WO2013122062A1 - 液晶配向剤、液晶配向膜および液晶表示素子 - Google Patents

液晶配向剤、液晶配向膜および液晶表示素子 Download PDF

Info

Publication number
WO2013122062A1
WO2013122062A1 PCT/JP2013/053291 JP2013053291W WO2013122062A1 WO 2013122062 A1 WO2013122062 A1 WO 2013122062A1 JP 2013053291 W JP2013053291 W JP 2013053291W WO 2013122062 A1 WO2013122062 A1 WO 2013122062A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
group
crystal aligning
aligning agent
crystal alignment
Prior art date
Application number
PCT/JP2013/053291
Other languages
English (en)
French (fr)
Inventor
加名子 江崎
真 畑中
秀則 石井
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to CN201380009053.3A priority Critical patent/CN104115057B/zh
Priority to KR1020147025230A priority patent/KR102016197B1/ko
Priority to JP2013558698A priority patent/JP6146315B2/ja
Publication of WO2013122062A1 publication Critical patent/WO2013122062A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Definitions

  • the present invention relates to a liquid crystal alignment agent, a liquid crystal alignment film, and a liquid crystal display element.
  • the liquid crystal alignment film is a film for controlling the alignment of liquid crystal molecules in a certain direction in a liquid crystal display element or a retardation plate using a polymerizable liquid crystal.
  • a liquid crystal display element has a structure in which liquid crystal molecules forming a liquid crystal layer are sandwiched between liquid crystal alignment films formed on the surfaces of a pair of substrates.
  • the liquid crystal molecules are aligned in a certain direction with a pretilt angle by the liquid crystal alignment film, and respond by applying a voltage to the electrode provided between the substrate and the liquid crystal alignment film.
  • the liquid crystal display element displays a desired image by utilizing the orientation change due to the response of the liquid crystal molecules.
  • the liquid crystal alignment film is a major constituent member together with liquid crystal molecules and the like in a liquid crystal display element or the like.
  • the liquid crystal alignment film can be configured by forming a polymer film on a substrate.
  • a highly heat-resistant and highly reliable polyimide film or the like can be used.
  • a method for forming a polymer film to be a liquid crystal alignment film on a substrate a liquid crystal alignment agent containing components is used for forming the polymer film, and the coating film is formed on the substrate to form a liquid crystal alignment film.
  • a method for obtaining a molecular film is known.
  • a polyimide film as a polymer film to be a liquid crystal alignment film on a substrate as a method, using a liquid crystal alignment agent using a varnish prepared containing a polyimide precursor such as polyamic acid, A method of forming the coating film and imidizing on the substrate is known. Another method is to prepare a so-called solvent-soluble polyimide varnish by dissolving a previously imidized polyimide in a solvent, and to form a polyimide film using a liquid crystal aligning agent using the polyimide varnish. There is.
  • the liquid crystal alignment film is capable of exhibiting high performance in addition to the performance of controlling the alignment of liquid crystal molecules (hereinafter also referred to as liquid crystal alignment).
  • Various characteristics are required. For example, as characteristics relating to display quality improvement of a liquid crystal display element, characteristics relating to improvement of display defects and improvement in transmittance are required.
  • the liquid crystal alignment film is required to have heat resistance, solvent resistance, and the like in consideration of applicability to the manufacturing process.
  • the liquid crystal alignment film is strongly required to have high resistance to the rubbing treatment from the viewpoint of applicability to the manufacturing process of the liquid crystal display element.
  • the rubbing process is known as a method of forming a liquid crystal alignment film from a polymer film formed on a substrate in a manufacturing process of a liquid crystal display element, and is still widely used industrially today. In the rubbing process, an alignment process is performed by rubbing the surface of the polymer film such as polyimide formed on the substrate with a cloth.
  • the liquid crystal alignment film is required to have resistance to rubbing treatment (hereinafter also referred to as rubbing resistance).
  • liquid crystal display elements are required to have a liquid crystal alignment film that can be applied to strong rubbing treatment by preventing the occurrence of rubbing scraping and rubbing scratches against strong rubbing treatment. Therefore, realization of high rubbing resistance is required in the liquid crystal alignment film. And the liquid crystal aligning agent which can form the liquid crystal aligning film which has high rubbing tolerance is calculated
  • the gist of the present invention is the following (1) to (9).
  • a liquid crystal aligning agent comprising a polyimide precursor and at least one polymer selected from the group consisting of polyimides obtained by imidizing the polyimide precursor and a compound having a blocked isocyanate group.
  • the liquid crystal aligning agent according to (1), wherein the compound having a blocked isocyanate group is a compound having three or more blocked isocyanate groups.
  • R 2 represents an organic group in the block portion.
  • any one of B 1 to B 3 represents a methyl group, and the other two represent hydrogen.
  • B 4 to B 6 and B 7 to B 9 as in B 1 to B 3 , any one represents a methyl group, and the other two represent hydrogen.
  • R 2 is, the liquid crystal alignment agent according to the above (4) is a C 4 H 8 NO.
  • (6) The polymer (1) to (5), wherein the polymer is at least one selected from the group consisting of a polyimide precursor having at least one of an amino group and a urea group and a polyimide obtained by imidization thereof.
  • liquid crystal aligning agent according to any one of the above (1) to (6), wherein the resin component containing the polymer is a solution in an organic solvent.
  • a liquid crystal alignment film obtained from the liquid crystal aligning agent according to any one of (1) to (7) above.
  • a liquid crystal display device having the liquid crystal alignment film according to (8).
  • the liquid crystal aligning agent which can form the liquid crystal aligning film which has high rubbing tolerance can be provided.
  • a liquid crystal alignment film having high rubbing resistance can be provided.
  • the present inventors have obtained the following knowledge and completed the present invention. That is, in the liquid crystal display element which is a display device, as described above, a polymer film is used for the liquid crystal alignment film, and specifically, a high heat resistance and high strength polyimide film is preferably used.
  • the liquid crystal aligning agent is used suitably.
  • a liquid crystal aligning agent using a varnish prepared by containing a polyimide precursor such as polyamic acid is used, and the coating film is formed on the substrate and imidized.
  • the method is known. Further, there is a method in which a polyimide that has been imidized in advance is dissolved in a solvent to prepare a so-called solvent-soluble polyimide varnish, and a polyimide film is formed with a liquid crystal aligning agent using the polyimide varnish.
  • the present inventors have found that the rubbing resistance of the liquid crystal alignment film to be formed can be improved by adding a specific compound to the above-described polyimide liquid crystal aligning agent. Specifically, in a liquid crystal aligning agent containing a polyimide precursor and / or polyimide obtained by imidizing a polyimide precursor, an isocyanate group was protected so as not to react at a normal temperature such as a storage state of the liquid crystal aligning agent. A compound having a blocked isocyanate group is included. It has been found that a liquid crystal aligning agent containing a compound having a blocked isocyanate group can realize high rubbing resistance in a liquid crystal alignment film formed using the same.
  • Japanese Patent Application Laid-Open No. 10-212484 discloses a technique relating to a liquid crystal aligning agent to which at least one compound selected from an isocyanate compound and a diamine compound is added.
  • an added component is intended to improve the adhesion of the liquid crystal alignment film to be formed with the substrate and to improve the voltage holding characteristics of the liquid crystal display device including the liquid crystal alignment film.
  • the liquid crystal aligning agent containing an isocyanate compound has a concern about storage stability.
  • the liquid crystal aligning agent of the present invention contains a compound having a blocked isocyanate group, improves the rubbing resistance of the liquid crystal alignment film to be formed, and the compound having a blocked isocyanate group has appropriate reactivity, so that liquid crystal The storage stability of the alignment agent is not reduced.
  • the liquid crystal aligning agent containing the compound which has the blocked isocyanate group of this invention can provide the liquid crystal aligning film of high rubbing resistance, and can provide the liquid crystal display element which has the liquid crystal aligning film.
  • the liquid crystal aligning agent of the present invention contains at least one polymer selected from the group consisting of a polyimide obtained by reacting a tetracarboxylic acid derivative and a diamine component and a polyimide obtained by imidizing the polyimide precursor.
  • the polyimide precursor include polyamic acid and polyamic acid ester.
  • the liquid crystal aligning agent of this invention is a compound (henceforth only called a blocked isocyanate compound) which has a blocked isocyanate group with the at least 1 sort (s) of polymer chosen from the group which consists of a polyimide precursor and a polyimide. contains.
  • liquid crystal aligning agent of the present invention a polyimide precursor, a polyimide, and a compound having a blocked isocyanate group will be described. And the liquid crystal aligning agent of this invention comprised including them is demonstrated.
  • the polyimide precursor contained in the liquid crystal aligning agent of this invention points out a polyamic acid and polyamic acid ester, and has a structural unit represented by following formula (1).
  • R 1 is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms
  • a 1 to A 2 are each independently a hydrogen atom or an optionally substituted carbon atom having 1 carbon atom.
  • R 1 is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, preferably 1 to 2 carbon atoms.
  • the temperature at which imidization proceeds increases as the number of carbon atoms in the alkyl group increases. Therefore, R 1 is particularly preferably a methyl group from the viewpoint of ease of imidization by heat.
  • a 1 and A 2 are each independently a hydrogen atom or an optionally substituted alkyl group, alkenyl group or alkynyl group having 1 to 10 carbon atoms.
  • the alkyl group include a methyl group, an ethyl group, a propyl group, a butyl group, a t-butyl group, a hexyl group, an octyl group, a decyl group, a cyclopentyl group, a cyclohexyl group, and a bicyclohexyl group.
  • alkenyl group examples include those obtained by replacing one or more CH—CH structures present in the above alkyl group with C ⁇ C structures, and more specifically, vinyl groups, allyl groups, 1-propenyl groups. And isopropenyl group, 2-butenyl group, 1,3-butadienyl group, 2-pentenyl group, 2-hexenyl group, cyclopropenyl group, cyclopentenyl group, cyclohexenyl group and the like.
  • Alkynyl groups include those in which one or more CH 2 —CH 2 structures present in the alkyl group are replaced with C ⁇ C structures, and more specifically, ethynyl groups, 1-propynyl groups, 2 -Propynyl group and the like.
  • the above alkyl group, alkenyl group, and alkynyl group may have a substituent as long as the number of carbon atoms is 1 to 10 as a whole, and may further form a ring structure by the substituent.
  • the formation of a ring structure by a substituent means that the substituents or a substituent and a part of the mother skeleton are bonded to form a ring structure.
  • substituents examples include halogen groups, hydroxyl groups, thiol groups, nitro groups, aryl groups, organooxy groups, organothio groups, organosilyl groups, acyl groups, ester groups, thioester groups, phosphate ester groups, amide groups, Examples thereof include an alkyl group, an alkenyl group, and an alkynyl group.
  • halogen group examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • a phenyl group is mentioned as an aryl group which is a substituent. This aryl group may be further substituted with the other substituent described above.
  • the organooxy group can have a structure represented by —O—R.
  • the R may be the same or different, and examples thereof include the alkyl group, alkenyl group, alkynyl group, and aryl group described above. These Rs may be further substituted with the substituent described above.
  • Specific examples of the organooxy group include methoxy group, ethoxy group, propyloxy group, butoxy group, pentyloxy group, hexyloxy group, heptyloxy group, octyloxy group and the like.
  • organothio group which is a substituent
  • R examples include the aforementioned alkyl group, alkenyl group, alkynyl group, aryl group and the like. These Rs may be further substituted with the substituent described above.
  • Specific examples of the organothio group include a methylthio group, an ethylthio group, a propylthio group, a butylthio group, a pentylthio group, a hexylthio group, a heptylthio group, and an octylthio group.
  • the organosilyl group as a substituent can have a structure represented by —Si— (R) 3 .
  • the R may be the same or different, and examples thereof include the alkyl group, alkenyl group, alkynyl group, aryl group described above. These Rs may be further substituted with the substituent described above.
  • Specific examples of the organosilyl group include a trimethylsilyl group, a triethylsilyl group, a tripropylsilyl group, a tributylsilyl group, a tripentylsilyl group, a trihexylsilyl group, a pentyldimethylsilyl group, and a hexyldimethylsilyl group.
  • the acyl group as a substituent can have a structure represented by —C (O) —R.
  • R include the alkyl groups, alkenyl groups, and aryl groups described above. These Rs may be further substituted with the substituent described above.
  • Specific examples of the acyl group include formyl group, acetyl group, propionyl group, butyryl group, isobutyryl group, valeryl group, isovaleryl group, benzoyl group and the like.
  • ester group which is a substituent a structure represented by —C (O) O—R or —OC (O) —R can be shown.
  • R include the aforementioned alkyl group, alkenyl group, alkynyl group, aryl group and the like. These Rs may be further substituted with the substituent described above.
  • the thioester group as a substituent can have a structure represented by —C (S) O—R or —OC (S) —R.
  • R include the aforementioned alkyl group, alkenyl group, alkynyl group, aryl group, and the like. These Rs may be further substituted with the substituent described above.
  • the phosphate group which is a substituent can have a structure represented by —OP (O) — (OR) 2 .
  • the R may be the same or different, and examples thereof include the alkyl group, alkenyl group, alkynyl group, aryl group described above. These Rs may be further substituted with the substituent described above.
  • Examples of the amide group as a substituent include —C (O) NH 2 , —C (O) NHR, —NHC (O) R, —C (O) N (R) 2 , or —NRC (O) R.
  • the structure represented by can be shown.
  • the R may be the same or different, and examples thereof include the alkyl group, alkenyl group, alkynyl group, and aryl group described above. These Rs may be further substituted with the substituent described above.
  • Examples of the aryl group as a substituent include the same aryl groups as described above. This aryl group may be further substituted with the other substituent described above.
  • Examples of the alkyl group as a substituent include the same alkyl groups as described above. This alkyl group may be further substituted with the other substituent described above.
  • Examples of the alkenyl group as a substituent include the same alkenyl groups as described above. This alkenyl group may be further substituted with the other substituent described above.
  • Examples of the alkynyl group that is a substituent include the same alkynyl groups as described above. This alkynyl group may be further substituted with the other substituent described above.
  • a 1 and A 2 a hydrogen atom or a carbon atom that may have a substituent is 1
  • An alkyl group of 1 to 5 is more preferable, and a hydrogen atom, a methyl group, or an ethyl group is particularly preferable.
  • X 1 is a tetravalent organic group
  • the structure thereof is not particularly limited, and two or more types may be mixed.
  • Specific examples of X 1 include X-1 to X-46 shown below. Among these, from the availability of monomers, X 1 is X-1, X-2, X-3, X-4, X-5, X-6, X-8, X-16, X-19, X -21, X-25, X-26, X-27, X-28 or X-32 are preferred.
  • Y 1 is a divalent organic group, and two or more kinds may be mixed.
  • Examples of specific structures of Y 1 include Y-1 to Y-106 shown below, but are not limited thereto. Among these, Y-7, Y-8, Y-13, Y-18, Y-, Y-, Y-8, Y-13, Y-18, Y-, from the viewpoint of the reactivity of the raw material diamine used for obtaining the polyimide precursor of the above formula (1) and the solubility of the polymer 19, divalent structure of Y-42, Y-43, Y-45, Y-55, Y-59, Y-74, Y-78, Y-79, Y-80, Y-81, Y-82 It is more preferable to use the organic group.
  • N 1-5 in Y-64 and Y-73.
  • the polyimide precursor which can be contained in the liquid crystal aligning agent of this invention
  • the polyimide precursor of a structure suitable for a crosslinking reaction to advance between the compounds which have the blocked isocyanate group mentioned later is preferable.
  • a polyimide precursor having at least one of an amino group and a urea group is preferable.
  • the liquid crystal aligning agent of the present invention can provide the liquid crystal aligning film of the present invention having higher rubbing resistance.
  • the polyimide precursor of the said Formula (1) which can be contained in the liquid crystal aligning agent of this invention is a polyamic acid and polyamic acid ester as above-mentioned.
  • the polyamic acid that is a polyimide precursor is obtained by a reaction between a tetracarboxylic dianhydride that is a tetracarboxylic acid derivative and a diamine component.
  • a known synthesis method can be used.
  • the synthesis method is a method in which a tetracarboxylic dianhydride and a diamine component are reacted in an organic solvent.
  • the reaction of tetracarboxylic dianhydride and diamine is advantageous in that it proceeds relatively easily in an organic solvent and no by-product is generated.
  • the organic solvent used for the reaction between the tetracarboxylic dianhydride and the diamine component is not particularly limited as long as the produced polyamic acid dissolves. Specific examples are given below.
  • solvents may be used alone or in combination. Further, even a solvent that does not dissolve the polyamic acid may be used by mixing with the above solvent as long as the produced polyamic acid does not precipitate.
  • the solution in which the diamine component is dispersed or dissolved in the organic solvent is stirred, and the tetracarboxylic dianhydride is used as it is or in an organic solvent.
  • a method of adding by dispersing or dissolving a method of adding a diamine component to a solution in which tetracarboxylic dianhydride is dispersed or dissolved in an organic solvent, and alternately adding a tetracarboxylic dianhydride and a diamine component. Any of these methods may be used.
  • tetracarboxylic dianhydride or diamine component when they are composed of a plurality of types of compounds, they may be reacted in a premixed state, may be individually reacted sequentially, or may be further reacted individually. May be mixed and reacted to form a high molecular weight product.
  • the polymerization temperature at that time can be selected from -20 ° C. to 150 ° C., but is preferably in the range of ⁇ 5 ° C. to 100 ° C.
  • the reaction can be carried out at any concentration, but if the concentration is too low, it is difficult to obtain a high molecular weight polymer, and if the concentration is too high, the viscosity of the reaction solution becomes too high and uniform stirring is difficult. Therefore, the total concentration of the tetracarboxylic dianhydride and the diamine component in the reaction solution is preferably 1% by mass to 50% by mass, more preferably 5% by mass to 30% by mass.
  • the initial stage of the reaction is carried out at a high concentration, and then an organic solvent can be added.
  • the ratio of the total number of moles of tetracarboxylic dianhydride to the total number of moles of the diamine component is preferably 0.8 to 1.2. Similar to the normal polycondensation reaction, the closer the molar ratio is to 1.0, the higher the molecular weight of the polyamic acid produced.
  • the polyimide precursor of the said Formula (1) which can be contained in the liquid crystal aligning agent of this invention is a polyamic acid and polyamic acid ester as above-mentioned.
  • the polyamic acid ester which is a polyimide precursor can be synthesized by the following methods (1) to (3) using a tetracarboxylic acid derivative and a diamine compound.
  • the polyamic acid ester can be synthesized by esterifying a polyamic acid obtained from tetracarboxylic dianhydride and diamine. Specifically, the polyamic acid and the esterifying agent are reacted in the presence of an organic solvent at ⁇ 20 ° C. to 150 ° C., preferably 0 ° C. to 50 ° C., for 30 minutes to 24 hours, preferably 1 hour to 4 hours. Can be synthesized.
  • esterifying agent those that can be easily removed by purification are preferred, and N, N-dimethylformamide dimethyl acetal, N, N-dimethylformamide diethyl acetal, N, N-dimethylformamide dipropyl acetal, N, N— Dimethylformamide dineopentyl butyl acetal, N, N-dimethylformamide di-t-butyl acetal, 1-methyl-3-p-tolyltriazene, 1-ethyl-3-p-tolyltriazene, 1-propyl-3 -P-tolyltriazene, 4- (4,6-dimethoxy-1,3,5-triazin-2-yl) -4-methylmorpholinium chloride and the like.
  • the addition amount of the esterifying agent is preferably 2 to 6 molar equivalents relative to 1 mol of the polyamic acid repeating unit.
  • the solvent used in the above reaction is preferably N, N-dimethylformamide, N-methyl-2-pyrrolidone, or ⁇ -butyrolactone from the solubility of the polymer, and these may be used alone or in combination of two or more. Good.
  • the concentration at the time of synthesis is preferably 1% by mass to 30% by mass and more preferably 5% by mass to 20% by mass from the viewpoint that polymer precipitation is unlikely to occur and a high molecular weight product is easily obtained.
  • tetracarboxylic acid diester dichloride and diamine in the presence of a base and an organic solvent at ⁇ 20 ° C. to 150 ° C., preferably 0 ° C. to 50 ° C., for 30 minutes to 24 hours, preferably 1 to 4 hours. It can be synthesized by reacting.
  • a base pyridine, triethylamine, 4-dimethylaminopyridine and the like can be used, but pyridine is preferable because the reaction proceeds gently.
  • the addition amount of the base is preferably 2 to 4 times with respect to the tetracarboxylic acid diester dichloride from the viewpoint of easy removal and high molecular weight.
  • the solvent used in the above reaction is preferably N-methyl-2-pyrrolidone or ⁇ -butyrolactone in view of the solubility of the monomer and polymer, and these may be used alone or in combination.
  • the polymer concentration at the time of synthesis is preferably 1% by mass to 30% by mass and more preferably 5% by mass to 20% by mass from the viewpoint that polymer precipitation is difficult to occur and a high molecular weight product is easily obtained.
  • the solvent used for the synthesis of the polyamic acid ester is preferably dehydrated as much as possible, and it is preferable to prevent mixing of outside air in a nitrogen atmosphere.
  • Polyamic acid ester can be synthesized by polycondensation of tetracarboxylic acid diester and diamine.
  • tetracarboxylic acid diester and diamine in the presence of a condensing agent, a base, and an organic solvent at 0 ° C. to 150 ° C., preferably 0 ° C. to 100 ° C., for 30 minutes to 24 hours, preferably 3 hours to It can be synthesized by reacting for 15 hours.
  • condensing agent examples include triphenyl phosphite, dicyclohexylcarbodiimide, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride, N, N′-carbonyldiimidazole, dimethoxy-1,3,5-triazide.
  • Nylmethylmorpholinium O- (benzotriazol-1-yl) -N, N, N ′, N′-tetramethyluronium tetrafluoroborate, O- (benzotriazol-1-yl) -N, N , N ′, N′-tetramethyluronium hexafluorophosphate, (2,3-dihydro-2-thioxo-3-benzoxazolyl) phosphonate diphenyl, and the like.
  • the addition amount of the condensing agent is preferably 2 to 3 times by mole with respect to the tetracarboxylic acid diester.
  • tertiary amines such as pyridine and triethylamine can be used.
  • the addition amount of the base is preferably 2 to 4 times by mole with respect to the diamine component from the viewpoint of easy removal and high molecular weight.
  • the reaction proceeds efficiently by adding Lewis acid as an additive.
  • Lewis acid lithium halides such as lithium chloride and lithium bromide are preferable.
  • the addition amount of the Lewis acid is preferably 0 to 1.0 mol times relative to the diamine component.
  • the high molecular weight polyamic acid ester is obtained, and therefore the synthesis method (1) or (2) is particularly preferable.
  • the polymer solution can be precipitated by injecting the polyamic acid ester solution obtained according to the above-described method into a poor solvent while thoroughly stirring. Precipitation is carried out several times, and after washing with a poor solvent, a purified polyamic acid ester powder can be obtained by normal temperature or heat drying.
  • a poor solvent is not specifically limited, Water, methanol, ethanol, hexane, butyl cellosolve, acetone, toluene etc. are mentioned.
  • the liquid crystal aligning agent of this invention contains the at least 1 sort (s) of polymer chosen from the group which consists of the polyimide precursor mentioned above and a polyimide.
  • the polyimide contained in the liquid crystal aligning agent of the present invention is a polyimide obtained by dehydrating and ring-closing the polyamic acid of the polyimide precursor of the above formula (1). This polyimide is contained in the liquid crystal aligning agent of this invention, and is useful as a polymer for obtaining a liquid crystal aligning film.
  • the polyimide which can be contained in the liquid crystal aligning agent of this invention the polyimide of a structure suitable for a crosslinking reaction to advance between the compounds which have the blocked isocyanate group mentioned later is preferable.
  • a polyimide having at least one of an amino group and a urea group is preferable.
  • the liquid crystal aligning agent of the present invention can provide a liquid crystal aligning film having higher rubbing resistance.
  • the dehydration ring closure rate (imidation rate) of an amic acid group does not necessarily need to be 100%, and can be arbitrarily adjusted according to a use and the objective. .
  • examples of the method for imidizing the polyamic acid include thermal imidization in which the polyamic acid solution is heated as it is, and catalytic imidization in which a catalyst is added to the polyamic acid solution.
  • the temperature at which the polyamic acid is thermally imidized in the solution is 100 ° C. to 400 ° C., preferably 120 ° C. to 250 ° C., and it is preferable to carry out while removing water generated by the imidization reaction from the outside of the system.
  • the catalytic imidation of the polyamic acid can be carried out by adding a basic catalyst and an acid anhydride to the polyamic acid solution and stirring at -20 ° C to 250 ° C, preferably 0 ° C to 180 ° C.
  • the amount of the basic catalyst is 0.5 mol times to 30 mol times, preferably 2 mol times to 20 mol times of the amic acid groups, and the amount of the acid anhydride is 1 mol times to 50 mol times of the amic acid groups, The amount is preferably 3 mole times to 30 mole times.
  • Examples of the basic catalyst used for the above-mentioned catalyst imidization include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like, and among them, pyridine is preferable because it has an appropriate basicity for proceeding with the reaction.
  • Examples of the acid anhydride used for the catalyst imidization include acetic anhydride, trimellitic anhydride, pyromellitic anhydride, and the like. Of these, use of acetic anhydride is preferred because purification after completion of the reaction is facilitated.
  • the imidization rate by catalytic imidation can be controlled by adjusting the amount of catalyst, reaction temperature, and reaction time.
  • the liquid crystal aligning agent of this invention contains a blocked isocyanate compound with the at least 1 sort (s) of polymer chosen from the group which consists of a polyimide precursor and a polyimide.
  • the liquid crystal aligning agent of the present invention containing a blocked isocyanate compound can realize high rubbing resistance in a liquid crystal alignment film formed using the same.
  • the blocked isocyanate compound can be thermally cured to a film of a polymer such as polyimide constituting the liquid crystal alignment film at the temperature of heating and baking when the liquid crystal alignment film is formed using the liquid crystal aligning agent of the present invention.
  • a polymer such as polyimide constituting the liquid crystal alignment film at the temperature of heating and baking when the liquid crystal alignment film is formed using the liquid crystal aligning agent of the present invention.
  • Any compound that has a blocked isocyanate group in the molecule as long as it can be used is not particularly limited.
  • a blocked isocyanate compound has an isocyanate group in which an isocyanate group (—NCO) is blocked by an appropriate protective group in the molecule, and when exposed to a high temperature during heating and baking for forming a liquid crystal alignment film, ) Are dissociated by thermal dissociation, and a crosslinking reaction proceeds with a polymer such as polyimide constituting the liquid crystal alignment film via the generated isocyanate group.
  • an isocyanate group —NCO
  • R 2 represents an organic group of the block unit.
  • the blocked isocyanate compound can be obtained, for example, by allowing a suitable blocking agent to act on a compound having an isocyanate group in the molecule.
  • the organic group in the block portion of R 2 in the above formula (2) is a residue of the blocking agent and varies depending on the blocking agent used.
  • the blocking agent include alcohols such as methanol, ethanol, isopropanol, n-butanol, 2-ethoxyhexanol, 2-N, N-dimethylaminoethanol, 2-ethoxyethanol, cyclohexanol, phenol, o-nitro.
  • Phenols such as phenol, p-chlorophenol, o-, m- or p-cresol, lactams such as ⁇ -caprolactam, acetone oxime, methyl ethyl ketone oxime, methyl isobutyl ketone oxime, cyclohexanone oxime, acetophenone oxime, benzophenone oxime, etc.
  • Examples include oximes, pyrazoles, pyrazoles such as 3,5-dimethylpyrazole, and 3-methylpyrazole, and thiols such as dodecanethiol and benzenethiol.
  • the blocked isocyanate compound is a compound in which the block portion undergoes thermal dissociation and undergoes a crosslinking reaction via an isocyanate group in a high temperature state such as the heating and baking temperature at the time of forming the liquid crystal alignment film. It is preferable that the crosslinking by the isocyanate group does not proceed in a low temperature state such as time.
  • the blocked isocyanate compound has a temperature of thermal dissociation of the block portion that is considerably higher than that during storage of the liquid crystal aligning agent, preferably 50 ° C. to 230 ° C., more preferably A temperature of 100 ° C. to 180 ° C. is preferred.
  • the blocked isocyanate compound can achieve improved rubbing resistance in a liquid crystal alignment film formed using a liquid crystal aligning agent containing the blocked isocyanate compound.
  • a blocked isocyanate compound having three or more blocked isocyanate groups in one molecule is effective in improving the rubbing resistance of the liquid crystal alignment film.
  • a compound having three or more blocked isocyanate groups in one molecule can be obtained, for example, by allowing an appropriate blocking agent as described above to act on a compound having three or more isocyanate groups in one molecule. be able to.
  • Examples of the compound having three or more blocked isocyanate groups in one molecule include specific examples of compounds represented by any of the following formulas (Z-1) to (Z-4): Is mentioned.
  • R 2 represents an organic group in the block portion.
  • any one of B 1 to B 3 represents a methyl group, and the other two represent hydrogen.
  • B 4 to B 6 and B 7 to B 9 as in B 1 to B 3 , any one represents a methyl group, and the other two represent hydrogen.
  • the blocked isocyanate compound when the blocked isocyanate compound is contained in the liquid crystal aligning agent of the present invention, the blocked isocyanate compound may be used alone or in combination of two or more.
  • the blocked isocyanate compound is contained in the liquid crystal aligning agent in an amount of 0.1 mol% to 20 mol%, preferably 0, based on at least one polymer selected from the group consisting of polyimide precursors and polyimides. .2 mol% to 10 mol%, more preferably 0.2 mol% to 8 mol%.
  • the content of the blocked isocyanate compound is an excessive amount less than the lower limit of the above range, thermosetting becomes insufficient, and a satisfactory effect of improving rubbing resistance in a liquid crystal alignment film cannot be obtained.
  • the use amount of the blocked isocyanate compound exceeds the upper limit of the above range, there is a concern that the liquid crystal alignment property of the liquid crystal alignment film to be formed is lowered.
  • the liquid crystal aligning agent of this invention is a coating liquid for forming a liquid crystal aligning film, and is a solution which the resin component for forming a resin film melt
  • the said resin component is a resin component containing the at least 1 sort (s) of polymer chosen from the group which consists of the polyimide precursor mentioned above and a polyimide.
  • the content of the resin component is preferably 1% by mass to 20% by mass, more preferably 3% by mass to 15% by mass, and still more preferably 3% by mass to 10% by mass.
  • all of the above resin components may be the above-described polymers, or other polymers may be mixed.
  • the content of the polymer other than the above-mentioned polymer in the resin component is 0.5% by mass to 15% by mass, preferably 1% by mass to 10% by mass.
  • the liquid crystal aligning agent of this invention contains the blocked isocyanate compound mentioned above.
  • the content thereof is 0.1 mol% to 20 mol%, preferably 0.2 mol% to 10 mol, with respect to at least one polymer selected from the group consisting of a polyimide precursor and polyimide. Used in the proportion of mol%.
  • the blocked isocyanate compound contained in the liquid crystal aligning agent of the present invention is a compound that undergoes a crosslinking reaction by heating at the time of forming the liquid crystal aligning film. Accordingly, the liquid crystal aligning agent of the present invention contains a blocked isocyanate compound that undergoes a crosslinking reaction and is excellent in storage stability.
  • the organic solvent used in the liquid crystal aligning agent of the present invention is not particularly limited as long as it is an organic solvent capable of dissolving the resin component such as the polymer and the blocked isocyanate compound. Specific examples are given below.
  • the liquid crystal aligning agent of the present invention may contain components other than those described above. Examples thereof include solvents and compounds that improve the film thickness uniformity and surface smoothness when a liquid crystal aligning agent is applied, and compounds that improve the adhesion between the liquid crystal aligning film and the substrate.
  • These poor solvents may be used alone or in combination.
  • the above solvent it is preferably 5% by mass to 80% by mass, and more preferably 20% by mass to 60% by mass with respect to the total solvent contained in the liquid crystal aligning agent.
  • Examples of compounds that improve film thickness uniformity and surface smoothness include fluorine-based surfactants, silicone-based surfactants, and nonionic surfactants. More specifically, for example, EFTOP (registered trademark) EF301, EF303, EF352 (manufactured by Tochem Products), MegaFac (registered trademark) F171, F173, R-30 (manufactured by Dainippon Ink, Inc.), Florard FC430, FC431 (manufactured by Sumitomo 3M), Asahi Guard (registered trademark) AG710, Surflon (registered trademark) S-382, SC101, SC102, SC103, SC104, SC105, SC106 (manufactured by Asahi Glass Co., Ltd.) and the like.
  • EFTOP registered trademark
  • EF301, EF303, EF352 manufactured by Tochem Products
  • MegaFac registered trademark
  • F171, F173, R-30 manufactured by Dainippon Ink,
  • the use ratio of these surfactants is preferably 0.01 to 2 parts by mass, more preferably 0.01 to 1 part by mass with respect to 100 parts by mass of the resin component contained in the liquid crystal aligning agent. Part.
  • the compound for improving the adhesion between the liquid crystal alignment film and the substrate include the following functional silane-containing compounds and epoxy group-containing compounds.
  • the usage-amount is 0.1 to 30 mass parts with respect to 100 mass parts of the resin component contained in a liquid-crystal aligning agent. More preferably, it is 1 to 20 parts by mass. If the amount used is less than 0.1 part by mass, the effect of improving the adhesion cannot be expected, and if it exceeds 30 parts by mass, the liquid crystal orientation of the liquid crystal alignment film formed may be lowered.
  • the liquid crystal aligning agent of the present invention may be a dielectric or conductive material for the purpose of changing the electrical properties such as the dielectric constant and conductivity of the liquid crystal aligning film as long as the effects of the present invention are not impaired.
  • a crosslinkable compound for the purpose of increasing the hardness and density of the liquid crystal alignment film may be added.
  • the liquid crystal aligning agent of the present invention can be formed into a coating film by preferably filtering before applying to the substrate, applying to the substrate, drying by pre-baking, and then baking by heating. And a liquid crystal aligning film can be formed by rubbing this coating-film surface.
  • the liquid crystal aligning agent of this invention mentioned above contains the blocked isocyanate compound mentioned above, and the liquid crystal aligning film formed has high rubbing tolerance.
  • a highly transparent substrate can be used.
  • a plastic substrate such as an acrylic substrate or a polycarbonate substrate can be used in addition to a glass substrate.
  • the liquid crystal aligning agent of this invention it is preferable to form a liquid crystal aligning film using the board
  • an opaque substrate such as a silicon wafer can be used as long as only one substrate is used. In this case, a material that reflects light such as aluminum may be used for the electrode. it can.
  • the coating method for coating on the substrate using the liquid crystal aligning agent of the present invention is not particularly limited, but industrially, a method performed by screen printing, offset printing, flexographic printing, an inkjet method or the like is common. Other coating methods include a dipping method, a roll coater method, a slit coater method, a spinner method, or a spray method, and these may be used depending on the purpose. Even if the liquid crystal aligning agent of this invention is a case where the above apply
  • the step of drying by pre-baking after applying the liquid crystal aligning agent is not necessarily required, but when the time from application to heating and baking is not constant for each substrate, or when heating and baking is not performed immediately after application, It is preferable to include a drying step.
  • This drying by pre-baking is performed at a temperature at which the above-mentioned blocked isocyanate compound contained in the liquid crystal aligning agent does not react as long as the solvent evaporates to such an extent that the coating film shape is not deformed by transporting the substrate or the like. It is preferable.
  • the drying means is not particularly limited. As a specific example, a method of drying on a hot plate at 50 ° C. to 120 ° C., preferably 80 ° C. to 120 ° C. for 0.5 minutes to 30 minutes, preferably 1 minute to 5 minutes is preferable.
  • the substrate coated with the liquid crystal aligning agent can be baked at a temperature of 120 ° C. to 350 ° C. by a heating means such as a hot plate, a thermal circulation oven or an IR (infrared) oven.
  • the firing temperature is preferably 140 ° C. to 300 ° C., more preferably 180 ° C. to 250 ° C. in consideration of the reactivity of the blocked isocyanate compound contained in the liquid crystal aligning agent.
  • firing is preferably performed at a temperature higher by 10 ° C. or more than the heat treatment temperature required for the manufacturing process of the liquid crystal display element such as sealing agent curing.
  • the thickness of the coating film after baking is preferably 10 nm to 200 nm, more preferably 50 nm to 100 nm.
  • An existing rubbing apparatus can be used for rubbing the coating surface formed on the substrate as described above. Examples of the material of the rubbing cloth at this time include cotton, rayon, and nylon.
  • the liquid crystal aligning agent of this invention can form a liquid crystal aligning film on a board
  • the liquid crystal alignment film formed in this way has high rubbing resistance, and the problem of dust generated when the liquid crystal alignment film is scraped off by rubbing treatment and scratches on the liquid crystal alignment film deteriorate the display quality of the liquid crystal display element. Can be reduced.
  • the rubbing treatment tends to perform the alignment treatment by rubbing the coating film surface formed on the substrate more strongly than the rubbing cloth.
  • Such a strong rubbing treatment is based on the purpose of making the alignment state of the liquid crystal molecules more uniform and stronger in order to improve the display quality of the liquid crystal display element.
  • the liquid crystal alignment film of the present invention has high rubbing resistance and can be suitably applied to such strong rubbing treatment.
  • a liquid crystal display can be manufactured by a well-known method using the board
  • a pair of substrates on which a liquid crystal alignment film using the liquid crystal alignment agent of the present invention is formed is prepared. Then, they are placed with a spacer of preferably 1 ⁇ m to 30 ⁇ m, more preferably 2 ⁇ m to 10 ⁇ m, so that the rubbing direction is an arbitrary angle of 0 ° to 270 °, and the periphery is fixed with a sealant. Next, liquid crystal is injected between the substrates and sealed.
  • the method for enclosing the liquid crystal is not particularly limited, and examples thereof include a vacuum method in which liquid crystal is injected after reducing the pressure inside the manufactured liquid crystal cell, and a dropping method in which sealing is performed after dropping the liquid crystal.
  • the liquid crystal display element manufactured in this way has a liquid crystal alignment film formed from the liquid crystal aligning agent of the present invention.
  • the liquid crystal display element has no deterioration in display quality due to scratches on the liquid crystal alignment film, has excellent display quality, and has high reliability.
  • the following examples further illustrate the present invention.
  • the present invention is not construed as being limited to these.
  • the structures and abbreviations of main compounds used in Examples and Comparative Examples are as follows.
  • the blocked isocyanate compound (B-1) is a compound represented by the above formula (Z-1), and the blocked isocyanate compound (B-2) is represented by the above formula (Z-2).
  • the blocked isocyanate compound (B-3) is a compound represented by the above formula (Z-3), and the blocked isocyanate compound (B-4) is represented by the above formula (Z-4). ).
  • CBDE 2,4-bis (methoxycarbonyl) cyclobutane-1,3-dicarboxylic acid
  • PMDA pyromellitic dianhydride
  • DA-3MG 1,3-bis (4-aminophenoxy) propane
  • BAPU 1,3-bis (4-aminophenethyl) urea
  • DADPA 4,4′-diaminodiphenylamine
  • DBOP Diphenyl (2,3-dihydro-2-thioxo-3-benzoxazolyl) phosphonate
  • B-1 VESTANAT B 1358 & B 1370
  • B-2 B-882N
  • B-3 B-830
  • B-5 VESTAGON 1065 (Crosslinking agent)
  • B-4 Diphenylmethane diisocyanate
  • Solid content Calculation of the solid content concentration of the polyamic acid solution and the polyamic acid ester solution according to the synthesis example was performed as follows.
  • Aluminum cup with handle No. Approximately 1.1 g of the solution was weighed into 2 (manufactured by ASONE), heated in an oven DNF400 (manufactured by Yamato) at 200 ° C. for 2 hours, and then allowed to stand at room temperature for 5 minutes, and the weight of the solid content remaining in the aluminum cup was weighed. .
  • the solid content concentration was calculated from the solid content weight and the original solution weight value.
  • the molecular weights of the polyamic acid and polyamic acid ester according to the synthesis example are measured by a GPC (normal temperature gel permeation chromatography) apparatus, and the number average molecular weight (hereinafter also referred to as Mn) and the weight average molecular weight (hereinafter also referred to as Mn) as polyethylene glycol and polyethylene oxide equivalent values.
  • Mn number average molecular weight
  • Mn weight average molecular weight
  • Mw weight average molecular weight
  • GPC device manufactured by Shodex (GPC-101) Column: manufactured by Shodex (series of KD803 and KD805) Column temperature: 50 ° C Eluent: N, N-dimethylformamide (as additives, lithium bromide-hydrate (LiBr ⁇ H 2 O) 30 mmol / L, phosphoric acid / anhydrous crystals (o-phosphoric acid) 30 mmol / L, tetrahydrofuran) (THF) is 10 ml / L) Flow rate: 1.0 ml / min Standard sample for preparing a calibration curve: TSK standard polyethylene oxide (weight average molecular weight (Mw) of about 900,000, 150,000, 100,000, 30000) manufactured by Tosoh Corporation and polyethylene glycol (peak top molecular weight manufactured by Polymer Laboratories) (Mp) about 12000, 4000, 1000). In order to avoid overlapping peaks, the measurement was performed by separately measuring two samples of 90000, 100000, 12000,
  • the rubbing resistance was evaluated by observing the amount of deposits after the rubbing treatment of the polyimide film formed on the substrate. Specifically, after filtering the liquid crystal aligning agent obtained by the Example and comparative example which are mentioned later with a 1.0 micrometer filter, it spin-coats on an ITO vapor deposition glass substrate, and is 5 minutes on a hotplate with a temperature of 80 degreeC. After drying and baking at a temperature of 230 ° C. for 20 minutes, a polyimide film having a film thickness of 100 nm was obtained.
  • This polyimide film was rubbed with a cotton cloth (roll diameter 120 mm, rotation speed 1000 rpm, moving speed 20 mm / sec, indentation length 0.2 mm) to form a liquid crystal alignment film.
  • the surface state of the liquid crystal alignment film was observed using a confocal laser microscope, and the deposits were observed at a magnification of 10 times (observation area: about 680 ⁇ m ⁇ 680 ⁇ m, microscope magnification: 100 times).
  • attachment it was set as "(double-circle)", when a small amount of deposits were observed, it was set as "(circle)”, and when many deposits were observed, it was set as "*".
  • the obtained results are shown in Table 1.
  • This polymic acid ester solution was put into 2168 g of methanol, and the resulting precipitate was separated by filtration. The precipitate was washed with methanol and then dried under reduced pressure at a temperature of 100 ° C. to obtain a polyamic acid ester powder.
  • Example 1 Using the polyamic acid solution (A-1) obtained in the same manner as in Synthesis Example 1, the blocked isocyanate compound (B--) is added in an amount of 3.00 mol% with respect to the solid content of the polyamic acid or the like. 1) was added and stirred for 2 hours to prepare a liquid crystal aligning agent. Using this liquid crystal aligning agent, a liquid crystal alignment film was formed according to the method for evaluating rubbing resistance described above, and the rubbing resistance of the liquid crystal alignment film was evaluated. And storage stability was evaluated using a part of prepared liquid crystal aligning agent. The above evaluation results are summarized in Table 1.
  • Example 2 to Example 3 Example 1 except that the polyamic acid solution (A-1) was used and the blocked isocyanate compound (B-2) as an additive component was added in an amount of 3.00 mol% based on the solid content of the polyamic acid or the like.
  • the liquid crystal aligning agent of Example 2 was prepared.
  • Example 1 except that the polyamic acid solution (A-1) was used and the blocked isocyanate compound (B-3) as an additive component was added in an amount of 3.00 mol% based on the solid content of the polyamic acid or the like.
  • the liquid crystal aligning agent of Example 3 was prepared.
  • Example 1 except that the polyamic acid solution (A-1) was used and the blocked isocyanate compound (B-5) as an additional component was added in an amount of 3.00 mol% based on the solid content of the polyamic acid or the like.
  • the liquid crystal aligning agent of Example 6 was prepared.
  • Example 4 19.49 g of the polyamic acid ester solution (A-2) obtained in the same manner as in Synthesis Example 1 was dispensed into a 100 mL Erlenmeyer flask containing a stirring bar, and 3.00 mol% with respect to the solid content of the polyamic acid ester and the like. In such an amount, the blocked isocyanate compound (B-1) as an additional component was added and stirred for 2 hours to prepare a liquid crystal aligning agent. Using this liquid crystal aligning agent, a liquid crystal alignment film was formed according to the method for evaluating rubbing resistance described above, and the rubbing resistance of the liquid crystal alignment film was evaluated. And storage stability was evaluated using a part of prepared liquid crystal aligning agent. The above evaluation results are summarized in Table 1.
  • Example 5 20.94 g of the polyamic acid ester solution (A-3) obtained in the same manner as in Synthesis Example 3 was dispensed into a 100 mL Erlenmeyer flask containing a stir bar, and 3.00 mol% with respect to the solid content of the polyamic acid ester and the like. In such an amount, the blocked isocyanate compound (B-1) as an additional component was added and stirred for 2 hours to prepare a liquid crystal aligning agent. Using this liquid crystal aligning agent, a liquid crystal alignment film was formed according to the method for evaluating rubbing resistance described above, and the rubbing resistance of the liquid crystal alignment film was evaluated. And storage stability was evaluated using a part of prepared liquid crystal aligning agent.
  • the storage stability of the liquid crystal aligning agents obtained in Examples 1 to 4 and Comparative Examples 1 to 3 and the evaluation results of the rubbing resistance of the liquid crystal aligning films obtained therefrom are shown in Table 1.
  • Table 1 are summarized in In the column of components in Table 1, the polyamic acid solution (A-1) or the polyamic acid ester solution used to obtain the liquid crystal aligning agents of Examples 1 to 4 and Comparative Examples 1 to 3 ( A-2) is described. Further, the “-” indication in the column of additive components in Table 1 indicates that the additive component is not contained.
  • the liquid crystal aligning agents of Examples 1 to 6 are excellent in storage stability.
  • the liquid crystal alignment films formed using the liquid crystal aligning agents of Examples 1 to 6 have good rubbing resistance.
  • the liquid crystal aligning agents of Examples 1, 4 and 6 are used.
  • the liquid crystal alignment film was found to have high rubbing resistance.
  • the liquid crystal aligning agent of Comparative Example 1 has poor storage stability. And it turned out that the liquid crystal aligning agent of the comparative example 2 and the comparative example 3 has low rubbing tolerance of the liquid crystal aligning film formed using it.
  • liquid crystal aligning agents of Examples 1 to 6 can form liquid crystal aligning films having excellent storage stability and high rubbing resistance.
  • the liquid crystal alignment film formed using the liquid crystal aligning agent of the present invention has high rubbing resistance. Therefore, an alignment film for a liquid crystal display element for a portable information terminal such as a large-sized liquid crystal TV or a smartphone displaying a high-definition image, which requires a strong rubbing process to achieve excellent display quality. Can be suitably used. That is, the liquid crystal surface element of the present invention having the liquid crystal alignment film of the present invention can be suitably used as a display element for a portable information terminal such as a large TV or a smartphone displaying a high-definition image.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Liquid Crystal (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

 高いラビング耐性を有する液晶配向膜を形成することができる液晶配向剤を提供し、それを用いて液晶配向膜を提供し、液晶表示素子を提供する。 液晶配向剤を、ポリイミド前駆体およびそれをイミド化して得られるポリイミドから選ばれる少なくとも1つの重合体と、ブロック化イソシアネート基を有する化合物とを含有させて調製する。その液晶配向剤を用いて液晶配向膜を形成する。その液晶配向膜を用いて液晶表示素子を製造する。

Description

液晶配向剤、液晶配向膜および液晶表示素子
 本発明は、液晶配向剤、液晶配向膜および液晶表示素子に関する。
 液晶配向膜は、液晶表示素子や重合性液晶を用いた位相差板等において、液晶分子の配向を一定方向に制御するための膜である。例えば、液晶表示素子は、液晶層をなす液晶分子が、一対の基板のそれぞれの表面に形成された液晶配向膜で挟まれた構造を有する。そして、液晶表示素子では、液晶分子が、液晶配向膜によってプレチルト角を伴って一定方向に配向し、基板と液晶配向膜との間に設けられた電極への電圧印加により応答をする。その結果、液晶表示素子は、液晶分子の応答による配向変化を利用して所望とする画像の表示を行う。液晶配向膜は、液晶表示素子等において、液晶分子等とともに主要な構成部材となる。
 液晶配向膜は、基板上に高分子膜を形成して構成することができる。高分子膜としては、高耐熱性で高信頼性のポリイミド膜等を使用することができる。
 基板上に液晶配向膜となる高分子膜を形成する方法としては、高分子膜形成のため成分を含む液晶配向剤を使用し、基板上にその塗膜を形成して液晶配向膜となる高分子膜を得る方法が知られている。
 例えば、基板上に液晶配向膜となる高分子膜としてポリイミド膜を形成する場合、方法としては、ポリアミック酸等のポリイミド前駆体を含有して調製されたワニスを用いた液晶配向剤を使用し、その塗膜を作成し、基板上でイミド化させる方法が知られている。また、別の方法として、予めイミド化させてあるポリイミドを溶媒に溶解して、所謂、溶媒可溶性ポリイミドワニスを調製し、そのポリイミドワニスを用いた液晶配向剤を使用してポリイミド膜を形成する方法がある。
 近年、益々進歩する液晶表示素子の分野において、液晶配向膜は、液晶分子の配向を制御する性能(以下、液晶配向性とも言う。)に加え、液晶表示素子が高い性能を発揮できるように、多様な特性が求められるようになっている。例えば、液晶表示素子の表示品位向上に関する特性として、表示不良の改善に関する特性や透過率の向上が求められている。
 そして、液晶配向膜は製造工程への適用性が考慮され、耐熱性や耐溶剤性等が求められている。併せて、液晶配向膜は、液晶表示素子の製造工程への適用性の観点から、ラビング処理に対する高い耐性が強く求められている。ラビング処理は、液晶表示素子の製造工程において、基板上に形成された高分子膜から液晶配向膜を形成する方法として知られ、現在も工業的に広く用いられている。ラビング処理では、基板上に形成されたポリイミド等の高分子膜に対し、その表面を布で擦る配向処理が行われる。
 こうしたラビング処理においては、液晶配向膜が削れることで発生する粉塵や液晶配向膜に付いた傷が、表示品位を低下させるという問題が知られている。そのため、液晶配向膜にはラビング処理に対する耐性(以下、ラビング耐性とも言う。)が求められている。
 高いラビング耐性を有する液晶配向膜を形成するための方法としては、液晶配向膜をなすポリイミドや、そのポリイミドを形成するためのポリイミド前駆体に種々の添加剤を加える方法が知られている(例えば、特許文献1、2を参照。)。その他にも、ラビング耐性の良好なポリイミド構造等が提案されている(例えば、特許文献3、4を参照。)。こうした方法により、ラビング処理時の液晶配向膜の削れ(ラビング削れとも言う。)や液晶配向膜の傷(ラビング傷とも言う。)の発生を低減することができる。
 しかしながら、近年、液晶表示素子の一部の用途では、ラビング処理において、ポリイミド等の高分子膜を布でより強く擦って配向処理を行う傾向がある。こうした強いラビング処理は、液晶表示素子の表示品位向上のため、液晶分子の配向状態をより均一に、かつより強固なものにしようとする目的による。そのため、液晶配向膜に対してより高いレベルのラビング耐性が求められるようになっている。
日本特開平7-120769号公報 日本特開平9-146100号公報 日本特開2008-90297号公報 日本特開平9-258229号公報
 上述したように、液晶表示素子においては、強いラビング処理に対して、ラビング削れやラビング傷の発生を防止し、強いラビング処理に適用可能な液晶配向膜が求められている。そのため、液晶配向膜において高いラビング耐性の実現が求められている。
 そして、高いラビング耐性を有する液晶配向膜を形成することができる液晶配向剤が求められている。
 本発明目的は、高いラビング耐性を有する液晶配向膜を形成することができる液晶配向剤を提供することである。
 また、本発明の目的は、高いラビング耐性を有する液晶配向膜を提供することである。さらに、その液晶配向膜を有する液晶表示素子を提供することである。
 本発明の他の目的および利点は、以下の記載から明らかとなるであろう。
 本発明は、下記の(1)~(9)を要旨とするものである。
 (1)ポリイミド前駆体およびそれをイミド化して得られるポリイミドからなる群から選ばれる少なくとも1つの重合体と、ブロック化イソシアネート基を有する化合物とを含有することを特徴とする液晶配向剤。
 (2)前記ブロック化イソシアネート基を有する化合物は、ブロック化イソシアネート基を3つ以上有する化合物である上記(1)に記載の液晶配向剤。
 (3)前記ブロック化イソシアネート基を有する化合物が、前記重合体に対して0.1モル%~10モル%含有される上記(1)または(2)に記載の液晶配向剤。
 (4)前記化合物が、下記式(Z-1)~式(Z-4)のいずれかで表される化合物である上記(1)~(3)のいずれか1項に記載の液晶配向剤。
Figure JPOXMLDOC01-appb-C000002


(式(Z-1)~式(Z-4)中、Rは、ブロック部の有機基を表す。
 式(Z-3)中、B~Bのいずれか一つはメチル基を表し、それ以外の二つは水素を表す。B~B、および、B~Bにおいても、B~Bと同様に、いずれか一つはメチル基を表し、それ以外の二つは水素を表す。)
 (5)Rが、CNOである上記(4)に記載の液晶配向剤。
 (6)前記重合体は、アミノ基およびウレア基のうちの少なくとも一方を有するポリイミド前駆体とそれをイミド化して得られるポリイミドからなる群から選ばれる少なくとも1つである上記(1)~(5)のいずれか1項に記載の液晶配向剤。
 (7)前記重合体を含む樹脂成分が有機溶媒に溶解した溶液である上記(1)~(6)のいずれか1項に記載の液晶配向剤。
 (8)上記(1)~(7)のいずれか1項に記載の液晶配向剤から得られることを特徴とする液晶配向膜。
 (9)上記(8)に記載の液晶配向膜を有する液晶表示素子。
 本発明によれば、高いラビング耐性を有する液晶配向膜を形成することができる液晶配向剤を提供することができる。
 本発明によれば、高いラビング耐性を有する液晶配向膜を提供することができる。
 本発明によれば、高いラビング耐性の液晶配向膜を有する液晶表示素子を提供することができる。
 本発明者らは、鋭意研究を行った結果、以下の知見を得て本発明を完成するに至った。
 すなわち、表示デバイスである液晶表示素子においては、上述したように、液晶配向膜に高分子膜が用いられ、具体的には、高耐熱性で高強度のポリイミド膜が好適に用いられている。
 そして、液晶表示素子を構成する基板上に液晶配向膜となるポリイミド膜を形成する場合、液晶配向剤が好適に用いられている。
 かかる液晶配向剤としては、上述したように、ポリアミック酸等のポリイミド前駆体を含有して調製されたワニスを用いた液晶配向剤を使用し、基板上にその塗膜を形成し、イミド化させる方法が知られている。また、予めイミド化させてあるポリイミドを溶媒に溶解して、所謂、溶媒可溶性ポリイミドワニスを調製し、そのポリイミドワニスを用いた液晶配向剤によりポリイミド膜を形成する方法がある。
 本発明者らは、上述したポリイミド系の液晶配向剤に、特定の化合物を添加することにより、形成される液晶配向膜のラビング耐性を向上させることができることを見出した。
 具体的には、ポリイミド前駆体および/またはポリイミド前駆体をイミド化したポリイミドを含む液晶配向剤中に、液晶配向剤の保管状態などの通常の温度では反応しないようにイソシアネート基が保護された、ブロック化(Blocked)イソシアネート基を有する化合物を含有させる。ブロック化イソシアネート基を有する化合物を含有する液晶配向剤は、それを用いて形成される液晶配向膜において、高いラビング耐性を実現することができることが見出された。
 一方、特開平10-212484号公報には、イソシアネート化合物とジアミン化合物から選ばれる少なくとも1つの化合物を添加した液晶配向剤に関する技術が開示されている。しかし、こうした添加の成分は、形成される液晶配向膜の基板との密着性を向上させ、また、その液晶配向膜を備えた液晶表示素子の電圧保持特性を向上させるためのものとされ、液晶配向膜のラビング耐性の向上効果については開示が無い。加えて、イソシアネート化合物を含有する液晶配向剤は、保存安定性に懸念がある。
 本発明の液晶配向剤は、ブロック化イソシアネート基を有する化合物を含有し、形成される液晶配向膜のラビング耐性を向上させるとともに、ブロック化イソシアネート基を有する化合物が適度な反応性を有するため、液晶配向剤の保存安定性を低下させることもない。
 そして、本発明のブロック化イソシアネート基を有する化合物を含有する液晶配向剤は、高いラビング耐性の液晶配向膜を提供することができ、その液晶配向膜を有する液晶表示素子を提供することができる。
 以下、本発明についてより詳細に説明する。
 本発明の液晶配向剤は、テトラカルボン酸誘導体とジアミン成分とを反応させて得られるポリイミド前駆体およびポリイミド前駆体をイミド化して得られるポリイミドからなる群から選ばれる少なくとも1種の重合体を含有する。ポリイミド前駆体としては、ポリアミック酸、ポリアミック酸エステル等が含まれる。そして、本発明の液晶配向剤は、ポリイミド前駆体およびポリイミドからなる群から選ばれる少なくとも1種の重合体とともに、ブロック化イソシアネート基を有する化合物(以下、単に、ブロック化イソシアネート化合物とも言う。)を含有する。
 以下では、本発明の液晶配向剤に含有可能な成分として、ポリイミド前駆体、ポリイミド、ブロック化イソシアネート基を有する化合物について説明をする。そして、それらを含有して構成される本発明の液晶配向剤について説明する。
<ポリイミド前駆体>
 本発明の液晶配向剤に含有するポリイミド前駆体は、ポリアミック酸およびポリアミック酸エステルを指し、下記式(1)で表される構造単位を有する。
Figure JPOXMLDOC01-appb-C000003
 上記式(1)において、Rは、水素原子または炭素数1~5のアルキル基であり、A~Aはそれぞれ独立して水素原子、または置換基を有してもよい炭素数1~10のアルキル基、アルケニル基、アルキニル基である。
 上記式(1)において、Rは、水素原子または炭素数1~5、好ましくは1~2のアルキル基である。ポリアミック酸エステルは、アルキル基における炭素数が増えるに従ってイミド化が進行する温度が高くなる。そのため、Rは、熱によるイミド化のしやすさの観点から、メチル基が特に好ましい。
 上記式(1)において、AおよびAはそれぞれ独立して水素原子、または置換基を有してもよい炭素数1~10のアルキル基、アルケニル基、アルキニル基である。上記アルキル基の具体例としては、メチル基、エチル基、プロピル基、ブチル基、t-ブチル基、ヘキシル基、オクチル基、デシル基、シクロペンチル基、シクロヘキシル基、ビシクロヘキシル基等が挙げられる。アルケニル基としては、上記のアルキル基に存在する1つ以上のCH-CH構造を、C=C構造に置き換えたものが挙げられ、より具体的には、ビニル基、アリル基、1-プロペニル基、イソプロペニル基、2-ブテニル基、1,3-ブタジエニル基、2-ペンテニル基、2-ヘキセニル基、シクロプロペニル基、シクロペンテニル基、シクロヘキセニル基等が挙げられる。アルキニル基としては、前記のアルキル基に存在する1つ以上のCH-CH構造をC≡C構造に置き換えたものが挙げられ、より具体的には、エチニル基、1-プロピニル基、2-プロピニル基等が挙げられる。
 上記のアルキル基、アルケニル基、アルキニル基は、全体として炭素数が1~10であれば置換基を有していてもよく、さらには置換基によって環構造を形成してもよい。尚、置換基によって環構造を形成するとは、置換基同士または置換基と母骨格の一部とが結合して環構造となることを意味する。
 この置換基の例としては、ハロゲン基、水酸基、チオール基、ニトロ基、アリール基、オルガノオキシ基、オルガノチオ基、オルガノシリル基、アシル基、エステル基、チオエステル基、リン酸エステル基、アミド基、アルキル基、アルケニル基、アルキニル基を挙げることができる。
 置換基であるハロゲン基としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
 置換基であるアリール基としては、フェニル基が挙げられる。このアリール基には前述した他の置換基がさらに置換していてもよい。
 置換基であるオルガノオキシ基としては、-O-Rで表される構造を示すことができる。このRは同一でも異なってもよく、前述したアルキル基、アルケニル基、アルキニル基、アリール基などを例示することができる。これらのRには前述した置換基がさらに置換していてもよい。オルガノオキシ基の具体例としては、メトキシ基、エトキシ基、プロピルオキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基等が挙げられる。
 置換基であるオルガノチオ基としては、-S-Rで表される構造を示すことができる。このRとしては、前述したアルキル基、アルケニル基、アルキニル基、アリール基等を例示することができる。これらのRには前述した置換基がさらに置換していてもよい。オルガノチオ基の具体例としては、メチルチオ基、エチルチオ基、プロピルチオ基、ブチルチオ基、ペンチルチオ基、ヘキシルチオ基、ヘプチルチオ基、オクチルチオ基等が挙げられる。
 置換基であるオルガノシリル基としては、-Si-(R)で表される構造を示すことができる。このRは同一でも異なってもよく、前述したアルキル基、アルケニル基、アルキニル基、アリール基等を例示することができる。これらのRには前述した置換基がさらに置換していてもよい。オルガノシリル基の具体例としては、トリメチルシリル基、トリエチルシリル基、トリプロピルシリル基、トリブチルシリル基、トリペンチルシリル基、トリヘキシルシリル基、ペンチルジメチルシリル基、ヘキシルジメチルシリル基等が挙げられる。
 置換基であるアシル基としては、-C(O)-Rで表される構造を示すことができる。このRとしては、前述したアルキル基、アルケニル基、アリール基等を例示することができる。これらのRには前述した置換基がさらに置換していてもよい。アシル基の具体例としては、ホルミル基、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、バレリル基、イソバレリル基、ベンゾイル基等が挙げられる。
 置換基であるエステル基としては、-C(O)O-R、または-OC(O)-Rで表される構造を示すことができる。このRとしては、前述したアルキル基、アルケニル基、アルキニル基、アリール基等を例示することができる。これらのRには前述した置換基がさらに置換していてもよい。
 置換基であるチオエステル基としては、-C(S)O-R、または-OC(S)-Rで表される構造を示すことができる。このRとしては、前述したアルキル基、アルケニル基、アルキニル基、アリール基などを例示することができる。これらのRには前述した置換基がさらに置換していてもよい。
 置換基であるリン酸エステル基としては、-OP(O)-(OR)で表される構造を示すことができる。このRは同一でも異なってもよく、前述したアルキル基、アルケニル基、アルキニル基、アリール基等を例示することができる。これらのRには前述した置換基がさらに置換していてもよい。
 置換基であるアミド基としては、-C(O)NH、-C(O)NHR、-NHC(O)R、-C(O)N(R)、または、-NRC(O)Rで表される構造を示すことができる。このRは同一でも異なってもよく、前述したアルキル基、アルケニル基、アルキニル基、アリール基などを例示することができる。これらのRには前述した置換基がさらに置換していてもよい。
 置換基であるアリール基としては、前述したアリール基と同じものを挙げることができる。このアリール基には前述した他の置換基がさらに置換していてもよい。
 置換基であるアルキル基としては、前述したアルキル基と同じものを挙げることができる。このアルキル基には前述した他の置換基がさらに置換していてもよい。
 置換基であるアルケニル基としては、前述したアルケニル基と同じものを挙げることができる。このアルケニル基には前述した他の置換基がさらに置換していてもよい。
 置換基であるアルキニル基としては、前述したアルキニル基と同じものを挙げることができる。このアルキニル基には前述した他の置換基がさらに置換していてもよい。
 一般に、嵩高い構造を導入すると、アミノ基の反応性や液晶配向性を低下させる可能性があるため、AおよびAとしては、水素原子、または置換基を有してもよい炭素数1~5のアルキル基がより好ましく、水素原子、メチル基またはエチル基が特に好ましい。
 上記式(1)において、Xは、4価の有機基であれば、その構造は特に限定されるものではなく、2種類以上が混在していてもよい。Xの具体例を示すならば、以下に示すX-1~X-46が挙げられる。なかでも、モノマーの入手性から、Xは、X-1、X-2、X-3、X-4、X-5、X-6、X-8、X-16、X-19、X-21、X-25、X-26、X-27、X-28またはX-32が好ましい。
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
 上記式(1)において、Yは、2価の有機基であり、2種類以上が混在していてもよい。Yの具体的な構造の例を示すならば、以下に示すY-1~Y-106が挙げられるが、これらに限定されるものではない。これらの中でも、上記式(1)のポリイミド前駆体を得るために用いる原料ジアミンの反応性、ポリマーの溶解性の観点から、Y-7、Y-8、Y-13、Y-18、Y-19、Y-42,Y-43、Y-45、Y-55、Y-59、Y-74、Y-78、Y-79、Y-80、Y-81、Y-82の構造の2価の有機基を用いることがより好ましい。
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
 Y-64及びY-73における、n=1~5。
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
 本発明の液晶配向剤に含有可能なポリイミド前駆体においては、後述するブロック化イソシアネート基を有する化合物との間で架橋反応が進行するのに好適な構造のポリイミド前駆体が好ましい。
 具体的には、アミノ基およびウレア基のうちの少なくとも一方を有するポリイミド前駆体が好ましい。
 こうした構造のポリイミド前駆体を含有することで、本発明の液晶配向剤は、より高いラビング耐性を有する本発明の液晶配向膜を提供することができる。
<ポリアミック酸の製造方法>
 本発明の液晶配向剤に含有可能な上記式(1)のポリイミド前駆体は、上述したように、ポリアミック酸およびポリアミック酸エステルである。ポリイミド前駆体であるポリアミック酸は、テトラカルボン酸誘導体であるテトラカルボン酸二無水物とジアミン成分との反応により得られる。
 テトラカルボン酸二無水物とジアミン成分との反応により、本発明におけるポリアミド酸を得るにあたっては、公知の合成方法を用いることができる。その合成方法は、テトラカルボン酸二無水物とジアミン成分とを有機溶媒中で反応させる方法である。テトラカルボン酸二無水物とジアミンとの反応は、有機溶媒中で比較的容易に進行し、かつ副生成物が発生しない点で有利である。
 テトラカルボン酸二無水物とジアミン成分との反応に用いる有機溶媒としては、生成したポリアミド酸が溶解するものであれば特に限定されない。その具体例を以下に挙げる。
 N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N-メチルカプロラクタム、ジメチルスルホキシド、テトラメチル尿素、ピリジン、ジメチルスルホン、ヘキサメチルスルホキシド、γ-ブチロラクトン、イソプロピルアルコール、メトキシメチルペンタノール、ジペンテン、エチルアミルケトン、メチルノニルケトン、メチルエチルケトン、メチルイソアミルケトン、メチルイソプロピルケトン、メチルセルソルブ、エチルセルソルブ、メチルセロソルブアセテート、エチルセロソルブアセテート、ブチルカルビトール、エチルカルビトール、エチレングリコール、エチレングリコールモノアセテート、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコール、プロピレングリコールモノアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコール-tert-ブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコール、ジエチレングリコールモノアセテート、ジエチレングリコールジメチルエーテル、ジプロピレングリコールモノアセテートモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノアセテートモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノアセテートモノプロピルエーテル、3-メチル-3-メトキシブチルアセテート、トリプロピレングリコールメチルエーテル、3-メチル-3-メトキシブタノール、ジイソプロピルエーテル、エチルイソブチルエーテル、ジイソブチレン、アミルアセテート、ブチルブチレート、ブチルエーテル、ジイソブチルケトン、メチルシクロへキセン、プロピルエーテル、ジヘキシルエーテル、ジオキサン、n-へキサン、n-ペンタン、n-オクタン、ジエチルエーテル、シクロヘキサノン、エチレンカーボネート、プロピレンカーボネート、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸メチルエチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、ジグライム、4-ヒドロキシ-4-メチル-2-ペンタノン、3-メトキシ-N,N-ジメチルプロパンアミド、3-エトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミド等が挙げられる。
 これら例示された溶媒は、単独で使用しても、混合して使用してもよい。さらに、ポリアミド酸を溶解させない溶媒であっても、生成したポリアミド酸が析出しない範囲で、上記溶媒に混合して使用してもよい。
 また、有機溶媒中の水分は重合反応を阻害し、さらには生成したポリアミド酸を加水分解させる原因となるので、有機溶媒はなるべく脱水乾燥させたものを用いることが好ましい。
 テトラカルボン酸二無水物とジアミン成分とを有機溶媒中で反応させる際には、ジアミン成分を有機溶媒に分散あるいは溶解させた溶液を攪拌させ、テトラカルボン酸二無水物をそのまま、または有機溶媒に分散あるいは溶解させて添加する方法、逆にテトラカルボン酸二無水物を有機溶媒に分散あるいは溶解させた溶液にジアミン成分を添加する方法、テトラカルボン酸二無水物とジアミン成分とを交互に添加する方法等が挙げられ、これらのいずれの方法を用いても良い。また、テトラカルボン酸二無水物またはジアミン成分が複数種の化合物からなる場合は、あらかじめ混合した状態で反応させても良く、個別に順次反応させても良く、さらに個別に反応させた低分子量体を混合反応させ高分子量体としても良い。
 その際の重合温度は-20℃~150℃の任意の温度を選択することができるが、好ましくは-5℃~100℃の範囲である。また、反応は任意の濃度で行うことができるが、濃度が低すぎると高分子量の重合体を得ることが難しくなり、濃度が高すぎると反応液の粘性が高くなり過ぎて均一な攪拌が困難となるので、テトラカルボン酸二無水物とジアミン成分の反応溶液中での合計濃度が、好ましくは1質量%~50質量%、より好ましくは5質量%~30質量%である。反応初期は高濃度で行い、その後、有機溶媒を追加することができる。
 ポリアミド酸の重合反応においては、テトラカルボン酸二無水物の合計モル数と、ジアミン成分の合計モル数の比は0.8~1.2であることが好ましい。通常の重縮合反応同様、このモル比が1.0に近いほど生成するポリアミド酸の分子量は大きくなる。
<ポリアミック酸エステルの製造方法>
 本発明の液晶配向剤に含有可能な上記式(1)のポリイミド前駆体は、上述したように、ポリアミック酸およびポリアミック酸エステルである。ポリイミド前駆体であるポリアミック酸エステルは、テトラカルボン酸誘導体およびジアミン化合物を用いて、次に示す(1)~(3)の方法で合成することができる。
(1)ポリアミック酸から合成する方法
 ポリアミック酸エステルは、テトラカルボン酸二無水物とジアミンから得られるポリアミック酸をエステル化することによって合成することができる。
 具体的には、ポリアミック酸とエステル化剤を有機溶剤の存在下で-20℃~150℃、好ましくは0℃~50℃において、30分~24時間、好ましくは1時間~4時間反応させることによって合成することができる。
 上述のエステル化剤としては、精製によって容易に除去できるものが好ましく、N,N-ジメチルホルムアミドジメチルアセタール、N,N-ジメチルホルムアミドジエチルアセタール、N,N-ジメチルホルムアミドジプロピルアセタール、N,N-ジメチルホルムアミドジネオペンチルブチルアセタール、N,N-ジメチルホルムアミドジ-t-ブチルアセタール、1-メチル-3-p-トリルトリアゼン、1-エチル-3-p-トリルトリアゼン、1-プロピル-3-p-トリルトリアゼン、4-(4,6-ジメトキシー1,3,5-トリアジンー2-イル)-4-メチルモルホリニウムクロリドなどが挙げられる。エステル化剤の添加量は、ポリアミック酸の繰り返し単位1モルに対して、2モル当量~6モル当量が好ましい。
 上記の反応に用いる溶媒は、ポリマーの溶解性からN,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、またはγ-ブチロラクトンが好ましく、これらは1種または2種以上を混合して用いてもよい。合成時の濃度は、ポリマーの析出が起こりにくく、かつ高分子量体が得やすいという観点から、1質量%~30質量%が好ましく、5質量%~20質量%がより好ましい。
(2)テトラカルボン酸ジエステルジクロリドとジアミンとの反応により合成する方法
 ポリアミック酸エステルは、テトラカルボン酸ジエステルジクロリドとジアミンから合成することができる。
 具体的には、テトラカルボン酸ジエステルジクロリドとジアミンとを塩基と有機溶剤の存在下で-20℃~150℃、好ましくは0℃~50℃において、30分~24時間、好ましくは1~4時間反応させることによって合成することができる。
 前記塩基には、ピリジン、トリエチルアミン、4-ジメチルアミノピリジンなどが使用できるが、反応が穏和に進行するためにピリジンが好ましい。塩基の添加量は、除去が容易な量で、かつ高分子量体が得やすいという観点から、テトラカルボン酸ジエステルジクロリドに対して、2モル倍~4モル倍であることが好ましい。
 上記の反応に用いる溶媒は、モノマーおよびポリマーの溶解性からN-メチル-2-ピロリドン、またはγ-ブチロラクトンが好ましく、これらは1種または2種以上を混合して用いてもよい。合成時のポリマー濃度は、ポリマーの析出が起こりにくく、かつ高分子量体が得やすいという観点から、1質量%~30質量%が好ましく、5質量%~20質量%がより好ましい。また、テトラカルボン酸ジエステルジクロリドの加水分解を防ぐため、ポリアミック酸エステルの合成に用いる溶媒はできるだけ脱水されていることが好ましく、窒素雰囲気中で、外気の混入を防ぐのが好ましい。
(3)テトラカルボン酸ジエステルとジアミンから合成する方法
 ポリアミック酸エステルは、テトラカルボン酸ジエステルとジアミンを重縮合することにより合成することができる。
 具体的には、テトラカルボン酸ジエステルとジアミンを縮合剤、塩基、および有機溶剤の存在下で0℃~150℃、好ましくは0℃~100℃において、30分~24時間、好ましくは3時間~15時間反応させることによって合成することができる。
 前記縮合剤には、トリフェニルホスファイト、ジシクロヘキシルカルボジイミド、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩、N,N’-カルボニルジイミダゾール、ジメトキシ-1,3,5-トリアジニルメチルモルホリニウム、O-(ベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウム テトラフルオロボラート、O-(ベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウムヘキサフルオロホスファート、(2,3-ジヒドロ-2-チオキソ-3-ベンゾオキサゾリル)ホスホン酸ジフェニルなどが使用できる。縮合剤の添加量は、テトラカルボン酸ジエステルに対して2モル倍~3モル倍であることが好ましい。
 前記塩基には、ピリジン、トリエチルアミン等の3級アミンが使用できる。塩基の添加量は、除去が容易な量で、かつ高分子量体が得やすいという観点から、ジアミン成分に対して2モル倍~4モル倍が好ましい。
 また、上記反応において、ルイス酸を添加剤として加えることで反応が効率的に進行する。ルイス酸としては、塩化リチウム、臭化リチウム等のハロゲン化リチウムが好ましい。ルイス酸の添加量はジアミン成分に対して0モル倍~1.0モル倍が好ましい。
 上述した3つのポリアミック酸エステルの合成方法の中でも、高分子量のポリアミック酸エステルが得られるため、上記(1)または上記(2)の合成方法が特に好ましい。
 上述した方法に従って得られるポリアミック酸エステルの溶液は、よく撹拌させながら貧溶媒に注入することで、ポリマーを析出させることができる。析出を数回行い、貧溶媒で洗浄後、常温または加熱乾燥して精製されたポリアミック酸エステルの粉末を得ることができる。貧溶媒は、特に限定されないが、水、メタノール、エタノール、ヘキサン、ブチルセロソルブ、アセトン、トルエン等が挙げられる。
<ポリイミド>
 本発明の液晶配向剤は、上述したポリイミド前駆体およびポリイミドからなる群から選ばれる少なくとも1種の重合体を含有する。本発明の液晶配向剤に含有するポリイミドは、上述した上記式(1)のポリイミド前駆体のポリアミド酸を脱水閉環させて得られるポリイミドである。このポリイミドは、本発明の液晶配向剤に含有され、液晶配向膜を得るための重合体として有用である。
 本発明の液晶配向剤に含有可能なポリイミドにおいては、後述するブロック化イソシアネート基を有する化合物との間で架橋反応が進行するのに好適な構造のポリイミドが好ましい。
 具体的には、アミノ基およびウレア基のうちの少なくとも一方を有するポリイミドが好ましい。
 こうした構造のポリイミドを含有することで、本発明の液晶配向剤は、より高いラビング耐性を有する液晶配向膜を提供することができる。
 尚、本発明の液晶配向剤が含有するポリイミドにおいて、アミド酸基の脱水閉環率(イミド化率)は、必ずしも100%である必要はなく、用途や目的に応じて任意に調整することができる。
<ポリイミドの製造方法>
 上述したポリアミド酸を用いてポリイミドを得るに際し、ポリアミド酸をイミド化させる方法としては、ポリアミド酸の溶液をそのまま加熱する熱イミド化、ポリアミド酸の溶液に触媒を添加する触媒イミド化が挙げられる。
 ポリアミド酸を溶液中で熱イミド化させる場合の温度は、100℃~400℃、好ましくは120℃~250℃であり、イミド化反応により生成する水を系外に除きながら行う方が好ましい。
 ポリアミド酸の触媒イミド化は、ポリアミド酸の溶液に、塩基性触媒と酸無水物とを添加し、-20℃~250℃、好ましくは0℃~180℃で攪拌することにより行うことができる。塩基性触媒の量はアミド酸基の0.5モル倍~30モル倍、好ましくは2モル倍~20モル倍であり、酸無水物の量はアミド酸基の1モル倍~50モル倍、好ましくは3モル倍~30モル倍である。
 上述の触媒イミド化に用いる塩基性触媒としては、ピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミン、トリオクチルアミン等を挙げることができ、中でもピリジンは反応を進行させるのに適度な塩基性を持つので好ましい。
 上述の触媒イミド化に用いる酸無水物としては、無水酢酸、無水トリメリット酸、無水ピロメリット酸等を挙げることができる。中でも無水酢酸を用いると反応終了後の精製が容易となるので好ましい。
 触媒イミド化によるイミド化率は、触媒量と反応温度、反応時間を調節することにより制御することができる。
<ブロック化イソシアネート化合物>
 本発明の液晶配向剤は、ポリイミド前駆体およびポリイミドからなる群から選ばれる少なくとも1種の重合体とともに、ブロック化イソシアネート化合物を含有する。
 ブロック化イソシアネート化合物を含有する本発明の液晶配向剤は、それを用いて形成される液晶配向膜において、高いラビング耐性を実現することができる。
 ブロック化イソシアネート化合物は、本発明の液晶配向剤を用いて液晶配向膜を形成する際の加熱焼成の温度で、その液晶配向膜を構成するポリイミド等重合体の膜に対して熱硬化することができるような、ブロック化イソシアネート基を分子中に有する化合物であればよく、その種類および構造について特に限定されるものでない。
 ブロック化イソシアネート化合物は、イソシアネート基(-NCO)が適当な保護基によりブロックされたイソシアネート基を分子中に有し、液晶配向膜形成時の加熱焼成に際して高温に曝されると保護基(ブロック部分)が熱解離して外れ、生じたイソシアネート基を介して、液晶配向膜を構成するポリイミド等の重合体との間で架橋反応が進行するものである。例えば、式(2)で表される基を分子中に有する化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000022

(式(2)中、Rはブロック部の有機基を表す。)
 ブロック化イソシアネート化合物は、例えば、分子中にイソシアネート基を有する化合物に対して適当なブロック化剤を作用せしめることにより得ることができる。
 上記式(2)におけるRのブロック部の有機基は、ブロック化剤の残基であり、使用するブロック化剤により変化する。ブロック化剤としては、例えば、メタノール、エタノール、イソプロパノール、n-ブタノール、2-エトキシヘキサノール、2-N,N-ジメチルアミノエタノール、2-エトキシエタノール、シクロヘキサノール等のアルコール類、フェノール、o-ニトロフェノール、p-クロロフェノール、o-、m-又はp-クレゾール等のフェノール類、ε-カプロラクタム等のラクタム類、アセトンオキシム、メチルエチルケトンオキシム、メチルイソブチルケトンオキシム、シクロヘキサノンオキシム、アセトフェノンオキシム、ベンゾフェノンオキシム等のオキシム類、ピラゾール、3,5-ジメチルピラゾール、3-メチルピラゾール、などのピラゾール類、ドデカンチオール、ベンゼンチオール等のチオール類が挙げられる。
 ブロック化イソシアネート化合物は、液晶配向膜形成時の加熱焼成の温度のような高温の状態では、ブロック部分の熱解離が生じイソシアネート基を介して架橋反応が進行するものであるが、液晶配向剤保存時のような低温の状態では、イソシアネート基による架橋が進行しないものであることが好ましい。そのような熱反応性を実現するために、ブロック化イソシアネート化合物は、ブロック部分の熱解離の温度が液晶配向剤保存時よりも相当に高い、好ましくは、50℃~230℃、より好ましくは、100℃~180℃であるのが好適である。
 ブロック化イソシアネート化合物は、上述したように、それを含有する液晶配向剤を用いて形成される液晶配向膜において、ラビング耐性の向上を実現することができる。その場合、特に、1分子中、ブロック化イソシアネート基を3つ以上の有するブロック化イソシアネート化合物が、液晶配向膜のラビング耐性の向上に有効となる。
 1分子中にブロック化イソシアネート基を3つ以上有する化合物は、例えば、1分子中3個以上のイソシアネート基を有する化合物に対して、上述したような適当なブロック化剤を作用せしめることにより、得ることができる。
 そのような1分子中にブロック化イソシアネート基を3つ以上の有する化合物としては、例えば、次の式(Z-1)~式(Z-4)のいずれかで表される化合物等の具体例が挙げられる。
Figure JPOXMLDOC01-appb-C000023

(式(Z-1)~式(Z-4)中、Rは、ブロック部の有機基を表す。
 式(Z-3)中、B~Bのいずれか一つはメチル基を表し、それ以外の二つは水素を表す。B~B、および、B~Bにおいても、B~Bと同様に、いずれか一つはメチル基を表し、それ以外の二つは水素を表す。)
 本発明の液晶配向剤にブロック化イソシアネート化合物を含有させる場合、ブロック化イソシアネート化合物は1種単独で用いてもよく、また2種以上を組合せて用いてもよい。
 また、ブロック化イソシアネート化合物は、液晶配向剤に含有される、ポリイミド前駆体およびポリイミドからなる群から選ばれる少なくとも1種の重合体に対して、0.1モル%~20モル%、好ましくは0.2モル%~10モル%、より好ましくは0.2モル%~8モル%の割合で使用される。ブロック化イソシアネート化合物の含有量が前記範囲の下限未満の過少量であると、熱硬化が不十分となって、満足な液晶配向膜でのラビング耐性向上効果が得られない。一方、ブロック化イソシアネート化合物の使用量が前記範囲の上限を超える過多量であると、形成される液晶配向膜の液晶配向性が低下する懸念がある。
<液晶配向剤>
 本発明の液晶配向剤は、液晶配向膜を形成するための塗布液であり、樹脂被膜を形成するための樹脂成分が有機溶媒に溶解した溶液である。ここで、前記の樹脂成分は、上述したポリイミド前駆体およびポリイミドからなる群から選ばれる少なくとも1種の重合体を含む樹脂成分である。その際、樹脂成分の含有量は1質量%~20質量%が好ましく、より好ましくは3質量%~15質量%、さらに好ましくは3質量%~10質量%である。
 尚、本発明において、前記の樹脂成分は、全てが上述した重合体であってもよく、それ以外の他の重合体が混合されていてもよい。その際、樹脂成分中における上述した重合体以外の他の重合体の含有量は0.5質量%~15質量%、好ましくは1質量%~10質量%である。
 そして、本発明の液晶配向剤は、上述したブロック化イソシアネート化合物を含有する。その含有量は、上述したように、ポリイミド前駆体およびポリイミドからなる群から選ばれる少なくとも1種の重合体に対して、0.1モル%~20モル%、好ましくは0.2モル%~10モル%の割合で使用される。
 本発明の液晶配向剤に含有されるブロック化イソシアネート化合物は、上述したように、液晶配向膜形成時の加熱によって架橋反応する化合物である。したがって、本発明の液晶配向剤は、架橋反応をするブロック化イソシアネート化合物を含有するとともに保存安定性にも優れている。
 本発明の液晶配向剤に用いる有機溶媒は、上述した重合体等の樹脂成分および上述したブロック化イソシアネート化合物を溶解させる有機溶媒であれば特に限定されない。その具体例を以下に挙げる。
 N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-メチルカプロラクタム、2-ピロリドン、N-エチルピロリドン、N-ビニルピロリドン、ジメチルスルホキシド、テトラメチル尿素、ピリジン、ジメチルスルホン、ヘキサメチルスルホキシド、γ-ブチロラクトン、3-メトキシ-N,N-ジメチルプロパンアミド、3-エトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミド、1,3-ジメチル-イミダゾリジノン、エチルアミルケトン、メチルノニルケトン、メチルエチルケトン、メチルイソアミルケトン、メチルイソプロピルケトン、シクロヘキサノン、エチレンカーボネート、プロピレンカーボネート、ジグライム、4-ヒドロキシ-4-メチル-2-ペンタノン等が挙げられる。これらは単独で使用しても、混合して使用してもよい。
 本発明の液晶配向剤は、上記以外の成分を含有してもよい。その例としては、液晶配向剤を塗布した際の膜厚均一性や表面平滑性を向上させる溶媒や化合物、液晶配向膜と基板との密着性を向上させる化合物などである。
 膜厚の均一性や表面平滑性を向上させる溶媒(貧溶媒)の具体例としては次のものが挙げられる。
 例えば、イソプロピルアルコール、メトキシメチルペンタノール、メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ、メチルセロソルブアセテート、エチルセロソルブアセテート、ブチルカルビトール、エチルカルビトール、エチルカルビトールアセテート、エチレングリコール、エチレングリコールモノアセテート、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコール、プロピレングリコールモノアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコール-tert-ブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコール、ジエチレングリコールモノアセテート、ジエチレングリコールジメチルエーテル、ジプロピレングリコールモノアセテートモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノアセテートモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノアセテートモノプロピルエーテル、3-メチル-3-メトキシブチルアセテート、トリプロピレングリコールメチルエーテル、3-メチル-3-メトキシブタノール、ジイソプロピルエーテル、エチルイソブチルエーテル、ジイソブチレン、アミルアセテート、ブチルブチレート、ブチルエーテル、ジイソブチルケトン、メチルシクロへキセン、プロピルエーテル、ジヘキシルエーテル、1-ヘキサノール、n-へキサン、n-ペンタン、n-オクタン、ジエチルエーテル、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸メチルエチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、1-メトキシ-2-プロパノール、1-エトキシ-2-プロパノール、1-ブトキシ-2-プロパノール、1-フェノキシ-2-プロパノール、プロピレングリコールモノアセテート、プロピレングリコールジアセテート、プロピレングリコール-1-モノメチルエーテル-2-アセテート、プロピレングリコール-1-モノエチルエーテル-2-アセテート、ジプロピレングリコール、2-(2-エトキシプロポキシ)プロパノール、乳酸メチルエステル、乳酸エチルエステル、乳酸n-プロピルエステル、乳酸n-ブチルエステル、乳酸イソアミルエステル等の低表面張力を有する溶媒等が挙げられる。
 これらの貧溶媒は1種類でも複数種類を混合して用いてもよい。上記のような溶媒を用いる場合は、液晶配向剤に含まれる溶媒全体の5質量%~80質量%であることが好ましく、より好ましくは20質量%~60質量%である。
 膜厚の均一性や表面平滑性を向上させる化合物としては、フッ素系界面活性剤、シリコーン系界面活性剤、ノ二オン系界面活性剤等が挙げられる。
 より具体的には、例えば、エフトップ(登録商標)EF301、EF303、EF352(トーケムプロダクツ社製))、メガファック(登録商標)F171、F173、R-30(大日本インキ社製)、フロラードFC430、FC431(住友スリーエム社製)、アサヒガード(登録商標)AG710、サーフロン(登録商標)S-382、SC101、SC102、SC103、SC104、SC105、SC106(旭硝子社製)等が挙げられる。
 これらの界面活性剤の使用割合は、液晶配向剤に含有される樹脂成分の100質量部に対して、好ましくは0.01質量部から2質量部、より好ましくは0.01質量部から1質量部である。
 液晶配向膜と基板との密着性を向上させる化合物の具体例としては、次に示す官能性シラン含有化合物やエポキシ基含有化合物等が挙げられる。
 例えば、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、2-アミノプロピルトリメトキシシラン、2-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、3-ウレイドプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリメトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリエトキシシラン、N-トリエトキシシリルプロピルトリエチレントリアミン、N-トリメトキシシリルプロピルトリエチレントリアミン、10-トリメトキシシリル-1,4,7-トリアザデカン、10-トリエトキシシリル-1,4,7-トリアザデカン、9-トリメトキシシリル-3,6-ジアザノニルアセテート、9-トリエトキシシリル-3,6-ジアザノニルアセテート、N-ベンジル-3-アミノプロピルトリメトキシシラン、N-ベンジル-3-アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリエトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリメトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリエトキシシラン、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、グリセリンジグリシジルエーテル、2,2-ジブロモネオペンチルグリコールジグリシジルエーテル、1,3,5,6-テトラグリシジル-2,4-ヘキサンジオール、N,N,N’,N’,-テトラグリシジル-m-キシレンジアミン、1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサン、N,N,N’,N’,-テトラグリシジル-4、4’-ジアミノジフェニルメタン等が挙げられる。
 基板との密着性を向上させる化合物を使用する場合、その使用量は、液晶配向処理剤に含有される樹脂成分の100質量部に対して0.1質量部から30質量部であることが好ましく、より好ましくは1質量部から20質量部である。使用量が0.1質量部未満であると密着性向上の効果は期待できず、30質量部よりも多くなると形成される液晶配向膜の液晶配向性が低下する場合がある。
 本発明の液晶配向剤には、上記の他、本発明の効果が損なわれない範囲であれば、液晶配向膜の誘電率や導電性などの電気特性を変化させる目的で、誘電体や導電物質、さらには、液晶配向膜にした際の膜の硬度や緻密度を高める目的の架橋性化合物を添加してもよい。
<液晶配向膜および液晶表示素子>
 本発明の液晶配向剤は、好ましくは、基板に塗布する前に濾過した後、基板に塗布し、プリベークによる乾燥、次いで、加熱焼成をすることで塗膜とすることができる。そして、この塗膜面をラビング処理することにより、液晶配向膜を形成することができる。上述した本発明の液晶配向剤は、上述したブロック化イソシアネート化合物を含有し、形成される液晶配向膜は高いラビング耐性を有している。
 本発明の液晶配向剤を基板に塗布する場合、使用する基板としては、透明性の高い基板を使用することができる。そうした基板としては、例えば、ガラス基板の他、アクリル基板やポリカーボネート基板等のプラスチック基板を用いることができる。液晶表示素子の製造において本発明の液晶配向剤を用いる場合、液晶駆動のためのITO(Indium Tin Oxide)電極等が形成された基板を用い、液晶配向膜を形成することが好ましい。また、反射型の液晶表示素子を製造する場合は、片側の基板のみにならばシリコンウエハ等の不透明な基板でも使用でき、この場合の電極はアルミニウム等の光を反射する材料を使用することもできる。
 本発明の液晶配向剤を用い、基板上に塗布する塗布方法としては、特に限定されないが、工業的には、スクリーン印刷、オフセット印刷、フレキソ印刷またはインクジェット法等で行う方法が一般的である。その他の塗布方法としては、ディップ法、ロールコータ法、スリットコータ法、スピンナー法またはスプレー法等があり、目的に応じてこれらを用いてもよい。本発明の液晶配向剤は、以上の塗布法を用いた場合であっても塗布性は良好である。
 液晶配向剤を塗布した後のプリベークによる乾燥の工程は、必ずしも必要とされないが、塗布後から加熱焼成までの時間が基板ごとに一定していない場合や、塗布後ただちに加熱焼成されない場合には、乾燥工程を含める方が好ましい。このプリベークによる乾燥は、基板の搬送等により塗膜形状が変形しない程度に溶媒が蒸発していればよく、また、液晶配向剤に含有される上述したブロック化イソシアネート化合物が反応しない温度で行われることが好ましい。
 乾燥手段については特に限定されない。具体例を挙げるならば、50℃~120℃、好ましくは80℃~120℃のホットプレート上で、0.5分~30分、好ましくは1分~5分乾燥させる方法が好ましい。
 液晶配向剤を塗布した基板の焼成は、ホットプレート、熱循環型オーブンまたはIR(赤外線)型オーブンなどの加熱手段により、120℃~350℃の温度で行うことができる。焼成温度は、液晶配向剤に含有されるブロック化イソシアネート化合物の反応性を考慮し、好ましくは140℃~300℃であり、さらに好ましくは180℃~250℃である。ただし、液晶表示素子の製造工程で必要とされる、シール剤硬化などの熱処理温度より、10℃以上高い温度で焼成することが好ましい。
 焼成後の塗膜の厚みは、厚すぎると液晶表示素子の消費電力の面で不利となり、薄すぎると液晶表示素子の信頼性が低下する場合があるので、好ましくは10nm~200nm、より好ましくは50nm~100nmである。
 上記のようにして基板上に形成された塗膜面のラビング処理は、既存のラビング装置を使用することができる。この際のラビング布の材質としては、コットン、レーヨン、ナイロン等が挙げられる。
 本発明の液晶配向剤は、上記した方法により基板上に液晶配向膜を形成することができる。こうして形成された液晶配向膜は、高いラビング耐性を有し、ラビング処理により液晶配向膜が削れることで発生する粉塵の問題や、液晶配向膜に付いた傷が液晶表示素子の表示品位を低下させるという問題を低減することができる。さらに、近年の液晶表示素子の一部の用途では、ラビング処理において、基板上に形成された塗膜面をラビング布より強く擦って配向処理を行う傾向があることは既に説明した。こうした強いラビング処理は、液晶表示素子の表示品位向上のため、液晶分子の配向状態をより均一に、かつより強固なものにしようとする目的による。本発明の液晶配向膜は、高いラビング耐性を有し、こうした強いラビング処理に対しても好適に適用することができる。
 本発明の液晶配向剤は、上記した方法により基板上に液晶配向膜を形成した後は、その液晶配向膜付き基板を用い、公知の方法で液晶表示を製造することができる。
 液晶表示素子の製造の一例を次に説明する。
 本発明の液晶配向剤を用いた液晶配向膜の形成された1対の基板を用意する。そして、それらを、好ましくは1μm~30μm、より好ましくは2μm~10μmのスペーサを挟んで、ラビング方向が0°~270°の任意の角度となるように設置して周囲をシール剤で固定する。次いで、基板間に液晶を注入して封止する。液晶封入の方法については特に制限されず、作製した液晶セル内を減圧にした後に液晶を注入する真空法、液晶を滴下した後に封止を行う滴下法等が例示できる。
 このようにして製造された液晶表示素子は、本発明の液晶配向剤から形成された液晶配向膜を有する。そして、その液晶表示素子は、液晶配向膜の傷等に起因する表示品位の低下が無く、優れた表示品位を備え、さらに、高い信頼性を有している。
 以下に実施例を挙げ、本発明をさらに詳しく説明する。尚、本発明はこれらに限定して解釈されるものではない。
 実施例および比較例で使用する主な化合物の構造と略号は以下のとおりである。
 尚、ブロック化イソシアネート化合物(B-1)は、上述した式(Z-1)で表される化合物であり、ブロック化イソシアネート化合物(B-2)は、上述した式(Z-2)で表される化合物であり、ブロック化イソシアネート化合物(B-3)は、上述した式(Z-3)で表される化合物であり、ブロックイソシアネート化合物(B-4)は、上述した式(Z-4)で表される化合物である。
<構造式>
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-I000026
<ジエステルジカルボン酸>
 CBDE:2,4-ビス(メトキシカルボニル)シクロブタン-1,3-ジカルボン酸
<テトラカルボン酸二無水物>
 PMDA:ピロメリット酸二無水物
<ジアミン>
 DA-3MG:1,3-ビス(4-アミノフェノキシ)プロパン
 BAPU:1,3-ビス(4-アミノフェニチル)ウレア
 DADPA:4,4’-ジアミノジフェニルアミン
<縮合剤>
 DBOP:ジフェニル(2,3-ジヒドロ-2-チオキソ-3-ベンゾオキサゾリル)ホスホナート
<添加成分>
(ブロック化イソシアネート化合物)
 B-1:VESTANAT B 1358&B 1370
 B-2:B-882N
 B-3:B-830
 B-5:VESTAGON 1065
(架橋剤)
 B-4:ジフェニルメタンジイソシアネート
 以下に、本実施例で行った評価方法について示す。
[粘度]
 合成例によるポリアミック酸溶液およびポリアミック酸エステル溶液の粘度は、E型粘度計TVE-22H(東機産業社製)を用い、サンプル量1.1mL、コーンロータTE-1(1°34’、R24)、温度25℃の条件で測定した。
[固形分濃度]
 合成例によるポリアミック酸溶液およびポリアミック酸エステル溶液の固形分濃度の算出は、以下のようにして行った。
 持手付アルミカップNo.2(アズワン社製)に溶液をおよそ1.1g量り取り、オーブンDNF400(Yamato社製)で200℃2時間加熱した後に室温5分間放置し、アルミカップ内に残った固形分の重量を計量した。この固形分重量、および元の溶液重量の値から固形分濃度を算出した。
[分子量]
 合成例によるポリアミック酸およびポリアミック酸エステルの分子量は、GPC(常温ゲル浸透クロマトグラフィー)装置によって測定し、ポリエチレングリコール、ポリエチレンオキシド換算値として数平均分子量(以下、Mnとも言う。)と重量平均分子量(以下、Mwとも言う。)を算出した。
GPC装置:Shodex社製(GPC-101)
カラム:Shodex社製(KD803、KD805の直列)
カラム温度:50℃
溶離液:N,N-ジメチルホルムアミド(添加剤として、臭化リチウム-水和物(LiBr・HO)が30mmol/L、リン酸・無水結晶(o-リン酸)が30mmol/L、テトラヒドロフラン(THF)が10ml/L)
流速:1.0ml/分
 検量線作成用標準サンプル:東ソー社製 TSK 標準ポリエチレンオキサイド(重量平均分子量(Mw) 約900000、150000、100000、30000)、および、ポリマーラボラトリー社製 ポリエチレングリコール(ピークトップ分子量(Mp) 約12000、4000、1000)。測定は、ピークが重なるのを避けるため、900000、100000、12000、1000の4種類を混合したサンプル、および150000、30000、4000の3種類を混合したサンプルの2サンプルを別々に測定して行った。 
[ラビング耐性]
 ラビング耐性の評価は、基板上に形成されたポリイミド膜のラビング処理後の付着物量を観察することにより行った。具体的には、後述する実施例および比較例により得られた液晶配向剤を1.0μmのフィルターで濾過した後、ITO蒸着ガラス基板上にスピンコートし、温度80℃のホットプレート上で5分間の乾燥、温度230℃で20分間の焼成を経て膜厚100nmのポリイミド膜を得た。このポリイミド膜をコットン布でラビング(ロール径120mm、回転数1000rpm、移動速度20mm/sec、押し込み長0.2mm)し、液晶配向膜を形成した。次いで、共焦点レーザー顕微鏡を用いて液晶配向膜の膜表面状態を観察し、倍率10倍での付着物を観察した(観察領域:約680μm×680μm、顕微鏡倍率:100倍)。付着物がほぼ無い場合は「◎」、付着物が少量観察される場合は「○」、付着物が多量に観察される場合は「×」とした。得られた結果を表1に示す。
[保存安定性]
 後述する実施例および比較例の液晶配向剤の調製において、ブロック化イソシアネート化合物、又はその他の架橋剤を添加する前後での粘度の差が2mPa・s以下の場合は「○」、2mPa・s以上の場合は「×」とした。得られた結果を表1に示す。
 次に、本実施例で行った合成の方法について説明する。
(合成例1)
 撹拌子を入れた200mLの四つ口フラスコにDA-3MGを7.23g(28.0mmol)取り、N-メチル-2-ピロリドン76.47gを加え、窒素を送りながら撹拌して溶解させた。このジアミン溶液を撹拌しながらPMDAを5.84g(26.8mmol)添加し、さらに固形分濃度が10質量%になるようにN-メチル-2-ピロリドンを加え、窒素雰囲気下、50℃で24時間撹拌してポリアミック酸溶液を得た。このポリアミック酸溶液の温度25℃における粘度は135mPa・sであった。また、このポリアミック酸の分子量はMn=12600、Mw=30900であった。
 このポリアミック酸溶液106.5gを撹拌子の入った200mL三角フラスコに分取し、N-メチル-2-ピロリドン19.69g、ブチルセロソルブ54.08gを加え、マグネチックスターラーで2時間撹拌して固形分濃度5.52質量%のポリアミック酸溶液(A-1)を得た。
(合成例2)
 撹拌子を入れた500mLの四つ口フラスコにCBDEを12.24g(47.0mmol)投入した後、N-メチル-2-ピロリドン251.4gを加えて撹拌して溶解させた。次いで、トリエチルアミンを10.21g(100.8mmol)、およびBAPUを14.32g(48.0mmol)加えて撹拌して溶解させた。
 この溶液を撹拌しながら、DBOPを38.64g(100.8mmol)添加し、さらにN-メチル-2-ピロリドンを34.54g加え、室温で15.0時間撹拌してポリアミック酸エステルの溶液を得た。このポリミック酸エステル溶液の温度25℃における粘度は138.8mPa・sであった。
 このポリミック酸エステル溶液をメタノールの2168g中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄した後に温度100℃で減圧乾燥し、ポリアミック酸エステルの粉末を得た。このポリアミック酸エステルの分子量はMn=23900、Mw=51000であった。
 このポリアミック酸エステル粉末4.533gを撹拌子の入った200mL三角フラスコに取り、N-メチル-2-ピロリドン74.81gを加え、室温で5時間撹拌して溶解させた。続いて、ブチルセロソルブ34.00gを加え、2時間撹拌して固形分濃度3.70質量%のポリアミック酸エステル溶液(A-2)を得た。
 (合成例3)
 撹拌子を入れた500mLの四つ口フラスコにCBDEを10.96g(42.1mmol)投入した後、N-メチル-2-ピロリドン182.1gを加えて撹拌して溶解させた。次いで、トリエチルアミンを9.14g(90.3mmol)、およびDADPAを8.57g(43.0mmol)加えて撹拌して溶解させた。
 この溶液を撹拌しながら、DBOPを34.62g(90.3mmol)添加し、さらにN-メチル-2-ピロリドンを25.0g加え、室温で4.0時間撹拌してポリアミック酸エステルの溶液を得た。このポリミック酸エステル溶液の温度25℃における粘度は30.1mPa・sであった。
 このポリミック酸エステル溶液をメタノール{1623g}中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄した後に温度100℃で減圧乾燥し、ポリアミック酸エステルの粉末を得た。このポリアミック酸エステルの分子量はMn=7400、Mw=12700であった。
 このポリアミック酸エステル粉末6.15gを撹拌子の入った100mL三角フラスコに取り、N-メチル-2-ピロリドン73.29gを加え、室温で5時間撹拌して溶解させた。続いて、ブチルセロソルブ19.61gを加え、2時間撹拌して固形分濃度6.27質量%のポリアミック酸エステル溶液(A-3)を得た。
 次に、本実施例について具体的に説明する。
(実施例1)
 合成例1と同様にして得られたポリアミック酸溶液(A-1)を用い、ポリアミック酸等の固形分に対して3.00mol%となる量で、添加成分であるブロック化イソシアネート化合物(B-1)を加え2時間撹拌し、液晶配向剤を調製した。この液晶配向剤を用い、上述したラビング耐性の評価の方法に従い液晶配向膜を形成し、液晶配向膜のラビング耐性を評価した。
 そして、調製された液晶配向剤の一部を用い、保存安定性を評価した。
 以上の評価結果は、表1にまとめて示した。
(実施例2~実施例3)
 ポリアミック酸溶液(A-1)を用い、ポリアミック酸等の固形分に対して3.00mol%となる量で、添加成分であるブロック化イソシアネート化合物(B-2)を加えた以外は実施例1と同様にして、実施例2の液晶配向剤を調製した。
 ポリアミック酸溶液(A-1)を用い、ポリアミック酸等の固形分に対して3.00mol%となる量で、添加成分であるブロック化イソシアネート化合物(B-3)を加えた以外は実施例1と同様にして、実施例3の液晶配向剤を調製した。
 ポリアミック酸溶液(A-1)を用い、ポリアミック酸等の固形分に対して3.00mol%となる量で、添加成分であるブロックイソシアネート化合物(B-5)を加えた以外は実施例1と同様にして、実施例6の液晶配向剤を調製した。
 次いで、実施例1と同様に、調製した各液晶配向剤を用い、上述したラビング耐性の評価の方法に従い液晶配向膜をそれぞれ形成し、各液晶配向膜のラビング耐性を評価した。
 そして、調製された各液晶配向剤の一部を用い、それぞれ保存安定性を評価した。
 以上の評価結果は、表1にまとめて示した。
(実施例4)
 合成例1と同様にして得られたポリアミック酸エステル溶液(A-2)19.49gを撹拌子の入った100mL三角フラスコに分取し、ポリアミック酸エステル等の固形分に対して3.00mol%となる量で、添加成分であるブロック化イソシアネート化合物(B-1)を加え2時間撹拌し、液晶配向剤を調製した。この液晶配向剤を用い、上述したラビング耐性の評価の方法に従い液晶配向膜を形成し、液晶配向膜のラビング耐性を評価した。
 そして、調製された液晶配向剤の一部を用い、保存安定性を評価した。
 以上の評価結果は、表1にまとめて示した。
(実施例5)
 合成例3と同様にして得られたポリアミック酸エステル溶液(A-3)20.94gを撹拌子の入った100mL三角フラスコに分取し、ポリアミック酸エステル等の固形分に対して3.00mol%となる量で、添加成分であるブロック化イソシアネート化合物(B-1)を加え2時間撹拌し、液晶配向剤を調製した。この液晶配向剤を用い、上述したラビング耐性の評価の方法に従い液晶配向膜を形成し、液晶配向膜のラビング耐性を評価した。
 そして、調製された液晶配向剤の一部を用い、保存安定性を評価した。
 以上の評価結果は、表1にまとめて示した。
(比較例1)
 合成例1と同様にして得られたポリアミック酸溶液(A-1)を用い、ポリアミック酸等の固形分に対して4.50mol%となる量で、添加成分である架橋剤(B-4(ジフェニルメタンジイソシアネート))を加え2時間撹拌し、液晶配向剤を調製した。調製された液晶配向剤の一部を用い、保存安定性を評価した。
 以上の評価結果は、表1にまとめて示した。
(比較例2)
 合成例1と同様にして得られたポリアミック酸溶液(A-1)を用い、添加成分を加えること無く、そのままの液晶配向剤とした。この液晶配向剤を用い、上述したラビング耐性の評価の方法に従い液晶配向膜を形成し、液晶配向膜のラビング耐性を評価した。
 そして、調製された液晶配向剤の一部を用い、保存安定性を評価した。
 以上の評価結果は、表1にまとめて示した。
(比較例3)
 合成例2と同様にして得られたポリアミック酸エステル溶液(A-2)を用い、添加成分を加えること無く、そのままの液晶配向剤とした。この液晶配向剤を用い、上述したラビング耐性の評価の方法に従い液晶配向膜を形成し、液晶配向膜のラビング耐性を評価した。
 そして、調製された液晶配向剤の一部を用い、保存安定性を評価した。
 以上の評価結果は、表1にまとめて示した。
 以上のように、実施例1~実施例4および比較例1~比較例3で得られた液晶配向剤の保存安定性と、それから得られた液晶配向膜のラビング耐性の評価結果は、表1にまとめて示した。
 尚、表1の成分の欄には、実施例1~実施例4および比較例1~比較例3の液晶配向剤を得るために用いたポリアミック酸溶液(A-1)またはポリアミック酸エステル溶液(A-2)を記載している。また、表1の添加成分の欄の「-」表示は、該当添加成分を含有していないことを示している。
Figure JPOXMLDOC01-appb-T000027
 表1に示すように、実施例1~実施例6の液晶配向剤は、保存安定性に優れる。そして、実施例1~実施例6の液晶配向剤を用いて形成された液晶配向膜は、良好なラビング耐性を有し、特に、実施例1、実施例4および実施例6の液晶配向剤による液晶配向膜は、高いラビング耐性を有することがわかった。
 一方、比較例1の液晶配向剤は、保存安定性が乏しい。そして、比較例2および比較例3の液晶配向剤は、それを用いて形成される液晶配向膜のラビング耐性が低いことがわかった。
 以上から、実施例1~実施例6の液晶配向剤は、保存安定性に優れ、高いラビング耐性を有する液晶配向膜を形成できることがわかった。
 本発明の液晶配向剤を用いて形成された液晶配向膜は、高いラビング耐性を有する。したがって、優れた表示品位を実現するために、強いラビング処理が必要とされる、大型の液晶TVや、高精細な画像を表示するスマートフォン等の携帯用情報端末用の液晶表示素子用の配向膜として好適に用いることができる。すなわち、本発明の液晶配向膜を有する本発明の液晶表素子は、大型のTVや、高精細な画像を表示するスマートフォン等の携帯用情報端末用の表示素子として好適に用いることができる。
 なお、2012年2月13日に出願された日本特許出願2012-028352号の明細書、特許請求の範囲、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。

Claims (9)

  1.  ポリイミド前駆体およびそれをイミド化して得られるポリイミドからなる群から選ばれる少なくとも1つの重合体と、ブロック化イソシアネート基を有する化合物とを含有することを特徴とする液晶配向剤。
  2.  前記ブロック化イソシアネート基を有する化合物は、ブロック化イソシアネート基を3つ以上有する化合物である請求項1に記載の液晶配向剤。
  3.  前記ブロック化イソシアネート基を有する化合物が、前記重合体に対して0.1モル%~20モル%含有される請求項1または2に記載の液晶配向剤。
  4.  前記化合物が、下記式(Z-1)~式(Z-4)のいずれかで表される化合物である請求項1~3のいずれか1項に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000001

    (式(Z-1)~式(Z-4)中、Rは、ブロック部の有機基を表す。
     式(Z-3)中、B~Bのいずれか一つはメチル基を表し、それ以外の二つは水素を表す。B~B、および、B~Bにおいても、B~Bと同様に、いずれか一つはメチル基を表し、それ以外の二つは水素を表す。)
  5.  Rが、CNOである請求項4に記載の液晶配向剤。
  6.  前記重合体は、アミノ基およびウレア基のうちの少なくとも一方を有するポリイミド前駆体とそれをイミド化して得られるポリイミドからなる群から選ばれる少なくとも1つである請求項1~5のいずれか1項に記載の液晶配向剤。
  7.  前記重合体を含む樹脂成分が有機溶媒に溶解した溶液である請求項1~6のいずれか1項に記載の液晶配向剤。
  8.  請求項1~7のいずれか1項に記載の液晶配向剤から得られる液晶配向膜。
  9.  請求項8に記載の液晶配向膜を有する液晶表示素子。
PCT/JP2013/053291 2012-02-13 2013-02-12 液晶配向剤、液晶配向膜および液晶表示素子 WO2013122062A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380009053.3A CN104115057B (zh) 2012-02-13 2013-02-12 液晶取向剂、液晶取向膜和液晶显示元件
KR1020147025230A KR102016197B1 (ko) 2012-02-13 2013-02-12 액정 배향제, 액정 배향막 및 액정 표시 소자
JP2013558698A JP6146315B2 (ja) 2012-02-13 2013-02-12 液晶配向剤、液晶配向膜および液晶表示素子

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012028352 2012-02-13
JP2012-028352 2012-02-13

Publications (1)

Publication Number Publication Date
WO2013122062A1 true WO2013122062A1 (ja) 2013-08-22

Family

ID=48984172

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/053291 WO2013122062A1 (ja) 2012-02-13 2013-02-12 液晶配向剤、液晶配向膜および液晶表示素子

Country Status (5)

Country Link
JP (1) JP6146315B2 (ja)
KR (1) KR102016197B1 (ja)
CN (1) CN104115057B (ja)
TW (1) TWI628214B (ja)
WO (1) WO2013122062A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015141598A1 (ja) * 2014-03-17 2015-09-24 日産化学工業株式会社 液晶配向剤、液晶配向膜及び液晶表示素子
CN105385455A (zh) * 2014-08-29 2016-03-09 Jsr株式会社 液晶取向剂、液晶取向膜以及液晶显示元件
WO2017094898A1 (ja) * 2015-12-03 2017-06-08 日産化学工業株式会社 液晶配向剤、液晶配向膜及びそれを用いた液晶表示素子
WO2017099041A1 (ja) * 2015-12-11 2017-06-15 コニカミノルタ株式会社 ポリイミドフィルム、フレキシブルプリント基板、led照明装置等
JP2019535029A (ja) * 2017-09-07 2019-12-05 エルジー・ケム・リミテッド 液晶配向剤組成物、これを利用した液晶配向膜の製造方法、およびこれを利用した液晶配向膜

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6269098B2 (ja) * 2013-04-26 2018-01-31 Jsr株式会社 液晶配向剤、液晶配向膜及び液晶表示素子
WO2018066494A1 (ja) * 2016-10-07 2018-04-12 シャープ株式会社 Tft基板用液晶配向剤、及び、液晶表示パネルの製造方法
US11319488B2 (en) 2017-03-31 2022-05-03 Sharp Kabushiki Kaisha Liquid crystal display device, method for manufacturing liquid crystal display device, and electronic apparatus
KR102162501B1 (ko) 2017-09-08 2020-10-06 주식회사 엘지화학 액정 배향제 조성물, 이를 이용한 액정 배향막의 제조 방법, 및 이를 이용한 액정 배향막
KR20220056789A (ko) * 2020-10-28 2022-05-06 제이에스알 가부시끼가이샤 액정 배향제, 액정 배향막 및 그의 제조 방법, 그리고 액정 소자 및 그의 제조 방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61215669A (ja) * 1985-03-22 1986-09-25 Totoku Electric Co Ltd ポリウレタン絶縁電線
JPS6227417A (ja) * 1985-07-30 1987-02-05 Japan Synthetic Rubber Co Ltd ポリイミド組成物
JPH02197015A (ja) * 1988-10-04 1990-08-03 Sumitomo Electric Ind Ltd 絶縁電線
JP2009511717A (ja) * 2005-10-12 2009-03-19 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー ポリイミドおよび疎水性エポキシを含む組成物、ならびにそれに関する方法
JP2010276926A (ja) * 2009-05-29 2010-12-09 Hitachi Chem Co Ltd 感光性樹脂組成物、感光性フィルム、レジストパターンの形成方法及び永久レジスト
JP2011117988A (ja) * 2009-11-30 2011-06-16 Hitachi Chem Co Ltd 光導波路形成用樹脂組成物及びこれを用いた光導波路形成用樹脂フィルム、並びにこれらを用いた光導波路

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3191535B2 (ja) 1993-10-21 2001-07-23 ジェイエスアール株式会社 液晶配向剤および液晶表示素子
JP3206401B2 (ja) 1995-11-20 2001-09-10 ジェイエスアール株式会社 液晶配向剤および液晶表示素子
CN1125809C (zh) * 1996-02-15 2003-10-29 日产化学工业株式会社 二氨基苯衍生物、使用了该衍生物的聚酰亚胺及液晶定向膜
JP3603460B2 (ja) 1996-03-25 2004-12-22 Jsr株式会社 液晶配向剤および液晶表示素子
AU2003289307A1 (en) * 2002-12-11 2004-06-30 Nissan Chemical Industries, Ltd. Liquid crystl orientating agent and liquid crystal display element using it
JP4466373B2 (ja) * 2002-12-11 2010-05-26 日産化学工業株式会社 新規なジアミノベンゼン誘導体、それを用いたポリイミド前駆体およびポリイミド、並びに液晶配向剤
JP2008090297A (ja) 2006-09-08 2008-04-17 Jsr Corp 液晶配向剤および液晶表示素子
CN101469063A (zh) * 2007-12-26 2009-07-01 汉高股份两合公司 有机硅聚酰亚胺-聚脲基础聚合物、其制备的弹性体、及其制备方法及其应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61215669A (ja) * 1985-03-22 1986-09-25 Totoku Electric Co Ltd ポリウレタン絶縁電線
JPS6227417A (ja) * 1985-07-30 1987-02-05 Japan Synthetic Rubber Co Ltd ポリイミド組成物
JPH02197015A (ja) * 1988-10-04 1990-08-03 Sumitomo Electric Ind Ltd 絶縁電線
JP2009511717A (ja) * 2005-10-12 2009-03-19 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー ポリイミドおよび疎水性エポキシを含む組成物、ならびにそれに関する方法
JP2010276926A (ja) * 2009-05-29 2010-12-09 Hitachi Chem Co Ltd 感光性樹脂組成物、感光性フィルム、レジストパターンの形成方法及び永久レジスト
JP2011117988A (ja) * 2009-11-30 2011-06-16 Hitachi Chem Co Ltd 光導波路形成用樹脂組成物及びこれを用いた光導波路形成用樹脂フィルム、並びにこれらを用いた光導波路

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015141598A1 (ja) * 2014-03-17 2015-09-24 日産化学工業株式会社 液晶配向剤、液晶配向膜及び液晶表示素子
KR20160132934A (ko) 2014-03-17 2016-11-21 닛산 가가쿠 고교 가부시키 가이샤 액정 배향제, 액정 배향막 및 액정 표시 소자
JPWO2015141598A1 (ja) * 2014-03-17 2017-04-06 日産化学工業株式会社 液晶配向剤、液晶配向膜及び液晶表示素子
TWI668503B (zh) * 2014-03-17 2019-08-11 日商日產化學工業股份有限公司 液晶配向劑、液晶配向膜及液晶顯示元件
KR102241785B1 (ko) 2014-03-17 2021-04-16 닛산 가가쿠 가부시키가이샤 액정 배향제, 액정 배향막 및 액정 표시 소자
CN105385455A (zh) * 2014-08-29 2016-03-09 Jsr株式会社 液晶取向剂、液晶取向膜以及液晶显示元件
WO2017094898A1 (ja) * 2015-12-03 2017-06-08 日産化学工業株式会社 液晶配向剤、液晶配向膜及びそれを用いた液晶表示素子
JPWO2017094898A1 (ja) * 2015-12-03 2018-09-20 日産化学株式会社 液晶配向剤、液晶配向膜及びそれを用いた液晶表示素子
WO2017099041A1 (ja) * 2015-12-11 2017-06-15 コニカミノルタ株式会社 ポリイミドフィルム、フレキシブルプリント基板、led照明装置等
JP2019535029A (ja) * 2017-09-07 2019-12-05 エルジー・ケム・リミテッド 液晶配向剤組成物、これを利用した液晶配向膜の製造方法、およびこれを利用した液晶配向膜

Also Published As

Publication number Publication date
CN104115057B (zh) 2018-01-30
KR102016197B1 (ko) 2019-08-29
CN104115057A (zh) 2014-10-22
TW201402670A (zh) 2014-01-16
TWI628214B (zh) 2018-07-01
JP6146315B2 (ja) 2017-06-14
KR20140124833A (ko) 2014-10-27
JPWO2013122062A1 (ja) 2015-05-11

Similar Documents

Publication Publication Date Title
JP6146315B2 (ja) 液晶配向剤、液晶配向膜および液晶表示素子
JP6519583B2 (ja) ポリアミック酸エステル−ポリアミック酸共重合体を含有する液晶配向剤、及びそれを用いた液晶配向膜
JP6233309B2 (ja) 液晶配向剤、液晶配向膜、及び液晶表示素子
JP6638645B2 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
JP6331028B2 (ja) 液晶配向処理剤、液晶配向膜および液晶表示素子
JP6617878B2 (ja) 液晶配向処理剤及びそれを用いた液晶表示素子
WO2013141262A1 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
WO2018025872A1 (ja) 曲面形状を有する液晶パネルを備える液晶表示素子及びそのための液晶配向剤
JP6460342B2 (ja) 液晶配向剤及びそれを用いた液晶表示素子
JP6891814B2 (ja) 液晶配向剤、液晶配向膜及びそれを用いた液晶表示素子
WO2013146589A1 (ja) 液晶表示素子およびその製造方法
WO2014092170A1 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
JP6508040B2 (ja) 横電界駆動用の液晶配向処理剤
JPWO2018122936A1 (ja) 液晶配向剤、液晶配向膜、及び液晶表示素子
JP6264577B2 (ja) 液晶配向処理剤、液晶配向膜および液晶表示素子
JPWO2018051923A1 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
TWI726965B (zh) 液晶配向劑、液晶配向膜及液晶顯示元件
TW202104435A (zh) 液晶配向劑、液晶配向膜,及液晶顯示元件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13749668

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013558698

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147025230

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13749668

Country of ref document: EP

Kind code of ref document: A1