JP2008053610A - 絶縁ゲート型バイポーラトランジスタ - Google Patents

絶縁ゲート型バイポーラトランジスタ Download PDF

Info

Publication number
JP2008053610A
JP2008053610A JP2006230503A JP2006230503A JP2008053610A JP 2008053610 A JP2008053610 A JP 2008053610A JP 2006230503 A JP2006230503 A JP 2006230503A JP 2006230503 A JP2006230503 A JP 2006230503A JP 2008053610 A JP2008053610 A JP 2008053610A
Authority
JP
Japan
Prior art keywords
conductivity type
type
region
collector
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006230503A
Other languages
English (en)
Inventor
Hiroki Wakimoto
博樹 脇本
Michio Nemoto
道生 根本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Device Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Device Technology Co Ltd filed Critical Fuji Electric Device Technology Co Ltd
Priority to JP2006230503A priority Critical patent/JP2008053610A/ja
Publication of JP2008053610A publication Critical patent/JP2008053610A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electrodes Of Semiconductors (AREA)

Abstract

【課題】半導体基板表面側のアルミニウム系金属電極による熱処理温度制限で、裏面側のコレクタ層形成の活性化が不充分のため、オン電圧の低減が困難であったIGBTの相対的に低い順方向電圧を提供すること。
【解決手段】n型ドリフト層1となる半導体基板の一方の主面側は、p型ベース領域2と、該ベース領域内表面に設けられるn型エミッタ領域3と、該エミッタ領域表面と前記ベース領域表面の双方に接触するアルミニウム電極8と、前記エミッタ領域表面と前記ドリフト層表面とに挟まれる前記ベース領域表面にゲート絶縁膜5を介して形成されるゲート電極6を備え、また、前記エミッタ領域3と前記ドリフト領域1とを繋ぐように配置されてなるMOSゲート構造13を備え、他方の主面側は、前記コレクタ電極12が前記p型コレクタ層10を部分的に覆う絶縁膜11を除く表面で接触するIGBTとする。
【選択図】 図1

