WO2013121548A1 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
WO2013121548A1
WO2013121548A1 PCT/JP2012/053602 JP2012053602W WO2013121548A1 WO 2013121548 A1 WO2013121548 A1 WO 2013121548A1 JP 2012053602 W JP2012053602 W JP 2012053602W WO 2013121548 A1 WO2013121548 A1 WO 2013121548A1
Authority
WO
WIPO (PCT)
Prior art keywords
collector
region
emitter
line contact
contact structure
Prior art date
Application number
PCT/JP2012/053602
Other languages
English (en)
French (fr)
Inventor
幹夫 辻内
新田 哲也
Original Assignee
ルネサスエレクトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ルネサスエレクトロニクス株式会社 filed Critical ルネサスエレクトロニクス株式会社
Priority to CN201280069809.9A priority Critical patent/CN104115275B/zh
Priority to PCT/JP2012/053602 priority patent/WO2013121548A1/ja
Priority to JP2013558634A priority patent/JP5808827B2/ja
Priority to US14/378,720 priority patent/US9153673B2/en
Priority to TW101150518A priority patent/TWI596768B/zh
Publication of WO2013121548A1 publication Critical patent/WO2013121548A1/ja
Priority to US14/848,412 priority patent/US20150380532A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41708Emitter or collector electrodes for bipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0804Emitter regions of bipolar transistors
    • H01L29/0808Emitter regions of bipolar transistors of lateral transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0821Collector regions of bipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1004Base region of bipolar transistors
    • H01L29/1008Base region of bipolar transistors of lateral transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • H01L27/0251Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices
    • H01L27/0255Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices using diodes as protective elements

