WO2013129850A1 - 리튬 이차전지용 전극활물질 및 그 제조방법 - Google Patents

리튬 이차전지용 전극활물질 및 그 제조방법 Download PDF

Info

Publication number
WO2013129850A1
WO2013129850A1 PCT/KR2013/001601 KR2013001601W WO2013129850A1 WO 2013129850 A1 WO2013129850 A1 WO 2013129850A1 KR 2013001601 W KR2013001601 W KR 2013001601W WO 2013129850 A1 WO2013129850 A1 WO 2013129850A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
electrode active
lithium
secondary battery
lithium secondary
Prior art date
Application number
PCT/KR2013/001601
Other languages
English (en)
French (fr)
Inventor
이용주
김제영
최승연
정동섭
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201380011547.5A priority Critical patent/CN104145356A/zh
Priority to EP13754549.7A priority patent/EP2806488A4/en
Priority to IN1862MUN2014 priority patent/IN2014MN01862A/en
Priority to JP2014559829A priority patent/JP2015512130A/ja
Publication of WO2013129850A1 publication Critical patent/WO2013129850A1/ko
Priority to US14/467,365 priority patent/US20140363741A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/049Manufacturing of an active layer by chemical means
    • H01M4/0495Chemical alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an electrode active material for a lithium secondary battery, a manufacturing method thereof, and a lithium secondary battery manufactured using the same.
  • a lithium secondary battery includes an anode made of a carbon material or a lithium metal alloy, a cathode made of a lithium metal oxide, and an electrolyte in which lithium salt is dissolved in an organic solvent.
  • Lithium metal was initially used as an electrode active material constituting the negative electrode of a lithium secondary battery.
  • lithium has a problem of low reversibility and safety
  • carbon materials are mainly used as negative electrode active materials of lithium secondary batteries.
  • Carbonaceous material has a small capacity for lithium metal, but has a small volume change, excellent reversibility, and advantageous in terms of price.
  • Such a metal-based electrode active material has a severe change in volume associated with charging and discharging of lithium, resulting in cracking and micronization. Therefore, the capacity of the secondary battery using the metal-based electrode active material decreases rapidly as the charge-discharge cycle progresses, and the cycle Life is shortened.
  • the electrode active material by using an oxide of a metal such as Si, Sn, etc. as the electrode active material, it was intended to mitigate cracks and micronization generated when using the metal-based electrode active material.
  • the problem of the metal-based electrode active material has been solved, but it has a lower initial efficiency value compared to the graphite electrode active material, and also in the case of initial reaction with lithium ions irreversible lithium oxide or lithium metal oxide There was a problem that the initial efficiency was lowered than that of the metal-based electrode active material.
  • the problem to be solved by the present invention is lithium, which has a higher capacity than the carbon-based electrode active material, has a relatively high initial efficiency value, prevents the initial efficiency from being lowered, and improves the rate characteristic due to excellent electrical conductivity.
  • An electrode active material for a secondary battery and a method of manufacturing the same are provided.
  • the electrode active material for a lithium secondary battery of the present invention is (a) a first particulate form of an oxide of a (semi) metal capable of alloying with lithium, and (b) the same (semi) as the (semi) metal.
  • a core part including a second particulate form of an oxide containing a metal and lithium at the same time; And a conductive carbon layer coated on the outside of the core portion.
  • the method of manufacturing an electrode active material for a lithium secondary battery of the present invention is (S1) a lithium salt that does not contain oxygen, and the oxide of a (quasi) metal capable of alloying with lithium and mixed with a first heat treatment Manufacturing a core portion of the term; And (S2) coating conductive carbon on the surface of the core part.
  • the electrode active material of the present invention comprises a first particulate form of an oxide of a (semi) metal capable of alloying with lithium and a second particulate form of an oxide containing the same (semi) metal and lithium as the (semi) metal simultaneously. Since lithium is already contained in the second particulate phase before the initial charge and discharge of, not only has a high capacity but also less irreversible phase such as lithium oxide or lithium metal oxide is generated during the initial charge and discharge of the battery, resulting in a dead volume at the anode side. (dead volume) is minimized, it is possible to improve and maintain the initial efficiency, the electrical conductivity is improved due to the conductive coating on the surface can be used in the manufacture of a lithium secondary battery having excellent rate-rate characteristics.
  • Example 1 is a TEM photograph of an electrode active material prepared according to Example 1 of the present invention.
  • Example 2 is a TEM photograph of an electrode active material prepared according to Example 2 of the present invention.
  • Example 3 is a TEM photograph of an electrode active material prepared according to Example 3 of the present invention.
  • the electrode active material of the present invention comprises (a) a first particulate form of an (semi) metal oxide that can be alloyed with lithium, and (b) an oxide containing the same (semi) metal and lithium as the (semi) metal simultaneously.
  • lithium oxide is caused by the reaction of lithium ions (Li + ) and (semi) metal oxides inserted into the cathode during initial charge and discharge of the battery. Or an irreversible phase such as lithium metal oxide or the like is formed.
  • the irreversible phase surrounds the metal around Si, Sn, etc.
  • the volume change of the metal can be alleviated, and thus, due to the volume change of the electrode active material, compared to the electrode active material consisting of only the metal such as Si, Sn, etc. Less cracking or micronization occurs.
  • metal lithium such as lithium foil or lithium powder
  • a (quasi) metal oxide in the manufacturing step of the electrode active material to suppress the dead volume of the positive electrode due to the irreversibility of the negative electrode
  • the metal lithium was applied to the surface of the (quasi) metal oxide electrode prepared in the manufacturing step to suppress dead volume of the positive electrode due to irreversibility of the negative electrode.
  • the conventional electrodes have not been mass produced at present due to process safety issues such as ignition due to the reaction of metallic lithium with moisture.
  • the conventional electrode simply does not reduce the formation of an irreversible phase due to the reaction of lithium and the (qua) metal oxide during charging of the battery, since the metal lithium simply exists on the surface of the (qua) metal oxide electrode.
  • the electrode active material of the conventional electrode is composed only of the particulate form of the (semi) metal oxide, there is no particulate form containing both (semi) metal and lithium at the same time as the electrode active material of the present invention.
  • the electrode active material according to the present invention is an oxide containing the same (semi) metal and lithium as the (semi) metal simultaneously with the first particulate form of the (semi) metal (ex. Si, Sn, etc.).
  • the core part containing the 2nd particulate form which has been provided is provided.
  • the core part of the electrode active material of the present invention already contains lithium in the second particulate phase before the initial charge and discharge of the battery, lithium oxide due to the reaction of lithium ions and (quasi) metal oxide during the initial charge and discharge of the battery. Or less irreversible phases, such as lithium metal oxide, may be generated, thereby improving initial efficiency.
  • the generation of the dead volume of the positive electrode due to the irreversible phase of the negative electrode can be minimized, thereby not causing a decrease in capacity of the battery. Therefore, the secondary battery using the electrode active material according to the present invention may have a high capacity while having an initial efficiency of about 50% or more.
  • Examples of the (semi) metal oxides on the first particles include metals such as Si, Sn, Al, Sb, Bi, As, Ge, Pb, Zn, Cd, In, Ti, Ga, or alloys thereof.
  • An oxide is mentioned, It does not restrict
  • examples of the (partial) metal and the lithium-containing oxide on the second particles include Li 2 SiO 3 , Li 2 SnO, Li 4 SiO 4 , Li 2 Si 2 O 5 , Li 6 Si 2 O 7 , Li 2 Si 3 O 7 , Li 8 SiO 6 , Li 2 SnO 3, Li 5 AlO 4 , LiAlO 2 , LiAl 5 O 8, and the like.
  • the present invention is not limited thereto, and lithium is not particularly limited as long as lithium is contained in the (quasi) metal oxide.
  • the first particulate form of the (quasi) metal oxide and the second particulate form of the oxide containing (semi) metal and lithium may be mixed with each other in the core portion of the electrode active material. It is preferred that the aggregate of one first particulate or two or more first particulates can be surrounded by second particulates.
  • the above-mentioned 1st particulate form and 2nd particulate form are contained by 5: 95-95: 5 weight ratio. If the weight ratio of the first particulate phase is less than 5, the reversible capacity is small and the effect as a high-capacity electrode active material is insignificant, and the lithium is excessively contained in the second particulate phase, which may cause a safety problem due to reaction with moisture. . On the other hand, if the weight ratio of the first particulate phase is greater than 95, too much of an irreversible lithium oxide or lithium metal oxide due to reaction with lithium ions during charging and discharging of the battery may generate initial efficiency.
  • the electrode active material of the present invention includes a conductive carbon layer coated on the outside of the core part.
  • the electrode active material core part of the present invention increases the initial efficiency of the battery, but has low electrical conductivity and poor rate-rate characteristics during charging and discharging. Rate capability is a characteristic of the rate of charge and discharge, and it can be said that the rate rate characteristic is excellent if the rate of charge and discharge is excellent.
  • the core part according to the present invention has a high capacity, if the rate characteristic is not good in the current region actually used, it may not be able to use the full capacity, which may result in the failure of taking advantage of the high capacity.
  • the electrode active material of the present invention can sufficiently exhibit the advantages of the high capacity of the core part by increasing the electrical conductivity by the conductive carbon coating and thereby improving the rate characteristic.
  • the conductive carbon forming the coating layer in the present invention is not particularly limited as long as it is a carbon-based material having conductivity. It may be amorphous or crystalline, and may be formed by carbonizing the conductive carbon precursor or may be formed by directly coating the conductive carbon particles.
  • the precursor of the conductive carbon any liquid or gaseous organic compound containing carbon may be used without limitation.
  • precursors of conductive carbon include pitch, heavy oil, liquid precursors such as resin, and gaseous precursors such as methane, ethylene, acetylene, and the like, and the resin may be carbonized after crosslinking.
  • thermosetting resins include, but are not limited to, urea resins, melamine resins, phenol resins, epoxy resins, unsaturated polyester resins, alkyl resins, alkyd resins, urethane resins, and the like. .
  • the conductive carbon particles include carbon black and carbon fiber such as acetylene black, thermal black, furnace black, channel black, Carbon tubes and the like can be exemplified, but this is only an example and the present invention is not limited thereto.
  • the content of the conductive carbon may be variously selected depending on the coating method or the type of specific battery in which the active material is used.
  • the amount may be 2 to 900 parts by weight, or 2 to 100 parts by weight, or 2 to 20 parts by weight based on 100 parts by weight of the core part material forming the core part. If the content is less than 2 parts by weight, the surface may not be uniformly coated, and thus conductivity may not be sufficiently secured. If the content is more than 900 parts by weight, the ratio of the core part may be relatively small, and thus high capacity may not be realized.
  • a lithium salt that does not contain oxygen, and an oxide of a (semi) metal capable of alloying with lithium are mixed and heat-treated to prepare the core material described above (S1).
  • the (semi) metal oxide is not particularly limited as long as it is an oxide of a metal or metalloid capable of alloying with lithium.
  • Non-limiting examples thereof include oxides such as Si, Sn, Al, Sb, Bi, As, Ge, Pb, Zn, Cd, In, Ti, Ga and alloys thereof.
  • a lithium salt containing no oxygen may be used as the lithium salt mixed with the (quasi) metal oxide to form the second particulate part. This is because, when the lithium salt contains oxygen, lithium oxide is generated in the heat treatment step, so that oxygen together with lithium may react with the metal oxide to lower initial efficiency.
  • lithium salts that do not include such oxygen include, but are not limited to, LiCl, LiBF 4 , LiAlCl 4 , LiSCN, LiSbF 6 , LiPF 6 , LiAsF 6 , LiB 10 Cl 10 , LiF, LiBr, LiI, and the like.
  • the lithium salt and (semi) metal oxide which do not contain oxygen mentioned above are mixed in a weight ratio of 5: 95-80: 20. If the weight ratio of the lithium salt that does not contain oxygen is less than 5, since the amount of lithium that reacts with the (quasi) metal oxide is not sufficient, too little lithium-containing second particulate phase is formed, which causes the initial stage of the battery. When charging and discharging, too much irreversible lithium oxide or lithium metal oxide is generated due to the reaction of lithium ions inserted into the negative electrode and the (quasi) metal oxide, and thus an initial efficiency increase effect of the battery may be insufficient.