Description

本発明は、電力変換装置などに用いられる絶縁ゲート型バイポーラトランジスタの順方向電圧の改良に関する。
近年、600V〜1700V耐圧のIGBT(Insulated Gate Bipolar Transistor)などのMOS制御型の電力用半導体デバイスでは、動作時のエネルギー損失の低減、ウエハコストの削減のため、高価な、エピタキシャルシリコン成長層が積層された半導体ウエハよりも、安価なFZ(Floting Zone)半導体基板を用い、仕上がり厚さを180μm以下の所定の厚さに研磨およびエッチング加工することにより、コストの削減とオン電圧を小さくできるデバイスを作り込む技術が発展してきている。
このようなMOS制御型の電力用半導体デバイスとしてIGBTを採り上げ、-------図4に示す従来のIGBTの要部断面図を参照して説明する。前述の600V〜1700Vの耐圧クラスでは、まず、FZ−n型シリコン半導体基板からなるドリフト層20の表面側に、p型ベース領域21と、このp型ベース領域21内の表面に設けられるn型エミッタ領域22とp型コンタクト領域23と、前記n型エミッタ領域22表面と前記ドリフト層20表面とに挟まれる前記p型ベース領域21表面に接するゲート絶縁膜24を介して形成されるゲート電極25と、前記n型エミッタ領域22とp型コンタクト領域23の表面には共通に接し、前記ゲート電極25上では層間絶縁膜26を介して覆うアルミニウム系金属のエミッタ電極27とを有する前記MOSゲート構造28が作り込まれる。次に、この半導体基板(ウエハ)の裏面側を機械的または化学的なエッチングにより、設計耐圧に必要なウエハ厚さにまで減厚する加工を施し、さらに、この加工面にコレクタ層29を形成するため、ボロンのイオン注入、続いて350℃から450℃程度の比較的低温での活性化熱処理を施し、コレクタ電極30を形成することにより、NPT(Non Punch−Through)型IGBTが製造される。また、前記ボロンのイオン注入に加えてさらにリンのイオン注入を施してFS層(Field Stop)31を備えることにより、さらなる薄ウエハ化を可能にして特性を向上させるFS−IGBTなどがコスト低減のメリットも得られるので、主流になりつつある。
一方、関連する公知文献について、裏面側のp型コレクタ層を含む層構成と順方向電圧との関係を見直して特性を改善する例については、表面にMOS構造が形成され、裏面には所定の間隙をおいて分散配置されるp型コレクタ領域群と、前記各p型コレクタ領域の間隙を覆う絶縁膜と、前記pコレクタ領域表面に接触しつつ裏面全体を覆うコレクタ電極をこの順に備え、前記pコレクタ領域の厚み(深さ)が電子の拡散長より薄い半導体装置とすることにより、ターンオフ時間の短縮とオン電圧の低減とを得る発明について公開されている(特許文献1)。
型コレクタ領域を全面ではなく、部分的に設け、コレクタ層−ドリフト層間が短絡するように、p型コレクタ領域表面(裏面側)とドリフト層露出表面(裏面側)とに共通に接するコレクタ電極を被着して、ターンオフ時間の短縮とオン電圧の低減が得られる発明についても知られている(特許文献2、3)。
特開2005−333055号公報 特許第3182262号公報 米国特許第4694313号明細書
しかしながら、前述のNPT−IGBTやFS−IGBTでは、コレクタ層29の形成のためのボロンのイオン注入と、その後の活性化処理が以下の理由で比較的低温で行われるので、その分、順方向電圧(以下、VCE(sat)と表記)が高くなる傾向があった。すなわち、半導体基板の裏面にボロンのイオン注入を行う段階で、既に表面側にはアルミニウムを基材としたエミッタ電極27が形成されているので、前述した低温の活性化処理温度より高温で熱処理を施すとAlエミッタ電極とSiウエハの局所的な反応が起こり、特性を劣化させてしまうからである。このようにコレクタ層29を形成するためのボロンのイオン注入において、活性化処理温度を低くせざるを得ないプロセスにより製造されたIGBTでは、ボロンの活性化が充分でないこともあって、オン電圧を充分に低くすることに制限があったのである。
本発明は、以上説明した点に鑑みてなされたものであり、本発明の目的は、従来、半導体基板の表面側に形成されているアルミニウム系金属電極に起因する熱処理温度制限のため、裏面側のコレクタ層形成のためにイオン注入されるボロンの活性化が充分にできないことにより、オン電圧の低減が困難であったNPT型またはFS型IGBTにおいても、相対的に低い順方向電圧(VCE(sat))が得られる絶縁ゲート型バイポーラトランジスタの提供である。
特許請求の範囲の請求項1記載の発明によれば、一導電型ドリフト層となる一導電型半導体基板の一方の主面は、他導電型ベース領域と、該他導電型ベース領域内表面に設けられる一導電型エミッタ領域と、該一導電型エミッタ領域表面と前記他導電型ベース領域表面の双方にオーミック接触するアルミニウム系金属からなるエミッタ電極と、前記一導電型エミッタ領域表面と前記一導電型ドリフト層表面とに挟まれる前記他導電型ベース領域表面に接するゲート絶縁膜を介して形成されるゲート電極を備え、該ゲート電極に印加される閾値電圧以上の電圧により前記ゲート絶縁膜に接する前記他導電型ベース領域表面に形成される反転層が前記一導電型エミッタ領域と前記一導電型ドリフト領域とを繋ぐように配置されてなるMOSゲート構造を備え、他方の主面側は、他導電型コレクタ層と、該他導電型コレクタ層にオーミック接触するコレクタ電極を備える絶縁ゲート型バイポーラトランジスタにおいて、前記コレクタ電極が、前記他導電型コレクタ層を部分的に覆う絶縁膜を除く前記他導電型コレクタ層の表面でオーミック接触する絶縁ゲート型バイポーラトランジスタとすることにより、前記本発明の目的は達成される。
特許請求の範囲の請求項2記載の発明によれば、前記一導電型半導体基板がFZ型シリコン半導体基板である特許請求の範囲の請求項1記載の絶縁ゲート型バイポーラトランジスタとすることが好ましい。
特許請求の範囲の請求項3記載の発明によれば、前記他導電型コレクタ層を部分的に覆う絶縁膜が、化学気相成長法により形成された絶縁膜である特許請求の範囲の請求項1記載の絶縁ゲート型バイポーラトランジスタとすることが望ましい。
要するに、本発明は、コレクタ電極の、p型コレクタ層への接触を全面ではなく部分的な接触とすると、オフ時にコレクタ電極側へのキャリア(ホール)排出が緩和されるようになるので、その分、コレクタ層近傍のドリフト層中のキャリア(ホール)密度が増加し、その結果、オン電圧を低減させるのである。
