WO2013125040A1 - 車両の制御装置 - Google Patents

車両の制御装置 Download PDF

Info

Publication number
WO2013125040A1
WO2013125040A1 PCT/JP2012/054636 JP2012054636W WO2013125040A1 WO 2013125040 A1 WO2013125040 A1 WO 2013125040A1 JP 2012054636 W JP2012054636 W JP 2012054636W WO 2013125040 A1 WO2013125040 A1 WO 2013125040A1
Authority
WO
WIPO (PCT)
Prior art keywords
clutch
engine speed
control
idle
engine
Prior art date
Application number
PCT/JP2012/054636
Other languages
English (en)
French (fr)
Inventor
渡辺 秀男
大坪 正明
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to CN201280070550.XA priority Critical patent/CN104136754B/zh
Priority to PCT/JP2012/054636 priority patent/WO2013125040A1/ja
Priority to JP2012532789A priority patent/JP5273309B1/ja
Priority to DE112012000039.0T priority patent/DE112012000039B4/de
Priority to US13/581,575 priority patent/US9051891B2/en
Publication of WO2013125040A1 publication Critical patent/WO2013125040A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/08Introducing corrections for particular operating conditions for idling
    • F02D41/083Introducing corrections for particular operating conditions for idling taking into account engine load variation, e.g. air-conditionning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0215Introducing corrections for particular conditions exterior to the engine in relation with elements of the transmission
    • F02D41/022Introducing corrections for particular conditions exterior to the engine in relation with elements of the transmission in relation with the clutch status
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/101Engine speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1012Engine speed gradient
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/50Input parameters for engine control said parameters being related to the vehicle or its components
    • F02D2200/501Vehicle speed

