances. Improving the purity of the SOEC input gas
  • the polluting gas may affect the operation of or even poison the SOEC or the CO/C02 separation equipment •
  • the polluting gases will in general be separated into the C02 stream. As it is typically advantageous to recycle this stream to the SOEC, the polluting gases may build up in the system
  • Adsorbents or absorbants are used before the SOEC to re- move undesired gas contaminations.
  • sulphur species and solixanes are known to poison Solid Oxide cells. These can be absorbed for example with active carbon or Ni- or Cu-based absorbers.
  • a x purge' can be build into the recycle stream to avoid the accumulation of polluting gases.
  • the recycle stream will typically include CO which in most cases can not be vented safely.
  • One embodiment of this inven ⁇ tion includes a purge outlet of the recycle stream which is combined with oxygen from either air or the oxygen output of the SOEC and where the CO and excess 02 forms
  • CO + CO -> C + C02 Deposition of carbon is thermodynamically advantageous in temperature regions below roughly 700°C and as the CO rich gas cools down carbon may be deposited on for example metal surfaces of pipes or heat exchangers. This may corrode the metal through the mechanism known as metal dusting which eventually may destroy the subjected metal parts.
  • Carbon deposition and metal dusting can be avoided in CO rich environments by using special metals or special coatings of the subjected surfaces.
  • selected metals or coatings are used to avoid carbon formation and metal dusting at the output section of the SOEC electrolyser .
  • This embodiment includes the use of Ni-rich metals such as Inconel or specifically Inconel 693.
  • This embodiment also in ⁇ cludes special coatings of metal surfaces such as surfaces coated with Cu or Sn/Ni coatings for example with 55-65% Sn.
  • a dual tube arrangement In addition to the coatings mentioned, another possibility is to use a dual tube arrangement.
  • a viable option is to insert a copper tube inside a tube with the re ⁇ quired mechanical strength. Copper tubes loose their mechanical strength at elevated temperatures but by applying a cup ⁇ per tube inside a for example a high alloy stainless steel tube and assuring intimate contact between the tube surfaces the mechanical strength of the steel tube can be combined with the resistance towards metal dusting of the copper tube. The protection towards metal dusting is due to that the ma ⁇ jority of the gas is exposed to the Cu surface.
  • a device for production of CO with a purity above 90% when the device is provided with C02 with a purity above 90% said device comprising at least one Solid Oxide Electrolysis Cell with an anode side and a cathode side and said device further comprises an output gas separation unit, wherein the device is operating at temperatures between 0°C - 50°C, pref ⁇ erably at 10°C - 40°, preferably at room temperature.
  • a device comprising a plurality of Solid Oxide Electrolysis Cells arranged in a stack, and wherein said device further comprises means for individual control of the current across selected Solid Oxide Electrolysis Cells.
  • a device wherein said individual control of the current is based on monitoring the voltage across selected Solid Oxide Electrolysis Cells.
  • the output gas separation unit comprises a plurality of cells arranged in a gas separation Solid Oxide Electrolysis Cell stack, and wherein said stack comprises means for individual control of the current across selected cells.
  • the device further comprises means to flush the anode side of the at least one Solid Oxide Electrolysis Cell with C02.
  • the device comprises a compartment enclosing the at least one Solid Oxide Electrolysis Cell, and wherein said compartment comprises means to flush the space enclosed by the compartment .
  • a device wherein the pressure of the cathode side is higher than the pressure of the anode side, the pressure of the anode side is higher than the pres ⁇ sure of the compartment and the pressure of the compartment is below ambient pressure and wherein the compartment is flushed with CO 2 and the CO 2 purge is directed from the com ⁇ partment to a catalytic oxidation reactor utilizing a cata ⁇ lyst comprising a noble metal catalyst such as Pt and or Pd optionally combined with V 2 O 5 and WO 3 on an alumina or T1O 2 based carrier and the catalyst operates above 100°C, prefera ⁇ bly between 150°C and 250°C.
  • a cata ⁇ lyst comprising a noble metal catalyst such as Pt and or Pd optionally combined with V 2 O 5 and WO 3 on an alumina or T1O 2 based carrier and the catalyst operates above 100°C, prefera ⁇ bly between 150°C and 250°C.
  • a device wherein said output gas separation unit is one of, a wa- ter/amine wash, a Pressure Swing Adsorption or selective mem ⁇ branes .
  • said output gas separation unit is one of, a wa- ter/amine wash, a Pressure Swing Adsorption or selective mem ⁇ branes .
  • a device comprising a plurality of stacked Solid Oxide Electrolysis Cells and a plurality of stacks, wherein said stacks are connected in networking connection.
  • a device wherein selected components which are subject to metal dust ⁇ ing are made of Ni-rich metals such as Inconel, preferably Inconel 693, or said components are coated with Cu or Sn/Ni coatings, preferably 55-65% Sn.
  • a device wherein selected components which are subject to metal dust ⁇ ing are made of double tubes; an inner tube which is a copper tube which is placed inside an outer tube with higher mechanical strength than the copper tube, thereby achieving metal dusting protection and simultaneously combining the mechanical strength of the outer tube with the resistance towards metal dusting of the copper tube.
  • a process for production of high purity CO comprising the steps of