Definitions

  • the present invention relates to a semiconductor device, for example, a semiconductor device having an insulated gate bipolar transistor.
  • IGBTs Insulated Gate Bipolar Transistors
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2001-203358
  • Patent Document 2 Japanese Patent Application Laid-Open No. 8-274308
  • the collector conductive layer is connected to one collector active region included in the collector region by a plurality of contacts.
  • the number of contacts of the collector conductive layer with respect to one collector active region is larger than the number of contacts of the emitter conductive layer with respect to one base active region included in the base region.
  • the characteristics of the insulated gate bipolar transistor can be easily improved by changing the areas of the conductive layers and the connection portions in the emitter and collector of the insulated gate bipolar transistor, a large-scale change is made. Therefore, a semiconductor device with a small development load can be obtained.
  • the active region for a collector is connected by a plurality of contacts, the current path can be dispersed and minority carrier injection can be dispersed.
  • FIG. 3 is a diagram illustrating a circuit when the semiconductor device according to the first embodiment is applied to a PDP (Plasma Display Panel) scan driver.
  • FIGS. 2A and 2B are an image diagram (A) of a planar layout of the entire chip and an image diagram (B) of a 1-bit planar layout of FIG.
  • FIG. 3 is a plan view schematically showing the configuration of the IGBT of FIGS. 1 and 2. It is a top view which expands and shows IGBT of FIG.
  • FIG. 5 is a schematic sectional view taken along line VV in FIG. 4.
  • FIG. 5 is a schematic sectional view taken along line VI-VI in FIG. 4.
  • FIG. 6 is a diagram showing a relationship between a ratio of a contact area to an area of a base contact region of the semiconductor device in the first embodiment and a linear current.
  • FIG. 6 is a diagram showing a relationship between a ratio of a contact area to an area of a base contact region of the semiconductor device in the first embodiment and a saturation current.
  • FIG. 6 is a diagram showing a relationship between a ratio of a contact area to an area of a base contact region of the semiconductor device in the first embodiment and an on-breakdown voltage.
  • FIG. 5 is a diagram showing a relationship between a ratio of a contact area to an area of a collector region of the semiconductor device in the first embodiment and a linear current.
  • FIG. 4 is a diagram showing a relationship between a ratio of a contact area to an area of a collector region of the semiconductor device in Embodiment 1 and a saturation current.
  • FIG. 6 is a diagram showing a relationship between a ratio of a contact area to an area of a collector region of the semiconductor device in the first embodiment and an on-breakdown voltage. It is a schematic sectional drawing for demonstrating that the characteristic of IGBT changes when the contact area in a base contact area
  • FIG. 1 It is a figure which shows distribution of the minority carrier density at the time of applying a forward direction bias to a collector area
  • FIG. 3 is a schematic plan view showing a configuration of an IGBT when a collector-side contact has a line contact structure and an emitter-side contact has a split line contact structure. It is a schematic plan view showing the configuration of the IGBT when the collector-side contact has a split line contact structure and the emitter-side contact has a hole contact structure. It is a schematic plan view showing the configuration of the IGBT when the collector side contact has a hole contact structure with a small hole pitch and the emitter side contact has a hole contact structure with a large hole pitch. It is a schematic plan view showing the configuration of the IGBT when the collector side contact has a hole contact structure with a large hole diameter and the emitter side contact has a hole contact structure with a small hole diameter.
  • FIG. 26 is a schematic sectional view taken along line XXVI-XXVI in FIG. 25.
  • FIG. 5 is a schematic plan view showing a configuration of an IGBT when a collector region is thinned (separated) by an element isolation structure, a collector-side contact has a line contact structure, and an emitter-side contact has a hole contact structure.
  • FIG. 5 is a schematic plan view showing a configuration of an IGBT when a collector region is thinned (separated) by an element isolation structure, a collector side contact has a line contact structure, and an emitter side contact has a divided line contact structure. is there.
  • FIG. 5 is a schematic plan view showing the configuration of an IGBT when the collector region is thinned (separated) by an element isolation structure, the collector side contact has a split line contact structure, and the emitter side contact has a hole contact structure. is there.
  • FIG. 30 is a schematic cross-sectional view taken along line XXX-XXX in FIG. 29.
  • the IGBT in the case where the collector region is thinned (separated) by the element isolation structure, the collector side contact has a hole contact structure with a small hole pitch, and the emitter side contact has a hole contact structure with a large hole pitch. It is a schematic plan view which shows a structure.
  • FIG. 30 is a schematic cross-sectional view taken along line XXX-XX in FIG. 29.
  • the IGBT in the case where the collector region is thinned (separated) by the element isolation structure, the collector side contact has a hole contact structure with a small hole pitch, and the emit
  • FIG. 32 is a schematic sectional view taken along line XXXII-XXXII in FIG. 31.
  • the IGBT in the case where the collector region is thinned (separated) by an element isolation structure, the collector side contact has a hole contact structure with a large hole diameter, and the emitter side contact has a hole contact structure with a small hole diameter It is a schematic plan view which shows a structure.
  • FIG. 34 is a schematic cross-sectional view taken along line XXXIV-XXXIV in FIG. 33.
  • An IGBT configuration in which the collector region is thinned (separated) by an element isolation structure, the collector side contact has a two-line line contact structure, and the emitter side contact has a one-line line contact structure.
  • FIG. 37 is a schematic sectional view taken along line XXXVII-XXXVII in FIG. 36.
  • FIG. 10 is a plan view schematically showing a configuration of an IGBT included in a semiconductor device in a fourth embodiment. It is a top view for demonstrating that an electric current concentrates in the current path by the side of the collector of related technology as a comparative example.
  • FIG. 37 is a schematic sectional view taken along line XXXVII-XXXVII in FIG. 36.
  • FIG. 10 is a plan view schematically showing a configuration of an IGBT included in a semiconductor device in a fourth embodiment. It is a top view for demonstrating that an electric current concentrates in the current path by the side of the collector of related technology as a comparative example.
  • FIG. 20 is a plan view for explaining that current paths are dispersed in a current path on the collector side of the semiconductor device in the fourth embodiment. It is a top view for demonstrating that the area
  • FIG. 20 is a plan view for explaining that minority carrier injection is dispersed in minority carrier (hole) injection on the collector side of the semiconductor device in the fourth embodiment.
  • FIG. 10 is a schematic plan view showing a configuration of an IGBT when a collector-side contact has a split line contact structure and an emitter-side contact has a line contact structure in the semiconductor device according to the fourth embodiment.
  • FIG. 6 is a schematic plan view showing a configuration of an IGBT when a collector-side contact has a hole contact structure with a large hole pitch and an emitter-side contact has a hole contact structure with a small hole pitch in the semiconductor device according to the fourth embodiment. is there.
  • FIG. 6 is a schematic plan view showing the configuration of an IGBT when a collector-side contact has a hole contact structure with a small hole diameter and an emitter-side contact has a hole contact structure with a large hole diameter in the semiconductor device in the fourth embodiment. is there.
  • FIG. 6 is a schematic plan view showing the configuration of an IGBT when a collector-side contact has a hole contact structure with a small hole diameter and an emitter-side contact has a hole contact structure with a large hole diameter in the semiconductor device in the fourth embodiment. is there.
  • FIG. 5 is a schematic plan view showing a configuration of an IGBT when a collector-side contact has a one-line line contact structure and an emitter-side contact has a two-line line contact structure.
  • FIG. 10 is a plan view schematically showing a configuration of an IGBT included in a semiconductor device in a fifth embodiment.
  • FIG. 49 is a schematic sectional view taken along the line XLIX-XLIX in FIG. 48.
  • FIG. 5 is a schematic plan view showing a configuration of an IGBT when a collector region is thinned (separated) by an element isolation structure, a collector-side contact has a hole contact structure, and an emitter-side contact has a line contact structure. .
  • FIG. 5 is a schematic plan view showing a configuration of an IGBT when a collector region is thinned (separated) by an element isolation structure, a collector side contact has a divided line contact structure, and an emitter side contact has a line contact structure. is there.
  • FIG. 5 is a schematic plan view showing the configuration of an IGBT when the collector region is thinned (separated) by an element isolation structure, the collector side contact has a hole contact structure, and the emitter side contact has a split line contact structure. is there.
  • FIG. 57 is a schematic sectional view taken along line LVII-LVII in FIG. 56. It is a top view which shows roughly the 1st example of the structure by which the line contact by the side of an emitter was divided
  • Embodiment 1 First, the structure of the semiconductor device in Embodiment 1 will be described with reference to FIGS.
  • the circuit of the PDP scan driver includes an output circuit unit OC, a level shifter unit LS, a logic circuit unit LC, and a protection circuit unit PC.
  • the output circuit section OC includes a totem pole circuit using two IGBTs as main switch elements of Low Side and High Side.
  • the totem pole circuit is connected between a terminal to which a first drive voltage (V H ) is supplied and a terminal to which a second drive voltage (GND) is supplied, and a direct current output V from the output terminal to a load. It is configured to supply out .
  • a diode is reversely connected between the emitter and the collector.
  • the high side IGBT may be another high voltage element.
  • the logic circuit unit LC is connected to the gate electrode of the Low Side IGBT of the output circuit unit OC.
  • the logic circuit part LC is connected to the gate electrode of the high side IGBT via the level shifter part LS and the protection circuit part PC.
  • output stages corresponding to the number of bits are arranged on both the left and right sides in the figure so as to sandwich the protection circuit portion and the logic circuit portion. Also, I / O (Input / Output) circuit sections are arranged on both upper and lower sides in the figure so as to sandwich the output stage and the logic circuit section.
  • a level shifter a high side IGBT, a low side IGBT, a diode, and an output pad are arranged for each bit in the output stage.
  • the High Side IGBT is, for example, an element with an emphasis on withstand voltage
  • the Low Side IGBT is, for example, an element with an emphasis on current.
  • the breakdown voltage-oriented IGBT means that the breakdown voltage becomes higher when the impurity concentration in the drift region is set lower than the current-oriented IGBT, or the collector-emitter length in the drift region is set larger. It is a configured IGBT.
  • the current-oriented IGBT is configured to have a higher current driving capability when the channel width is set larger, the channel length is set smaller, or the channel resistance is set smaller than the breakdown voltage-oriented IGBT. It is an IGBT.
  • the importance of withstand voltage means that the collector contact layout of the collector is changed and the withstand voltage is higher than the original, assuming that the emitter and collector contact layouts are the same.
  • the importance of current means that the current flows more than the original by changing the contact layout of the collector, assuming that the contact layout of the emitter and the collector is the same. Further, even when metal silicide is used for this effect, the same effect can be obtained to a lesser extent.
  • IGBT is formed on the main surface of semiconductor substrate SUB.
  • the IGBT includes an n ⁇ drift region DRI, an n type region NR, a p + collector region CR, p type base regions BR and BCR, an n + emitter region ER, a gate insulating film GI, and a gate electrode layer GE. And has mainly.
  • the n ⁇ drift region DRI is formed in the semiconductor substrate SUB.
  • the n-type region NR is formed in the semiconductor substrate SUB so as to be in contact with the n ⁇ drift region DRI.
  • the p + collector region CR is formed in the main surface of the semiconductor substrate SUB in the semiconductor substrate SUB so as to form a pn junction with the n-type region NR.
  • the p-type base regions BR and BCR are separated from the p + collector region CR so as to form a pn junction with the n ⁇ drift region DRI and are formed in the semiconductor substrate SUB and on the main surface of the semiconductor substrate SUB.
  • the p-type base regions BR and BCR include a p-type region BR constituting a pn junction with the n ⁇ drift region DRI, and a p + base contact region BCR located on the main surface of the semiconductor substrate SUB in the p-type region BR.
  • the p + base contact region BCR has a higher p-type impurity concentration than the p-type region BR.
  • the n + emitter region ER is formed on the main surface of the semiconductor substrate SUB in the p-type base regions BR and BCR so as to form a pn junction with the p-type base regions BR and BCR.
  • An element isolation structure ES is formed on the main surface of the semiconductor substrate SUB sandwiched between the p + collector region CR and the p-type base regions BR and BCR.
  • the element isolation structure ES may be a silicon oxide film formed by, for example, LOCOS (Local Oxidation of Silicon), or may be STI (Shallow Trench Isolation).
  • the gate electrode layer GE is formed at least on the p-type region BR sandwiched between the n + emitter region ER and the n ⁇ drift region DRI with the gate insulating film GI interposed therebetween. One end portion of the gate electrode layer GE faces the n ⁇ drift region DRI across the element isolation structure ES by running over the element isolation structure ES.
  • An interlayer insulating film II is formed on the main surface of the semiconductor substrate SUB on which the IGBT is formed so as to cover the IGBT.
  • contact recesses CH1 and CH2 are formed in this interlayer insulating film II.
  • the contact recess CH1 is formed so as to reach the p + collector region CR from the upper surface of the interlayer insulating film II.
  • the contact recess CH2 is formed so as to reach both the n + emitter region ER and the p + base contact region BCR from the upper surface of the interlayer insulating film II.
  • a plug layer (collector conductive layer) PR1 made of a conductive material is formed so as to fill the inside of the contact recess CH1. Also, a plug layer (emitter conductive layer) PR2 made of a conductive material is formed so as to fill the inside of the contact recess CH2.
  • Metal wiring MI is formed on interlayer insulating film II so as to be in contact with each of plug layers PR1 and PR2.
  • both of contact concave portions CH1 and CH2 have, for example, a line contact (slit contact) structure.
  • the line contact structure has a substantially rectangular shape (including those with rounded corners to some extent) in a plan view, and the length (for example, length) of one side of the concave portion for the substantially rectangular contact.
  • LA, LB is a structure having a length that is at least twice as long as the length of the other side (for example, line widths WA, WB).
  • the plug layer PR1 embedded in the contact recess CH1 is connected to the p + collector region CR.
  • the plurality of n + emitter regions ER and the plurality of p + base contact regions BCR are alternately arranged in one IGBT along the gate width direction (vertical direction in the figure).
  • the emitter-side contact recess CH2 is formed so as to reach each of the plurality of n + emitter regions ER and the plurality of p + base contact regions BCR. Therefore, the plug layer PR2 filling the contact recess CH2 is connected to each of the plurality of n + emitter regions ER and the plurality of p + base contact regions BCR.
  • the area of the collector connection portion of the p + collector region CR and the plug layer PR1 (collector contact area: SB12) with respect to the area of the p + collector region CR (collector active area: SA12) on the main surface of the IGBT semiconductor substrate SUB with an emphasis on breakdown voltage is the p + base contact region BCR relative to the p + base contact region BCR area (p + region area: SA11) on the main surface of the semiconductor substrate SUB of the same IGBT. Is larger than the ratio (p + region contact area / p + region area: SB11 / SA11) of the area (p + region contact area: SB11) of the emitter connection portion between the plug layer PR2 and the plug layer PR2.
  • the area of the p + collector region CR corresponds to the area of the p + collector region CR surrounded by the element isolation structure ES.
  • the ratio contact area on p + region / p + region area: SB11 / SA11) is such that a plurality of n + emitter regions ER and a plurality of p + base contact regions BCR arranged in the gate width direction as shown in FIG. Is defined by a p + region area sandwiched between n + emitter regions ER at both ends in the arrangement region R and a contact area on the p + region.
  • the area of the p + base contact region BCR (p + region area) is a plurality of p + base contact regions BCR sandwiched between n + emitter regions ER located at both ends in the arrangement region R shown in FIG. Is the total area. Further, the area of the connecting portion between the plug layer PR2 and the p + base contact region BCR (contact area on the p + region) is between the n + emitter regions ER located at both ends in the arrangement region R shown in FIG. This is the total area of the connection portion between the p + base contact region BCR and the plug layer PR2 sandwiched.
  • the collector connection portion (connection portion in the contact recess CH1) between the p + collector region CR and the plug layer PR1 in the IGBT with an emphasis on breakdown voltage has a line contact structure.
  • the emitter connection portion (connection portion in the contact recess CH2) between the p + base contact region BCR and the plug layer PR2 in the same IGBT also has a line contact structure.
  • the present inventor examined that the characteristics of the IGBT (linear current, saturation current, ON breakdown voltage) change due to the change in the ratio (contact area on p + region / p + region area: SB11 / SA11). .
  • This study the ratio (collector contact area / the collector active area: SB12 / SA12) of the IGBT having the structure shown in FIG. 4 as a constant, varying only the ratio (p + contact area on / p + region area) It was done by.
  • the results are shown in FIGS.
  • the inventor also investigated that the characteristics of the IGBT (linear current, saturation current, ON breakdown voltage) change due to the change in the ratio (collector contact area / collector active area: SB12 / SA12).
  • This study the above ratio (p + contact area on / p + region area: SB11 / SA11) of the IGBT having the structure shown in FIG. 4 as a constant, the above ratio (collector contact area / the collector active area: SB12 / SA12) only.
  • FIG. 10 to FIG. It was found that substantially the same result was obtained when only the ratio shown (collector contact area / collector active area: SB12 / SA12) was changed.
  • the collector damage is caused by the etching damage in forming contact recess CH1 and the silicidation on the main surface of the semiconductor substrate of the barrier metal (not shown) formed in contact recess CH1.
  • Crystal defects DF are generated on the surface of the region CR.
  • the number of crystal defects DF is proportional to the size of the collector contact area. In this crystal defect DF, recombination of holes and electrons occurs and the holes disappear. Therefore, as shown in FIG. 16, the holes are injected from the plug layer PR1 into the drift region DRI through the collector region CR according to the number of crystal defects DF.
  • the number of holes (density) varies.
  • the collector contact area is large, the number of crystal defects DF on the surface of the collector region CR increases, and the number of holes injected from the plug layer PR1 into the drift region DRI through the collector region CR decreases, thereby improving the current. It is thought that it was suppressed.
  • the ratio (collector contact area / collector active area: SB12 / SA12) is larger than the ratio (p + region contact area / p + region area: SB11 / SA11). .
  • the on-breakdown voltage can be improved in an IGBT with an emphasis on withstand voltage such as High Side.
  • withstand voltage such as High Side.
  • the contact size can be controlled simply by changing the contact mask, so readjustment of the contact mask after prototyping is possible at low cost.
  • the line contact structure continuously extends without being interrupted. As a result, it is possible to suppress variations in characteristics due to positional deviation and dimensional deviation of the contact recesses CH1 and CH2.
  • the concave portions CH1 and CH2 for contact on both the collector side and the emitter side have a line contact structure.
  • the contact area can be made larger than when the hole contact structure is used, and the control range of the IGBT characteristics can be expanded.
  • the line width WA of the connection portion between plug layer PR1 and p + collector region CR is equal to that of the connection portion between plug layer PR2 and p + base contact region BCR. It is preferable that the width is larger than the line width WB.
  • the collector-side contact recess CH1 has a line contact structure
  • the emitter-side contact recess CH2 has a hole contact structure. Good. Even in this case, since the contact recess CH1 on the collector side has a line contact structure, the contact area can be made larger than when the hole contact structure is used, and the control range of the IGBT characteristics is expanded. can do.
  • the collector-side contact recess CH1 has a line contact structure
  • the emitter-side contact recess CH2 has a split line contact structure.
  • the split line contact structure is a contact structure in which the emitter-side contact recess CH2 has a plurality of line contact portions CH2a that are separated from each other and arranged in series.
  • Each of the plurality of line contact portions CH2a has a line contact structure. That is, each of the plurality of line contact portions CH2a has a substantially rectangular shape in the plan view shown in FIG. 20, and has a structure in which the length of one side in the plan view is longer than twice the length of the other side.
  • the collector-side contact recess CH1 since the collector-side contact recess CH1 has the line contact structure, the contact area can be made larger than when the split line contact structure is used, and the control range of the IGBT characteristics can be increased. Can be enlarged.
  • the collector-side contact recess CH1 has a split line contact structure
  • the emitter-side contact recess CH2 has a hole contact structure. Also good. Also in this case, since the collector-side contact recess CH1 has a split line contact structure, the contact area can be made larger than when the hole contact structure is used, and the control range of the IGBT characteristics can be increased. Can be enlarged.
  • both the contact concave portions CH1 and CH2 on the collector side and the emitter side may have a hole contact structure.
  • the hole pitch PA of the collector-side contact recess CH1 is preferably smaller than the hole pitch PB of the emitter-side contact recess CH2.
  • the contact area can be made larger than when the hole pitch is large, and the control range of the IGBT characteristics can be expanded.
  • the area of the collector-side contact recess CH1 and the area of the emitter-side contact recess CH2 are preferably the same.
  • both the concave portions CH1 and CH2 for contact on the collector side and the emitter side may have a hole contact structure.
  • the diameter DA of the hole in the contact recess CH1 on the collector side is preferably larger than the diameter DB of the hole in the contact recess CH2 on the emitter side.