Definitions

  • the present invention relates to a vehicle control device including a manual transmission.
  • Patent Documents 1 and 2 Conventionally, a vehicle including an engine, a manual transmission, and a clutch provided between the engine and the manual transmission is known (see, for example, Patent Documents 1 and 2).
  • Patent Document 1 discloses a vehicle provided with a clutch pedal for a driver to operate a clutch state.
  • the vehicle of Patent Document 1 when starting with the accelerator off, when the clutch is switched from the disengaged state to the engaged state by operating the clutch pedal, the engine rotation is based on the stroke position and the stroke speed of the clutch. It is configured to increase the number. Thereby, even if it is a vehicle provided with the clutch pedal, it is possible to omit the operation of the accelerator pedal at the time of start and perform a smooth start.
  • Patent Document 2 discloses a vehicle that is not provided with a clutch pedal and is configured to automatically control the state of the clutch based on the amount of operation of the accelerator pedal.
  • the vehicle of Patent Document 2 when the clutch is switched from the disconnected state to the engaged state, the engine is prevented from stalling after the clutch is moved at the first moving speed in order to shorten the time until the completion of the engagement. In order to achieve this, the clutch is moved at a second movement speed smaller than the first movement speed.
  • the vehicle of Patent Document 2 is configured to correct the switching position of the moving speed of the clutch to the disconnected side when the amount of decrease in the engine speed is equal to or greater than a predetermined threshold when starting with the accelerator on. ing. Thereby, it is possible to prevent the impact at the time of clutch engagement and to improve the startability.
  • Patent Document 1 since the conventional vehicle disclosed in Patent Document 1 is based on the assumption that the contact position (touch point) of the clutch is constant, for example, when the contact position of the clutch differs due to manufacturing variation (individual variation) When the contact position of the clutch changes due to aging, there is a problem that it is difficult to appropriately increase the engine speed.
  • Patent Document 2 discloses a configuration for correcting the switching position of the moving speed of the clutch in a vehicle that automatically controls the state of the clutch irrespective of the operation of the driver. Since the state of the clutch depends on the operation of the driver, it is difficult to apply the configuration described in Patent Document 2 to a vehicle including a clutch pedal. Further, in a vehicle equipped with a clutch pedal, it is difficult to learn the engagement point of the clutch at the time of starting operation, and the necessity thereof is low. Therefore, how to perform the engagement point learning has not been sufficiently studied.
  • the present invention has been made to solve the above-described problem, and an object of the present invention is to appropriately increase the engine speed when starting with the accelerator off in a vehicle having a clutch operation unit. It is providing the control apparatus of a simple vehicle.
  • the present invention relates to a control device applied to a vehicle including an engine, a manual transmission, a clutch provided between the engine and the manual transmission, and a clutch operation unit for a driver to operate the state of the clutch. It is. Specifically, the vehicle control device according to the present invention increases the engine speed when the clutch is switched from the disengaged state to the engaged state by operating the clutch operation unit when starting with the accelerator off.
  • the engine speed increase control to be started is configured to start at a predetermined start timing.
  • the vehicle control device determines the start timing of the engine speed increase control at the time of starting at the next accelerator-off when the engine speed tends to decrease during a predetermined period before and after the start of the engine speed increase control. Configured to be faster.
  • the predetermined period before and after the start of the engine speed increase control is a period including the start timing of the engine speed increase control, and is a preset period from the start to the start of the engine speed increase control. .
  • the first threshold value is, for example, a preset rotational speed that is lower than the idle rotational speed.
  • the start timing of the engine speed increase control at the next start with the accelerator off is set. It may be configured to be slow.
  • the case where the engine rotational speed is not increasing is large includes the case where the engine rotational speed is increasing.
  • the second threshold is, for example, a preset rotational speed that is higher than the idle rotational speed.
  • the start timing of the engine speed increase control is advanced.
  • the first correction amount may be larger than the second correction amount that delays the start timing of the engine speed increase control.
  • the start timing of the engine speed increase control can be kept within an appropriate range.
  • the vehicle control device may be configured to start the engine speed increase control when the engine speed decrease tendency is large before the engine speed increase control is started.
  • the start timing of the engine speed increase control may be determined based on the stroke position of the clutch.
  • the engine speed can be appropriately increased at the time of starting with the accelerator off in a vehicle having a clutch operation unit.
  • FIG. 1 is a diagram showing a schematic configuration of a vehicle according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing a schematic configuration of an engine mounted on the vehicle of FIG.
  • FIG. 3 is a skeleton diagram showing a schematic configuration of the manual transmission mounted on the vehicle of FIG.
  • FIG. 4 is a diagram schematically showing a shift pattern of the manual transmission mounted on the vehicle of FIG.
  • FIG. 5 is a diagram showing a schematic configuration of a clutch device mounted on the vehicle of FIG. 6 is a block diagram showing the configuration of a control system such as an ECU mounted on the vehicle shown in FIG.
  • FIG. 7 is a time chart showing a case where the start timing of the idle-up control is ideal when the vehicle of FIG. 1 starts with the accelerator off.
  • FIG. 1 is a diagram showing a schematic configuration of a vehicle according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing a schematic configuration of an engine mounted on the vehicle of FIG.
  • FIG. 3 is
  • FIG. 8 is a time chart showing a case where the start timing of the idle-up control is late when the vehicle of FIG. 1 starts off with the accelerator off.
  • FIG. 9 is a time chart showing a case where the start timing of the idle up control is early when the vehicle of FIG. 1 starts off with the accelerator off.
  • FIG. 10 is a flowchart showing an example of the idle-up process executed by the ECU of FIG.
  • FIG. 11 is a flowchart illustrating an example of a correction process of the start timing of idle-up control executed by the ECU of FIG.
  • FIG. 12 is a graph showing the relationship between the number of starts when the accelerator is off and the start timing of idle-up control.
  • FIG. 13 is a time chart showing a case where the start timing of the idle-up control is late when the vehicle starts off with the accelerator off.
  • FIG. 1 is a diagram showing a schematic configuration of a vehicle according to an embodiment of the present invention.
  • the vehicle shown in FIG. 1 is an FR (front engine / rear drive) type vehicle, which is an engine 1, a manual transmission 2, a clutch device 3, a shift device 5, an accelerator pedal 6, and a clutch pedal, which are driving power sources. 7 etc.
  • driving force (driving torque) generated by the engine 1 is input to the manual transmission 2 via the clutch device 3 from the crankshaft 15 that is the output shaft of the engine 1.
  • the torque input to the manual transmission 2 is shifted by an appropriate transmission ratio by the manual transmission 2 and output from the output shaft 22 (see FIG. 3).
  • the torque output from the output shaft 22 is transmitted to the left and right rear wheels (drive wheels) 44 and 44 via the propeller shaft 41, the differential gear 42, and the axles 43 and 43.
  • each part of the vehicle will be described.
  • FIG. 2 is a diagram showing a schematic configuration of the engine 1 mounted on the vehicle of FIG.
  • the engine (internal combustion engine) 1 is, for example, a multi-cylinder gasoline engine and includes a piston 1b that forms a combustion chamber 1a and a crankshaft 15 that is an output shaft, as shown in FIG.
  • the piston 1b is connected to the crankshaft 15 via a connecting rod 16.
  • the reciprocating motion of the piston 1 b is converted into the rotational motion of the crankshaft 15 by the connecting rod 16.
  • the crankshaft 15 is provided with a signal rotor 17.
  • a plurality of protrusions 17 a are formed at equal intervals on the outer peripheral surface of the signal rotor 17.
  • An engine speed sensor 124 is disposed near the side of the signal rotor 17.
  • the engine speed sensor 124 is, for example, an electromagnetic pickup, and generates a pulse signal (output pulse) corresponding to the number of protrusions 17a passing through a position facing the engine speed sensor 124 when the crankshaft 15 rotates.
  • a water temperature sensor 121 that detects the engine water temperature (cooling water temperature) is disposed in the cylinder block 1 c of the engine 1.
  • a spark plug 103 is disposed in the combustion chamber 1 a of the engine 1.
  • the ignition timing of the spark plug 103 is adjusted by the igniter 104.
  • the igniter 104 is controlled by the ECU 8.
  • An intake passage 11 and an exhaust passage 12 are connected to the combustion chamber 1a.
  • An intake valve 13 is provided between the intake passage 11 and the combustion chamber 1a. By opening and closing the intake valve 13, the intake passage 11 and the combustion chamber 1a are communicated or blocked.
  • An exhaust valve 14 is provided between the exhaust passage 12 and the combustion chamber 1a. By opening and closing the exhaust valve 14, the exhaust passage 12 and the combustion chamber 1a are communicated or blocked.
  • the opening / closing drive of the intake valve 13 and the exhaust valve 14 is performed by the rotation of the intake camshaft and the exhaust camshaft (not shown) to which the rotation of the crankshaft 15 is transmitted.
  • the intake passage 11 is provided with an air cleaner 107, an air flow meter 122, an intake air temperature sensor 123, an electronically controlled throttle valve 105 for adjusting the intake air amount of the engine 1, and the like.
  • an O 2 sensor 126 that detects the oxygen concentration in the exhaust gas, a three-way catalyst 108, and the like are disposed.
  • the throttle valve 105 is driven by a throttle motor 106. Thereby, the opening degree (throttle opening degree) of the throttle valve 105 is adjusted, and the intake air amount of the engine 1 is adjusted according to the throttle opening degree.
  • the throttle opening is detected by a throttle opening sensor 125.
  • the throttle motor 106 is driven and controlled by the ECU 8.
  • an injector (fuel injection valve) 102 is disposed in the intake passage 11. Fuel of a predetermined pressure is supplied to the injector 102 from a fuel tank (not shown) by a fuel pump, and the fuel is injected into the intake passage 11 by the injector 102. The fuel injected by the injector 102 is mixed with intake air to form an air-fuel mixture, which is introduced into the combustion chamber 1a of the engine 1. The air-fuel mixture (fuel + air) introduced into the combustion chamber 1a is ignited by the spark plug 103 and burns and explodes. As the air-fuel mixture burns and explodes in the combustion chamber 1a, the piston 1b reciprocates and the crankshaft 15 is driven to rotate.
  • FIG. 3 is a skeleton diagram showing a schematic configuration of the manual transmission 2 mounted on the vehicle of FIG.
  • the manual transmission 2 is a well-known synchronous meshing manual transmission (for example, 6 forward speeds and 1 reverse speed), and an input shaft 21 is connected via a clutch device 3 as shown in FIG. It is connected to the crankshaft 15 of the engine 1.
  • the output shaft 22 is connected to the propeller shaft 41 (see FIG. 1).
  • the manual transmission 2 is used to transmit the driving torque from the engine 1 to the rear wheels 44 and 44 after shifting with a predetermined gear ratio.
  • the manual transmission 2 includes six sets of forward gears 201 to 206 having different gear ratios (gear ratios), one set of reverse gears 207, and 1-2 shift synchromesh mechanisms 24A, and 3-4 shift syncs.
  • a mesh mechanism 24B, a 5-6 shift synchromesh mechanism 24C, and the like are provided.
  • the forward gears 201 to 206 each have a configuration in which drive gears 211 to 216 externally mounted on the input shaft 21 side and driven gears 221 to 226 externally mounted on the output shaft 22 side are combined.
  • Drive gears 211 to 216 are engaged with driven gears 221 to 226, respectively.
  • the first-speed and second-speed drive gears 211 and 212 are attached so as to rotate integrally with the input shaft 21.
  • the third to sixth drive gears 213 to 216 are attached to the input shaft 21 via bearings (for example, cage and rollers) so as to be relatively rotatable.
  • the 1st and 2nd driven gears 221 and 222 are attached to the output shaft 22 via bearings (for example, cage and rollers) so as to be relatively rotatable.
  • the 3rd to 6th driven gears 223 to 226 are attached so as to rotate integrally with the output shaft 22.
  • the reverse gear stage 207 includes a reverse drive gear 217, a reverse driven gear 227, a reverse idler gear 237, and the like.
  • the synchromesh mechanisms 24A, 24B, and 24C have a known configuration, detailed description thereof is omitted.
  • the synchromesh mechanisms 24A, 24B, and 24C have substantially the same configuration, and include a sleeve 241, a synchronizer ring, a clutch hub, and the like, although not shown in detail.
  • the sleeve 241 is slid in the axial direction by a shift fork (not shown) of the manual transmission 2.
  • the shift fork is operated so as to establish a gear position corresponding to the shift position selected and operated by the shift lever 501 (see FIG. 1) of the shift device 5.
  • the shift lever 501 and the shift fork are mechanically connected by a cable, a link, or the like.
  • the shift position selected by the shift lever 501 is detected by a shift position sensor 502 (see FIG. 1) provided in the manual transmission 2.
  • the shift position sensor 502 may be provided in the vicinity of the shift lever 501.
  • shift pattern (shift gate shape) of the shift gate that is arranged on the floor in the passenger compartment and guides the movement of the shift lever 501 of the shift device 5 will be described.
  • FIG. 4 shows an outline of a shift pattern of the manual transmission 2 having six forward speeds and one reverse speed.
  • the shift lever 501 is configured to perform a selection operation in the direction indicated by an arrow X in FIG. 4 and a shift operation in a direction indicated by an arrow Y perpendicular to the selection operation direction.
  • the 1st-2nd speed select position P1, the 3rd-4th speed select position P2, the 5th-6th speed select position P3, and the reverse select position P4 are arranged in a line.
  • the shift lever 501 can be moved to the 1st speed position 1st or the 2nd speed position 2nd by a shift operation (operation in the arrow Y direction) at the 1st speed-2nd speed select position P1.
  • the shift lever 501 When the shift lever 501 is operated to the 1st speed position 1st, the sleeve 241 of the 1-2 shift synchromesh mechanism 24A of the manual transmission 2 operates to the 1st speed establishment side (right side in FIG. 3) to operate the first speed. The speed is established. Further, when the shift lever 501 is operated to the 2nd speed position 2nd, the sleeve 241 of the 1-2 speed synchromesh mechanism 24A is operated to the 2nd speed establishment side (left side in FIG. 3), and the 2nd speed is set. To establish.
  • the shift lever 501 can be moved to the 3rd speed position 3rd or the 4th speed position 4th by a shift operation at the 3rd speed-4th gear select position P2.
  • the shift lever 501 is operated to the 3rd speed position 3rd
  • the sleeve 241 of the 3-4 shift synchromesh mechanism 24B of the manual transmission 2 is operated to the 3rd speed establishment side (the right side in FIG. 3) and the third The speed is established.
  • the shift lever 501 is operated to the 4th speed position 4th
  • the sleeve 241 of the 3-4 shift synchromesh mechanism 24B operates to the 4th speed establishment side (left side in FIG. 3), and the 4th speed stage is set. To establish.
  • the shift lever 501 can be moved to the 5th speed position 5th or the 6th speed position 6th by a shift operation at the 5th-6th speed select position P3.
  • the shift lever 501 is operated to the fifth speed position 5th
  • the sleeve 241 of the 5-6 shift synchromesh mechanism 24C of the manual transmission 2 operates to the fifth speed establishment side (the right side in FIG. 3) and moves to the fifth speed position.
  • the speed is established.
  • the shift lever 501 is operated to the 6th speed position 6th
  • the sleeve 241 of the 5-6 shift synchromesh mechanism 24C operates to the 6th speed establishment side (left side in FIG. 3), and the 6th speed stage is set. To establish.
  • the shift lever 501 can be moved to the reverse position REV by a shift operation at the reverse select position P4.
  • the synchromesh mechanisms 24A, 24B, 24C of the manual transmission 2 are in the neutral state (neutral state), and the reverse idler gear 237 of the manual transmission 2 is activated. As a result, the reverse gear is established.
  • the 3rd-4th gear select position P2 is the neutral position.
  • the synchromesh mechanisms 24A, 24B, 24C of the manual transmission 2 are in the neutral state, and the manual transmission 2 is torqued between the input shaft 21 and the output shaft 22. Neutral state with no transmission.
  • FIG. 5 is a diagram showing a schematic configuration of the clutch device 3 mounted on the vehicle of FIG.
  • the clutch device 3 includes a clutch mechanism 30 (also simply referred to as “clutch 30”) and a clutch operating device 300 that operates the clutch 30 in response to a depression operation of the clutch pedal 7.
  • a clutch mechanism 30 also simply referred to as “clutch 30”
  • a clutch operating device 300 that operates the clutch 30 in response to a depression operation of the clutch pedal 7.
  • the clutch 30 is configured as a dry single-plate friction clutch, and is provided so as to be interposed between the crankshaft 15 and the input shaft 21 of the manual transmission 2. Note that a configuration other than the dry single plate type may be adopted as the configuration of the clutch 30.
  • the clutch 30 includes a flywheel 31, a clutch disc 32, a pressure plate 33, a diaphragm spring 34, and a clutch cover 35.
  • a flywheel 31 and a clutch cover 35 are attached to a crankshaft 15 as an input shaft of the clutch 30 so as to be integrally rotatable.
  • a clutch disk 32 is spline-fitted to the input shaft 21 of the manual transmission 2 that is the output shaft of the clutch 30. Therefore, the clutch disk 32 can slide along the axial direction (left and right direction in FIG. 5) while rotating integrally with the input shaft 21.
  • a pressure plate 33 is disposed between the clutch disk 32 and the clutch cover 35. The pressure plate 33 is urged toward the flywheel 31 by the outer peripheral portion of the diaphragm spring 34.