  • providing said second gas to the output gas separation unit • operating said gas separation unit at temperatures be ⁇ tween 0°C - 50°C, preferably at 10°C - 40°, preferably at room temperature and thereby producing a third output gas comprising CO with a purity above 90%.
  • a process according to claim 13 or 14 further comprising the step of
  • a process according to any of the claims 13-15 further comprising a compartment enclosing the at least one Solid Ox ⁇ ide Electrolysis Cell and further comprising the step of
  • a process according to claim 16 further comprising the step of
  • Fig. 7 shows a schematic diagram of one possible embodiment of the invention.
  • High purity C02 is flushed to both the x fuel' and x oxygen' side of an SOEC stack.
  • the input C02 on the fuel side passes two heat exchangers, while only a single heat exchanger is used on the input side of the x oxygen' side.
  • the reason for this asymmet- ric configuration is that oxygen passes from the fuel to the oxygen side and that the heat capacity therefore is highest on the fuel in and oxygen out streams. This is also reflected in the temperatures and duties of the different heat exchang ⁇ ers as shown in fig. 7.
  • the heat exchanger at the SOEC fuel side is made of either Ni- rich metals such as Inconel, particularly Inconel 693 or coated metal parts e.g. Sn/Ni coated parts.
  • the output temperatures of the heat exchangers closest to the stacks are 675°C and 750°C on the fuel and oxygen side respectively.
  • the SOEC stack is assumed to be operated at the thermo neutral operation point at a temperature of 800 °C. Consequently, the input C02 streams are heated to 800°C in two electrical heaters.
  • a simple variation of this configuration would be to use one electrical heater at the fuel input, heat the stream here to approximately 825°C and let the heat exchanging capacity of the SOEC stack heat up the oxygen side input.
  • the SOEC stack has a capacity to pro ⁇ cute approximately 1.2 Nm3/h CO. This could for example be realised with stacks based on 50 cells with an effective area of 10 x 10 cm. These cells could operate at a current density of the order of 0.75 A/Cm2, a cell voltage of 1.25 V and an effective SOEC conversion efficiency of 3.1 kWh/Nm3.
  • the SOEC cells could be based on a Ni/YSZ support layer, a Ni/YSZ fuel-side electrode a YSZ electrolyte and an LSM elec ⁇ trode on the Oxygen side.
  • the C02 input streams here are chosen to be around 2 Nm3/h at both fuel and oxygen side. This gives a fairly moderate CO concentration of only 63% at the output. This is chosen to allow for a non-uniform flow distribution in the stacks, but much higher output concentrations are possible by using for example individual cell current control.
  • the 2 Nm3/h input flow to the Oxygen side is chosen to assure an 02 concentration well below 50% at the output. This reduc ⁇ es the speed of corrosion on the oxygen side output and sim ⁇ plifies the choice of materials for heat exchangers and pip- ing .
  • the gas stream is cooled and the ma ⁇ jority of the CO is being removed in a separator, which for example could be based on membranes.
  • the remaining C02 is in this example just send into the air but could also be recy ⁇ cled (including some possible fraction of CO) into the fuel side input.
  • a fraction of the SOEC out ⁇ put is recycled to the input, where the residual CO may also help to avoid oxidation at the input of the fuel side of the SOEC stack.
  • Fig. 8 shows an example of stack networking.
  • the lower stack is made up by 20 cells, the upper one by 10 cells.
  • the bottom of both stacks is in this case facing the internal manifold plate .
  • Fig. 9 shows the importance of actively handling the possible impurities introduced in the output stream of an SOEC system by stack leakages.
  • Test 1 shows the impurities (N2 and 02) of a stack operating with uniform pressure and with air used for flushing the oxygen side.
  • C02 was used instead of air to flush the oxygen side and in this case the impurity level have been reduced from roughly 1.5 mole% to less than 0.75 mole%.
  • the pressure of the fuel side (the cathode) has been increased to be roughly 100 mbar higher than on the oxygen side and in the external stack compartment.
  • C02 was used for flushing the oxygen side.
  • the impurity level was below 0.3 mole% which is sufficient for meeting for exam- pie the standard industrial grade for bottled CO.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
PCT/EP2013/053780 2012-03-05 2013-02-26 Apparatus for production of high purity carbon monoxide Ceased WO2013131778A2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
EA201491624A EA201491624A1 (ru) 2012-03-05 2013-02-26 Устройство для получения монооксида углерода высокой степени чистоты
EP13708114.7A EP2823087B1 (en) 2012-03-05 2013-02-26 Process for production of high purity carbon monoxide
AU2013229699A AU2013229699B2 (en) 2012-03-05 2013-02-26 Apparatus for production of high purity carbon monoxide
ES13708114T ES2877849T3 (es) 2012-03-05 2013-02-26 Procedimiento para la producción de monóxido de carbono de alta pureza
CN201380013115.8A CN104220645B (zh) 2012-03-05 2013-02-26 制造高纯度一氧化碳的装置
KR1020147026422A KR102080571B1 (ko) 2012-03-05 2013-02-26 고순도 일산화탄소 생산 장치
CA2866312A CA2866312C (en) 2012-03-05 2013-02-26 Process for producing high purity carbon monoxide
DK13708114.7T DK2823087T3 (da) 2012-03-05 2013-02-26 Apparat til fremstilling af carbonmonoxid med høj renhed
US14/382,948 US9284651B2 (en) 2012-03-05 2013-02-26 Apparatus for production of high purity carbon monoxide
JP2014560305A JP6192669B2 (ja) 2012-03-05 2013-02-26 高純度の一酸化炭素を製造するための装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP2012000976 2012-03-05
EPPCT/EP2012/000976 2012-03-05