  • the contact area can be made larger than when the hole diameter is small, and the control range of the IGBT characteristics can be expanded. it can.
  • the hole pitch of the collector-side contact recess CH1 and the emitter-side contact recess CH2 are preferably the same.
  • the collector-side contact recesses CH1 have a two-line line contact structure, and the emitter-side contact recesses CH2 have a one-line line contact structure. You may have. Even in this case, the number of columns of the collector-side contact recesses CH1 is larger than the number of columns of the emitter-side contact recesses CH2, so that the collector-side contact area can be increased and the IGBT characteristics can be controlled. The width can be enlarged. This configuration is not limited to the case where the collector-side contact recesses CH1 are two rows and the emitter-side contact recesses CH2 are one row.
  • the number of columns is larger than the number of columns of the line contact structure of the recess CH2 for contact on the emitter side.
  • the collector-side contact recess CH1 may have a two-row divided line contact structure, or a two-row hole contact structure
  • the emitter-side contact recess CH2 may have a one-row divided line contact structure, It may be a hole contact structure.
  • the configuration of the IGBT shown in FIGS. 18 to 24 is different from that of the IGBT shown in FIG. 4 in the configuration of the contact recesses CH1 and CH2, and in the other configurations, the configuration shown in FIG. Is the same. Therefore, in the configurations shown in FIGS. 18 to 24, the same components as those shown in FIG. 4 are denoted by the same reference numerals, and the description thereof will not be repeated.
  • p + collector region CR is thinned out (separated) by element isolation structure ES as compared with the configuration shown in FIG. It is different in point. That is, in one IGBT, the p + collector region CR is composed of a plurality of p + collector region portions (collector active regions) CRa separated by the element isolation structure ES. As described in the first embodiment, the element isolation structure ES may be a silicon oxide film formed by LOCOS or may be STI.
  • the contact recesses CH1 and CH2 on both the collector side and the emitter side have a line contact structure.
  • One line contact portion on one p + collector region portion CRa (recess) CH1 is provided, p + collector region portion CRa line contact portion CH1 the element isolation structure on ES sandwiched between the provided Absent.
  • the line width WA at the connection portion between the plug layer PR1 and the p + collector region CR is preferably larger than the line width WB at the connection portion between the plug layer PR2 and the p + base contact region BCR.
  • the current can be improved because the p + collector region CR is thinned out by the element isolation structure ES. Further, since the configuration in which the p + collector region CR is thinned out by the element isolation structure ES can be manufactured only by changing the field mask, the above configuration can be manufactured at low cost.
  • the concave portions CH1 and CH2 for contact on both the collector side and the emitter side have a line contact structure.
  • the contact area can be made larger than when the hole contact structure is used, and the control range of the IGBT characteristics can be expanded.
  • the line width WA of the connection portion between plug layer PR1 and p + collector region CR is larger than the line width WB of the connection portion between plug layer PR2 and p + base contact region BCR. Larger is preferred. Thereby, the control range of the characteristic of IGBT can be expanded further.
  • FIGS. 25 and 26 the case where the emitter-side contact recess CH2 has a line contact structure has been described, but a hole contact structure may be used as shown in FIG. Even in this case, since the contact recess CH1 on the collector side has a line contact structure, the contact area can be made larger than when the hole contact structure is used, and the control range of the IGBT characteristics is expanded. can do.
  • the collector-side contact recess CH1 may have a line contact structure
  • the emitter-side contact recess CH2 may have a split line contact structure. That is, the emitter-side contact recess CH2 has a split line contact structure having a plurality of line contact portions CH2a that are separated from each other and arranged in series. Also in this case, since the collector-side contact recess CH1 has the line contact structure, the contact area can be made larger than when the split line contact structure is used, and the control range of the IGBT characteristics can be increased. Can be enlarged.
  • the collector-side contact recess CH1 may have a split line contact structure
  • the emitter-side contact recess CH2 may have a hole contact structure.
  • the contact area can be made larger than when the hole contact structure is used, and the control range of the IGBT characteristics can be increased. Can be enlarged.
  • the divided line contact structure is a contact structure having a plurality of line contact portions CH1 which are separated from each other and arranged in series with respect to one p + collector region portion CRa.
  • both the concave portions CH1 and CH2 for contact on the collector side and the emitter side may have a hole contact structure.
  • the hole pitch PA of the collector-side contact recess CH1 is preferably smaller than the hole pitch PB of the emitter-side contact recess CH2.
  • the contact area can be made larger than when the hole pitch is large, and the control range of the IGBT characteristics can be expanded.
  • both the concave portions CH1 and CH2 for contact on the collector side and the emitter side may have a hole contact structure.
  • the diameter DA of the hole in the contact recess CH1 on the collector side is preferably larger than the diameter DB of the hole in the contact recess CH2 on the emitter side.
  • the contact area can be made larger than when the hole diameter is small, and the control range of the IGBT characteristics can be expanded. it can.
  • the collector-side contact recesses CH1 may have a two-line line contact structure, and the emitter-side contact recesses CH2 may have a one-line line contact structure.
  • the number of columns of the collector-side contact recesses CH1 is larger than the number of columns of the emitter-side contact recesses CH2, so that the collector-side contact area can be increased and the IGBT characteristics can be controlled.
  • the width can be enlarged.
  • This configuration is not limited to the case where the collector-side contact recesses CH1 are two rows and the emitter-side contact recesses CH2 are one row. It is sufficient that the number of columns is larger than the number of columns of the line contact structure of the recess CH2 for contact on the emitter side.
  • the collector-side contact recess CH1 may have a two-row divided line contact structure, or a two-row hole contact structure
  • the emitter-side contact recess CH2 may have a one-row divided line contact structure, It may be a hole contact structure.
  • p + collector region CR is thinned out by n + isolation region NHR as compared to the configuration shown in FIG. ) Is different. That is, in one IGBT, the p + collector region CR is composed of a plurality of p + collector region portions CRa separated by a plurality of n + isolation regions NHR. Each of the plurality of n + isolation regions NHR has an n-type impurity concentration higher than that of the n-type region NR.
  • the contact recesses CH1 and CH2 on both the collector side and the emitter side have a line contact structure.
  • One line contact portion CH1 is provided for one p + collector region portion CRa, and no line contact portion CH1 is provided on the n + isolation region NHR sandwiched between the p + collector region portions CRa.
  • the line width WA at the connection portion between the plug layer PR1 and the p + collector region CR is preferably larger than the line width WB at the connection portion between the plug layer PR2 and the p + base contact region BCR.
  • the control width of the IGBT characteristics can be expanded.
  • the contact recesses CH1 and CH2 on both the collector side and the emitter side have a line contact structure.
  • the contact area can be made larger than when the hole contact structure is used, and the control range of the IGBT characteristics can be expanded.
  • the line width WA of the connection portion between plug layer PR1 and p + collector region CR is larger than the line width WB of the connection portion between plug layer PR2 and p + base contact region BCR. Larger is preferred. Thereby, the control range of the characteristic of IGBT can be expanded further.
  • Each of the configurations in FIGS. 27 to 35 may be configured such that the p + collector region CR is thinned out by a plurality of n + isolation regions NHR.
  • the IGBT included in the semiconductor device of the present embodiment is a current-oriented element such as a low side IGBT.
  • IGBT structure of the present embodiment is different from the configuration shown in FIG. 4, the above ratio (p + contact area on / p + region area: SB11 / SA11) the ratio (collector contact area / the collector active area : SB12 / SA12).
  • p + base area of the contact region BCR (p + region area: SA11) in the main surface of the semiconductor substrate SUB of the IGBT current emphasis area of emitter connection portion between the p + base contact region BCR and plug layer PR2 for (p + Region contact area: SB11) ratio (p + region contact area / p + region area: SB11 / SA11) is the area of the p + collector region CR (collector active area) on the main surface of the semiconductor substrate SUB of the same IGBT. : SA12) is larger than the ratio (collector contact area / collector active area: SB12 / SA12) of the collector connection area (collector contact area: SB12) between the p + collector region CR and the plug layer PR1.
  • the collector connection portion (connection portion in the contact recess CH1) between the p + collector region CR and the plug layer PR1 in the current-oriented IGBT has a hole contact structure.
  • the emitter connection portion (connection portion in the contact recess CH2) between the p + base contact region BCR and the plug layer PR2 in the same IGBT has a line contact structure.
  • One p + collector region CR is connected to a plug layer PR1 in a plurality of contact recesses CH1 separated from each other.
  • the number of contact recesses CH1 (the number of contacts) provided on one p + collector region CR is the same as that for contacts provided on one p + base contact region (base active region) BCR. It is preferable that the number is larger than the number of recesses CH2 (number of contacts).
  • the number of contact recesses CH1 provided on one p + collector region CR is 19, for example, and the number of contact recesses CH1 provided on one p + base contact region BCR is The number of recesses CH2 is, for example, one, but is not limited to this.
  • the ratio contact area on p + region / p + region area: SB11 / SA11
  • the ratio collector contact area / collector active area: SB12 / SA12.
  • the contact size can be controlled simply by changing the contact mask, so readjustment of the contact mask after prototyping is possible at low cost.
  • the collector-side contact recess CH1 has a hole contact structure
  • the emitter-side contact recess CH2 has a line contact structure.
  • the contact recess CH1 may have a split line contact structure
  • the emitter contact contact CH2 may have a line contact structure.
  • the contact area can be made smaller than when the line contact structure is used, and the control width of the IGBT characteristics can be reduced. Can be enlarged.
  • the collector-side contact recess CH1 has a hole contact structure
  • the emitter-side contact recess CH2 has a split line contact structure.
  • the emitter-side contact recess CH2 has a split line contact structure having a plurality of line contact portions CH2a that are separated from each other and arranged in series.
  • the contact area can be made smaller than when the split line contact structure is used, and the control range of the IGBT characteristics can be reduced. Can be enlarged.
  • both the concave portions CH1 and CH2 for contact on the collector side and the emitter side may have a hole contact structure.
  • the hole pitch PA of the collector-side contact recess CH1 is preferably larger than the hole pitch PB of the emitter-side contact recess CH2.
  • the hole pitch PA of the contact recess CH1 on the collector side is large, the contact area can be made smaller than when the hole pitch is small, and the control range of the IGBT characteristics can be expanded.
  • it is preferable that the area of one recess CH1 for contact on the collector side and the area of one recess CH2 for contact on the emitter side are the same.
  • both the concave portions CH1 and CH2 for contact on the collector side and the emitter side may have a hole contact structure.
  • the hole diameter DA of the collector-side contact recess CH1 is smaller than the hole diameter DB of the emitter-side contact recess CH2.
  • the hole pitch of the collector-side contact recess CH1 and the emitter-side contact recess CH2 are preferably the same.
  • the collector-side contact recess CH1 has one line of line contact structure
  • the emitter-side contact recess CH2 has two lines of line contact structure. You may have.
  • the number of columns of the recesses CH2 for contact on the emitter side is larger than the number of columns of the recesses CH1 for contact on the collector side, so that the contact area on the emitter side can be increased and the characteristics of the IGBT can be controlled.
  • the width can be enlarged.
  • This configuration is not limited to the case where the collector-side contact recesses CH1 are arranged in one row and the emitter-side contact recesses CH2 are arranged in two rows, but the emitter-side contact recesses CH2 have a line contact structure. It is only necessary that the number of columns is larger than the number of columns of the line contact structure of the contact-side recess CH1 on the collector side.
  • the collector-side contact recess CH1 may have a single-row divided line contact structure and a single-row hole contact structure, and the emitter-side contact recess CH2 may have a two-row split-line contact structure and two rows. It may be a hole contact structure.
  • p + collector region CR is thinned out (separated) by element isolation structure ES as compared to the configuration shown in FIG. It is different in point. That is, in one IGBT, the p + collector region CR is composed of a plurality of p + collector region portions CRa (collector active regions) separated from each other.
  • the p + collector region CR may be thinned out by an element isolation structure ES as shown in FIGS. 48 and 49, and as shown in FIGS. 56 and 57, it may be thinned out by a plurality of n + isolation regions NHR. Also good.
  • the element isolation structure ES may be a silicon oxide film formed by LOCOS or may be STI.
  • One p + collector region portion CRa is connected to a plug layer PR1 in a plurality of contact recesses CH1 separated from each other.
  • the number of contact recesses CH1 provided on one p + collector region portion CRa (the number of contacts) is the number of contacts provided on one p + base contact region (base active region) BCR. It is preferable that the number is larger than the number of concave portions CH2 (number of contacts).
  • the number of contact recesses CH1 provided on one p + collector region portion CRa is, for example, three, and for contact provided on one p + base contact region BCR.
  • the number of the concave portions CH2 is, for example, one, but is not limited thereto.
  • the concave portions CH1 and CH2 for contact on both the collector side and the emitter side have a hole contact structure.
  • the current can be improved because the p + collector region CR is thinned out by the element isolation structure ES. Further, since the configuration in which the p + collector region CR is thinned out by the element isolation structure ES can be manufactured only by changing the field mask, the above configuration can be manufactured at low cost.
  • the current paths can be dispersed as described in FIGS. 39 to 42, and Minority carrier injection can be dispersed.
  • the concave portions CH1 and CH2 for contact on both the collector side and the emitter side have a hole contact structure, but as shown in FIG. 50, the concave portion CH1 for contact on the collector side is a hole.
  • a contact structure may be provided, and the emitter-side contact recess CH2 may have a line contact structure. Even in this case, since the contact recess CH1 on the collector side has a hole contact structure, the contact area can be made smaller than when the line contact structure is used, and the control range of the IGBT characteristics is expanded. can do.
  • the collector-side contact recess CH1 has a split line contact structure
  • the emitter-side contact recess CH2 has a line contact structure. May be. Even in this case, since the collector-side contact recess CH1 has a split line contact structure, the contact area can be made smaller than when the line contact structure is used, and the control width of the IGBT characteristics can be reduced. Can be enlarged.
  • the collector-side contact recess CH1 has a hole contact structure
  • the emitter-side contact recess CH2 has a split line contact structure.
  • the emitter-side contact recess CH2 has a split line contact structure having a plurality of line contact portions CH2a that are separated from each other and arranged in series.
  • the contact area can be made smaller than when the split line contact structure is used, and the control range of the IGBT characteristics can be reduced. Can be enlarged.
  • both the concave portions CH1 and CH2 for contact on the collector side and the emitter side may have a hole contact structure.
  • the hole pitch PA of the collector-side contact recess CH1 is preferably larger than the hole pitch PB of the emitter-side contact recess CH2.
  • the contact area can be made smaller than when the hole pitch is small, and the control range of the IGBT characteristics can be expanded. In this configuration, it is preferable that the area of one recess CH1 for contact on the collector side and the area of one recess CH2 for contact on the emitter side are the same.
  • both the concave portions CH1 and CH2 for contact on the collector side and the emitter side may have a hole contact structure.
  • the hole diameter DA of the collector-side contact recess CH1 is smaller than the hole diameter DB of the emitter-side contact recess CH2.
  • the hole pitch of the collector-side contact recess CH1 and the emitter-side contact recess CH2 are preferably the same.
  • the collector-side contact recesses CH1 have one line of line contact structure, and the emitter-side contact recesses CH2 have two lines of line contact structure. You may have. Also in this case, the number of columns of the recesses CH2 for contact on the emitter side is larger than the number of columns of the recesses CH1 for contact on the collector side, so that the contact area on the emitter side can be increased and the characteristics of the IGBT can be controlled. The width can be enlarged.
  • This configuration is not limited to the case where the collector-side contact recesses CH1 are arranged in one row and the emitter-side contact recesses CH2 are arranged in two rows, but the emitter-side contact recesses CH2 have a line contact structure. It is only necessary that the number of columns is larger than the number of columns of the line contact structure of the contact-side recess CH1 on the collector side.
  • the collector-side contact recess CH1 may have a single-row divided line contact structure and a single-row hole contact structure, and the emitter-side contact recess CH2 may have a two-row split-line contact structure and two rows. It may be a hole contact structure.
  • the p + collector region CR has been described as being thinned out by the element isolation structure ES.
  • the configurations of FIGS. 50 to 55 may include a plurality of configurations as shown in FIGS.
  • the n + isolation region NHR may be thinned out.
  • each of the plurality of line contact portions CH2a has a line contact structure. That is, each of the plurality of line contact portions CH2a has a substantially rectangular shape in the plan view shown in FIG. 58, and the length LBa of one side in the plan view is at least twice as long as the length WBa of the other side. It has a structure. Only the n-type region (n + emitter region ER) is located in the region directly below the separation portion SR located between the line contact portions CH2a adjacent to each other in plan view.
  • the configuration of the present embodiment other than the above is substantially the same as the configuration shown in each of FIGS. 20, 28, 44, and 52. Do not repeat.
  • the emitter-side contact recess CH2 is divided into a plurality of line contact portions CH2a.
  • the difference in line width between the end portion and the center portion in the longitudinal direction of the line contact structure increases due to the shrinkage of the photoresist or the like.
  • the dimension in the longitudinal direction of each divided line contact portion CH2a is shorter than the length in the longitudinal direction of the contact recess CH2 that is not divided. For this reason, it is possible to improve the stability of the finished size of the contact recess CH2.
  • n-type region (n + emitter region ER) is located in the region directly below the separation portion SR between the adjacent line contact portions CH2a. For this reason, it is possible to suppress variations in the ON breakdown voltage due to the positional deviation and dimensional deviation of the contact recess CH2.
  • p + base contact region BCR may be located in the region directly below the separation portion SR located between the line contact portions CH2a adjacent to each other in plan view. In this case, it is possible to suppress variations in current due to positional deviation and dimensional deviation of the contact recess CH2.
  • an n-type region (n + emitter region ER) and a p-type region (p) are formed immediately below the separation portion SR located between the line contact portions CH2a adjacent to each other in plan view.
  • + Base contact region BCR may be located.
  • the area of the n-type region (n + emitter region ER) located immediately below the isolation portion SR is equal to the p-type region (p + base contact region BCR) located immediately below the isolation portion SR. It may be larger than the area of the portion. In this case, as in the configuration of FIG. 58, it is possible to suppress variations in the ON breakdown voltage due to the positional deviation and dimensional deviation of the contact recess CH2.
  • the area of the p-type region (p + base contact region BCR) located immediately below the isolation portion SR is equal to the n-type region (n + emitter region ER) located immediately below the isolation portion SR. ) May be larger than the area of the portion.
  • the configuration of FIG. 59 it is possible to suppress variations in current due to positional deviation and dimensional deviation of the contact recess CH2.
  • the area of the n-type region (n + emitter region ER) located directly below the isolation portion SR and the p-type region (p + base contact region BCR located directly below the isolation portion SR). ) May have the same area.
  • the emitter-side contact recess CH2 has a plurality of line contact portions CH2a has been described, but the collector-side contact recess CH1 is separated from each other and arranged in series. A plurality of line contact portions may be provided.
  • the configuration in which the gate electrode layer GE and the n + emitter region ER run in parallel with the p + collector region CR has been described.
  • the gate electrode layer GE and the n + emitter region ER are not seen in a plan view. It may be arranged so as to surround the periphery of the p + collector region CR.
  • the breakdown voltage-oriented IGBT and current-oriented IGBT may be formed on a silicon single crystal substrate, or may be formed on an SOI (Silicon on Insulator) substrate.
  • the semiconductor device having the PDP scan driver circuit is described as having a breakdown voltage-oriented IGBT and a current-oriented IGBT.
  • the semiconductor device is not limited to the semiconductor device according to the embodiment.
  • the present invention can be applied to other semiconductor devices having IGBTs.
  • BR p-type region CH1, CH2 recess, CH2a line contact portion, CR collector region, CRa collector region portion, DF crystal defect, DRI drift region, ER emitter region, ES element isolation structure, GE gate electrode layer, GI gate insulating film , II interlayer insulation film, LC logic circuit part, LS level shifter part, MI metal wiring, NHR isolation region, NR n-type region, OC output circuit unit, PC protection circuit unit, PR1, PR2 plug layer, SR isolation part, SUB semiconductor substrate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