  • the weight ratio of the lithium salt containing no oxygen is more than 80, an excessive amount of lithium is contained in the second particle, which may cause battery safety problems, or the amount of lithium that may be contained in the second particle is exceeded. And lithium may precipitate.
  • the chemical mixing method of the first embodiment of the present invention comprises the steps of forming a dispersion by dispersing a metal oxide in a solution prepared by dissolving a lithium salt containing no oxygen in a solvent; And it may include the step of drying the dispersion.
  • the solvent or dispersion medium for dissolving the lithium salt which does not contain the above-mentioned oxygen and for dispersing the alloyable (quasi) metal oxide is not particularly limited, whereby dissolution and mixing can be made uniform, and then easily removed. It is desirable to be able to.
  • Non-limiting examples of the solvent or dispersion medium is distilled water; Alcohols such as ethanol and methanol; Acetone, tetrahydrofuran, methylene chloride, chloroform, dimethylformamide, N-methyl-2-pyrrolidone, cyclohexane, dichloromethane, dimethylsulfoxide, acetonitrile, pyridine, amines and the like, or a mixture thereof.
  • the (semi) metal oxide may be generally dispersed using a dispersion apparatus known in the art.
  • the dispersing device is not particularly limited as long as it disperses the material to be dispersed in the dispersion medium, and examples thereof include an ultrasonic dispersing device, a magnetic sterling device and a spray dryer device.
  • the formed dispersion is dried at a room temperature of 25 to 28 ° C. or at a temperature of 50 to 200 ° C. to remove the solvent or the dispersion medium, thereby obtaining a mixture in which a lithium salt is formed on the surface of the (quasi) metal oxide.
  • the method of removing the solvent or the dispersion medium may use methods known in the art.
  • mechanical mixing is chemical mixing such as high energy ball mill, planetary mill, stirred ball mill, vibrating mill, etc. using chemically inert beads.
  • process variables such as rotation speed, ball-to-powder weight ratio, ball size, mixing time, mixing temperature and atmosphere can be varied.
  • alcohol such as ethanol
  • higher fatty acids such as stearic acid (stearic acid)
  • processing control agent may be added at about 2.0 parts by weight or less, preferably 0.5 parts by weight or less, based on 100 parts by weight of the mixture.
  • the mechanical mixing process when the conditions such as mixing time, mixing temperature, rotation speed, etc. are changed by increasing the rotational speed at a high temperature for a long time, (semi) metal oxides capable of alloying with lithium salt and lithium which do not contain oxygen
  • the mechanical alloying treatment can be performed simultaneously with the grinding and mixing.
  • the present invention can obtain an electrode active material in the form of an alloy having a uniform composition. In this case, the heat treatment in an inert atmosphere may not be performed later.
  • the (semi) metal oxide and lithium of lithium salts formed on the surface react with each other to form new bonds, and as a result, the (semi) metal oxide capable of alloying. And a reactant in which the same (semi) metal and the same oxide containing lithium at the same time as the (semi) metal oxide are mixed with each other. In this process, the anion portion of the lithium salt is released as a gas.
  • the heat treatment temperature range is not particularly limited as long as it is a temperature between the melting point of the lithium salt not containing oxygen and the boiling point of the lithium salt, and may vary depending on the type of lithium salt not containing oxygen. If the lithium salt is less than the melting point of the lithium salt, the reaction between the lithium salt and the (quasi) metal oxide may not occur. If the boiling point of the lithium salt exceeds the lithium salt, the lithium salt is gas before the lithium salt sufficiently reacts with the (quasi) metal oxide. Can be released in form. Therefore, the heat treatment temperature range is preferably in the range of 500 to 2000 °C.
  • the temperature below 1300 degreeC is preferable.
  • the SiO tends to grow separately from SiO 2 and SiO at a temperature of more than 1300 ° C., which may reduce the advantage of controlling the thickness of SiO. Therefore, the heat treatment is carried out at a temperature between the melting point of the lithium salt containing no oxygen and the boiling point of the lithium salt, wherein it is preferable to consider the type of (quasi) metal oxide.
  • the heat treatment of the mixture is preferably performed in an inert atmosphere in which nitrogen gas, argon gas, helium gas, krypton gas, xenon gas, or the like is present to block contact with oxygen. If the mixture is in contact with oxygen during heat treatment of the mixture, since lithium and oxygen react with the metal oxide to form lithium oxide or lithium metal oxide, the initial efficiency increase effect of the battery may be reduced.
  • Coating of the conductive carbon may be performed by mixing and thermally treating the core portion material and the liquid or gaseous conductive carbon precursor, or may be performed by mechanical alloying of the core portion material and the conductive carbon particles.
  • the conductive carbon coating layer is formed by carbonizing the carbon precursor by contacting the carbon precursor to the surface of the core material and then heat treating the carbon precursor.
  • the carbon precursor is uniformly mixed with the core portion material.
  • a dispersant may be added together, and in the case of using a gaseous carbon precursor, the coating layer is formed on the surface of the core material while continuously injecting the gaseous carbon precursor into the core material.
  • a tubular furnace can be used.
  • heat processing temperature of a precursor 700-1,300 degreeC is preferable. In the case of heat treatment, it is preferably carried out under an inert atmosphere.
  • Conductive carbon particles may adhere to the core material surface while mechanical stress is applied simultaneously with the mixing of the core material and the conductive carbon particles.
  • the prepared electrode active material of the present invention may be used as a positive electrode active material or a negative electrode active material, preferably may be used as a negative electrode active material.
  • the electrode active material of the present invention may be prepared as a positive electrode or a negative electrode according to a manufacturing method commonly used in the art.
  • the electrode active material of the present invention may be prepared by mixing and stirring a binder and a solvent and, if necessary, a conductive agent and a dispersant to prepare a slurry, and then applying the same to a current collector and compressing the electrode.
  • Binders include vinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinylidene fluoride, polyacrylonitrile, polymethylmethacrylate, and the like. Kinds of binder polymers may be used.
  • a lithium secondary battery having a separator and an electrolyte interposed between the positive electrode and the negative electrode which is commonly used in the art, may be manufactured using the electrode.
  • lithium salts that may be included as electrolytes can be used without limitation those conventionally used in the electrolyte for lithium secondary batteries, for example, as the anion of the lithium salt F - , Cl - , Br - , I - , NO 3 - , N (CN) 2 - , BF 4 - , ClO 4 - , PF 6 - , (CF 3 ) 2 PF 4 - , (CF 3 ) 3 PF 3 - , (CF 3 ) 4 PF 2 - , (CF 3 ) 5 PF - , (CF 3 ) 6 P - , CF 3 SO 3 - , CF 3 CF 2 SO 3 - , (CF 3 SO 2 ) 2 N - , (FSO 2 ) 2 N - , CF 3 CF 2 (CF 3 ) 2 CO - , (CF 3 SO 2 ) 2 CH - , (SF 5 ) 3
  • organic solvent included in the electrolyte solution those conventionally used in the electrolyte for lithium secondary batteries may be used without limitation, and typically, propylene carbonate (PC), ethylene carbonate (ethylene carbonate, EC), diethyl carbonate (DEC), dimethyl carbonate (DMC), ethylmethyl carbonate (EMC), methylpropyl carbonate, dipropyl carbonate, dimethylsulfuroxide, acetonitrile, dimethoxyethane, diethoxy Ethylene, vinylene carbonate, sulfolane, gamma-butyrolactone, propylene sulfite, tetrahydrofuran, any one selected from the group consisting of, or a mixture of two or more thereof may be representatively used.
  • PC propylene carbonate
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • DMC dimethyl carbonate
  • EMC ethylmethyl carbonate
  • methylpropyl carbonate dipropy
  • ethylene carbonate and propylene carbonate which are cyclic carbonates among the carbonate-based organic solvents, may be preferably used as high-viscosity organic solvents because they have high dielectric constants to dissociate lithium salts in the electrolyte.
  • a low viscosity, low dielectric constant linear carbonate, such as carbonate is mixed and used in an appropriate ratio, an electrolyte having high electrical conductivity can be prepared, and thus it can be more preferably used.
  • the electrolyte solution stored according to the present invention may further include additives such as an overcharge inhibitor included in a conventional electrolyte solution.
  • the separator may be a conventional porous polymer film conventionally used as a separator, for example, polyolefin such as ethylene homopolymer, propylene homopolymer, ethylene / butene copolymer, ethylene / hexene copolymer and ethylene / methacrylate copolymer
  • the porous polymer film made of the polymer may be used alone or by laminating them, or a conventional porous nonwoven fabric, for example, a non-woven fabric made of high melting point glass fiber, polyethylene terephthalate fiber, or the like may be used. It is not.
  • the battery case used in the present invention may be adopted that is commonly used in the art, there is no limitation on the appearance according to the use of the battery, for example, cylindrical, square, pouch type or coin using a can (coin) type and the like.
  • LiCl ethanol lithium chloride
  • SiO silicon monoxide
  • the RF sol containing the core part material was heat-treated at 900 ° C. for 5 hours in an argon atmosphere to form a conductive carbon layer on the surface of the core part material.
  • the carbon content of the conductive carbon layer was found to be 5 parts by weight based on 100 parts by weight of the core part material forming the core part, and the coating thickness was found to be about 10 nm.
  • a TEM photograph of the electrode active material of the present invention having the conductive carbon layer is shown in FIG. 1.
  • the prepared electrode active material powder, polyvinylidene fluoride (PVdF) as a binder, and acetylene black as a conductive agent were mixed in a weight ratio of 88: 10: 2, and these were used as a solvent, N-methyl-2-pyrrolidone. It was mixed with (N-methyl-2-pyrrolidone, NMP) to prepare a uniform electrode slurry.
  • the prepared electrode slurry was coated on one surface of a copper current collector to a thickness of 65 ⁇ m, dried and rolled, and then punched to a required size to prepare an electrode.
  • Ethylene carbonate (EC) and diethyl carbonate (DEC) were mixed in a volume ratio of 30:70, and LiPF 6 was added to the nonaqueous electrolyte solvent to prepare a 1M LiPF 6 nonaqueous electrolyte.
  • the prepared electrode was used as a cathode, a lithium metal foil was used as a counter electrode, a polyolefin separator was interposed between both electrodes, and the electrolyte was injected to prepare a coin-type battery.
  • An electrode active material and a battery were manufactured in the same manner as in Example 1, except that heat treatment was performed in a rotary tube furnace using methane as a raw material to conduct conductive carbon coating.
  • the conductive carbon coating layer forming method using methane is as follows.
  • the carbon content of the conductive carbon layer was found to be 5 parts by weight based on 100 parts by weight of the core part material forming the core part.
  • a TEM photograph of the electrode active material of the present invention having the conductive carbon layer is shown in FIG. 2.
  • FIG. 3 A TEM photograph of the electrode active material of the present invention having the conductive carbon layer is shown in FIG. 3.
  • An electrode active material and a battery were manufactured in the same manner as in Example 1, except that an electrode active material was not coated on the core material.
  • An electrode active material and a battery were manufactured in the same manner as in Example 3, except that 5 parts by weight of artificial graphite was simply mixed with respect to 100 parts by weight of the core material.
  • the charging of the battery was performed after constant current charging to 5 mV, and after the power failure at 5 mV until the current reached 0.005C, the battery was finished.
  • the discharge of the battery was performed at a constant current up to 1.0v.
  • the rate characteristic evaluation was performed by performing charge and discharge at 0.1 C before performing the rate characteristic evaluation and calculating the charge and discharge rate based on the charge and discharge capacity at this time.
  • the experiment was performed by discharging at the corresponding rate after charging to 0.1C to minimize the effect of the charging rate.
  • Example 1 and Example 2 when the coating is performed by heat treatment using the precursor as in the case of Examples 1 and 2, it can be seen that the amorphous carbon layer uniformly surrounds the core part. It can be seen that the powder resistance of Example 1 and Example 2 is significantly improved compared to Comparative Example 1. As a result, the battery of the Example has greatly improved the charging and rate characteristics, resulting in 90% rate characteristic results even at a charge and discharge rate of 2.0C.
  • Example 3 and Comparative Example 2 coated with artificial graphite by mechanical alloying method it can be seen that the conductivity is slightly lower than that of Examples 1 and 2, but similar results are obtained as a whole.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Composite Materials (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명은 리튬 이차전지용 전극활물질 및 그 제조방법에 관한 것이다. 본 발명의 리튬 이차전지용 전극활물질은, (a) 리튬과 합금화가 가능한 (준)금속의 산화물로 된 제1 입자상, 및 (b) 상기 (준)금속과 동일한 (준)금속 및 리튬을 동시에 함유하는 산화물로 된 제2 입자상을 포함하는 코어부; 및 상기 코어부 외부에 코팅된 도전성 탄소층을 포함한다. 본 발명의 전극활물질은 고용량을 가지며, 전기 전도성이 향상되어 우수한 충방전 율속 특성을 갖는다.