Publications (2)

Publication Number Publication Date
WO2013131778A2 true WO2013131778A2 (en) 2013-09-12
WO2013131778A3 WO2013131778A3 (en) 2013-10-24

Family

ID=47843255

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/053780 Ceased WO2013131778A2 (en) 2012-03-05 2013-02-26 Apparatus for production of high purity carbon monoxide

Country Status (14)

Country Link
US (1) US9284651B2 (enExample)
EP (1) EP2823087B1 (enExample)
JP (1) JP6192669B2 (enExample)
KR (1) KR102080571B1 (enExample)
CN (1) CN104220645B (enExample)
AR (1) AR090224A1 (enExample)
AU (1) AU2013229699B2 (enExample)
CA (1) CA2866312C (enExample)
CL (1) CL2014002343A1 (enExample)
DK (1) DK2823087T3 (enExample)
EA (1) EA201491624A1 (enExample)
ES (1) ES2877849T3 (enExample)
TW (1) TWI500820B (enExample)
WO (1) WO2013131778A2 (enExample)

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014154253A1 (en) * 2013-03-26 2014-10-02 Haldor Topsøe A/S A process for producing co from co2 in a solid oxide electrolysis cell
EP2940773A1 (en) * 2014-04-29 2015-11-04 Haldor Topsøe A/S Ejector for solid oxide electrolysis cell stack system
WO2015189064A1 (en) * 2014-06-11 2015-12-17 Haldor Topsøe A/S A process for safe production of phosgene
DE102014015038A1 (de) 2014-10-09 2016-04-14 Linde Aktiengesellschaft Verfahren zur Verringerung des Gehalts von Kohlendioxid in einem Kohlendioxid und Kohlenmonoxid enthaltenden Gasgemisch und entsprechende Anlage
EP3031956A1 (en) * 2014-12-10 2016-06-15 Haldor Topsøe A/S A process for the preparation of ultra-high purity carbon monoxide
EP3415466A1 (de) 2017-06-12 2018-12-19 SunFire GmbH Russvermeidungs- und/oder russverminderungsverfahren sowie -anordnung und russbeseitigungsverfahren sowie -anordnung in abkühlstrecken sowie rekuperatoren
WO2018228718A1 (de) 2017-06-14 2018-12-20 Linde Aktiengesellschaft Verfahren und anlage zur herstellung eines kohlenmonoxid enthaltenden gasprodukts
WO2018228716A1 (de) 2017-06-14 2018-12-20 Linde Aktiengesellschaft Verfahren und anlage zur herstellung eines kohlenmonoxid enthaltenden gasprodukts
WO2018228717A1 (de) 2017-06-14 2018-12-20 Linde Aktiengesellschaft Verfahren und anlage zur herstellung eines kohlenmonoxid enthaltenden gasprodukts
EP3511441A1 (de) 2018-01-12 2019-07-17 Linde Aktiengesellschaft Herstellung eines kohlenmonoxid enthaltenden gasprodukts
EP3511442A1 (de) 2018-01-12 2019-07-17 Linde Aktiengesellschaft Herstellung eines kohlenmonoxid enthaltenden gasprodukts
DE102018202337A1 (de) 2018-02-15 2019-08-22 Linde Aktiengesellschaft Elektrochemische Herstellung eines Gases umfassend CO mit Zwischenkühlung des Elektrolytstroms
DE102018202335A1 (de) * 2018-02-15 2019-08-22 Linde Aktiengesellschaft Anlage zur elektrochemischen Herstellung eines CO-haltigen Gasprodukts
WO2019158305A1 (de) 2018-02-15 2019-08-22 Siemens Aktiengesellschaft Elektrochemische herstellung von kohlenstoffmonoxid und/oder synthesegas
DE102018003332A1 (de) 2018-04-24 2019-10-24 Linde Aktiengesellschaft Herstellung eines Syntheseprodukts
DE102018003342A1 (de) 2018-04-24 2019-10-24 Linde Aktiengesellschaft Herstellung eines zumindest Kohlenmonoxid enthaltenden Gasprodukts
DE102018003343A1 (de) 2018-04-24 2019-10-24 Linde Aktiengesellschaft Verfahren und Anlage zur Herstellung von Ethanol
JP2020519759A (ja) * 2017-05-10 2020-07-02 ハルドール・トプサー・アクチエゼルスカベット 金属銅中の酸素含有量を低減するための方法
WO2021073769A1 (de) 2019-10-18 2021-04-22 Linde Gmbh Verfahren und anlage zur herstellung eines an kohlenstoffmonoxidreichen gasprodukts
DE102020000476A1 (de) 2020-01-27 2021-07-29 Linde Gmbh Verfahren und Anlage zur Herstellung von Wasserstoff
WO2021156457A1 (en) 2020-02-06 2021-08-12 Haldor Topsøe A/S A method for supplying oxygen-enriched gas to an oxygen-consuming process
DE102020000937A1 (de) 2020-02-14 2021-08-19 Linde Gmbh Verfahren und Anlage zur Bereitstellung eines Industrieprodukts unter Verwendung von Sauerstoff
WO2022136374A1 (en) 2020-12-22 2022-06-30 Topsoe A/S Conversion of carbon dioxide and water to synthesis gas for producing methanol and hydrocarbon products
WO2022161823A1 (en) 2021-01-27 2022-08-04 Topsoe A/S Synthesis gas production from co2 and steam for synthesis of fuels
EP4123056A1 (en) 2021-07-20 2023-01-25 Topsoe A/S Method for transient operation of a solid oxide electrolysis cell stack
WO2023217704A1 (en) 2022-05-11 2023-11-16 Topsoe A/S Conversion of carbon dioxide and water to synthesis gas
US11905173B2 (en) 2018-05-31 2024-02-20 Haldor Topsøe A/S Steam reforming heated by resistance heating
EP4324957A1 (de) 2022-08-19 2024-02-21 Linde GmbH Verfahren und anlage zur herstellung eines wasserstoff enthaltenden produkts
WO2024037981A1 (en) 2022-08-15 2024-02-22 Tcm-Research Ltd Selective extraction and separation of vanadium and iron
EP4345191A1 (de) 2022-09-30 2024-04-03 Linde GmbH Verfahren und anlage zur herstellung eines wasserstoff enthaltend en produkts unter einsatz einer elektrolyse
EP4345086A1 (de) 2022-09-30 2024-04-03 Linde GmbH Verfahren und anlage zur herstellung von methanol
WO2024132837A1 (en) * 2022-12-21 2024-06-27 Topsoe A/S Use of co2-rich gas as a sweeping gas in a chemical plant
US12214327B2 (en) 2018-05-31 2025-02-04 Haldor Topsøe A/S Endothermic reactions heated by resistance heating
US12227414B2 (en) 2019-10-01 2025-02-18 Haldor Topsøe A/S On demand hydrogen from ammonia
US12246299B2 (en) 2019-11-12 2025-03-11 Haldor Topsøe A/S Electric steam cracker
US12246965B2 (en) 2019-10-01 2025-03-11 Haldor Topsøe A/S On demand synthesis gas from methanol
US12246298B2 (en) 2019-10-01 2025-03-11 Haldor Topsøe A/S Offshore reforming installation or vessel
US12246970B2 (en) 2019-10-01 2025-03-11 Haldor Topsøe A/S Cyanide on demand
US12246964B2 (en) 2019-10-01 2025-03-11 Haldor Topsøe A/S On demand hydrogen from methanol
US12410054B2 (en) 2019-10-01 2025-09-09 Haldor Topsøe A/S Synthesis gas on demand