 電流重視のIGBTにおいて、コレクタ用導電層(PR1)は、コレクタ領域(CR)に含まれる1つのコレクタ用活性領域(CRa)に対して複数のコンタクトで接続されている。1つのコレクタ用活性領域(CRa)に対するコレクタ用導電層(PR1)のコンタクトの個数は、ベース領域(BR、BCR)に含まれる1つのベース用活性領域(BCR)に対するエミッタ用導電層(PR2)のコンタクトの個数よりも多い。

Description

半導体装置
 本発明は、半導体装置に関し、たとえば絶縁ゲートバイポーラトランジスタを有する半導体装置に関するものである。
 ラテラル(横型)のIGBT(Insulated Gate Bipolar Transistor)は従来から知られており、たとえば特開2001-203358号公報(特許文献1)や特開平8-274308号公報(特許文献2)に開示されている。
特開2001-203358号公報 特開平8-274308号公報
 ラテラルIGBTの電流やオン耐圧といった特性の変更を行なうには、素子サイズの変更や注入レイアウトの変更、不純物注入条件の変更といった大規模な変更と最適化とが必要である。このため、それぞれの要求にあった素子をすべて開発するのは開発上の負荷が大きいという問題がある。
 その他の課題と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。
 一実施の形態の半導体装置によれば、コレクタ用導電層は、コレクタ領域に含まれる1つのコレクタ用活性領域に対して複数のコンタクトで接続されている。1つのコレクタ用活性領域に対するコレクタ用導電層のコンタクトの個数は、ベース領域に含まれる1つのベース用活性領域に対するエミッタ用導電層のコンタクトの個数よりも多い。
 前記一実施の形態によれば、絶縁ゲートバイポーラトランジスタのエミッタとコレクタにおいて、それぞれの導電層と接続部の面積を変えることにより、絶縁ゲートバイポーラトランジスタの特性を容易に改善できるため、大規模な変更を必要とせず開発上の負荷が小さい半導体装置を得ることができる。
 また1つのコレクタ用活性領域に対して複数のコンタクトで接続されているため、電流経路を分散できるとともに、少数キャリアの注入が分散できる。
実施の形態1における半導体装置をPDP(Plasma Display Panel)スキャンドライバに適用した場合の回路を示す図である。 実施の形態1における半導体装置をPDPスキャンドライバに適用した場合のチップ全体の平面レイアウトのイメージ図(A)と、(A)の1bitの平面レイアウトのイメージ図(B)である。 図1および図2のIGBTの構成を概略的に示す平面図である。 図3のIGBTを拡大して示す平面図である。 図4のV-V線に沿う概略断面図である。 図4のVI-VI線に沿う概略断面図である。 実施の形態1における半導体装置のベースコンタクト領域の面積に対するコンタクト面積の比と線形電流との関係を示す図である。 実施の形態1における半導体装置のベースコンタクト領域の面積に対するコンタクト面積の比と飽和電流との関係を示す図である。 実施の形態1における半導体装置のベースコンタクト領域の面積に対するコンタクト面積の比とオン耐圧との関係を示す図である。 実施の形態1における半導体装置のコレクタ領域の面積に対するコンタクト面積の比と線形電流との関係を示す図である。 実施の形態1における半導体装置のコレクタ領域の面積に対するコンタクト面積の比と飽和電流との関係を示す図である。 実施の形態1における半導体装置のコレクタ領域の面積に対するコンタクト面積の比とオン耐圧との関係を示す図である。 ベースコンタクト領域におけるコンタクト面積が大きい場合にIGBTの特性が変化することを説明するための概略断面図である。 ベースコンタクト領域におけるコンタクト面積が小さい場合にIGBTの特性が変化することを説明するための概略断面図である。 コレクタ領域におけるコンタクト面積が大きい場合にIGBTの特性が変化することを説明するための概略断面図である。 コレクタ領域に順方向バイアスをかけた際の少数キャリア密度の分布を示す図である。 コレクタ領域におけるコンタクト面積が小さい場合にIGBTの特性が変化することを説明するための概略断面図である。 コレクタ側のコンタクトが線幅の大きいラインコンタクト構造を有し、エミッタ側のコンタクトが線幅の小さいラインコンタクト構造を有する場合のIGBTの構成を示す概略平面図である。 コレクタ側のコンタクトがラインコンタクト構造を有し、エミッタ側のコンタクトがホールコンタクト構造を有する場合のIGBTの構成を示す概略平面図である。 コレクタ側のコンタクトがラインコンタクト構造を有し、エミッタ側のコンタクトが分割ラインコンタクト構造を有する場合のIGBTの構成を示す概略平面図である。 コレクタ側のコンタクトが分割ラインコンタクト構造を有し、エミッタ側のコンタクトがホールコンタクト構造を有する場合のIGBTの構成を示す概略平面図である。 コレクタ側のコンタクトがホールピッチの小さいホールコンタクト構造を有し、エミッタ側のコンタクトがホールピッチの大きいホールコンタクト構造を有する場合のIGBTの構成を示す概略平面図である。 コレクタ側のコンタクトがホール径の大きいホールコンタクト構造を有し、エミッタ側のコンタクトがホール径の小さいホールコンタクト構造を有する場合のIGBTの構成を示す概略平面図である。 コレクタ側のコンタクトが2列のラインコンタクト構造を有し、エミッタ側のコンタクトが1列のラインコンタクト構造を有する場合のIGBTの構成を示す概略平面図である。 実施の形態2における半導体装置において、コレクタ領域が素子分離構造により間引かれ(分断され)、かつコレクタ側のコンタクトが線幅の大きいラインコンタクト構造を有し、エミッタ側のコンタクトが線幅の小さいラインコンタクト構造を有する場合のIGBTの構成を示す概略平面図である。 図25のXXVI-XXVI線に沿う概略断面図である。 コレクタ領域が素子分離構造により間引かれ(分断され)、かつコレクタ側のコンタクトがラインコンタクト構造を有し、エミッタ側のコンタクトがホールコンタクト構造を有する場合のIGBTの構成を示す概略平面図である。 コレクタ領域が素子分離構造により間引かれ(分断され)、かつコレクタ側のコンタクトがラインコンタクト構造を有し、エミッタ側のコンタクトが分割ラインコンタクト構造を有する場合のIGBTの構成を示す概略平面図である。 コレクタ領域が素子分離構造により間引かれ(分断され)、かつコレクタ側のコンタクトが分割ラインコンタクト構造を有し、エミッタ側のコンタクトがホールコンタクト構造を有する場合のIGBTの構成を示す概略平面図である。 図29のXXX-XXX線に沿う概略断面図である。 コレクタ領域が素子分離構造により間引かれ(分断され)、かつコレクタ側のコンタクトがホールピッチの小さいホールコンタクト構造を有し、エミッタ側のコンタクトがホールピッチの大きいホールコンタクト構造を有する場合のIGBTの構成を示す概略平面図である。 図31のXXXII-XXXII線に沿う概略断面図である。 コレクタ領域が素子分離構造により間引かれ(分断され)、かつコレクタ側のコンタクトがホール径の大きいホールコンタクト構造を有し、エミッタ側のコンタクトがホール径の小さいホールコンタクト構造を有する場合のIGBTの構成を示す概略平面図である。 図33のXXXIV-XXXIV線に沿う概略断面図である。 コレクタ領域が素子分離構造により間引かれ(分断され)、かつコレクタ側のコンタクトが2列のラインコンタクト構造を有し、エミッタ側のコンタクトが1列のラインコンタクト構造を有する場合のIGBTの構成を示す概略平面図である。 実施の形態3における半導体装置において、コレクタ領域がn+領域により間引かれ(分断され)、かつコレクタ側のコンタクトが線幅の大きいラインコンタクト構造を有し、エミッタ側のコンタクトが線幅の小さいラインコンタクト構造を有する場合のIGBTの構成を示す概略平面図である。 図36のXXXVII-XXXVII線に沿う概略断面図である。 実施の形態4における半導体装置に含まれるIGBTの構成を概略的に示す平面図である。 比較例としての関連技術のコレクタ側での電流経路において電流が集中することを説明するための平面図である。 実施の形態4における半導体装置のコレクタ側での電流経路において電流パスが分散することを説明するための平面図である。 比較例としての関連技術のコレクタ側での少数キャリア(ホール)の注入において少数キャリアが注入される領域が局所的であることを説明するための平面図である。 実施の形態4における半導体装置のコレクタ側での少数キャリア(ホール)の注入において少数キャリアの注入が分散されることを説明するための平面図である。 実施の形態4における半導体装置において、コレクタ側のコンタクトが分割ラインコンタクト構造を有し、エミッタ側のコンタクトがラインコンタクト構造を有する場合のIGBTの構成を示す概略平面図である。 実施の形態4における半導体装置において、コレクタ側のコンタクトがホールコンタクト構造を有し、エミッタ側のコンタクトが分割ラインコンタクト構造を有する場合のIGBTの構成を示す概略平面図である。 実施の形態4における半導体装置において、コレクタ側のコンタクトがホールピッチの大きいホールコンタクト構造を有し、エミッタ側のコンタクトがホールピッチの小さいホールコンタクト構造を有する場合のIGBTの構成を示す概略平面図である。 実施の形態4における半導体装置において、コレクタ側のコンタクトがホール径の小さいホールコンタクト構造を有し、エミッタ側のコンタクトがホール径の大きいホールコンタクト構造を有する場合のIGBTの構成を示す概略平面図である。 コレクタ側のコンタクトが1列のラインコンタクト構造を有し、エミッタ側のコンタクトが2列のラインコンタクト構造を有する場合のIGBTの構成を示す概略平面図である。 実施の形態5における半導体装置に含まれるIGBTの構成を概略的に示す平面図である。 図48のXLIX-XLIX線に沿う概略断面図である。 コレクタ領域が素子分離構造により間引かれ(分断され)、かつコレクタ側のコンタクトがホールコンタクト構造を有し、エミッタ側のコンタクトがラインコンタクト構造を有する場合のIGBTの構成を示す概略平面図である。 コレクタ領域が素子分離構造により間引かれ(分断され)、かつコレクタ側のコンタクトが分割ラインコンタクト構造を有し、エミッタ側のコンタクトがラインコンタクト構造を有する場合のIGBTの構成を示す概略平面図である。 コレクタ領域が素子分離構造により間引かれ(分断され)、かつコレクタ側のコンタクトがホールコンタクト構造を有し、エミッタ側のコンタクトが分割ラインコンタクト構造を有する場合のIGBTの構成を示す概略平面図である。 コレクタ領域が素子分離構造により間引かれ(分断され)、かつコレクタ側のコンタクトがホールピッチの大きいホールコンタクト構造を有し、エミッタ側のコンタクトがホールピッチの小さいホールコンタクト構造を有する場合のIGBTの構成を示す概略平面図である。 コレクタ領域が素子分離構造により間引かれ(分断され)、かつコレクタ側のコンタクトがホール径の小さいホールコンタクト構造を有し、エミッタ側のコンタクトがホール径の大きいホールコンタクト構造を有する場合のIGBTの構成を示す概略平面図である。 コレクタ領域が素子分離構造により間引かれ(分断され)、かつコレクタ側のコンタクトが1列のラインコンタクト構造を有し、エミッタ側のコンタクトが2列のラインコンタクト構造を有する場合のIGBTの構成を示す概略平面図である。 コレクタ領域がn+領域により間引かれた(分断された)IGBTの構成を示す概略平面図である。 図56のLVII-LVII線に沿う概略断面図である。 エミッタ側のラインコンタクトが分割された構成の第1の例を概略的に示す平面図である。 エミッタ側のラインコンタクトが分割された構成の第2の例を概略的に示す平面図である。 エミッタ側のラインコンタクトが分割された構成の第3の例を概略的に示す平面図である。 エミッタ側のラインコンタクトが分割された構成の第4の例を概略的に示す平面図である。 エミッタ側のラインコンタクトが分割された構成の第5の例を概略的に示す平面図である。
 以下、実施の形態について図に基づいて説明する。
 (実施の形態1)
 まず実施の形態1における半導体装置の構成について図1~図6を用いて説明する。
 図1を参照して、PDPスキャンドライバの回路は、出力回路部OCと、レベルシフタ部LSと、ロジック回路部LCと、保護回路部PCとを有している。出力回路部OCは、Low SideおよびHigh Sideの主スイッチ素子として2つのIGBTを用いたトーテムポール回路を含んでいる。このトーテムポール回路は、第1の駆動電圧(VH)が供給される端子と第2の駆動電圧(GND)が供給される端子との間に接続され、かつ出力端子から負荷に直流出力Voutを供給するように構成されている。Low SideおよびHigh Sideの各々のIGBTには、エミッタ・コレクタ間にダイオードが逆接続されている。なおHigh SideのIGBTは他の高耐圧素子でもよい。
 ロジック回路部LCは、出力回路部OCのLow SideのIGBTのゲート電極に接続されている。またロジック回路部LCは、レベルシフタ部LSと保護回路部PCとを介在してHigh SideのIGBTのゲート電極に接続されている。
 図2(A)を参照して、上記PDPスキャンドライバの半導体チップにおいては、bit数に応じた出力段が保護回路部とロジック回路部とを挟み込むように図中左右両側に配置されている。また出力段とロジック回路部とを挟み込むように図中上下両側にI/O(Input/Output)回路部が配置されている。
 図2(B)を参照して、出力段には、1bitごとに、レベルシフタ部と、High SideのIGBTと、Low SideのIGBTと、ダイオードと、出力パッドとが配置されている。
 図3を参照して、High SideのIGBTはたとえば耐圧重視の素子であり、Low SideのIGBTはたとえば電流重視の素子である。ここで、耐圧重視のIGBTとは、電流重視のIGBTよりもドリフト領域の不純物濃度が低く設定されたり、ドリフト領域のコレクタ・エミッタ間の長さが大きく設定されるなどにより耐圧が高くなるように構成されたIGBTのことである。また電流重視のIGBTとは、耐圧重視のIGBTよりもチャネル幅が大きく設定されたり、チャネル長が小さく設定されたり、チャネル抵抗が小さく設定されるなどにより、電流駆動能力が高くなるように構成されたIGBTのことである。また耐圧重視とは、エミッタとコレクタのコンタクトレイアウトが同じ場合を想定して、それに比べてコレクタのコンタクトレイアウトを変えて、元より耐圧が高いことを意味する。また電流重視とは、エミッタとコレクタのコンタクトレイアウトが同じ場合を想定して、それに比べてコレクタのコンタクトレイアウトを変えて、元より電流が多く流れることを意味する。またこの効果については金属シリサイドを用いた場合でも、程度は小さいが同様の効果が得られる。
 図5および図6を参照して、IGBTは半導体基板SUBの主表面に形成されている。このIGBTは、n-ドリフト領域DRIと、n型領域NRと、p+コレクタ領域CRと、p型ベース領域BR、BCRと、n+エミッタ領域ERと、ゲート絶縁膜GIと、ゲート電極層GEとを主に有している。
 n-ドリフト領域DRIは半導体基板SUB内に形成されている。n型領域NRは、n-ドリフト領域DRIと接するように半導体基板SUB内に形成されている。p+コレクタ領域CRは、n型領域NRとpn接合を構成するように半導体基板SUB内であって半導体基板SUBの主表面に形成されている。
 p型ベース領域BR、BCRは、n-ドリフト領域DRIとpn接合を構成するように、p+コレクタ領域CRと分かれて半導体基板SUB内であって半導体基板SUBの主表面に形成されている。このp型ベース領域BR、BCRは、n-ドリフト領域DRIとpn接合を構成するp型領域BRと、p型領域BR内の半導体基板SUBの主表面に位置するp+ベースコンタクト領域BCRとを有している。p+ベースコンタクト領域BCRはp型領域BRよりも高いp型不純物濃度を有している。n+エミッタ領域ERは、p型ベース領域BR、BCRとpn接合を構成するように、p型ベース領域BR、BCR内の半導体基板SUBの主表面に形成されている。
 p+コレクタ領域CRとp型ベース領域BR、BCRとに挟まれる半導体基板SUBの主表面には素子分離構造ESが形成されている。この素子分離構造ESは、たとえばLOCOS(Local Oxidation of Silicon)で形成されたシリコン酸化膜であってもよく、またSTI(Shallow Trench Isolation)であってもよい。
 ゲート電極層GEは、少なくともn+エミッタ領域ERとn-ドリフト領域DRIとに挟まれるp型領域BR上にゲート絶縁膜GIを介在して形成されている。ゲート電極層GEの一方端部は、素子分離構造ES上に乗り上げることにより、素子分離構造ESを間に挟んでn-ドリフト領域DRIと対向している。
 このIGBTが形成された半導体基板SUBの主表面上に、IGBTを覆うように層間絶縁膜IIが形成されている。この層間絶縁膜IIには、コンタクト用の凹部CH1、CH2が形成されている。コンタクト用の凹部CH1は、層間絶縁膜IIの上面からp+コレクタ領域CRに達するように形成されている。コンタクト用の凹部CH2は、層間絶縁膜IIの上面からn+エミッタ領域ERおよびp+ベースコンタクト領域BCRの双方に達するように形成されている。
 コンタクト用の凹部CH1の内部を埋め込むように導電性の材料よりなるプラグ層(コレクタ用導電層)PR1が形成されている。またコンタクト用の凹部CH2の内部を埋め込むように導電性の材料よりなるプラグ層(エミッタ用導電層)PR2が形成されている。これらのプラグ層PR1、PR2のそれぞれに接するように層間絶縁膜II上に金属配線MIが形成されている。
 図4を参照して、コンタクト用の凹部CH1、CH2の双方は、たとえばラインコンタクト(スリットコンタクト)構造を有している。このラインコンタクト構造とは、平面視において略矩形(角部がある程度ラウンドしたものも含む)の形状を有し、かつその略矩形状のコンタクト用の凹部の一方の辺の長さ(たとえば長さLA、LB)が他方の辺の長さ(たとえば線幅WA、WB)の2倍以上長い構造のことである。
 コンタクト用の凹部CH1はp+コレクタ領域CRに達するように形成されているため、コンタクト用の凹部CH1内を埋め込むプラグ層PR1はp+コレクタ領域CRに接続されている。
 複数のn+エミッタ領域ERと複数のp+ベースコンタクト領域BCRとは、1つのIGBT内において、ゲート幅方向(図中上下方向)に沿って互いに交互に配置されている。エミッタ側のコンタクト用の凹部CH2は、複数のn+エミッタ領域ERと複数のp+ベースコンタクト領域BCRとの各々に達するように形成されている。このためコンタクト用の凹部CH2内を埋め込むプラグ層PR2は、複数のn+エミッタ領域ERと複数のp+ベースコンタクト領域BCRとの各々に接続されている。
 耐圧重視のIGBTの半導体基板SUBの主表面におけるp+コレクタ領域CRの面積(コレクタ活性面積:SA12)に対するp+コレクタ領域CRとプラグ層PR1とのコレクタ接続部の面積(コレクタコンタクト面積:SB12)の比(コレクタコンタクト面積/コレクタ活性面積:SB12/SA12)は、同じIGBTの半導体基板SUBの主表面におけるp+ベースコンタクト領域BCRの面積(p+領域面積:SA11)に対するp+ベースコンタクト領域BCRとプラグ層PR2とのエミッタ接続部の面積(p+領域上コンタクト面積:SB11)の比(p+領域上コンタクト面積/p+領域面積:SB11/SA11)よりも大きい。
 ここで、p+コレクタ領域CRの面積(コレクタ活性面積)は、素子分離構造ESによって取り囲まれたp+コレクタ領域CRの面積に対応する。また比(p+領域上コンタクト面積/p+領域面積:SB11/SA11)は、図4に示すようにゲート幅方向に並んだ複数のn+エミッタ領域ERと複数のp+ベースコンタクト領域BCRとの配置領域R内における両端のn+エミッタ領域ERの間に挟まれたp+領域面積とp+領域上コンタクト面積とにより定義されるものである。
 つまり上記のp+ベースコンタクト領域BCRの面積(p+領域面積)は、図4に示す配置領域R内の両端に位置するn+エミッタ領域ERの間に挟まれる複数のp+ベースコンタクト領域BCRの面積の合計である。また上記のプラグ層PR2とp+ベースコンタクト領域BCRとの接続部の面積(p+領域上コンタクト面積)は、図4に示す配置領域R内の両端に位置するn+エミッタ領域ERの間に挟まれるp+ベースコンタクト領域BCRとプラグ層PR2との接続部の面積の合計である。