Description

리튬 이차전지용 전극활물질 및 그 제조방법
본 발명은 리튬 이차전지용 전극활물질 및 그 제조방법과 이를 이용하여 제조되는 리튬 이차전지에 관한 것이다.
본 출원은 2012년 2월 28일에 출원된 한국특허출원 제10-2012-0020471호에 기초한 우선권을 주장하며, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 본 출원에 원용된다.
또한, 본 출원은 2013년 2월 27일에 출원된 한국특허출원 제10-2013-0021271호에 기초한 우선권을 주장하며, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 본 출원에 원용된다.
최근 리튬 이차전지는 에너지 밀도가 높고 수명이 긴 전지로 가장 주목을 받고 있다. 통상적으로 리튬 이차전지는 탄소 재료나 리튬 금속 합금으로 된 음극, 리튬 금속 산화물로 된 양극 및 유기용매에 리튬염을 용해시킨 전해질을 구비한다.
리튬 이차전지의 음극을 구성하는 전극활물질로는 초기에는 리튬 금속이 사용되었다. 하지만 리튬은 가역성 및 안전성이 낮은 문제점이 있어, 현재 리튬 이차전지의 음극활물질로는 주로 탄소재가 사용되고 있다. 탄소재는 리튬 금속에 비애 용량은 작지만, 부피 변화가 적고 가역성이 뛰어나며 가격 측면에서 유리한 장점이 있다.
그러나, 리튬 이차전지의 사용이 확대대면서 점차 고용량 리튬 이차전지에 대한 수요가 증가하고 있는 실정이며, 이에 따라 용량이 작은 탄소재를 대체할 수 있는 고용량의 전극활물질에 대한 요구가 있다. 이러한 요구를 충족하기 위하여 탄소재보다는 높은 충방전 용량을 나타내고, 리튬과 전기화학적으로 합금화가 가능한 금속, 예를 들면 Si, Sn 등을 전극활물질로 이용한 시도가 있다.
하지만, 이러한 금속계 전극활물질은 리튬의 충방전에 수반된 체적의 변화가 심하여 균열이 생기고 미분화되며, 따라서 이러한 금속계 전극활물질을 사용한 이차 전지는 충방전 사이클이 진행됨에 따라 용량이 급격하게 저하되고, 사이클 수명이 짧게 된다.
이에, Si, Sn 등과 같은 금속의 산화물을 전극활물질로 이용함으로써, 상기 금속계 전극활물질의 사용시 발생되는 균열 및 미분화를 완화하고자 하였다. 그러나, 상기 금속 산화물 전극활물질의 경우, 상기 금속계 전극활물질의 문제를 해결하였으나, 흑연계 전극활물질에 비하여 낮은 초기 효율값을 가지며, 또한 리튬 이온과의 초기 반응시 비가역상인 리튬 산화물이나 리튬 금속 산화물을 형성하여 상기 금속계 전극활물질보다도 초기 효율이 저하되는 문제를 갖고 있었다.
따라서 본 발명이 해결하고자 하는 과제는, 탄소계 전극활물질보다 고용량이면서도, 상대적으로 높은 초기 효율값을 가지며, 초기 효율의 저하를 방지할 수 있을 뿐만 아니라, 전기 전도도가 우수하여 율속 특성이 향상되는 리튬 이차전지용 전극활물질 및 그 제조방법을 제공하는 것이다.
상기 과제를 해결하기 위하여, 본 발명의 리튬 이차전지용 전극활물질은, (a) 리튬과 합금화가 가능한 (준)금속의 산화물로 된 제1 입자상, 및 (b) 상기 (준)금속과 동일한 (준)금속 및 리튬을 동시에 함유하는 산화물로 된 제2 입자상을 포함하는 코어부; 및 상기 코어부 외부에 코팅된 도전성 탄소층을 포함한다.
또한 상기 과제를 해결하기 위하여, 본 발명의 리튬 이차전지용 전극활물질의 제조방법은 (S1) 산소를 포함하지 않는 리튬염, 및 리튬과 합금화가 가능한 (준)금속의 산화물을 혼합하고 열처리하여 제1항의 코어부를 제조하는 단계; 및 (S2) 상기 코어부 표면에 도전성 탄소를 코팅하는 단계를 포함한다.
본 발명의 전극활물질은 리튬과 합금화가 가능한 (준)금속의 산화물로 된 제1 입자상과 상기 (준)금속과 동일한 (준)금속 및 리튬을 동시에 함유하는 산화물로 된 제2 입자상을 포함함으로써 전지의 초기 충방전 이전에 이미 상기 제2 입자상 내에 리튬이 함유되어 있기 때문에, 고용량을 가질 뿐만 아니라 전지의 초기 충방전시 리튬 산화물이나 리튬메탈산화물과 같은 비가역상이 덜 생성되며 이로 인해 양극측의 데드 볼륨(dead volume)이 최소화되어, 초기 효율의 개선 및 유지가 가능하고, 표면의 도전성 코팅으로 인하여 전기 전도도가 향상되어 우수한 율속 특성을 갖는 리튬 이차전지의 제조에 사용될 수 있다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 전술한 발명의 내용과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니된다.
도 1은 본 발명의 실시예 1에 따라 제조된 전극활물질의 TEM 사진이다.
도 2은 본 발명의 실시예 2에 따라 제조된 전극활물질의 TEM 사진이다.
도 3은 본 발명의 실시예 3에 따라 제조된 전극활물질의 TEM 사진이다.
이하, 본 발명을 상세히 설명하기로 한다. 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명의 전극활물질은 (a) 리튬과 합금화가 가능한 (준)금속의 산화물로 된 제1 입자상, 및 (b) 상기 (준)금속과 동일한 (준)금속 및 리튬을 동시에 함유하는 산화물로 된 제2 입자상을 포함하는 코어부; 및 상기 코어부 외부에 코팅된 도전성 탄소층을 포함하는 것을 특징으로 한다.
음극활물질로서 SiO, SnO 등과 같이 리튬과 합금화가 가능한 (준)금속 산화물을 이용할 경우, 전지의 초기 충방전시 음극으로 삽입된 리튬이온(Li+)과 (준)금속 산화물의 반응으로 인해 리튬 산화물이나 리튬 메탈 산화물 등과 같은 비가역상이 형성된다. 이때, 상기 비가역상이 Si, Sn 등과 같은 금속의 주위를 포위함으로써, 상기 금속의 부피 변화를 완화시켜 줄 수 있기 때문에 상기 Si, Sn 등과 같은 금속으로만 이루어진 전극활물질에 비해서 전극활물질의 부피 변화로인한 균열이나 미분화가 덜 발생한다.
그러나, 상기 비가역상인 리튬 산화물이나 리튬 메탈 산화물의 형성으로 인해 리튬이 소모됨으로써, 실제로 사용될 수 있는 리튬의 양이 감소되기 때문에, 전지의 초기 효율이 저하될 뿐만 아니라, 전지의 용량이 저하된다. 특히, 리튬 공급원이 양극에 있는 현재의 이차전지 시스템에서는 음극의 비가역 용량이 클 경우, 음극의 비가역을 통하여 양극 쪽의 데드 볼륨(dead volume) 증가가 발생하므로, 실제 양극에서 사용할 수 있는 용량보다 적은 용량을 나타내게 되며, 전지의 용량이 감소하게 되는 원인이 된다. 또한, 이와 같은 데드 볼륨으로 인한 낮은 전지 용량 및 각 사이클에서의 낮은 충방전 효율로 인해서 전지의 수명특성이 저하된다.
이와 같은 문제점을 해결하고자, 종래에는 리튬 포일이나 리튬 분말과 같은 금속 리튬을 전극활물질의 제조 단계에서 (준)금속산화물과 반응시켜 음극의 비가역으로 인한 양극의 데드 볼륨 발생을 억제시키거나, 또는 전극 제조단계에서 기 제조된 (준)금속산화물 전극의 표면에 상기 금속 리튬을 도포하여 음극의 비가역으로 인한 양극의 데드 볼륨 발생을 억제하고자 하였다.
그러나, 이러한 종래 전극은 금속 리튬과 수분의 반응으로 인한 발화 등과 같은 공정상의 안전성 문제로 인해 현재 양산화되지 못하고 있다. 게다가, 상기 종래 전극은 (준)금속산화물로 된 전극의 표면에 금속 리튬이 단순히 존재하고 있기 때문에, 실제로 전지의 충전시 리튬과 (준)금속산화물의 반응으로 인해 비가역상이 형성되는 것을 감소시키지 못한다. 또한, 상기 종래 전극의 전극활물질은 (준)금속산화물로 된 입자상만으로 이루어져 있을 뿐, 본 발명의 전극활물질처럼 (준)금속 및 리튬을 동시에 함유하는 입자상이 존재하고 있지 않다.
이에, 본 발명에 따른 전극활물질은 상기 (준)금속(ex. Si, Sn 등)의 산화물로 된 제1 입자상과 더불어 상기 (준)금속과 동일한 (준)금속 및 리튬을 동시에 함유하는 산화물로 된 제2 입자상을 포함하는 코어부를 구비한다.