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101790222B1 (ko) 2015-07-21 2017-10-26 대성산업가스 주식회사 리사이클 공정을 이용한 고순도 일산화탄소 제조장치 및 제조방법
US20170241026A1 (en) * 2016-02-23 2017-08-24 Kabushiki Kaisha Toshiba Electrochemical reaction device
EP3419929B1 (en) * 2016-02-26 2019-11-27 Haldor Topsøe A/S Carbon monoxide production process optimized by soec
US12359325B2 (en) 2016-05-03 2025-07-15 Twelve Benefit Corporation Membrane electrode assembly for COx reduction
DE102017203900A1 (de) * 2017-03-09 2018-09-13 Siemens Aktiengesellschaft Elektroden umfassend in Festkörperelektrolyten eingebrachtes Metall
JP6597687B2 (ja) * 2017-03-21 2019-10-30 株式会社豊田中央研究所 電力貯蔵システム、及び電力貯蔵・供給システム
JP6881008B2 (ja) * 2017-05-10 2021-06-02 株式会社豊田中央研究所 Sofcシステム制御用プログラム、soecシステム制御用プログラム、及び、リバーシブルsocシステム制御用プログラム、並びに、sofcシステム、soecシステム、及びリバーシブルsocシステム
JP6881007B2 (ja) * 2017-05-10 2021-06-02 株式会社豊田中央研究所 電力貯蔵・供給システム
US20180361314A1 (en) * 2017-06-16 2018-12-20 Lars-Erik Gärtner Process and apparatus for manufacturing carbon monoxide
AU2019210132B2 (en) * 2018-01-22 2023-02-02 Twelve Benefit Corporation System and method for carbon dioxide reactor control
US12320022B2 (en) 2018-01-22 2025-06-03 Twelve Benefit Corporation System and method for carbon dioxide reactor control
EP3778992A4 (en) * 2018-03-29 2022-01-19 Japan Science and Technology Agency ELECTROLYTIC CELL AND ELECTROLYTIC DEVICE
CN108439406B (zh) * 2018-04-23 2020-03-27 中国科学院上海应用物理研究所 一种回收并电解co2制备co的方法及装置
JP6951310B2 (ja) 2018-09-19 2021-10-20 株式会社東芝 電気化学反応装置
EP4065753A1 (en) 2019-11-25 2022-10-05 Twelve Benefit Corporation Membrane electrode assembly for co x reduction
CN116490643A (zh) * 2020-08-03 2023-07-25 十二益公司 用于二氧化碳反应器控制的系统和方法
AU2021344092A1 (en) * 2020-09-15 2023-04-06 Eneos Corporation Hydrocarbon production method
AU2021365135A1 (en) 2020-10-20 2023-06-22 Twelve Benefit Corporation Semi-interpenetrating and crosslinked polymers and membranes thereof
KR20230092977A (ko) 2020-10-20 2023-06-26 트웰브 베네핏 코포레이션 이온성 중합체 및 공중합체
EP4137607A1 (en) * 2021-08-17 2023-02-22 L'Air Liquide Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Electrolysis arrangement and method with anolyte cooler
JP2024547107A (ja) * 2021-12-23 2024-12-26 トプソー・アクチエゼルスカベット 固体酸化物電解セルコアプラント
JP2023175338A (ja) * 2022-05-30 2023-12-12 株式会社東芝 一酸化炭素製造装置
EP4569156A1 (en) 2022-08-12 2025-06-18 Twelve Benefit Corporation Acetic acid production
CN119998496A (zh) 2022-12-21 2025-05-13 托普索公司 使用富含co2的烟道气作为电解单元中的吹扫气体
JP2024126529A (ja) * 2023-03-07 2024-09-20 東芝エネルギーシステムズ株式会社 二酸化炭素変換装置及び二酸化炭素変換方法
US12460310B2 (en) 2023-04-04 2025-11-04 Twelve Benefit Corporation Integrated systems employing carbon oxide electrolysis in aluminum production
KR102863755B1 (ko) 2023-07-05 2025-09-24 한국화학연구원 고체산화물 전해전지(soec)에서 전력 단속을 통해 침적된 탄소를 제거하면서 co를 제조하는 방법
JPWO2025099872A1 (enExample) * 2023-11-08 2025-05-15
CN117504538A (zh) * 2023-12-15 2024-02-06 中石油深圳新能源研究院有限公司 一种伴生气中二氧化碳的吸附和共电解系统
WO2025192350A1 (ja) * 2024-03-13 2025-09-18 Jfeスチール株式会社 還元ガスの製造方法及び鉄鉱石の還元方法
WO2025209976A1 (en) * 2024-04-03 2025-10-09 Topsoe A/S Solid oxide electrolysis cell system