本発明によれば、従来、半導体基板の表面側に形成されているアルミニウム系金属電極に起因する熱処理温度制限のため、裏面側のコレクタ層形成のためにイオン注入されるボロンの活性化が充分にできないことにより、オン電圧の低減が困難であったNPT型またはFS型IGBTにおいても、相対的に低い順方向電圧(VCE(sat))が得られる絶縁ゲート型バイポーラトランジスタを提供することができる。また、ターンオフ時の跳ね上がり電圧を低減する効果も期待できる。
以下、本発明にかかる絶縁ゲート型バイポーラトランジスタについて、図面を用いて詳細に説明する。また、本発明はその要旨を超えない限り、以下に説明する実施例の記載に限定されるものではない。
図1は本発明にかかる絶縁ゲート型バイポーラトランジスタの要部断面図である。図2は、半導体基板裏面のコレクタ層の全面積に対するコレクタ電極のコレクタ層への接触面積の比率とオン電圧VCE(sat)との関係を示す図である。図3は前記接触面積比率をパラメータとして、オン時の、IGBTの半導体基板中のホール密度分布図である。
図1に本発明の絶縁ゲート型バイポーラトランジスタ(以下、IGBTと略記する)にかかる実施例の要部断面図を示す。図1では、半導体基板の表面側(図面の上方側)のMOSゲート構造はプレーナー型として書いているが、本発明の特徴部分は裏面のコレクタ側にあるので、このMOSゲート構造としてはトレンチゲート型であってもよい。どちらのMOSゲート構造でも発明の効果としては変らない。
比抵抗が60Ωcmで厚さ525μmのn型FZウエハ1の表面層に、p型ベース領域2を形成し、p型ベース領域2の表面層に、n型エミッタ領域3とp型コンタクト領域4を形成し、n型FZウエハ1(n型半導体基板1であり、ドリフト層1でもある)表面とn型エミッタ領域3表面に挟まれるp型ベース領域2表面に接するゲート絶縁膜5を介して導電性ポリシリコン層からなるゲート電極6を形成する。このゲート電極6表面に層間絶縁膜7を高温CVD酸化膜とBPSG(Boro Pospho Silicate Glass)膜などにより形成し、その上にAl−Siからなるエミッタ電極8を前記n型エミッタ領域3とp型コンタクト領域4の各表面に接触するように形成する。このゲート電極6直下のゲート絶縁膜5に接するp型ベース領域2の表面層がn型チャネル部(反転層)(図示せず)となる。
前記n型ウエハ1の未拡散領域(n型ドリフト層)、p型ベース領域2、このp型ベース領域2の表面層にゲート電圧の印加時に形成されるn型チャネル部(反転層)、n型エミッタ領域3、p型コンタクト領域4、ゲート絶縁膜5、ゲート電極6、層間絶縁膜7およびエミッタ電極8などをまとめてMOSゲート構造13と言うことがある。
次に、半導体基板1の裏面側を機械的化学的研磨や化学ポリッシングにより、厚さ180μmにする。このn型FZウエハ1の裏面の研磨面を清浄化後にn型不純物(例えば、リン)のイオン注入を行う。400℃程度の低温熱処理により、注入したn型不純物を活性化し、n型バッファ層9を形成する。n型バッファ層9の表面層にボロンなどのp型不純物イオンを注入し、低温活性化熱処理して、p型コレクタ層10を形成する。
型コレクタ層10の表面にシリコン酸化膜11を厚さ0.03μmに堆積形成する。50μmピッチの格子状パターンの四分の一の桝目のシリコン酸化膜11をフォトエッチングにより均一に対称的になるように除去してなる酸化膜パターンを形成する。この結果、p型コレクタ層10表面の25%が露出する。つまり、コレクタ電極のコレクタ層への接触面積比率は25%となる。同様にして、格子状パターンの二分の一の桝目のシリコン酸化膜を均一に対称的に除去する酸化膜パターンとすれば、接触面積比率は50%となる。さらに、格子状パターンピッチを50μmだけでなく数μmから数百μmへと異なるピッチに変えることもできる。いずれの場合も正確なパターン合わせが不要なので、作業効率の観点からは容易なプロセスと言える。次に、残ったシリコン酸化膜11上とp型コレクタ層10の露出部分とに接触するコレクタ金属電極12を被覆形成する。このウエハ1を切断してチップ化してIGBTチップが完成する。
図1に示す実施例では裏面コレクタ電極とp型コレクタ層の間に部分的にp型コレクタ層を覆う絶縁膜を形成している構造を特徴とする。裏面コレクタ電極のp型コレクタ層への種々の接触面積の割合(以降、接触面積比率)とVCE(sat)との相関をデバイスシミュレータにより計算した結果を図2に示す。この図2によれば、接触面積比率が低下するほどVCE(sat)も低減することが分かる。図3に接触面積比率100%と25%の場合におけるオン状態でのIGBT半導体基板のホール(正孔)密度分布(主面に垂直な方向)を示す。この図3によれば、接触面積比率25%は100%に比べ、ドリフト層のコレクタ側のホール密度が高くなっていることが分かる。ドリフト層のコレクタ側でホール密度が高いことにより伝導度変調が強くなり、その結果、VCE(sat)が低くなっていると考えられる。このようなホール密度分布とすることにより、ターンオフ時の電圧跳ね上がりも抑制されることが期待できる。
ただし、接触面積比率が小さすぎると局所的に電流が集中し、熱劣化、熱破壊等の惧れも考えられるので、極端に小さくはできない。一方、接触面積比率が大きいとVCE(sat)の低減効果が小さいため、接触面積比率としては有効なコレクタ層全面積に対して、概ね10%〜80%が妥当である。
コレクタ層とコレクタ電極間に形成される絶縁膜のパターンとしては、前述の格子状パターンの他にもドット状パターンやストライプ状パターンとすることも考えられる。またこの場合もパターンの繰り返しピッチとしては、数μm〜数百μmにすればよく、精密なマスクあわせが不要になり、デバイス作製上、好ましい。
また、特許文献1〜3では、基板裏面に絶縁層のマスクによってp型コレクタ領域を部分的に設けている。このため、絶縁層に欠損がでると、p型コレクタ領域からのホール注入が抑制され、最悪の場合、IGBTとして機能しなくなる惧れがある。これに対して、本発明は、絶縁膜11に欠損が生じても接触面積比率が多少変化するだけで、特性の変動が少ない。このため、製造が容易であると共に、IGBTとしての機能をそこなうことがないというメリットがある。
本発明のIGBTにかかる実施例の要部断面図である。 半導体基板裏面のコレクタ層有効な全面積に対するコレクタ電極のコレクタ層への接触面積の比率とオン電圧VCE(sat)との関係図である。 接触面積比率をパラメータとして、オン時の、IGBTの半導体基板中のホール密度分布図である。 従来のIGBTの要部断面図である。
符号の説明
1、… シリコン基板、ドリフト層
2、… p型ベース領域
3、… n型エミッタ領域
4、… pコンタクト領域、
5、… ゲート絶縁膜
6、… ゲート電極
7、… 層間絶縁膜
8、… エミッタ電極
9、… n型バッファ層、FS層
10、… pコレクタ層
11、… 絶縁膜、シリコン酸化膜
12、… コレクタ金属電極
13、… MOSゲート構造。