이로써, 본 발명의 전극활물질의 코어부는 전지의 초기 충방전 이전에 이미 상기 제2 입자상 내에 리튬이 함유되어 있기 때문에, 전지의 초기 충방전시 리튬 이온과 (준)금속산화물의 반응으로 인한 리튬산화물이나 리튬메탈산화물과 같은 비가역상이 덜 생성되어 초기효율이 향상될 수 있다. 또한, 음극의 비가역상으로 인한 양극의 데드 볼륨(dead volume) 발생이 최소화될 수 있어 전지의 용량 저하가 초래되지 않는다. 따라서, 본 발명에 따른 전극활물질을 이용하는 이차전지는 초기 효율이 약 50 % 이상이면서, 고용량일 수 있다.
상기 제1 입자상의 (준)금속 산화물의 예로는 Si, Sn, Al, Sb, Bi, As, Ge, Pb, Zn, Cd, In, Ti, Ga, 또는 이들의 합금과 같은 준금속 또는 금속의 산화물을 들 수 있는데, 리튬과 합금화가 가능한 준금속 또는 금속의 산화물이라면 특별히 제한하지 않는다.
또한, 상기 제2 입자상의 (준)금속 및 리튬 함유 산화물의 예로는 Li2SiO3, Li2SnO, Li4SiO4, Li2Si2O5, Li6Si2O7, Li2Si3O7, Li8SiO6, Li2SnO3, Li5AlO4, LiAlO2, LiAl5O8 등이 있다. 다만, 이에 제한되지 않고, 리튬이 (준)금속산화물 내에 함유되어 있는 것이라면 결정질이든 비정질이든 특별히 제한되지 않는다. 이러한 제2 입자상을 전극활물질에 포함시킴으로써, 전지의 충방전시 음극 내에 리튬산화물과 리튬메탈산화물이 덜 생성되고, 따라서 초기 비가역에 의해 발생하는 양극의 데드 볼륨(dead volume) 발생이 최소화될 수 있다.
상기 (준)금속산화물로 된 제1 입자상과 (준)금속 및 리튬을 함유하는 산화물로 된 제2 입자상은 전극활물질의 코어부 내에서 서로 혼재(混材)되어 있을 수 있다. 상기 하나의 제1 입자상 또는 2 이상의 제1 입자상의 집합체가 제2 입자상들에 의해 포위되어 있을 수 있는 것이 바람직하다.
전술한 제1 입자상과 제2 입자상은 5 : 95 ~ 95 : 5 중량비로 포함되어 있는 것이 바람직하다. 만약, 제1 입자상의 중량 비율이 5 미만이면 가역용량이 작아 고용량 전극활물질로서의 효과가 미비하고, 또한 제2 입자상 내에 리튬이 과도하게 함유되어 있어 수분 등과의 반응으로 인해 안전성의 문제가 생길 수 있다. 한편, 제1 입자상의 중량 비율이 95 초과이면, 전지의 충방전시 리튬 이온과의 반응으로 인한 비가역상인 리튬산화물이나 리튬금속산화물이 너무 많이 생성되어 초기효율이 저하될 수 있다.
또한, 본 발명의 전극활물질은 상기 코어부 외부에 코팅된 도전성 탄소층을 구비한다. 본 발명의 전극활물질 코어부는 전지의 초기효율을 증대시키지만, 전기전도성이 낮아 충방전시에 율속 특성이 좋지 못하다. 율속 특성(rate capability)이란, 충방전의 속도에 대한 특성으로서, 충방전 속도가 우수하면 율속 특성이 우수하다고 볼 수 있다. 본 발명에 따른 코어부는 고용량을 갖지만, 실제 사용되는 전류 영역에서 율속 특성이 좋지 못하면 제 용량을 다 사용하지 못할 수 있고, 결국 고용량의 장점을 살리지 못하는 결과를 초래할 수 있다.
따라서, 본 발명의 전극활물질은 도전성 탄소 코팅에 의해 전기 전도성을 높이고 그에 따라 율속 특성을 향상시킴으로써 코어부가 갖는 고용량의 장점이 충분히 발휘할 수 있다.
본 발명에서 코팅층을 형성하는 도전성 탄소는 도전성을 갖는 탄소계 물질이면 특별히 제한되지 않는다. 비결정질 또는 결정질일 수 있으며, 도전성 탄소 전구체가 탄화되어 형성되거나, 도전성 탄소 입자가 직접 코팅되어 형성될 수도 있다. 도전성 탄소의 전구체로는 탄소를 함유하고 있는 액상 또는 기상의 유기 화합물이라면 제한 없이 사용될 수 있다. 예를 들면, 도전성 탄소의 전구체로는 핏치, 중질유(heavy oil), 레진과 같은 액상 전구체, 및 메탄, 에틸렌, 아세틸렌 등과 같은 기상 전구체가 있으며, 이때, 상기 레진으로는 가교결합 후 탄화가 될 수 있는 열경화성 수지(thermosettiing resin)이 적합하며, 구체적으로는 요소 수지, 멜라민 수지, 페놀 수지, 에폭시 수지, 불포화폴리에스테르 수지, 알킬 수지, 알키드 수지, 우레탄 수지 등이 잇으나, 여기에 한정되지는 않는다.
또한, 도전성 탄소 입자로는 아세틸렌 블랙(acetylene black), 써멀 블랙(thermal black), 퍼니스 블랙(furnace black), 채널 블랙(channel black)과 같은 카본 블랙(carbon black) 및 카본 파이버(carbon fiber), 카본 튜브(carbon tube) 등을 예시할 수 있으나, 이는 단지 예시일뿐 이에 한정되는 것은 아니다.
도전성 탄소의 함량은 코팅 방법이나 또는 활물질이 사용되는 구체적인 전지의 종류에 따라 다양하게 채택될 수 있다. 예를 들면, 코어부를 형성하는 코어부 물질 100 중량부에 대하여 2 내지 900 중량부, 또는 2 내지 100 중량부, 또는 2 내지 20 중량부일 수 있으나, 이에 한정되는 것은 아니다. 함량이 2 중량부 미만이면 표면에 균일한 코팅이 되지 않아 도전성이 충분히 확보되지 않을 수 있고, 900 중량부를 초과하면 코어부의 비율이 상대적으로 작아져서 고용량을 구현할 수 없다.
먼저, 산소를 포함하지 않는 리튬염, 및 리튬과 합금화가 가능한 (준)금속의 산화물을 혼합하고 열처리하여 전술한 코어부 물질을 제조한다(S1).
상기 (준)금속산화물은 리튬과 합금화가 가능한 금속 또는 준금속의 산화물이라면 특별히 제한되지 않는다. 이의 비제한적인 예로는 Si, Sn, Al, Sb, Bi, As, Ge, Pb, Zn, Cd, In, Ti, Ga 및 이들의 합금 등의 산화물을 들 수 있다.
또한, 상기 (준)금속산화물과 혼합되어 제2 입자상 부분을 형성하는 리튬염은, 산소를 포함하지 않는 리튬염이 사용될 수 있다. 이는, 리튬염이 산소를 포함하고 있는 경우, 열처리 단계에서 산화리튬이 생성되어 리튬과 더불어 산소도 금속산화물과 반응하여 초기 효율을 저하시킬 수 있기 때문이다.
이러한 산소를 포함하지 않는 리튬염의 예로는 LiCl, LiBF4, LiAlCl4, LiSCN, LiSbF6, LiPF6, LiAsF6, LiB10Cl10, LiF, LiBr, LiI 등이 있으나, 이에 제한되지 않는다.
전술한 산소를 포함하지 않는 리튬염과 (준)금속산화물은 5 : 95 ~ 80 : 20 중량 비율로 혼합되는 것이 바람직하다. 만약, 산소를 포함하지 않는 리튬염의 중량 비율이 5 미만이면, (준)금속 산화물과 반응하는 리튬의 양이 충분치 않기 때문에 리튬을 함유하는 제2 입자상이 너무 적게 형성되고, 이로 인해 추후 전지의 초기 충방전시 음극으로 삽입되는 리튬 이온과 (준)금속산화물의 반응으로 인한 비가역상인 리튬산화물이나 리튬금속산화물이 너무 많이 생성되어 전지의 초기효율 증가 효과가 미비할 수 있다. 한편, 산소를 포함하지 않는 리튬염의 중량 비율이 80 초과이면, 과도한 양의 리튬이 제2 입자상에 함유되어 있어 전지의 안전성 문제가 발생할 수 있으며, 또는 제2 입자상 내 함유될 수 있는 리튬 양이 초과되어 리튬이 석출될 수 있다.
본 발명에서 상기 산소를 포함하지 않는 리튬염 및 리튬과 합금화가 가능한 (준)금속산화물을 혼합하는 방법으로는 다음과 같은 화학적 또는 기계적 혼합 방법이 있다.
우선, 본 발명의 첫번째 실시 형태인 화학적 혼합 방법은, 산소를 포함하지 않는 리튬염을 용매에 용해시켜 제조된 용액에 금속산화물을 분산시켜 분산액을 형성하는 단계; 및 상기 분산액을 건조하는 단계를 포함할 수 있다.
전술한 산소를 포함하지 않는 리튬염을 용해시키고, 합금화가 가능한 (준)금속산화물을 분산시키기 위한 용매 또는 분산매는 특별한 제한이 없으며, 이에 의해서 용해 및 혼합이 균일하게 이루어질 수 있고, 이후 용이하게 제거될 수 있는 것이 바람직하다. 상기 용매 또는 분산매의 비제한적인 예로는 증류수; 에탄올, 메탄올 등의 알코올류; 아세톤, 테트라하이드로퓨란, 메틸렌클로라이드, 클로로포름, 디메틸포름아미드, N-메틸-2-피롤리돈, 시클로헥산, 디클로로메탄, 디메틸설폭사이드, 아세토니트릴, 피리딘, 아민류 등 또는 이들의 혼합액 등이 있다.