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6097021A (ja) * 1983-11-01 1985-05-30 Kawasaki Steel Corp 吸着法を使用して一酸化炭素ガスを含む混合ガスより一酸化炭素ガスを精製する方法
CN1040101C (zh) * 1993-08-18 1998-10-07 大世吕化学工业株式会社 乙酸酐或乙酸酐和乙酸的制备方法
JP2883081B1 (ja) * 1997-11-19 1999-04-19 三菱電機株式会社 固体高分子電解モジュールおよびそれを用いた固体高分子電解装置
WO1999045172A1 (de) * 1998-03-01 1999-09-10 Klaus Rennebeck Verfahren und vorrichtung zur gewinnung von synthesegas
DE602004030454D1 (de) * 2003-07-10 2011-01-20 Stichting Wetsus Ct Excellence Sustainable Water Technology Bio-elektrochemisches verfahren zur herstellung von wasserstoff
US8231774B2 (en) * 2008-04-18 2012-07-31 The Boeing Company Thermal management of a high temperature fuel cell electrolyzer
FR2940857B1 (fr) * 2009-01-07 2011-02-11 Commissariat Energie Atomique Procede de fabrication d'un electrolyseur haute temperature ou d'une pile a combustible haute temperature comprenant un empilement de cellules elementaires
US20110114502A1 (en) * 2009-12-21 2011-05-19 Emily Barton Cole Reducing carbon dioxide to products
US8889306B2 (en) * 2010-02-16 2014-11-18 The Boeing Company Modularized electrochemical cell system
US20110155583A1 (en) * 2010-03-13 2011-06-30 Haiming Li High efficient hydrogen generation with green engergy powers
US8591718B2 (en) * 2010-04-19 2013-11-26 Praxair Technology, Inc. Electrochemical carbon monoxide production
CN201928211U (zh) * 2010-07-23 2011-08-10 山东聊城贝尔茨电气科技有限公司 三相电动机软启动刹车器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Cited By (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10494728B2 (en) 2013-03-26 2019-12-03 Haldor Topsoe A/S Process for producing CO from CO2 in a solid oxide electrolysis cell
WO2014154253A1 (en) * 2013-03-26 2014-10-02 Haldor Topsøe A/S A process for producing co from co2 in a solid oxide electrolysis cell
EP2940773A1 (en) * 2014-04-29 2015-11-04 Haldor Topsøe A/S Ejector for solid oxide electrolysis cell stack system
US10486972B2 (en) 2014-06-11 2019-11-26 Haldor Topsoe A/S Process for safe production of phosgene
WO2015189064A1 (en) * 2014-06-11 2015-12-17 Haldor Topsøe A/S A process for safe production of phosgene
DE102014015038A1 (de) 2014-10-09 2016-04-14 Linde Aktiengesellschaft Verfahren zur Verringerung des Gehalts von Kohlendioxid in einem Kohlendioxid und Kohlenmonoxid enthaltenden Gasgemisch und entsprechende Anlage
EP3031956A1 (en) * 2014-12-10 2016-06-15 Haldor Topsøe A/S A process for the preparation of ultra-high purity carbon monoxide
WO2016091636A1 (en) 2014-12-10 2016-06-16 Haldor Topsøe A/S A process for the preparation of ultra-high purity carbon monoxide
US11753700B2 (en) 2017-05-10 2023-09-12 Haldor Topsøe A/S Process for reducing the content of oxygen in metallic copper
JP2023106474A (ja) * 2017-05-10 2023-08-01 トプソー・アクチエゼルスカベット 金属銅中の酸素含有量を低減するための方法
JP2020519759A (ja) * 2017-05-10 2020-07-02 ハルドール・トプサー・アクチエゼルスカベット 金属銅中の酸素含有量を低減するための方法
WO2018228642A1 (de) 2017-06-12 2018-12-20 Sunfire Gmbh Russvermeidungs- und/oder russverminderungsverfahren sowie -anordnung
WO2018228641A1 (de) 2017-06-12 2018-12-20 Sunfire Gmbh Russbeseitigungsverfahren sowie -anordnung in abkühlstrecken sowie rekuperatoren
US11612872B2 (en) 2017-06-12 2023-03-28 Sunfire Gmbh Soot removal process and assembly in cooling sectors and recuperators