 ここで、耐圧重視のIGBTにおけるp+コレクタ領域CRとプラグ層PR1とのコレクタ接続部(コンタクト用の凹部CH1における接続部)はラインコンタクト構造を有している。また同じIGBTにおけるp+ベースコンタクト領域BCRとプラグ層PR2とのエミッタ接続部(コンタクト用の凹部CH2における接続部)もラインコンタクト構造を有している。
 次に、上記の比とIGBTの特性との関係に関して本発明者が行なった検討について図7~図12を用いて説明する。
 まず本発明者は、上記の比(p+領域上コンタクト面積/p+領域面積:SB11/SA11)の変化により、IGBTの特性(線形電流、飽和電流、オン耐圧)が変化することを調べた。この検討は、図4に示す構成を有するIGBTの比(コレクタコンタクト面積/コレクタ活性面積:SB12/SA12)を一定として、比(p+領域上コンタクト面積/p+領域面積)のみを変化させることにより行なった。その結果を図7~図9に示す。
 図7の結果から、上記の比(p+領域上コンタクト面積/p+領域面積:SB11/SA11)を変化させても線形電流はほとんど変化しないが、図8の結果から、上記の比(p+領域上コンタクト面積/p+領域面積:SB11/SA11)を小さくすることで飽和電流が向上することが分かった。一方、図9の結果から、上記の比(p+領域上コンタクト面積/p+領域面積:SB11/SA11)を大きくすることでオン耐圧が向上することが分かった。
 また本発明者は、上記の比(コレクタコンタクト面積/コレクタ活性面積:SB12/SA12)の変化により、IGBTの特性(線形電流、飽和電流、オン耐圧)が変化することについても調べた。この検討は、図4に示す構成を有するIGBTの上記の比(p+領域上コンタクト面積/p+領域面積:SB11/SA11)を一定として、上記の比(コレクタコンタクト面積/コレクタ活性面積:SB12/SA12)のみを変化させることにより行なった。その結果を図10~図12に示す。
 図10および図11の結果から、上記の比(コレクタコンタクト面積/コレクタ活性面積:SB12/SA12)を小さくすると、線形電流および飽和電流の双方が向上することが分かった。また、図12の結果から、上記の比(コレクタコンタクト面積/コレクタ活性面積:SB12/SA12)を大きくすることでオン耐圧が向上することが分かった。
 また比(p+領域上コンタクト面積/p+領域面積:SB11/SA11)および比(コレクタコンタクト面積/コレクタ活性面積:SB12/SA12)の双方を変化させた場合には、図10~図12に示す比(コレクタコンタクト面積/コレクタ活性面積:SB12/SA12)のみを変化させた場合とほぼ同じ結果となることがわかった。
 上記の図7~図12の結果から、耐圧重視のIGBTにおいては比(コレクタコンタクト面積/コレクタ活性面積:SB12/SA12)を、比(p+領域上コンタクト面積/p+領域面積:SB11/SA11)よりも大きくすることがオン耐圧向上の観点から有効であることが分かった。また電流重視のIGBTにおいては比(コレクタコンタクト面積/コレクタ活性面積:SB12/SA12)を比(p+領域上コンタクト面積/p+領域面積:SB11/SA11)よりも小さくすることが線形電流および飽和電流向上の観点から有効であることが分かった。
 次に、上記の図7~図12に示す結果が得られた理由について図13~図17を用いて考察する。
 図13を参照して、p+ベースコンタクト領域BCRとプラグ層PR2とのコンタクト面積が大きい場合、プラグ層PR2とp+ベースコンタクト領域BCRとの接触抵抗が小さくなり、p型領域BRからのホール(正孔)の引き抜き効率が高くなる。これによりp型領域BRにホールが溜まることが抑制されて、オン耐圧が向上したと考えられる。
 図14を参照して、一方、p+ベースコンタクト領域BCRとプラグ層PR2とのコンタクト面積が小さい場合、プラグ層PR2とp+ベースコンタクト領域BCRとの接触抵抗が大きくなり、p型領域BRからのホールの引き抜き効率が低くなる。これによりp型領域BRにホールが溜まりやすくなり、ベース電位がグランド電位から浮き上がって、オン耐圧の向上が抑制されたと考えられる。
 図15を参照して、コンタクト用の凹部CH1を形成する際のエッチングダメージや、コンタクト用の凹部CH1内に形成されたバリアメタル(図示せず)の半導体基板の主表面におけるシリサイド化により、コレクタ領域CRの表面に結晶欠陥DFが発生する。この結晶欠陥DFの個数はコレクタコンタクト面積の大きさに比例する。この結晶欠陥DFにおいてホールと電子との再結合が生じてホールが消滅するため、図16に示すように、結晶欠陥DFの個数に応じてプラグ層PR1からコレクタ領域CRを通じてドリフト領域DRIに注入されるホールの数(密度)が変化する。このホール密度に応じて伝導率変調によるドリフト領域DRIの抵抗が変化して電流が増減すると考えられる。金属シリサイドを適用した場合でもエッチングダメージによる結晶欠陥の効果が残り、程度は小さいが同様の効果を得ることができる。
 つまり、コレクタコンタクト面積が大きいと、コレクタ領域CRの表面における結晶欠陥DFの個数が多くなり、プラグ層PR1からコレクタ領域CRを通じてドリフト領域DRIに注入されるホールの数が減るため、電流の向上が抑制されたと考えられる。
 図17を参照して、一方、コレクタコンタクト面積が小さいと、コレクタ領域CRの表面における結晶欠陥DFの個数が少なくなり、プラグ層PR1からコレクタ領域CRを通じてドリフト領域DRIに注入されるホールの数が増える。これにより、伝導率変調によるドリフト領域DRIの抵抗が大幅に低下して電流が増加すると考えられる。
 次に、本実施の形態の作用効果について説明する。
 上述したように本実施の形態においては、比(コレクタコンタクト面積/コレクタ活性面積:SB12/SA12)が比(p+領域上コンタクト面積/p+領域面積:SB11/SA11)よりも大きくなっている。このため、High Sideなどの耐圧重視のIGBTにおいてはオン耐圧を向上することができる。つまり、素子サイズの変更や注入レイアウトの変更、不純物注入条件の変更といった大規模な変更と最適化を行なうことなく、コンタクトサイズの変更といった小規模な変更で、開発上の負荷を小さく抑えつつ、ラテラルIGBTにおける電流向上やオン耐圧向上といった特性改善を行なうことが可能となる。
 なおコンタクトサイズの変更は、コンタクトマスクの変更だけでコントロールすることができるため、コンタクトマスクの試作後の再調整も低コストで可能である。
 また本実施の形態においては、図3および図4に示すようにラインコンタクト構造が途中で途切れることなく連続的に延びている。これにより、コンタクト用の凹部CH1、CH2の位置ズレ、寸法ズレによる特性のバラツキを抑制することができる。
 上記のIGBTにおいては、コレクタ側とエミッタ側との双方のコンタクト用の凹部CH1、CH2がラインコンタクト構造を有している。このようにラインコンタクト構造を用いることでホールコンタクト構造を用いた場合よりもコンタクト面積を大きくすることができ、IGBTの特性のコントロール幅を拡大することができる。
 また本実施の形態のIGBTにおいては、図18に示すようにプラグ層PR1とp+コレクタ領域CRとの接続部の線幅WAは、プラグ層PR2とp+ベースコンタクト領域BCRとの接続部の線幅WBよりも大きいことが好ましい。
 また本実施の形態のIGBTにおいては、図19に示すようにコレクタ側のコンタクト用の凹部CH1がラインコンタクト構造を有し、エミッタ側のコンタクト用の凹部CH2がホールコンタクト構造を有していてもよい。この場合においても、コレクタ側のコンタクト用の凹部CH1がラインコンタクト構造を有しているため、ホールコンタクト構造を用いた場合よりもコンタクト面積を大きくすることができ、IGBTの特性のコントロール幅を拡大することができる。
 また本実施の形態のIGBTにおいては、図20に示すようにコレクタ側のコンタクト用の凹部CH1がラインコンタクト構造を有し、エミッタ側のコンタクト用の凹部CH2が分割ラインコンタクト構造を有していてもよい。ここで分割ラインコンタクト構造とは、エミッタ側のコンタクト用の凹部CH2が、互いに分離され、かつ直列に配置された複数のラインコンタクト部CH2aを有するコンタクト構造のことである。複数のラインコンタクト部CH2aの各々は、ラインコンタクト構造を有している。つまり複数のラインコンタクト部CH2aの各々は、図20に示す平面視において略矩形の形状を有し、かつ平面視における一方の辺の長さが他方の辺の長さの2倍以上長い構造を有している。この場合においても、コレクタ側のコンタクト用の凹部CH1がラインコンタクト構造を有しているため、分割ラインコンタクト構造を用いた場合よりもコンタクト面積を大きくすることができ、IGBTの特性のコントロール幅を拡大することができる。
 また本実施の形態のIGBTにおいては、図21に示すようにコレクタ側のコンタクト用の凹部CH1が分割ラインコンタクト構造を有し、エミッタ側のコンタクト用の凹部CH2がホールコンタクト構造を有していてもよい。この場合においても、コレクタ側のコンタクト用の凹部CH1が分割ラインコンタクト構造を有しているため、ホールコンタクト構造を用いた場合よりもコンタクト面積を大きくすることができ、IGBTの特性のコントロール幅を拡大することができる。
 また本実施の形態のIGBTにおいては、図22に示すようにコレクタ側とエミッタ側との双方のコンタクト用の凹部CH1、CH2が共にホールコンタクト構造を有していてもよい。この場合、コレクタ側のコンタクト用の凹部CH1のホールピッチPAが、エミッタ側のコンタクト用の凹部CH2のホールピッチPBよりも小さいことが好ましい。この場合においても、コレクタ側のコンタクト用の凹部CH1のホールピッチPAが小さいため、ホールピッチが大きい場合よりもコンタクト面積を大きくすることができ、IGBTの特性のコントロール幅を拡大することができる。なお、この構成においてはコレクタ側のコンタクト用の凹部CH1の面積とエミッタ側のコンタクト用の凹部CH2の面積とは同じであることが好ましい。
 また本実施の形態のIGBTにおいては、図23に示すようにコレクタ側とエミッタ側との双方のコンタクト用の凹部CH1、CH2が共にホールコンタクト構造を有していてもよい。この場合、コレクタ側のコンタクト用の凹部CH1のホールの直径DAが、エミッタ側のコンタクト用の凹部CH2のホールの直径DBよりも大きいことが好ましい。この場合においても、コレクタ側のコンタクト用の凹部CH1のホールの直径DAが大きいため、ホールの直径が小さい場合よりもコンタクト面積を大きくすることができ、IGBTの特性のコントロール幅を拡大することができる。なお、この構成においてはコレクタ側のコンタクト用の凹部CH1のホールピッチとエミッタ側のコンタクト用の凹部CH2のホールピッチとは同じであることが好ましい。
 また本実施の形態のIGBTにおいては、図24に示すようにコレクタ側のコンタクト用の凹部CH1が2列のラインコンタクト構造を有し、エミッタ側のコンタクト用の凹部CH2が1列のラインコンタクト構造を有していてもよい。この場合においても、コレクタ側のコンタクト用の凹部CH1の列数がエミッタ側のコンタクト用の凹部CH2の列数よりも多いため、コレクタ側のコンタクト面積を大きくすることができ、IGBTの特性のコントロール幅を拡大することができる。なお、この構成においてはコレクタ側のコンタクト用の凹部CH1が2列で、エミッタ側のコンタクト用の凹部CH2が1列の場合に限定されず、コレクタ側のコンタクト用の凹部CH1のラインコンタクト構造の列数がエミッタ側のコンタクト用の凹部CH2のラインコンタクト構造の列数よりも多ければよい。またコレクタ側のコンタクト用の凹部CH1は2列の分割ラインコンタクト構造、2列のホールコンタクト構造であってもよく、エミッタ側のコンタクト用の凹部CH2は1列の分割ラインコンタクト構造、1列のホールコンタクト構造であってもよい。
 上記の図18~図24に示すIGBTの構成は、図4に示すIGBTの構成と比較してコンタクト用の凹部CH1、CH2の構成において異なっており、それ以外の構成においては図4に示す構成と同じである。このため、図18~図24に示す構成のうち図4に示す構成と同一の要素については同一の符号を付し、その説明を繰り返さない。
 (実施の形態2)
 図25および図26を参照して、本実施の形態の構成は、図4に示す構成と比較して、p+コレクタ領域CRが素子分離構造ESにより間引かれている(分断されている)点において異なっている。つまり1つのIGBTにおいて、p+コレクタ領域CRが、素子分離構造ESにより分離された複数のp+コレクタ領域部分(コレクタ用活性領域)CRaから構成されている。この素子分離構造ESは、実施の形態1で説明したように、LOCOSにより形成されたシリコン酸化膜であってもよく、またSTIであってもよい。
 上記のIGBTにおいては、コレクタ側とエミッタ側との双方のコンタクト用の凹部CH1、CH2がラインコンタクト構造を有している。1つのp+コレクタ領域部分CRaに対して1つのラインコンタクト部(凹部)CH1が設けられており、p+コレクタ領域部分CRaに挟まれる素子分離構造ES上にはラインコンタクト部CH1は設けられていない。プラグ層PR1とp+コレクタ領域CRとの接続部の線幅WAは、プラグ層PR2とp+ベースコンタクト領域BCRとの接続部の線幅WBよりも大きいことが好ましい。
 なお上記以外の本実施の形態の構成は、図4に示す構成とほぼ同じであるため同一の要素については同一の符号を付し、その説明を繰り返さない。
 本実施の形態によれば、p+コレクタ領域CRが素子分離構造ESにより間引かれているため電流改善が可能となる。またフィールドマスクを変更するだけで、p+コレクタ領域CRを素子分離構造ESにより間引いた構成を製造可能であるため、低コストで上記構成を製造することができる。
 また図25および図26に示すIGBTにおいては、コレクタ側とエミッタ側との双方のコンタクト用の凹部CH1、CH2がラインコンタクト構造を有している。このようにラインコンタクト構造を用いることでホールコンタクト構造を用いた場合よりもコンタクト面積を大きくすることができ、IGBTの特性のコントロール幅を拡大することができる。
 図25および図26に示すIGBTにおいては、プラグ層PR1とp+コレクタ領域CRとの接続部の線幅WAは、プラグ層PR2とp+ベースコンタクト領域BCRとの接続部の線幅WBよりも大きいことが好ましい。これにより、さらにIGBTの特性のコントロール幅を拡大することができる。
 また図25および図26においては、エミッタ側のコンタクト用の凹部CH2がラインコンタクト構造を有する場合について説明したが、図27に示すようにホールコンタクト構造であってもよい。この場合においても、コレクタ側のコンタクト用の凹部CH1がラインコンタクト構造を有しているため、ホールコンタクト構造を用いた場合よりもコンタクト面積を大きくすることができ、IGBTの特性のコントロール幅を拡大することができる。
 また図28に示すようにコレクタ側のコンタクト用の凹部CH1がラインコンタクト構造を有し、エミッタ側のコンタクト用の凹部CH2が分割ラインコンタクト構造を有していてもよい。つまりエミッタ側のコンタクト用の凹部CH2は、互いに分離され、かつ直列に配置された複数のラインコンタクト部CH2aを有する分割ラインコンタクト構造を有している。この場合においても、コレクタ側のコンタクト用の凹部CH1がラインコンタクト構造を有しているため、分割ラインコンタクト構造を用いた場合よりもコンタクト面積を大きくすることができ、IGBTの特性のコントロール幅を拡大することができる。
 また図29および図30に示すようにコレクタ側のコンタクト用の凹部CH1が分割ラインコンタクト構造を有し、エミッタ側のコンタクト用の凹部CH2がホールコンタクト構造を有していてもよい。この場合においても、コレクタ側のコンタクト用の凹部CH1が分割ラインコンタクト構造を有しているため、ホールコンタクト構造を用いた場合よりもコンタクト面積を大きくすることができ、IGBTの特性のコントロール幅を拡大することができる。ここでの分割ラインコンタクト構造とは、1つのp+コレクタ領域部分CRaに対して、互いに分離され、かつ互いに直列に配置された複数のラインコンタクト部CH1を有するコンタクト構造のことである。
 また図31および図32に示すようにコレクタ側とエミッタ側との双方のコンタクト用の凹部CH1、CH2が共にホールコンタクト構造を有していてもよい。この場合、コレクタ側のコンタクト用の凹部CH1のホールピッチPAが、エミッタ側のコンタクト用の凹部CH2のホールピッチPBよりも小さいことが好ましい。この場合においても、コレクタ側のコンタクト用の凹部CH1のホールピッチPAが小さいため、ホールピッチが大きい場合よりもコンタクト面積を大きくすることができ、IGBTの特性のコントロール幅を拡大することができる。
 また図33および図34に示すようにコレクタ側とエミッタ側との双方のコンタクト用の凹部CH1、CH2が共にホールコンタクト構造を有していてもよい。この場合、コレクタ側のコンタクト用の凹部CH1のホールの直径DAが、エミッタ側のコンタクト用の凹部CH2のホールの直径DBよりも大きいことが好ましい。この場合においても、コレクタ側のコンタクト用の凹部CH1のホールの直径DAが大きいため、ホールの直径が小さい場合よりもコンタクト面積を大きくすることができ、IGBTの特性のコントロール幅を拡大することができる。
 また図35に示すようにコレクタ側のコンタクト用の凹部CH1が2列のラインコンタクト構造を有し、エミッタ側のコンタクト用の凹部CH2が1列のラインコンタクト構造を有していてもよい。この場合においても、コレクタ側のコンタクト用の凹部CH1の列数がエミッタ側のコンタクト用の凹部CH2の列数よりも多いため、コレクタ側のコンタクト面積を大きくすることができ、IGBTの特性のコントロール幅を拡大することができる。なお、この構成においてはコレクタ側のコンタクト用の凹部CH1が2列で、エミッタ側のコンタクト用の凹部CH2が1列の場合に限定されず、コレクタ側のコンタクト用の凹部CH1のラインコンタクト構造の列数がエミッタ側のコンタクト用の凹部CH2のラインコンタクト構造の列数よりも多ければよい。またコレクタ側のコンタクト用の凹部CH1は2列の分割ラインコンタクト構造、2列のホールコンタクト構造であってもよく、エミッタ側のコンタクト用の凹部CH2は1列の分割ラインコンタクト構造、1列のホールコンタクト構造であってもよい。
 (実施の形態3)
 図36および図37を参照して、本実施の形態の構成は、図4に示す構成と比較して、p+コレクタ領域CRがn+分離領域NHRにより間引かれている(分断されている)点において異なっている。つまり1つのIGBTにおいて、p+コレクタ領域CRが、複数のn+分離領域NHRにより分離された複数のp+コレクタ領域部分CRaから構成されている。複数のn+分離領域NHRの各々は、n型領域NRよりも高いn型不純物濃度を有している。
 上記のIGBTにおいては、コレクタ側とエミッタ側との双方のコンタクト用の凹部CH1、CH2がラインコンタクト構造を有している。1つのp+コレクタ領域部分CRaに対して1つのラインコンタクト部CH1が設けられており、p+コレクタ領域部分CRaに挟まれるn+分離領域NHR上にはラインコンタクト部CH1は設けられていない。プラグ層PR1とp+コレクタ領域CRとの接続部の線幅WAは、プラグ層PR2とp+ベースコンタクト領域BCRとの接続部の線幅WBよりも大きいことが好ましい。
 なお上記以外の本実施の形態の構成は、図4に示す構成とほぼ同じであるため同一の要素については同一の符号を付し、その説明を繰り返さない。
 本実施の形態によれば、p+コレクタ領域CRが複数のn+分離領域NHRにより間引かれているためIGBTの特性のコントロール幅を拡大することができる。またp+コレクタ領域CRおよびn+分離領域NHR形成のための不純物注入マスクを変更するだけで、p+コレクタ領域CRをn+分離領域NHRにより間引いた構成を製造可能であるため、低コストで上記構成を製造することができる。
 また図36および図37に示すIGBTにおいては、コレクタ側とエミッタ側との双方のコンタクト用の凹部CH1、CH2がラインコンタクト構造を有している。このようにラインコンタクト構造を用いることでホールコンタクト構造を用いた場合よりもコンタクト面積を大きくすることができ、IGBTの特性のコントロール幅を拡大することができる。
 図36および図37に示すIGBTにおいては、プラグ層PR1とp+コレクタ領域CRとの接続部の線幅WAは、プラグ層PR2とp+ベースコンタクト領域BCRとの接続部の線幅WBよりも大きいことが好ましい。これにより、さらにIGBTの特性のコントロール幅を拡大することができる。