  • the clutch operating device 300 includes a release bearing 301, a release fork 302, a clutch release cylinder 303, a clutch master cylinder 304, and the like.
  • the release bearing 301 is slidably mounted along the axial direction of the input shaft 21.
  • a release fork 302 is rotatably supported by a shaft 302a, and one end portion (the lower end portion in FIG. 5) is in contact with the release bearing 301.
  • One end (the right end in FIG. 5) of the rod 303a of the clutch release cylinder 303 is connected to the other end (the upper end in FIG. 5) of the release fork 302.
  • the clutch release cylinder 303 has a structure in which a piston 303c and the like are incorporated in a cylinder body 303b. The other end (the left end in FIG. 5) of the rod 303a is connected to the piston 303c.
  • the clutch release cylinder 303 is connected to the clutch master cylinder 304 via a hydraulic pipe 305.
  • the clutch master cylinder 304 has a configuration in which a piston 304c and the like are incorporated in a cylinder body 304b.
  • One end (the left end in FIG. 5) of the rod 304a is connected to the piston 304c.
  • the other end portion (the right end portion in FIG. 5) of the rod 304 a is connected to the intermediate portion of the pedal lever 71 of the clutch pedal 7.
  • a reserve tank 304d for supplying clutch fluid (oil) as a working fluid into the cylinder body 304b is provided on the upper portion of the cylinder body 304b.
  • the clutch master cylinder 304 is adapted to generate an oil pressure when the piston 304c moves in the cylinder body 304b by receiving an operation force generated by the driver depressing the clutch pedal 7.
  • the hydraulic pressure generated by the clutch master cylinder 304 is transmitted to the clutch release cylinder 303 by the oil in the hydraulic pipe 305.
  • the release fork 302 is operated according to the hydraulic pressure in the clutch release cylinder 303, so that the clutch 30 is engaged / released.
  • the clutch master cylinder 304 is provided with a stroke sensor 304e for detecting the stroke position (clutch position) of the piston 304c (clutch 30).
  • the ECU 8 includes a CPU 81, a ROM 82, a RAM 83, a backup RAM 84, an input interface 85, an output interface 86, and the like.
  • the ROM 82 stores various control programs, maps that are referred to when the various control programs are executed, and the like.
  • the CPU 81 executes arithmetic processing based on various control programs and maps stored in the ROM 82.
  • the RAM 83 is a memory that temporarily stores calculation results from the CPU 81 and data input from various sensors, switches, and the like.
  • the backup RAM 84 is a non-volatile memory that stores data to be saved when the engine 1 is stopped.
  • the CPU 81, ROM 82, RAM 83, and backup RAM 84 are connected to each other via a bus 87 and are connected to an input interface 85 and an output interface 86.
  • the input interface 85 is connected with a stroke sensor 304e, a water temperature sensor 121, an air flow meter 122, an intake air temperature sensor 123, an engine speed sensor 124, a throttle opening sensor 125, an O 2 sensor 126, and the like. Further, the input interface 85 is provided in the vicinity of the accelerator pedal 6 (see FIG. 1) and detects an accelerator opening sensor 61 for detecting the amount of depression of the accelerator pedal 6 (accelerator opening) by the driver, and the axle 43 (see FIG. 1). 1), a wheel speed sensor 431 for detecting the speed of the vehicle, a shift position sensor 502 for detecting a shift position selected by a shift lever 501 (see FIG. 1) of the shift device 5, and the like are connected. ing.
  • the output interface 86 is connected to an injector 102, an igniter 104 of a spark plug 103, a throttle motor 106 of a throttle valve 105, and the like.
  • the ECU 8 includes vehicle drive control (fuel injection control) of the injector 102, ignition timing control of the spark plug 103, drive control of the throttle motor 106 of the throttle valve 105, and the like based on the outputs of the various sensors and various switches described above. Perform various controls.
  • the ECU 8 increases the engine speed (engine speed) when the clutch 30 is switched from the disengaged state to the engaged state by operating the clutch pedal 7 when starting with the accelerator off.
  • Number increase control is configured to start at a predetermined start timing. As a result, it is possible to omit the operation of the accelerator pedal 6 at the start and to perform a smooth start (running start). The starting operation when the accelerator is off will be described in detail below.
  • the ECU 8 performs idle-up control when the stroke position of the clutch 30 has passed (exceeded) the idle-up control start position Ps when starting with the accelerator off.
  • the ECU 8 increases the idle at the next start with the accelerator off if the engine speed falls below the first threshold Th1 during a predetermined period before and after the start of the idle up control.
  • the control start timing is advanced, and when the engine speed rises above the second threshold Th2, the start timing of the idle up control at the time of start with the next accelerator off is delayed.
  • the first threshold value Th1 and the second threshold value Th2 are preset rotational speeds, the first threshold value Th1 is a rotational speed lower than the idle rotational speed, and the second threshold value Th2 is a rotational speed higher than the idle rotational speed. It is.
  • the predetermined period is a period including the start timing of the idle up control, and is a preset period from before the start of the idle up control to after the start.
  • FIG. 7 to 9 are time charts when starting with the accelerator off. Specifically, FIG. 7 shows the case where the start timing of the idle up control is ideal, FIG. 8 shows the case where the start timing of the idle up control is late, and FIG. 9 shows the start timing of the idle up control. Indicates the case where is early.
  • the start operation when the accelerator is off will be described with reference to FIGS. 7 to 9, the horizontal direction is the time axis, and the time advances from the left side to the right side.
  • the start timing of the idle up control is late is when the start timing of the idle up control is slower than the ideal case, and when the start timing of the idle up control is early, the start of the idle up control is started. This is a case where the timing is earlier than the ideal case.
  • the idle up control request flag is turned on.
  • the target value of the engine speed is set to a higher speed (for example, 800 rpm) than the idle speed.
  • the start timing of the idle up control is ideal, the idle up control is started in a state where the clutch 30 is not in contact (disconnected state).
  • the engine speed increases from the second threshold value Th2 by the idle-up control.
  • the clutch 30 comes into contact immediately after the engine speed reaches the target value.
  • the clutch 30 is in the half-clutch state, the engine speed is dragged and lowered toward the rear wheels 44 and 44.
  • the engine speed is 650 rpm.
  • the transmission torque of the clutch 30 increases.
  • the rotation of the engine 1 is transmitted to the rear wheels 44 and 44, whereby the vehicle starts.
  • the start timing of the idle up control is determined at the next start-up operation with the accelerator off. It will be slower than this time. Specifically, the idle up control start position Ps is corrected by the second correction amount C2 on the joining side.
  • the start timing of the idle up control is ideal, it is difficult to distinguish the start timing of the idle up control from the case where the start timing of the idle up control is early based on the engine speed. Because there is.
  • the clutch 30 comes into contact before the idle up control is started. As a result, the clutch 30 enters the half-clutch state, so that the engine speed is dragged toward the rear wheels 44 and 44 and is lower than the first threshold Th1.
  • the idle up control request flag is turned on.
  • the target value of the engine speed is set to a higher speed (for example, 800 rpm) than the idle speed.
  • the engine speed is, for example, 650 rpm by being dragged to the rear wheels 44 and 44 side.
  • the transmission torque of the clutch 30 increases.
  • the rotation of the engine 1 is transmitted to the rear wheels 44 and 44, whereby the vehicle starts.
  • the case where the start timing of the idle up control is late is a case where the contact position is shifted to the cutting side with respect to the idle up control start position Ps as compared with the case where the start timing of the idle up control is ideal. .
  • the start timing of the idle up control is determined at the next start-up operation with the accelerator off. It will be faster than this time. Specifically, the idle up control start position Ps is corrected to the cutting side by the first correction amount C1.
  • the first correction amount C1 is set to be larger than the second correction amount C2.
  • the idle up control request flag is turned on.
  • the target value of the engine speed is set to a higher speed (for example, 800 rpm) than the idle speed.
  • the engine speed increases from the second threshold value Th2 by the idle-up control.
  • the clutch 30 comes into contact after the engine speed is maintained at the target value.
  • the clutch 30 is in the half-clutch state, the engine speed is dragged and lowered toward the rear wheels 44 and 44.
  • the engine speed is 650 rpm.
  • the transmission torque of the clutch 30 increases.
  • the rotation of the engine 1 is transmitted to the rear wheels 44 and 44, whereby the vehicle starts.
  • the case where the start timing of the idle up control is early means that the contact position is shifted to the joining side with respect to the idle up control start position Ps as compared with the case where the start timing of the idle up control is ideal. is there.
  • the start timing of the idle up control is determined at the next start-up operation with the accelerator off. It will be slower than this time. Specifically, the idle up control start position Ps is corrected by the second correction amount C2 on the joining side.
  • FIG. 10 and FIG. 11 are flowcharts for explaining the processing procedure of the ECU 8 during the start-up operation with the accelerator off. Next, with reference to FIG. 10 and FIG. 11, a processing procedure of the ECU 8 in the start-up operation with the accelerator off will be described.
  • the ECU 8 performs the idle-up process including the idle-up control and the correction process for the start-up timing of the idle-up control in parallel when starting with the accelerator off. That is, the start-up operation when the accelerator is off includes an idle-up process and a correction process.
  • step S1 of FIG. 10 it is determined whether or not the vehicle speed is zero (the vehicle is stopped). If it is determined that the vehicle speed is zero, the process proceeds to step S2. On the other hand, if it is determined that the vehicle speed is not zero, step S1 is repeated. Whether or not the vehicle speed is zero is determined based on the detection result of the wheel speed sensor 431, for example.
  • step S2 it is determined whether or not the accelerator is off. If it is determined that the accelerator is off, the process proceeds to step S3. On the other hand, if it is determined that the accelerator is not off, the process returns to step S1. Whether the accelerator is off is determined based on, for example, the detection result of the accelerator opening sensor 61, that is, the operation amount of the accelerator pedal 6, and the accelerator pedal 6 is not depressed (not operated). If so, go to Step S3.
  • step S3 it is determined whether or not the clutch 30 has been moved to the coupling side.
  • the process proceeds to step S4.
  • the process returns to step S1.
  • whether or not the clutch 30 has been moved to the engagement side is determined by whether or not the moving speed of the clutch 30 calculated from the detection result of the stroke sensor 304e has exceeded a preset value, for example.
  • step S4 it is determined whether or not the stroke position of the clutch 30 detected by the stroke sensor 304e has passed the idle up control start position Ps.
  • the process proceeds to step S5.
  • step S4 is repeated. That is, it waits until the stroke position passes the idle up control start position Ps.
  • step S5 idle up control is performed. For example, when the idle speed is 600 rpm, the target value of the engine speed is set to 800 rpm. Thereafter, the idle up process is terminated.
  • Step S11 to S13 are the same as steps S1 to S3 described above, and thus the description thereof is omitted.
  • step S14 in FIG. 11 monitoring of the engine speed is started.
  • the engine speed is calculated based on the detection result of the engine speed sensor 124.
  • step S15 it is determined whether or not the engine speed has decreased below the first threshold value Th1.
  • step S17 it is determined that the engine speed has decreased below the first threshold Th1.
  • step S16 it is determined that the engine speed is not lower than the first threshold Th1.
  • step S16 it is determined whether or not the engine speed has risen above the second threshold value Th2. If it is determined that the engine speed has risen above the second threshold Th2, the process proceeds to step S18. On the other hand, if it is determined that the engine speed has not risen above the second threshold Th2, the process returns to step S15.
  • step S15 When the engine speed is lower than the first threshold value Th1 (step S15: Yes), it is determined that the start timing of the idle up control is late, so in step S17, the idle up control start position Ps is determined. The cut amount is corrected by the first correction amount C1. Thereafter, the correction process of the start timing of the idle up control is ended. This correction is applied at the next start when the accelerator is off. Thereby, it is possible to advance the start timing of the idle up control at the time of starting at the next accelerator off.
  • step S18 the idle up control is performed.
  • the start position Ps is corrected to the joining side by the second correction amount C2.
  • the second correction amount C2 is set to be smaller than the first correction amount C1.
  • this correction is applied at the next start with the accelerator off. Thereby, it is possible to delay the start timing of the idle-up control at the time of starting with the next accelerator-off.
  • the start timing of the next idle up control is advanced so that the start timing of the idle up control at the time of start with the accelerator off is set. It can be suppressed that it becomes too late. Thereby, since it can suppress that an engine speed falls more than needed, an engine speed can be raised appropriately at the time of start by accelerator-off.
  • the start timing of the idle up control when the start timing of the idle up control is ideal and early, the start timing of the next idle up control is delayed, so that the start timing of the idle up control at the time of start with the accelerator off is set. It can suppress becoming too early. As a result, it is possible to suppress the engine speed from being jetted more than necessary, and therefore it is possible to appropriately increase the engine speed when starting with the accelerator off.
  • the start timing of the idle up control is corrected.
  • the engine speed can be appropriately increased, and the vehicle can be smoothly started with the accelerator off.
  • the operation mode of the clutch pedal 7 is different for each driver, it can be corrected to the start timing of the idle-up control corresponding to each driver. That is, in the present embodiment, even if the vehicle includes the clutch pedal 7, the contact position (touch point) of the clutch 30 can be corrected (learned) appropriately.
  • the start timing it is difficult to determine whether the start timing is early or ideal by determining the start timing of the idle up control based on the change in the engine speed.
  • the correction amount C2 By making the correction amount C2 smaller than the first correction amount C1, as shown in FIG. 12, the start timing can be kept within an appropriate range.
  • the present invention is not limited thereto, and the present invention may be applied to a control device for a 4WD type or FF type vehicle.
  • the stroke position of the clutch 30 starts the idle up control.
  • the idle-up control may be started immediately without waiting for passing through the position Ps. If comprised in this way, it can suppress that an engine speed falls more than needed.
  • the start operation with the accelerator off may be performed only when the first speed is established in the manual transmission 2.
  • the example in which the start timing of the idle-up control is delayed when the engine is started at the next accelerator-off when the engine speed rises higher than the second threshold Th2 is not limited to this.
  • the start timing of the idle up control at the time of start with the next accelerator off may not be changed (maintained).
  • the start timing of the idle up control at the time of starting at the next accelerator-off is advanced, and the engine speed is more than the second threshold Th2.
  • the start-up timing of the idle up control is delayed at the next start when the accelerator is off, but this is not the only case. If the start-up timing of the idle-up control at the start of the vehicle is made earlier, and the engine speed is not decreasing significantly (including when the engine is increasing), the start-up of the idle-up control at the start of the next accelerator-off is started. The timing may be delayed.
  • the tendency of the engine speed to decrease is large, the case where the engine speed has decreased below the first threshold Th1 is included, and when the tendency of the engine speed to decrease is not large, the engine speed is the second. The case where it rises above the threshold Th2 is included.
  • the decreasing tendency of the engine speed is large, when the decreasing rate (change rate) of the engine rotating speed is below a predetermined threshold (the decreasing rate is an absolute value, the decreasing rate exceeds the predetermined threshold).
  • the increase rate (change rate) of the engine speed exceeds a predetermined threshold value.
  • the idle up control request flag and the idle up control start position Ps are stored in the backup RAM 84 of the ECU 8, and the first threshold Th1, the second threshold Th2, the first correction amount C1, and the second correction amount C2 are stored. It may be stored in the ROM 82 of the ECU 8.
  • steps S1 and S11 of the present embodiment an example in which it is determined whether or not the vehicle speed is zero has been described.
  • the present invention is not limited thereto, and it is determined whether or not the vehicle speed is substantially zero. May be.
  • an example in which it is determined that the start timing of the idle up control is late when the engine speed is lower than the first threshold Th1 is not limited to this, but ISC (Idle Speed Control)
  • ISC Inner Speed Control
  • the feedback control it may be determined that the start timing of the idle up control is late. That is, the case where the ISC feedback control is activated is included when the tendency of the engine speed to decrease is large. Whether or not the ISC feedback control is activated can be determined based on, for example, the fuel injection amount of the injector 102, the ignition timing of the spark plug 103, the drive amount of the throttle motor 106 of the throttle valve 105, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)