EP3415466A1 (de) 2017-06-12 2018-12-19 SunFire GmbH Russvermeidungs- und/oder russverminderungsverfahren sowie -anordnung und russbeseitigungsverfahren sowie -anordnung in abkühlstrecken sowie rekuperatoren
WO2018228716A1 (de) 2017-06-14 2018-12-20 Linde Aktiengesellschaft Verfahren und anlage zur herstellung eines kohlenmonoxid enthaltenden gasprodukts
WO2018228717A1 (de) 2017-06-14 2018-12-20 Linde Aktiengesellschaft Verfahren und anlage zur herstellung eines kohlenmonoxid enthaltenden gasprodukts
DE102017005678A1 (de) 2017-06-14 2018-12-20 Linde Aktiengesellschaft Verfahren und Anlage zur Herstellung eines Kohlenmonoxid enthaltenden Gasprodukts
DE102017005680A1 (de) 2017-06-14 2018-12-20 Linde Aktiengesellschaft Verfahren und Anlage zur Herstellung eines Kohlenmonoxid enthaltenden Gasprodukts
DE102017005681A1 (de) 2017-06-14 2018-12-20 Linde Aktiengesellschaft Verfahren und Anlage zur Herstellung eines Kohlenmonoxid enthaltenden Gasprodukts
WO2018228718A1 (de) 2017-06-14 2018-12-20 Linde Aktiengesellschaft Verfahren und anlage zur herstellung eines kohlenmonoxid enthaltenden gasprodukts
EP3511442A1 (de) 2018-01-12 2019-07-17 Linde Aktiengesellschaft Herstellung eines kohlenmonoxid enthaltenden gasprodukts
DE102018000214A1 (de) 2018-01-12 2019-07-18 Linde Aktiengesellschaft Herstellung eines zumindest Kohlenmonoxid enthaltenden Gasprodukts
EP3511441A1 (de) 2018-01-12 2019-07-17 Linde Aktiengesellschaft Herstellung eines kohlenmonoxid enthaltenden gasprodukts
WO2019137827A1 (de) 2018-01-12 2019-07-18 Linde Aktiengesellschaft Herstellung eines kohlenmonoxid enthaltenden gasprodukts
DE102018000213A1 (de) 2018-01-12 2019-07-18 Linde Aktiengesellschaft Herstellung eines zumindest Kohlenmonoxid enthaltenden Gasprodukts
DE102018202335A1 (de) * 2018-02-15 2019-08-22 Linde Aktiengesellschaft Anlage zur elektrochemischen Herstellung eines CO-haltigen Gasprodukts
US11105007B2 (en) 2018-02-15 2021-08-31 Siemens Aktiengesellschaft Method for the electrochemical production of a gas product containing CO
WO2019158308A1 (de) 2018-02-15 2019-08-22 Siemens Aktiengesellschaft Anlage zur elektrochemischen herstellung eines co-haltigen gasprodukts
WO2019158305A1 (de) 2018-02-15 2019-08-22 Siemens Aktiengesellschaft Elektrochemische herstellung von kohlenstoffmonoxid und/oder synthesegas
WO2019158307A1 (de) 2018-02-15 2019-08-22 Siemens Aktiengesellschaft Elektrochemische herstellung eines gases umfassend co mit zwischenkühlung des elektrolytstroms
DE102018202337A1 (de) 2018-02-15 2019-08-22 Linde Aktiengesellschaft Elektrochemische Herstellung eines Gases umfassend CO mit Zwischenkühlung des Elektrolytstroms
US11560633B2 (en) 2018-02-15 2023-01-24 Siemens Energy Global GmbH & Co. KG Electrochemical production of carbon monoxide and/or syngas
CN111727275A (zh) * 2018-02-15 2020-09-29 西门子股份公司 利用电解质流的中间冷却来电化学制取包含co的气体
WO2019206451A1 (de) 2018-04-24 2019-10-31 Linde Aktiengesellschaft Herstellung eines zumindest kohlenmonoxid enthaltenden gasprodukts
DE102018003342A1 (de) 2018-04-24 2019-10-24 Linde Aktiengesellschaft Herstellung eines zumindest Kohlenmonoxid enthaltenden Gasprodukts
DE102018003343A1 (de) 2018-04-24 2019-10-24 Linde Aktiengesellschaft Verfahren und Anlage zur Herstellung von Ethanol