 なお図27~図35の構成の各々も、p+コレクタ領域CRが複数のn+分離領域NHRにより間引かれた構成であってもよい。
 (実施の形態4)
 図38を参照して、本実施の形態の半導体装置に含まれるIGBTはたとえばLow SideのIGBTなどの電流重視の素子である。本実施の形態のIGBTの構成は、図4に示す構成と比較して、上記の比(p+領域上コンタクト面積/p+領域面積:SB11/SA11)が比(コレクタコンタクト面積/コレクタ活性面積:SB12/SA12)よりも大きい点において異なっている。
 つまり、電流重視のIGBTの半導体基板SUBの主表面におけるp+ベースコンタクト領域BCRの面積(p+領域面積:SA11)に対するp+ベースコンタクト領域BCRとプラグ層PR2とのエミッタ接続部の面積(p+領域上コンタクト面積:SB11)の比(p+領域上コンタクト面積/p+領域面積:SB11/SA11)は、同じIGBTの半導体基板SUBの主表面におけるp+コレクタ領域CRの面積(コレクタ活性面積:SA12)に対するp+コレクタ領域CRとプラグ層PR1とのコレクタ接続部の面積(コレクタコンタクト面積:SB12)の比(コレクタコンタクト面積/コレクタ活性面積:SB12/SA12)よりも大きい。
 ここで、電流重視のIGBTにおけるp+コレクタ領域CRとプラグ層PR1とのコレクタ接続部(コンタクト用の凹部CH1における接続部)はホールコンタクト構造を有している。また同じIGBTにおけるp+ベースコンタクト領域BCRとプラグ層PR2とのエミッタ接続部(コンタクト用の凹部CH2における接続部)はラインコンタクト構造を有している。
 また1つのp+コレクタ領域CRは、互いに分断された複数のコンタクト用の凹部CH1内のプラグ層PR1に接続されている。また1つのp+コレクタ領域CRの上に設けられたコンタクト用の凹部CH1の数(コンタクトの個数)は、1つのp+ベースコンタクト領域(ベース用活性領域)BCRの上に設けられたコンタクト用の凹部CH2の数(コンタクトの個数)よりも多いことが好ましい。本実施の形態では、1つのp+コレクタ領域CRの上に設けられたコンタクト用の凹部CH1の個数はたとえば19個であり、1つのp+ベースコンタクト領域BCRの上に設けられたコンタクト用の凹部CH2の個数はたとえば1個であるが、これに限定されるものではない。
 なお上記以外の本実施の形態の構成は、図4に示す構成とほぼ同じであるため同一の要素については同一の符号を付し、その説明を繰り返さない。
 次に、本実施の形態の作用効果について説明する。
 上述したように本実施の形態においては、比(p+領域上コンタクト面積/p+領域面積:SB11/SA11)が比(コレクタコンタクト面積/コレクタ活性面積:SB12/SA12)よりも大きくなっている。このため、図7および図8に示したようにLow Sideなどの電流重視のIGBTにおいて線形電流および飽和電流を向上することができる。つまり、素子サイズの変更や注入レイアウトの変更、不純物注入条件の変更といった大規模な変更と最適化を行なうことなく、コンタクトサイズの変更といった小規模な変更で、開発上の負荷を小さく抑えつつ、ラテラルIGBTにおける電流向上やオン耐圧向上といった特性改善を行なうことが可能となる。
 なおコンタクトサイズの変更は、コンタクトマスクの変更だけでコントロールすることができるため、コンタクトマスクの試作後の再調整も低コストで可能である。
 また本実施の形態においては、1つのp+コレクタ領域CRに対して複数のコンタクト用の凹部CH1が設けられているため、電流経路を分散できると共に、少数キャリアの注入が分散できる。以下、そのことを図39~図42を用いて説明する。
 図39を参照して、1つのp+コレクタ領域CRに対して1つのコンタクト用の凹部CH1が設けられている場合、1つのコンタクト用の凹部CH1に電流が集中してしまう。これに対して図40に示すように1つのp+コレクタ領域CRに対して複数のコンタクト用の凹部CH1が設けられている場合には、複数のコンタクト用の凹部CH1の各々に電流経路が分散する。このため効率的に電流を流すことが可能となる。
 また図41を参照して、1つのp+コレクタ領域CRに対して1つのコンタクト用の凹部CH1が設けられている場合、少数キャリアが注入される領域も1つとなり局所的となり、電流集中が生じる。これに対して、図42に示すように1つのp+コレクタ領域CRに対して複数のコンタクト用の凹部CH1が設けられている場合には、複数のコンタクト用の凹部CH1の各々から少数キャリアが注入される。このため、少数キャリアの注入が分散されて均一化される。
 上記のIGBTにおいては、コレクタ側のコンタクト用の凹部CH1がホールコンタクト構造を有し、エミッタ側のコンタクト用の凹部CH2がラインコンタクト構造を有しているが、図43に示すように、コレクタ側のコンタクト用の凹部CH1が分割ラインコンタクト構造を有し、エミッタ側のコンタクト用の凹部CH2がラインコンタクト構造を有していてもよい。この場合においても、コレクタ側のコンタクト用の凹部CH1が分割ラインコンタクト構造を有しているため、ラインコンタクト構造を用いた場合よりもコンタクト面積を小さくすることができ、IGBTの特性のコントロール幅を拡大することができる。
 また本実施の形態のIGBTにおいては、図44に示すように、コレクタ側のコンタクト用の凹部CH1がホールコンタクト構造を有し、エミッタ側のコンタクト用の凹部CH2が分割ラインコンタクト構造を有していてもよい。つまりエミッタ側のコンタクト用の凹部CH2は、互いに分離され、かつ直列に配置された複数のラインコンタクト部CH2aを有する分割ラインコンタクト構造を有している。この場合においても、コレクタ側のコンタクト用の凹部CH1がホールコンタクト構造を有しているため、分割ラインコンタクト構造を用いた場合よりもコンタクト面積を小さくすることができ、IGBTの特性のコントロール幅を拡大することができる。
 また本実施の形態のIGBTにおいては、図45に示すようにコレクタ側とエミッタ側との双方のコンタクト用の凹部CH1、CH2が共にホールコンタクト構造を有していてもよい。この場合、コレクタ側のコンタクト用の凹部CH1のホールピッチPAが、エミッタ側のコンタクト用の凹部CH2のホールピッチPBよりも大きいことが好ましい。この場合においても、コレクタ側のコンタクト用の凹部CH1のホールピッチPAが大きいため、ホールピッチが小さい場合よりもコンタクト面積を小さくすることができ、IGBTの特性のコントロール幅を拡大することができる。なお、この構成においてはコレクタ側のコンタクト用の1つの凹部CH1の面積とエミッタ側のコンタクト用の1つの凹部CH2の面積とは同じであることが好ましい。
 また本実施の形態のIGBTにおいては、図46に示すようにコレクタ側とエミッタ側との双方のコンタクト用の凹部CH1、CH2が共にホールコンタクト構造を有していてもよい。この場合、コレクタ側のコンタクト用の凹部CH1のホールの直径DAが、エミッタ側のコンタクト用の凹部CH2のホールの直径DBよりも小さいことが好ましい。この場合においても、コレクタ側のコンタクト用の凹部CH1のホールの直径DAが小さいため、ホールの直径が大きい場合よりもコンタクト面積を小さくすることができ、IGBTの特性のコントロール幅を拡大することができる。なお、この構成においてはコレクタ側のコンタクト用の凹部CH1のホールピッチとエミッタ側のコンタクト用の凹部CH2のホールピッチとは同じであることが好ましい。
 また本実施の形態のIGBTにおいては、図47に示すようにコレクタ側のコンタクト用の凹部CH1が1列のラインコンタクト構造を有し、エミッタ側のコンタクト用の凹部CH2が2列のラインコンタクト構造を有していてもよい。この場合においても、エミッタ側のコンタクト用の凹部CH2の列数がコレクタ側のコンタクト用の凹部CH1の列数よりも多いため、エミッタ側のコンタクト面積を大きくすることができ、IGBTの特性のコントロール幅を拡大することができる。なお、この構成においてはコレクタ側のコンタクト用の凹部CH1が1列で、エミッタ側のコンタクト用の凹部CH2が2列の場合に限定されず、エミッタ側のコンタクト用の凹部CH2のラインコンタクト構造の列数がコレクタ側のコンタクト用の凹部CH1のラインコンタクト構造の列数よりも多ければよい。またコレクタ側のコンタクト用の凹部CH1は1列の分割ラインコンタクト構造、1列のホールコンタクト構造であってもよく、エミッタ側のコンタクト用の凹部CH2は2列の分割ラインコンタクト構造、2列のホールコンタクト構造であってもよい。
 (実施の形態5)
 図48および図49を参照して、本実施の形態の構成は、図38に示す構成と比較して、p+コレクタ領域CRが素子分離構造ESにより間引かれている(分断されている)点において異なっている。つまり1つのIGBTにおいて、p+コレクタ領域CRが、互いに分離された複数のp+コレクタ領域部分CRa(コレクタ用活性領域)から構成されている。p+コレクタ領域CRは、図48および図49に示すように素子分離構造ESにより間引かれてもよく、また図56および図57に示すように複数のn+分離領域NHRにより間引かれてもよい。また素子分離構造ESは、実施の形態1で説明したように、LOCOSにより形成されたシリコン酸化膜であってもよく、またSTIであってもよい。
 また1つのp+コレクタ領域部分CRaは、互いに分断された複数のコンタクト用の凹部CH1内のプラグ層PR1に接続されている。また1つのp+コレクタ領域部分CRaの上に設けられたコンタクト用の凹部CH1の数(コンタクトの個数)は、1つのp+ベースコンタクト領域(ベース用活性領域)BCRの上に設けられたコンタクト用の凹部CH2の数(コンタクトの個数)よりも多いことが好ましい。本実施の形態では、1つのp+コレクタ領域部分CRaの上に設けられたコンタクト用の凹部CH1の個数はたとえば3個であり、1つのp+ベースコンタクト領域BCRの上に設けられたコンタクト用の凹部CH2の個数はたとえば1個であるが、これに限定されるものではない。
 また上記のIGBTにおいては、コレクタ側とエミッタ側との双方のコンタクト用の凹部CH1、CH2がホールコンタクト構造を有している。
 なお上記以外の本実施の形態の構成は、図38に示す構成とほぼ同じであるため同一の要素については同一の符号を付し、その説明を繰り返さない。
 本実施の形態によれば、p+コレクタ領域CRが素子分離構造ESにより間引かれているため電流改善が可能となる。またフィールドマスクを変更するだけで、p+コレクタ領域CRを素子分離構造ESにより間引いた構成を製造可能であるため、低コストで上記構成を製造することができる。
 また本実施の形態においては、1つのp+コレクタ領域部分CRaに対して複数のコンタクト用の凹部CH1が設けられているため、図39~図42で説明したように電流経路を分散できると共に、少数キャリアの注入が分散できる。
 上記のIGBTにおいては、コレクタ側とエミッタ側との双方のコンタクト用の凹部CH1、CH2がホールコンタクト構造を有しているが、図50に示すように、コレクタ側のコンタクト用の凹部CH1がホールコンタクト構造を有し、エミッタ側のコンタクト用の凹部CH2がラインコンタクト構造を有していてもよい。この場合においても、コレクタ側のコンタクト用の凹部CH1がホールコンタクト構造を有しているため、ラインコンタクト構造を用いた場合よりもコンタクト面積を小さくすることができ、IGBTの特性のコントロール幅を拡大することができる。
 また本実施の形態のIGBTにおいては、図51に示すように、コレクタ側のコンタクト用の凹部CH1が分割ラインコンタクト構造を有し、エミッタ側のコンタクト用の凹部CH2がラインコンタクト構造を有していてもよい。この場合においても、コレクタ側のコンタクト用の凹部CH1が分割ラインコンタクト構造を有しているため、ラインコンタクト構造を用いた場合よりもコンタクト面積を小さくすることができ、IGBTの特性のコントロール幅を拡大することができる。
 また本実施の形態のIGBTにおいては、図52に示すように、コレクタ側のコンタクト用の凹部CH1がホールコンタクト構造を有し、エミッタ側のコンタクト用の凹部CH2が分割ラインコンタクト構造を有していてもよい。つまりエミッタ側のコンタクト用の凹部CH2は、互いに分離され、かつ直列に配置された複数のラインコンタクト部CH2aを有する分割ラインコンタクト構造を有している。この場合においても、コレクタ側のコンタクト用の凹部CH1がホールコンタクト構造を有しているため、分割ラインコンタクト構造を用いた場合よりもコンタクト面積を小さくすることができ、IGBTの特性のコントロール幅を拡大することができる。
 また本実施の形態のIGBTにおいては、図53に示すようにコレクタ側とエミッタ側との双方のコンタクト用の凹部CH1、CH2が共にホールコンタクト構造を有していてもよい。この場合、コレクタ側のコンタクト用の凹部CH1のホールピッチPAが、エミッタ側のコンタクト用の凹部CH2のホールピッチPBよりも大きいことが好ましい。この場合においても、コレクタ側のコンタクト用の凹部CH1のホールピッチPAが大きいため、ホールピッチが小さい場合よりもコンタクト面積を小さくすることができ、IGBTの特性のコントロール幅を拡大することができる。なお、この構成においてはコレクタ側のコンタクト用の1つの凹部CH1の面積とエミッタ側のコンタクト用の1つの凹部CH2の面積とは同じであることが好ましい。
 また本実施の形態のIGBTにおいては、図54に示すようにコレクタ側とエミッタ側との双方のコンタクト用の凹部CH1、CH2が共にホールコンタクト構造を有していてもよい。この場合、コレクタ側のコンタクト用の凹部CH1のホールの直径DAが、エミッタ側のコンタクト用の凹部CH2のホールの直径DBよりも小さいことが好ましい。この場合においても、コレクタ側のコンタクト用の凹部CH1のホールの直径DAが小さいため、ホールの直径が大きい場合よりもコンタクト面積を小さくすることができ、IGBTの特性のコントロール幅を拡大することができる。なお、この構成においてはコレクタ側のコンタクト用の凹部CH1のホールピッチとエミッタ側のコンタクト用の凹部CH2のホールピッチとは同じであることが好ましい。
 また本実施の形態のIGBTにおいては、図55に示すようにコレクタ側のコンタクト用の凹部CH1が1列のラインコンタクト構造を有し、エミッタ側のコンタクト用の凹部CH2が2列のラインコンタクト構造を有していてもよい。この場合においても、エミッタ側のコンタクト用の凹部CH2の列数がコレクタ側のコンタクト用の凹部CH1の列数よりも多いため、エミッタ側のコンタクト面積を大きくすることができ、IGBTの特性のコントロール幅を拡大することができる。なお、この構成においてはコレクタ側のコンタクト用の凹部CH1が1列で、エミッタ側のコンタクト用の凹部CH2が2列の場合に限定されず、エミッタ側のコンタクト用の凹部CH2のラインコンタクト構造の列数がコレクタ側のコンタクト用の凹部CH1のラインコンタクト構造の列数よりも多ければよい。またコレクタ側のコンタクト用の凹部CH1は1列の分割ラインコンタクト構造、1列のホールコンタクト構造であってもよく、エミッタ側のコンタクト用の凹部CH2は2列の分割ラインコンタクト構造、2列のホールコンタクト構造であってもよい。
 また図50~図55の構成においては、p+コレクタ領域CRは素子分離構造ESにより間引かれた構成について説明したが、図50~図55の構成も図56および図57に示すように複数のn+分離領域NHRにより間引かれていてもよい。
 (実施の形態6)
 図58を参照して、本実施の形態の構成は、図20、図28、図44および図52に示す構成と同様に、エミッタ側のコンタクト用の凹部CH2が、互いに分離され、かつ直列に配置された複数のラインコンタクト部CH2aを有する分割ラインコンタクト構造となっている。複数のラインコンタクト部CH2aの各々は、ラインコンタクト構造を有している。つまり複数のラインコンタクト部CH2aの各々は、図58に示す平面視において略矩形の形状を有し、かつ平面視における一方の辺の長さLBaが他方の辺の長さWBaの2倍以上長い構造を有している。平面視において互いに隣り合うラインコンタクト部CH2aの間に位置する分離部分SRの真下領域にはn型領域(n+エミッタ領域ER)のみが位置している。
 なお、上記以外の本実施の形態の構成は、図20、図28、図44および図52のそれぞれに示す構成とほぼ同じであるため同一の要素については同一の符号を付し、その説明を繰り返さない。
 本実施の形態においては、エミッタ側のコンタクト用の凹部CH2が複数のラインコンタクト部CH2aに分割されている。ここで、長いラインコンタクト構造の場合、フォトレジストの収縮などによりラインコンタクト構造の長手方向における端部と中央部との線幅の差が大きくなる。しかし本実施の形態では、分割された各ラインコンタクト部CH2aの長手方向の寸法は、分割されていないコンタクト用の凹部CH2の長手方向の長さよりも短い。このため、コンタクト用の凹部CH2の仕上がりサイズの安定性を高めることができる。
 また本実施の形態では、隣り合うラインコンタクト部CH2aの間の分離部分SRの真下領域にはn型領域(n+エミッタ領域ER)のみが位置している。このため、コンタクト用の凹部CH2の位置ズレ、寸法ズレによるオン耐圧のバラツキを抑制することができる。
 また図59に示すように、平面視において互いに隣り合うラインコンタクト部CH2aの間に位置する分離部分SRの真下領域にはp型領域(p+ベースコンタクト領域BCR)のみが位置していてもよい。この場合、コンタクト用の凹部CH2の位置ズレ、寸法ズレによる電流のバラツキを抑制することができる。
 また図60~図62に示すように、平面視において互いに隣り合うラインコンタクト部CH2aの間に位置する分離部分SRの真下領域にはn型領域(n+エミッタ領域ER)とp型領域(p+ベースコンタクト領域BCR)との双方が位置していてもよい。
 図60に示すように、分離部分SRの真下に位置するn型領域(n+エミッタ領域ER)の部分の面積が、分離部分SRの真下に位置するp型領域(p+ベースコンタクト領域BCR)の部分の面積よりも大きくてもよい。この場合には、図58の構成と同様、コンタクト用の凹部CH2の位置ズレ、寸法ズレによるオン耐圧のバラツキを抑制することができる。
 また図61に示すように、分離部分SRの真下に位置するp型領域(p+ベースコンタクト領域BCR)の部分の面積が、分離部分SRの真下に位置するn型領域(n+エミッタ領域ER)の部分の面積よりも大きくてもよい。この場合には、図59の構成と同様、コンタクト用の凹部CH2の位置ズレ、寸法ズレによる電流のバラツキを抑制することができる。
 また図62に示すように、分離部分SRの真下に位置するn型領域(n+エミッタ領域ER)の部分の面積と、分離部分SRの真下に位置するp型領域(p+ベースコンタクト領域BCR)の部分の面積とが同じであってもよい。この場合には、図59の構成と同様、コンタクト用の凹部CH2の位置ズレ、寸法ズレによるオン耐圧のバラツキと電流のバラツキとを抑制することができる。
 上記の実施の形態においては、エミッタ側のコンタクト用の凹部CH2が複数のラインコンタクト部CH2aを有する場合について説明したが、コレクタ側のコンタクト用の凹部CH1が、互いに分離され、かつ直列に配置された複数のラインコンタクト部を有していてもよい。
 なお図3においてはゲート電極層GEおよびn+エミッタ領域ERが、p+コレクタ領域CRと直線状に並走する構成について説明したが、ゲート電極層GEおよびn+エミッタ領域ERは、平面視においてp+コレクタ領域CRの周囲を取り囲むように配置されていてもよい。また耐圧重視のIGBTと電流重視のIGBTとはシリコン単結晶基板に形成されてもよく、またSOI(Silicon on Insulator)基板に形成されてもよい。
 また上記の実施の形態においては、耐圧重視のIGBTと電流重視のIGBTとを有するものとしてPDPスキャンドライバの回路を有する半導体装置について説明したが、実施の形態に係る半導体装置に限定されるものではなく、これ以外のIGBTを有する半導体装置に適用することができる。
 以上、本発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。
 BR p型領域、CH1,CH2 凹部、CH2a ラインコンタクト部、CR コレクタ領域、CRa コレクタ領域部分、DF 結晶欠陥、DRI ドリフト領域、ER エミッタ領域、ES 素子分離構造、GE ゲート電極層、GI ゲート絶縁膜、II 層間絶縁膜、LC ロジック回路部、LS レベルシフタ部、MI 金属配線、NHR 分離領域、NR n型領域、OC 出力回路部、PC 保護回路部、PR1,PR2 プラグ層、SR 分離部分、SUB 半導体基板。

Claims (28)

  1.  主表面を有する半導体基板(SUB)と、
     前記主表面に形成された絶縁ゲートバイポーラトランジスタとを備え、
     前記絶縁ゲートバイポーラトランジスタは、
     前記主表面に形成された第1導電型のコレクタ領域(CR)と、
     前記コレクタ領域(CR)と分かれて前記主表面に形成された第1導電型のベース領域(BR、BCR)と、
     前記ベース領域(BR、BCR)内の前記主表面に形成された第2導電型のエミッタ領域(ER)とを含み、さらに
     前記絶縁ゲートバイポーラトランジスタの前記ベース領域(BR、BCR)および前記エミッタ領域(ER)の双方に接続され、かつ前記ベース領域(BR、BCR)および前記エミッタ領域(ER)の双方との間でエミッタ接続部を構成するエミッタ用導電層(PR2)と、
     前記絶縁ゲートバイポーラトランジスタの前記コレクタ領域(CR)に接続され、かつ前記コレクタ領域(CR)との間でコレクタ接続部を構成するコレクタ用導電層(PR1)とを備え、
     前記コレクタ用導電層(PR1)は、前記コレクタ領域(CR)に含まれる1つのコレクタ用活性領域(CRa)に対して複数のコンタクトで接続されており、
     1つの前記コレクタ用活性領域(CRa)に対する前記コレクタ用導電層(PR1)の前記コンタクトの個数は、前記ベース領域(BR、BCR)に含まれる1つのベース用活性領域(BCR)に対する前記エミッタ用導電層(PR2)のコンタクトの個数よりも多い、半導体装置。
  2.  前記ベース領域(BR、BCR)の前記主表面における面積(SA11)に対する前記ベース領域(BR、BCR)と前記エミッタ用導電層(PR2)との前記エミッタ接続部の面積(SB11)の比(SB11/SA11)が、前記コレクタ領域(CR)の前記主表面における面積(SA12)に対する前記コレクタ領域(CR)と前記コレクタ用導電層(PR1)との前記コレクタ接続部の面積(SB12)の比(SB12/SA12)よりも大きい、請求項1に記載の半導体装置。
  3.  前記コレクタ接続部はホールコンタクト構造を有し、前記エミッタ接続部はラインコンタクト構造を有している、請求項1に記載の半導体装置。
  4.  前記コレクタ接続部は、互いに分離され、かつ互いに直列に配置された複数のラインコンタクト部(CH1a)を有する分割ラインコンタクト構造を有し、
     前記エミッタ接続部はラインコンタクト構造を有している、請求項1に記載の半導体装置。
  5.  前記コレクタ接続部はホールコンタクト構造を有し、
     前記エミッタ接続部は、互いに分離され、かつ互いに直列に配置された複数のラインコンタクト部(CH2a)を有する分割ラインコンタクト構造を有している、請求項1に記載の半導体装置。
  6.  前記コレクタ接続部および前記エミッタ接続部の各々はホールコンタクト構造を有し、
     前記コレクタ接続部の前記ホールコンタクト構造におけるホールピッチは前記エミッタ接続部の前記ホールコンタクト構造におけるホールピッチよりも大きい、請求項1に記載の半導体装置。
  7.  前記コレクタ接続部および前記エミッタ接続部の各々はホールコンタクト構造を有し、
     前記コレクタ接続部の前記ホールコンタクト構造におけるホール径は前記エミッタ接続部の前記ホールコンタクト構造におけるホール径よりも小さい、請求項1に記載の半導体装置。
  8.  前記主表面に形成された素子分離構造(ES)をさらに備え、
     前記コレクタ領域(CR)は、前記素子分離構造(ES)によって互いに分離された複数のコレクタ用活性領域(CRa)を含む、請求項1に記載の半導体装置。
  9.  前記主表面に形成された第2導電型の不純物領域(NHR)をさらに備え、
     前記コレクタ領域(CR)は、前記不純物領域(NHR)によって互いに分離された複数のコレクタ用活性領域(CRa)を含む、請求項1に記載の半導体装置。
  10.  前記エミッタ接続部はラインコンタクト構造を有し、
     前記エミッタ接続部の前記ラインコンタクト構造は、互いに分離され、かつ互いに直列に配置された複数のラインコンタクト部(CH2a)を有し、
     互いに直列に配置された前記複数のラインコンタクト部(CH2a)の間に位置する分離部分(SR)の真下には、第2導電型の前記エミッタ領域(ER)のみが位置している、請求項1に記載の半導体装置。
  11.  前記エミッタ接続部はラインコンタクト構造を有し、
     前記エミッタ接続部の前記ラインコンタクト構造は、互いに分離され、かつ互いに直列に配置された複数のラインコンタクト部(CH2a)を有し、
     互いに直列に配置された前記複数のラインコンタクト部(CH2a)の間に位置する分離部分(SR)の真下には、第1導電型の前記ベース領域(BR、BCR)と第2導電型の前記エミッタ領域(ER)とが位置しており、
     前記分離部分(SR)の真下に位置する前記エミッタ領域(ER)の前記主表面における面積は、前記分離部分(SR)の真下に位置する前記ベース領域(BR、BCR)の前記主表面における面積よりも大きい、請求項1に記載の半導体装置。
  12.  前記エミッタ接続部はラインコンタクト構造を有し、
     前記エミッタ接続部の前記ラインコンタクト構造は、互いに分離され、かつ互いに直列に配置された複数のラインコンタクト部(CH2a)を有し、
     互いに直列に配置された前記複数のラインコンタクト部(CH2a)の間に位置する分離部分(SR)の真下には、第1導電型の前記ベース領域(BR、BCR)のみが位置している、請求項1に記載の半導体装置。
  13.  前記エミッタ接続部はラインコンタクト構造を有し、
     前記エミッタ接続部の前記ラインコンタクト構造は、互いに分離され、かつ互いに直列に配置された複数のラインコンタクト部(CH2a)を有し、
     互いに直列に配置された前記複数のラインコンタクト部(CH2a)の間に位置する分離部分(SR)の真下には、第1導電型の前記ベース領域(BR、BCR)と第2導電型の前記エミッタ領域(ER)とが位置しており、
     前記分離部分(SR)の真下に位置する前記ベース領域(BR、BCR)の前記主表面における面積は、前記分離部分(SR)の真下に位置する前記エミッタ領域(ER)の前記主表面における面積よりも大きい、請求項1に記載の半導体装置。
  14.  前記エミッタ接続部はラインコンタクト構造を有し、
     前記エミッタ接続部の前記ラインコンタクト構造は、互いに分離され、かつ互いに直列に配置された複数のラインコンタクト部(CH2a)を有し、
     互いに直列に配置された前記複数のラインコンタクト部(CH2a)の間に位置する分離部分(SR)の真下には、第1導電型の前記ベース領域(BR、BCR)と第2導電型の前記エミッタ領域とが位置しており、
     前記分離部分(SR)の真下に位置する前記ベース領域(BR、BCR)の前記主表面における面積は、前記分離部分(SR)の真下に位置する前記エミッタ領域(ER)の前記主表面における面積と同じである、請求項1に記載の半導体装置。
  15.  主表面を有する半導体基板(SUB)と、
     前記主表面に形成された絶縁ゲートバイポーラトランジスタとを備え、
     前記絶縁ゲートバイポーラトランジスタは、
     前記主表面に形成された第1導電型のコレクタ領域(CR)と、
     前記コレクタ領域(CR)と分かれて前記主表面に形成された第1導電型のベース領域(BR、BCR)と、
     前記ベース領域(BR、BCR)内の前記主表面に形成された第2導電型のエミッタ領域(ER)とを含み、さらに
     前記絶縁ゲートバイポーラトランジスタの前記ベース領域(BR、BCR)および前記エミッタ領域(ER)の双方に接続されたエミッタ用導電層(PR2)と、
     前記絶縁ゲートバイポーラトランジスタの前記コレクタ領域(CR)に接続されたコレクタ用導電層(PR1)とを備え、
     前記コレクタ領域(CR)の前記主表面における面積(SA12)に対する前記コレクタ領域(CR)と前記コレクタ用導電層(PR1)とのコレクタ接続部の面積(SB12)の比(SB12/SA12)が、前記ベース領域(BR、BCR)の前記主表面における面積(SA11)に対する前記ベース領域(BR、BCR)と前記エミッタ用導電層(PR2)とのエミッタ接続部の面積(SB11)の比(SB11/SA11)よりも大きい、半導体装置。
  16.  前記コレクタ接続部および前記エミッタ接続部の各々はラインコンタクト構造を有し、
     前記コレクタ接続部の前記ラインコンタクト構造における線幅は前記エミッタ接続部の前記ラインコンタクト構造における線幅よりも大きい、請求項15に記載の半導体装置。
  17.  前記コレクタ接続部はラインコンタクト構造を有し、前記エミッタ接続部はホールコンタクト構造を有している、請求項15に記載の半導体装置。
  18.  前記コレクタ接続部はラインコンタクト構造を有し、
     前記エミッタ接続部は、互いに分離され、かつ互いに直列に配置された複数のラインコンタクト部を有する分割ラインコンタクト構造を有している、請求項15に記載の半導体装置。
  19.  前記コレクタ接続部は、互いに分離され、かつ互いに直列に配置された複数のラインコンタクト部を有する分割ラインコンタクト構造を有し、
     前記エミッタ接続部はホールコンタクト構造を有している、請求項15に記載の半導体装置。
  20.  前記コレクタ接続部および前記エミッタ接続部の各々はホールコンタクト構造を有し、
     前記コレクタ接続部の前記ホールコンタクト構造におけるホールピッチは前記エミッタ接続部の前記ホールコンタクト構造におけるホールピッチよりも小さい、請求項15に記載の半導体装置。
  21.  前記コレクタ接続部および前記エミッタ接続部の各々はホールコンタクト構造を有し、
     前記コレクタ接続部の前記ホールコンタクト構造におけるホール径は前記エミッタ接続部の前記ホールコンタクト構造におけるホール径よりも大きい、請求項15に記載の半導体装置。
  22.  前記主表面に形成された素子分離構造(ES)をさらに備え、
     前記コレクタ領域(CR)は、前記素子分離構造(ES)によって互いに分離された複数のコレクタ用活性領域(CRa)を含む、請求項15に記載の半導体装置。
  23.  前記主表面に形成された第2導電型の不純物領域(NHR)をさらに備え、
     前記コレクタ領域(CR)は、前記不純物領域(NHR)によって互いに分離された複数のコレクタ用活性領域(CRa)を含む、請求項15に記載の半導体装置。
  24.  前記エミッタ接続部はラインコンタクト構造を有し、
     前記エミッタ接続部の前記ラインコンタクト構造は、互いに分離され、かつ互いに直列に配置された複数のラインコンタクト部(CH2a)を有し、
     互いに直列に配置された前記複数のラインコンタクト部(CH2a)の間に位置する分離部分(SR)の真下には、第2導電型の前記エミッタ領域(ER)のみが位置している、請求項15に記載の半導体装置。
  25.  前記エミッタ接続部はラインコンタクト構造を有し、
     前記エミッタ接続部の前記ラインコンタクト構造は、互いに分離され、かつ互いに直列に配置された複数のラインコンタクト部(CH2a)を有し、
     互いに直列に配置された前記複数のラインコンタクト部(CH2a)の間に位置する分離部分(SR)の真下には、第1導電型の前記ベース領域(BR、BCR)と第2導電型の前記エミッタ領域(ER)とが位置しており、
     前記分離部分(SR)の真下に位置する前記エミッタ領域(ER)の前記主表面における面積は、前記分離部分(SR)の真下に位置する前記ベース領域(BR、BCR)の前記主表面における面積よりも大きい、請求項15に記載の半導体装置。
  26.  前記エミッタ接続部はラインコンタクト構造を有し、
     前記エミッタ接続部の前記ラインコンタクト構造は、互いに分離され、かつ互いに直列に配置された複数のラインコンタクト部(CH2a)を有し、
     互いに直列に配置された前記複数のラインコンタクト部(CH2a)の間に位置する分離部分(SR)の真下には、第1導電型の前記ベース領域(BR、BCR)のみが位置している、請求項15に記載の半導体装置。
  27.  前記エミッタ接続部はラインコンタクト構造を有し、
     前記エミッタ接続部の前記ラインコンタクト構造は、互いに分離され、かつ互いに直列に配置された複数のラインコンタクト部(CH2a)を有し、
     互いに直列に配置された前記複数のラインコンタクト部(CH2a)の間に位置する分離部分(SR)の真下には、第1導電型の前記ベース領域(BR、BCR)と第2導電型の前記エミッタ領域(ER)とが位置しており、
     前記分離部分(SR)の真下に位置する前記ベース領域(BR、BCR)の前記主表面における面積は、前記分離部分(SR)の真下に位置する前記エミッタ領域(ER)の前記主表面における面積よりも大きい、請求項15に記載の半導体装置。
  28.  前記エミッタ接続部はラインコンタクト構造を有し、
     前記エミッタ接続部の前記ラインコンタクト構造は、互いに分離され、かつ互いに直列に配置された複数のラインコンタクト部(CH2a)を有し、
     互いに直列に配置された前記複数のラインコンタクト部(CH2a)の間に位置する分離部分(SR)の真下には、第1導電型の前記ベース領域(BR、BCR)と第2導電型の前記エミッタ領域(ER)とが位置しており、
     前記分離部分(SR)の真下に位置する前記ベース領域(BR、BCR)の前記主表面における面積は、前記分離部分(SR)の真下に位置する前記エミッタ領域(ER)の前記主表面における面積と同じである、請求項15に記載の半導体装置。
PCT/JP2012/053602 2012-02-16 2012-02-16 半導体装置 WO2013121548A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201280069809.9A CN104115275B (zh) 2012-02-16 2012-02-16 半导体装置
PCT/JP2012/053602 WO2013121548A1 (ja) 2012-02-16 2012-02-16 半導体装置
JP2013558634A JP5808827B2 (ja) 2012-02-16 2012-02-16 半導体装置
US14/378,720 US9153673B2 (en) 2012-02-16 2012-02-16 Semiconductor device
TW101150518A TWI596768B (zh) 2012-02-16 2012-12-27 Semiconductor device
US14/848,412 US20150380532A1 (en) 2012-02-16 2015-09-09 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/053602 WO2013121548A1 (ja) 2012-02-16 2012-02-16 半導体装置

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/378,720 A-371-Of-International US9153673B2 (en) 2012-02-16 2012-02-16 Semiconductor device
US14/848,412 Continuation US20150380532A1 (en) 2012-02-16 2015-09-09 Semiconductor device

Publications (1)

Publication Number Publication Date
WO2013121548A1 true WO2013121548A1 (ja) 2013-08-22

Family

ID=48983707

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/053602 WO2013121548A1 (ja) 2012-02-16 2012-02-16 半導体装置

Country Status (5)

Country Link
US (2) US9153673B2 (ja)
JP (1) JP5808827B2 (ja)
CN (1) CN104115275B (ja)
TW (1) TWI596768B (ja)
WO (1) WO2013121548A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2863439A1 (en) * 2013-10-17 2015-04-22 Renesas Electronics Corporation Semiconductor device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018022776A (ja) * 2016-08-03 2018-02-08 ルネサスエレクトロニクス株式会社 半導体装置
WO2018237199A1 (en) 2017-06-22 2018-12-27 Renesas Electronics America Inc. SOLID TOP TERMINAL FOR DISCRETE FEED DEVICES
US10197369B1 (en) 2017-07-20 2019-02-05 Larry Goodman Precision case holder

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08222726A (ja) * 1995-02-09 1996-08-30 Hitachi Ltd ラテラル電圧駆動型半導体装置
JP2003218348A (ja) * 2002-01-18 2003-07-31 Rohm Co Ltd 二重拡散型mosfetおよびこれを用いた半導体装置
JP2007142041A (ja) * 2005-11-16 2007-06-07 Toshiba Corp 半導体装置
JP2007250780A (ja) * 2006-03-15 2007-09-27 Sharp Corp 半導体装置
JP2008053610A (ja) * 2006-08-28 2008-03-06 Fuji Electric Device Technology Co Ltd 絶縁ゲート型バイポーラトランジスタ
JP2009194197A (ja) * 2008-02-15 2009-08-27 Panasonic Corp 半導体装置及びその製造方法
JP2010225848A (ja) * 2009-03-24 2010-10-07 Renesas Electronics Corp 半導体装置
JP2010238839A (ja) * 2009-03-31 2010-10-21 Hitachi Ltd 横型絶縁ゲートバイポーラトランジスタおよびその製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3353529B2 (ja) 1995-03-30 2002-12-03 富士電機株式会社 横型絶縁ゲートバイポーラトランジスタ
JP2001203358A (ja) 2000-01-18 2001-07-27 Toshiba Corp 誘電体分離型半導体装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08222726A (ja) * 1995-02-09 1996-08-30 Hitachi Ltd ラテラル電圧駆動型半導体装置
JP2003218348A (ja) * 2002-01-18 2003-07-31 Rohm Co Ltd 二重拡散型mosfetおよびこれを用いた半導体装置
JP2007142041A (ja) * 2005-11-16 2007-06-07 Toshiba Corp 半導体装置
JP2007250780A (ja) * 2006-03-15 2007-09-27 Sharp Corp 半導体装置
JP2008053610A (ja) * 2006-08-28 2008-03-06 Fuji Electric Device Technology Co Ltd 絶縁ゲート型バイポーラトランジスタ
JP2009194197A (ja) * 2008-02-15 2009-08-27 Panasonic Corp 半導体装置及びその製造方法
JP2010225848A (ja) * 2009-03-24 2010-10-07 Renesas Electronics Corp 半導体装置
JP2010238839A (ja) * 2009-03-31 2010-10-21 Hitachi Ltd 横型絶縁ゲートバイポーラトランジスタおよびその製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2863439A1 (en) * 2013-10-17 2015-04-22 Renesas Electronics Corporation Semiconductor device
JP2015079871A (ja) * 2013-10-17 2015-04-23 ルネサスエレクトロニクス株式会社 半導体装置
US9583604B2 (en) 2013-10-17 2017-02-28 Renesas Electronics Corporation Semiconductor device with improved short circuit capability
US10128359B2 (en) 2013-10-17 2018-11-13 Renesas Electronics Corporation Semiconductor device with improved short circuit capability

Also Published As

Publication number Publication date
CN104115275A (zh) 2014-10-22
JPWO2013121548A1 (ja) 2015-05-11
JP5808827B2 (ja) 2015-11-10
TWI596768B (zh) 2017-08-21
US20150014744A1 (en) 2015-01-15
US20150380532A1 (en) 2015-12-31
US9153673B2 (en) 2015-10-06
CN104115275B (zh) 2017-02-15
TW201342590A (zh) 2013-10-16

Similar Documents

Publication Publication Date Title
JP5172654B2 (ja) 半導体装置
JP5898473B2 (ja) 半導体装置
JP2007184486A (ja) 半導体装置
TW201533901A (zh) 半導體裝置
JP2011204761A (ja) 絶縁ゲート型バイポーラトランジスタ
JP5808827B2 (ja) 半導体装置
JP3934613B2 (ja) 半導体装置
JP5774422B2 (ja) 半導体装置
US10128359B2 (en) Semiconductor device with improved short circuit capability
JP5641879B2 (ja) 半導体装置
JP2008244466A (ja) 半導体装置
CN111033720A (zh) 半导体集成电路装置
JPH10135458A (ja) 半導体装置
JP4756084B2 (ja) 半導体装置
JP2014060336A (ja) 半導体装置
JP5061443B2 (ja) 横型絶縁ゲートバイポーラトランジスタ
JP2009094158A (ja) 半導体装置
TWI566420B (zh) 半導體裝置
KR20240129549A (ko) 양극성 접합 트랜지스터를 사용하는 정전기 방전 보호를 위한 장치
JP2001094104A (ja) 電力用半導体素子
JP2011082297A (ja) 半導体装置
JP2011204762A (ja) 絶縁ゲート型バイポーラトランジスタ
JP2017168755A (ja) 半導体装置およびそれを用いたインバータ回路
JP2009164383A (ja) 半導体装置
JP2011066146A (ja) 半導体装置およびプラズマディスプレイデバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12868610

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013558634

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14378720

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12868610

Country of ref document: EP

Kind code of ref document: A1