이러한 용매 또는 분산매에 상기 리튬염을 용해시킨 후 상기 (준)금속산화물을 분산시켜 분산액을 형성할 경우, 일반적으로 당 업계에서 알려진 분산 장치를 이용하여 (준)금속산화물이 분산되도록 할 수 있다. 상기 분산 장치로는 분산매에 분산시킬 물질이 분산되도록 하는 장치라면 특별히 제한하지 않으며, 그 예로 초음파 분산장치, 마그네틱 스터링 장치, 스프레이 드라이어 장치 등을 들 수 있다.
이후, 형성된 분산액을 25 내지 28 ℃의 실온에서 또는 50 내지 200 ℃의 온도에서 건조하여 용매 또는 분산매를 제거하면, (준)금속산화물 표면 상에 리튬염이 형성된 혼합물을 얻을 수 있다. 다만, 용매 또는 분산매를 제거하는 방법은 당 업계에서 알려진 방법들을 이용할 수 있다.
본 발명에서는 전술한 화학적 혼합 방법 이외에 기계적 혼합 방법을 이용하여 산소를 함유하지 않는 리튬염 및 리튬과 합금화가 가능한 (준)금속산화물을 균일하게 혼합할 수 있다. 여기서, 기계적 혼합이란 기계적 힘을 가하여 혼합하고자 하는 입자들을 분쇄 및 혼합하여 균일한 혼합물을 형성하는 것이다.
일반적으로 기계적 혼합은 화학적으로 불활성 비드(bead) 등을 이용하는 볼 밀(high energy ball mill), 유성 밀(planetary mill), 교반 볼 밀(stirred ball mill), 진동 밀(vibrating mill) 등과 같은 기계적 혼합 장치를 이용하는데, 회전 속도, 볼-분말 무게 비율, 볼의 크기, 혼합 시간, 혼합 온도 및 분위기 등의 공정 변수들을 변화시킬 수 있다. 이때, 우수한 혼합 효과를 얻기 위하여 에탄올과 같은 알코올, 스테아르산(stearic acid)과 같은 고급 지방산을 공정 제어제(processing control agent)로서 첨가할 수 있다. 상기 공정 제어제는 혼합물의 100 중량부를 기준으로 약 2.0 중량부 이하, 바람직하게는 0.5 중량부 이하로 첨가할 수 있다. 상기 공정 제어제를 첨가하는 경우에는 혼합시간을 줄일 수 있다.
또한, 기계적 혼합 공정에서는 장시간 동안 고온에서 회전 속도를 높이는 방식으로 혼합 시간, 혼합 온도, 회전 속도 등의 조건을 변화시킬 경우, 산소를 포함하지 않는 리튬염 및 리튬과 합금화가 가능한 (준)금속산화물을 분쇄 및 혼합하는 것과 동시에 기계적 합금화(Mechanical Alloying) 처리가 이루어질 수 있다. 이러한 기계적 혼합 및 기계적 합금화 공정을 통해서 본 발명은 균일한 조성의 합금 형태인 전극활물질을 얻을 수 있다. 이 경우, 추후에 불활성 분위기에서의 열처리를 행하지 않을 수 있다.
상기와 같이 형성된 혼합물을 반응기 내에서 불활성 분위기로 열처리하면, (준)금속산화물과 그 표면에 형성되어 있는 리튬염의 리튬이 서로 반응하여 새로운 결합을 형성하고, 그 결과 합금화가 가능한 (준)금속산화물 및 상기 (준)금속산화물과 동일한 (준)금속 및 리튬을 동시에 함유하는 산화물이 서로 혼재되어 있는 반응물을 얻을 수 있다. 이 과정에서, 상기 리튬염의 음이온 부분이 가스로 방출된다.
이 때, 열처리 온도 범위는 산소를 포함하지 않는 리튬염의 용융점 내지 상기 리튬염의 끓는점 사이의 온도이기만 하면 특별한 제한이 없으며, 산소를 포함하지 않는 리튬염의 종류에 따라 달라질 수 있다. 만약, 리튬염의 용융점 미만일 경우에는 리튬염과 (준)금속산화물의 반응이 일어나지 않을 수 있으며, 리튬염의 끓는점을 초과할 경우에는 리튬염이 (준)금속산화물과 충분히 반응하기 전에 상기 리튬염이 가스형태로 방출될 수 있다. 따라서, 상기 열처리 온도 범위는 500 내지 2000 ℃ 범위인 것이 바람직하다.
특히, 산소를 포함하지 않는 리튬염인 LiCl를 (준)금속산화물인 SiO와 혼합 후 열처리할 경우에는, 1300 ℃ 이하의 온도가 바람직하다. 왜냐하면, 상기 SiO가 1300 ℃ 초과의 온도에서 SiO2와 SiO로 분리되어 성장하는 경향이 강해 SiO의 두께 제어의 장점이 줄어들 수 있다. 따라서, 열처리를 산소를 포함하지 않는 리튬염의 용융점 내지 상기 리튬염의 끓는점 사이의 온도에서 수행하되, 이때 (준)금속산화물의 종류를 고려하는 것이 바람직하다.
상기 혼합물의 열처리는 산소와의 접촉을 차단하기 위하여, 질소 가스, 아르곤 가스, 헬륨 가스, 크립톤 가스 또는 크세논 가스 등이 존재하는 불활성 분위기에서 행하는 것이 바람직하다. 만약, 혼합물의 열처리시, 상기 혼합물이 산소와 접촉하게 되면 리튬과 산소가 함께 금속산화물과 반응하여 리튬산화물이나 리튬메탈산화물을 형성하기 때문에, 전지의 초기 효율 증대 효과가 감퇴될 수 있다.
다음으로, 상기 코어부 물질 표면에 도전성 탄소를 코팅한다(S2).
도전성 탄소의 코팅은 코어부 물질과 액상 또는 기상의 도전성 탄소 전구체를 혼합하고 열처리하여 수행되거나, 코어부 물질과 도전성 탄소 입자의 기계적 합금화 방식으로 수행될 수 있다.
탄소 전구체를 사용하는 경우에는, 탄소 전구체를 코어부 물질 표면에 접촉시킨 후 열처리하여 탄소 전구체를 탄화시킴으로써 도전성 탄소 코팅층을 형성하게 된다. 도전성 탄소 코팅층이 코어부 외부에 균일하게 형성되기 위해서는 탄소 전구체가 코어부 물질과 균일하게 혼합되는 것이 바람직하다. 액상의 탄소 전구체를 사용하는 경우에는 분산제를 같이 첨가할 수 있고, 기상의 탄소 전구체를 사용하는 경우에는 코어부 물질에 기상의 탄소 전구체를 연속적으로 투입하면서 코어부 물질 표면에 코팅층이 형성되도록 하는 회전 관상로를 사용할 수 있다. 전구체의 열처리 온도로는 700 내지 1,300℃가 바람직하다. 열처리 시에는 불활성 분위기 하에서 수행되는 것이 바람직하다.
도전성 탄소 입자를 코어부 물질에 직접 코팅하기 위해서는 전술한 바와 같은 기계적 합금화 방식을 적용할 수 있다. 코어부 물질과 도전성 탄소 입자의 혼합과 동시에 기계적 응력이 가해지면서 도전성 탄소 입자가 코어부 물질 표면에 부착될 수 있다.
상기 제조된 본 발명의 전극 활물질은 양극 활물질 또는 음극 활물질로 사용될 수 있으며, 바람직하게는 음극 활물질로 사용될 수 있다.
본 발명의 전극 활물질은 당 분야에서 통상적으로 사용되는 제조방법에 따라 양극 또는 음극으로 제조될 수 있다. 예를 들면, 본 발명의 전극 활물질에 결착제와 용매, 필요에 따라 도전제와 분산제를 혼합 및 교반하여 슬러리를 제조한 후, 이를 집전체에 도포하고 압축하여 전극을 제조할 수 있다.
결착제로는 비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐리덴플루오라이드(polyvinylidenefluoride), 폴리아크릴로니트릴(polyacrylonitrile), 폴리메틸메타크릴레이트(polymethylmethacrylate) 등, 다양한 종류의 바인더 고분자가 사용될 수 있다.
전극이 제조되면, 이를 사용하여 당분야에 통상적으로 사용되는, 양극과 음극 사이에 개재된 세퍼레이터 및 전해액을 구비하는 리튬 이차전지가 제조될 수 있다.
본 발명에서 사용되는 전해액에 있어서, 전해질로서 포함될 수 있는 리튬염은 리튬 이차전지용 전해액에 통상적으로 사용되는 것들이 제한 없이 사용될 수 있으며, 예를 들어 상기 리튬염의 음이온으로는 F-, Cl-, Br-, I-, NO3 -, N(CN)2 -, BF4 -, ClO4 -, PF6 -, (CF3)2PF4 -, (CF3)3PF3 -, (CF3)4PF2 -, (CF3)5PF-, (CF3)6P-, CF3SO3 -, CF3CF2SO3 -, (CF3SO2)2N-, (FSO2)2N- , CF3CF2(CF3)2CO-, (CF3SO2)2CH-, (SF5)3C-, (CF3SO2)3C-, CF3(CF2)7SO3 -, CF3CO2 -, CH3CO2 -, SCN- 및 (CF3CF2SO2)2N-로 이루어진 군에서 선택된 어느 하나일 수 있다.