WO2019206450A1 (de) 2018-04-24 2019-10-31 Linde Aktiengesellschaft Herstellung eines syntheseprodukts
DE102018003332A1 (de) 2018-04-24 2019-10-24 Linde Aktiengesellschaft Herstellung eines Syntheseprodukts
US11905173B2 (en) 2018-05-31 2024-02-20 Haldor Topsøe A/S Steam reforming heated by resistance heating
US12214327B2 (en) 2018-05-31 2025-02-04 Haldor Topsøe A/S Endothermic reactions heated by resistance heating
US12246970B2 (en) 2019-10-01 2025-03-11 Haldor Topsøe A/S Cyanide on demand
US12410054B2 (en) 2019-10-01 2025-09-09 Haldor Topsøe A/S Synthesis gas on demand
US12246298B2 (en) 2019-10-01 2025-03-11 Haldor Topsøe A/S Offshore reforming installation or vessel
US12246965B2 (en) 2019-10-01 2025-03-11 Haldor Topsøe A/S On demand synthesis gas from methanol
US12227414B2 (en) 2019-10-01 2025-02-18 Haldor Topsøe A/S On demand hydrogen from ammonia
US12246964B2 (en) 2019-10-01 2025-03-11 Haldor Topsøe A/S On demand hydrogen from methanol
WO2021073769A1 (de) 2019-10-18 2021-04-22 Linde Gmbh Verfahren und anlage zur herstellung eines an kohlenstoffmonoxidreichen gasprodukts
US12246299B2 (en) 2019-11-12 2025-03-11 Haldor Topsøe A/S Electric steam cracker
DE102020000476A1 (de) 2020-01-27 2021-07-29 Linde Gmbh Verfahren und Anlage zur Herstellung von Wasserstoff
WO2021151453A1 (de) 2020-01-27 2021-08-05 Linde Gmbh Verfahren und anlage zur herstellung von wasserstoff
US12331413B2 (en) 2020-02-06 2025-06-17 Topsoe A/S Method for supplying oxygen-enriched gas to an oxygen-consuming process
WO2021156457A1 (en) 2020-02-06 2021-08-12 Haldor Topsøe A/S A method for supplying oxygen-enriched gas to an oxygen-consuming process
DE102020000937A1 (de) 2020-02-14 2021-08-19 Linde Gmbh Verfahren und Anlage zur Bereitstellung eines Industrieprodukts unter Verwendung von Sauerstoff
WO2022136374A1 (en) 2020-12-22 2022-06-30 Topsoe A/S Conversion of carbon dioxide and water to synthesis gas for producing methanol and hydrocarbon products
WO2022161823A1 (en) 2021-01-27 2022-08-04 Topsoe A/S Synthesis gas production from co2 and steam for synthesis of fuels
WO2023001669A1 (en) 2021-07-20 2023-01-26 Topsoe A/S Method for transient operation of a solid oxide electrolysis cell stack
EP4123056A1 (en) 2021-07-20 2023-01-25 Topsoe A/S Method for transient operation of a solid oxide electrolysis cell stack
WO2023217704A1 (en) 2022-05-11 2023-11-16 Topsoe A/S Conversion of carbon dioxide and water to synthesis gas
WO2024037981A1 (en) 2022-08-15 2024-02-22 Tcm-Research Ltd Selective extraction and separation of vanadium and iron
EP4324957A1 (de) 2022-08-19 2024-02-21 Linde GmbH Verfahren und anlage zur herstellung eines wasserstoff enthaltenden produkts
WO2024068047A1 (de) 2022-09-30 2024-04-04 Linde Gmbh Verfahren und anlage zur herstellung von methanol
WO2024068048A2 (de) 2022-09-30 2024-04-04 Linde Gmbh Verfahren und anlage zur herstellung eines wasserstoff enthaltenden produkts unter einsatz einer elektrolyse
EP4345086A1 (de) 2022-09-30 2024-04-03 Linde GmbH Verfahren und anlage zur herstellung von methanol
EP4345191A1 (de) 2022-09-30 2024-04-03 Linde GmbH Verfahren und anlage zur herstellung eines wasserstoff enthaltend en produkts unter einsatz einer elektrolyse
WO2024132837A1 (en) * 2022-12-21 2024-06-27 Topsoe A/S Use of co2-rich gas as a sweeping gas in a chemical plant