Claims (3)

  1. 一導電型ドリフト層となる一導電型半導体基板の一方の主面は、他導電型ベース領域と、該他導電型ベース領域内表面に設けられる一導電型エミッタ領域と、該一導電型エミッタ領域表面と前記他導電型ベース領域表面の双方にオーミック接触するアルミニウム系金属からなるエミッタ電極と、前記一導電型エミッタ領域表面と前記一導電型ドリフト層表面とに挟まれる前記他導電型ベース領域表面に接するゲート絶縁膜を介して形成されるゲート電極を備え、該ゲート電極に印加される閾値電圧以上の電圧により前記ゲート絶縁膜に接する前記他導電型ベース領域表面に形成される反転層が前記一導電型エミッタ領域と前記一導電型ドリフト領域とを繋ぐように配置されてなるMOSゲート構造を備え、他方の主面側は、他導電型コレクタ層と、該他導電型コレクタ層にオーミック接触するコレクタ電極を備える絶縁ゲート型バイポーラトランジスタにおいて、前記コレクタ電極が、前記他導電型コレクタ層を部分的に覆う絶縁膜を除く前記他導電型コレクタ層の表面でオーミック接触することを特徴とする絶縁ゲート型バイポーラトランジスタ。
  2. 前記一導電型半導体基板がFZ型シリコン半導体基板であることを特徴とする請求項1記載の絶縁ゲート型バイポーラトランジスタ。
  3. 前記他導電型コレクタ層を部分的に覆う絶縁膜が、化学気相成長法により形成された絶縁膜であることを特徴とする請求項1記載の絶縁ゲート型バイポーラトランジスタ。
JP2006230503A 2006-08-28 2006-08-28 絶縁ゲート型バイポーラトランジスタ Pending JP2008053610A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006230503A JP2008053610A (ja) 2006-08-28 2006-08-28 絶縁ゲート型バイポーラトランジスタ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006230503A JP2008053610A (ja) 2006-08-28 2006-08-28 絶縁ゲート型バイポーラトランジスタ