Abstract

 エンジンと、手動変速機と、エンジンと手動変速機との間に設けられたクラッチと、クラッチの状態をドライバが操作するためのクラッチ操作部とを備える車両の制御装置である。車両の制御装置は、アクセルオフでの発進時において、クラッチ操作部が操作されることによりクラッチが切断状態から継合状態に切り替えられるときに、エンジン回転数を上昇させるエンジン回転数上昇制御を所定の開始タイミングで開始し、エンジン回転数上昇制御の開始前後の所定期間に、エンジン回転数の低下傾向が大きい場合に、次回のアクセルオフでの発進時におけるエンジン回転数上昇制御の開始タイミングを早くする。

Description

車両の制御装置
 本発明は、手動変速機を備える車両の制御装置に関する。
 従来、エンジンと、手動変速機と、エンジンと手動変速機との間に設けられたクラッチとを備える車両が知られている(例えば、特許文献1および2参照)。
 特許文献1には、クラッチの状態をドライバが操作するためのクラッチペダルが設けられた車両が開示されている。この特許文献1の車両は、アクセルオフでの発進時において、クラッチペダルが操作されることによりクラッチが切断状態から継合状態に切り替えられるときに、クラッチのストローク位置およびストローク速度に基づいてエンジン回転数を上昇させるように構成されている。これにより、クラッチペダルを備えた車両であっても、発進時にアクセルペダルの操作を省略するとともに、円滑な発進を行うことが可能である。
 また、特許文献2には、クラッチペダルが設けられておらず、アクセルペダルの操作量などに基づいてクラッチの状態を自動的に制御するように構成された車両が開示されている。この特許文献2の車両では、クラッチを切断状態から継合状態に切り替えるときに、継合完了までの時間を短縮するためにクラッチを第1の移動速度で移動させた後に、エンジンストールなどを防止するためにクラッチを第1の移動速度よりも小さい第2の移動速度で移動させている。そして、特許文献2の車両は、アクセルオンでの発進時において、エンジン回転数の低下量が所定の閾値以上である場合に、クラッチの移動速度の切替位置を切断側に補正するように構成されている。これにより、クラッチ継合時の衝撃の防止および発進性を向上させることが可能である。
特開2008-157184号公報 特開2010-276117号公報
 しかしながら、特許文献1に開示された従来の車両では、クラッチの接触位置(タッチ点)が一定であることを前提としているため、例えば、製造ばらつき(個体ばらつき)によりクラッチの接触位置が異なる場合や、経年変化によりクラッチの接触位置が変化する場合には、エンジン回転数を適切に上昇させることが困難であるという問題点がある。
 なお、特許文献2には、クラッチの状態をドライバの操作によらず自動的に制御する車両において、クラッチの移動速度の切替位置を補正する構成が開示されているが、クラッチペダルを備える車両では、クラッチの状態がドライバの操作に依存するので、クラッチペダルを備える車両に特許文献2に記載された構成を適用することは困難である。また、クラッチペダルを備える車両では、発進操作時にクラッチの係合点学習を行うことが難しく、その必要性も薄かったため、係合点学習をどのように行うかについては十分に検討されてこなかった。
 本発明は、上記の課題を解決するためになされたものであり、本発明の目的は、クラッチ操作部を備える車両におけるアクセルオフでの発進時において、エンジン回転数を適切に上昇させることが可能な車両の制御装置を提供することである。
 本発明は、エンジンと、手動変速機と、エンジンと手動変速機との間に設けられたクラッチと、クラッチの状態をドライバが操作するためのクラッチ操作部とを備える車両に適用される制御装置である。具体的には、本発明による車両の制御装置は、アクセルオフでの発進時において、クラッチ操作部が操作されることによりクラッチが切断状態から継合状態に切り替えられるときに、エンジン回転数を上昇させるエンジン回転数上昇制御を所定の開始タイミングで開始するように構成されている。また、車両の制御装置は、エンジン回転数上昇制御の開始前後の所定期間に、エンジン回転数の低下傾向が大きい場合に、次回のアクセルオフでの発進時におけるエンジン回転数上昇制御の開始タイミングを早くするように構成されている。なお、エンジン回転数上昇制御の開始前後の所定期間は、エンジン回転数上昇制御の開始タイミングを含む期間であって、エンジン回転数上昇制御の開始前から開始後までの予め設定された期間である。
 このように構成することによって、エンジン回転数上昇制御の開始タイミングを補正することにより、アクセルオフでの発進時におけるエンジン回転数上昇制御の開始タイミングが遅くなりすぎるのを抑制することができるので、エンジン回転数が必要以上に低下するのを抑制することができる。これにより、アクセルオフでの発進時にエンジン回転数を適切に上昇させることができる。
 上記車両の制御装置において、エンジン回転数の低下傾向が大きい場合には、エンジン回転数が第1閾値よりも低下した場合が含まれていてもよい。なお、第1閾値は、例えば、アイドル回転数よりも低い予め設定された回転数である。
 上記車両の制御装置において、エンジン回転数上昇制御の開始前後の所定期間に、エンジン回転数の低下傾向が大きくない場合に、次回のアクセルオフでの発進時におけるエンジン回転数上昇制御の開始タイミングを遅くするように構成されていてもよい。なお、エンジン回転数の低下傾向が大きくない場合には、エンジン回転数が上昇傾向である場合が含まれる。
 このように構成すれば、エンジン回転数上昇制御の開始タイミングを補正することにより、アクセルオフでの発進時におけるエンジン回転数上昇制御の開始タイミングが早くなりすぎるのを抑制することができるので、エンジン回転数が必要以上に噴き上がるのを抑制することができる。これにより、アクセルオフでの発進時にエンジン回転数をより適切に上昇させることができる。
 この場合において、エンジン回転数の低下傾向が大きくない場合には、エンジン回転数が第2閾値よりも上昇した場合が含まれていてもよい。なお、第2閾値は、例えば、アイドル回転数よりも高い予め設定された回転数である。
 上記エンジン回転数の低下傾向が大きくない場合に、次回のアクセルオフでの発進時におけるエンジン回転数上昇制御の開始タイミングを遅くする車両の制御装置において、エンジン回転数上昇制御の開始タイミングを早くする第1補正量は、エンジン回転数上昇制御の開始タイミングを遅くする第2補正量よりも大きくてもよい。
 これは、エンジン回転数の低下傾向が大きい場合には、エンジン回転数上昇制御の開始タイミングが遅いと判断することが可能であるが、エンジン回転数の低下傾向が大きくない場合には、エンジン回転数上昇制御の開始タイミングが早いか理想的であるかを判断することが困難であるため、このように構成すれば、エンジン回転数上昇制御の開始タイミングを適正な範囲内に収めることができる。
 上記車両の制御装置において、エンジン回転数上昇制御の開始前に、エンジン回転数の低下傾向が大きい場合に、エンジン回転数上昇制御を開始するように構成されていてもよい。
 このように構成すれば、エンジン回転数上昇制御の開始タイミングが遅かった場合に、すぐにエンジン回転数上昇制御を開始することにより、エンジン回転数が必要以上に低下するのを抑制することができる。
 上記車両の制御装置において、エンジン回転数上昇制御の開始タイミングは、クラッチのストローク位置に基づいて判断されるようにしてもよい。
 本発明の車両の制御装置によれば、クラッチ操作部を備える車両におけるアクセルオフでの発進時において、エンジン回転数を適切に上昇させることができる。
図1は、本発明の実施形態に係る車両の概略構成を示す図である。 図2は、図1の車両に搭載されるエンジンの概略構成を示す図である。 図3は、図1の車両に搭載される手動変速機の概略構成を示すスケルトン図である。 図4は、図1の車両に搭載される手動変速機のシフトパターンの概略を示す図である。 図5は、図1の車両に搭載されるクラッチ装置の概略構成を示す図である。 図6は、図1の車両に搭載されるECU等の制御系の構成を示すブロック図である。 図7は、図1の車両のアクセルオフでの発進時において、アイドルアップ制御の開始タイミングが理想的である場合を示すタイムチャートである。 図8は、図1の車両のアクセルオフでの発進時において、アイドルアップ制御の開始タイミングが遅い場合を示すタイムチャートである。 図9は、図1の車両のアクセルオフでの発進時において、アイドルアップ制御の開始タイミングが早い場合を示すタイムチャートである。 図10は、図6のECUが実行するアイドルアップ処理の一例を示すフローチャートである。 図11は、図6のECUが実行するアイドルアップ制御の開始タイミングの補正処理の一例を示すフローチャートである。 図12は、アクセルオフでの発進回数と、アイドルアップ制御の開始タイミングとの関係を示すグラフである。 図13は、変形例による車両のアクセルオフでの発進時において、アイドルアップ制御の開始タイミングが遅い場合を示すタイムチャートである。
 本発明の実施形態について添付図面を参照しながら説明する。
 図1は、本発明の実施形態に係る車両の概略構成を示す図である。
 図1に示す車両は、FR(フロントエンジン・リヤドライブ)方式の車両であって、走行用動力源であるエンジン1、手動変速機2、クラッチ装置3、シフト装置5、アクセルペダル6、クラッチペダル7等を備えている。この車両では、エンジン1で発生した駆動力(駆動トルク)が、エンジン1の出力軸であるクランクシャフト15から、クラッチ装置3を介して手動変速機2に入力される。手動変速機2に入力されたトルクは、手動変速機2により適宜の変速比で変速され、出力軸22(図3参照)から出力される。そして、出力軸22から出力されたトルクは、プロペラシャフト41、デファレンシャルギヤ42、車軸43,43を介して左右の後輪(駆動輪)44,44に伝達される。以下、車両の各部についてそれぞれ説明する。
 -エンジン-
 図2は、図1の車両に搭載されるエンジン1の概略構成を示す図である。
 エンジン(内燃機関)1は、例えば多気筒ガソリンエンジンであって、図2に示すように、燃焼室1aを形成するピストン1b、および、出力軸であるクランクシャフト15を備えている。ピストン1bは、コネクティングロッド16を介してクランクシャフト15に連結されている。ピストン1bの往復運動は、コネクティングロッド16によってクランクシャフト15の回転運動に変換される。
 クランクシャフト15には、シグナルロータ17が配設されている。シグナルロータ17の外周面には、複数の突起17aが等間隔で形成されている。シグナルロータ17の側方近傍には、エンジン回転数センサ124が配置されている。エンジン回転数センサ124は、例えば電磁ピックアップであって、クランクシャフト15が回転する際に、エンジン回転数センサ124に対向する位置を通過する突起17aの個数分のパルス状信号(出力パルス)を発生する。また、エンジン1のシリンダブロック1cには、エンジン水温(冷却水の水温)を検出する水温センサ121が配設されている。
 エンジン1の燃焼室1aには、点火プラグ103が配設されている。点火プラグ103の点火タイミングは、イグナイタ104によって調整される。イグナイタ104は、ECU8によって制御される。
 燃焼室1aには、吸気通路11および排気通路12が接続されている。吸気通路11と燃焼室1aとの間には、吸気バルブ13が設けられている。吸気バルブ13を開閉駆動することによって、吸気通路11と燃焼室1aとが連通または遮断される。また、排気通路12と燃焼室1aとの間には、排気バルブ14が設けられている。排気バルブ14を開閉駆動することによって、排気通路12と燃焼室1aとが連通または遮断される。これら吸気バルブ13および排気バルブ14の開閉駆動は、クランクシャフト15の回転が伝達される吸気カムシャフトおよび排気カムシャフト(図示略)のそれぞれの回転によって行われる。
 吸気通路11には、エアクリーナ107、エアフローメータ122、吸気温センサ123、エンジン1の吸入空気量を調整するための電子制御式のスロットルバルブ105等が配設されている。排気通路12には、排気ガス中の酸素濃度を検出するO2センサ126、三元触媒108等が配設されている。
 スロットルバルブ105は、スロットルモータ106によって駆動される。これにより、スロットルバルブ105の開度(スロットル開度)が調整され、スロットル開度に応じてエンジン1の吸入空気量が調整される。スロットル開度は、スロットル開度センサ125によって検出される。スロットルモータ106は、ECU8によって駆動制御される。
 また、吸気通路11には、インジェクタ(燃料噴射弁)102が配設されている。インジェクタ102には、図示しない燃料タンクから燃料ポンプによって所定圧力の燃料が供給され、インジェクタ102によって吸気通路11に燃料が噴射される。インジェクタ102により噴射された燃料は、吸入空気と混合されて混合気となって、エンジン1の燃焼室1aに導入される。燃焼室1aに導入された混合気(燃料+空気)は、点火プラグ103によって点火されて燃焼、爆発する。混合気が燃焼室1a内で燃焼、爆発することによって、ピストン1bが往復運動して、クランクシャフト15が回転駆動される。
 -手動変速機-
 図3は、図1の車両に搭載される手動変速機2の概略構成を示すスケルトン図である。
 手動変速機2は、一般に知られている公知の同期噛み合い式のマニュアルトランスミッション(例えば前進6段、後進1段)であって、図3に示すように、入力軸21がクラッチ装置3を介してエンジン1のクランクシャフト15に連結されている。また、出力軸22がプロペラシャフト41(図1参照)に連結されている。この手動変速機2によりエンジン1からの駆動トルクを所定の変速比で変速した後に後輪44,44側に伝達するようになっている。
 手動変速機2は、変速比(ギヤ比)の異なる6組の前進用ギヤ段201~206、1組の後進用ギヤ段207、1-2変速用シンクロメッシュ機構24A、3-4変速用シンクロメッシュ機構24B、5-6変速用シンクロメッシュ機構24Cなどを備えている。
 前進用ギヤ段201~206は、それぞれ、入力軸21側に外装されるドライブギヤ211~216と、出力軸22側に外装されるドリブンギヤ221~226とを組み合わせた構成である。ドライブギヤ211~216は、それぞれ、ドリブンギヤ221~226に噛み合わされる。
 1速および2速のドライブギヤ211,212は、入力軸21と一体として回転するように取り付けられている。一方、3速~6速のドライブギヤ213~216は、入力軸21にベアリング(例えば、ケージアンドローラ)を介して相対回転可能に取り付けられている。また、1速および2速のドリブンギヤ221,222は、出力軸22にベアリング(例えば、ケージアンドローラ)を介して相対回転可能に取り付けられている。一方、3速~6速のドリブンギヤ223~226は、出力軸22と一体として回転するように取り付けられている。後進用ギヤ段207は、リバースドライブギヤ217、リバースドリブンギヤ227、リバースアイドラギヤ237などを備えている。
 シンクロメッシュ機構24A,24B,24Cは、公知の構成であるため、詳細な説明については省略する。シンクロメッシュ機構24A,24B,24Cは、略同一の構成であって、詳細には図示しないが、スリーブ241、シンクロナイザリング、クラッチハブなどを備えている。スリーブ241は、手動変速機2のシフトフォーク(図示略)によって軸方向にスライドされる。シフトフォークは、シフト装置5のシフトレバー501(図1参照)で選択操作されるシフトポジションに対応する変速段を成立するように作動される。シフトレバー501とシフトフォークとは、ケーブルや、リンク等によって機械的に連結されている。シフトレバー501で選択されたシフトポジションは、手動変速機2に設けられたシフトポジションセンサ502(図1参照)によって検出される。なお、シフトポジションセンサ502をシフトレバー501の近傍に設ける構成としてもよい。
 ここで、車室内のフロアに配設され、シフト装置5のシフトレバー501の移動をガイドするシフトゲートのシフトパターン(シフトゲート形状)について説明する。
 図4は、前進6段、後進1段の変速段を有する手動変速機2のシフトパターンの概略を示している。この実施形態では、シフトレバー501は、図4に矢印Xで示す方向のセレクト操作と、このセレクト操作方向に直交する矢印Yで示す方向のシフト操作とを実行可能な構成とされている。
 セレクト操作方向には、1速-2速セレクト位置P1、3速-4速セレクト位置P2、5速-6速セレクト位置P3、およびリバースセレクト位置P4が一列に並んでいる。
 1速-2速セレクト位置P1でのシフト操作(矢印Y方向の操作)により、シフトレバー501を1速位置1stまたは2速位置2ndに動かすことができる。シフトレバー501が1速位置1stに操作された場合、手動変速機2の1-2変速用シンクロメッシュ機構24Aのスリーブ241が1速成立側(図3では右方側)に作動して第1速段が成立する。また、シフトレバー501が2速位置2ndに操作された場合、1-2変速用シンクロメッシュ機構24Aのスリーブ241が2速成立側(図3では左方側)に作動して第2速段が成立する。
 同様に、3速-4速セレクト位置P2でのシフト操作により、シフトレバー501を3速位置3rdまたは4速位置4thに動かすことができる。シフトレバー501が3速位置3rdに操作された場合、手動変速機2の3-4変速用シンクロメッシュ機構24Bのスリーブ241が3速成立側(図3では右方側)に作動して第3速段が成立する。また、シフトレバー501が4速位置4thに操作された場合、3-4変速用シンクロメッシュ機構24Bのスリーブ241が4速成立側(図3では左方側)に作動して第4速段が成立する。
 また、5速-6速セレクト位置P3でのシフト操作により、シフトレバー501を5速位置5thまたは6速位置6thに動かすことができる。シフトレバー501が5速位置5thに操作された場合、手動変速機2の5-6変速用シンクロメッシュ機構24Cのスリーブ241が5速成立側(図3では右方側)に作動して第5速段が成立する。また、シフトレバー501が6速位置6thに操作された場合、5-6変速用シンクロメッシュ機構24Cのスリーブ241が6速成立側(図3では左方側)に作動して第6速段が成立する。
 さらに、リバースセレクト位置P4でのシフト操作により、シフトレバー501をリバース位置REVに動かすことができる。このリバース位置REVにシフトレバー501が操作された場合、手動変速機2のシンクロメッシュ機構24A,24B,24Cがそれぞれニュートラル状態(中立状態)となるとともに、手動変速機2のリバースアイドラギヤ237が作動することにより後進段が成立する。
 また、この実施形態では、3速-4速セレクト位置P2がニュートラル位置となっている。このニュートラル位置P2にシフトレバー501が操作された場合、手動変速機2のシンクロメッシュ機構24A,24B,24Cがそれぞれニュートラル状態となり、手動変速機2が入力軸21と出力軸22との間でトルク伝達を行わないニュートラル状態となる。
 -クラッチ装置-
 図5は、図1の車両に搭載されるクラッチ装置3の概略構成を示す図である。
 クラッチ装置3は、図5に示すように、クラッチ機構30(単に「クラッチ30」ともいう)、および、クラッチペダル7の踏み込み操作に応じてクラッチ30を作動させるクラッチ作動装置300を備えている。
 クラッチ30は、乾式単板式の摩擦クラッチとして構成されており、クランクシャフト15と、手動変速機2の入力軸21との間に介在されるように設けられている。なお、クラッチ30の構成として、乾式単板式以外の構成を採用してもよい。
 具体的に、クラッチ30は、フライホイール31、クラッチディスク32、プレッシャプレート33、ダイヤフラムスプリング34、および、クラッチカバー35を備えている。クラッチ30の入力軸であるクランクシャフト15には、フライホイール31とクラッチカバー35とが一体回転可能に取り付けられている。クラッチ30の出力軸である手動変速機2の入力軸21には、クラッチディスク32がスプライン嵌合されている。このため、クラッチディスク32は、入力軸21と一体回転しつつ、軸方向(図5の左右方向)に沿ってスライド可能となっている。クラッチディスク32とクラッチカバー35との間には、プレッシャプレート33が配設されている。プレッシャプレート33は、ダイヤフラムスプリング34の外周部によってフライホイール31側へ付勢されている。
 クラッチ作動装置300は、レリーズベアリング301、レリーズフォーク302、クラッチレリーズシリンダ303、クラッチマスタシリンダ304等を備えている。レリーズベアリング301は、入力軸21の軸方向に沿ってスライド可能に装着されている。レリーズベアリング301の近傍には、レリーズフォーク302が軸302aにより回動可能に支持されており、その一端部(図5の下端部)がレリーズベアリング301に当接している。レリーズフォーク302の他端部(図5の上端部)には、クラッチレリーズシリンダ303のロッド303aの一端部(図5の右端部)が連結されている。
 クラッチレリーズシリンダ303は、シリンダボディ303bの内部にピストン303cなどが組み込まれた構成となっている。ピストン303cには、ロッド303aの他端部(図5の左端部)が連結されている。クラッチレリーズシリンダ303は、油圧配管305を介してクラッチマスタシリンダ304に接続されている。
 クラッチマスタシリンダ304は、クラッチレリーズシリンダ303と同様に、シリンダボディ304bの内部にピストン304cなどが組み込まれた構成となっている。ピストン304cには、ロッド304aの一端部(図5の左端部)が連結されている。ロッド304aの他端部(図5の右端部)は、クラッチペダル7のペダルレバー71の中間部に接続されている。シリンダボディ304bの上部には、このシリンダボディ304b内へ動作流体であるクラッチフルード(オイル)を供給するリザーブタンク304dが設けられている。
 クラッチマスタシリンダ304は、ドライバによるクラッチペダル7の踏み込み操作による操作力を受けることで、シリンダボディ304b内でピストン304cが移動することにより油圧を発生するようになっている。クラッチマスタシリンダ304によって発生する油圧は、油圧配管305内のオイルによってクラッチレリーズシリンダ303に伝達される。
 クラッチ装置3では、クラッチレリーズシリンダ303内の油圧に応じてレリーズフォーク302が作動されることによって、クラッチ30の継合・解放動作が行われるようになっている。
 具体的には、図5に示す状態(クラッチ継合状態)から、クラッチペダル7の踏み込み量が大きくなると、クラッチマスタシリンダ304からクラッチレリーズシリンダ303へオイルが供給されて、クラッチレリーズシリンダ303内の油圧が高くなる。すると、ピストン303cおよびロッド303aが図5の右方向へ移動され、レリーズフォーク302が軸302aを中心に回動(図5では、時計周り方向に回動)されて、レリーズベアリング301がフライホイール31側へ押される。そして、同方向へのレリーズベアリング301の移動により、ダイヤフラムスプリング34の中央部分が同方向へ弾性変形する。これにともない、ダイヤフラムスプリング34によるプレッシャプレート33への付勢力が弱まる。このため、プレッシャプレート33、クラッチディスク32、および、フライホイール31が滑りながら継合される半クラッチ状態となる。
 この半クラッチ状態から、レリーズベアリング301がフライホイール31側へさらに移動し、ダイヤフラムスプリング34によるプレッシャプレート33への付勢力がさらに弱まると、プレッシャプレート33、クラッチディスク32、および、フライホイール31が離間されて、クラッチ30が切断(解放)された状態になる(クラッチ切断状態)。このクラッチ切断状態では、エンジン1から手動変速機2へのトルク伝達が遮断される。
 一方、クラッチ切断状態から、クラッチペダル7の踏み込みが解除されてクラッチペダル7の踏み込み量が小さくなると、クラッチレリーズシリンダ303からクラッチマスタシリンダ304へオイルが戻されて、クラッチレリーズシリンダ303内の油圧が低くなる。すると、ピストン303cおよびロッド303aが図5の左方向へ移動され、レリーズフォーク302が軸302aを中心に回動(図5では、反時計周り方向に回動)されて、レリーズベアリング301がフライホイール31から離間される側へ移動される。これにともない、ダイヤフラムスプリング34の外周部によるプレッシャプレート33への付勢力が増大していく。これにより、プレッシャプレート33とクラッチディスク32との間、および、クラッチディスク32とフライホイール31との間でそれぞれ摩擦力が増大し、半クラッチ状態を介してクラッチ継合状態になる。このクラッチ継合状態では、プレッシャプレート33、クラッチディスク32、および、フライホイール31が一体となって回転する。そして、クランクシャフト15と入力軸21とが一体となって回転し、エンジン1と手動変速機2との間でトルクが伝達される。
 なお、クラッチマスタシリンダ304には、ピストン304c(クラッチ30)のストローク位置(クラッチ位置)を検出するためのストロークセンサ304eが配設されている。
 -制御系-
 上記構成の車両において、エンジン1等の各種制御は、ECU8によって行われる。ECU8は、図6に示すように、CPU81、ROM82、RAM83、バックアップRAM84、入力インターフェース85、出力インターフェース86等を備えている。
 ROM82には、各種制御プログラムや、それら各種制御プログラムを実行する際に参照されるマップ等が記憶されている。CPU81は、ROM82に記憶された各種制御プログラムやマップに基づいて演算処理を実行する。RAM83は、CPU81での演算結果や、各種センサ、各種スイッチ等から入力されたデータを一時的に記憶するメモリである。バックアップRAM84は、エンジン1の停止時に保存すべきデータ等を記憶する不揮発性のメモリである。これらCPU81、ROM82、RAM83、およびバックアップRAM84は、バス87を介して互いに接続されるとともに、入力インターフェース85および出力インターフェース86に接続されている。
 入力インターフェース85には、ストロークセンサ304e、水温センサ121、エアフローメータ122、吸気温センサ123、エンジン回転数センサ124、スロットル開度センサ125、O2センサ126などが接続されている。また、入力インターフェース85には、アクセルペダル6(図1参照)に近接して設けられ、ドライバによるアクセルペダル6の踏み込み量(アクセル開度)を検出するアクセル開度センサ61や、車軸43(図1参照)に近接して設けられ、車両の速度を検出する車輪速センサ431、シフト装置5のシフトレバー501(図1参照)により選択されたシフトポジションを検出するシフトポジションセンサ502などが接続されている。
 出力インターフェース86には、インジェクタ102、点火プラグ103のイグナイタ104、スロットルバルブ105のスロットルモータ106などが接続されている。ECU8は、上記した各種センサ、各種スイッチの出力に基づいて、インジェクタ102の駆動制御(燃料噴射制御)、点火プラグ103の点火時期制御、スロットルバルブ105のスロットルモータ106の駆動制御などを含む車両の各種制御を実行する。
 また、ECU8は、アクセルオフでの発進時において、クラッチペダル7が操作されることによりクラッチ30が切断状態から継合状態に切り替えられるときに、エンジン回転数(エンジン回転速度)を上昇させるエンジン回転数上昇制御(アイドルアップ制御)を所定の開始タイミングで開始するように構成されている。これにより、発進時にアクセルペダル6の操作を省略するとともに、円滑な発進(走行開始)を行うことが可能である。アクセルオフでの発進動作について、以下詳細に説明する。
 -アクセルオフでの発進動作-
 本実施形態によるECU8は、アクセルオフでの発進時に、クラッチ30のストローク位置がアイドルアップ制御開始位置Psを通過した(超えた)場合にアイドルアップ制御を行う。また、ECU8は、アクセルオフでの発進時において、アイドルアップ制御の開始前後の所定期間に、エンジン回転数が第1閾値Th1よりも低下した場合に、次回のアクセルオフでの発進時におけるアイドルアップ制御の開始タイミングを早くし、エンジン回転数が第2閾値Th2よりも上昇した場合に、次回のアクセルオフでの発進時におけるアイドルアップ制御の開始タイミングを遅くする。なお、第1閾値Th1および第2閾値Th2は予め設定された回転数であり、第1閾値Th1はアイドル回転数よりも低い回転数であり、第2閾値Th2はアイドル回転数よりも高い回転数である。また、所定期間は、アイドルアップ制御の開始タイミングを含む期間であって、アイドルアップ制御の開始前から開始後までの予め設定された期間である。
 図7~図9は、アクセルオフでの発進時のタイムチャートである。具体的には、図7は、アイドルアップ制御の開始タイミングが理想的である場合を示し、図8は、アイドルアップ制御の開始タイミングが遅い場合を示し、図9は、アイドルアップ制御の開始タイミングが早い場合を示す。次に、図7~図9を参照して、アクセルオフでの発進動作について説明する。なお、図7~図9は、横方向が時間軸であり、左側から右側に向かって時間が進む。また、アイドルアップ制御の開始タイミングが遅い場合とは、アイドルアップ制御の開始タイミングが理想的な場合に比べて遅い場合であり、アイドルアップ制御の開始タイミングが早い場合とは、アイドルアップ制御の開始タイミングが理想的な場合に比べて早い場合である。
 [開始タイミングが理想的である場合(図7参照)]
 まず、アクセルオフでの発進動作の前には、ドライバによりクラッチペダル7が踏み込まれており、クラッチ30が切断状態にされている。また、エンジン1がアイドル回転数(例えば、600rpm)で運転されている。なお、この発進動作では、アクセルペダル6は踏み込まれていない状態のまま維持される。そして、ドライバによりクラッチペダル7の踏み込みが徐々に解除されると、クラッチ30が継合側に移動される。なお、このクラッチ30の継合側への移動が検出された場合には、ECU8がエンジン回転数の監視を開始する。
 そして、クラッチ30のストローク位置がアイドルアップ制御開始位置Psを通過した場合に、アイドルアップ制御要求フラグがオンにされる。そして、アイドルアップ制御要求フラグがオンにされると、アイドルアップ制御が開始される。このアイドルアップ制御では、エンジン回転数の目標値がアイドル回転数よりも高い回転数(例えば、800rpm)にされる。なお、アイドルアップ制御の開始タイミングが理想的な場合には、クラッチ30が接触していない状態(切断状態)でアイドルアップ制御が開始される。
 そして、アイドルアップ制御によりエンジン回転数が第2閾値Th2よりも上昇する。その後、アイドルアップ制御の開始タイミングが理想的な場合には、エンジン回転数が目標値になった直後にクラッチ30が接触する。そして、クラッチ30が半クラッチ状態になることにより、エンジン回転数が後輪44,44側に引きずられて低下する。なお、このとき、例えば、エンジン回転数が650rpmになる。また、クラッチ30が継合側に移動されることにより、クラッチ30の伝達トルクが上昇する。これにより、エンジン1の回転が後輪44,44側に伝達されることにより車両が発進する。
 ここで、本実施形態では、アイドルアップ制御の開始前にエンジン回転数が第2閾値Th2よりも上昇した場合には、次回のアクセルオフでの発進動作のときに、アイドルアップ制御の開始タイミングが今回に比べて遅くされる。具体的には、アイドルアップ制御開始位置Psが継合側に第2補正量C2分だけ補正される。なお、アイドルアップ制御の開始タイミングが理想的である場合に、アイドルアップ制御の開始タイミングを補正するのは、エンジン回転数に基づいてアイドルアップ制御の開始タイミングが早い場合と区別することが困難であるからである。
 [開始タイミングが遅い場合(図8参照)]
 アクセルオフでの発進動作の前には、ドライバによりクラッチペダル7が踏み込まれており、クラッチ30が切断状態にされている。また、エンジン1がアイドル回転数(例えば、600rpm)で運転されている。なお、この発進動作では、アクセルペダル6は踏み込まれていない状態のまま維持される。そして、ドライバによりクラッチペダル7の踏み込みが徐々に解除されると、クラッチ30が継合側に移動される。なお、このクラッチ30の継合側への移動が検出された場合には、ECU8がエンジン回転数の監視を開始する。
 そして、アイドルアップ制御の開始タイミングが遅い場合には、アイドルアップ制御が開始される前にクラッチ30が接触する。これにより、クラッチ30が半クラッチ状態になるので、エンジン回転数が後輪44,44側に引きずられて第1閾値Th1よりも低下する。
 その後、クラッチ30のストローク位置がアイドルアップ制御開始位置Psを通過した場合に、アイドルアップ制御要求フラグがオンにされる。そして、アイドルアップ制御要求フラグがオンにされると、アイドルアップ制御が開始される。このアイドルアップ制御では、エンジン回転数の目標値がアイドル回転数よりも高い回転数(例えば、800rpm)にされる。なお、エンジン回転数は、後輪44,44側に引きずられることにより、例えば、650rpmになる。また、クラッチ30が継合側に移動されることにより、クラッチ30の伝達トルクが上昇する。これにより、エンジン1の回転が後輪44,44側に伝達されることにより車両が発進する。なお、アイドルアップ制御の開始タイミングが遅い場合とは、アイドルアップ制御の開始タイミングが理想的な場合に比べて、アイドルアップ制御開始位置Psに対して接触位置が切断側にずれている場合である。
 ここで、本実施形態では、アイドルアップ制御の開始前にエンジン回転数が第1閾値Th1よりも低下した場合には、次回のアクセルオフでの発進動作のときに、アイドルアップ制御の開始タイミングが今回に比べて早くされる。具体的には、アイドルアップ制御開始位置Psが切断側に第1補正量C1分だけ補正される。なお、第1補正量C1は、第2補正量C2よりも大きくなるように設定されている。
 [開始タイミングが早い場合(図9参照)]
 アクセルオフでの発進動作の前には、ドライバによりクラッチペダル7が踏み込まれており、クラッチ30が切断状態にされている。また、エンジン1がアイドル回転数(例えば、600rpm)で運転されている。なお、この発進動作では、アクセルペダル6は踏み込まれていない状態のまま維持される。そして、ドライバによりクラッチペダル7の踏み込みが徐々に解除されると、クラッチ30が継合側に移動される。なお、このクラッチ30の継合側への移動が検出された場合には、ECU8がエンジン回転数の監視を開始する。
 そして、クラッチ30のストローク位置がアイドルアップ制御開始位置Psを通過した場合に、アイドルアップ制御要求フラグがオンにされる。そして、アイドルアップ制御要求フラグがオンにされると、アイドルアップ制御が開始される。このアイドルアップ制御では、エンジン回転数の目標値がアイドル回転数よりも高い回転数(例えば、800rpm)にされる。なお、アイドルアップ制御の開始タイミングが早い場合には、クラッチ30が接触していない状態(切断状態)でアイドルアップ制御が開始される。
 そして、アイドルアップ制御によりエンジン回転数が第2閾値Th2よりも上昇する。その後、アイドルアップ制御の開始タイミングが早い場合には、エンジン回転数が目標値になった状態が維持された後にクラッチ30が接触する。そして、クラッチ30が半クラッチ状態になることにより、エンジン回転数が後輪44,44側に引きずられて低下する。なお、このとき、例えば、エンジン回転数が650rpmになる。また、クラッチ30が継合側に移動されることにより、クラッチ30の伝達トルクが上昇する。これにより、エンジン1の回転が後輪44,44側に伝達されることにより車両が発進する。なお、アイドルアップ制御の開始タイミングが早い場合とは、アイドルアップ制御の開始タイミングが理想的な場合に比べて、アイドルアップ制御開始位置Psに対して接触位置が継合側にずれている場合である。
 ここで、本実施形態では、アイドルアップ制御の開始前にエンジン回転数が第2閾値Th2よりも上昇した場合には、次回のアクセルオフでの発進動作のときに、アイドルアップ制御の開始タイミングが今回に比べて遅くされる。具体的には、アイドルアップ制御開始位置Psが継合側に第2補正量C2分だけ補正される。
 図10および図11は、アクセルオフでの発進動作の際におけるECU8の処理手順を説明するためのフローチャートである。次に、図10および図11を参照して、アクセルオフでの発進動作の際におけるECU8の処理手順について説明する。
 本実施形態によるECU8は、アクセルオフでの発進時に、アイドルアップ制御を含むアイドルアップ処理と、アイドルアップ制御の開始タイミングの補正処理とを並行して行う。すなわち、アクセルオフでの発進動作には、アイドルアップ処理と補正処理とが含まれる。
 [アイドルアップ処理]
 次に、図10を参照して、ECU8が実行するアイドルアップ処理について説明する。なお、以下の一連の動作は、繰り返し行われる。
 まず、図10のステップS1において、車速がゼロである(車両が停車している)か否かが判断される。そして、車速がゼロであると判断された場合には、ステップS2に移る。その一方、車速がゼロではないと判断された場合には、ステップS1が繰り返し行われる。なお、車速がゼロであるか否かは、例えば、車輪速センサ431の検出結果に基づいて判断される。
 次に、ステップS2において、アクセルオフであるか否かが判断される。そして、アクセルオフであると判断された場合には、ステップS3に移る。その一方、アクセルオフではないと判断された場合には、ステップS1に戻る。なお、アクセルオフであるか否かは、例えば、アクセル開度センサ61の検出結果、すなわち、アクセルペダル6の操作量に基づいて判断され、アクセルペダル6が踏み込まれていない(操作されていない)場合にステップS3に移る。
 次に、ステップS3において、クラッチ30が継合側に移動されたか否かが判断される。そして、クラッチ30が継合側に移動されたと判断された場合には、ステップS4に移る。その一方、クラッチ30が継合側に移動されていないと判断された場合には、ステップS1に戻る。なお、クラッチ30が継合側に移動されたか否かは、例えば、ストロークセンサ304eの検出結果から算出されるクラッチ30の移動速度が予め設定された値を超えたか否かにより判断される。
 次に、ステップS4において、ストロークセンサ304eにより検出されるクラッチ30のストローク位置がアイドルアップ制御開始位置Psを通過したか否かが判断される。そして、ストローク位置がアイドルアップ制御開始位置Psを通過したと判断された場合には、ステップS5に移る。その一方、ストローク位置がアイドルアップ制御開始位置Psを通過していないと判断された場合には、ステップS4が繰り返し行われる。すなわち、ストローク位置がアイドルアップ制御開始位置Psを通過するまで待機する。
 次に、ステップS5において、アイドルアップ制御が行われる。例えば、アイドル回転数が600rpmであった場合には、エンジン回転数の目標値が800rpmにされる。その後、アイドルアップ処理が終了される。
 [アイドルアップ制御の開始タイミングの補正処理]
 次に、図11を参照して、ECU8が実行するアイドルアップ制御の開始タイミングの補正処理について説明する。なお、以下の一連の動作は、繰り返し行われる。また、ステップS11~S13は、上記したステップS1~S3と同様であるので、説明を省略する。
 そして、図11のステップS14において、エンジン回転数の監視が開始される。なお、エンジン回転数は、エンジン回転数センサ124の検出結果に基づいて算出される。
 次に、ステップS15において、エンジン回転数が第1閾値Th1よりも低下したか否かが判断される。そして、エンジン回転数が第1閾値Th1よりも低下したと判断された場合には、ステップS17に移る。その一方、エンジン回転数が第1閾値Th1よりも低下していないと判断された場合には、ステップS16に移る。
 次に、ステップS16において、エンジン回転数が第2閾値Th2よりも上昇したか否かが判断される。そして、エンジン回転数が第2閾値Th2よりも上昇したと判断された場合には、ステップS18に移る。その一方、エンジン回転数が第2閾値Th2よりも上昇していないと判断された場合には、ステップS15に戻る。
 そして、エンジン回転数が第1閾値Th1よりも低下した場合(ステップS15:Yes)には、アイドルアップ制御の開始タイミングが遅いと判断されることから、ステップS17において、アイドルアップ制御開始位置Psが切断側に第1補正量C1分だけ補正される。その後、アイドルアップ制御の開始タイミングの補正処理が終了される。なお、この補正は、次回のアクセルオフでの発進時に適用される。これにより、次回のアクセルオフでの発進時におけるアイドルアップ制御の開始タイミングを早くすることが可能である。
 その一方、エンジン回転数が第2閾値Th2よりも上昇した場合(ステップS16:Yes)には、アイドルアップ制御の開始タイミングが理想的または早いと判断されることから、ステップS18において、アイドルアップ制御開始位置Psが継合側に第2補正量C2分だけ補正される。その後、アイドルアップ制御の開始タイミングの補正処理が終了される。なお、第2補正量C2は、第1補正量C1よりも小さくなるように設定されている。また、この補正は、次回のアクセルオフでの発進時に適用される。これにより、次回のアクセルオフでの発進時におけるアイドルアップ制御の開始タイミングを遅くすることが可能である。
 -効果-
 本実施形態では、上記のように、アイドルアップ制御の開始タイミングが遅い場合には、次回のアイドルアップ制御の開始タイミングを早くすることによって、アクセルオフでの発進時におけるアイドルアップ制御の開始タイミングが遅くなりすぎるのを抑制することができる。これにより、エンジン回転数が必要以上に低下するのを抑制することができるので、アクセルオフでの発進時にエンジン回転数を適切に上昇させることができる。
 また、本実施形態では、アイドルアップ制御の開始タイミングが理想的および早い場合には、次回のアイドルアップ制御の開始タイミングを遅くすることによって、アクセルオフでの発進時におけるアイドルアップ制御の開始タイミングが早くなりすぎるのを抑制することができる。これにより、エンジン回転数が必要以上に噴き上がるのを抑制することができるので、アクセルオフでの発進時にエンジン回転数を適切に上昇させることができる。
 したがって、本実施形態では、製造ばらつき(個体ばらつき)によりクラッチ30の接触位置が異なる場合や、経年変化によりクラッチ30の接触位置が変化する場合であっても、アイドルアップ制御の開始タイミングを補正することにより、エンジン回転数を適切に上昇させることができるので、アクセルオフでの発進を円滑に行うことができる。また、ドライバ毎にクラッチペダル7の操作態様が異なる場合であっても、各ドライバに応じたアイドルアップ制御の開始タイミングに補正していくことができる。すなわち、本実施形態では、クラッチペダル7を備える車両であっても、クラッチ30の接触位置(タッチ点)の補正(学習)を適切に行うことができる。
 また、本実施形態では、エンジン回転数の変化に基づいてアイドルアップ制御の開始タイミングを判別することにより、開始タイミングが早いか理想的であるかを判断することが困難であることから、第2補正量C2を第1補正量C1よりも小さくすることによって、図12に示すように、開始タイミングを適正な範囲内に収めることができる。
 -他の実施形態-
 なお、今回開示した実施形態は、すべての点で例示であって、限定的な解釈の根拠となるものではない。したがって、本発明の技術的範囲は、上記した実施形態のみによって解釈されるものではなく、特許請求の範囲の記載に基づいて画定される。また、本発明の技術的範囲には、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。
 例えば、本実施形態では、FR方式の車両のECU8に本発明を適用する例を示したが、これに限らず、4WD方式またはFF方式の車両の制御装置に本発明を適用してもよい。
 また、図13に示す変形例のように、エンジン回転数が第1閾値Th1まで低下した場合(エンジン回転数が第1閾値Th1に到達した場合)に、クラッチ30のストローク位置がアイドルアップ制御開始位置Psを通過するのを待つことなく、すぐにアイドルアップ制御を開始するようにしてもよい。このように構成すれば、エンジン回転数が必要以上に低下するのを抑制することができる。なお、すぐにアイドルアップ制御を開始するか否かを判断するための閾値と、次回のアクセルオフでの発進時におけるアイドルアップ制御の開始タイミングを早くするか否かを判断するための閾値とが異なっていてもよい。
 また、本実施形態において、手動変速機2で第1速段が成立している場合にのみ、アクセルオフでの発進動作を行うようにしてもよい。
 また、本実施形態では、エンジン回転数が第2閾値Th2よりも上昇した場合に、次回のアクセルオフでの発進時におけるアイドルアップ制御の開始タイミングを遅くする例を示したが、これに限らず、エンジン回転数が第2閾値Th2よりも上昇した場合に、次回のアクセルオフでの発進時におけるアイドルアップ制御の開始タイミングを変更しない(維持する)ようにしてもよい。
 また、本実施形態では、エンジン回転数が第1閾値Th1よりも低下した場合に、次回のアクセルオフでの発進時におけるアイドルアップ制御の開始タイミングを早くし、エンジン回転数が第2閾値Th2よりも上昇した場合に、次回のアクセルオフでの発進時におけるアイドルアップ制御の開始タイミングを遅くする例を示したが、これに限らず、エンジン回転数の低下傾向が大きい場合に、次回のアクセルオフでの発進時におけるアイドルアップ制御の開始タイミングを早くし、エンジン回転数の低下傾向が大きくない(上昇傾向である場合を含む)場合に、次回のアクセルオフでの発進時におけるアイドルアップ制御の開始タイミングを遅くするようにしてもよい。すなわち、エンジン回転数の低下傾向が大きい場合には、エンジン回転数が第1閾値Th1よりも低下した場合が含まれ、エンジン回転数の低下傾向が大きくない場合には、エンジン回転数が第2閾値Th2よりも上昇した場合が含まれる。なお、エンジン回転数の低下傾向が大きい場合には、エンジン回転数の低下率(変化率)が所定の閾値を下回った場合(低下率を絶対値とすると、低下率が所定の閾値を超えた場合)が含まれ、エンジン回転数の低下傾向が大きくない場合には、エンジン回転数の上昇率(変化率)が所定の閾値を超えた場合が含まれる。
 また、本実施形態において、アイドルアップ制御要求フラグおよびアイドルアップ制御開始位置PsがECU8のバックアップRAM84に記憶され、第1閾値Th1、第2閾値Th2、第1補正量C1および第2補正量C2がECU8のROM82に記憶されていてもよい。
 また、本実施形態のステップS1およびS11では、車速がゼロであるか否かを判断する例を示したが、これに限らず、車速が実質的にゼロであるか否かを判断するようにしてもよい。
 また、本実施形態では、エンジン回転数が第1閾値Th1よりも低下した場合に、アイドルアップ制御の開始タイミングが遅いと判断する例を示したが、これに限らず、ISC(Idle Speed Control)フィードバック制御が作動した場合に、アイドルアップ制御の開始タイミングが遅いと判断するようにしてもよい。すなわち、エンジン回転数の低下傾向が大きい場合には、ISCフィードバック制御が作動した場合が含まれる。なお、ISCフィードバック制御が作動したか否かは、例えば、インジェクタ102の燃料噴射量、点火プラグ103の点火時期、スロットルバルブ105のスロットルモータ106の駆動量などに基づいて判断可能である。
  1  エンジン
  2  手動変速機
  7  クラッチペダル(クラッチ操作部)
  8  ECU(車両の制御装置)
  30 クラッチ機構(クラッチ)

Claims (7)

  1.  エンジンと、手動変速機と、前記エンジンと前記手動変速機との間に設けられたクラッチと、前記クラッチの状態をドライバが操作するためのクラッチ操作部とを備える車両の制御装置であって、
     アクセルオフでの発進時において、前記クラッチ操作部が操作されることにより前記クラッチが切断状態から継合状態に切り替えられるときに、エンジン回転数を上昇させるエンジン回転数上昇制御を所定の開始タイミングで開始するように構成されており、
     エンジン回転数上昇制御の開始前後の所定期間に、エンジン回転数の低下傾向が大きい場合に、次回のアクセルオフでの発進時におけるエンジン回転数上昇制御の開始タイミングを早くするように構成されていることを特徴とする車両の制御装置。
  2.  請求項1に記載の車両の制御装置において、
     前記エンジン回転数の低下傾向が大きい場合には、エンジン回転数が第1閾値よりも低下した場合が含まれることを特徴とする車両の制御装置。
  3.  請求項1または2に記載の車両の制御装置において、
     エンジン回転数上昇制御の開始前後の所定期間に、エンジン回転数の低下傾向が大きくない場合に、次回のアクセルオフでの発進時におけるエンジン回転数上昇制御の開始タイミングを遅くするように構成されていることを特徴とする車両の制御装置。
  4.  請求項3に記載の車両の制御装置において、
     前記エンジン回転数の低下傾向が大きくない場合には、エンジン回転数が第2閾値よりも上昇した場合が含まれることを特徴とする車両の制御装置。
  5.  請求項3または4に記載の車両の制御装置において、
     エンジン回転数上昇制御の開始タイミングを早くする第1補正量は、エンジン回転数上昇制御の開始タイミングを遅くする第2補正量よりも大きいことを特徴とする車両の制御装置。
  6.  請求項1~5のいずれか1つに記載の車両の制御装置において、
     エンジン回転数上昇制御の開始前に、エンジン回転数の低下傾向が大きい場合に、エンジン回転数上昇制御を開始するように構成されていることを特徴とする車両の制御装置。
  7.  請求項1~6のいずれか1つに記載の車両の制御装置において、
     エンジン回転数上昇制御の開始タイミングは、前記クラッチのストローク位置に基づいて判断されることを特徴とする車両の制御装置。
PCT/JP2012/054636 2012-02-24 2012-02-24 車両の制御装置 WO2013125040A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201280070550.XA CN104136754B (zh) 2012-02-24 2012-02-24 车辆的控制装置
PCT/JP2012/054636 WO2013125040A1 (ja) 2012-02-24 2012-02-24 車両の制御装置
JP2012532789A JP5273309B1 (ja) 2012-02-24 2012-02-24 車両の制御装置
DE112012000039.0T DE112012000039B4 (de) 2012-02-24 2012-02-24 Steuergerät für ein Fahrzeug
US13/581,575 US9051891B2 (en) 2012-02-24 2012-02-24 Control device for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/054636 WO2013125040A1 (ja) 2012-02-24 2012-02-24 車両の制御装置

Publications (1)

Publication Number Publication Date
WO2013125040A1 true WO2013125040A1 (ja) 2013-08-29

Family

ID=49003502

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/054636 WO2013125040A1 (ja) 2012-02-24 2012-02-24 車両の制御装置

Country Status (5)

Country Link
US (1) US9051891B2 (ja)
JP (1) JP5273309B1 (ja)
CN (1) CN104136754B (ja)
DE (1) DE112012000039B4 (ja)
WO (1) WO2013125040A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014208781A1 (de) * 2014-05-09 2015-11-12 Zf Friedrichshafen Ag Verfahren und Steuerungseinrichtung zur Bestimmung eines Referenzpunkts für einen Anlegepunkt einer Kupplung
JP6841248B2 (ja) * 2018-02-13 2021-03-10 トヨタ自動車株式会社 自動運転システム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0450516A (ja) * 1990-06-18 1992-02-19 Mazda Motor Corp 自動クラッチ式変速機の制御装置
JPH08247168A (ja) * 1995-03-03 1996-09-24 Bayerische Motoren Werke Ag 動力車用セパレートクラッチの閉鎖過程を調整するための制御装置
JP2008157184A (ja) * 2006-12-26 2008-07-10 Aisin Seiki Co Ltd 自動車の発進制御装置
JP2010276117A (ja) * 2009-05-28 2010-12-09 Toyota Motor Corp 自動クラッチの制御装置
JP2011033006A (ja) * 2009-08-06 2011-02-17 Suzuki Motor Corp 車両の制御装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0245625A (ja) 1988-08-08 1990-02-15 Nissan Motor Co Ltd 自動変速機塔載車のエンジンアイドリング回転補償装置
JPH06146945A (ja) 1992-11-12 1994-05-27 Toyota Motor Corp 車両の走行制御装置
DE19524412A1 (de) 1995-03-03 1996-09-05 Bayerische Motoren Werke Ag Steuereinrichtung zur Regelung des Schließvorganges einer Trennkupplung für Kraftfahrzeuge
DE19752276B4 (de) * 1997-11-26 2005-11-24 Zf Sachs Ag Vorrichtung zur Steuerung eines Anfahrvorganges
JP2001073837A (ja) 1999-09-06 2001-03-21 Honda Motor Co Ltd 内燃機関の制御装置
JP4470758B2 (ja) 2005-02-25 2010-06-02 トヨタ自動車株式会社 エンジンの制御装置
JP4654173B2 (ja) 2006-11-16 2011-03-16 日立オートモティブシステムズ株式会社 車両の制御装置
JP2008275036A (ja) 2007-04-27 2008-11-13 Hino Motors Ltd 車両の駆動装置およびクラッチ特性の学習方法
JP2010133347A (ja) * 2008-12-05 2010-06-17 Nikki Co Ltd インジェクタ制御方法及びインジェクタ制御装置
EP2565429B1 (en) * 2010-04-26 2016-01-06 Toyota Jidosha Kabushiki Kaisha Vehicle engine controller
JP5472004B2 (ja) * 2010-09-21 2014-04-16 株式会社デンソー エンジンの自動始動制御装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0450516A (ja) * 1990-06-18 1992-02-19 Mazda Motor Corp 自動クラッチ式変速機の制御装置
JPH08247168A (ja) * 1995-03-03 1996-09-24 Bayerische Motoren Werke Ag 動力車用セパレートクラッチの閉鎖過程を調整するための制御装置
JP2008157184A (ja) * 2006-12-26 2008-07-10 Aisin Seiki Co Ltd 自動車の発進制御装置
JP2010276117A (ja) * 2009-05-28 2010-12-09 Toyota Motor Corp 自動クラッチの制御装置
JP2011033006A (ja) * 2009-08-06 2011-02-17 Suzuki Motor Corp 車両の制御装置

Also Published As

Publication number Publication date
DE112012000039B4 (de) 2018-08-30
US20130225368A1 (en) 2013-08-29
CN104136754A (zh) 2014-11-05
US9051891B2 (en) 2015-06-09
CN104136754B (zh) 2016-10-26
JP5273309B1 (ja) 2013-08-28
DE112012000039T5 (de) 2013-12-12
JPWO2013125040A1 (ja) 2015-07-30

Similar Documents

Publication Publication Date Title
JP4972566B2 (ja) 自動変速機の制御方法及び制御装置
JP6036473B2 (ja) 車両用駆動装置
JP5862758B2 (ja) 変速制御装置
EP1895202B1 (en) Shift shock reducing apparatus for power train
US9541193B2 (en) Shift control system
JP5737394B2 (ja) 車両の制御装置
US9067581B2 (en) Automatic transmission
JP5757327B2 (ja) 車両の制御装置
JP2011163233A (ja) 車両の制御装置
EP2172675A2 (en) Transmission control system, a vehicle comprising such a transmission control system and the corresponding method
US8574127B2 (en) Vehicle engine control device
JP2010065731A (ja) 自動クラッチの学習制御装置
JP5273309B1 (ja) 車両の制御装置
JP2011218890A (ja) 車両駆動装置
JP5263449B2 (ja) 手動変速機のシフト判定装置
JP2009209881A (ja) 車両の制御装置および制御方法
JP5870987B2 (ja) 車両の制御装置
US7926375B2 (en) Transmission control apparatus
EP2565429B1 (en) Vehicle engine controller
JP2011247227A (ja) 車両の制御装置
JP2008215198A (ja) 内燃機関の制御装置および制御方法
JP5838829B2 (ja) 内燃機関制御装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012532789

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13581575

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120120000390

Country of ref document: DE

Ref document number: 112012000039

Country of ref document: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12869008

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 12869008

Country of ref document: EP

Kind code of ref document: A1