Also Published As

Publication number Publication date
US20150038741A1 (en) 2015-02-05
EA201491624A1 (ru) 2015-03-31
CL2014002343A1 (es) 2014-12-26
CA2866312A1 (en) 2013-09-12
AR090224A1 (es) 2014-10-29
TW201402870A (zh) 2014-01-16
EP2823087A2 (en) 2015-01-14
JP2015513615A (ja) 2015-05-14
EP2823087B1 (en) 2021-06-23
AU2013229699A1 (en) 2014-09-25
DK2823087T3 (da) 2021-08-23
AU2013229699B2 (en) 2017-07-27
JP6192669B2 (ja) 2017-09-06
CA2866312C (en) 2020-09-29
CN104220645A (zh) 2014-12-17
KR20140138193A (ko) 2014-12-03
KR102080571B1 (ko) 2020-02-24
ES2877849T3 (es) 2021-11-17
US9284651B2 (en) 2016-03-15
CN104220645B (zh) 2018-02-23
WO2013131778A3 (en) 2013-10-24
TWI500820B (zh) 2015-09-21

Similar Documents

Publication Publication Date Title
AU2013229699B2 (en) Apparatus for production of high purity carbon monoxide
US10494728B2 (en) Process for producing CO from CO2 in a solid oxide electrolysis cell
EP2940773A1 (en) Ejector for solid oxide electrolysis cell stack system
JP5777644B2 (ja) 電解セルのスタックを有し、かつ動作の信頼性が向上した高効率の高温電解槽(hte)
CN100337723C (zh) 电化学发生器
JP2017520685A (ja) 再循環する洗浄媒体を用いる電解法及び電解装置
KR20200006994A (ko) 하이드로포밀화 플랜트에서 사용하기 위한 합성가스의 생성 방법
CN110770369A (zh) 用于生产含有一氧化碳的气体产物的方法和系统
KR102734773B1 (ko) 탄화수소 설비에서 고순도 co2를 포집하기 위한 방법 및 시스템
JP2005256899A (ja) 水素貯蔵及び/又は導出装置
JP4443968B2 (ja) 水素製造装置
JP7220429B2 (ja) 水素製造装置および水素製造方法
CN111727276A (zh) 用于电化学制取包含co的气体产物的设备
JP7197374B2 (ja) 水素製造システム
WO2019008799A1 (ja) 水素酸素反応装置
JP2007270256A (ja) 水素製造装置、水素製造方法および燃料電池発電装置
JP2016184550A (ja) ガス製造装置
JP2014107259A (ja) 燃料電池システム
CN120344678A (zh) 使用冶金炉的碳排放物生产可持续化学品的反应器和方法
JP2016184549A (ja) ガス製造装置
JP2020100534A (ja) 水素製造装置
JP2016184551A (ja) ガス製造装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13708114

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2013708114

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014560305

Country of ref document: JP

Kind code of ref document: A

Ref document number: 2866312

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2014002343

Country of ref document: CL

Ref document number: 14382948

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20147026422

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2013229699

Country of ref document: AU

Date of ref document: 20130226

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 201491624

Country of ref document: EA

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014022064

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014022064

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140905