본 발명에서 사용되는 전해액에 있어서, 전해액에 포함되는 유기 용매로는 리튬 이차전지용 전해액에 통상적으로 사용되는 것들이 제한 없이 사용될 수 있으며, 대표적으로 프로필렌 카보네이트(propylene carbonate, PC), 에틸렌 카보네이트(ethylene carbonate, EC), 디에틸 카보네이트(diethyl carbonate, DEC), 디메틸 카보네이트(dimethyl carbonate, DMC), 에틸메틸 카보네이트(EMC), 메틸프로필 카보네이트, 디프로필 카보네이트, 디메틸설퍼옥사이드, 아세토니트릴, 디메톡시에탄, 디에톡시에탄, 비닐렌 카보네이트, 설포란, 감마-부티로락톤, 프로필렌 설파이트 및 테트라하이드로푸란으로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물 등이 대표적으로 사용될 수 있다. 특히, 상기 카보네이트계 유기용매 중 고리형 카보네이트인 에틸렌 카보네이트 및 프로필렌 카보네이트는 고점도의 유기용매로서 유전율이 높아 전해질 내의 리튬염을 잘 해리시키므로 바람직하게 사용될 수 있으며, 이러한 고리형 카보네이트에 디메틸 카보네이트 및 디에틸 카보네이트와 같은 저점도, 저유전율 선형 카보네이트를 적당한 비율로 혼합하여 사용하면 높은 전기 전도율을 갖는 전해액을 만들 수 있어 더욱 바람직하게 사용될 수 있다.
선택적으로, 본 발명에 따라 저장되는 전해액은 통상의 전해액에 포함되는 과충전 방지제 등과 같은 첨가제를 더 포함할 수 있다.
또한, 세퍼레이터로는 종래에 세퍼레이터로 사용된 통상적인 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름을 단독으로 또는 이들을 적층하여 사용할 수 있으며, 또는 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포를 사용할 수 있으나, 이에 한정되는 것은 아니다.
본 발명에서 사용되는 전지 케이스는 당분야에서 통상적으로 사용되는 것이 채택될 수 있고, 전지의 용도에 따른 외형에 제한이 없으며, 예를 들면, 캔을 사용한 원통형, 각형, 파우치(pouch)형 또는 코인(coin)형 등이 될 수 있다.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.
실시예 1
<코어부 물질 제조>
에탄올 염화리튬(Lithium Chloride, LiCl) 50 중량부를 용해시킨 후, 일산화규소(SiO) 50 중량부를 균일하게 분산시켜 분산액을 얻었다. 이 분산액을 70℃의 온도로 가열하여 용매를 제거하고 혼합물을 얻는다. 상기 혼합물을 질소 분위기 하에서 800℃의 온도로 열처리하여 본 발명에 따른 코어부 물질을 제조했다.
<도전성 탄소 코팅>
레소르시놀(resorcinol) 40 mmol, 포름알데히드(formaldehyde) 40 mmol(37 중량% 수용액 3000 mL), 촉매로서 소듐카보네이트(sodium carbonate) 0.75 mmol, 분산제로서 CTAB(cetyltrimethylammonium bromide) 9.88 mmol을 증류수 1000 mL에 분산시킨 후, 상기 코어부 물질 10g을 첨가하고 85℃에서 3일간 가열하여 레소르시놀-포름알데히드 졸 (RF sol)을 제조하였다.
상기 코어부 물질이 포함된 RF sol을 아르곤 분위기에서 900℃의 온도로 5 시간 동안 열처리하여, 상기 코어부 물질 표면에 도전성 탄소층을 형성하였다.
상기 도전성 탄소층의 탄소 함량은 코어부를 형성하는 코어부 물질 100 중량부에 대하여 5 중량부로 확인되었으며, 코팅 두께는 약 10 nm로 확인되었다. 상기 도전성 탄소층을 구비한 본 발명의 전극활물질의 TEM 사진을 도 1에 나타내었다.
<전지 제조>
상기 제조된 전극활물질 분말, 바인더로 폴리 비닐리덴 플루오라이드(polyvinylidene fluoride, PVdF), 및 도전제로 아세틸렌 블랙을 88:10:2의 중량비로 혼합하고, 이들을 용매인 N-메틸-2-피롤리돈(N-methyl-2-pyrrolidone, NMP)와 함께 혼합하여 균일한 전극 슬러리를 제조하였다. 제조된 전극 슬러리를 구리 집전체의 일면에 65 ㎛의 두께로 코팅하고, 건조 및 압연한 후 필요한 크기로 펀칭(punching)하여 전극을 제조하였다.
에틸렌 카보네이트(EC) 및 디에틸 카보네이트(DEC)를 30:70의 부피비로 혼합하고, 상기 비수전해액 용매에 LiPF6를 첨가하여 1M LiPF6 비수전해액을 제조하였다.
본 발명에 따라 상기 제조된 전극을 음극으로 사용하고, counter 전극으로 리튬 금속 호일(foil)을 사용하며, 양 전극 사이에 폴리올레핀 분리막을 개재시킨 후, 상기 전해액을 주입하여 코인형 전지를 제조하였다.
실시예 2
도전성 탄소 코팅을 수행하기 위해 메탄을 원료로 회전 관상로에서 열처리를 진행한 것을 제외하고는, 실시예 1과 동일한 방법으로 전극활물질 및 전지를 제조하였다.
메탄을 이용한 도전성 탄소 코팅층 형성방법은 다음과 같다.
20g의 코어부 물질을 회전 관상로에 투입하고, 아르곤 가스를 0.5L/분으로 흘려준 후, 온도를 5℃/분의 속도로 900℃까지 승온하였다. 회전 관상로를 10 rpm/분의 속도로 회전시키면서 아르곤 가스를 1.8L/분, 메탄 가스를 0.3L/분으로 흘려주며 5시간 동안 열처리를 행하여 도전성 탄소 코팅층을 구비한 전극활물질을 제조하였다.
상기 도전성 탄소층의 탄소 함량은 코어부를 형성하는 코어부 물질 100 중량부에 대하여 5 중량부로 확인되었다. 상기 도전성 탄소층을 구비한 본 발명의 전극활물질의 TEM 사진을 도 2에 나타내었다.
실시예 3
도전성 탄소 코팅을 수행하기 위해, 코어부를 형성하는 코어부 물질 100 중량부에 대하여 D50 = 15 ㎛인 인조흑연 10 중량부를 혼합하고, 직경이 3 mm인 스테인레스 볼과 상기 혼합물 분말의 중량비가 5:1이 되게한 후, 호소카와 마이크론(Hosokawa Micron)사의 Mechano Fusion 장치를 이용하여 600 rpm/분의 속도로 30 분간 기계적 합금화(mechanical alloying)을 수행한 것을 제외하고는, 실시예 1과 동일한 방법으로 전극활물질 및 전지를 제조하였다.
상기 도전성 탄소층을 구비한 본 발명의 전극활물질의 TEM 사진을 도 3에 나타내었다.
비교예 1
코어부 물질에 코팅 처리를 하지 않은 전극활물질을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 전극활물질 및 전지를 제조하였다.
비교예 2
코어부 물질 100 중량부에 대하여 인조흑연 5 중량부를 단순 혼합한 것을 제외하고는 실시예 3과 동일한 방법으로 전극활물질 및 전지를 제조하였다.
실험예 - 전지의 충방전 특성
실시예 및 비교예에 따라 제조된 전지를 사용하여 충방전 특성을 평가하였다.
전지의 충전은 5mV까지 정전류 충전한 후, 5mV에서 전류가 0.005C에 도달할 때까지 정전한 후 종료하였다. 전지의 방전은 1.0v까지 정전류로 방전을 수행하였다.
율속 특성 평가는, 율속 특성 평가를 수행하기 전에 충전 및 방전을 0.1C으로 진행하였고 이때의 충전 및 방전 용량을 기준으로 하여 충전 및 방전 율속을 계산하여 수행되었다. 방전 율속의 경우에는 충전 율속의 영향을 최소화하기 위하여 충전을 0.1C으로 진행한 후 해당 율속으로 방전하여 실험을 수행하였다.
충방전 특성 평가 결과를 하기 표 1에 기재하였다.
[규칙 제26조에 의한 보정 06.05.2013] 
표 1
Figure WO-DOC-TABLE-1
도 1 및 도 2에 나타난 바와 같이, 실시예 1 및 실시예 2의 경우에서처럼 전구체를 이용하여 열처리하여 코팅을 수행한 경우에는 비정질 탄소층이 코어부를 균일하게 둘러싸고 있음을 알 수 있고, 이로 인해 실시예 1 및 실시예 2의 분체저항이 비교예 1에 비해 크게 향상된 것을 확인할 수 있다. 그에 따라, 실시예의 전지는 충전 및 율속 특성이 크게 향상되어 2.0C의 충전 및 방전 율속에서도 90%에 달하는 율속 특성 결과가 나타났다.
인조흑연을 기계적 합금화 방식으로 코팅한 실시예 3 및 비교예 2의 경우에는 실시예 1 및 실시예 2에 비하여 전도성이 다소 저하되나 전체적으로는 유사한 결과를 나타냄을 알 수 있다.