Publications (1)

Publication Number Publication Date
JP2008053610A true JP2008053610A (ja) 2008-03-06

Family

ID=39237339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006230503A Pending JP2008053610A (ja) 2006-08-28 2006-08-28 絶縁ゲート型バイポーラトランジスタ

Country Status (1)

Country Link
JP (1) JP2008053610A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013121548A1 (ja) * 2012-02-16 2013-08-22 ルネサスエレクトロニクス株式会社 半導体装置
JP2020047789A (ja) * 2018-09-19 2020-03-26 株式会社東芝 半導体装置
CN112599596A (zh) * 2020-08-14 2021-04-02 江苏东海半导体科技有限公司 一种背面边缘带绝缘沟槽的igbt

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013121548A1 (ja) * 2012-02-16 2013-08-22 ルネサスエレクトロニクス株式会社 半導体装置
JPWO2013121548A1 (ja) * 2012-02-16 2015-05-11 ルネサスエレクトロニクス株式会社 半導体装置
US9153673B2 (en) 2012-02-16 2015-10-06 Renesas Electronics Corporation Semiconductor device
JP2020047789A (ja) * 2018-09-19 2020-03-26 株式会社東芝 半導体装置
CN110931553A (zh) * 2018-09-19 2020-03-27 株式会社东芝 半导体装置
JP7027287B2 (ja) 2018-09-19 2022-03-01 株式会社東芝 半導体装置
CN110931553B (zh) * 2018-09-19 2024-01-02 株式会社东芝 半导体装置
CN112599596A (zh) * 2020-08-14 2021-04-02 江苏东海半导体科技有限公司 一种背面边缘带绝缘沟槽的igbt
CN112599596B (zh) * 2020-08-14 2022-05-20 江苏东海半导体科技有限公司 一种背面边缘带绝缘沟槽的igbt

Similar Documents

Publication Publication Date Title
JP6662429B2 (ja) 逆導通型絶縁ゲートバイポーラトランジスタの製造方法および逆導通型絶縁ゲートバイポーラトランジスタ
JP6524666B2 (ja) 半導体装置
JP5543364B2 (ja) 逆導電半導体デバイス及びそのような逆導電半導体デバイスを製造するための方法
JP4746927B2 (ja) 半導体装置の製造方法
JP5102411B2 (ja) 半導体装置およびその製造方法
US10903202B2 (en) Semiconductor device
JP5321377B2 (ja) 電力用半導体装置
US10062761B2 (en) Method for manufacturing semiconductor device
WO2018055719A1 (ja) 炭化珪素半導体装置
JP2006332199A (ja) SiC半導体装置
JP2011176027A (ja) 半導体素子および半導体素子の製造方法
JP4088011B2 (ja) 半導体装置及びその製造方法
JP2002246597A (ja) 半導体装置
JP2009283818A (ja) 半導体装置およびその製造方法
JP7125339B2 (ja) 半導体装置およびその製造方法
JP2009043782A (ja) 半導体装置及びその製造方法
JP2004247593A (ja) 半導体装置及びその製造方法
JP2008053610A (ja) 絶縁ゲート型バイポーラトランジスタ
JP2015211141A (ja) 半導体装置および半導体装置の製造方法
CN109564939B (zh) 半导体装置
JP5228308B2 (ja) 半導体装置の製造方法
JP4097416B2 (ja) 絶縁ゲート型バイポーラトランジスタ及びその製造方法
JP2005175174A (ja) 絶縁ゲート型バイポーラトランジスタの製造方法
JP3895147B2 (ja) 絶縁ゲート型バイポーラトランジスタ及びその製造方法
JP4951872B2 (ja) 半導体装置の製造方法

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Effective date: 20081216

Free format text: JAPANESE INTERMEDIATE CODE: A7422