WO2013118638A1 - ポリオレフィン微多孔フィルムの製造方法及び積層多孔フィルム - Google Patents

ポリオレフィン微多孔フィルムの製造方法及び積層多孔フィルム Download PDF

Info

Publication number
WO2013118638A1
WO2013118638A1 PCT/JP2013/052228 JP2013052228W WO2013118638A1 WO 2013118638 A1 WO2013118638 A1 WO 2013118638A1 JP 2013052228 W JP2013052228 W JP 2013052228W WO 2013118638 A1 WO2013118638 A1 WO 2013118638A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
stretching
region
polyolefin
speed
Prior art date
Application number
PCT/JP2013/052228
Other languages
English (en)
French (fr)
Inventor
大三郎 屋鋪
年基 印南
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to US14/377,076 priority Critical patent/US9012061B2/en
Priority to KR1020147021572A priority patent/KR101523891B1/ko
Priority to CN201380008190.5A priority patent/CN104093775B/zh
Publication of WO2013118638A1 publication Critical patent/WO2013118638A1/ja
Priority to US14/454,865 priority patent/US9276244B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/04Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique
    • B29C55/06Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique parallel with the direction of feed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/04Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique
    • B29C55/08Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique transverse to the direction of feed
    • B29C55/085Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique transverse to the direction of feed in several stretching steps
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/04Polymers of ethylene
    • B29K2023/06PE, i.e. polyethylene
    • B29K2023/0658PE, i.e. polyethylene characterised by its molecular weight
    • B29K2023/0683UHMWPE, i.e. ultra high molecular weight polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/04Condition, form or state of moulded material or of the material to be shaped cellular or porous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/04Condition, form or state of moulded material or of the material to be shaped cellular or porous
    • B29K2105/041Microporous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/25Solid
    • B29K2105/253Preform
    • B29K2105/256Sheets, plates, blanks or films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0012Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular thermal properties
    • B29K2995/0016Non-flammable or resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0088Molecular weight
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/34Electrical apparatus, e.g. sparking plugs or parts thereof
    • B29L2031/3468Batteries, accumulators or fuel cells
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • Y10T156/1002Methods of surface bonding and/or assembly therefor with permanent bending or reshaping or surface deformation of self sustaining lamina
    • Y10T156/1007Running or continuous length work
    • Y10T156/1008Longitudinal bending
    • Y10T156/101Prior to or during assembly with additional lamina

Definitions

  • the present invention relates to a method for producing a polyolefin microporous film. More specifically, the present invention relates to a method for producing a polyolefin microporous film suitable as a constituent member of a nonaqueous electrolyte secondary battery separator.
  • Non-aqueous electrolyte secondary batteries especially lithium secondary batteries, are widely used as batteries for personal computers, mobile phones, personal digital assistants, etc. due to their high energy density, and recently developed as in-vehicle batteries. It is coming.
  • a microporous film mainly composed of polyolefin or a laminated porous film in which other functional layers are laminated using the microporous film as a base material are used.
  • Such a microporous film has a structure having pores connected to the inside thereof, and a liquid containing ions can be transmitted from one surface to the other surface through the connected pores. Therefore, it is suitable as a battery separator member that exchanges ions between the positive electrode and the negative electrode.
  • the microporous film preferably has a high porosity from the viewpoint of improving ion permeability.
  • the pore diameter of the pores in the microporous film is too large, when the microporous film is used as a battery separator, the dendrite produced in the negative electrode reaches the positive electrode and is likely to cause a short circuit. Therefore, the pore diameter of the microporous film is preferably as small as possible.
  • Examples of a method for controlling the pore structure of the microporous film include a method of uniaxially or biaxially stretching a resin sheet as a raw material.
  • Patent Document 1 discloses a method for producing a microporous film in which the pore structure is controlled by changing the strain rate from the initial stage to the final stage of stretching while stretching the temperature constant.
  • Patent Document 2 discloses a method of performing heat setting by changing the temperature in the upstream and downstream stages of stretching.
  • Patent Document 3 discloses a method for producing a thermoplastic resin film in which the temperature of the stretching step is lower than the temperature of the preheating step in the simultaneous biaxial tenter stretching method.
  • an object of the present invention is to provide a method for producing a polyolefin microporous film having a porosity and a pore diameter suitable for a separator for a non-aqueous electrolyte secondary battery with high reproducibility and high efficiency.
  • the present invention provides the following. ⁇ 1> A method for producing a microporous polyolefin film having a film stretching step in which a raw polyolefin sheet having fine pores is conveyed into a furnace of a tenter-type stretching machine and tenter-stretched in a plurality of stretching regions in the furnace.
  • the plurality of stretching regions have at least two stretching regions having different film widening speeds, and the temperature of the stretching region having a large film widening speed in the at least two stretching regions is lower than the stretching region having a small film widening speed, And the manufacturing method of the polyolefin microporous film in which the extending
  • ⁇ 6> The polyolefin microporous film according to any one of ⁇ 1> to ⁇ 5>, wherein the raw material polyolefin sheet comprises an ultrahigh molecular weight polyolefin having a weight average molecular weight of 500,000 or more and a polyolefin wax having a weight average molecular weight of 2000 or less.
  • ⁇ 7> The method for producing a polyolefin microporous film according to any one of ⁇ 1> to ⁇ 6>, wherein the porosity of the raw material polyolefin sheet is 30 to 50% by volume.
  • a porous layer comprising a fine particle as a main component and the fine particles bonded together with a binder polymer is laminated on the polyolefin microporous film obtained by the production method according to any one of ⁇ 1> to ⁇ 7>.
  • a laminated porous film is laminated on the polyolefin microporous film obtained by the production method according to any one of ⁇ 1> to ⁇ 7>.
  • an ordinary tenter stretching apparatus is used, and the film is stretched without significantly clogging the pores of the polyolefin film only by appropriately combining the temperature in the stretching process and the film widening speed. be able to. Therefore, the polyolefin microporous film suitable for the base material porous film of the separator can be produced with high productivity.
  • FIG. 1 It is a schematic diagram of a uniaxial tenter type stretching machine. It is a figure (plan view) for demonstrating the film extending process by a uniaxial tenter type extending machine. It is a figure (sectional drawing) for demonstrating the film extending process by a uniaxial type tenter type extending machine. It is a figure for demonstrating the film widening speed S prescribed
  • the method for producing a polyolefin microporous film according to the present invention includes a film stretching step in which a raw polyolefin sheet having fine pores is conveyed into a furnace of a tenter-type stretching machine and tenter-stretched in a plurality of stretching regions in the furnace.
  • a method for producing a polyolefin microporous film, wherein the plurality of stretching regions have at least two stretching regions having different film widening speeds, and the temperature of the stretching region having a large film widening speed in the at least two stretching regions is The stretching region having a lower film widening speed and the largest film widening speed is located in the preceding stage than the stretching region having the smallest film widening speed.
  • a sheet-like polyolefin as a raw material is referred to as a “raw material polyolefin sheet”, and the one obtained by stretching the sheet is referred to as a film, and the preceding stage refers to the raw material polyolefin sheet or the film transport direction.
  • the front side refers to the reference, and the rear stage refers to the transport direction.
  • a polyolefin microporous film (hereinafter sometimes simply referred to as “microporous film”) is a so-called multi-stage process in which a raw material polyolefin sheet conveyed in a furnace of a tenter-type stretching machine is tenter-stretched in a plurality of stretching regions. It can be obtained by a formula tenter stretching method.
  • the tenter type stretching machine means that a plurality of portions called chucks that grip both ends of the film move on a predetermined tenter rail continuously from the entrance to the exit of the stretching machine, and are uniaxially or biaxially.
  • the tenter type stretching machine in the present invention has a plurality of stretching regions divided into two or more and adjusts the tenter rail angle for each stretching region.
  • the stretching ratio and the film widening speed can be arbitrarily adjusted, and the temperature can be set for each stretching region.
  • the tenter stretching machine may be uniaxial stretching or biaxial stretching, but a uniaxial stretching machine having a simple apparatus configuration is preferable.
  • FIG. 1 is a schematic diagram conceptually showing a uniaxial tenter type stretching machine.
  • a chuck C is a jig for sandwiching the polyolefin microporous film 11 and is disposed on the tenter rail R at a constant interval.
  • the tenter rail R is a portion where the chuck C moves, and the film 11 can be stretched by forming the tenter rail R into a target shape.
  • the film stretching step is a step of obtaining the polyolefin microporous film 11 by stretching the raw polyolefin sheet 10 in the lateral direction (film width direction).
  • the raw polyolefin sheet 10 is stretched laterally by a tenter stretching method.
  • a heating furnace 20 used for film stretching includes a preheating region 21, stretching regions 22 and 23, and a heat fixing region 24.
  • the temperature of each region in the heating furnace 20 can be adjusted independently, and the temperature can be appropriately set according to the type of raw material polyolefin and the film stretching conditions. For example, when the raw material polyolefin sheet 10 is made of a polyethylene resin, the temperature is set in a temperature range of about 80 to 170 ° C.
  • the raw material polyolefin sheet 10 having the width F 1 is fixed by the chuck C in the tenter rail R.
  • the raw material polyolefin sheet 10 is introduced into the preheating region 21 as the chuck C moves from the front stage to the rear stage (in the direction of the arrow) on the tenter rail R.
  • the raw material polyolefin sheet 10 moves as the chuck C moves while being heated in the preheating region 21.
  • the conveyance speed of the raw polyolefin sheet 10 is usually about 1 to 100 m / min, preferably 3 to 40 m / min.
  • the raw polyolefin sheet 10 is heated to a temperature sufficient to stretch the raw polyolefin sheet 10.
  • the preheating temperature in the preheating region 21 is preferably (Tg ⁇ 20) to (Tg + 30) ° C.
  • Tg is the glass-transition temperature.
  • the temperature is preferably (Tm ⁇ 40) to (Tm + 20) ° C.
  • Tm is the melting point.
  • the preheating temperature in this specification means the temperature of the atmosphere in the preheating area
  • the preheated raw material polyolefin sheet 10 moves from the preheating region 21 to the stretching regions 22 and 23 in the subsequent stage.
  • seat 10 is extended
  • regions 22 and 23 is set so that the said conditions may be satisfy
  • the raw material polyolefin sheet 10 When the raw material polyolefin sheet 10 is made of a polyethylene resin, the raw material polyolefin sheet 10 can be stretched more uniformly by laterally stretching the preheated raw material polyolefin sheet 10 at a temperature lower than the preheating temperature. As a result, a stretched film having excellent thickness and retardation uniformity can be obtained.
  • the temperature of the atmosphere in the stretching regions 22 and 23 is preferably 5 to 30 ° C lower than the temperature of the preheating region 21 and more preferably 10 to 25 ° C.
  • the transverse stretching of the raw polyolefin sheet 10 in the stretching regions 22 and 23 is performed by expanding the chuck C that fixes the raw polyolefin sheet 10 in the width direction (direction perpendicular to the film transport method). That is, the raw material polyolefin sheet 10 is stretched in the width direction by extending in the width direction in the stretching regions 22 and 23 while the chuck C moves in the arrow direction (film transport method). Finally, the raw polyolefin sheet 10 is laterally stretched from the width F 1 to the width F 2 .
  • the raw material polyolefin sheet 10 is stretched in the stretching regions 22 and 23 and then moved to the subsequent heat setting region 24.
  • the heat setting temperature (the temperature of the atmosphere of the heat setting region 24) may be the same as or different from that of the previous drawing region 23. However, if a temperature far exceeding the temperature applied to the film is applied, a stretched film is applied. Therefore, the heat setting temperature is preferably in the temperature range from the same temperature as the stretching temperature in the stretching region 23 to a temperature 30 ° C. higher than the stretching temperature.
  • the stretched film 11 is discharged from the heating furnace 20 after passing through the heat setting region 24. Thereby, the stretched film 11 stretched in the lateral direction (film width direction) can be obtained.
  • the film widening speed of at least two stretching regions is different, and the temperature of the stretching region where the film widening speed is large in the at least two stretching regions is the film.
  • the stretching region that is set lower than the stretching region where the widening speed is small and has the largest film widening speed is located in the preceding stage than the stretching region where the film widening speed is the smallest. That is, as shown in FIG. 2 and FIG. 3, when the stretching region where tenter stretching is performed is two regions, the film widening speed of the preceding stretching region 22 is larger than the film widening speed of the subsequent stretching region 23, In addition, the former drawing region 22 has a lower temperature than the latter drawing region 23.
  • the stretching region having the largest film widening speed located in the previous stage is set at a lower temperature than the stretching area located in the latter stage having the smallest film widening speed.
  • FIGS 2 and 3 show an example in which two stretching regions are subjected to tenter stretching.
  • at least two of the stretching regions are the production method of the present invention. It is sufficient to satisfy the conditions. Therefore, there may be regions of different film widening speeds at the same temperature and regions of the same film widening speed at different temperatures.
  • the width draw ratio (F 2 / F 1 ratio in FIG. 2) of the raw material polyolefin sheet is preferably 2 to 10 times. From the viewpoint of further improving the uniformity of the thickness and retardation of the obtained stretched film, the width stretch ratio is more preferably 4 to 8 times.
  • the clogging of the pores during the film stretching described above tends to occur particularly when the thickness of the film is reduced. Therefore, when the raw material polyolefin sheet is supplied to the stretching region having the smallest film widening speed, the raw material polyolefin sheet is stretched to a thickness of 5% to 40% (preferably 10% to 30%) of the initial value. Is preferred. By stretching the film under such conditions, the pores are blocked from being blocked during the film stretching, and a film having an appropriate porosity and pore diameter can be obtained.
  • velocity is 10 degreeC or more.
  • 15 ° C. or higher is more preferable, and 20 ° C. or higher is more preferable.
  • the film widening speed is a speed at which the film is spread in the width direction (direction orthogonal to the film transport direction) per unit time.
  • the film widening speed S is expressed by the following formula: It can be defined as (1).
  • Film widening speed S V ⁇ W / L (1)
  • L is the distance in the film conveying direction in each stretching region
  • W is the difference in the distance between the line perpendicular to the film conveying direction in each stretching region and the tenter rail
  • V is the stretching of the film in each stretching region. (It represents the speed of passing through the area in the transport direction.)
  • FIG. 4 is a diagram for explaining the film widening speed S when the film stretching method is uniaxial stretching.
  • FIG. 4 for ease of explanation, only one tenter rail R is shown, and the other tenter rail and components other than the tenter rail are not shown.
  • L is the distance in the film conveyance direction in each stretching region, and corresponds to the length of each stretching region. Therefore, L depends on the structure of the tenter stretching machine to be used. Let L in the stretching regions A, B, and C be L A , L B , and L C , respectively.
  • W is the difference in the distance formed by the intersection of the tenter rail R and the line orthogonal to the film conveying direction in each stretching region. That is, it defines the amount that the film is stretched in the width direction.
  • W in the stretching regions A, B, and C be W A , W B , and W C , respectively.
  • V is a speed at which the film passes through each stretching region in the transport direction, that is, a so-called film transport speed.
  • V in the stretching regions A, B, and C be V A , V B , and V C , respectively.
  • the angles of the tenter rails R in the stretching regions A, B, and C with respect to the film conveying direction are ⁇ A , ⁇ B , and ⁇ C , respectively.
  • S defined by the expression (1) in the stretched regions A, B, and C is S A , S B , and S C , respectively.
  • the temperatures in the stretching regions A, B, and C are T A , T B , and T C , respectively.
  • the film widening speed is a speed at which the film spreads in the lateral direction (width direction) per unit time. Since the interval between the chucks C on the tenter rail R is constant, when the tenter rail R takes an angle ⁇ with respect to the film transport direction, the film widening speed S is proportional to the film transport speed V, and the film transport speed. The film widening speed S increases as V increases. In addition, the tenter rail R steeply moves away from the film center as the angle ⁇ increases, so the film widening speed S increases as the angle ⁇ increases.
  • Equation (1) W / L corresponds to tan ⁇ , and therefore, as shown in Equation (1), S, which is the product of W / L and the velocity V in each stretching region, is per unit time. This corresponds to the speed at which the film spreads in the lateral direction (width direction), that is, the film widening speed.
  • S which is the product of W / L and the velocity V in each stretching region
  • S is per unit time. This corresponds to the speed at which the film spreads in the lateral direction (width direction), that is, the film widening speed.
  • S in the formula (1) When the film widening speed is defined by S in the formula (1), it can be applied even when (i) L is different, that is, when the widths of the respective stretching regions are different, (ii) W is different. In other words, it can be applied even when the stretching amount in the width direction of each stretching region is different.
  • that is, when the angle formed by the tenter rail R with respect to the film transport direction is different.
  • regulated by Formula (1) is applicable also when a tenter extending
  • film stretching when the tenter stretching method is simultaneous biaxial stretching will be described with reference to FIG. In FIG. 5, for the sake of simplicity of explanation, the stretching region is described with two stretching regions A and B.
  • the simultaneous biaxial stretching method is a method in which the film is stretched not only in the width direction but also in the film transport direction (longitudinal direction) in each stretching region, and the film transport speeds V A and V B are in the stretching regions A and B.
  • the film conveyance speed V in the simultaneous biaxial stretching method means an average conveyance speed in each stretching region.
  • the film widening speed S A in the stretching region A is preferably at least twice the film widening speed S B in the stretching region B, and more preferably four times or more. Preferably, it is 5 times or more.
  • the absolute value of the film widening speed S defined by the above formula (1) is appropriately determined in consideration of the film material, the necessary draw ratio, and the like, but is usually 0.1 to 50 m / min. It is preferably 3 to 20 m / min.
  • the polyolefin in the raw material polyolefin sheet include high molecular weight homopolymers or copolymers obtained by polymerizing ethylene, propylene, 1-butene, 4-methyl-1-pentene, 1-hexene and the like.
  • an ultrahigh molecular weight polyolefin having a weight average molecular weight of 500,000 or more is preferable, and a high molecular weight polyethylene mainly having ethylene and having a weight average molecular weight of 1,000,000 or more is preferable.
  • the ratio of the polyolefin component in the raw material polyolefin sheet is required to be 50% by weight or more of the total weight of the raw material polyolefin sheet, preferably 90% by weight or more, and more preferably 95% by weight or more.
  • the polyolefin component of the raw material polyolefin sheet preferably contains a high molecular weight polyolefin component having a weight average molecular weight of 5 ⁇ 10 5 to 150 ⁇ 10 5 .
  • a polyolefin component having a weight average molecular weight of 1,000,000 or more is contained as a polyolefin component, the strength of the polyolefin microporous film (after stretching the raw material polyolefin sheet) tends to be improved.
  • the polyolefin component of the raw polyolefin sheet preferably contains a polyolefin wax having a weight average molecular weight of 2000 or less together with a high molecular weight polyolefin component having a weight average molecular weight of 5 ⁇ 10 5 to 150 ⁇ 10 5 .
  • a polyolefin wax acts as a plasticizer when processing the high-molecular-weight polyolefin, whereby the high-molecular-weight polyolefin component becomes easy to move and promotes the crystallization of the high-molecular-weight polyolefin, thereby increasing the strength of the entire film.
  • the porosity of the raw material polyolefin sheet is preferably 30 to 50% by volume. If the porosity of the raw material polyolefin sheet is smaller than 30% by volume, it is difficult to increase the porosity of the microporous film after stretching. In some cases, the strength of the porous film cannot be sufficiently maintained.
  • a raw material polyolefin sheet manufacturing method which is a raw material of a polyolefin microporous film, for example, in order to have a void (fine pores) in the raw material polyolefin, the resin composition comprising polyolefin is filled with an extractable filler, A method of extracting and removing the filler after forming into a predetermined thickness is mentioned.
  • the pore size of the voids (fine pores) of the raw polyolefin sheet is determined by the particle size of the filler.
  • the polyolefin microporous film obtained by the production method of the present invention has a structure having pores connected to the inside thereof, and is a microporous film mainly composed of polyolefin, and has one surface through the connected pores. Gas or liquid can pass through the other surface.
  • the film thickness of the microporous film is preferably 4 to 40 ⁇ m, more preferably 7 to 30 ⁇ m. If the film thickness is less than 4 ⁇ m, the handling property may be inferior, and when used as a battery separator, the positive and negative electrodes may not be insulated. On the other hand, if the film thickness exceeds 40 ⁇ m, the battery capacity may be reduced when used as a battery separator.
  • the basis weight of the microporous film is usually 4 to 20 g / m 2 and preferably 5 to 12 g / m 2 . If the basis weight is less than 4 g / m 2 , the strength and handling properties of the microporous film may be inferior, or insulation between the positive and negative electrodes may not be maintained when used as a battery separator. On the other hand, if the weight per unit area exceeds 20 g / m 2 , the weight energy density becomes small, and there is a risk of insufficient capacity when used as a battery separator.
  • the ion permeability of the microporous film can be evaluated by Gurley air permeability.
  • the air permeability of the microporous film is a Gurley value of 250 seconds / 100 cc or less, preferably 220 seconds / 100 cc or less, more preferably 200 seconds / 100 cc or less.
  • the air permeability is in the above range, ion permeability required when used as a separator for a high-power secondary battery such as an in-vehicle secondary battery can be exhibited.
  • the air permeability is preferably 30 seconds / 100 cc or more, more preferably 50 seconds / 100 cc or more.
  • the porosity of a microporous film is 43 volume% or more, Preferably it is 45 volume% or more, More preferably, it is 47 volume% or more.
  • the porosity of the microporous film is preferably 80% by volume or less, more preferably 75% by volume or less, from the viewpoint that the shutdown function can be reliably obtained.
  • the pore diameter of the microporous film is 0.073 ⁇ m in that it can prevent the positive electrode and negative electrode particles from entering when it is used as a battery separator and can prevent a short circuit caused by dendrite generated in the negative electrode.
  • the following is preferable, more preferably 0.071 ⁇ m or less, and particularly preferably 0.069 ⁇ m or less.
  • the ratio of the average pore diameter and the porosity of the microporous film is preferably 0.1 to 0.16, more preferably 0.12 to 0.15. If it is such a range, it will be easy to suppress generation
  • the microporous film has pores having ion permeability, but is melted to become nonporous by overheating, and thus can be used as a battery separator having a shutdown function.
  • the laminated porous film of the present invention has a heat resistant layer laminated on one side or both sides of the above-mentioned polyolefin microporous film (hereinafter sometimes referred to as “substrate porous film” in the explanation of the laminated porous film). Become.
  • the laminated porous film of the present invention is suitable as a battery separator. When excessive heat generation occurs in the battery, the porous substrate film melts and becomes nonporous, thereby exhibiting a shutdown function and heat resistance.
  • the layer exhibits functions of heat resistance and dimensional stability against high temperatures during excessive heat generation.
  • the substrate porous film is a substrate of a laminated porous film, and uses the polyolefin microporous film produced according to the present invention described above, so the description is omitted here.
  • the heat-resistant layer is a porous layer composed mainly of fine particles and bonded to each other by a binder polymer, and is laminated on the surface of the substrate porous film.
  • the heat-resistant layer is not particularly limited as long as it has functions of heat resistance against high temperatures and excessive dimensional heat and dimensional stability, and a nitrogen-containing aromatic polymer such as polyamide or polyimide can be used.
  • a porous layer having a main component and fine particles bonded with a binder polymer is preferably used.
  • heat-resistant layer which is a porous layer mainly composed of fine particles and in which the fine particles are bonded to each other with a binder polymer (the heat-resistant layer may be hereinafter referred to as a “heat-resistant porous layer”). This will be described in detail.
  • inorganic fine particles generally called a filler
  • a filler calcium carbonate, talc, clay, kaolin, silica, hydrotalcite, diatomaceous earth, magnesium carbonate, barium carbonate, calcium sulfate, magnesium sulfate, barium sulfate, aluminum hydroxide, magnesium hydroxide, calcium oxide, magnesium oxide
  • examples thereof include fine particles made of inorganic substances such as titanium oxide, alumina, mica, zeolite, and glass.
  • the fine particles are preferably inorganic oxides, more preferably magnesium oxide, titanium oxide, and alumina, and particularly preferably alumina. These fine particles can be used alone or in admixture of two or more.
  • the average particle size of the fine particles is preferably 3 ⁇ m or less, more preferably 1 ⁇ m.
  • Examples of the shape of the fine particles include a spherical shape and a bowl shape.
  • the average particle size of the fine particles was determined by arbitrarily extracting 25 particles with a scanning electron microscope (SEM) and measuring the particle size (diameter) of each particle. And a method of calculating an average particle diameter by measuring a BET specific surface area and approximating a sphere.
  • SEM scanning electron microscope
  • the average particle size by measuring a BET specific surface area and approximating a sphere When calculating the average particle size by SEM, if the shape of the fine particles is other than spherical, the length in the direction showing the maximum length of the particles is taken as the particle size. Also, two or more kinds of fine particles having different particle diameters and / or specific surface areas can be mixed.
  • the binder polymer used for forming the heat resistant porous layer has a role of binding fine particles constituting the porous layer, and the fine particles to the polyolefin porous film.
  • a binder polymer is preferably a polymer that is insoluble in the electrolyte of the battery and is electrochemically stable within the range of use of the battery.
  • polyolefins such as polyethylene and polypropylene
  • fluorine-containing resins such as polyvinylidene fluoride and polytetrafluoroethylene
  • fluorine-containing resins such as vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene copolymer and ethylene-tetrafluoroethylene copolymer
  • Rubbers such as rubber, styrene-butadiene copolymer and its hydride, methacrylate ester copolymer, acrylonitrile-acrylate copolymer, styrene-acrylate copolymer, ethylene propylene rubber, polyvinyl acetate, Melting point and glass transition of polyphenylene ether, polysulfone, polyethersulfone, polyphenylene sulfide, polyetherimide, polyamideimide, polyetheramide, polyamide, polyester, etc.
  • Water-soluble polymers such as polymethacrylic acid.
  • water-soluble polymers such as cellulose ether, sodium alginate, and polyacrylic acid can use water as a solvent, and are preferable in terms of process and environmental load.
  • cellulose ether is preferably used.
  • the cellulose ether include carboxymethyl cellulose (CMC), hydroxyethyl cellulose (HEC), carboxyethyl cellulose, methyl cellulose, ethyl cellulose, cyanethyl cellulose, oxyethyl cellulose, and the like, and CMC and HEC excellent in chemical stability are particularly preferable. preferable.
  • resins having a melting point or glass transition temperature of 180 ° C. or higher such as polyphenylene ether, polysulfone, polyethersulfone, polyphenylene sulfide, polyetherimide, polyamideimide, polyetheramide, and polyester, have high heat resistance, and are not suitable for laminated porous films. This is preferable because the heating shape retention rate is improved.
  • the heat resistant resins polyetherimide, polyamideimide, polyetheramide, and polyamide are more preferable, and polyamide is more preferable.
  • the film thickness of the heat resistant porous layer is determined within a range in which the ion permeability is not hindered and the functions of heat resistance and dimensional stability against high temperatures can be secured. If the heat-resistant porous layer is too thick, the load characteristics of the non-aqueous electrolyte secondary battery may decrease when used as a separator. If it is too thin, the battery will generate heat due to an accident or the like. Occasionally, the separator may shrink without being able to resist the heat shrinkage of the polyolefin porous film.
  • the specific film thickness of the heat resistant porous layer depends on the number of laminated layers in the laminated porous film, but when the heat resistant porous layer is formed on one side or both sides of the substrate porous film, it is usually 0. 1 ⁇ m or more and 20 ⁇ m or less, preferably 2 ⁇ m or more and 15 ⁇ m or less (in the case of both surfaces, the total value is represented).
  • the porosity of the heat resistant porous layer is preferably 20 to 85% by volume, more preferably 40 to 75% by volume. If the porosity of the heat-resistant porous layer is too low, the ion permeability may be deteriorated. If the porosity is too high, the strength of the heat-resistant porous layer will be low, and when the battery is heated due to an accident or the like, the polyolefin porous film There is a possibility that the separator shrinks without being able to resist the heat shrinkage.
  • the average pore size of the heat resistant porous layer is preferably 0.005 to 0.3 ⁇ m, more preferably 0.01 to 0.2 ⁇ m. If the average pore diameter is too small, the ion permeability may be deteriorated, and if it is too large, a short circuit is likely to occur due to the dendrites formed by the electrodes.
  • a coating liquid containing fine particles, a binder polymer and a solvent (dispersion medium) is directly coated on the substrate porous film to remove the solvent (dispersion medium).
  • Method Method of coating the coating liquid on a suitable support, removing the solvent (dispersion medium) and then pressing the porous layer formed on the substrate porous film and then peeling off the support; coating A method of removing the solvent (dispersion medium) after coating the liquid on a suitable support and then pressing it against the base porous film and removing it from the support; dipping the base porous film in the coating liquid And a method of removing the solvent (dispersion medium) after performing dip coding.
  • a resin film, a metal belt, a drum, or the like can be used as the support.
  • a sequential lamination method of laminating a heat-resistant porous layer on the other side after forming a heat-resistant porous layer on one side A simultaneous lamination method in which a heat-resistant porous layer is simultaneously formed on both surfaces of a porous film.
  • the solvent (dispersion medium) for dispersing the fine particles and the binder polymer may be any solvent (dispersion medium) that can uniformly and stably dissolve or disperse the fine particles and the binder polymer.
  • solvents such as methanol, ethanol and isopropanol, toluene, xylene, hexane, N-methylpyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide and the like.
  • any method can be used as long as the dispersion characteristics necessary for forming a desired heat-resistant porous layer can be obtained. Examples thereof include a dispersion method, a high pressure dispersion method, and a media dispersion method.
  • the coating liquid may contain a dispersant, a plasticizer, a pH adjuster and the like as components other than the fine particles and the binder polymer as long as the object of the present invention is not impaired.
  • the method for applying the coating liquid to the substrate porous film or the support is not particularly limited as long as it can achieve the required basis weight and coating area, and a conventionally known method can be adopted. it can.
  • gravure coater method small diameter gravure coater method, reverse roll coater method, transfer roll coater method, kiss coater method, dip coater method, knife coater method, air doctor blade coater method, blade coater method, rod coater method, squeeze coater method
  • Examples thereof include a cast coater method, a die coater method, a screen printing method, and a spray coating method.
  • the method for removing the solvent (dispersion medium) is not particularly limited, but a drying method is generally used.
  • a drying method any method such as natural drying, air drying, heat drying, and vacuum drying may be used.
  • a drying operation may be performed after replacing the solvent (dispersion medium) of the coating liquid with another solvent.
  • the following method can be exemplified.
  • solvent X another solvent that dissolves in the solvent (dispersion medium) used in the preparation of the coating liquid and is easy to evaporate without dissolving the binder polymer contained in the coating liquid.
  • the substrate porous film or support coated with the coating solution is immersed in the solvent, and the solvent (dispersion medium) is used from the film-like coating solution on the substrate porous film or support. ) Is replaced with the solvent X, and then the solvent X is evaporated.
  • the solvent (dispersion medium) can be efficiently removed.
  • heating is performed when removing the solvent (dispersion medium) or the solvent X of the coating liquid from the substrate porous film to which the coating liquid has been applied, It is necessary to avoid shrinkage and decrease in air permeability.
  • the physical properties of the films of Examples and Comparative Examples were measured by the following methods.
  • Thickness measurement (unit: ⁇ m) The thickness of the film was measured in accordance with JIS standards (K7130-1992).
  • Gurley air permeability (unit: sec / 100cc) The air permeability of the film was measured with a digital timer type Gurley type densometer manufactured by Toyo Seiki Seisakusho, based on JIS P8117.
  • Porosity (% by volume) 100 ⁇ [ ⁇ (W1 / true specific gravity 1) + (W2 / true specific gravity 2) + ⁇ + (Wn / true specific gravity n) ⁇ / (10 ⁇ 10 ⁇ D)] ⁇ 100 (4) Average pore diameter Based on JISK3832, the average pore diameter was determined using Automated Capillary Flow Porometer (manufactured by POROUS MATERIALS INC.) As the impregnating solution with Fluorinert FC-40 (manufactured by Sumitomo 3M Limited).
  • antioxidant Irg1010, manufactured by Ciba Specialty Chemicals
  • antioxidant antioxidant
  • P168 manufactured by Cib
  • polyolefin resin composition was rolled with a pair of rolls having a surface temperature of 150 ° C. to produce a sheet.
  • This sheet was immersed in an aqueous hydrochloric acid solution (hydrochloric acid 4 mol / L, nonionic surfactant 0.5% by weight) to dissolve and remove calcium carbonate to obtain a raw material polyolefin sheet.
  • hydrochloric acid solution hydrochloric acid 4 mol / L, nonionic surfactant 0.5% by weight
  • a tenter type stretching machine As a tenter type stretching machine, a uniaxial stretching type tenter type stretching machine manufactured by Ichikin Kogyo Co., Ltd. was used. The stretching region of the tenter type stretching machine was divided into two regions, a stretching region A and a stretching region B, from the previous stage, and the stretching operation was performed by changing the film widening speed and temperature in each stretching region.
  • the tenter rail in each stretched region was set to be a straight line.
  • the three patterns shown in the table below were set as rail patterns.
  • L, W, and V in Table 1 below indicate the distance in the film transport direction of each stretched region, L, and the difference in position between the film transport direction and the vertical direction where the tenter rail passes through the inlet and outlet of each region.
  • V is the speed at which the film passes through each region in the transport direction.
  • Reference example 1 As a standard film manufacturing method, a film was manufactured under stretching conditions in which the film widening speed S and the film stretching temperature were constant. First, the rail pattern of the stretching machine is set to the pattern 2 having the same film widening speed S, the temperatures of the stretching region A and the stretching region B are set to 105 ° C., and the temperatures of the preheating region and the heat setting region are set to 120 ° C., respectively. Then, the raw material polyolefin sheet was stretched to obtain a polyolefin microporous film of Reference Example 1.
  • Example 1 The rail pattern is set to pattern 1, the temperature of the stretching region A is set to 95 ° C., the temperature of the stretching region B is set to 115 ° C., and the temperatures of the preheating region and the heat setting region are each set to 120 ° C. A polyolefin microporous film of Example 1 was obtained.
  • Example 2 The rail pattern is set to pattern 1, the temperature of the stretching region A is set to 100 ° C., the temperature of the stretching region B is set to 110 ° C., and the temperatures of the preheating region and the heat setting region are each set to 120 ° C. A polyolefin microporous film of Example 2 was obtained.
  • Comparative Example 1 The rail pattern is set to Pattern 1, the temperature of the stretching region A and the stretching region B is set to 105 ° C., the temperature of the preheating region and the heat setting region is set to 120 ° C., respectively, and the raw material polyolefin sheet is stretched. A polyolefin microporous film was obtained.
  • Comparative Example 2 The rail pattern is set to Pattern 1, the temperature of the stretching region A is set to 115 ° C., the temperature of the stretching region B is set to 95 ° C., and the temperatures of the preheating region and the heat setting region are each set to 120 ° C. A polyolefin microporous film of Comparative Example 2 was obtained.
  • Comparative Example 3 The rail pattern is set to pattern 2, the temperature of the stretching region A is set to 95 ° C., the temperature of the stretching region B is set to 115 ° C., and the temperatures of the preheating region and the heat setting region are set to 120 ° C. A polyolefin microporous film of Comparative Example 3 was obtained.
  • Comparative Example 4 The rail pattern is set to Pattern 2, the temperature of the stretching region A is set to 115 ° C., the temperature of the stretching region B is set to 95 ° C., the temperatures of the preheating region and the heat setting region are set to 120 ° C., respectively, and the raw material polyolefin sheet is stretched. A polyolefin microporous film of Comparative Example 4 was obtained.
  • Comparative Example 5 The rail pattern is set to pattern 3, the temperature of the stretching region A is set to 95 ° C., the temperature of the stretching region B is set to 115 ° C., and the temperatures of the preheating region and the heat setting region are set to 120 ° C. A polyolefin microporous film of Comparative Example 5 was obtained.
  • Comparative Example 6 The rail pattern is set to pattern 3, the temperature of the stretching region A is set to 115 ° C., the temperature of the stretching region B is set to 95 ° C., and the temperatures of the preheating region and the heat setting region are each set to 120 ° C. A polyolefin microporous film of Comparative Example 6 was obtained.
  • Table 2 summarizes the film thickness and porosity of the raw material sheet, the film stretching conditions, and the physical properties of the obtained polyolefin microporous film.
  • Example 1 Compared to Reference Example 1 in which the film widening speed and temperature in the stretching region A and the stretching region B are constant, the film widening speed of the stretching region A in the preceding stage is larger than the stretching region B, and the stretching region A is the stretching region.
  • Examples 1 and 2 which are lower in temperature than B, the Gurley air permeability is clearly smaller, and the ratio of the average pore diameter / void ratio is smaller than that in Reference Example 1. From this, it can be seen that Example 1 and Example 2 have a structure that easily suppresses the occurrence of short circuits due to dendrites while ensuring ion permeability.
  • the Gurley air permeability is higher than that of Reference Example 1 in Comparative Example 5 and Comparative Example 6 in which the film widening speed of the stretching region A in the preceding stage is smaller than that of the stretching region B. From the above results, the temperature of the stretching region where the film widening speed is large is lower than the stretching region where the film widening speed is small, and the stretching region where the film widening speed is large is more than the stretching region where the film widening speed is small, It was found that the Gurley air permeability was small, that is, the ion permeability could be increased while maintaining the predetermined porosity and average pore diameter when positioned in the previous stage.
  • Example 1 and Example 2 when Example 1 and Example 2 are compared, it is suggested that the one where the temperature difference of the extending
  • the coating liquid 1 is produced in the following procedures. First, carboxymethyl cellulose (CMC, Serogen 3H, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) is dissolved in a 20 wt% aqueous ethanol solution as a medium to obtain a CMC solution (CMC concentration: 0.70 wt% vs. CMC solution). Next, 3500 parts by weight of alumina (AKP3000, manufactured by Sumitomo Chemical Co., Ltd.) is added to and mixed with 100 parts by weight of the CMC solution in terms of CMC, and the mixture is mixed under high pressure dispersion conditions (60 MPa) using a gorin homogenizer. The coating liquid 1 is prepared by performing the treatment once.
  • CMC carboxymethyl cellulose
  • Serogen 3H manufactured by Daiichi Kogyo Seiyaku Co., Ltd.
  • the coating liquid 2 is produced in the following procedures.
  • Poly (paraphenylene terephthalamide) is produced using a 3 liter separable flask having a stirring blade, a thermometer, a nitrogen inlet pipe and a powder addition port.
  • the flask is sufficiently dried, charged with 2200 g of N-methyl-2-pyrrolidone (NMP), added with 151.07 g of calcium chloride powder vacuum-dried at 200 ° C. for 2 hours, heated to 100 ° C. and completely dissolved. After returning to room temperature, 68.23 g of paraphenylenediamine is added and completely dissolved. While maintaining this solution at 20 ° C.
  • NMP N-methyl-2-pyrrolidone
  • 124.97 g of terephthalic acid dichloride is added in 10 divided portions every about 5 minutes. Thereafter, with stirring, the solution is aged for 1 hour while maintaining the temperature at 20 ° C. ⁇ 2 ° C. Filter through a 1500 mesh stainless steel wire mesh. The resulting solution has a para-aramid concentration of about 6%.
  • alumina C manufactured by Nippon Aerosil Co., Ltd.
  • 6 g of advanced alumina AA-03 manufactured by Sumitomo Chemical Co., Ltd.
  • the obtained solution is filtered through a 1000-mesh wire mesh, 0.73 g of calcium oxide is added, and the mixture is neutralized by stirring for 240 minutes, and defoamed under reduced pressure to obtain a slurry-like coating liquid 2.
  • a separator that is not easily short-circuited and has high ion permeability, which is suitable as a separator for an in-vehicle secondary battery.
  • a desired separator can be obtained only by appropriately combining the temperature in the stretching process without requiring a special apparatus, and the manufacturing cost can be reduced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Cell Separators (AREA)
  • Laminated Bodies (AREA)

Abstract

 特別な装置を使用せずに、電池用セパレータに適した細孔構造を有するポリオレフィン微多孔フィルムを再現性よく、高効率に製造する方法を提供する。微細空孔を有する原料ポリオレフィンシートをテンター式延伸機の炉内に搬送し、前記炉内の複数の延伸領域にてテンター延伸することにより、ポリオレフィン微多孔フィルムを製造する方法であって、前記複数の延伸領域は、フィルム拡幅速度の異なる少なくとも2つの延伸領域を有し、当該少なくとも2つの延伸領域におけるフィルム拡幅速度が大きい延伸領域の温度が、フィルム拡幅速度が小さい延伸領域より低く、且つ、最もフィルム拡幅速度が大きい延伸領域が、最もフィルム拡幅速度が小さい延伸領域より、前段に位置するポリオレフィン微多孔フィルムの製造方法。

Description

ポリオレフィン微多孔フィルムの製造方法及び積層多孔フィルム
 本発明は、ポリオレフィン微多孔フィルムの製造方法に関する。更に詳しくは、非水電解液二次電池セパレータの構成部材として好適なポリオレフィン微多孔フィルムの製造方法に関するものである。
 非水電解液二次電池、特にリチウム二次電池は、エネルギー密度が高いのでパーソナルコンピュータ、携帯電話、携帯情報端末などに用いる電池として広く使用され、また最近では車載用の電池として開発が進められてきている。
 リチウム二次電池などの非水電解液二次電池におけるセパレータとして、ポリオレフィンを主成分とする微多孔フィルムや、該微多孔フィルムを基材として他の機能層を積層した積層多孔質フィルムが用いられている。
 このような微多孔フィルムは、その内部に連結した細孔を有す構造を有し、連結した細孔を介して一方の面から他方の面にイオンを含む液体が透過可能である。そのため、正極-負極間でイオンのやり取りを行う電池用セパレータ部材として好適である。
 微多孔フィルムは、イオンの透過性向上の観点から、空隙率が高いことが好ましい。一方で、微多孔フィルムにおける細孔の孔径が大きすぎると、該微多孔フィルムを電池のセパレータとして用いた場合、負極で生成したデンドライトが正極に到達して短絡が生じ易くなる。そのため、微多孔フィルムの孔径は、できるだけ小さいことが好ましい。
 微多孔フィルムの細孔構造を制御する方法として、原料となる樹脂シートを一軸または二軸延伸する方法が挙げられる。
 例えば、特許文献1では、延伸温度を一定としつつ、延伸の初期段階から最終段階において歪速度を変えて延伸することで細孔構造を制御した微多孔フィルムを製造する方法が開示されている。また、特許文献2では、延伸の上流段階と下流段階で温度を変えて、熱セットする方法が開示されている。また、特許文献3では、同時二軸型テンター延伸法において、延伸工程の温度を予熱工程の温度に対して低温にする熱可塑性樹脂フィルムの製造方法が開示されている。
 しかしながら、通常、空隙率が高くなる条件で微多孔フィルムを製造すると、細孔の孔径は大きくなる傾向にあり、実用的なレベルで、フィルムの空隙率と細孔径のバランスを取ることは難しかった。
特許第2628788号公報 特表2011-515512号公報 特願2000-102977号公報
 かかる状況下、本発明の目的は、非水電解液二次電池用セパレータに好適な空隙率と細孔径を有するポリオレフィン微多孔フィルムを再現性よく、高効率に製造する方法を提供することである。
 本発明は、以下を提供する。
 <1> 微細空孔を有する原料ポリオレフィンシートをテンター式延伸機の炉内に搬送し、前記炉内の複数の延伸領域にてテンター延伸する、フィルム延伸工程を有するポリオレフィン微多孔フィルムの製造方法であって、
 前記複数の延伸領域は、フィルム拡幅速度の異なる少なくとも2つの延伸領域を有し、当該少なくとも2つの延伸領域におけるフィルム拡幅速度が大きい延伸領域の温度が、フィルム拡幅速度が小さい延伸領域より低く、
 且つ、最もフィルム拡幅速度が大きい延伸領域が、最もフィルム拡幅速度が小さい延伸領域より、前段に位置するポリオレフィン微多孔フィルムの製造方法。
 <2> 前記最もフィルム拡幅速度が小さい延伸領域に供給される際に、原料ポリオレフィンシートが、初期値の5%以上40%以下の厚みまで延伸される<1>記載のポリオレフィン微多孔フィルムの製造方法。
 <3> 前記最もフィルム拡幅速度が大きい延伸領域と、前記最もフィルム拡幅速度が小さい延伸領域との温度差が10℃以上である<1>または<2>に記載のポリオレフィン微多孔フィルムの製造方法。
 <4> 下記式(1)で規定されるSにおいて、
 前記最もフィルム拡幅速度が大きい延伸領域でのフィルム拡幅速度(SA)が、前記最もフィルム拡幅速度が小さい延伸領域での拡幅速度(SB)の2倍以上である<1>から<3>のいずれかに記載のポリオレフィン微多孔フィルムの製造方法。

  フィルム拡幅速度S=V×W/L    (1)

(式(1)中、Lは各延伸領域におけるフィルム搬送方向の距離、Wは各延伸領域におけるフィルム搬送方向と直交する線とテンターレールとの交点がなす距離の差、Vはフィルムが各延伸領域を搬送方向へ通過する速度を表す。)
 <5> 前記テンター延伸が一軸延伸である<1>から<4>のいずれかに記載のポリオレフィン微多孔フィルムの製造方法。
 <6> 前記原料ポリオレフィンシートが、重量平均分子量50万以上の超高分子量ポリオレフィンと重量平均分子量2000以下のポリオレフィンワックスとからなる<1>から<5>のいずれかに記載のポリオレフィン微多孔フィルムの製造方法。
 <7> 前記原料ポリオレフィンシートの空隙率が、30~50体積%である<1>から<6>のいずれかに記載のポリオレフィン微多孔フィルムの製造方法。
 <8> <1>から<7>のいずれかに記載の製造方法により得られるポリオレフィン微多孔フィルムに、微粒子を主成分とし、該微粒子同士がバインダー高分子により接着されてなる多孔質層が積層されてなる積層多孔フィルム。
 本発明の製造方法によれば、通常のテンター延伸装置を使用し、延伸工程における温度とフィルム拡幅速度とを適切に組み合わせるだけで、ポリオレフィンフィルムの細孔を著しく閉塞させることなく、フィルムを延伸させることができる。そのため、セパレータの基材多孔質フィルムに適したポリオレフィン微多孔フィルムを、生産性良く製造することができる。
一軸式のテンター式延伸機の模式図である。 一軸式のテンター式延伸機によるフィルム延伸工程を説明するための図(平面図)である。 一軸式のテンター式延伸機によるフィルム延伸工程を説明するための図(断面図)である 式(1)で規定されるフィルム拡幅速度Sを説明するための図であり、テンター方式が一軸延伸の場合を示す。 式(1)で規定されるフィルム拡幅速度Sを説明するための図であり、テンター方式が同時二軸延伸の場合を示す。
 1 テンター式延伸機
 10 原料ポリオレフィンシート
 11 ポリオレフィン微多孔フィルム(延伸フィルム)
 20 加熱炉
 21 予熱領域
 22 延伸領域(延伸領域A)
 23 延伸領域(延伸領域B)
 24 熱固定領域
 C チャック
 R テンターレール
 F1 原料ポリオレフィンシートの幅
 F2 ポリオレフィン微多孔フィルム(延伸フィルム)の幅
 LA,LB,LC 延伸領域A,B,Cそれぞれにおけるフィルム搬送方向の移動距離(延伸領域A,B,Cの長さ)
 WA,WB,WC 延伸領域A,B,Cそれぞれにおけるフィルム搬送方向と直交する線とテンターレールとの交点がなす距離の差
 VA,VB,VC フィルムが延伸領域A,B,Cそれぞれを搬送方向へ通過する速度
 SA,SB,SC 延伸領域A,B,Cそれぞれでのフィルム拡幅速度
 TA、TB、TC 延伸領域A,B,Cそれぞれの温度
 本発明のポリオレフィン微多孔フィルムの製造方法は、微細空孔を有する原料ポリオレフィンシートをテンター式延伸機の炉内に搬送し、前記炉内の複数の延伸領域にてテンター延伸する、フィルム延伸工程を有するポリオレフィン微多孔フィルムの製造方法であって、前記複数の延伸領域は、フィルム拡幅速度の異なる少なくとも2つの延伸領域を有し、当該少なくとも2つの延伸領域におけるフィルム拡幅速度が大きい延伸領域の温度が、フィルム拡幅速度が小さい延伸領域より低く、且つ、最もフィルム拡幅速度が大きい延伸領域が、最もフィルム拡幅速度が小さい延伸領域より、前段に位置することを特徴とする。
 なお、本発明において、原料となるシート状のポリオレフィンを「原料ポリオレフィンシート」と称し、該シートを延伸してものをフィルムと呼び、また、前段とは、原料ポリオレフィンシート乃至はフィルムの搬送方向を基準に手前側を指し、後段とは搬送方向を指す。
 ポリオレフィン微多孔フィルム(以下、単に「微多孔フィルム」と記載する場合がある。)は、テンター式延伸機の炉内を搬送される原料ポリオレフィンシートを複数の延伸領域にてテンター延伸する、いわゆる多段式テンター延伸法により得ることができる。
 ここで、テンター式延伸機とは、フィルムの両端を掴む複数のチャックと呼ばれる部分が延伸機の入口から出口に向かって連続的にある定められたテンターレール上を動き、一軸、または二軸にフィルムを連続的に延伸する機構を有するものであり、特に本発明におけるテンター式延伸機は、2つ以上に区切られた複数の延伸領域を有し、延伸領域ごとにテンターレール角度を調整することで延伸倍率やフィルム拡幅速度を任意に調整することができ、かつ、延伸領域ごとに温度を設定することができるものである。
 本発明の製造方法において、テンター延伸機は、一軸延伸でも二軸延伸でもよいが、装置構成がシンプルな一軸延伸機が好ましい。図1に一軸式のテンター式延伸機を概念的に示した模式図を示す。図1においてチャックCは、ポリオレフィン微多孔フィルム11を挟む治具であり、テンターレールRに一定の間隔で配置されている。テンターレールRはチャックCが動く部分であり、テンターレールRを目的とする形状とすることによって、フィルム11を延伸することができる。
 以下、図2及び図3に基づいて、一軸式のテンター式延伸機1によるフィルム延伸工程を説明する。フィルム延伸工程は、原料ポリオレフィンシート10を横方向(フィルム幅方向)に延伸して、ポリオレフィン微多孔フィルム11を得る工程である。
 フィルム延伸工程では、原料ポリオレフィンシート10をテンター延伸法によって横延伸する。フィルム延伸に用いられる加熱炉20は、予熱領域21、延伸領域22,23及び熱固定領域24を備える。
 加熱炉20におけるそれぞれの領域は、温度を独立に調節することができ、原料ポリオレフィンの種類やフィルム延伸条件に合わせて適宜温度を設定することができる。例えば、原料ポリオレフィンシート10がポリエチレン系樹脂からなる場合、80~170℃程度の温度範囲で設定される。
 まず、幅F1の原料ポリオレフィンシート10は、テンターレールRにおけるチャックCによって固定される。次いで、テンターレールR上をチャックCが前段から後段(矢印方向)に移動することにより、原料ポリオレフィンシート10は、予熱領域21に導入される。原料ポリオレフィンシート10は、この予熱領域21で加熱されながら、チャックCの移動に伴いに移動する。なお、原料ポリオレフィンシート10の搬送速度は、通常、1~100m/分程度、好ましくは3~40m/分である。
 予熱領域21では、原料ポリオレフィンシート10を延伸するのに十分な温度にまで原料ポリオレフィンシート10が加熱される。
 予熱領域21における予熱温度は、原料ポリオレフィンシート10に含まれる熱可塑性樹脂が非晶性樹脂の場合、(Tg-20)~(Tg+30)℃とすることが好ましい。Tgはガラス転移点(glass-transition temperature)である。
 一方、原料ポリオレフィンシート10に含まれる熱可塑性樹脂が結晶性樹脂の場合、(Tm-40)~(Tm+20)℃とすることが好ましい。Tmは融点(melting point)である。なお、本明細書における予熱温度とは、加熱炉20の予熱領域21内の雰囲気の温度をいう。
 予熱された原料ポリオレフィンシート10は、予熱領域21から後段にの延伸領域22,23に移動する。延伸領域22,23では、原料ポリオレフィンシート10を、加熱しながら幅方向(フィルム搬送方向に垂直な方向)に延伸する。延伸領域22,23内の雰囲気の温度は、上記条件を満たすように設定される。
 原料ポリオレフィンシート10がポリエチレン系樹脂からなる場合、予熱された原料ポリオレフィンシート10を予熱温度よりも低い温度で横延伸することにより、原料ポリオレフィンシート10をより均一に延伸することができる。その結果、厚みや位相差の均一性に優れた延伸フィルムを得ることができる。原料ポリオレフィンシート10がポリエチレン系樹脂からなる場合、延伸領域22,23内の雰囲気の温度は、予熱領域21の温度より5~30℃低いことが好ましく、10~25℃低いことがより好ましい。
 延伸領域22,23における原料ポリオレフィンシート10の横延伸は、原料ポリオレフィンシート10を固定するチャックCを幅方向(フィルム搬送方法とは垂直な方向)に拡げることによって行われる。つまり、チャックCが矢印方向(フィルム搬送方法)に移動しながら、延伸領域22,23において、幅方向に拡がることによって、原料ポリオレフィンシート10が幅方向に引っ張られて延伸される。最終的に原料ポリオレフィンシート10は幅F1から幅F2に横延伸される。
 原料ポリオレフィンシート10は、延伸領域22,23で延伸された後、後段の熱固定領域24に移動する。
 熱固定領域24では、延伸後の横幅F2を保った状態で、所定の温度に加熱する。このことにより、延伸フィルム11の熱的安定性を高めることができる。熱固定温度(熱固定領域24の雰囲気の温度)は、前段の延伸領域23と同じでもよく、異なっていてもよいが、フィルムに延伸する際にかけた温度をはるかに超える温度がかかると延伸フィルムは収縮しやすくなるため、熱固定温度は、延伸領域23における延伸温度と同じ温度から延伸温度よりも30℃高い温度までの温度範囲内であることが好ましい。
 延伸フィルム11は、熱固定領域24を通過した後、加熱炉20から排出される。これによって、横方向(フィルム幅方向)に延伸された延伸フィルム11を得ることができる。
 本発明の製造方法では、テンター延伸が行われる複数の延伸領域のうち、少なくとも2つの延伸領域のフィルム拡幅速度が異なり、当該少なくとも2つの延伸領域におけるフィルム拡幅速度が大きい延伸領域の温度が、フィルム拡幅速度が小さい延伸領域より低く設定され、且つ、最もフィルム拡幅速度が大きい延伸領域が、最もフィルム拡幅速度が小さい延伸領域より、前段に位置する。
 すなわち、図2及び図3に示すように、テンター延伸が行われる延伸領域が2領域の場合には、前段の延伸領域22のフィルム拡幅速度が、後段の延伸領域23のフィルム拡幅速度より大きく、かつ、前段の延伸領域22の方が後段の延伸領域23より低温である。
 本発明の製造方法では、前段に位置する最もフィルム拡幅速度の大きい延伸領域を、後段に位置する最もフィルム拡幅速度の小さい延伸領域より低温に設定する。このように設定することにより、前段のフィルム拡幅速度の大きい(低温の)延伸領域で、高いフィルム拡幅率を達成することにより、フィルム生産性を高めることができる。さらに、後段のフィルム拡幅速度が小さい(高温の)延伸領域にて、ゆっくり拡幅することになるため、フィルム拡幅速度が大きすぎる時に生じやすい、フィルムの細孔の閉塞を抑制することができ、フィルムの高いイオン透過性を保つことができる。
 なお、図2及び図3ではテンター延伸が行われる延伸領域が2領域の例を示したが、延伸領域が3領域以上ある場合には、そのうちの少なくとも2つの延伸領域が上記本発明の製造方法の条件を満たせばよい。そのため、同じ温度で異なるフィルム拡幅速度の領域や、異なる温度で同じフィルム拡幅速度の領域が存在していてもよい。
 原料ポリオレフィンシートの幅延伸倍率(図2におけるF2/F1比)は、2~10倍であることが好ましい。得られる延伸フィルムの厚みと位相差の均一性をさらに向上させる観点から、該幅延伸倍率は4~8倍であることがより好ましい。
 上述したフィルム延伸の際の細孔の閉塞は、特にフィルムの厚みが小さくなった場合に起こりやすい。そのため、前記最もフィルム拡幅速度が小さい延伸領域に供給される際に、原料ポリオレフィンシートが、初期値の5%以上40%以下(好ましくは、10%以上30%以下)の厚みまで延伸されることが好ましい。このような条件で延伸を行うことで、フィルム延伸の際の細孔の閉塞がより抑制され、適度な空隙率と細孔径を有するフィルムを得ることができる。
 また、前記最もフィルム拡幅速度が大きい延伸領域と、前記最もフィルム拡幅速度が小さい延伸領域との温度差(図2の場合は、延伸領域22と延伸領域23の温度差)は、10℃以上が好ましく、15℃以上がより好まく、20℃以上がさらに好ましい。
 このように温度差を付けることにより、フィルムの膜質を高め、フィルムのイオン透過性を向上させることができる。
 フィルム拡幅速度は、単位時間当たりにフィルムを幅方向(フィルム搬送方向と直交する方向)に広がる速度であり、テンター延伸機が一軸延伸あるいは同時二軸延伸の場合、フィルム拡幅速度Sを以下の式(1)のように規定することができる。

  フィルム拡幅速度S=V×W/L    (1)
 (式(1)中、Lは各延伸領域におけるフィルム搬送方向の距離、Wは各延伸領域におけるフィルム搬送方向と直交する線とテンターレールとの交点がなす距離の差、Vはフィルムが各延伸領域を搬送方向へ通過する速度を表す。)
 以下、式(1)で規定するフィルム拡幅速度Sの定義について図面を参照して説明する。
 図4は、フィルム延伸方式が一軸延伸である場合におけるフィルム拡幅速度Sを説明するための図である。なお、図4において、説明をわかりやすくするため、片側のテンターレールRのみを示し、もう片方のテンターレール及びテンターレール以外の構成部分の図示は省略している。
 Lは各延伸領域におけるフィルム搬送方向の距離であり、それぞれの延伸領域の長さに該当する。そのため、Lは使用するテンター延伸機の構造に依存する。延伸領域A,B,CにおけるLをそれぞれLA、LB、LCとする。
 Wは各延伸領域におけるフィルム搬送方向と直交する線とテンターレールRとの交点がなす距離の差である。すなわち、フィルムが幅方向に延伸する量を規定するものである。延伸領域A,B,CにおけるWをそれぞれWA、WB、WCとする。
 Vはフィルムが各延伸領域を搬送方向へ通過する速度、いわゆるフィルム搬送速度である。延伸領域A,B,CにおけるVをそれぞれVA、VB、VCとする。
 また、フィルム搬送方向に対する延伸領域A,B,CにおけるテンターレールRの角度を、それぞれθA,θB,θCとする。
 また、延伸領域A,B,Cにおける式(1)で規定されるSをそれぞれSA、SB、SCとする。また、延伸領域A,B,Cにおける温度をそれぞれTA、TB、TCとする。
 フィルム拡幅速度は、単位時間当たりにフィルムが横方向(幅方向)に広がる速度である。テンターレールR上のチャックC同士の間隔は一定であるため、テンターレールRがフィルム搬送方向に対してある角度θを取るときに、フィルム拡幅速度Sはフィルム搬送速度Vに比例し、フィルム搬送速度Vが大きくなるほどフィルム拡幅速度Sも大きくなる。また、テンターレールRは角度θが大きいほど急峻にフィルム中心から遠ざかるため、角度θが大きくなるほどフィルム拡幅速度Sも大きくなる。
 ここで、式(1)において、W/Lはtanθに該当するため、式(1)に示すように、W/Lと各延伸領域での速度Vとの積であるSは、単位時間当たりにフィルムが横方向(幅方向)に広がる速度、すなわち、フィルム拡幅速度に相当する。
 なお、フィルム拡幅速度を、式(1)のSで規定すると、(i)Lが異なる場合、すなわち、それぞれの延伸領域の幅が異なる場合においても適用することができる、(ii)Wが異なる場合、すなわち、それぞれの延伸領域の幅方向の延伸量が異なる場合においても適用することができる、(iii)θが異なる場合、すなわち、テンターレールRがフィルム搬送方向に対してなす角度が異なる場合においても適用できる、等の利点がある。
 また、一軸延伸の場合、フィルムが各領域を前段から後段に搬送される速度Vは、一定であり、VA=VB=VCである。そのため、フィルム拡幅速度Sとtanθ=W/Lとが比例関係となる。よって、図4における、3つの延伸領域A,B,Cにおいて、WA/LA>WC/LC>WB/LBの場合、SA>SC>SBの関係にある。
 なお、図4において、SA>Sc>SBの関係であるため、Sが最大である延伸領域Aの温度TAが、Sが最小である延伸領域Bの温度TBより、低温であれば、上述した本発明の製造方法の要件を満たす。
 また、式(1)で規定するフィルム拡幅速度Sは、テンター延伸方式が、同時二軸延伸の場合にも適用することができる。
 以下、図5に基づいて、テンター延伸方式が、同時二軸延伸の場合のフィルム延伸について説明する。なお、図5では、説明を簡単にするために、延伸領域は、2つの延伸領域A,Bで説明する。
 同時二軸延伸方式は、各延伸領域において、幅方向のみならず、フィルム搬送方向(長手方向)にもフィルムが延伸する方式であり、フィルム搬送速度VA、VBが延伸領域A,Bで異なる。ここで、同時二軸延伸方式におけるフィルム搬送速度Vは、各延伸領域における平均搬送速度を意味する。
 同時二軸延伸方式の場合には、一軸延伸方式と同様に、テンターレールRは角度θが大きいほど急峻にフィルム中心から遠ざかるが、フィルム搬送速度Vによってフィルム拡幅速度Sは、大小関係が変化することになる。例えば、図5でθA=θBのである場合も、VA<VBならば、SA<SBとなる
 上記式(1)で規定されたSにおいて、延伸領域Aのフィルム拡幅速度SAが、延伸領域Bのフィルム拡幅速度SBの2倍以上であることが好ましく、4倍以上であることがより好ましく、5倍以上であることがさらに好ましい。
 上記式(1)で規定されたフィルム拡幅速度Sの絶対値は、フィルム材料や必要な延伸倍率などを考慮して適宜決定されるが、通常、0.1~50m/minであり、0.3~20m/minであることが好ましい。
 以下、原料ポリオレフィンシート、本発明の製造方法で得られるポリオレフィン微多孔フィルムの物性について説明する。
<原料ポリオレフィンシート>
 原料ポリオレフィンシートにおけるポリオレフィンとしては、例えば、エチレン、プロピレン、1-ブテン、4-メチル-1-ペンテン、1-ヘキセンなどを重合した高分子量の単独重合体又は共重合体が挙げられる。これらの中でも重量平均分子量50万以上の超高分子量ポリオレフィンが好ましく、特にエチレンを主体とする重量平均分子量100万以上の高分子量ポリエチレンが好ましい。
 原料ポリオレフィンシートにおけるポリオレフィン成分の割合は、該原料ポリオレフィンシート全重量の50重量%以上であることを必須とし、90重量%以上であることが好ましく、95重量%以上であることがより好ましい。
 原料ポリオレフィンシートのポリオレフィン成分には、重量平均分子量が5×105~150×105の高分子量ポリオレフィン成分が含まれていることが好ましい。特にポリオレフィン成分として重量平均分子量100万以上のポリオレフィン成分が含まれると、(該原料ポリオレフィンシートを延伸した後の)ポリオレフィン微多孔フィルムの強度が向上する傾向にある。
 原料ポリオレフィンシートのポリオレフィン成分には、重量平均分子量が5×105~150×105の高分子量ポリオレフィン成分と共に、重量平均分子量2000以下のポリオレフィンワックスが含まれていることが好ましい。
 このようなポリオレフィンワックスは、高分子量ポリオレフィンを加工する際に可塑剤として作用することで高分子量ポリオレフィン成分が動きやすくなり、高分子量ポリオレフィンの結晶化を促進するため、膜全体の強度が高くなる。
 原料ポリオレフィンシートの空隙率は、30~50体積%であることが好ましい。原料ポリオレフィンシートの空隙率が30体積%より小さいと延伸後の微多孔フィルムの空隙率を高くすることが困難であり、また、原料ポリオレフィンシートの空隙率が50体積%より大きいと延伸後の微多孔フィルムの強度を十分に保つことができない場合がある。
 ポリオレフィン微多孔フィルムの原材料である、原料ポリオレフィンシートの製造方法としては、例えば原料ポリオレフィンに空隙(微細空孔)を持たせるために、ポリオレフィンからなる樹脂組成物に抽出可能なフィラーを充填して、所定の厚みにシート化した後に、そのフィラーを抽出除去する方法が挙げられる。この場合、原料ポリオレフィンシートの空隙(微細空孔)の孔径は、フィラーの粒径によって決定される。
<ポリオレフィン微多孔フィルム>
 本発明の製造方法により得られるポリオレフィン微多孔フィルムは、その内部に連結した細孔を有する構造を有し、ポリオレフィンを主成分とする微多孔フィルムであり、連結した細孔を介して一方の面から他方の面に気体や液体が透過可能である。
 微多孔フィルムの膜厚は、4~40μmが好ましく、7~30μmがより好ましい。膜厚が4μm未満であると、ハンドリング性に劣ったり、電池用セパレータとして用いた際に正負極の絶縁を保てなくなる恐れがある。一方、膜厚が40μmを越えると、電池用セパレータとして用いた際に電池容量が小さくなる恐れがある。
 微多孔フィルムの目付は、通常、4~20g/m2であり、5~12g/m2が好ましい。目付が4g/m2未満であると、微多孔フィルムの強度やハンドリング性に劣ったり、電池用セパレータとして用いた際に正負極間の絶縁を保てなくなる恐れがある。一方、目付が20g/m2を越えると、重量エネルギー密度が小さくなり、電池用セパレータとして用いた際に容量不足となる恐れがある。
 微多孔フィルムのイオン透過性は、ガーレー透気度で評価することができる。
 微多孔フィルムの透気度は、ガーレ値で250秒/100cc以下、好ましくは220秒/100cc以下であり、より好ましくは200秒/100cc以下である。上記範囲の透気度を有すると、車載用二次電池等の高出力二次電池用セパレータとして用いた際に必要となるイオン透過性を発揮することができる。
 一方、正負極間の絶縁を保つという観点からは、透気度は30秒/100cc以上が好ましく、より好ましくは50秒/100cc以上である。
 また、微多孔フィルムの空隙率は、43体積%以上、好ましくは45体積%以上であり、より好ましくは47体積%以上である。上記範囲の空隙率を有すると、電解液の保持量を高め、また高いイオン透過性を確保することができ、該車載用電池のセパレータとして好適である。
 一方、確実にシャットダウン機能を得ることができる点で、微多孔フィルムの空隙率は80体積%以下が好ましく、75体積%以下がより好ましい。
 さらに、微多孔フィルムの孔径は、電池のセパレータとした際に、正極や負極の粒子の入り込みを防止することができる点や、および負極で発生したデンドライトによる短絡を防止できる点で、0.073μm以下が好ましく、より好ましくは0.071μm以下、特に好ましくは0.069μm以下である。
 微多孔フィルムの平均孔径と空隙率の比(平均孔径(μm)/空隙率)は、0.1~0.16が好ましく、より好ましくは0.12~0.15である。このような範囲であれば、イオン透過性を確保しつつ、デンドライドによる短絡の発生を抑制しやすい。
 微多孔フィルムは、イオン透過性を有する細孔を有するが、過熱により溶融して無孔化するため、シャットダウン機能を有する電池用セパレータとして使用できる。
 以下、ポリオレフィン微多孔フィルムを有する積層多孔質フィルムについて説明する。
 本発明の積層多孔質フィルムは、上述のポリオレフィン微多孔フィルム(以下、積層多孔フィルムの説明においては、「基材多孔質フィルム」と称す場合がある)の片面または両面に耐熱層が積層されてなる。
 本発明の積層多孔質フィルムは、電池用セパレータとして適しており、電池に過剰発熱が生じた場合、基材多孔質フィルムが溶融して無孔化することにより、シャットダウン機能を発揮し、また耐熱層は過剰発熱時の高温に対する耐熱性と寸法安定性の機能を発揮する。
<基材多孔質フィルム>
 基材多孔質フィルムは、積層多孔質フィルムの基材であり、上述した本発明により製造されるポリオレフィン微多孔フィルムを使用するため、ここでは説明を省略する。
<耐熱層>
 耐熱層は、微粒子を主成分とし、微粒子同士がバインダー高分子により接着されてなる多孔質層であり、基材多孔質フィルムの表面に積層される。
 耐熱層としては、過剰発熱時の高温に対する耐熱性と寸法安定性の機能を有するものであれば特に制限はなく、ポリアミド、ポリイミド等の含窒素芳香族重合体を用いることもできるが、微粒子を主成分とし、微粒子同士がバインダー高分子により接着されてなる多孔質層が好ましく用いられる。
 以下、好適な耐熱層である、微粒子を主成分とし、微粒子同士がバインダー高分子により接着されてなる多孔質層(当該耐熱層を以下、「耐熱多孔質層」と称す場合がある)についてより詳細に説明する。
 耐熱多孔質層を構成する微粒子としては、充填剤と一般的に呼ばれる無機の微粒子を用いることができる。具体的には炭酸カルシウム、タルク、クレー、カオリン、シリカ、ハイドロタルサイト、珪藻土、炭酸マグネシウム、炭酸バリウム、硫酸カルシウム、硫酸マグネシウム、硫酸バリウム、水酸化アルミニウム、水酸化マグネシウム、酸化カルシウム、酸化マグネシウム、酸化チタン、アルミナ、マイカ、ゼオライト、ガラス等の無機物からなる微粒子が挙げられる。微粒子としては、これらの中でも耐熱性および化学的安定性の観点から、無機酸化物が好ましく、酸化マグネシウム、酸化チタン、アルミナがより好ましく、アルミナが特に好ましい。なお、これらの微粒子は、単独あるいは2種以上を混合して用いることができる。
 また、微粒子の平均粒径は、3μm以下が好ましく、1μmがより好ましい。微粒子の形状としては、球状、瓢箪状が挙げられる。なお、微粒子の平均粒径は、走査型電子顕微鏡(SEM)にて、25個ずつ粒子を任意に抽出して、それぞれにつき粒径(直径)を測定して、10個の粒径の平均値として算出する方法や、BET比表面積を測定し球状近似することで平均粒径を算出する方法がある。SEMによる平均粒径算出時は、微粒子の形状が、球形以外の場合は、粒子における最大長を示す方向の長さをその粒径とする。
 また、粒径、および/または比表面積が異なる2種類以上の微粒子を混用することもできる。
 耐熱多孔質層の形成に使用されるバインダー高分子は、多孔質層を構成する微粒子同士、微粒子とポリオレフィン多孔フィルムとを結着させる役割を有する。かかるバインダー高分子としては、電池の電解質に不溶であり、またその電池の使用範囲で電気化学的に安定である高分子が好ましい。
 例えば、ポリエチレンやポリプロピレンなどのポリオレフィン、ポリフッ化ビニリデンやポリテトラフルオロエチレンなどの含フッ素樹脂、フッ化ビニリデン-ヘキサフルオロプロピレン-テトラフルオロエチレン共重合体やエチレン-テトラフルオロエチレン共重合体などの含フッ素ゴム、スチレン-ブタジエン共重合体およびその水素化物、メタクリル酸エステル共重合体、アクリロニトリル-アクリル酸エステル共重合体、スチレン-アクリル酸エステル共重合体、エチレンプロピレンラバー、ポリ酢酸ビニルなどのゴム類、ポリフェニレンエーテル、ポリスルホン、ポリエーテルスルホン、ポリフェニレンスルフィド、ポリエーテルイミド、ポリアミドイミド、ポリエーテルアミド、ポリアミド、ポリエステルなどの融点やガラス転移温度が180℃以上の樹脂、ポリビニルアルコール、ポリエチレングリコール、セルロースエーテル、アルギン酸ナトリウム、ポリアクリル酸、ポリアクリルアミド、ポリメタクリル酸等の水溶性ポリマーが挙げられる。
 これらの中でも、セルロースエーテル、アルギン酸ナトリウム、ポリアクリル酸等の水溶性ポリマーは、溶媒として水を用いることができ、プロセスや環境負荷の点で好ましい。水溶性ポリマーの中でもセルロースエーテルが好ましく用いられる。
 セルロースエーテルとして具体的には、カルボキシメチルセルロース(CMC)、ヒドロキシエチルセルロース(HEC)、カルボキシエチルセルロース、メチルセルロース、エチルセルロース、シアンエチルセルロース、オキシエチルセルロース等が挙げられ、化学的な安定性に優れたCMC、HECが特に好ましい。
 また、ポリフェニレンエーテル、ポリスルホン、ポリエーテルスルホン、ポリフェニレンスルフィド、ポリエーテルイミド、ポリアミドイミド、ポリエーテルアミド、ポリエステルなどの融点やガラス転移温度が180℃以上の樹脂は、耐熱性が高く、積層多孔フィルムの加熱形状維持率を向上させるため好ましい。耐熱性樹脂の中でもポリエーテルイミド、ポリアミドイミド、ポリエーテルアミド、ポリアミドがより好ましく、ポリアミドがさらに好ましい。
 耐熱多孔質層の膜厚は、イオン透過性を阻害せず、且つ、高温に対する耐熱性と寸法安定性の機能を確保できる範囲で決定される。耐熱多孔質層の膜厚が厚すぎると、セパレータとして用いたときに、非水電解液二次電池の負荷特性が低下するおそれがあり、薄すぎると、事故等により該電池の発熱が生じたときにポリオレフィンの多孔フィルムの熱収縮に抗しきれずセパレータが収縮するおそれがある。
 具体的な耐熱多孔質層の膜厚は、積層多孔質フィルムにおける積層数にもよるが、基材多孔質フィルムの片面あるいは両面に耐熱多孔質層を形成する場合においては、通常、通常0.1μm以上20μm以下であり、好ましくは2μm以上15μm以下の範囲である(両面の場合は合計値を表す)。
 耐熱多孔質層の空隙率は、20~85体積%が好ましく、より好ましくは40~75体積%である。耐熱多孔質層の空隙率が低すぎるとイオン透過性が悪化するおそれがあり、高すぎると耐熱多孔質層の強度が低くなり、事故等により該電池の発熱が生じたときにポリオレフィンの多孔フィルムの熱収縮に抗しきれずセパレータが収縮するおそれがある。
 耐熱多孔質層の平均孔径は、0.005~0.3μmが好ましく、より好ましくは0.01~0.2μmである。平均孔径が小さすぎるとイオン透過性が悪化するおそれがあり、大きすぎると電極にて形成されるデンドライドにより短絡が起こりやすくなる。
 積層多孔質フィルムの製造方法としては、例えば、微粒子、バインダー高分子および溶媒(分散媒)を含む塗工液を前記基材多孔質フィルムの上に直接塗工し溶媒(分散媒)を除去する方法;塗工液を適当な支持体の上に塗工し、溶媒(分散媒)を除去して形成した多孔質層を基材多孔質フィルムと圧着させた後に支持体を剥がす方法;塗工液を適当な支持体の上に塗工し次いで基材多孔質フィルムと圧着させ支持体から剥がした後に溶媒(分散媒)を除去する方法;塗工液中に基材多孔質フィルムを浸漬し、ディップコーディングを行った後に溶媒(分散媒)を除去する方法等が挙げられる。なお、支持体としては、樹脂製のフィルム、金属製のベルト、ドラム等を用いることができる。
 また、基材多孔質フィルムの両面に耐熱多孔質層を積層する場合においては、一方に耐熱多孔質層を形成させた後に他面に耐熱多孔質層を積層する逐次積層方法や、基材多孔質フィルムの両面に同時に耐熱多孔質層を形成させる同時積層方法が挙げられる。
 微粒子やバインダー高分子を分散させる溶媒(分散媒)としては、微粒子やバインダー高分子が均一かつ安定に溶解又は分散させることができる溶媒(分散媒)あればよく、使用する微粒子や樹脂を考慮して適宜選択される。具体的には、水、メタノール、エタノール、イソプロパノールなどのアルコール類、トルエン、キシレン、ヘキサン、N-メチルピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミドなどを挙げることができる。
 微粒子やバインダー高分子を分散させて塗工液を得る方法としては、所望の耐熱多孔質層を形成するに必要な分散液特性が得られる方法であればよく、例えば、機械攪拌法、超音波分散法、高圧分散法、メディア分散法などを挙げることができる。また、該塗工液には、本発明の目的を損なわない範囲で微粒子及びバインダー高分子以外の成分として、分散剤、可塑剤、pH調製剤などを含んでいてもよい。
 上記塗工液を基材多孔質フィルムまたは支持体に塗工する方法としては、必要な目付や塗工面積を実現しうる方法であれば特に制限はなく、従来公知の方法を採用することができる。例えば、グラビアコーター法、小径グラビアコーター法、リバースロールコーター法、トランスファロールコーター法、キスコーター法、ディップコーター法、ナイフコーター法、エアドクターブレードコーター法、ブレードコーター法、ロッドコーター法、スクイズコーター法、キャストコーター法、ダイコーター法、スクリーン印刷法、スプレー塗工法などが挙げられる。
 溶媒(分散媒)の除去方法は、特に制限はないが、乾燥による方法が一般的である。
乾燥方法としては、自然乾燥、送風乾燥、加熱乾燥、減圧乾燥などいかなる方法でもよい。また、塗工液の溶媒(分散媒)を他の溶媒に置換した後、乾燥操作を行ってもよい。
 好適には以下の方法を例示することができる。
塗工液の調製に使用された溶媒(分散媒)に溶解し、かつ、塗工液に含まれるバインダー高分子を溶解することなく、蒸発し易い他の溶媒(以下、溶媒X)を用意し、該溶媒中に、塗工液が塗工された基材多孔質フィルムあるいは支持体を浸漬し、基材多孔質フィルムあるいは支持体の上の膜状の塗工液から前記使用溶媒(分散媒)を溶媒Xで置換した後に、溶媒Xを蒸発させる方法が挙げられる。この方法では、効率よく溶媒(分散媒)を除去することができる。
 なお、塗工液が塗工された基材多孔質フィルムから、塗工液の溶媒(分散媒)あるいは溶媒Xを除去する際に加熱を行う場合には、基材多孔質フィルムの細孔が収縮して透気度が低下することを回避する必要がある。
 以下に実施例を挙げて本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。
 実施例及び比較例のフィルムの物性等は以下の方法で測定した。
(1)厚み測定(単位:μm)
 フィルムの厚みは、JIS規格(K7130-1992)に従い、測定した。
(2)ガーレー透気度(単位:sec/100cc)
 フィルムの透気度は、JIS P8117に基づいて、株式会社東洋精機製作所製のデジタルタイマー式ガーレー式デンソメータで測定した。
(3)空隙率(単位:体積%)
 フィルムを一辺の長さ10cmの正方形に切り取り、重量:W(g)と厚み:D(cm)を測定した。サンプル中の材質の重量を計算で割りだし、それぞれの材質の重量:Wi(g)を真比重で割り、それぞれの材質の体積を算出して、次式より空隙率(体積%)を求めた。
 空隙率(体積%)=100-[{(W1/真比重1)+(W2/真比重2)+・・+(Wn/真比重n)}/(10×10×D)]×100
(4)平均孔径
 JISK3832の規定に基づいて、Automated Capillary Flow Porometer(POROUS MATERIALS INC社製)を用い、含浸液をフロリナートFC-40(住友スリーエム株式会社製)として平均孔径を求めた。
<原料ポリオレフィンシートの調製>
 超高分子量ポリエチレン粉末(340M、三井化学社製、分子量320万)を70重量%および重量平均分子量1000のポリエチレンワックス(FNP-0115、日本精鑞社製)30重量%と、該超高分子量ポリエチレンとポリエチレンワックスとの合計量100重量部に対して、酸化防止剤(Irg1010、チバ・スペシャリティ・ケミカルズ社製)を0.4重量%と、酸化防止剤(P168、チバ・スペシャリティ・ケミカルズ社製)を0.1重量%と、ステアリン酸ナトリウムを1.3重量%とを加え、更に全体積に対して38体積%となるように平均粒径0.1μmの炭酸カルシウム(丸尾カルシウム社製)を加え、これらを粉末のままヘンシェルミキサーで混合した後、二軸混練機で溶融混練してポリオレフィン樹脂組成物とした。該ポリオレフィン樹脂組成物を表面温度が150℃の一対のロールにて圧延しシートを作製した。このシートを塩酸水溶液(塩酸4mol/L、非イオン系界面活性剤0.5重量%)に浸漬し、炭酸カルシウムを溶解、除去し、原料ポリオレフィンシートを得た。
 テンター式延伸機として、株式会社市金工業社製の一軸延伸型テンター式延伸機を用いた。
 該テンター式延伸機の延伸領域を、前段から延伸領域A、延伸領域Bの2領域に分けて、それぞれの延伸領域でフィルム拡幅速度、温度を変更して延伸操作を行なった。各延伸領域のテンターレールは直線となるように設定した。
 レールパターンとして下表の3パターンを設定した。下記表1のL、W、Vは、それぞれ各延伸領域のフィルム搬送方向の距離をL、テンターレールが各領域の入口および出口を通過する位置のフィルム搬送方向と垂直方向における位置の差をW、フィルムが各領域を搬送方向へ通過する速度をVとする。各領域のフィルム拡幅速度SはS=V×W/Lより計算された値である。
Figure JPOXMLDOC01-appb-T000001
参考例1
 基準になるフィルム製造方法として、フィルム拡幅速度S及びフィルム延伸温度が一定の延伸条件にて、フィルム製造を行った。
 まず、延伸機のレールパターンをフィルム拡幅速度Sが同一速度のパターン2に設定し、延伸領域A及び延伸領域Bの温度をそれぞれ105℃、予熱領域及び熱固定領域の温度をそれぞれ120℃に設定して原料ポリオレフィンシートを延伸し、参考例1のポリオレフィン微多孔フィルムを得た。
実施例1
 レールパターンをパターン1に設定し、延伸領域Aの温度を95℃、延伸領域Bの温度を115℃、予熱領域及び熱固定領域の温度をそれぞれ120℃に設定して原料ポリオレフィンシートを延伸し、実施例1のポリオレフィン微多孔フィルムを得た。
実施例2
 レールパターンをパターン1に設定し、延伸領域Aの温度を100℃、延伸領域Bの温度を110℃、予熱領域及び熱固定領域の温度をそれぞれ120℃に設定して原料ポリオレフィンシートを延伸し、実施例2のポリオレフィン微多孔フィルムを得た。
比較例1
 レールパターンをパターン1に設定し、延伸領域A及び延伸領域Bの温度をそれぞれ105℃、予熱領域及び熱固定領域の温度をそれぞれ120℃に設定して原料ポリオレフィンシートを延伸し、比較例1のポリオレフィン微多孔フィルムを得た。
比較例2
 レールパターンをパターン1に設定し、延伸領域Aの温度を115℃、延伸領域Bの温度を95℃、予熱領域及び熱固定領域の温度をそれぞれ120℃に設定して原料ポリオレフィンシートを延伸し、比較例2のポリオレフィン微多孔フィルムを得た。
比較例3
 レールパターンをパターン2に設定し、延伸領域Aの温度を95℃、延伸領域Bの温度を115℃、予熱領域及び熱固定領域の温度をそれぞれ120℃に設定して原料ポリオレフィンシートを延伸し、比較例3のポリオレフィン微多孔フィルムを得た。
比較例4
 レールパターンをパターン2に設定し、延伸領域Aの温度を115℃、延伸領域Bの温度を95℃、予熱領域及び熱固定領域の温度をそれぞれ120℃に設定して原料ポリオレフィンシートを延伸し、比較例4のポリオレフィン微多孔フィルムを得た。
比較例5
 レールパターンをパターン3に設定し、延伸領域Aの温度を95℃、延伸領域Bの温度を115℃、予熱領域及び熱固定領域の温度をそれぞれ120℃に設定して原料ポリオレフィンシートを延伸し、比較例5のポリオレフィン微多孔フィルムを得た。
比較例6
 レールパターンをパターン3に設定し、延伸領域Aの温度を115℃、延伸領域Bの温度を95℃、予熱領域及び熱固定領域の温度をそれぞれ120℃に設定して原料ポリオレフィンシートを延伸し、比較例6のポリオレフィン微多孔フィルムを得た。
 原料シートの膜厚及び空隙率、フィルム延伸条件、得られたポリオレフィン微多孔フィルムの物性を表2にまとめて示す。
Figure JPOXMLDOC01-appb-T000002
 延伸領域A及び延伸領域Bにおけるフィルム拡幅速度及び温度が一定である参考例1と比較して、前段にある延伸領域Aのフィルム拡幅速度が延伸領域Bより大きく、かつ、延伸領域Aが延伸領域Bより低温である実施例1及び実施例2は、ガーレー透気度が明らかに小さくなっており、さらに平均孔径/空隙率の比が参考例1より小さくなっている。このことから、実施例1及び実施例2では、イオン透過性を確保しつつ、デンドライドによる短絡の発生を抑制しやすい構造になっていることがわかる。
 一方、実施例1と同じパターン1で、温度条件が実施例1と異なる比較例1及び比較例3では明らかにガーレー透気度が明らかに大きくなっていることがわかる。
 また、一方、延伸速度が一定(パターン2)で、実施例1と同じ温度条件の比較例3ではガーレー透気度が参考例1とほぼ同じであり、前段の延伸領域Aが延伸領域Bより高温であるが比較例4では、ガーレー透気度が参考例1より大きくなっている。
 また、実施例1と反対に、前段にある延伸領域Aのフィルム拡幅速度が延伸領域Bより小さい、比較例5及び比較例6においてもガーレー透気度が参考例1より大きくなっている。
 以上の結果から、フィルム拡幅速度が大きい延伸領域の温度が、フィルム拡幅速度が小さい延伸領域より低温であり、且つ、前記フィルム拡幅速度が大きい延伸領域が、前記フィルム拡幅速度が小さい延伸領域より、前段に位置すると、所定の空隙率、平均孔径を保ちながら、ガーレー透気度が小さく、すなわち、イオン透過度を大きくすることができることがわかった。
 また、実施例1と実施例2を比較すると、延伸領域Aと延伸領域Bの温度差が大きい方が、ガーレー透気度を小さくすることができることが示唆される。
<積層多孔質フィルム1>
(1)塗工液1の調製
 塗工液1を以下の手順で作製する。
 まず、媒体として、20重量%エタノール水溶液にカルボキシメチルセルロース(CMC、第一工業製薬株式会社製セロゲン3H)を溶解させてCMC溶液を得る(CMC濃度:0.70重量%対CMC溶液)。
 次いで、CMC換算で100重量部のCMC溶液に対して、アルミナ(AKP3000、住友化学株式会社製)を3500重量部、添加、混合して、ゴーリンホモジナイザーを用いた高圧分散条件(60MPa)にて3回処理することにより、塗工液1を調製する。
(2)積層多孔質フィルムの製造
上記で得られた多孔質フィルムの両面に、グラビア塗工機を用いて、塗工液1を塗工、乾燥し、基材多孔質フィルムと耐熱層とからなる積層多孔質フィルムを作製する。得られる積層多孔質フィルムは良好なイオン透過性を示し、高温で基材多孔質フィルムがシャットダウンしたときも、耐熱層の働きで形状を保持する。
<積層多孔質フィルム2>
(1)塗工液2の調製
 塗工液2を以下の手順で作製する。
 攪拌翼、温度計、窒素流入管及び粉体添加口を有する、3リットルのセパラブルフラスコを使用して、ポリ(パラフェニレンテレフタルアミド)の製造を行う。フラスコを十分乾燥し、N-メチル-2-ピロリドン(NMP)2200gを仕込み、200℃で2時間真空乾燥した塩化カルシウム粉末151.07gを添加し、100℃に昇温して完全に溶解させる。室温に戻して、パラフェニレンジアミン、68.23gを添加し完全に溶解させる。この溶液を20℃±2℃に保ったまま、テレフタル酸ジクロライド、124.97gを10分割して約5分おきに添加する。その後も攪拌しながら、溶液を20℃±2℃に保ったまま1時間熟成する。1500メッシュのステンレス金網でろ過する。得られた溶液は、パラアラミド濃度約6%である。
 次に、上記パラアラミド溶液100gをフラスコに秤取し、300gのNMPを添加し、パラアラミド濃度が1.5重量%の溶液に調製して60分間攪拌する。上記のパラアラミド濃度が1.5重量%の溶液に、アルミナC(日本アエロジル社製)を6g、アドバンスドアルミナAA-03(住友化学社製)を6g混合し、240分間攪拌する。得られた溶液を1000メッシュの金網でろ過し、その後酸化カルシウム0.73gを添加して240分間攪拌して中和を行い、減圧下で脱泡してスラリー状の塗工液2を得る。
(2)積層多孔質フィルムの製造
 上記多孔質フィルムの片面に、バー塗工機を用いて、塗工液2を塗工、乾燥し、ポリオレフィン層と耐熱層とからなる積層多孔質フィルムを作製する。得られる積層多孔質フィルムは良好なイオン透過性を示し、高温で基材多孔質フィルムがシャットダウンしたときも、耐熱層の働きで形状を保持する。
 本発明によれば、車載用二次電池のセパレータとして好適な、短絡しにくく且つイオン透過性の高いセパレータを提供することが可能である。また、本発明によれば、特別な装置を必要とせず、延伸工程における温度とを適切に組み合わせるだけで所望のセパレータが得られ、製造コストの低減化も図ることができる。

Claims (8)

  1.  微細空孔を有する原料ポリオレフィンシートをテンター式延伸機の炉内に搬送し、前記炉内の複数の延伸領域にてテンター延伸する、フィルム延伸工程を有するポリオレフィン微多孔フィルムの製造方法であって、
     前記複数の延伸領域は、フィルム拡幅速度の異なる少なくとも2つの延伸領域を有し、当該少なくとも2つの延伸領域におけるフィルム拡幅速度が大きい延伸領域の温度が、フィルム拡幅速度が小さい延伸領域より低く、
     且つ、最もフィルム拡幅速度が大きい延伸領域が、最もフィルム拡幅速度が小さい延伸領域より、前段に位置するポリオレフィン微多孔フィルムの製造方法。
  2.  前記最もフィルム拡幅速度が小さい延伸領域に供給される際に、原料ポリオレフィンシートが、初期値の5%以上40%以下の厚みまで延伸される請求項1記載のポリオレフィン微多孔フィルムの製造方法。
  3.  前記最もフィルム拡幅速度が大きい延伸領域と、前記最もフィルム拡幅速度が小さい延伸領域との温度差が10℃以上である請求項1または2に記載のポリオレフィン微多孔フィルムの製造方法。
  4.  前記フィルム拡幅速度を、下記式(1)で表されるSと規定した場合において、
     前記最もフィルム拡幅速度が大きい延伸領域でのフィルム拡幅速度(SA)が、前記最もフィルム拡幅速度が小さい延伸領域での拡幅速度(SB)の2倍以上である請求項1から3のいずれかに記載のポリオレフィン微多孔フィルムの製造方法。

      フィルム拡幅速度S=V×W/L    (1)

    (式(1)中、Lは各延伸領域におけるフィルム搬送方向の距離、Wは各延伸領域におけるフィルム搬送方向と直交する線とテンターレールとの交点がなす距離の差、Vはフィルムが各延伸領域を搬送方向へ通過する速度を表す。)
  5.  前記テンター延伸が一軸延伸である請求項1から4のいずれかに記載のポリオレフィン微多孔フィルムの製造方法。
  6.  前記原料ポリオレフィンシートが、重量平均分子量50万以上の超高分子量ポリオレフィンと重量平均分子量2000以下のポリオレフィンワックスとからなる請求項1から5のいずれかに記載のポリオレフィン微多孔フィルムの製造方法。
  7.  前記原料ポリオレフィンシートの空隙率が、30~50体積%である請求項1から6のいずれかに記載のポリオレフィン微多孔フィルムの製造方法。
  8.  請求項1から7のいずれかに記載の製造方法により得られるポリオレフィン微多孔フィルムに、耐熱層が積層されてなる積層多孔フィルム。
PCT/JP2013/052228 2012-02-08 2013-01-31 ポリオレフィン微多孔フィルムの製造方法及び積層多孔フィルム WO2013118638A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/377,076 US9012061B2 (en) 2012-02-08 2013-01-31 Method for producing polyolefin porous film, and laminated porous film
KR1020147021572A KR101523891B1 (ko) 2012-02-08 2013-01-31 폴리올레핀 미세 다공 필름의 제조 방법 및 적층 다공 필름의 제조 방법
CN201380008190.5A CN104093775B (zh) 2012-02-08 2013-01-31 聚烯烃微多孔膜的制造方法及层叠多孔膜
US14/454,865 US9276244B2 (en) 2012-02-08 2014-08-08 Method for producing polyolefin porous film, and laminated porous film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012024791A JP5694971B2 (ja) 2012-02-08 2012-02-08 ポリオレフィン微多孔フィルムの製造方法及び積層多孔フィルムの製造方法
JP2012-024791 2012-02-08

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/377,076 A-371-Of-International US9012061B2 (en) 2012-02-08 2013-01-31 Method for producing polyolefin porous film, and laminated porous film
US14/454,865 Continuation-In-Part US9276244B2 (en) 2012-02-08 2014-08-08 Method for producing polyolefin porous film, and laminated porous film

Publications (1)

Publication Number Publication Date
WO2013118638A1 true WO2013118638A1 (ja) 2013-08-15

Family

ID=48947402

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/052228 WO2013118638A1 (ja) 2012-02-08 2013-01-31 ポリオレフィン微多孔フィルムの製造方法及び積層多孔フィルム

Country Status (5)

Country Link
US (1) US9012061B2 (ja)
JP (1) JP5694971B2 (ja)
KR (1) KR101523891B1 (ja)
CN (1) CN104093775B (ja)
WO (1) WO2013118638A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016121327A (ja) * 2014-12-24 2016-07-07 旭化成株式会社 ポリオレフィン微多孔膜の製造方法
CN106661257A (zh) * 2014-08-29 2017-05-10 住友化学株式会社 多孔膜的卷绕体及其制造方法
US10084172B2 (en) * 2015-11-30 2018-09-25 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery separator and use thereof

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6095226B2 (ja) * 2013-12-06 2017-03-15 株式会社日本製鋼所 フィルム延伸機における延伸方法及びポリオレフィン微多孔延伸フィルムの延伸装置
JP2015091995A (ja) * 2015-02-04 2015-05-14 住友化学株式会社 ポリオレフィン微多孔フィルムの製造方法及び積層多孔フィルムの製造方法
KR101681452B1 (ko) * 2015-09-24 2016-11-30 스미또모 가가꾸 가부시키가이샤 비수 전해액 이차 전지용 세퍼레이터 및 비수 전해액 이차 전지
JP6025956B1 (ja) * 2015-11-30 2016-11-16 住友化学株式会社 非水電解液二次電池用セパレータ、非水電解液二次電池用積層セパレータ、非水電解液二次電池用部材および非水電解液二次電池
JP6014743B1 (ja) 2015-11-30 2016-10-25 住友化学株式会社 非水電解液二次電池用セパレータおよびその利用
JP6053904B1 (ja) * 2015-11-30 2016-12-27 住友化学株式会社 非水電解液二次電池用セパレータ、非水電解液二次電池用積層セパレータ、非水電解液二次電池用部材および非水電解液二次電池
WO2017107150A1 (zh) * 2015-12-24 2017-06-29 深圳中兴创新材料技术有限公司 用于电池隔膜的涂料、电池隔膜及电池隔膜的制备方法
CN105521716B (zh) * 2016-01-04 2018-02-06 国家海洋局天津海水淡化与综合利用研究所 一种聚四氟乙烯中空纤维膜的二级拉伸制备方法
US10328613B2 (en) 2016-09-20 2019-06-25 Sumitomo Chemical Company, Limited Film-stretching apparatus and method of producing film
US10090500B2 (en) 2016-09-20 2018-10-02 Sumitomo Chemical Company, Limited Film-stretching apparatus and method of producing film
US10137608B2 (en) 2016-09-20 2018-11-27 Sumitomo Chemical Company, Limited Film-stretching apparatus and method of producing film
JP7055663B2 (ja) 2017-03-03 2022-04-18 住友化学株式会社 フィルム製造方法、セパレータ製造方法および可塑剤製造方法
CN111668425A (zh) * 2020-04-26 2020-09-15 河北金力新能源科技股份有限公司 一种间位芳纶隔膜及其制备方法
CN115195095A (zh) * 2022-05-17 2022-10-18 中材锂膜有限公司 一种高安全性湿法同步锂离子电池隔膜的拉伸装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62121737A (ja) * 1985-07-19 1987-06-03 ヘキスト セラニーズ コーポレーシヨン 微孔性ポリエチレンフイルムの製造法
WO2006104165A1 (ja) * 2005-03-29 2006-10-05 Tonen Chemical Corporation ポリオレフィン微多孔膜の製造方法及びその微多孔膜
JP2008214425A (ja) * 2007-03-01 2008-09-18 Asahi Kasei Chemicals Corp ポリオレフィン微多孔膜の製造方法
JP2011246659A (ja) * 2010-05-28 2011-12-08 Sekisui Chem Co Ltd プロピレン系樹脂微孔フィルム及びその製造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4104769A (en) * 1976-03-12 1978-08-08 E. I. Du Pont De Nemours And Company Apparatus for stretching film
JP2628788B2 (ja) 1990-08-09 1997-07-09 宇部興産株式会社 微多孔性膜の製造方法及びその方法で製造される耐溶断性微多孔性膜
JP2883726B2 (ja) 1990-11-14 1999-04-19 日東電工株式会社 電池用セパレータの製造法
JPH10100246A (ja) * 1996-09-26 1998-04-21 Sekisui Chem Co Ltd ポリオレフィン成形体の製造方法
JP2000102977A (ja) 1998-09-29 2000-04-11 Sumitomo Chem Co Ltd 熱可塑性樹脂フィルムの製造方法
WO2000020493A1 (en) * 1998-10-01 2000-04-13 Tonen Chemical Corporation Microporous polyolefin film and process for producing the same
EP1002826A1 (en) * 1998-11-19 2000-05-24 Tokuyama Corporation Polyolefin base porous film
EP1097962B2 (en) * 1999-02-19 2013-07-17 Toray Battery Separator Film Co., Ltd. Polyolefin microporous film and method for preparing the same
JP4460668B2 (ja) * 1999-03-03 2010-05-12 東燃化学株式会社 ポリオレフィン微多孔膜及びその製造方法
JP4467114B2 (ja) * 1999-12-10 2010-05-26 東燃化学株式会社 積層複合膜
US6703439B2 (en) * 2000-02-09 2004-03-09 Mitsui Chemicals, Inc. Polyolefin resin composition and polyolefin film prepared from the same
JP4217119B2 (ja) * 2003-07-17 2009-01-28 富士フイルム株式会社 溶液製膜設備及び方法
JP2005254812A (ja) * 2004-02-12 2005-09-22 Nippon Zeon Co Ltd 熱可塑性ノルボルネン系樹脂からなる延伸フィルムの製造方法及び位相差フィルム
US20090226813A1 (en) 2008-03-07 2009-09-10 Kotaro Takita Microporous Membrane, Battery Separator and Battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62121737A (ja) * 1985-07-19 1987-06-03 ヘキスト セラニーズ コーポレーシヨン 微孔性ポリエチレンフイルムの製造法
WO2006104165A1 (ja) * 2005-03-29 2006-10-05 Tonen Chemical Corporation ポリオレフィン微多孔膜の製造方法及びその微多孔膜
JP2008214425A (ja) * 2007-03-01 2008-09-18 Asahi Kasei Chemicals Corp ポリオレフィン微多孔膜の製造方法
JP2011246659A (ja) * 2010-05-28 2011-12-08 Sekisui Chem Co Ltd プロピレン系樹脂微孔フィルム及びその製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106661257A (zh) * 2014-08-29 2017-05-10 住友化学株式会社 多孔膜的卷绕体及其制造方法
US10059085B2 (en) 2014-08-29 2018-08-28 Sumitomo Chemical Company, Limited Wound body of porous film, and manufacturing method thereof
JP2016121327A (ja) * 2014-12-24 2016-07-07 旭化成株式会社 ポリオレフィン微多孔膜の製造方法
US10084172B2 (en) * 2015-11-30 2018-09-25 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery separator and use thereof

Also Published As

Publication number Publication date
CN104093775B (zh) 2015-09-02
US9012061B2 (en) 2015-04-21
JP5694971B2 (ja) 2015-04-01
CN104093775A (zh) 2014-10-08
KR20140101015A (ko) 2014-08-18
JP2013159750A (ja) 2013-08-19
US20150004466A1 (en) 2015-01-01
KR101523891B1 (ko) 2015-05-28

Similar Documents

Publication Publication Date Title
JP5694971B2 (ja) ポリオレフィン微多孔フィルムの製造方法及び積層多孔フィルムの製造方法
JP5932161B1 (ja) 積層体、セパレータ及び非水二次電池
KR101998014B1 (ko) 도포액, 적층 다공질 필름 및 적층 다공질 필름의 제조 방법
JP4867185B2 (ja) 多孔性フィルムの製造方法および多孔性フィルム
JP4839882B2 (ja) ポリオレフィン系樹脂組成物からなるシート、多孔性フィルムおよび電池用セパレータ
JP6033944B2 (ja) 積層多孔質フィルムの製造方法
JP2018159080A (ja) 積層多孔質フィルムの製造方法
US20110052962A1 (en) Porous film, multilayer porous film comprising the same, and separator
US20190088917A1 (en) Polyolefin microporous membrane, method of producing polyolefin microporous membrane, battery separator, and battery
WO2007010878A1 (ja) ポリオレフィン多層微多孔膜及び電池用セパレータ
US9276244B2 (en) Method for producing polyolefin porous film, and laminated porous film
JP5554445B1 (ja) 電池用セパレータ及び電池用セパレータの製造方法
WO2017170288A1 (ja) ポリオレフィン微多孔膜及びその製造方法、電池用セパレータ並びに電池
JP5906857B2 (ja) 改質ポリオレフィン微多孔膜の製造方法
JPWO2018168871A1 (ja) ポリオレフィン微多孔膜
JP2013014017A (ja) 積層多孔質フィルム
WO2012043501A1 (ja) スラリー及び該スラリーを使用したセパレータの製造方法
JP2012226921A (ja) 積層多孔質フィルム
JP2015091995A (ja) ポリオレフィン微多孔フィルムの製造方法及び積層多孔フィルムの製造方法
JP6634821B2 (ja) ポリオレフィン微多孔膜とその製造方法、ロール及びポリオレフィン微多孔膜の評価方法
WO2016031990A1 (ja) 多孔質フィルムの捲回体、および、その製造方法
JP7470297B2 (ja) ポリオレフィン微多孔膜およびその製造方法
JP2020111469A (ja) リール、及びリールの製造方法
JP2013133418A (ja) 塗工液、積層多孔質フィルム及び積層多孔質フィルムの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13746502

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147021572

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14377076

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13746502

Country of ref document: EP

Kind code of ref document: A1