Claims (17)

  1. (a) 리튬과 합금화가 가능한 (준)금속의 산화물로 된 제1 입자상, 및 (b) 상기 (준)금속과 동일한 (준)금속 및 리튬을 동시에 함유하는 산화물로 된 제2 입자상을 포함하는 코어부; 및
    상기 코어부 외부에 코팅된 도전성 탄소층
    을 포함하는 리튬 이차전지용 전극활물질.
  2. 제1항에 있어서,
    상기 제1 입자상과 제2 입자상은 제1 입자상:제2 입자상 = 5:95 ~ 95:5 중량비로 포함되어 있는 것을 특징으로 하는 리튬 이차전지용 전극활물질.
  3. 제1항에 있어서,
    상기 제1 입자상의 (준)금속 산화물 중 (준)금속은 Si, Sn, Al, Sb, Bi, As, Ge, Pb, Zn, Cd, In, Ti, Ga 및 이들의 합금으로 이루어진 군으로부터 선택된 것을 특징으로 하는 리튬 이차전지용 전극활물질.
  4. 제1항에 있어서,
    상기 제2 입자상의 (준)금속 및 리튬 함유 산화물은 Li2SiO3, Li2SnO, Li4SiO4, Li2Si2O5, Li6Si2O7, Li2Si3O7, Li8SiO6, Li2SnO3, Li5AlO4, LiAlO2 및 LiAl5O8로 이루어진 군으로부터 선택된 것을 특징으로 하는 리튬 이차전지용 전극활물질.
  5. 제1항에 있어서,
    상기 도전성 탄소는 비결정질, 결정질 또는 이들의 혼합물인 것을 특징으로 하는 리튬 이차전지용 전극활물질.
  6. 제1항에 있어서,
    상기 도전성 탄소의 함량은 코어부를 형성하는 코어부 물질 100 중량부에 대하여 2 내지 900 중량부인 것을 특징으로 하는 리튬 이차전지용 전극활물질.
  7. 제1항에 있어서,
    상기 전극활물질은 음극활물질인 것을 특징으로 하는 리튬 이차전지용 전극활물질.
  8. (S1) 산소를 포함하지 않는 리튬염, 및 리튬과 합금화가 가능한 (준)금속의 산화물을 혼합하고 열처리하여 코어부 물질을 제조하는 단계; 및
    (S2) 상기 코어부 물질 표면에 도전성 탄소를 코팅하는 단계
    를 포함하는 제1항에 따른 리튬 이차전지용 전극활물질의 제조방법.
  9. 제8항에 있어서,
    상기 산소를 포함하지 않는 리튬염은 LiCl, LiBF4, LiAlCl4, LiSCN, LiSbF6, LiPF6, LiAsF6, LiB10Cl10, LiF, LiBr 및 LiI로 이루어진 군으로부터 선택되는 것을 특징으로 하는 리튬 이차전지용 전극활물질의 제조방법.
  10. 제8항에 있어서,
    상기 (준)금속 산화물 중 (준)금속은 Si, Sn, Al, Sb, Bi, As, Ge, Pb, Zn, Cd, In, Ti, Ga 및 이들의 합금으로 이루어진 군으로부터 선택된 것을 특징으로 하는 리튬 이차전지용 전극활물질의 제조방법.
  11. 제8항에 있어서,
    상기 (S1) 단계에서 리튬염 및 (준)금속 산화물의 혼합은 습식 혼합 또는 기계적 혼합인 것을 특징으로 하는 리튬 이차전지용 전극활물질의 제조방법.
  12. 제8항에 있어서,
    상기 (S1) 단계에서 열처리는 500 내지 2,000℃의 온도에서 수행되는 것을 특징으로 하는 리튬 이차전지용 전극활물질의 제조방법.
  13. 제8항에 있어서,
    상기 (S2) 단계에서 도전성 탄소의 코팅은 코어부 물질과 액상 또는 기상의 도전성 탄소 전구체를 혼합하고 열처리하여 수행되는 것을 특징으로 하는 리튬 이차전지용 전극활물질의 제조방법.
  14. 제8항에 있어서,
    상기 (S2) 단계에서 도전성 탄소의 코팅은 코어부 물질과 도전성 탄소 입자의 기계적 합금화 방식으로 수행되는 것을 특징으로 하는 리튬 이차전지용 전극활물질의 제조방법.
  15. 제8항에 있어서,
    상기 제조되는 전극활물질은 음극활물질인 것을 특징으로 하는 리튬 이차전지용 전극활물질의 제조방법.
  16. 전극 집전체, 및 상기 전극 집전체의 적어도 일면에 형성되며 전극활물질을 포함하는 전극활물질층을 구비한 리튬 이차전지의 전극에 있어서,
    상기 전극활물질이 제1항 내지 제7항 중 어느 한 항의 리튬 이차전지용 전극활물질인 것을 특징으로 하는 리튬 이차전지용 전극.
  17. 양극, 음극 및 상기 양극과 음극 사이에 개재된 세퍼레이터를 포함하는 리튬 이차전지에 있어서,
    상기 양극 또는 음극이 제16항에 따른 리튬 이차전지용 전극인 것을 특징으로 하는 리튬 이차전지.
PCT/KR2013/001601 2012-02-28 2013-02-27 리튬 이차전지용 전극활물질 및 그 제조방법 WO2013129850A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201380011547.5A CN104145356A (zh) 2012-02-28 2013-02-27 锂二次电池用电极活性材料及其制备方法
EP13754549.7A EP2806488A4 (en) 2012-02-28 2013-02-27 ELECTRODE ACTIVE MATERIAL FOR LITHIUM SECONDARY BATTERY AND METHOD OF MANUFACTURING THE SAME
IN1862MUN2014 IN2014MN01862A (ko) 2012-02-28 2013-02-27
JP2014559829A JP2015512130A (ja) 2012-02-28 2013-02-27 リチウム二次電池用電極活物質及びその製造方法
US14/467,365 US20140363741A1 (en) 2012-02-28 2014-08-25 Electrode active material for lithium secondary battery and preparation thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20120020471 2012-02-28
KR10-2012-0020471 2012-02-28
KR1020130021271A KR101555932B1 (ko) 2012-02-28 2013-02-27 리튬 이차전지용 전극활물질 및 그 제조방법
KR10-2013-0021271 2013-02-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/467,365 Continuation US20140363741A1 (en) 2012-02-28 2014-08-25 Electrode active material for lithium secondary battery and preparation thereof

Publications (1)

Publication Number Publication Date
WO2013129850A1 true WO2013129850A1 (ko) 2013-09-06

Family

ID=49450567

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/001601 WO2013129850A1 (ko) 2012-02-28 2013-02-27 리튬 이차전지용 전극활물질 및 그 제조방법

Country Status (7)

Country Link
US (1) US20140363741A1 (ko)
EP (1) EP2806488A4 (ko)
JP (1) JP2015512130A (ko)
KR (1) KR101555932B1 (ko)
CN (1) CN104145356A (ko)
IN (1) IN2014MN01862A (ko)
WO (1) WO2013129850A1 (ko)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6359836B2 (ja) * 2014-02-07 2018-07-18 信越化学工業株式会社 非水電解質二次電池用負極材、非水電解質二次電池用負極及びその製造方法並びに非水電解質二次電池
CN105702961B (zh) * 2014-11-27 2019-03-29 比亚迪股份有限公司 一种正极材料和一种锂离子电池
WO2016121320A1 (ja) * 2015-01-28 2016-08-04 三洋電機株式会社 非水電解質二次電池用負極活物質及び非水電解質二次電池
CN107851789B (zh) * 2015-08-28 2021-03-12 株式会社大阪钛技术 含Li氧化硅粉末及其制造方法
KR102331069B1 (ko) * 2016-11-30 2021-11-25 삼성에스디아이 주식회사 복합양극활물질, 이를 포함하는 양극 및 리튬전지
CN110024188B (zh) * 2016-11-30 2022-10-25 松下知识产权经营株式会社 负极材料及非水电解质二次电池
KR102164252B1 (ko) 2017-05-04 2020-10-12 주식회사 엘지화학 음극 활물질, 상기 음극 활물질을 포함하는 음극, 상기 음극을 포함하는 이차 전지 및 상기 음극 활물질의 제조 방법
CN115440956A (zh) 2017-05-04 2022-12-06 株式会社Lg新能源 负极活性材料、包含所述负极活性材料的负极以及包含所述负极的二次电池
US11296312B2 (en) 2017-12-08 2022-04-05 Lg Energy Solution, Ltd. Negative electrode active material for lithium secondary battery and method for preparing the same
CN111326721B (zh) * 2018-12-17 2021-05-07 荣盛盟固利新能源科技有限公司 一种复合负极预嵌锂材料的制备方法
CN109686944B (zh) * 2018-12-21 2022-05-31 四川翔丰华新能源材料有限公司 一种碳包覆锂合金复合电极材料及其制备方法
KR102286231B1 (ko) * 2020-07-29 2021-08-06 에스케이이노베이션 주식회사 리튬이 도핑된 규소계 산화물 음극 활물질, 이의 제조방법, 이를 포함하는 음극 및 이차전지
CN112467138B (zh) * 2020-09-09 2022-09-16 珠海中科兆盈丰新材料科技有限公司 一种铝掺杂多孔硅碳复合材料的制备方法、锂离子电池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007059213A (ja) * 2005-08-24 2007-03-08 Toshiba Corp 非水電解質電池および負極活物質
KR20100024802A (ko) * 2008-08-26 2010-03-08 삼성전자주식회사 다공성 애노드 활물질, 그 제조방법, 이를 포함한 애노드 및 리튬 전지
WO2010058990A2 (ko) * 2008-11-20 2010-05-27 주식회사 엘지화학 이차 전지용 전극활물질 및 그 제조방법
JP2011113862A (ja) * 2009-11-27 2011-06-09 Hitachi Maxell Ltd 非水二次電池およびその製造方法
KR101042009B1 (ko) * 2008-09-30 2011-06-16 한국전기연구원 음극 활물질의 제조방법, 그 음극 활물질 및 이를 구비한 리튬이차전지

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4519592B2 (ja) * 2004-09-24 2010-08-04 株式会社東芝 非水電解質二次電池用負極活物質及び非水電解質二次電池
JP4986166B2 (ja) * 2008-05-08 2012-07-25 日立マクセルエナジー株式会社 リチウム二次電池
JP5121614B2 (ja) * 2008-07-18 2013-01-16 株式会社東芝 電池用活物質、非水電解質電池および電池パック
JP2010272411A (ja) * 2009-05-22 2010-12-02 Shin-Etsu Chemical Co Ltd 非水電解質二次電池用負極材及びその製造方法、ならびにリチウムイオン二次電池及び電気化学キャパシタ
JP5551542B2 (ja) * 2009-09-17 2014-07-16 株式会社オハラ 全固体電池および全固体電池の製造方法
JP5659696B2 (ja) * 2009-12-24 2015-01-28 ソニー株式会社 リチウムイオン二次電池、リチウムイオン二次電池用負極、電動工具、電気自動車および電力貯蔵システム
KR101378125B1 (ko) * 2010-04-19 2014-03-25 주식회사 엘지화학 리튬 이차 전지용 음극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
CN102859760B (zh) * 2010-04-26 2015-06-03 丰田自动车株式会社 电极活性物质的制造方法
JP5320645B2 (ja) * 2010-06-09 2013-10-23 日本カーボン株式会社 リチウムイオン二次電池用負極活物質及び負極
PL2595220T3 (pl) * 2010-07-16 2019-09-30 Lg Chem, Ltd. Elektroda ujemna dla baterii akumulatorowej

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007059213A (ja) * 2005-08-24 2007-03-08 Toshiba Corp 非水電解質電池および負極活物質
KR20100024802A (ko) * 2008-08-26 2010-03-08 삼성전자주식회사 다공성 애노드 활물질, 그 제조방법, 이를 포함한 애노드 및 리튬 전지
KR101042009B1 (ko) * 2008-09-30 2011-06-16 한국전기연구원 음극 활물질의 제조방법, 그 음극 활물질 및 이를 구비한 리튬이차전지
WO2010058990A2 (ko) * 2008-11-20 2010-05-27 주식회사 엘지화학 이차 전지용 전극활물질 및 그 제조방법
JP2011113862A (ja) * 2009-11-27 2011-06-09 Hitachi Maxell Ltd 非水二次電池およびその製造方法

Also Published As

Publication number Publication date
US20140363741A1 (en) 2014-12-11
KR20130098928A (ko) 2013-09-05
EP2806488A4 (en) 2015-10-28
JP2015512130A (ja) 2015-04-23
IN2014MN01862A (ko) 2015-07-03
CN104145356A (zh) 2014-11-12
KR101555932B1 (ko) 2015-09-25
EP2806488A1 (en) 2014-11-26

Similar Documents

Publication Publication Date Title
WO2013129850A1 (ko) 리튬 이차전지용 전극활물질 및 그 제조방법
EP2840634B1 (en) Anode active material, lithium secondary battery comprising the same, and method of manufacturing anode active material
WO2014084502A1 (ko) 규소계 복합체 및 이의 제조방법
WO2010058990A2 (ko) 이차 전지용 전극활물질 및 그 제조방법
WO2013062313A1 (ko) 음극활물질의 제조방법, 그 음극활물질 및 이를 구비한 리튬이차전지
WO2019151814A1 (ko) 음극 활물질, 이를 포함하는 음극 및 리튬 이차전지
WO2015065095A1 (ko) 리튬 이차전지용 음극활물질 및 그 제조방법
WO2019112390A1 (ko) 리튬 이차전지용 음극 활물질 및 이의 제조방법
WO2010079962A2 (ko) 리튬 이차전지용 양극 활물질
WO2010079958A2 (ko) 리튬 이차전지용 양극 활물질
WO2010079949A2 (ko) 리튬 이차전지용 양극 활물질
KR101766535B1 (ko) 리튬 이차전지용 음극활물질, 이의 제조방법, 및 이를 포함하는 리튬 이차전지
WO2019078690A2 (ko) 음극 활물질, 상기 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 이차 전지
WO2011059251A2 (ko) 리튬 이차전지용 음극 활물질 및 이를 구비하는 리튬 이차전지
WO2014098419A1 (ko) 리튬 이차 전지용 음극재, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
JP2022552486A (ja) 負極材料、その製造方法およびその利用、ならびにリチウムイオン電池
WO2015199384A1 (ko) 리튬 이차전지
WO2020130434A1 (ko) 음극 활물질, 그의 제조 방법 및 그를 포함하는 리튬이차전지
WO2019151778A1 (ko) 리튬 이차전지용 음극 활물질, 이를 포함하는 음극 및 상기 음극을 포함하는 리튬 이온 이차 전지
WO2024077933A1 (zh) 硬碳材料及其制备方法、电化学装置及电子装置
US8236447B2 (en) Electrode active material for non-aqueous secondary batteries
WO2014061974A1 (ko) 규소 산화물-탄소 복합체 및 이의 제조방법
KR20140091388A (ko) 음극활물질, 이의 제조방법 및 상기 음극활물질을 이용한 이차 전지
CN114520328A (zh) 一种锂离子电池负极材料及其制备与负极和电池
WO2022139452A1 (ko) 리튬 이차전지용 양극의 제조 방법 및 이에 의하여 제조된 리튬 이차전지용 양극

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13754549

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013754549

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014559829

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE