WO2013121654A1 - 非水電解質二次電池用活物質、その活物質の製造方法、非水電解質二次電池用電極及び非水電解質二次電池 - Google Patents

非水電解質二次電池用活物質、その活物質の製造方法、非水電解質二次電池用電極及び非水電解質二次電池 Download PDF

Info

Publication number
WO2013121654A1
WO2013121654A1 PCT/JP2012/081482 JP2012081482W WO2013121654A1 WO 2013121654 A1 WO2013121654 A1 WO 2013121654A1 JP 2012081482 W JP2012081482 W JP 2012081482W WO 2013121654 A1 WO2013121654 A1 WO 2013121654A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
electrolyte secondary
transition metal
aqueous electrolyte
secondary battery
Prior art date
Application number
PCT/JP2012/081482
Other languages
English (en)
French (fr)
Inventor
遠藤 大輔
Original Assignee
株式会社Gsユアサ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Gsユアサ filed Critical 株式会社Gsユアサ
Priority to CN201280060693.2A priority Critical patent/CN103975465B/zh
Priority to US14/375,349 priority patent/US9219275B2/en
Priority to EP12868370.3A priority patent/EP2816641B1/en
Priority to JP2014500049A priority patent/JP5773054B2/ja
Priority to KR1020147013166A priority patent/KR102012304B1/ko
Publication of WO2013121654A1 publication Critical patent/WO2013121654A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/502Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/523Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/20Two-dimensional structures
    • C01P2002/22Two-dimensional structures layered hydroxide-type, e.g. of the hydrotalcite-type
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/76Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by a space-group or by other symmetry indications
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to an active material for a non-aqueous electrolyte secondary battery and a non-aqueous electrolyte secondary battery using the same.
  • LiCoO 2 is mainly used as a positive electrode active material in a non-aqueous electrolyte secondary battery.
  • the discharge capacity was about 120 to 130 mAh / g.
  • LiCoO 2 A material obtained by forming a solid solution of LiCoO 2 with another compound is known.
  • Li [Co 1-2x Ni x Mn x ] O 2 (0 ⁇ x ⁇ 1/2), which has an ⁇ -NaFeO 2 type crystal structure and is a solid solution of three components of LiCoO 2 , LiNiO 2 and LiMnO 2 ” Was announced in 2001.
  • LiNi 1/2 Mn 1/2 O 2 and LiCo 1/3 Ni 1/3 Mn 1/3 O 2 which are examples of the solid solution, have a discharge capacity of 150 to 180 mAh / g, and are charged / discharged. Excellent cycle performance.
  • the composition ratio Li / Me of lithium (Li) with respect to the ratio of transition metal (Me) is larger than 1, for example, Li / Me is 1.25 to 1.6.
  • so-called “lithium-rich” active materials are known. Such a material can be expressed as Li 1 + ⁇ Me 1- ⁇ O 2 ( ⁇ > 0).
  • Patent Document 1 discloses a kind of active material such as Li [Li 1/3 Mn 2/3 ] O 2 , LiNi 1/2 Mn 1/2 O 2 and LiCoO 2 as a solid solution. An active material that can be represented is described.
  • a charging method in which the maximum potential of the positive electrode at the time of charging is 4.3 V (vs. Li / Li + ) or less is adopted by providing a manufacturing process that performs charging at least in a relatively flat region.
  • a battery capable of obtaining a discharge capacity of 177 mAh / g or more can be manufactured.
  • Li 1 + x M 1 ⁇ x O 2 (M is at least one transition metal selected from nickel, manganese, cobalt, iron, copper, zinc, chromium, titanium, zirconium, 0 ⁇ x ⁇ 0.15).
  • Layered rock salt type lithium / transition metal composite oxide having an acidic root content of at most 1500 ppm and an alkali metal content of at most 2000 ppm, and X-rays belonging to hexagonal crystals
  • the invention of a lithium-transition metal composite oxide characterized by having a peak intensity ratio (I (003) / I (104) ) of diffraction (003) and (104) of at least 1.4 is known.
  • Patent Document 2 contains Co, Ni, and Mn when producing the above-mentioned lithium / transition metal composite oxide (“lithium-rich” positive electrode active material).
  • a method is described in which a coprecipitation precursor of a transition metal carbonate is prepared by coprecipitation of a compound of a transition metal element, the coprecipitation precursor and a lithium compound are mixed, and calcined at 800 to 900 ° C. It has been shown that a non-aqueous electrolyte battery having a large discharge capacity and excellent rate characteristics can be obtained by using the positive electrode active material produced by the method.
  • the conventional so-called “lithium-rich” positive electrode active material has a large discharge capacity, but is not sufficient, and an active material having a larger discharge capacity is desired.
  • the conventional so-called “lithium-excess type” positive electrode active material has a low-temperature environment and a region from the middle stage of discharge to the last stage of discharge, that is, low SOC (State of OF), compared with the so-called “LiMeO 2 ” positive electrode active material. In the (Charge) region, there is a problem that output performance is poor.
  • An object of the present invention is to provide an active material for a nonaqueous electrolyte secondary battery having a large discharge capacity, a method for producing the active material, and a nonaqueous electrolyte secondary battery using the active material.
  • the first of the present invention has an ⁇ -NaFeO 2 type crystal structure and is represented by a composition formula Li 1 + ⁇ Me 1- ⁇ O 2 (Me is a transition metal element containing Mn, Ni and Co, 0 ⁇ ⁇ 1).
  • the third aspect of the present invention is characterized in that, in the second aspect of the present invention, the active material for a non-aqueous electrolyte secondary battery has a 50% particle size (D50) in particle size distribution measurement of 8 ⁇ m or less.
  • D50 50% particle size
  • a fourth aspect of the present invention is a method for producing an active material for a non-aqueous electrolyte secondary battery according to any one of the first to third aspects of the present invention, comprising a compound of a transition metal element Me containing Co, Ni and Mn in a solution.
  • a transition metal carbonate coprecipitation precursor to obtain a transition metal carbonate coprecipitation precursor, and a molar ratio of Li to the transition metal element Me of the lithium transition metal composite oxide Li /
  • a method for producing an active material for a non-aqueous electrolyte secondary battery comprising a step of mixing so that Me becomes 1.25 to 1.425 and baking at 800 to 900 ° C.
  • the present invention is an electrode for a non-aqueous electrolyte secondary battery containing the active material for a non-aqueous electrolyte secondary battery.
  • the present invention is a non-aqueous electrolyte secondary battery provided with the non-aqueous electrolyte secondary battery electrode.
  • an active material for a nonaqueous electrolyte secondary battery having a large discharge capacity can be provided.
  • an active material for a nonaqueous electrolyte secondary battery excellent in discharge capacity at low temperatures can be provided.
  • an active material for a non-aqueous electrolyte secondary battery excellent in output performance at low temperatures can be provided.
  • a method for producing an active material for a nonaqueous electrolyte secondary battery having a large discharge capacity can be provided.
  • the molar ratio Li / Me of Li to the transition metal element Me represented by (1 + ⁇ ) / (1- ⁇ ) is 1.25 to 1.425, A nonaqueous electrolyte secondary battery having a large discharge capacity can be obtained.
  • the ratio of elements such as Co, Ni and Mn constituting the transition metal element constituting the lithium transition metal composite oxide can be arbitrarily selected according to the required characteristics.
  • the molar ratio Co / Me of Co to the transition metal element Me is preferably 0.02 to 0.23 in that a non-aqueous electrolyte secondary battery having a large discharge capacity and excellent initial charge / discharge efficiency can be obtained. 0.04 to 0.21 is more preferable, and 0.06 to 0.17 is most preferable.
  • the molar ratio Mn / Mn of the transition metal element Me is 0.63 to 0.72 in that a nonaqueous electrolyte secondary battery having a large discharge capacity and excellent initial charge / discharge efficiency can be obtained.
  • 0.65 to 0.71 is more preferable.
  • the lithium transition metal composite oxide according to the present invention is essentially a composite oxide containing Li, Co, Ni, and Mn as metal elements, but a small amount of Na, Ca within a range not impairing the effects of the present invention. It does not exclude inclusion of transition metals such as alkali metals and alkaline earth metals such as 3d transition metals such as Fe and Cu, and metals such as Zn and In.
  • the lithium transition metal composite oxide according to the present invention has an ⁇ -NaFeO 2 structure.
  • the symmetry of the crystal changes, whereby the superlattice peak disappears and the lithium transition metal composite oxide belongs to the space group R3-m. Will come to be.
  • P3 1 12 is a crystal structure model in which the atomic positions of the 3a, 3b, and 6c sites in R3-m are subdivided, and when ordering is recognized in the atomic arrangement in R3-m, the P3 1 12 model Is adopted. Note that “R3-m” should be represented by adding a bar “-” on “3” of “R3m”.
  • the space group P3 1 12 is indexed to the (114) plane, and the space group R3-m is indexed to the (104) plane.
  • the lithium transition metal composite oxide according to the present invention is electrochemically oxidized to a potential of 5.0 V (vs. Li / Li + ), it is hexagonal (space group R3-m) on the X-ray diffraction diagram. It is characterized by being observed as a single phase attributed to. A specific confirmation method is as described in Examples described later.
  • the peak showing the maximum intensity in the diffraction pattern obtained by the X-ray diffraction measurement is shown in the full diffraction pattern.
  • it is sufficient that no split is observed in the peak attributed to the (003) plane of the hexagonal crystal.
  • the lithium transition metal composite oxide according to the present invention is characterized in that the 50% particle diameter (D50) in the particle size distribution measurement is 8 ⁇ m or less.
  • the active material for a non-aqueous electrolyte secondary battery according to the present invention basically includes a metal element (Li, Mn, Co, Ni) constituting the active material and a target active material (lithium transition metal composite oxide). It can be obtained by adjusting the raw material so that it is contained according to the composition, and finally firing this raw material. However, with respect to the amount of the Li raw material, it is preferable to add an excess of about 1 to 5% in view of the disappearance of a part of the Li raw material during firing.
  • a so-called “solid phase method” in which each salt of Li, Co, Ni, and Mn is mixed and fired, or Co, Ni, and Mn in advance is used.
  • a “coprecipitation method” in which a coprecipitation precursor in which particles are present in one particle is prepared, and a Li salt is mixed and fired therein.
  • Mn is particularly difficult to uniformly dissolve in Co and Ni. For this reason, it is difficult to obtain a sample in which each element is uniformly distributed in one particle.
  • the active material for a non-aqueous electrolyte secondary battery it is not limited which of the “solid phase method” and the “coprecipitation method” is selected.
  • the “solid phase method” it is extremely difficult to produce the positive electrode active material according to the present invention.
  • Selecting the “coprecipitation method” is preferable in that it is easy to obtain a homogeneous phase at the atomic level.
  • Mn is easily oxidized among Co, Ni and Mn, and it is not easy to prepare a coprecipitation precursor in which Co, Ni and Mn are uniformly distributed in a divalent state. Uniform mixing at the atomic level of Co, Ni and Mn tends to be insufficient.
  • the method for removing dissolved oxygen include a method of bubbling a gas not containing oxygen.
  • the gas not containing oxygen is not limited, but nitrogen gas, argon gas, carbon dioxide (CO 2 ), or the like can be used.
  • the pH in the step of producing a precursor by co-precipitation of a compound containing Co, Ni and Mn in a solution is not limited, an attempt is made to prepare the co-precipitation precursor as a co-precipitation carbonate precursor. In this case, it can be set to 7.5 to 11. In order to increase the tap density, it is preferable to control the pH. By setting the pH to 9.4 or less, the tap density can be set to 1.25 g / cc or more, and high rate discharge characteristics can be improved. Furthermore, since the particle growth rate can be accelerated by setting the pH to less than 8.5, the stirring continuation time after completion of dropping of the raw material aqueous solution can be shortened.
  • the coprecipitation precursor is preferably a compound in which Mn, Ni, and Co are uniformly distributed.
  • the precursor is not limited to carbonate, and any other insoluble salt in which elements such as hydroxide and citrate are uniformly distributed can be used in the same manner as hydroxide.
  • a precursor having a larger bulk density can be produced by using a crystallization reaction using a complexing agent. At that time, a higher density active material can be obtained by mixing and firing with a Li source, so that the energy density per electrode area can be improved.
  • any form can be used as long as it forms a precipitation reaction with an alkaline aqueous solution, but a metal salt having high solubility is preferably used. .
  • the raw materials for the coprecipitation precursor include manganese oxide, manganese carbonate, manganese sulfate, manganese nitrate, manganese acetate, etc. as the Mn compound, and nickel hydroxide, nickel carbonate, nickel sulfate, nickel nitrate, nickel acetate as the Ni compound.
  • the Co compound cobalt sulfate, cobalt nitrate, cobalt acetate, and the like can be given as examples.
  • the raw material aqueous solution of the coprecipitation precursor is supplied dropwise to a reaction tank that maintains alkalinity to obtain a coprecipitation precursor.
  • the dropping rate of the aqueous raw material solution is determined according to the coprecipitation precursor to be produced. This greatly affects the uniformity of elemental distribution within one particle. In particular, Mn is difficult to form a uniform element distribution with Co and Ni, so care must be taken.
  • the preferred dropping speed is influenced by the reaction vessel size, stirring conditions, pH, reaction temperature, and the like, but is preferably 10 ml / min or less, and more preferably 5 ml / min or less.
  • the elemental distribution of Co, Ni, and Mn of the obtained coprecipitation precursor becomes non-uniform, so that the synthesized lithium transition metal composite oxide
  • the crystal structure of may become unstable.
  • the particle rotation and revolution in the stirring tank are promoted by continuing the stirring after the dropwise addition of the raw material aqueous solution.
  • the particles grow concentrically in stages while colliding with each other. That is, the coprecipitation precursor undergoes a reaction in two stages: a metal complex formation reaction when the raw material aqueous solution is dropped into the reaction tank, and a precipitation formation reaction that occurs while the metal complex is retained in the reaction tank. It is formed. Therefore, a coprecipitation precursor having a target particle size can be obtained by appropriately selecting a time for continuing stirring after the dropping of the raw material aqueous solution.
  • the preferable stirring duration after completion of dropping of the raw material aqueous solution is influenced by the size of the reaction vessel, stirring conditions, pH, reaction temperature, etc. Preferably, 1 h or more is more preferable. Moreover, in order to reduce the possibility that the output performance in the low SOC region of the battery is not sufficient due to the particle size becoming too large, it is preferably 15 h or less, more preferably 10 h or less, and most preferably 5 h or less. Moreover, the preferable stirring duration time for setting D50 of the secondary particles of the lithium transition metal composite oxide to 8 ⁇ m or less varies depending on the pH to be controlled. For example, when the pH is controlled to 8.3 to 9.0, the stirring duration is preferably 4 to 5 hours, and when the pH is controlled to 7.6 to 8.2, the stirring duration is 1 to 3 hours. Is preferred.
  • the active material for a non-aqueous electrolyte secondary battery in the present invention can be suitably produced by mixing the coprecipitation precursor and the Li compound and then heat-treating them.
  • a Li compound it can manufacture suitably by using lithium hydroxide, lithium carbonate, lithium nitrate, lithium acetate, etc.
  • the oxygen release temperature of the active material is approximately 1000 ° C. or higher in the composition range according to the present invention. However, there is a slight difference in the oxygen release temperature depending on the composition of the active material. It is preferable to keep it. In particular, it is confirmed that the oxygen release temperature of the precursor shifts to the lower temperature side as the amount of Co contained in the sample increases.
  • a mixture of a coprecipitation precursor and a lithium compound may be subjected to thermogravimetric analysis (TG-DTA measurement) in order to simulate the firing reaction process.
  • TG-DTA measurement thermogravimetric analysis
  • the platinum used in the sample chamber of the measuring instrument may be corroded by the Li component volatilized, and the instrument may be damaged. Therefore, a composition in which crystallization is advanced to some extent by adopting a firing temperature of about 500 ° C. in advance. Goods should be subjected to thermogravimetric analysis.
  • the firing temperature is preferably 800 ° C. or higher. In particular, when the precursor is a coprecipitated carbonate, the optimum firing temperature tends to be lower as the amount of Co contained in the precursor is larger.
  • the resistance of the crystal grain boundary can be reduced and smooth lithium ion transport can be promoted.
  • the inventors have analyzed the half width of the diffraction peak of the active material of the present invention in detail, and in the sample synthesized at a temperature up to 800 ° C., strain remains in the lattice, and at a temperature higher than that, It was confirmed that almost all strains could be removed by synthesis.
  • the crystallite size was increased in proportion to the increase in the synthesis temperature. Therefore, even in the composition of the active material of the present invention, a favorable discharge capacity can be obtained by aiming at a particle having almost no lattice distortion in the system and having a sufficiently grown crystallite size.
  • a synthesis temperature firing temperature
  • a Li / Me ratio composition in which the strain amount affecting the lattice constant is 2% or less and the crystallite size is grown to 50 nm or more. all right.
  • the crystallite size is maintained at 30 nm or more in the charging and discharging process.
  • the particle shape and particle size of the lithium transition metal composite oxide obtained through the firing step are almost the same as the particle shape and particle size of the precursor before firing, but the rate of temperature rise from room temperature to the firing temperature is lithium. It affects the degree of growth of crystal grains of transition metal composite oxide. Therefore, the temperature rising rate is preferably 200 ° C./h or less, and more preferably 100 ° C./h or less.
  • the nonaqueous electrolyte used in the nonaqueous electrolyte secondary battery according to the present invention is not limited, and those generally proposed for use in lithium batteries and the like can be used.
  • the nonaqueous solvent used for the nonaqueous electrolyte include cyclic carbonates such as propylene carbonate, ethylene carbonate, butylene carbonate, chloroethylene carbonate, and vinylene carbonate; cyclic esters such as ⁇ -butyrolactone and ⁇ -valerolactone; dimethyl carbonate, Chain carbonates such as diethyl carbonate and ethyl methyl carbonate; chain esters such as methyl formate, methyl acetate and methyl butyrate; tetrahydrofuran or derivatives thereof; 1,3-dioxane, 1,4-dioxane, 1,2-dimethoxy Ethers such as ethane, 1,4-dibutoxyethane and methyldiglyme; Nitriles such as acetonit
  • electrolyte salt used for the non-aqueous electrolyte examples include LiClO 4 , LiBF 4 , LiAsF 6 , LiPF 6 , LiSCN, LiBr, LiI, Li 2 SO 4 , Li 2 B 10 Cl 10 , NaClO 4 , NaI, NaSCN, NaBr , KClO 4 , KSCN, and other inorganic ion salts containing one of lithium (Li), sodium (Na), or potassium (K), LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 (SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiC (CF 3 SO 2 ) 3 , LiC (C 2 F 5 SO 2 ) 3 , (CH 3 ) 4 NBF 4 , ( CH 3 ) 4 NBr, (C 2 H 5 ) 4 NClO 4 , (C 2 H 5 ) 4 NI, (C 2
  • the viscosity of the electrolyte can be further reduced, The low temperature characteristics can be further improved, and self-discharge can be suppressed, which is more desirable.
  • a room temperature molten salt or ionic liquid may be used as the non-aqueous electrolyte.
  • the concentration of the electrolyte salt in the non-aqueous electrolyte is preferably 0.1 mol / l to 5 mol / l, more preferably 0.5 mol / l to 2 in order to reliably obtain a non-aqueous electrolyte battery having high battery characteristics. .5 mol / l.
  • the negative electrode material is not limited, and any negative electrode material that can deposit or occlude lithium ions may be selected.
  • titanium-based materials such as lithium titanate having a spinel crystal structure represented by Li [Li 1/3 Ti 5/3 ] O 4
  • alloy-based materials such as Si, Sb, and Sn-based lithium metal
  • lithium alloys Lithium metal-containing alloys such as lithium-silicon, lithium-aluminum, lithium-lead, lithium-tin, lithium-aluminum-tin, lithium-gallium, and wood alloys
  • lithium composite oxide lithium-titanium
  • silicon oxide silicon oxide
  • an alloy capable of inserting and extracting lithium a carbon material (for example, graphite, hard carbon, low-temperature fired carbon, amorphous carbon, etc.) can be used.
  • the positive electrode active material powder and the negative electrode material powder have an average particle size of 100 ⁇ m or less.
  • the positive electrode active material powder is desirably 10 ⁇ m or less for the purpose of improving the high output characteristics of the non-aqueous electrolyte battery.
  • a pulverizer or a classifier is used.
  • a mortar, a ball mill, a sand mill, a vibrating ball mill, a planetary ball mill, a jet mill, a counter jet mill, a swirling air flow type jet mill or a sieve is used.
  • wet pulverization in the presence of water or an organic solvent such as hexane may be used.
  • an organic solvent such as hexane
  • the positive electrode active material and the negative electrode material which are the main components of the positive electrode and the negative electrode, have been described in detail above.
  • the positive electrode and the negative electrode include a conductive agent, a binder, a thickener, and a filler. Etc. may be contained as other constituents.
  • the conductive agent is not limited as long as it is an electron conductive material that does not adversely affect the battery performance.
  • natural graphite such as scaly graphite, scaly graphite, earthy graphite
  • artificial graphite carbon black, acetylene black
  • Conductive materials such as ketjen black, carbon whisker, carbon fiber, metal (copper, nickel, aluminum, silver, gold, etc.) powder, metal fiber, and conductive ceramic material can be included as one kind or a mixture thereof. .
  • acetylene black is desirable from the viewpoints of electron conductivity and coatability.
  • the addition amount of the conductive agent is preferably 0.1% by weight to 50% by weight, and particularly preferably 0.5% by weight to 30% by weight with respect to the total weight of the positive electrode or the negative electrode.
  • These mixing methods are physical mixing, and the ideal is uniform mixing. Therefore, powder mixers such as V-type mixers, S-type mixers, crackers, ball mills, and planetary ball mills can be mixed dry or wet.
  • the binder is usually a thermoplastic resin such as polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), polyethylene, polypropylene, ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, styrene butadiene.
  • PTFE polytetrafluoroethylene
  • PVDF polyvinylidene fluoride
  • EPDM ethylene-propylene-diene terpolymer
  • SBR rubber
  • the amount of the binder added is preferably 1 to 50% by weight, particularly 2 to 30% by weight, based on the total weight of the positive electrode or the negative electrode.
  • any material that does not adversely affect battery performance may be used.
  • olefin polymers such as polypropylene and polyethylene, amorphous silica, alumina, zeolite, glass, carbon and the like are used.
  • the addition amount of the filler is preferably 30% by weight or less with respect to the total weight of the positive electrode or the negative electrode.
  • the main constituents positive electrode active material for the positive electrode, negative electrode material for the negative electrode
  • other materials are kneaded to form a mixture and mixed in an organic solvent such as N-methylpyrrolidone and toluene or water
  • the obtained mixed solution is applied on a current collector described in detail below, or pressed and heat-treated at a temperature of about 50 ° C. to 250 ° C. for about 2 hours.
  • the about the application method for example, it is desirable to apply to any thickness and any shape using means such as roller coating such as applicator roll, screen coating, doctor blade method, spin coating, bar coater, etc. It is not limited.
  • the separator it is preferable to use a porous film or a non-woven fabric exhibiting excellent high rate discharge performance alone or in combination.
  • the material constituting the separator for non-aqueous electrolyte batteries include polyolefin resins typified by polyethylene, polypropylene, etc., polyester resins typified by polyethylene terephthalate, polybutylene terephthalate, etc., polyvinylidene fluoride, vinylidene fluoride-hexa.
  • Fluoropropylene copolymer vinylidene fluoride-perfluorovinyl ether copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, vinylidene fluoride-trifluoroethylene copolymer, vinylidene fluoride-fluoroethylene copolymer, fluorine Vinylidene fluoride-hexafluoroacetone copolymer, vinylidene fluoride-ethylene copolymer, vinylidene fluoride-propylene copolymer, vinylidene fluoride-trifluoropropylene copolymer, vinylidene fluoride - tetrafluoroethylene - hexafluoropropylene copolymer, vinylidene fluoride - ethylene - can be mentioned tetrafluoroethylene copolymer.
  • the porosity of the separator is preferably 98% by volume or less from the viewpoint of strength. Further, the porosity is preferably 20% by volume or more from the viewpoint of charge / discharge characteristics.
  • the separator may be a polymer gel composed of a polymer such as acrylonitrile, ethylene oxide, propylene oxide, methyl methacrylate, vinyl acetate, vinyl pyrrolidone, polyvinylidene fluoride, and an electrolyte.
  • a polymer such as acrylonitrile, ethylene oxide, propylene oxide, methyl methacrylate, vinyl acetate, vinyl pyrrolidone, polyvinylidene fluoride, and an electrolyte.
  • the separator is used in combination with the above-described porous film, nonwoven fabric or the like and a polymer gel because the liquid retention of the electrolyte is improved. That is, by forming a film in which the surface of the polyethylene microporous membrane and the microporous wall are coated with a solvophilic polymer having a thickness of several ⁇ m or less, and holding the electrolyte in the micropores of the film, Gels.
  • solvophilic polymer examples include polyvinylidene fluoride, an acrylate monomer having an ethylene oxide group or an ester group, an epoxy monomer, a polymer having a monomer having an isocyanate group, and the like crosslinked.
  • the monomer can be subjected to a crosslinking reaction using a radical initiator in combination with heating or ultraviolet rays (UV), or using an actinic ray such as an electron beam (EB).
  • UV ultraviolet rays
  • EB electron beam
  • the configuration of the nonaqueous electrolyte secondary battery is not particularly limited, and examples thereof include a cylindrical battery having a positive electrode, a negative electrode, and a roll separator, a square battery, a flat battery, and the like.
  • Both the conventional positive electrode active material and the active material of the present invention can be charged / discharged when the positive electrode potential reaches around 4.5 V (vs. Li / Li + ).
  • the positive electrode potential during charging is too high, the nonaqueous electrolyte may be oxidized and decomposed, resulting in a decrease in battery performance. Therefore, even when a charging method is employed such that the maximum potential of the positive electrode during charging is 4.3 V (vs. Li / Li + ) or lower during use, a sufficient discharge capacity can be obtained. Secondary batteries may be required.
  • the battery When the active material of the present invention was used, the battery was once charged to a region where the potential change appearing with respect to the charge amount in the positive electrode potential range near 4.5 V (vs. Li / Li + ) was relatively flat. Later, during use, the maximum potential of the positive electrode during charging is lower than 4.5 V (vs. Li / Li + ), for example, 4.4 V (vs. Li / Li + ) or less, or 4.3 V Even if a charging method such as (vs. Li / Li + ) or less is adopted, it is possible to take out a discharge electric quantity exceeding the capacity of the conventional positive electrode active material of about 200 mAh / g (0.1 CmA) or more. is there.
  • the transition metal element constituting the lithium transition metal composite oxide is present in a portion other than the transition metal site of the layered rock salt type crystal structure. It is preferable that the ratio is small. This is because the transition metal elements such as Co, Ni, and Mn are sufficiently uniformly distributed in the precursor to be subjected to the firing process, and the conditions of an appropriate firing process for promoting the crystallization of the active material sample. You can achieve it by choosing. When the distribution of the transition metal in the precursor to be subjected to the firing step is not uniform, a sufficient discharge capacity cannot be obtained.
  • the obtained lithium transition metal composite oxide is a portion other than the transition metal site of the layered rock salt type crystal structure, That is, the present inventor presumes that it is derived from so-called cation mixing in which a part of the transition metal element exists at the lithium site. The same inference can be applied to the crystallization process in the firing step. If the crystallization of the active material sample is insufficient, cation mixing in the layered rock salt type crystal structure is likely to occur.
  • the intensity ratio of the diffraction peaks of the (003) plane and the (114) plane is preferably I (003) / I (114)> 1.
  • the intensity ratio of the diffraction peaks of the (003) plane and the (104) plane in the Miller index hkl is assigned to the space group R3-m on the X-ray diffraction diagram. It is preferable that I (003) / I (104)> 1. If the precursor synthesis conditions and procedure are inadequate, the peak intensity ratio will be smaller and often less than 1.
  • a high-performance positive electrode active material as described above can be obtained.
  • the charge upper limit potential is set lower than 4.5 V (vs. Li / Li + ), for example, 4.4 V (vs. Li / Li + ) or 4.3 V (vs. Li / Li + )
  • a positive electrode active material for a non-aqueous electrolyte secondary battery capable of obtaining a high discharge capacity can be obtained.
  • Example 1 Cobalt sulfate heptahydrate (14.08 g), nickel sulfate hexahydrate (21.00 g) and manganese sulfate pentahydrate (65.27 g) were weighed, and all of these were dissolved in 200 ml of ion-exchanged water, and Co: Ni: Mn A 2.0 M aqueous sulfate solution having a molar ratio of 12.50: 19.94: 67.56 was prepared. On the other hand, 750 ml of ion exchange water was poured into a 2 L reaction tank, and CO 2 gas was bubbled for 30 minutes to dissolve CO 2 in the ion exchange water. The temperature of the reaction vessel was set to 50 ° C.
  • the coprecipitated carbonate particles produced in the reaction vessel are separated, and sodium ions adhering to the particles are washed away using ion-exchanged water, and an electric furnace is used. And dried at 100 ° C. under normal pressure in an air atmosphere. Then, in order to make a particle size uniform, it grind
  • the box-type electric furnace has internal dimensions of 10 cm in length, 20 cm in width, and 30 cm in depth, and heating wires are inserted at intervals of 20 cm in the width direction. After firing, the heater was turned off and allowed to cool naturally with the alumina boat placed in the furnace. As a result, the temperature of the furnace decreases to about 200 ° C. after 5 hours, but the subsequent temperature decrease rate is somewhat moderate. After the passage of day and night, it was confirmed that the furnace temperature was 100 ° C. or lower, and then the pellets were taken out and pulverized for several minutes in a smoked automatic mortar in order to make the particle diameter uniform. In this way, a lithium transition metal composite oxide according to Example 1 was produced.
  • Example 2 In the firing step, the lithium transition metal composite oxide according to Example 2 was prepared in the same procedure as in Example 1 except that the temperature was raised from room temperature to 825 ° C. over 10 hours and baked at 825 ° C. for 4 hours. Produced.
  • Example 3 In the firing step, the lithium transition metal composite oxide according to Example 3 was prepared in the same procedure as in Example 1 except that the temperature was raised from room temperature to 850 ° C. over 10 hours and baked at 850 ° C. for 4 hours. Produced.
  • Example 4 In the firing step, the lithium transition metal composite oxide according to Example 4 was prepared in the same procedure as in Example 1 except that the temperature was raised from room temperature to 875 ° C. over 10 hours and baked at 875 ° C. for 4 hours. Produced.
  • Example 5 In the firing step, the lithium transition metal composite oxide according to Example 5 was obtained in the same procedure as in Example 1 except that the temperature was raised from room temperature to 900 ° C. over 10 hours and fired at 900 ° C. for 4 hours. Produced.
  • Example 6 In the preparation process of the coprecipitated carbonate precursor, after completion of the dropwise addition of the sulfate aqueous solution, the procedure for continuing the stirring in the reaction vessel was changed to 1 h, in the same procedure as in Example 1, A lithium transition metal composite oxide according to Example 6 was produced.
  • Example 7 In the preparation process of the coprecipitated carbonate precursor, after completion of the dropwise addition of the sulfate aqueous solution, the procedure for continuing the stirring in the reaction vessel was changed to 1 h, in the same procedure as in Example 2, A lithium transition metal composite oxide according to Example 7 was produced.
  • Example 8 In the preparation process of the coprecipitated carbonate precursor, after completion of the dropwise addition of the sulfate aqueous solution, the procedure for continuing the stirring in the reaction vessel was changed to 1 h, in the same procedure as in Example 3, A lithium transition metal composite oxide according to Example 8 was produced.
  • Example 9 In the preparation process of the coprecipitated carbonate precursor, after the completion of the dropwise addition of the sulfate aqueous solution, the procedure for continuing the stirring in the reaction vessel was changed to 1 h, in the same procedure as in Example 4, A lithium transition metal composite oxide according to Example 9 was produced.
  • Example 10 In the preparation step of the coprecipitated carbonate precursor, after completion of the dropwise addition of the sulfate aqueous solution, the procedure for Example 1 was repeated except that the time for further stirring in the reaction vessel was changed to 1 h. A lithium transition metal composite oxide according to Example 10 was produced.
  • Example 11 In the preparation process of the coprecipitated carbonate precursor, after the completion of the dropwise addition of the sulfate aqueous solution, the procedure for continuing the stirring in the reaction vessel was changed to 5 h, in the same procedure as in Example 5, A lithium transition metal composite oxide according to Example 11 was produced.
  • Example 12 In the preparation process of the coprecipitated carbonate precursor, after completion of the dropwise addition of the sulfate aqueous solution, the procedure for continuing the stirring in the reaction vessel was changed to 10 h, the same procedure as in Example 5, A lithium transition metal composite oxide according to Example 12 was produced.
  • Example 13 In the preparation process of the coprecipitated carbonate precursor, after completion of the dropwise addition of the sulfate aqueous solution, the procedure for continuing the stirring in the reaction vessel was changed to 15 h, the same procedure as in Example 5, A lithium transition metal composite oxide according to Example 13 was produced.
  • Example 14 In the preparation process of the coprecipitated carbonate precursor, after the completion of the dropwise addition of the sulfate aqueous solution, the procedure for continuing the stirring in the reaction vessel was changed to 20 h, in the same procedure as in Example 5, A lithium transition metal composite oxide according to Example 14 was produced.
  • Example 15 As a mixed powder to be used for pellet molding, 0.943 g of lithium carbonate was added to 2.304 g of the coprecipitated carbonate precursor prepared in Example 1, and mixed well using a smoked automatic mortar, and Li: (Co, A lithium transition metal composite oxide according to Example 15 was produced in the same procedure as in Example 5 except that a mixed powder having a molar ratio of Ni, Mn) of 125: 100 was used.
  • Example 16 As a mixed powder to be used for pellet molding, 0.957 g of lithium carbonate is added to 2.291 g of the coprecipitated carbonate precursor prepared in Example 1, and mixed well using a smoked automatic mortar, and Li: (Co, A lithium transition metal composite oxide according to Example 16 was produced in the same procedure as in Example 5 except that a mixed powder having a molar ratio of Ni, Mn) of 127.5: 100 was used. .
  • Example 17 As a mixed powder to be used for pellet molding, 0.983 g of lithium carbonate is added to 2.265 g of the coprecipitated carbonate precursor prepared in Example 1, and mixed well using a smoked automatic mortar, and Li: (Co, A lithium transition metal composite oxide according to Example 17 was produced in the same procedure as in Example 5 except that a mixed powder having a molar ratio of Ni, Mn) of 132.5: 100 was used. .
  • Example 18 As mixed powder to be used for pellet molding, 0.996 g of lithium carbonate was added to 2.253 g of the coprecipitated carbonate precursor prepared in Example 1, and mixed well using a smoked automatic mortar, and Li: (Co, A lithium transition metal composite oxide according to Example 18 was produced in the same procedure as in Example 5 except that a mixed powder having a molar ratio of Ni, Mn) of 135: 100 was used.
  • Example 19 As a mixed powder to be subjected to pellet molding, 1.209 g of lithium carbonate is added to 2.241 g of the coprecipitated carbonate precursor prepared in Example 1, and mixed well using a smoked automatic mortar, and Li: (Co, A lithium transition metal composite oxide according to Example 19 was prepared in the same procedure as in Example 5 except that a mixed powder having a molar ratio of Ni, Mn) of 137.5: 100 was used. .
  • Example 20 As a mixed powder to be used for pellet molding, 1.022 g of lithium carbonate is added to 2.228 g of the coprecipitated carbonate precursor prepared in Example 1, and mixed well using a smoked automatic mortar, and Li: (Co, A lithium transition metal composite oxide according to Example 20 was produced in the same procedure as in Example 5 except that a mixed powder having a molar ratio of Ni, Mn) of 140: 100 was used.
  • Example 21 As a mixed powder to be subjected to pellet molding, 1.035 g of lithium carbonate is added to 2.216 g of the coprecipitated carbonate precursor prepared in Example 1, and mixed well using a smoked automatic mortar, and Li: (Co, A lithium transition metal composite oxide according to Example 21 was produced in the same procedure as in Example 5 except that a mixed powder having a molar ratio of Ni, Mn) of 142.5: 100 was used. .
  • Example 22 In the preparation process of the coprecipitated carbonate precursor, after completion of the dropwise addition of the sulfate aqueous solution, the procedure for continuing the stirring in the reaction vessel was changed to 1 h, in the same procedure as in Example 15, A lithium transition metal composite oxide according to Example 22 was produced.
  • Example 23 In the step of preparing the coprecipitated carbonate precursor, after completion of the dropwise addition of the sulfate aqueous solution, the procedure for continuing the stirring in the reaction vessel was changed to 1 h, in the same procedure as in Example 16, A lithium transition metal composite oxide according to Example 23 was produced.
  • Example 24 In the preparation process of the coprecipitated carbonate precursor, after completion of the dropwise addition of the sulfate aqueous solution, the procedure for continuing the stirring in the reaction vessel was changed to 1 h, in the same procedure as in Example 17, A lithium transition metal composite oxide according to Example 24 was produced.
  • Example 25 In the preparation process of the coprecipitated carbonate precursor, after completion of the dropwise addition of the sulfate aqueous solution, the procedure for the stirring in the reaction vessel was further changed to 1 h, in the same procedure as in Example 18, A lithium transition metal composite oxide according to Example 25 was produced.
  • Example 26 In the preparation process of the coprecipitated carbonate precursor, after completion of the dropwise addition of the sulfate aqueous solution, except that the time for further stirring in the reaction vessel was changed to 1 h, the same procedure as in Example 19, A lithium transition metal composite oxide according to Example 26 was produced.
  • Example 27 In the preparation process of the coprecipitated carbonate precursor, after completion of the dropwise addition of the sulfate aqueous solution, the procedure for continuing the stirring in the reaction vessel was changed to 1 h, in the same procedure as in Example 20, A lithium transition metal composite oxide according to Example 27 was produced.
  • Example 28 In the preparation process of the coprecipitated carbonate precursor, after completion of the dropwise addition of the sulfate aqueous solution, except that the time for further stirring in the reaction vessel was changed to 1 h, the same procedure as in Example 21, A lithium transition metal composite oxide according to Example 28 was produced.
  • Example 29 In the preparation process of the coprecipitated carbonate precursor, the lithium transition metal composite oxidation according to Example 29 was performed in the same procedure as in Example 5 except that the dropping rate of the sulfate aqueous solution was 10 ml / min. A product was made.
  • Example 30 In the preparation process of the coprecipitated carbonate precursor, the same as Example 5 except that the molar ratio of Co: Ni: Mn contained in the sulfate aqueous solution was 4.00: 28.44: 67.56. In this manner, a lithium transition metal composite oxide according to Example 30 was produced.
  • Example 31 In the preparation process of the coprecipitated carbonate precursor, the same as Example 5 except that the molar ratio of Co: Ni: Mn contained in the sulfate aqueous solution was 21.00: 11.44: 67.56. In this manner, a lithium transition metal composite oxide according to Example 31 was produced.
  • Example 32 In the preparation process of the coprecipitated carbonate precursor, the same as Example 5 except that the molar ratio of Co: Ni: Mn contained in the sulfate aqueous solution was 12.50: 24.50: 63.00. In this manner, a lithium transition metal composite oxide according to Example 32 was produced.
  • Example 33 In the preparation process of the coprecipitated carbonate precursor, the same as Example 5 except that the molar ratio of Co: Ni: Mn contained in the sulfate aqueous solution was 12.50: 15.50: 72.00 In this manner, a lithium transition metal composite oxide according to Example 33 was produced.
  • Comparative Example 1 In the firing step, the lithium transition metal composite oxide according to Comparative Example 1 was prepared in the same procedure as in Example 1 except that the temperature was raised from room temperature to 700 ° C. over 10 hours and fired at 700 ° C. for 4 hours. Produced.
  • Comparative Example 2 In the firing step, the lithium transition metal composite oxide according to Comparative Example 2 was prepared in the same procedure as in Example 1 except that the temperature was raised from room temperature to 750 ° C. over 10 hours and fired at 750 ° C. for 4 hours. Produced.
  • Comparative Example 3 In the firing step, the lithium transition metal composite oxide according to Comparative Example 3 was prepared in the same procedure as in Example 1 except that the temperature was raised from room temperature to 950 ° C. over 10 hours and fired at 950 ° C. for 4 hours. Produced.
  • Comparative Example 4 In the firing step, the lithium transition metal composite oxide according to Comparative Example 4 was prepared in the same procedure as in Example 1 except that the temperature was raised from room temperature to 1000 ° C. over 10 hours and fired at 1000 ° C. for 4 hours. Produced.
  • Comparative Example 5 In the firing step, the lithium transition metal composite oxide according to Comparative Example 5 was prepared in the same procedure as in Example 20 except that the temperature was raised from room temperature to 900 ° C. over 10 hours and fired at 900 ° C. for 10 hours. Produced.
  • Comparative Example 6 As a mixed powder to be used for pellet molding, 1.047 g of lithium carbonate is added to 2.204 g of the coprecipitated carbonate precursor prepared in Example 1, and mixed well using a smoked automatic mortar, and Li: (Co, A lithium transition metal composite oxide according to Comparative Example 6 was produced in the same procedure as in Example 5 except that a mixed powder having a molar ratio of Ni, Mn) of 145: 100 was used.
  • Comparative Example 7 As a mixed powder to be used for pellet molding, 1.047 g of lithium carbonate is added to 2.204 g of the coprecipitated carbonate precursor prepared in Example 1, and mixed well using a smoked automatic mortar, and Li: (Co, A lithium transition metal composite oxide according to Comparative Example 7 was produced in the same procedure as in Example 10 except that a mixed powder having a molar ratio of Ni, Mn) of 145: 100 was used.
  • Comparative Example 8 In the preparation process of the coprecipitated carbonate precursor, the lithium transition metal composite oxidation according to Comparative Example 8 was performed in the same procedure as in Example 5 except that the dropping rate of the sulfate aqueous solution was 30 ml / min. A product was made.
  • Lithium carbonate (Li 2 CO 3 ), cobalt hydroxide (Co (OH) 2 ), nickel hydroxide (Ni (OH) 2 ), and manganese oxyhydroxide (MnOOH) are mixed with each of Li, Co, Ni, and Mn.
  • the elements were weighed so as to have a ratio of 130: 12.5: 19.94: 67.56, and each raw material was sufficiently mixed and pulverized using a mortar to obtain a raw material mixture. 3 g was taken out from the raw material mixture and calcined in air at 900 ° C. for 10 hours. In this way, a lithium transition metal composite oxide according to Comparative Example 9 was obtained.
  • Co: Ni: Mn 4.0: 28.44: 67.56, 21.00: 11.44: 67.56, 12.5: 24.5 : 63.0, 12.5: 15.5: 72.0, and the Li / Me ratio was confirmed to be the same as the numerical value in the “Li / Me ratio” column of Table 1.
  • the lithium transition metal composite oxides according to Examples 1 to 33 and Comparative Examples 1 to 9 were subjected to powder X-ray diffraction measurement using an X-ray diffractometer (manufactured by Rigaku, model name: MiniFlex II).
  • the radiation source was CuK ⁇ , and the acceleration voltage and current were 30 kV and 15 mA, respectively.
  • the half width for the diffraction peak was determined. Table 2 shows the half widths of the measured diffraction peaks.
  • the lithium transition metal composite oxides (active materials before electrochemical oxidation) according to Examples 1 to 33 and Comparative Examples 1 to 7 are all ⁇ -NaFeO as a result of the powder X-ray diffraction measurement. It was found to be a single phase having a type 2 crystal structure and belonging to the space group P3 1 12.
  • the lithium transition metal composite oxides according to Examples 1 to 33 and Comparative Examples 1 to 9 were subjected to particle size distribution measurement according to the following conditions and procedures.
  • Microtrac (model number: MT3000) manufactured by Nikkiso Co., Ltd. was used as the measuring device.
  • the measurement apparatus includes an optical bench, a sample supply unit, and a computer equipped with control software.
  • a wet cell having a laser light transmission window is installed on the optical bench.
  • the measurement principle is a method in which a wet cell in which a dispersion liquid in which a sample to be measured is dispersed in a dispersion solvent circulates is irradiated with laser light, and the scattered light distribution from the measurement sample is converted into a particle size distribution.
  • the dispersion is stored in a sample supply unit and circulated and supplied to a wet cell by a pump.
  • the sample supply unit is always subjected to ultrasonic vibration.
  • water was used as a dispersion solvent.
  • Microtrac DHS for Win98 (MT3000) was used for the measurement control software.
  • For the “substance information” to be set and input to the measuring apparatus 1.33 is set as the “refractive index” of the solvent, “TRANSPARENT” is selected as the “transparency”, and “non-spherical” is selected as the “spherical particle”. Was selected. Prior to sample measurement, perform “Set Zero” operation.
  • the “Set zero” operation is an operation to subtract the influence of disturbance elements other than the scattered light from the particles (glass, dirt on the glass wall, glass irregularities, etc.) on subsequent measurements.
  • a background operation is performed in a state where only certain water is added and only water as a dispersion solvent is circulating in the wet cell, and the background data is stored in the computer.
  • the Sample LD operation is an operation for optimizing the sample concentration in the dispersion that is circulated and supplied to the wet cell during measurement, and manually reaches the optimum amount of the sample to be measured in the sample supply unit according to the instructions of the measurement control software It is an operation to throw up.
  • the measurement operation is performed by pressing the “Measure” button.
  • the measurement operation is repeated twice, and the measurement result is output from the computer as the average value.
  • the measurement results are as a particle size distribution histogram and values of D10, D50 and D90 (D10, D50 and D90 are particle sizes at which the cumulative volume in the particle size distribution of the secondary particles is 10%, 50% and 90%, respectively) To be acquired.
  • the measured D50 value is shown in Table 2 as “D50 particle diameter ( ⁇ m)”.
  • non-aqueous electrolyte secondary battery (Preparation of non-aqueous electrolyte secondary battery) Using each of the lithium transition metal composite oxides of Examples 1 to 33 and Comparative Examples 1 to 9 as the positive electrode active material for a non-aqueous electrolyte secondary battery, a non-aqueous electrolyte secondary battery was produced by the following procedure, and the battery Characteristics were evaluated.
  • the positive electrode active material, acetylene black (AB), and polyvinylidene fluoride (PVdF) were mixed at a mass ratio of 85: 8: 7. This mixture was kneaded and dispersed by adding N-methylpyrrolidone as a dispersion medium to prepare a coating solution. In addition, about PVdF, it converted into solid mass by using the liquid by which solid content was melt
  • the coating solution was applied to an aluminum foil current collector having a thickness of 20 ⁇ m to produce a positive electrode plate.
  • lithium metal was used in order to observe the single behavior of the positive electrode. This lithium metal was adhered to a nickel foil current collector. However, preparation was performed such that the capacity of the nonaqueous electrolyte secondary battery was sufficiently positive electrode regulated.
  • the electrolytic solution a solution obtained by dissolving LiPF 6 in a mixed solvent having a volume ratio of EC / EMC / DMC of 6: 7: 7 so that its concentration becomes 1 mol / l was used.
  • a microporous membrane made of polypropylene whose electrolyte retention was improved by surface modification with polyacrylate, was used.
  • what adhered lithium metal foil to the nickel plate was used as a reference electrode.
  • a metal resin composite film made of polyethylene terephthalate (15 ⁇ m) / aluminum foil (50 ⁇ m) / metal-adhesive polypropylene film (50 ⁇ m) was used for the outer package.
  • the electrode was accommodated in this exterior body so that the open ends of the positive electrode terminal, the negative electrode terminal, and the reference electrode terminal were exposed to the outside.
  • the fusion allowance in which the inner surfaces of the metal resin composite film face each other was hermetically sealed except for the portion to be the injection hole.
  • the non-aqueous electrolyte secondary battery produced as described above was transferred to a thermostat set at 25 ° C., and an initial charge / discharge process of 2 cycles was performed.
  • the charging was constant current and constant voltage charging with a current of 0.1 CmA and a potential of 4.6 V.
  • the charge termination condition was the time when the current value attenuated to 0.02 CmA.
  • the discharge was a constant current discharge with a current of 0.1 CmA and a final voltage of 2.0 V. In all cycles, a 30 minute rest period was set after charging and after discharging.
  • discharge test About the completed nonaqueous electrolyte secondary battery, the high rate discharge test was done in the following procedure. First, constant current / constant voltage charging with a current of 0.1 CmA and a voltage of 4.3 V was performed. After a 30-minute pause, a constant current discharge with a current of 1 CmA and a final voltage of 2.0 V was performed, and the discharge capacity at this time was recorded as “discharge capacity (mAh / g)”.
  • a test was performed in which discharge was performed for 1 second at each rate discharge current 30 minutes after the discharge was stopped. Specifically, first, discharging was performed at a current of 0.1 CmA for 1 second, and after a pause of 2 minutes, supplementary charging was performed at a current of 0.1 CmA for 1 second. Further, after a rest of 2 minutes, the battery was discharged for 1 second at a current of 1 CmA, and after a rest of 2 minutes, supplementary charging was performed for 10 seconds at a current of 0.1 CmA. Further, after a rest of 2 minutes, the battery was discharged at a current of 2 CmA for 1 second, and after a rest of 2 minutes, a supplementary charge was performed at a current of 0.1 CmA for 20 seconds.
  • the battery after the low SOC output test was further subjected to constant current discharge with a current of 0.1 CmA and a final voltage of 2.0 V, and then with a constant current and constant voltage charge of a current of 0.1 CmA and a voltage of 5.0 V. It was.
  • the charge termination condition was the time when the current value attenuated to 0.02 CmA.
  • the battery was disassembled in a dry room and the positive electrode plate was taken out.
  • the taken-out positive electrode plate was not subjected to operations such as washing, but was stuck to the measurement sample holder while the composite material was adhered to the current collector, and an X-ray diffractometer using a CuK ⁇ radiation source (manufactured by Rigaku, model name) : X-ray diffraction measurement was performed by MiniFlex II).
  • the positive electrode active material charged to 5.0 V had the same crystal structure as the active material in the discharged state, that is, ⁇ -NaFeO 2 type crystal structure, It was confirmed whether or not it was a single phase belonging to the group R3-m. As a result, “ ⁇ ” indicates that a single phase of the space group R3-m could be assigned, and “ ⁇ ” indicates that a plurality of phases were confirmed. “Crystal structure (single phase)” in Table 2 Shown in the column.
  • X-ray diffraction when the half-value width of the diffraction peak at 1 ° ⁇ 1 ° is 0.26 ° to 0.39 ° and is electrochemically oxidized to a potential of 5.0 V (vs. Li / Li + ).
  • the discharge capacity at 1 CmA discharge is excellent. be able to.
  • the discharge capacity at low temperature is excellent. It turns out that it can be.
  • Examples 3 to 5 and 8 to 33 by using the lithium transition metal composite oxide according to Examples 3 to 5, 8 to 10, and 15 to 33 having D50 in the range of 8 ⁇ m or less, non-aqueous It was found that the output performance in the low SOC region of the electrolyte secondary battery can be made excellent.
  • the positive electrode and a negative electrode capable of releasing lithium ions in an amount necessary for sufficiently bringing the positive electrode into a state at the end of discharge. It is preferable to perform an operation of forming a cell between the two and discharging the positive electrode.
  • metallic lithium may be used as the negative electrode.
  • the cell may be a two-terminal cell, but it is preferable to control and monitor the positive electrode potential with respect to the reference electrode using a three-terminal cell provided with a reference electrode. It is preferable that the electrolytic solution used in the cell has the same composition as that of the nonaqueous electrolyte used in the nonaqueous electrolyte secondary battery as much as possible.
  • Examples of the operation of discharging the positive electrode using the cell include a method of performing continuous discharge or intermittent discharge with a current of 0.1 CmA or less and a discharge end potential of 2.0 V (vs. Li / Li + ). After performing the discharge operation, a sufficient rest time is provided to confirm that the open circuit potential is 3.0 V (vs. Li / Li + ) or less. When the open circuit potential after the discharge operation is greater than 3.0V (vs.Li/Li +) until the open circuit potential is equal to or less than 3.0V (vs.Li/Li +), smaller discharge current It is required to repeat the above operation using the value of.
  • the positive electrode that has undergone such an operation is removed from the cell after removing it from the cell. This is because when the electrolytic solution adheres, the lithium salt dissolved in the electrolytic solution affects the analysis result of the Li / Me value.
  • washing with a volatile solvent is exemplified.
  • the volatile solvent is preferably one that easily dissolves the lithium salt. Specific examples include dimethyl carbonate.
  • the volatile solvent it is desirable to use a solvent whose water content is reduced to a lithium battery grade. This is because when the amount of water is large, Li in the positive electrode active material is eluted, and the value of Li / Me may not be obtained accurately.
  • a positive electrode mixture containing a positive electrode active material is collected from the positive electrode.
  • the positive electrode mixture contains a conductive material and a binder.
  • a method for removing the binder from the positive electrode mixture include a method using a solvent capable of dissolving the binder.
  • the binder is polyvinylidene fluoride
  • the positive electrode mixture is immersed in a sufficient amount of N-methylpyrrolidone and refluxed at 150 ° C. for several hours, followed by filtration or the like.
  • the method include separation into a powder containing an active material and a solvent containing a binder.
  • the conductive material is estimated to be a carbonaceous material such as acetylene black
  • heat treatment is performed.
  • a method of oxidatively decomposing and removing the carbonaceous material is mentioned.
  • the conditions for the heat treatment in an atmosphere containing oxygen, it is required to be equal to or higher than the temperature at which the conductive material is thermally decomposed, but if the heat treatment temperature is too high, the physical properties of the positive electrode active material may change. It is desirable to set the temperature so as not to affect the physical properties of the positive electrode active material as much as possible. For example, in the positive electrode active material of the present invention, the temperature is set to 700 ° C. in air.
  • a positive electrode active material is collected from a non-aqueous electrolyte secondary battery using a general lithium transition metal composite oxide as a positive electrode active material through the above operation procedure, and the value of D50 is obtained.
  • the positive electrode active material which concerns on this invention is spherical, depending on the press conditions at the time of preparation of a positive electrode plate, some positive electrode active material particles may collapse. By observing the positive electrode plate taken out from the battery with an SEM, it is possible to grasp how much of the positive electrode active material has collapsed.
  • the data is corrected so that particles of 2 ⁇ m or less are excluded from the measurement result. In addition, it is recommended to determine the value of D50.
  • the inventor has inferred as follows about the effect that the half width and the particle size of the lithium transition metal composite oxide according to the present invention affect the discharge performance.
  • the lithium transition metal composite oxide according to the present invention is a kind of so-called “lithium-rich” active material, and lithium is not only in the Li layer (3b site) but also in the Me (transition metal) layer (3a site). Presumed to exist.
  • it is considered that lithium existing in the Me layer is less likely to be diffused in the solid phase as compared with lithium existing in the Li layer. Therefore, in order to improve the discharge performance of the battery using the lithium transition metal composite oxide according to the present invention, it is important that the layered structure is sufficiently developed in the crystallites constituting the primary particles.
  • the full width at half maximum does not become too large, and a certain firing temperature is required in the firing process of the lithium transition metal composite oxide.
  • the primary particles grow excessively, diffusion in the solid phase is hindered, resulting in a decrease in battery discharge performance. Therefore, it is necessary that the full width at half maximum does not become too small, and it is required that the firing temperature is not too high in the firing process of the lithium transition metal composite oxide. That is, in the lithium transition metal composite oxide according to the present invention, the crystallites constituting the primary particles are appropriately grown so that the diffusion of lithium in the solid phase is smooth, and the secondary particles It is thought that it is important that the particle size of the particles is below a certain level.
  • the active material for nonaqueous electrolyte secondary batteries of the present invention has excellent various discharge performances, it is effective for nonaqueous electrolyte secondary batteries such as power supplies for electric vehicles, power supplies for electronic devices, and power storage power supplies. Available.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

 放電容量が大きく、低SOC領域における出力性能が優れた非水電解質二次電池用活物質を提供することを課題とする。 α-NaFeO型結晶構造を有し、組成式Li1+αMe1-α(MeはMn、Ni及びCoを含む遷移金属元素、0<α<1)で表され、1.250≦(1+α)/(1-α)≦1.425であるリチウム遷移金属複合酸化物を含有する非水電解質二次電池用活物質であって、CuKα管球を用いたエックス線回折測定において、2θ=18.6°±1°の回折ピークの半値幅が0.20°~0.27°又は/及び、2θ=44.1°±1°の回折ピークの半値幅が0.26°~0.39°であり、電位5.0V(vs.Li/Li)まで電気化学的に酸化したときに、エックス線回折図上、六方晶(空間群R3-m)に帰属される単一相として観察されるものであることを特徴とする。

Description

非水電解質二次電池用活物質、その活物質の製造方法、非水電解質二次電池用電極及び非水電解質二次電池
 本発明は、非水電解質二次電池用活物質及びそれを用いた非水電解質二次電池に関する。
 従来、非水電解質二次電池には、正極活物質として主にLiCoOが用いられている。しかし、放電容量は120~130mAh/g程度であった。
 LiCoOを他の化合物と固溶体を形成させた材料が知られている。α-NaFeO型結晶構造を有し、LiCoO、LiNiO及びLiMnOの3つの成分の固溶体であるLi[Co1-2xNiMn]O(0<x≦1/2)」が、2001年に発表された。前記固溶体の一例である、LiNi1/2Mn1/2やLiCo1/3Ni1/3Mn1/3は、150~180mAh/gの放電容量を有しており、充放電サイクル性能の点でも優れる。
 上記のようないわゆる「LiMeO型」活物質に対し、遷移金属(Me)の比率に対するリチウム(Li)の組成比率Li/Meが1より大きく、例えばLi/Meが1.25~1.6であるいわゆる「リチウム過剰型」活物質が知られている。このような材料は、Li1+αMe1-α(α>0)と表記することができる。ここで、遷移金属(Me)の比率に対するリチウム(Li)の組成比率Li/Meをβとすると、β=(1+α)/(1-α)であるから、例えば、Li/Meが1.5のとき、α=0.2である。
 特許文献1には、このような活物質の一種であり、Li[Li1/3Mn2/3]O、LiNi1/2Mn1/2及びLiCoOの3つの成分の固溶体として表すことのできる活物質が記載されている。また、前記活物質を用いた電池の製造方法として、4.3V(vs.Li/Li)を超え4.8V以下(vs.Li/Li)の正極電位範囲に出現する、電位変化が比較的平坦な領域に少なくとも至る充電を行う製造工程を設けることにより、充電時の正極の最大到達電位が4.3V(vs.Li/Li)以下である充電方法が採用された場合であっても、177mAh/g以上の放電容量が得られる電池を製造できることが記載されている。
 また、「Li1+x1-x(Mはニッケル、マンガン、コバルト、鉄、銅、亜鉛、クロム、チタン、ジルコニウムから選ばれる少なくとも一種の遷移金属、0≦x≦0.15)で表される層状岩塩型リチウム・遷移金属複合酸化物であって、酸性根の含有量が総量で多くとも1500ppm、アルカリ金属の含有量が総量で多くとも2000ppmであり、六方晶に帰属されるX線回折の(003)及び(104)のピーク強度比(I(003)/I(104))が少なくとも1.4であることを特徴とするリチウム・遷移金属複合酸化物。」の発明が公知であり(特許文献2参照)、さらに、特許文献2には、上記のリチウム・遷移金属複合酸化物(「リチウム過剰型」正極活物質)を製造する際に、Co、Ni及びMnを含む遷移金属元素の化合物を共沈させて遷移金属炭酸塩の共沈前駆体を製造し、その共沈前駆体とリチウム化合物とを混合し、800~900℃で焼成する方法が記載され、上記の方法で製造した正極活物質を用いることにより、放電容量が大きく、レート特性の優れた非水電解質電池が得られることが示されている。
特開2010-086690号公報 特開2007-123255号公報
 上記のように、従来のいわゆる「リチウム過剰型」正極活物質は、放電容量は大きいものの、十分ではなく、より放電容量の大きい活物質が望まれている。また、従来のいわゆる「リチウム過剰型」正極活物質は、いわゆる「LiMeO」正極活物質と比較して、低温環境下、及び、放電中期から放電末期に至る領域、即ち、低SOC(State of Charge)領域において、出力性能に劣るという問題点があった。
 本発明の課題は、放電容量の大きい非水電解質二次電池用活物質、その活物質の製造方法、及び、それを用いた非水電解質二次電池を提供することにある。
 本発明の構成及び作用効果について、技術思想を交えて説明する。但し、作用機構については推定を含んでおり、その正否は、本発明を制限するものではない。なお、本発明は、その精神又は主要な特徴から逸脱することなく、他のいろいろな形で実施することができる。そのため、後述の実施の形態若しくは実験例は、あらゆる点で単なる例示に過ぎず、限定的に解釈してはならない。さらに、特許請求の範囲の均等範囲に属する変形や変更は、すべて本発明の範囲内のものである。
 本発明の第一は、α-NaFeO型結晶構造を有し、組成式Li1+αMe1-α(MeはMn、Ni及びCoを含む遷移金属元素、0<α<1)で表され、1.250≦(1+α)/(1-α)≦1.425であるリチウム遷移金属複合酸化物を含有する非水電解質二次電池用活物質であって、CuKα管球を用いたエックス線回折図上、2θ=18.6°±1°の回折ピークの半値幅が0.20°~0.27°又は/及び、2θ=44.1°±1°の回折ピークの半値幅が0.26°~0.39°であり、電位5.0V(vs.Li/Li)まで電気化学的に酸化したときに、エックス線回折図上、六方晶(空間群R3-m)に帰属される単一相として観察されるものであることを特徴とする非水電解質二次電池用活物質である。
 本発明の第二は、前記非水電解質二次電池用活物質は、CuKα管球を用いたエックス線回折図上、2θ=18.6°±1°の回折ピークの半値幅が0.208°~0.247°又は/及び、2θ=44.1°±1°の回折ピークの半値幅が0.266°~0.335°であることを特徴としている。
 本発明の第三は、本発明の第二において、前記非水電解質二次電池用活物質は、粒度分布測定における50%粒子径(D50)が8μm以下であることを特徴としている。
 本発明の第四は、本発明第一乃至第三のいずれかの非水電解質二次電池用活物質の製造方法であって、溶液中でCo、Ni及びMnを含む遷移金属元素Meの化合物を共沈させて遷移金属炭酸塩の共沈前駆体を得る工程、及び、前記共沈前駆体とリチウム化合物とを、前記リチウム遷移金属複合酸化物の遷移金属元素Meに対するLiのモル比Li/Meが1.25~1.425となるように混合し、800~900℃で焼成する工程を含むことを特徴とする非水電解質二次電池用活物質の製造方法である。
 また、本発明は、前記非水電解質二次電池用活物質を含有する非水電解質二次電池用電極である。
 また、本発明は、前記非水電解質二次電池用電極を備えた非水電解質二次電池である。
 本発明の第一によれば、放電容量が大きい非水電解質二次電池用活物質を提供できる。
 本発明の第二によれば、上記効果に加え、低温時の放電容量に優れた非水電解質二次電池用活物質を提供できる。
 本発明の第三によれば、上記効果に加え、低温時の出力性能に優れた非水電解質二次電池用活物質を提供できる。
 本発明の第四によれば、放電容量が大きい非水電解質二次電池用活物質の製造方法を提供できる。
 組成式Li1+αMe1-αにおいて(1+α)/(1-α)で表される遷移金属元素Meに対するLiのモル比Li/Meは、1.25~1.425とすることで、放電容量が大きい非水電解質二次電池を得ることができる。
 前記リチウム遷移金属複合酸化物を構成する遷移金属元素を構成するCo、Ni及びMn等の元素の比率は、求められる特性に応じて任意に選択することができる。
 放電容量が大きく、初期充放電効率が優れた非水電解質二次電池を得ることができるという点で、遷移金属元素Meに対するCoのモル比Co/Meは、0.02~0.23が好ましく、0.04~0.21がより好ましく、0.06~0.17が最も好ましい。
 また、放電容量が大きく、初期充放電効率が優れた非水電解質二次電池を得ることができるという点で、遷移金属元素Meに対するMnのモル比Mn/Meは0.63~0.72が好ましく、0.65~0.71がより好ましい。
 本発明に係るリチウム遷移金属複合酸化物は、本質的に、金属元素としてLi、Co、Ni及びMnを含む複合酸化物であるが、本発明の効果を損なわない範囲で、少量のNa,Ca等のアルカリ金属やアルカリ土類金属、Fe、Cu等の3d遷移金属に代表されるような遷移金属、Zn、In等の金属を含有することを排除するものではない。
 本発明に係るリチウム遷移金属複合酸化物は、α-NaFeO構造を有している。合成後(充放電を行う前)の上記リチウム遷移金属複合酸化物は空間群P312に帰属され、CuKα管球を用いたエックス線回折図上、2θ=21°付近に超格子ピーク(Li[Li1/3Mn2/3]O型の単斜晶に見られるピーク)が確認される。ところが、一度でも充電を行い、結晶中のLiが脱離すると結晶の対称性が変化することにより、上記超格子ピークが消滅して、上記リチウム遷移金属複合酸化物は空間群R3-mに帰属されるようになる。ここで、P312は、R3-mにおける3a、3b、6cサイトの原子位置を細分化した結晶構造モデルであり、R3-mにおける原子配置に秩序性が認められるときに該P312モデルが採用される。なお、「R3-m」は本来「R3m」の「3」の上にバー「-」を施して表記すべきものである。
 本発明に係るリチウム遷移金属複合酸化物は、六方晶の空間群P312あるいはR3-mのいずれかに帰属され、CuKα管球を用いたエックス線回折図上、2θ=18.6°±1°の回折ピークの半値幅が0.20°~0.27°又は/及び、2θ=44.1°±1°の回折ピークの半値幅が0.26°~0.39°であることを特徴としている。なお、2θ=18.6°±1°の回折ピークは、空間群P312及びR3-mではミラー指数hklにおける(003)面に、2θ=44.1°±1°の回折ピークは、空間群P312では(114)面、空間群R3-mでは(104)面にそれぞれ指数付けされる。
 さらに、本発明に係るリチウム遷移金属複合酸化物は、電位5.0V(vs.Li/Li)まで電気化学的に酸化したときに、エックス線回折図上、六方晶(空間群R3-m)に帰属される単一相として観察されるものであることを特徴としている。具体的な確認方法は、後述する実施例に記載する通りである。
 ここで、「エックス線回折図上六方晶構造の単一相として観察される」との要件を満たすには、エックス線回折測定によって得られた回折パターンのうち、最大強度を示すピークを回折図のフルスケール内に収まるように描画したとき、目視上、六方晶の(003)面に帰属されるピークにスプリットが観察されないことをもって足る。
 又、本発明に係るリチウム遷移金属複合酸化物は、粒度分布測定における50%粒子径(D50)が8μm以下であることを特徴としている。
 次に、本発明の非水電解質二次電池用活物質を製造する方法について説明する。
 本発明の非水電解質二次電池用活物質は、基本的に、活物質を構成する金属元素(Li,Mn,Co,Ni)を、目的とする活物質(リチウム遷移金属複合酸化物)の組成通りに含有するように原料を調整し、最終的にこの原料を焼成すること、によって得ることができる。但し、Li原料の量については、焼成中にLi原料の一部が消失することを見込んで、1~5%程度過剰に仕込むことが好ましい。
 目的とする組成を有するリチウム遷移金属複合酸化物を作製するための方法として、Li,Co,Ni,Mnのそれぞれの塩を混合・焼成するいわゆる「固相法」や、あらかじめCo,Ni,Mnを一粒子中に存在させた共沈前駆体を作製しておき、これにLi塩を混合・焼成する「共沈法」が知られている。「固相法」による合成過程では、特にMnはCo,Niに対して均一に固溶しにくい。このため、各元素が一粒子中に均一に分布した試料を得ることは困難である。本発明に係る非水電解質二次電池用活物質を製造するにあたり、前記「固相法」と前記「共沈法」のいずれを選択するかについては限定されるものではない。しかしながら、「固相法」を選択した場合には、本発明に係る正極活物質を製造することは極めて困難である。「共沈法」を選択する方が原子レベルで均一相を得ることが容易である点で好ましい。
 共沈前駆体を作製するにあたって、Co,Ni,MnのうちMnは酸化されやすく、Co,Ni,Mnが2価の状態で均一に分布した共沈前駆体を作製することが容易ではないため、Co,Ni,Mnの原子レベルでの均一な混合は不十分なものとなりやすい。特に本発明の組成範囲においては、Mn比率がCo,Ni比率に比べて高いので、水溶液中の溶存酸素を除去することが重要である。溶存酸素を除去する方法としては、酸素を含まないガスをバブリングする方法が挙げられる。酸素を含まないガスとしては、限定されるものではないが、窒素ガス、アルゴンガス、二酸化炭素(CO)等を用いることができる。なかでも、後述する実施例のように、共沈炭酸塩前駆体を作製する場合には、酸素を含まないガスとして二酸化炭素を採用すると、炭酸塩がより生成しやすい環境が与えられるため、好ましい。
 溶液中でCo、Ni及びMnを含有する化合物を共沈させて前駆体を製造する工程におけるpHは限定されるものではないが、前記共沈前駆体を共沈炭酸塩前駆体として作製しようとする場合には、7.5~11とすることができる。タップ密度を大きくするためには、pHを制御することが好ましい。pHを9.4以下とすることにより、タップ密度を1.25g/cc以上とすることができ、高率放電特性を向上させることができる。さらに、pHを8.5未満とすることにより、粒子成長速度を促進できるので、原料水溶液滴下終了後の攪拌継続時間を短縮できる。
 前記共沈前駆体は、MnとNi及びCoとが均一に分布した化合物であることが好ましい。ただし前駆体は炭酸塩に限定されるものではなく、他にも水酸化物、クエン酸塩などの元素が均一に分布した難溶性塩であれば水酸化物と同様に使用することができる。また、錯化剤を用いた晶析反応等を用いることによって、より嵩密度の大きな前駆体を作製することもできる。その際、Li源と混合・焼成することでより高密度の活物質を得ることができるので電極面積あたりのエネルギー密度を向上させることができる。
 前記共沈前駆体の作製に用いる原料としては、アルカリ水溶液と沈殿反応を形成するものであればどのような形態のものでも使用することができるが、好ましくは溶解度の高い金属塩を用いるとよい。
 前記共沈前駆体の原料は、Mn化合物としては酸化マンガン、炭酸マンガン、硫酸マンガン、硝酸マンガン、酢酸マンガン等を、Ni化合物としては、水酸化ニッケル、炭酸ニッケル、硫酸ニッケル、硝酸ニッケル、酢酸ニッケル等を、Co化合物としては、硫酸コバルト、硝酸コバルト、酢酸コバルト等を一例として挙げることができる。
 共沈法において、アルカリ性を保った反応槽に前記共沈前駆体の原料水溶液を滴下供給して共沈前駆体を得るが、ここで、前記原料水溶液の滴下速度は、生成する共沈前駆体の1粒子内における元素分布の均一性に大きく影響を与える。特にMnは、CoやNiと均一な元素分布を形成しにくいので注意が必要である。好ましい滴下スピードについては、反応槽の大きさ、攪拌条件、pH、反応温度等にも影響されるが、10ml/min以下が好ましく、5ml/min以下とすることがより好ましい。後述する比較例に示されるように、30ml/minという速い速度では、得られる共沈前駆体のCo、Ni、Mnの元素分布が不均一となるために、合成後のリチウム遷移金属複合酸化物の結晶構造が不安定になる場合がある。
 また、反応槽内に錯化剤が存在し、かつ一定の対流条件を適用した場合、前記原料水溶液の滴下終了後、さらに攪拌を続けることにより、粒子の自転および攪拌槽内における公転が促進され、この過程で、粒子同士が衝突しつつ、粒子が段階的に同心円球状に成長する。即ち、共沈前駆体は、反応槽内に原料水溶液が滴下された際の金属錯体形成反応、及び、前記金属錯体が反応槽内の滞留中に生じる沈殿形成反応という2段階での反応を経て形成される。従って、前記原料水溶液の滴下終了後、さらに攪拌を続ける時間を適切に選択することにより、目的とする粒子径を備えた共沈前駆体を得ることができる。
 原料水溶液滴下終了後の好ましい攪拌継続時間については、反応槽の大きさ、攪拌条件、pH、反応温度等にも影響されるが、粒子を均一な球状粒子として成長させるために0.5h以上が好ましく、1h以上がより好ましい。また、粒子径が大きくなりすぎることで電池の低SOC領域における出力性能が充分でないものとなる虞を低減させるため、15h以下が好ましく、10h以下がより好ましく、5h以下が最も好ましい。
 又、リチウム遷移金属複合酸化物の二次粒子のD50を8μm以下とするための好ましい攪拌継続時間は、制御するpHによって異なる。例えばpHを8.3~9.0に制御した場合には、攪拌継続時間は4~5hが好ましく、pHを7.6~8.2に制御した場合には、攪拌継続時間は1~3hが好ましい。
 本発明における非水電解質二次電池用活物質は前記共沈前駆体とLi化合物とを混合した後、熱処理することで好適に作製することができる。Li化合物としては、水酸化リチウム、炭酸リチウム、硝酸リチウム、酢酸リチウム等を用いることで好適に製造することができる。
 焼成温度は、活物質の可逆容量に影響を与える。
 焼成温度が高すぎると、得られた活物質が酸素放出反応を伴って分相すると共に、主相の六方晶に加えて単斜晶のLi[Li1/3Mn2/3]O型に規定される相が、固溶相としてではなく、分相として観察される傾向がある。このような分相が多く含まれすぎると、活物質の可逆容量が大きく減少するので好ましくない。このような材料では、CuKα管球を用いたエックス線回折図上2θ=35°付近及び45°付近に不純物ピークが観察される。従って、焼成温度は、活物質の酸素放出反応の影響する温度未満とすることが好ましい。活物質の酸素放出温度は、本発明に係る組成範囲においては、概ね1000℃以上であるが、活物質の組成によって酸素放出温度に若干の差があるので、あらかじめ活物質の酸素放出温度を確認しておくことが好ましい。特に試料に含まれるCo量が多いほど前駆体の酸素放出温度は低温側にシフトすることが確認されているので注意が必要である。活物質の酸素放出温度を確認する方法としては、焼成反応過程をシミュレートするために、共沈前駆体とリチウム化合物を混合したものを熱重量分析(TG-DTA測定)に供してもよいが、この方法では測定機器の試料室に用いている白金が揮発したLi成分により腐食されて機器を痛めるおそれがあるので、あらかじめ500℃程度の焼成温度を採用してある程度結晶化を進行させた組成物を熱重量分析に供するのが良い。
 また、焼成温度が高すぎると、上記エックス線回折図上の不純物ピークが観察されない場合であっても、1次粒子がミクロンオーダー程度まで成長することがある。このような活物質は、結晶子は十分成長しているものの、リチウムイオンの固相内拡散が不十分となり、良好な電極特性が得られない。
 一方、焼成温度が低すぎると、結晶化が十分に進まず、電極特性が低下する傾向がある。本発明においては、前駆体が共沈炭酸塩である場合、焼成温度は800℃以上とすることが好ましい。特に、前駆体が共沈炭酸塩である場合の最適な焼成温度は、前駆体に含まれるCo量が多いほど、より低い温度となる傾向がある。このように1次粒子を構成する結晶子を十分に結晶化させることにより、結晶粒界の抵抗を軽減し、円滑なリチウムイオン輸送を促すことができる。
 また、発明者らは、本発明活物質の回折ピークの半値幅を詳細に解析することで800℃までの温度で合成した試料においては格子内にひずみが残存しており、それ以上の温度で合成することでほとんどひずみを除去することができることを確認した。また、結晶子のサイズは合成温度が上昇するに比例して大きくなるものであった。よって、本発明活物質の組成においても、系内に格子のひずみがほとんどなく、かつ結晶子サイズが十分成長した粒子を志向することで良好な放電容量を得られるものであった。具体的には、格子定数に及ぼすひずみ量が2%以下、かつ結晶子サイズが50nm以上に成長しているような合成温度(焼成温度)及びLi/Me比組成を採用することが好ましいことがわかった。これらを電極として成型して充放電をおこなうことで膨張収縮による変化も見られるが、充放電過程においても結晶子サイズは30nm以上を保っていることが得られる効果として好ましい。
 上記のように、好ましい焼成温度は、活物質の酸素放出温度により異なるから、一概に焼成温度の好ましい範囲を設定することは難しいが、組成比率Li/Meが1.25~1.425である場合に放電容量を充分なものとするために、800~900℃付近が好ましく、850~900℃とすることがより好ましい。
 焼成時間については、長すぎると、得られた活物質は、CuKα管球を用いたエックス線回折図上、2θ=18.6°±1°の回折ピークの半値幅が0.208°より小さくなり、2θ=44.1°±1°の回折ピークの半値幅が0.266°より小さくなるので、例えば、900℃の場合には、10hより短いことが好ましい。
 焼成工程を経て得られるリチウム遷移金属複合酸化物の粒子形状及び粒子径は、焼成前の前駆体の粒子形状及び粒子径がほぼ維持されるが、常温から焼成温度までの昇温速度は、リチウム遷移金属複合酸化物の結晶粒子の成長程度に影響を与える。よって、昇温速度は、200℃/h以下が好ましく、100℃/h以下がより好ましい。
 本発明に係る非水電解質二次電池に用いる非水電解質は、限定されるものではなく、一般にリチウム電池等への使用が提案されているものが使用可能である。非水電解質に用いる非水溶媒としては、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、クロロエチレンカーボネート、ビニレンカーボネート等の環状炭酸エステル類;γ-ブチロラクトン、γ-バレロラクトン等の環状エステル類;ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート等の鎖状カーボネート類;ギ酸メチル、酢酸メチル、酪酸メチル等の鎖状エステル類;テトラヒドロフランまたはその誘導体;1,3-ジオキサン、1,4-ジオキサン、1,2-ジメトキシエタン、1,4-ジブトキシエタン、メチルジグライム等のエーテル類;アセトニトリル、ベンゾニトリル等のニトリル類;ジオキソランまたはその誘導体;エチレンスルフィド、スルホラン、スルトンまたはその誘導体等の単独またはそれら2種以上の混合物等を挙げることができるが、これらに限定されるものではない。
 非水電解質に用いる電解質塩としては、例えば、LiClO,LiBF,LiAsF,LiPF,LiSCN,LiBr,LiI,LiSO,Li10Cl10,NaClO,NaI,NaSCN,NaBr,KClO,KSCN等のリチウム(Li)、ナトリウム(Na)またはカリウム(K)の1種を含む無機イオン塩、LiCFSO,LiN(CFSO,LiN(CSO,LiN(CFSO)(CSO),LiC(CFSO,LiC(CSO,(CHNBF,(CHNBr,(CNClO,(CNI,(CNBr,(n-CNClO,(n-CNI,(CN-maleate,(CN-benzoate,(CN-phtalate、ステアリルスルホン酸リチウム、オクチルスルホン酸リチウム、ドデシルベンゼンスルホン酸リチウム等の有機イオン塩等が挙げられ、これらのイオン性化合物を単独、あるいは2種類以上混合して用いることが可能である。
 さらに、LiPF又はLiBFと、LiN(CSOのようなパーフルオロアルキル基を有するリチウム塩とを混合して用いることにより、さらに電解質の粘度を下げることができるので、低温特性をさらに高めることができ、また、自己放電を抑制することができ、より望ましい。
 また、非水電解質として常温溶融塩やイオン液体を用いてもよい。
 非水電解質における電解質塩の濃度としては、高い電池特性を有する非水電解質電池を確実に得るために、0.1mol/l~5mol/lが好ましく、さらに好ましくは、0.5mol/l~2.5mol/lである。
 負極材料としては、限定されるものではなく、リチウムイオンを析出あるいは吸蔵することのできる形態のものであればどれを選択してもよい。例えば、Li[Li1/3Ti5/3]Oに代表されるスピネル型結晶構造を有するチタン酸リチウム等のチタン系材料、SiやSb,Sn系などの合金系材料リチウム金属、リチウム合金(リチウム-シリコン、リチウム-アルミニウム,リチウム-鉛,リチウム-スズ,リチウム-アルミニウム-スズ,リチウム-ガリウム,及びウッド合金等のリチウム金属含有合金)、リチウム複合酸化物(リチウム-チタン)、酸化珪素の他、リチウムを吸蔵・放出可能な合金、炭素材料(例えばグラファイト、ハードカーボン、低温焼成炭素、非晶質カーボン等)等が挙げられる。
 正極活物質の粉体および負極材料の粉体は、平均粒子サイズ100μm以下であることが望ましい。特に、正極活物質の粉体は、非水電解質電池の高出力特性を向上する目的で10μm以下であることが望ましい。粉体を所定の形状で得るためには粉砕機や分級機が用いられる。例えば乳鉢、ボールミル、サンドミル、振動ボールミル、遊星ボールミル、ジェットミル、カウンタージェトミル、旋回気流型ジェットミルや篩等が用いられる。粉砕時には水、あるいはヘキサン等の有機溶剤を共存させた湿式粉砕を用いることもできる。分級方法としては、特に限定はなく、篩や風力分級機などが、乾式、湿式ともに必要に応じて用いられる。
 以上、正極及び負極の主要構成成分である正極活物質及び負極材料について詳述したが、前記正極及び負極には、前記主要構成成分の他に、導電剤、結着剤、増粘剤、フィラー等が、他の構成成分として含有されてもよい。
 導電剤としては、電池性能に悪影響を及ぼさない電子伝導性材料であれば限定されないが、通常、天然黒鉛(鱗状黒鉛,鱗片状黒鉛,土状黒鉛等)、人造黒鉛、カーボンブラック、アセチレンブラック、ケッチェンブラック、カーボンウイスカー、炭素繊維、金属(銅,ニッケル,アルミニウム,銀,金等)粉、金属繊維、導電性セラミックス材料等の導電性材料を1種またはそれらの混合物として含ませることができる。
 これらの中で、導電剤としては、電子伝導性及び塗工性の観点よりアセチレンブラックが望ましい。導電剤の添加量は、正極または負極の総重量に対して0.1重量%~50重量%が好ましく、特に0.5重量%~30重量%が好ましい。特にアセチレンブラックを0.1~0.5μmの超微粒子に粉砕して用いると必要炭素量を削減できるため望ましい。これらの混合方法は、物理的な混合であり、その理想とするところは均一混合である。そのため、V型混合機、S型混合機、擂かい機、ボールミル、遊星ボールミルといったような粉体混合機を乾式、あるいは湿式で混合することが可能である。
 前記結着剤としては、通常、ポリテトラフルオロエチレン(PTFE),ポリフッ化ビニリデン(PVDF),ポリエチレン,ポリプロピレン等の熱可塑性樹脂、エチレン-プロピレン-ジエンターポリマー(EPDM),スルホン化EPDM,スチレンブタジエンゴム(SBR)、フッ素ゴム等のゴム弾性を有するポリマーを1種または2種以上の混合物として用いることができる。結着剤の添加量は、正極または負極の総重量に対して1~50重量%が好ましく、特に2~30重量%が好ましい。
 フィラーとしては、電池性能に悪影響を及ぼさない材料であれば何でも良い。通常、ポリプロピレン,ポリエチレン等のオレフィン系ポリマー、無定形シリカ、アルミナ、ゼオライト、ガラス、炭素等が用いられる。フィラーの添加量は、正極または負極の総重量に対して添加量は30重量%以下が好ましい。
 正極及び負極は、前記主要構成成分(正極においては正極活物質、負極においては負極材料)、およびその他の材料を混練して合剤とし、N-メチルピロリドン,トルエン等の有機溶媒又は水に混合させた後、得られた混合液を下記に詳述する集電体の上に塗布し、または圧着して50℃~250℃程度の温度で、2時間程度加熱処理することにより好適に作製される。前記塗布方法については、例えば、アプリケーターロールなどのローラーコーティング、スクリーンコーティング、ドクターブレード方式、スピンコーティング、バーコータ等の手段を用いて任意の厚さ及び任意の形状に塗布することが望ましいが、これらに限定されるものではない。
 セパレータとしては、優れた高率放電性能を示す多孔膜や不織布等を、単独あるいは併用することが好ましい。非水電解質電池用セパレータを構成する材料としては、例えばポリエチレン,ポリプロピレン等に代表されるポリオレフィン系樹脂、ポリエチレンテレフタレート,ポリブチレンテレフタレート等に代表されるポリエステル系樹脂、ポリフッ化ビニリデン、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体、フッ化ビニリデン-パーフルオロビニルエーテル共重合体、フッ化ビニリデン-テトラフルオロエチレン共重合体、フッ化ビニリデン-トリフルオロエチレン共重合体、フッ化ビニリデン-フルオロエチレン共重合体、フッ化ビニリデン-ヘキサフルオロアセトン共重合体、フッ化ビニリデン-エチレン共重合体、フッ化ビニリデン-プロピレン共重合体、フッ化ビニリデン-トリフルオロプロピレン共重合体、フッ化ビニリデン-テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体、フッ化ビニリデン-エチレン-テトラフルオロエチレン共重合体等を挙げることができる。
 セパレータの空孔率は強度の観点から98体積%以下が好ましい。また、充放電特性の観点から空孔率は20体積%以上が好ましい。
 また、セパレータは、例えばアクリロニトリル、エチレンオキシド、プロピレンオキシド、メチルメタアクリレート、ビニルアセテート、ビニルピロリドン、ポリフッ化ビニリデン等のポリマーと電解質とで構成されるポリマーゲルを用いてもよい。非水電解質を上記のようにゲル状態で用いると、漏液を防止する効果がある点で好ましい。
 さらに、セパレータは、上述したような多孔膜や不織布等とポリマーゲルを併用して用いると、電解質の保液性が向上するため望ましい。即ち、ポリエチレン微孔膜の表面及び微孔壁面に厚さ数μm以下の親溶媒性ポリマーを被覆したフィルムを形成し、前記フィルムの微孔内に電解質を保持させることで、前記親溶媒性ポリマーがゲル化する。
 前記親溶媒性ポリマーとしては、ポリフッ化ビニリデンの他、エチレンオキシド基やエステル基等を有するアクリレートモノマー、エポキシモノマー、イソシアナート基を有するモノマー等が架橋したポリマー等が挙げられる。該モノマーは、ラジカル開始剤を併用して加熱や紫外線(UV)を用いたり、電子線(EB)等の活性光線等を用いて架橋反応を行わせることが可能である。
 非水電解質二次電池の構成については特に限定されるものではなく、正極、負極及びロール状のセパレータを有する円筒型電池、角型電池、扁平型電池等が一例として挙げられる。
 従来の正極活物質も、本発明の活物質も、正極電位が4.5V(vs.Li/Li)付近に至って充放電が可能である。しかしながら、使用する非水電解質の種類によっては、充電時の正極電位が高すぎると、非水電解質が酸化分解され電池性能の低下を引き起こす虞がある。したがって、使用時において、充電時の正極の最大到達電位が4.3V(vs.Li/Li)以下となるような充電方法を採用しても、充分な放電容量が得られる非水電解質二次電池が求められる場合がある。本発明の活物質を用いると、一度、4.5V(vs.Li/Li)付近の正極電位範囲に充電電気量に対して出現する電位変化が比較的平坦な領域以上まで充電を行った後に、使用時において、充電時の正極の最大到達電位が4.5V(vs.Li/Li)より低くなるような、例えば、4.4V(vs.Li/Li)以下や4.3V(vs.Li/Li)以下となるような充電方法を採用しても、約200mAh/g(0.1CmA)以上という従来の正極活物質の容量を超える放電電気量を取り出すことが可能である。
 本発明に係る正極活物質が、高い放電容量を備えたものとするためには、リチウム遷移金属複合酸化物を構成する遷移金属元素が層状岩塩型結晶構造の遷移金属サイト以外の部分に存在する割合が小さいものであることが好ましい。これは、焼成工程に供する前駆体において、Co,Ni,Mnといった遷移金属元素が十分に均一に分布していること、及び、活物質試料の結晶化を促すための適切な焼成工程の条件を選択することによって達成できる。焼成工程に供する前駆体中の遷移金属の分布が均一でない場合、十分な放電容量が得られないものとなる。この理由については必ずしも明らかではないが、焼成工程に供する前駆体中の遷移金属の分布が均一でない場合、得られるリチウム遷移金属複合酸化物は、層状岩塩型結晶構造の遷移金属サイト以外の部分、即ちリチウムサイトに遷移金属元素の一部が存在するものとなる、いわゆるカチオンミキシングが起こることに由来するものと本発明者は推察している。同様の推察は焼成工程における結晶化過程においても適用でき、活物質試料の結晶化が不十分であると層状岩塩型結晶構造におけるカチオンミキシングが起こりやすくなる。前記遷移金属元素の分布の均一性が高いものは、CuKα管球を用いたエックス線回折図上、空間群P312に帰属され、ミラー指数hklにおける(003)面と(114)面の回折ピークの強度比が大きいものとなる傾向がある。本発明において、(003)面と(114)面の回折ピークの強度比は、I(003)/I(114)>1であることが好ましい。また、充放電を行った後の放電末期状態においては、エックス線回折図上、空間群R3-mに帰属され、ミラー指数hklにおける(003)面と(104)面の回折ピークの強度比が、I(003)/I(104)>1であることが好ましい。前駆体の合成条件や合成手順が不適切である場合、前記ピーク強度比はより小さい値となり、しばしば1未満の値となる。
 本願明細書に記載した合成条件及び合成手順を採用することにより、上記のような高性能の正極活物質を得ることができる。とりわけ、充電上限電位を4.5V(vs.Li/Li)より低く設定した場合、例えば4.4V(vs.Li/Li)や4.3V(vs.Li/Li)といった充電上限電位を設定した場合でも高い放電容量を得ることができる非水電解質二次電池用正極活物質とすることができる。
 (実施例1)
 硫酸コバルト7水和物14.08g、硫酸ニッケル6水和物21.00g及び硫酸マンガン5水和物65.27gを秤量し、これらの全量をイオン交換水200mlに溶解させ、Co:Ni:Mnのモル比が12.50:19.94:67.56となる2.0Mの硫酸塩水溶液を作製した。一方、2Lの反応槽に750mlのイオン交換水を注ぎ、COガスを30minバブリングさせることにより、イオン交換水中にCOを溶解させた。反応槽の温度を50℃(±2℃)に設定し、攪拌モーターを備えたパドル翼を用いて反応槽内を700rpmの回転速度で攪拌しながら、前記硫酸塩水溶液を3ml/minの速度で滴下した。ここで、滴下の開始から終了までの間、2.0Mの炭酸ナトリウム及び0.4Mのアンモニアを含有する水溶液を適宜滴下することにより、反応槽中のpHが常に7.9(±0.05)を保つように制御した。滴下終了後、反応槽内の攪拌をさらに3h継続した。攪拌の停止後、12h以上静置した。
 次に、吸引ろ過装置を用いて、反応槽内に生成した共沈炭酸塩の粒子を分離し、さらにイオン交換水を用いて粒子に付着しているナトリウムイオンを洗浄除去し、電気炉を用いて、空気雰囲気中、常圧下、100℃にて乾燥させた。その後、粒径を揃えるために、瑪瑙製自動乳鉢で数分間粉砕した。このようにして、共沈炭酸塩前駆体を作製した。
 前記共沈炭酸塩前駆体2.278gに、炭酸リチウム0.970gを加え、瑪瑙製自動乳鉢を用いてよく混合し、Li:(Co,Ni,Mn)のモル比が130:100である混合粉体を調製した。ペレット成型機を用いて、6MPaの圧力で成型し、直径25mmのペレットとした。ペレット成型に供した混合粉体の量は、想定する最終生成物の質量が2gとなるように換算して決定した。前記ペレット1個を全長約100mmのアルミナ製ボートに載置し、箱型電気炉(型番:AMF20)に設置し、空気雰囲気中、常圧下、常温から800℃まで10時間かけて昇温し、800℃で4h焼成した。前記箱型電気炉の内部寸法は、縦10cm、幅20cm、奥行き30cmであり、幅方向20cm間隔に電熱線が入っている。焼成後、ヒーターのスイッチを切り、アルミナ製ボートを炉内に置いたまま自然放冷した。この結果、炉の温度は5時間後には約200℃程度にまで低下するが、その後の降温速度はやや緩やかである。一昼夜経過後、炉の温度が100℃以下となっていることを確認してから、ペレットを取り出し、粒径を揃えるために、瑪瑙製自動乳鉢で数分間粉砕した。このようにして、実施例1に係るリチウム遷移金属複合酸化物を作製した。
 (実施例2)
 焼成工程において、常温から825℃まで10時間かけて昇温し、825℃で4h焼成したことを除いては、実施例1と同様の手順で、実施例2に係るリチウム遷移金属複合酸化物を作製した。
 (実施例3)
 焼成工程において、常温から850℃まで10時間かけて昇温し、850℃で4h焼成したことを除いては、実施例1と同様の手順で、実施例3に係るリチウム遷移金属複合酸化物を作製した。
 (実施例4)
 焼成工程において、常温から875℃まで10時間かけて昇温し、875℃で4h焼成したことを除いては、実施例1と同様の手順で、実施例4に係るリチウム遷移金属複合酸化物を作製した。
 (実施例5)
 焼成工程において、常温から900℃まで10時間かけて昇温し、900℃で4h焼成したことを除いては、実施例1と同様の手順で、実施例5に係るリチウム遷移金属複合酸化物を作製した。
 (実施例6)
 共沈炭酸塩前駆体の作製工程において、前記硫酸塩水溶液の滴下終了後、反応槽内の攪拌をさらに継続する時間を1hに変更したことを除いては、実施例1と同様の手順で、実施例6に係るリチウム遷移金属複合酸化物を作製した。
 (実施例7)
 共沈炭酸塩前駆体の作製工程において、前記硫酸塩水溶液の滴下終了後、反応槽内の攪拌をさらに継続する時間を1hに変更したことを除いては、実施例2と同様の手順で、実施例7に係るリチウム遷移金属複合酸化物を作製した。
 (実施例8)
 共沈炭酸塩前駆体の作製工程において、前記硫酸塩水溶液の滴下終了後、反応槽内の攪拌をさらに継続する時間を1hに変更したことを除いては、実施例3と同様の手順で、実施例8に係るリチウム遷移金属複合酸化物を作製した。
 (実施例9)
 共沈炭酸塩前駆体の作製工程において、前記硫酸塩水溶液の滴下終了後、反応槽内の攪拌をさらに継続する時間を1hに変更したことを除いては、実施例4と同様の手順で、実施例9に係るリチウム遷移金属複合酸化物を作製した。
 (実施例10)
 共沈炭酸塩前駆体の作製工程において、前記硫酸塩水溶液の滴下終了後、反応槽内の攪拌をさらに継続する時間を1hに変更したことを除いては、実施例5と同様の手順で、実施例10に係るリチウム遷移金属複合酸化物を作製した。
 (実施例11)
 共沈炭酸塩前駆体の作製工程において、前記硫酸塩水溶液の滴下終了後、反応槽内の攪拌をさらに継続する時間を5hに変更したことを除いては、実施例5と同様の手順で、実施例11に係るリチウム遷移金属複合酸化物を作製した。
 (実施例12)
 共沈炭酸塩前駆体の作製工程において、前記硫酸塩水溶液の滴下終了後、反応槽内の攪拌をさらに継続する時間を10hに変更したことを除いては、実施例5と同様の手順で、実施例12に係るリチウム遷移金属複合酸化物を作製した。
 (実施例13)
 共沈炭酸塩前駆体の作製工程において、前記硫酸塩水溶液の滴下終了後、反応槽内の攪拌をさらに継続する時間を15hに変更したことを除いては、実施例5と同様の手順で、実施例13に係るリチウム遷移金属複合酸化物を作製した。
 (実施例14)
 共沈炭酸塩前駆体の作製工程において、前記硫酸塩水溶液の滴下終了後、反応槽内の攪拌をさらに継続する時間を20hに変更したことを除いては、実施例5と同様の手順で、実施例14に係るリチウム遷移金属複合酸化物を作製した。
 (実施例15)
 ペレット成型に供する混合粉体として、実施例1で作製した共沈炭酸塩前駆体2.304gに、炭酸リチウム0.943gを加え、瑪瑙製自動乳鉢を用いてよく混合し、Li:(Co,Ni,Mn)のモル比が125:100である混合粉体を用いたことを除いては、実施例5と同様の手順で、実施例15に係るリチウム遷移金属複合酸化物を作製した。
 (実施例16)
 ペレット成型に供する混合粉体として、実施例1で作製した共沈炭酸塩前駆体2.291gに、炭酸リチウム0.957gを加え、瑪瑙製自動乳鉢を用いてよく混合し、Li:(Co,Ni,Mn)のモル比が127.5:100である混合粉体を用いたことを除いては、実施例5と同様の手順で、実施例16に係るリチウム遷移金属複合酸化物を作製した。
 (実施例17)
 ペレット成型に供する混合粉体として、実施例1で作製した共沈炭酸塩前駆体2.265gに、炭酸リチウム0.983gを加え、瑪瑙製自動乳鉢を用いてよく混合し、Li:(Co,Ni,Mn)のモル比が132.5:100である混合粉体を用いたことを除いては、実施例5と同様の手順で、実施例17に係るリチウム遷移金属複合酸化物を作製した。
 (実施例18)
 ペレット成型に供する混合粉体として、実施例1で作製した共沈炭酸塩前駆体2.253gに、炭酸リチウム0.996gを加え、瑪瑙製自動乳鉢を用いてよく混合し、Li:(Co,Ni,Mn)のモル比が135:100である混合粉体を用いたことを除いては、実施例5と同様の手順で、実施例18に係るリチウム遷移金属複合酸化物を作製した。
 (実施例19)
 ペレット成型に供する混合粉体として、実施例1で作製した共沈炭酸塩前駆体2.241gに、炭酸リチウム1.009gを加え、瑪瑙製自動乳鉢を用いてよく混合し、Li:(Co,Ni,Mn)のモル比が137.5:100である混合粉体を用いたことを除いては、実施例5と同様の手順で、実施例19に係るリチウム遷移金属複合酸化物を作製した。
 (実施例20)
 ペレット成型に供する混合粉体として、実施例1で作製した共沈炭酸塩前駆体2.228gに、炭酸リチウム1.022gを加え、瑪瑙製自動乳鉢を用いてよく混合し、Li:(Co,Ni,Mn)のモル比が140:100である混合粉体を用いたことを除いては、実施例5と同様の手順で、実施例20に係るリチウム遷移金属複合酸化物を作製した。
 (実施例21)
 ペレット成型に供する混合粉体として、実施例1で作製した共沈炭酸塩前駆体2.216gに、炭酸リチウム1.035gを加え、瑪瑙製自動乳鉢を用いてよく混合し、Li:(Co,Ni,Mn)のモル比が142.5:100である混合粉体を用いたことを除いては、実施例5と同様の手順で、実施例21に係るリチウム遷移金属複合酸化物を作製した。
 (実施例22)
 共沈炭酸塩前駆体の作製工程において、前記硫酸塩水溶液の滴下終了後、反応槽内の攪拌をさらに継続する時間を1hに変更したことを除いては、実施例15と同様の手順で、実施例22に係るリチウム遷移金属複合酸化物を作製した。
 (実施例23)
 共沈炭酸塩前駆体の作製工程において、前記硫酸塩水溶液の滴下終了後、反応槽内の攪拌をさらに継続する時間を1hに変更したことを除いては、実施例16と同様の手順で、実施例23に係るリチウム遷移金属複合酸化物を作製した。
 (実施例24)
 共沈炭酸塩前駆体の作製工程において、前記硫酸塩水溶液の滴下終了後、反応槽内の攪拌をさらに継続する時間を1hに変更したことを除いては、実施例17と同様の手順で、実施例24に係るリチウム遷移金属複合酸化物を作製した。
 (実施例25)
 共沈炭酸塩前駆体の作製工程において、前記硫酸塩水溶液の滴下終了後、反応槽内の攪拌をさらに継続する時間を1hに変更したことを除いては、実施例18と同様の手順で、実施例25に係るリチウム遷移金属複合酸化物を作製した。
 (実施例26)
 共沈炭酸塩前駆体の作製工程において、前記硫酸塩水溶液の滴下終了後、反応槽内の攪拌をさらに継続する時間を1hに変更したことを除いては、実施例19と同様の手順で、実施例26に係るリチウム遷移金属複合酸化物を作製した。
 (実施例27)
 共沈炭酸塩前駆体の作製工程において、前記硫酸塩水溶液の滴下終了後、反応槽内の攪拌をさらに継続する時間を1hに変更したことを除いては、実施例20と同様の手順で、実施例27に係るリチウム遷移金属複合酸化物を作製した。
 (実施例28)
 共沈炭酸塩前駆体の作製工程において、前記硫酸塩水溶液の滴下終了後、反応槽内の攪拌をさらに継続する時間を1hに変更したことを除いては、実施例21と同様の手順で、実施例28に係るリチウム遷移金属複合酸化物を作製した。
 (実施例29)
 共沈炭酸塩前駆体の作製工程において、前記硫酸塩水溶液を滴下する速度を10ml/minとしたことを除いては、実施例5と同様の手順で、実施例29に係るリチウム遷移金属複合酸化物を作製した。
 (実施例30)
 共沈炭酸塩前駆体の作製工程において、硫酸塩水溶液が含有するCo:Ni:Mnのモル比が4.00:28.44:67.56としたことを除いては、実施例5と同様の手順で、実施例30に係るリチウム遷移金属複合酸化物を作製した。
 (実施例31)
 共沈炭酸塩前駆体の作製工程において、硫酸塩水溶液が含有するCo:Ni:Mnのモル比が21.00:11.44:67.56としたことを除いては、実施例5と同様の手順で、実施例31に係るリチウム遷移金属複合酸化物を作製した。
 (実施例32)
 共沈炭酸塩前駆体の作製工程において、硫酸塩水溶液が含有するCo:Ni:Mnのモル比が12.50:24.50:63.00としたことを除いては、実施例5と同様の手順で、実施例32に係るリチウム遷移金属複合酸化物を作製した。
 (実施例33)
 共沈炭酸塩前駆体の作製工程において、硫酸塩水溶液が含有するCo:Ni:Mnのモル比が12.50:15.50:72.00としたことを除いては、実施例5と同様の手順で、実施例33に係るリチウム遷移金属複合酸化物を作製した。
 (比較例1)
 焼成工程において、常温から700℃まで10時間かけて昇温し、700℃で4h焼成したことを除いては、実施例1と同様の手順で、比較例1に係るリチウム遷移金属複合酸化物を作製した。
 (比較例2)
 焼成工程において、常温から750℃まで10時間かけて昇温し、750℃で4h焼成したことを除いては、実施例1と同様の手順で、比較例2に係るリチウム遷移金属複合酸化物を作製した。
 (比較例3)
 焼成工程において、常温から950℃まで10時間かけて昇温し、950℃で4h焼成したことを除いては、実施例1と同様の手順で、比較例3に係るリチウム遷移金属複合酸化物を作製した。
 (比較例4)
 焼成工程において、常温から1000℃まで10時間かけて昇温し、1000℃で4h焼成したことを除いては、実施例1と同様の手順で、比較例4に係るリチウム遷移金属複合酸化物を作製した。
 (比較例5)
 焼成工程において、常温から900℃まで10時間かけて昇温し、900℃で10h焼成したことを除いては、実施例20と同様の手順で、比較例5に係るリチウム遷移金属複合酸化物を作製した。
 (比較例6)
 ペレット成型に供する混合粉体として、実施例1で作製した共沈炭酸塩前駆体2.204gに、炭酸リチウム1.047gを加え、瑪瑙製自動乳鉢を用いてよく混合し、Li:(Co,Ni,Mn)のモル比が145:100である混合粉体を用いたことを除いては、実施例5と同様の手順で、比較例6に係るリチウム遷移金属複合酸化物を作製した。
 (比較例7)
 ペレット成型に供する混合粉体として、実施例1で作製した共沈炭酸塩前駆体2.204gに、炭酸リチウム1.047gを加え、瑪瑙製自動乳鉢を用いてよく混合し、Li:(Co,Ni,Mn)のモル比が145:100である混合粉体を用いたことを除いては、実施例10と同様の手順で、比較例7に係るリチウム遷移金属複合酸化物を作製した。
 (比較例8)
 共沈炭酸塩前駆体の作製工程において、前記硫酸塩水溶液を滴下する速度を30ml/minとしたことを除いては、実施例5と同様の手順で、比較例8に係るリチウム遷移金属複合酸化物を作製した。
 (比較例9)
 炭酸リチウム(LiCO)と水酸化コバルト(Co(OH))と水酸化ニッケル(Ni(OH))とオキシ水酸化マンガン(MnOOH)とを、Li、Co、Ni、Mnの各元素が、130:12.5:19.94:67.56の比率となるように秤量し、乳鉢をもちいて各原料を十分に混合および粉砕し、原料混合物を得た。前記原料混合物から3gを取り出し、空気中において900℃で10時間焼成した。このようにして、比較例9に係るリチウム遷移金属複合酸化物を得た。
 実施例1~33及び比較例1~9の製造条件を表1に整理して示す。
Figure JPOXMLDOC01-appb-T000001
 実施例1~29及び比較例1~9に係るリチウム遷移金属複合酸化物の組成分析の結果、遷移金属Meの組成比率が、Co:Ni:Mn=12.5:19.94:67.56であり、実施例30~33については、それぞれ、Co:Ni:Mn=4.0:28.44:67.56、21.00:11.44:67.56、12.5:24.5:63.0、12.5:15.5:72.0であること、Li/Me比率は表1の「Li/Me比」の欄の数値と同一であることが確認された。
 (半値幅の測定)
 実施例1~33及び比較例1~9に係るリチウム遷移金属複合酸化物について、エックス線回折装置(Rigaku社製、型名:MiniFlex II)を用いて粉末エックス線回折測定を行った。線源はCuKα、加速電圧及び電流はそれぞれ30kV及び15mAとした。得られたエックス線回折データについて、前記エックス線回折装置の付属ソフトである「PDXL」を用いて、エックス線回折図上2θ=18.6°±1°及び2θ=44.1°±1°に存在する回折ピークについて半値幅を決定した。測定された回折ピークの半値幅を表2に示す。
 また、実施例1~33及び比較例1~7に係るリチウム遷移金属複合酸化物(電気化学的に酸化される前の活物質)は、いずれも、前記粉末エックス線回折測定の結果、α-NaFeO型結晶構造を有し、空間群P312に帰属される単一相であることが認められた。
 (粒径の測定)
 実施例1~33及び比較例1~9に係るリチウム遷移金属複合酸化物は、次の条件及び手順に沿って粒度分布測定を行った。測定装置には日機装社製Microtrac (型番:MT3000)を用いた。前記測定装置は、光学台、試料供給部及び制御ソフトを搭載したコンピューターを備えており、光学台にはレーザー光透過窓を有する湿式セルが設置される。測定原理は、測定対象試料が分散溶媒中に分散している分散液が循環している湿式セルにレーザー光を照射し、測定試料からの散乱光分布を粒度分布に変換する方式である。前記分散液は試料供給部に蓄えられ、ポンプによって湿式セルに循環供給される。前記試料供給部は、常に超音波振動が加えられている。今回の測定では、分散溶媒として水を用いた。又、測定制御ソフトにはMicrotrac DHS for Win98(MT3000)を使用した。前記測定装置に設定入力する「物質情報」については、溶媒の「屈折率」として1.33を設定し、「透明度」として「透過(TRANSPARENT)」を選択し、「球形粒子」として「非球形」を選択した。試料の測定に先立ち、「Set Zero」操作を行う。「Set zero」操作は、粒子からの散乱光以外の外乱要素(ガラス、ガラス壁面の汚れ、ガラス凹凸など)が後の測定に与える影響を差し引くための操作であり、試料供給部に分散溶媒である水のみを入れ、湿式セルに分散溶媒である水のみが循環している状態でバックグラウンド操作を行い、バックグラウンドデータをコンピューターに記憶させる。続いて「Sample LD (Sample Loading)」操作を行う。Sample LD操作は、測定時に湿式セルに循環供給される分散液中の試料濃度を最適化するための操作であり、測定制御ソフトの指示に従って試料供給部に測定対象試料を手動で最適量に達するまで投入する操作である。続いて、「測定」ボタンを押すことで測定操作が行われる。前記測定操作を2回繰り返し、その平均値として測定結果がコンピューターから出力される。測定結果は、粒度分布ヒストグラム、並びに、D10、D50及びD90の各値(D10、D50及びD90は、二次粒子の粒度分布における累積体積がそれぞれ10%、50%及び90%となる粒度)として取得される。測定されたD50の値を「D50粒子径(μm)」として表2に示す。
 (非水電解質二次電池の作製)
 実施例1~33及び比較例1~9のそれぞれのリチウム遷移金属複合酸化物を非水電解質二次電池用正極活物質として用いて、以下の手順で非水電解質二次電池を作製し、電池特性を評価した。
 正極活物質、アセチレンブラック(AB)及びポリフッ化ビニリデン(PVdF)を、質量比85:8:7の割合で混合した。この混合物を、分散媒としてN-メチルピロリドンを加えて混練分散し、塗布液を調製した。なお、PVdFについては、固形分が溶解分散された液を用いることによって、固形質量換算した。該塗布液を厚さ20μmのアルミニウム箔集電体に塗布し、正極板を作製した。
 対極(負極)には、正極の単独挙動を観察するため、リチウム金属を用いた。このリチウム金属は、ニッケル箔集電体に密着させた。ただし、非水電解質二次電池の容量が十分に正極規制となるような調製が実施された。
 電解液としては、EC/EMC/DMCの体積比が6:7:7である混合溶媒に、LiPFを、その濃度が1mol/lとなるように溶解させたものを用いた。セパレータとしては、ポリアクリレートを用いて表面改質することによって電解質の保持性を向上させた、ポリプロピレン製の微孔膜を用いた。また、ニッケル板にリチウム金属箔をはりつけたものを、参照極として用いた。外装体には、ポリエチレンテレフタレート(15μm)/アルミニウム箔(50μm)/金属接着性ポリプロピレンフィルム(50μm)からなる金属樹脂複合フィルムを用いた。この外装体に、正極端子、負極端子および参照極端子の開放端部が、外部に露出するように電極を収納した。前記金属樹脂複合フィルムの内面同士が向かい合った融着代を、注液孔となる部分を除いて、気密封止した。
 上記のようにして作製された非水電解質二次電池を、25℃に設定した恒温槽に移し、2サイクルの初期充放電工程を実施した。充電は、電流0.1CmA、電位4.6Vの定電流定電圧充電とした。充電終止条件については、電流値が0.02CmAに減衰した時点とした。放電は、電流0.1CmA、終止電圧2.0Vの定電流放電とした。全てのサイクルにおいて、充電後及び放電後に、30分の休止時間を設定した。このようにして、実施例及び比較例に係る非水電解質二次電池を完成した。
(放電試験)
 完成した非水電解質二次電池について、次の手順にて高率放電試験を行った。まず、電流0.1CmA、電圧4.3Vの定電流定電圧充電を行った。30分の休止後、電流1CmA、終止電圧2.0Vの定電流放電を行い、このときの放電容量を「放電容量(mAh/g)」として記録した。
(低温放電試験)
 次に、次の手順にて低温放電試験を行った。まず、電流0.1CmA、電圧4.3Vの定電流定電圧充電を行った。充電終止条件については、電流値が0.02CmAに減衰した時点とした。30分の休止後、恒温槽の温度を0℃に設定し、槽内の温度が0℃になってから1時間経過後、電流0.1CmA、終止電圧2.0Vの定電流放電を行い、このときの放電容量を「低温放電容量(mAh/g)」として記録した。この結果を表2に示す。
(低SOC領域における出力試験)
 続いて、恒温槽の設定温度を25℃に戻し、槽内の温度が25℃になってから1時間経過後、電流0.1CmA、電圧4.3Vの定電流定電圧充電を行い、このときの充電電気量を計測した。30分の休止後、電流0.1CmAの定電流放電を行い、前記充電電気量に対して70%の電気量を通電した時点で放電を休止した。
 放電休止後から30分後、各率放電電流でそれぞれ1秒放電する試験を行った。具体的には、まず、電流0.1CmAにて1秒放電し、2分の休止後、電流0.1CmAにて1秒の補充電を行った。さらに2分の休止後、電流1CmAにて1秒放電し、2分の休止後、電流0.1CmAにて10秒の補充電を行った。さらに2分の休止後、電流2CmAにて1秒放電し、2分の休止後、電流0.1CmAにて20秒の補充電を行った。以上の結果を各率放電の1秒後の電圧をその電流値に対してプロットし、最小二乗法によるフィッティングを行ったグラフの切片及び傾きから、直流抵抗Rと放電電流0CmAの擬似的な電圧値であるE0をそれぞれ算出した。放電終止電圧を2.5Vと仮定し、次式により、SOC30%における出力を求めた。このときの出力を「SOC30%出力(W)」として記録した。この結果を表2に示す。
  SOC30%出力(W) = 2.5×(E0 - 2.5)/ R
 前記低SOC出力試験を行った後の電池は、さらに電流0.1CmA、終止電圧2.0Vの定電流放電を行った後、電流0.1CmA、電圧5.0Vの定電流定電圧充電を行った。充電終止条件については、電流値が0.02CmAに減衰した時点とした。充電後の電池について、ドライルーム内にて電池を解体して正極板を取り出した。取り出した正極板は、洗浄等の操作を行わず、合材が集電体に接着した状態のまま測定用試料ホルダーに貼付し、CuKα線源を用いたエックス線回折装置(Rigaku社製、型名:MiniFlex II)によりエックス線回折測定を行った。
 ここで得られた各正極のエックス線回折図において、5.0Vまで充電を行った正極活物質が、放電状態の活物質と同じ結晶構造、即ち、α-NaFeO型結晶構造を有し、空間群R3-mに帰属される単一相であるか否かを確認した。この結果、空間群R3-mの単一相として帰属可能であったものは「○」、複数の相が確認されたものは「×」として、表2の「結晶構造(単一相)」欄に示す。
Figure JPOXMLDOC01-appb-T000002
 表2からわかるように、CuKα管球を用いたエックス線回折図上2θ=18.6°±1°の回折ピークの半値幅が0.20°~0.27°又は/及び、2θ=44.1°±1°の回折ピークの半値幅が0.26°~0.39°であり、かつ、電位5.0V(vs.Li/Li)まで電気化学的に酸化したときに、エックス線回折図上、空間群R3-mに帰属される単一相として観察される、実施例1~33に係るリチウム遷移金属複合酸化物を用いることにより、1CmA放電時の放電容量を優れたものとすることができる。これらの要件を満たさない比較例1~5、7及び8に係るリチウム遷移金属複合酸化物を用いた場合には、高い放電容量が得られない。また、比較例6及び7のように、回折ピークの半値幅が本発明の規定を満たし、電気化学的に酸化したときに空間群R3-mに帰属される単一相として観察されても、Li/Me比が1.425を上回るリチウム遷移金属複合酸化物を用いた場合には、放電容量は低くなる。
 また、実施例1~33の中でも、エックス線回折図上2θ=18.6°±1°の回折ピークの半値幅が0.208°~0.247°又は/及び、2θ=44.1°±1°の回折ピークの半値幅が0.266°~0.335°の範囲にある実施例3~5、8~33に係るリチウム遷移金属複合酸化物を用いることにより、低温における放電容量を優れたものとすることができることがわかった。
 さらに、実施例3~5、8~33の中でも、D50が8μm以下の範囲にある実施例3~5、8~10、15~33に係るリチウム遷移金属複合酸化物を用いることにより、非水電解質二次電池の低SOC領域における出力性能を優れたものとすることができることがわかった。
 上記の実施例では、リチウム遷移金属複合酸化物の、遷移金属元素Meに対するLiのモル比Li/Meの値について、焼成工程に供した共沈炭酸塩前駆体と炭酸リチウムの混合比率に基づいて記載した。また、リチウム遷移金属複合酸化物の、粒度分布測定におけるD50の値について、電極を作製する前のリチウム遷移金属複合酸化物について粒度分布の測定を行った結果に基づいて記載した。しかしながら、充放電の履歴を有する非水電解質二次電池については、次に述べる手順に沿って処理を行って、正極活物質を採取することにより、上記Li/Meの値、上記D50の値を求めることができる。
 まず、正極が含有している正極活物質を十分に放電末の状態にするために、前記正極と、前記正極を十分に放電末状態にするために必要な量のリチウムイオンを放出しうる負極との間でセルを構成し、正極を放電させる操作を行うことが好ましい。前記負極として、金属リチウムを用いてもよい。セルは、2端子セルであってもよいが、参照極を設けた3端子セルを用いて、参照極に対して正極電位の制御及び監視を行うことが好ましい。セルに用いる電解液は、可能な限り、非水電解質二次電池に用いられていた非水電解質の組成と同一であることが好ましい。上記セルを用いて正極を放電させる操作としては、0.1CmA以下の電流で放電終止電位を2.0V(vs.Li/Li)として連続放電又は間欠放電を行う方法が挙げられる。上記放電操作を行った後、十分な休止時間を設けて、開回路電位が3.0V(vs.Li/Li)以下となっていることを確認する。上記放電操作後の開回路電位が3.0V(vs.Li/Li)を上回る場合には、開回路電位が3.0V(vs.Li/Li)以下となるまで、さらに小さい放電電流の値を採用して上記操作を繰り返すことが求められる。
 このような操作を経た正極は、セルから取り出した後、付着している電解液を除去することが望ましい。電解液が付着していると、電解液に溶解しているリチウム塩が、Li/Meの値の分析結果に影響を与えるためである。電解液を除去する方法としては、揮発性溶剤による洗浄が挙げられる。前記揮発性溶剤は、リチウム塩を溶解しやすいものが好ましい。具体的にはジメチルカーボネートが挙げられる。前記揮発性溶剤は、水分量をリチウム電池グレードに低下させたものを用いることが望ましい。水分量が多いと、正極活物質中のLiが溶出し、Li/Meの値が正確に求められない虞があるからである。
 次に、正極から正極活物質を含む正極合剤を採取する。正極合剤は、多くの場合、導電材及び結着剤を含んでいる。正極合剤から結着剤を除去するための方法としては、結着剤を溶解可能な溶媒を用いる方法が挙げられる。例えば、結着剤がポリフッ化ビニリデンであることが推定される場合、十分な量のN-メチルピロリドン中に正極合剤を浸漬し、150℃で数時間還流させた後、濾過等により、正極活物質を含む粉体と結着剤を含む溶媒に分離する方法が挙げられる。このようにして結着剤を除去した正極活物質を含む粉体から、導電材を除去するための方法としては、例えば導電材がアセチレンブラック等の炭素質材料であると推定される場合、熱処理によって前記炭素質材料を酸化分解除去する方法が挙げられる。前記熱処理の条件としては、酸素を含む雰囲気中、導電材が熱分解する温度以上とすることが求められるが、熱処理温度が高すぎると、正極活物質の物性が変化する虞があることから、正極活物質の物性に影響を極力与えない温度とすることが望ましい。例えば、本発明の正極活物質であれば、空気中700℃とすることが挙げられる。
 発明者が属する研究機関において、一般的なリチウム遷移金属複合酸化物を正極活物質として用いた非水電解質二次電池から、以上の操作手順を経て正極活物質を採取し、上記D50の値を測定したところ、電極作成前の正極活物質についての値がほぼそのまま維持されているものであったことが、確認されている。なお、本発明に係る正極活物質は球状であるが、正極板の作製時のプレス条件によっては、一部の正極活物質粒子が崩壊することがある。電池から取り出した正極板をSEM観察することにより、どの程度の割合の正極活物質が崩壊しているかを把握できる。粒度分布測定に供する正極活物質の中に、崩壊した正極活物質粒子が含まれていることが予測できる場合には、測定結果に対して、2μm以下の粒子が除外されるようにデータを補正したうえでD50の値を求めることが推奨される。
 本発明に係るリチウム遷移金属複合酸化物の半値幅及び粒径が放電性能に影響を与える作用効果について、発明者は次のように推察している。
 本発明に係るリチウム遷移金属複合酸化物は、いわゆる「リチウム過剰型」活物質の一種であり、リチウムは、Li層(3bサイト)だけではなく、Me(遷移金属)層(3aサイト)にも存在すると考えられる。ここで、Me層に存在するリチウムは、Li層に存在するリチウムと比較すると、固相内拡散が行われにくいと考えられる。そこで、本発明に係るリチウム遷移金属複合酸化物を用いた電池の放電性能を向上させるためには、一次粒子を構成する結晶子において層状構造が十分発達していることが重要となる。そのためには、半値幅が大きくなりすぎないことが必要であり、リチウム遷移金属複合酸化物の焼成工程において、ある程度の焼成温度が求められる。又、一次粒子の成長が過度になると、固相内拡散が阻害されるために電池の放電性能の低下をもたらす。よって、半値幅が小さくなりすぎないことが必要であり、リチウム遷移金属複合酸化物の焼成工程において、焼成温度が高すぎないことが求められる。
 つまり、本発明に係るリチウム遷移金属複合酸化物においては、リチウムの固相内拡散が円滑なものとなるように一次粒子を構成する結晶子が適度に成長していること、及び、二次粒子の粒径が一定以下であることが重要であると考えられる。
 本発明の非水電解質二次電池用活物質は、各種放電性能が優れたものであるから、電気自動車用電源、電子機器用電源、電力貯蔵用電源等の非水電解質二次電池に有効に利用できる。

Claims (6)

  1.  α-NaFeO型結晶構造を有し、組成式Li1+αMe1-α(MeはMn、Ni及びCoを含む遷移金属元素、0<α<1)で表され、1.250≦(1+α)/(1-α)≦1.425であるリチウム遷移金属複合酸化物を含有する非水電解質二次電池用活物質であって、CuKα管球を用いたエックス線回折図上、2θ=18.6°±1°の回折ピークの半値幅が0.20°~0.27°又は/及び、2θ=44.1°±1°の回折ピークの半値幅が0.26°~0.39°であり、電位5.0V(vs.Li/Li)まで電気化学的に酸化したときに、エックス線回折図上、六方晶(空間群R3-m)に帰属される単一相として観察されるものであることを特徴とする非水電解質二次電池用活物質。
  2.  前記非水電解質二次電池用活物質は、CuKα管球を用いたエックス線回折図上、2θ=18.6°±1°の回折ピークの半値幅が0.208°~0.247°又は/及び、2θ=44.1°±1°の回折ピークの半値幅が0.266°~0.335°であることを特徴とする請求項1に記載の非水電解質二次電池用活物質。
  3.  前記非水電解質二次電池用活物質は、粒度分布測定における50%粒子径(D50)が8μm以下であることを特徴とする請求項2に記載の非水電解質二次電池用活物質。
  4.  請求項1~3のいずれか1項に記載の非水電解質二次電池用活物質の製造方法であって、溶液中でCo、Ni及びMnを含む遷移金属元素Meの化合物を共沈させて遷移金属炭酸塩の共沈前駆体を得る工程、及び、前記共沈前駆体とリチウム化合物とを、前記リチウム遷移金属複合酸化物の遷移金属元素Meに対するLiのモル比がLi/Meが1.250~1.425となるように混合し、800~900℃で焼成する工程を含むことを特徴とする非水電解質二次電池用活物質の製造方法。
  5.  請求項1~3のいずれか一項に記載の非水電解質二次電池用活物質を含有する非水電解質二次電池用電極。
  6.  請求項5に記載の非水電解質二次電池用電極を備えた非水電解質二次電池。
PCT/JP2012/081482 2012-02-16 2012-12-05 非水電解質二次電池用活物質、その活物質の製造方法、非水電解質二次電池用電極及び非水電解質二次電池 WO2013121654A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201280060693.2A CN103975465B (zh) 2012-02-16 2012-12-05 非水电解质二次电池用活性物质、该活性物质的制造方法、非水电解质二次电池用电极和非水电解质二次电池
US14/375,349 US9219275B2 (en) 2012-02-16 2012-12-05 Active material for nonaqueous electrolyte secondary battery, method for manufacturing active material, electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
EP12868370.3A EP2816641B1 (en) 2012-02-16 2012-12-05 Active material for non-aqueous electrolyte secondary cell, method for manufacturing active material, electrode for non-aqueous electrolyte secondary cell, and non-aqueous electrolyte secondary cell
JP2014500049A JP5773054B2 (ja) 2012-02-16 2012-12-05 非水電解質二次電池用活物質、その活物質の製造方法、非水電解質二次電池用電極及び非水電解質二次電池
KR1020147013166A KR102012304B1 (ko) 2012-02-16 2012-12-05 비수 전해질 2차 전지용 활물질, 그 활물질의 제조 방법, 비수 전해질 2차 전지용 전극 및 비수 전해질 2차 전지

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012031949 2012-02-16
JP2012-031949 2012-02-16

Publications (1)

Publication Number Publication Date
WO2013121654A1 true WO2013121654A1 (ja) 2013-08-22

Family

ID=48983796

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/081482 WO2013121654A1 (ja) 2012-02-16 2012-12-05 非水電解質二次電池用活物質、その活物質の製造方法、非水電解質二次電池用電極及び非水電解質二次電池

Country Status (6)

Country Link
US (1) US9219275B2 (ja)
EP (1) EP2816641B1 (ja)
JP (2) JP5773054B2 (ja)
KR (1) KR102012304B1 (ja)
CN (2) CN103975465B (ja)
WO (1) WO2013121654A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013206552A (ja) * 2012-03-27 2013-10-07 Tdk Corp 活物質及びリチウムイオン二次電池
WO2015049862A1 (ja) * 2013-10-03 2015-04-09 株式会社Gsユアサ リチウム二次電池用正極活物質、その製造方法、リチウム二次電池用電極、リチウム二次電池及び蓄電装置
JPWO2020188864A1 (ja) * 2019-03-15 2020-09-24
WO2020188863A1 (ja) * 2019-03-15 2020-09-24 Basf戸田バッテリーマテリアルズ合同会社 非水電解質二次電池用正極活物質、非水電解質二次電池用正極、及び非水電解質二次電池
JP6935601B1 (ja) * 2021-01-08 2021-09-15 株式会社田中化学研究所 ニッケル含有水酸化物、ニッケル含有水酸化物を前駆体とした正極活物質の製造方法及びニッケル含有水酸化物の製造方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5728520B2 (ja) * 2013-04-12 2015-06-03 プライムアースEvエナジー株式会社 電池の容量回復方法、組電池の容量回復方法、電池の容量回復装置、及び、組電池の容量回復装置
CN107078293A (zh) * 2014-10-15 2017-08-18 住友化学株式会社 锂二次电池用正极活性物质、锂二次电池用正极和锂二次电池
US11024847B2 (en) 2014-12-25 2021-06-01 Sumitomo Chemical Company, Limited Positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries, and lithium secondary battery
CN105754731A (zh) * 2016-04-18 2016-07-13 河南大学 一种无毒环保的高铁酸钠果蔬杀菌清洗剂及其制备方法
JP7004959B2 (ja) * 2016-07-14 2022-01-21 株式会社Gsユアサ リチウム遷移金属複合酸化物、遷移金属水酸化物前駆体、遷移金属水酸化物前駆体の製造方法、リチウム遷移金属複合酸化物の製造方法、非水電解質二次電池用正極活物質、非水電解質二次電池用電極、非水電解質二次電池及び蓄電装置
KR102447292B1 (ko) * 2016-09-21 2022-09-26 바스프 토다 배터리 머티리얼스 엘엘씨 양극 활물질 및 그 제조 방법, 및 비수전해질 이차 전지
EP3813163A4 (en) * 2018-06-21 2021-07-28 GS Yuasa International Ltd. POSITIVE ELECTRODE ACTIVE MATERIAL FOR NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY, PROCESS FOR THE PRODUCTION OF POSITIVE ELECTRODE ACTIVE MATERIAL FOR NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY, POSITIVE ELECTRODE FOR NON-AQUEOUS ELECTROLYTE SECONDARY ELECTROLYTE BATTERY, NON-AQUEOUS ELECTROLYTE NON-SECONDARY ELECTROLYTE SECONDARY BATTERY PRODUCTION PROCESS FOR THE PRODUCTION OF A NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY AND METHOD OF USING A NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY
CN115863743A (zh) * 2018-08-03 2023-03-28 株式会社半导体能源研究所 锂离子二次电池

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002100356A (ja) * 2000-09-25 2002-04-05 Seimi Chem Co Ltd リチウム二次電池
JP2007123255A (ja) 2005-09-27 2007-05-17 Ishihara Sangyo Kaisha Ltd リチウム・遷移金属複合酸化物及びその製造方法並びにそれを用いてなるリチウム電池
JP2009032655A (ja) * 2007-07-03 2009-02-12 Sumitomo Chemical Co Ltd リチウム複合金属酸化物
JP2010086690A (ja) 2008-09-30 2010-04-15 Gs Yuasa Corporation リチウム二次電池用活物質、リチウム二次電池及びその製造方法
JP2011154997A (ja) * 2009-12-29 2011-08-11 Gs Yuasa Corp リチウム二次電池用活物質、リチウム二次電池用電極、リチウム二次電池及びその製造方法
JP2012151084A (ja) * 2010-12-27 2012-08-09 Gs Yuasa Corp 非水電解質二次電池用正極活物質、リチウム遷移金属複合酸化物、非水電解質二次電池用正極活物質の製造方法、及び非水電解質二次電池
JP2012151083A (ja) * 2010-12-27 2012-08-09 Gs Yuasa Corp 非水電解質二次電池用正極活物質、リチウム遷移金属複合酸化物、非水電解質二次電池用正極活物質の製造方法、及び非水電解質二次電池
JP2012151085A (ja) * 2010-12-27 2012-08-09 Gs Yuasa Corp 非水電解質二次電池用正極活物質、リチウム遷移金属複合酸化物、その正極活物質等の製造方法、及び非水電解質二次電池
JP2012254889A (ja) * 2011-06-07 2012-12-27 Sumitomo Metal Mining Co Ltd ニッケルマンガン複合水酸化物粒子とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、ならびに、非水系電解質二次電池

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2144314B1 (en) * 2001-04-20 2015-01-28 GS Yuasa International Ltd. Positive active materials and process for producing the same, positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP2003197256A (ja) * 2001-12-25 2003-07-11 Yuasa Corp 非水電解質二次電池
EP2278642B1 (en) 2007-11-12 2013-01-16 GS Yuasa International Ltd. Method for producing an active material for lithium secondary battery and a lithium secondary battery
CN101355159B (zh) * 2008-09-17 2010-06-16 金瑞新材料科技股份有限公司 一种锂离子电池正极材料镍钴锰酸锂的制备方法
EP2469630B1 (en) 2009-08-21 2019-04-24 GS Yuasa International Ltd. Lithium secondary battery active material, lithium secondary battery electrode and lithium secondary battery
KR101956651B1 (ko) 2010-12-27 2019-03-11 가부시키가이샤 지에스 유아사 비수 전해질 2차 전지용 양극 활물질, 그 양극 활물질의 제조 방법, 비수 전해질 2차 전지용 전극, 비수 전해질 2차 전지및 그 2차 전지의 제조 방법
CN103748711B (zh) * 2011-11-09 2016-07-06 株式会社杰士汤浅国际 非水电解质二次电池用活性物质、该活性物质的制造方法、非水电解质二次电池用电极以及非水电解质二次电池

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002100356A (ja) * 2000-09-25 2002-04-05 Seimi Chem Co Ltd リチウム二次電池
JP2007123255A (ja) 2005-09-27 2007-05-17 Ishihara Sangyo Kaisha Ltd リチウム・遷移金属複合酸化物及びその製造方法並びにそれを用いてなるリチウム電池
JP2009032655A (ja) * 2007-07-03 2009-02-12 Sumitomo Chemical Co Ltd リチウム複合金属酸化物
JP2010086690A (ja) 2008-09-30 2010-04-15 Gs Yuasa Corporation リチウム二次電池用活物質、リチウム二次電池及びその製造方法
JP2011154997A (ja) * 2009-12-29 2011-08-11 Gs Yuasa Corp リチウム二次電池用活物質、リチウム二次電池用電極、リチウム二次電池及びその製造方法
JP2012151084A (ja) * 2010-12-27 2012-08-09 Gs Yuasa Corp 非水電解質二次電池用正極活物質、リチウム遷移金属複合酸化物、非水電解質二次電池用正極活物質の製造方法、及び非水電解質二次電池
JP2012151083A (ja) * 2010-12-27 2012-08-09 Gs Yuasa Corp 非水電解質二次電池用正極活物質、リチウム遷移金属複合酸化物、非水電解質二次電池用正極活物質の製造方法、及び非水電解質二次電池
JP2012151085A (ja) * 2010-12-27 2012-08-09 Gs Yuasa Corp 非水電解質二次電池用正極活物質、リチウム遷移金属複合酸化物、その正極活物質等の製造方法、及び非水電解質二次電池
JP2012254889A (ja) * 2011-06-07 2012-12-27 Sumitomo Metal Mining Co Ltd ニッケルマンガン複合水酸化物粒子とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、ならびに、非水系電解質二次電池

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013206552A (ja) * 2012-03-27 2013-10-07 Tdk Corp 活物質及びリチウムイオン二次電池
WO2015049862A1 (ja) * 2013-10-03 2015-04-09 株式会社Gsユアサ リチウム二次電池用正極活物質、その製造方法、リチウム二次電池用電極、リチウム二次電池及び蓄電装置
JPWO2015049862A1 (ja) * 2013-10-03 2017-03-09 株式会社Gsユアサ リチウム二次電池用正極活物質、その製造方法、リチウム二次電池用電極、リチウム二次電池及び蓄電装置
US10319998B2 (en) 2013-10-03 2019-06-11 Gs Yuasa International Positive active material for lithium secondary battery, method for producing the same, electrode for lithium secondary battery, lithium secondary battery and energy storage apparatus
JPWO2020188864A1 (ja) * 2019-03-15 2020-09-24
WO2020188863A1 (ja) * 2019-03-15 2020-09-24 Basf戸田バッテリーマテリアルズ合同会社 非水電解質二次電池用正極活物質、非水電解質二次電池用正極、及び非水電解質二次電池
WO2020188864A1 (ja) * 2019-03-15 2020-09-24 Basf戸田バッテリーマテリアルズ合同会社 非水電解質二次電池用正極活物質、非水電解質二次電池用正極、及び非水電解質二次電池
JPWO2020188863A1 (ja) * 2019-03-15 2020-09-24
JP7241162B2 (ja) 2019-03-15 2023-03-16 Basf戸田バッテリーマテリアルズ合同会社 非水電解質二次電池用正極活物質、非水電解質二次電池用正極、及び非水電解質二次電池
JP7312244B2 (ja) 2019-03-15 2023-07-20 Basf戸田バッテリーマテリアルズ合同会社 非水電解質二次電池用正極活物質、非水電解質二次電池用正極、及び非水電解質二次電池
JP6935601B1 (ja) * 2021-01-08 2021-09-15 株式会社田中化学研究所 ニッケル含有水酸化物、ニッケル含有水酸化物を前駆体とした正極活物質の製造方法及びニッケル含有水酸化物の製造方法
JP2022107455A (ja) * 2021-01-08 2022-07-21 株式会社田中化学研究所 ニッケル含有水酸化物、ニッケル含有水酸化物を前駆体とした正極活物質の製造方法及びニッケル含有水酸化物の製造方法

Also Published As

Publication number Publication date
US9219275B2 (en) 2015-12-22
KR102012304B1 (ko) 2019-08-20
JP2015213080A (ja) 2015-11-26
EP2816641A4 (en) 2015-10-21
JPWO2013121654A1 (ja) 2015-05-11
EP2816641A1 (en) 2014-12-24
JP5773054B2 (ja) 2015-09-02
CN103975465A (zh) 2014-08-06
CN103975465B (zh) 2016-03-30
KR20140123039A (ko) 2014-10-21
JP6044809B2 (ja) 2016-12-14
US20150008364A1 (en) 2015-01-08
EP2816641B1 (en) 2018-02-28
CN105789610A (zh) 2016-07-20

Similar Documents

Publication Publication Date Title
JP6197939B2 (ja) 非水電解質二次電池用活物質、非水電解質二次電池用活物質の製造方法、非水電解質二次電池用電極及び非水電解質二次電池
JP6217945B2 (ja) 非水電解質二次電池用活物質、その活物質の製造方法、非水電解質二次電池用電極及び非水電解質二次電池
JP6044809B2 (ja) 非水電解質二次電池用活物質、非水電解質二次電池用電極及び非水電解質二次電池
JP6094797B2 (ja) リチウム二次電池用正極活物質、その製造方法、リチウム二次電池用電極、リチウム二次電池
JP5871186B2 (ja) 非水電解質二次電池用活物質、その活物質の製造方法、非水電解質二次電池用電極及び非水電解質二次電池
JP6090662B2 (ja) リチウム二次電池用正極活物質、その製造方法、リチウム二次電池用電極、リチウム二次電池
WO2015049862A1 (ja) リチウム二次電池用正極活物質、その製造方法、リチウム二次電池用電極、リチウム二次電池及び蓄電装置
JP6175763B2 (ja) リチウム二次電池用正極活物質、その正極活物質の製造方法、リチウム二次電池用電極、及びリチウム二次電池
JP5946011B2 (ja) 非水電解質二次電池用活物質、非水電解質二次電池用電極及び非水電解質二次電池
JP5871187B2 (ja) 非水電解質二次電池用活物質、その活物質の製造方法、非水電解質二次電池用電極及び非水電解質二次電池
JP2012151083A (ja) 非水電解質二次電池用正極活物質、リチウム遷移金属複合酸化物、非水電解質二次電池用正極活物質の製造方法、及び非水電解質二次電池
JP6069632B2 (ja) 正極ペースト、並びに、これを用いた非水電解質電池用正極及び非水電解質電池の製造方法
JP2012151084A (ja) 非水電解質二次電池用正極活物質、リチウム遷移金属複合酸化物、非水電解質二次電池用正極活物質の製造方法、及び非水電解質二次電池
JP6036168B2 (ja) 非水電解質二次電池
JP6460575B2 (ja) リチウム二次電池用正極活物質、リチウム二次電池用電極、及びリチウム二次電池
JP6052643B2 (ja) 非水電解質二次電池用活物質、非水電解質二次電池用電極及び非水電解質二次電池
JP6354964B2 (ja) 非水電解質二次電池
JP5787079B2 (ja) 非水電解質二次電池用活物質、非水電解質二次電池用電極及び非水電解質二次電池
JP5866967B2 (ja) 非水電解質二次電池用活物質、非水電解質二次電池用電極及び非水電解質二次電池
JP6024869B2 (ja) 非水電解質二次電池用正極活物質及びこれを用いた非水電解質二次電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280060693.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12868370

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147013166

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2014500049

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012868370

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14375349

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE