WO2013118444A1 - 眼鏡用偏光プラスチックレンズおよび眼鏡用偏光プラスチックレンズの製造方法 - Google Patents

眼鏡用偏光プラスチックレンズおよび眼鏡用偏光プラスチックレンズの製造方法 Download PDF

Info

Publication number
WO2013118444A1
WO2013118444A1 PCT/JP2013/000404 JP2013000404W WO2013118444A1 WO 2013118444 A1 WO2013118444 A1 WO 2013118444A1 JP 2013000404 W JP2013000404 W JP 2013000404W WO 2013118444 A1 WO2013118444 A1 WO 2013118444A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
polarizing film
mold
polarizing
plastic lens
Prior art date
Application number
PCT/JP2013/000404
Other languages
English (en)
French (fr)
Inventor
山本 明典
正樹 井原
大介 尾栢
登内 賢一
Original Assignee
セイコーエプソン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セイコーエプソン株式会社 filed Critical セイコーエプソン株式会社
Priority to US14/377,351 priority Critical patent/US9782941B2/en
Priority to EP13746050.7A priority patent/EP2813883B1/en
Priority to CN201380008229.3A priority patent/CN104105997B/zh
Publication of WO2013118444A1 publication Critical patent/WO2013118444A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • B29D11/00403Producing compound lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/22Component parts, details or accessories; Auxiliary operations
    • B29C39/24Feeding the material into the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/22Component parts, details or accessories; Auxiliary operations
    • B29C39/26Moulds or cores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00634Production of filters
    • B29D11/00644Production of filters polarizing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/0073Optical laminates
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • G02B5/3041Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks
    • G02B5/305Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks including organic materials, e.g. polymeric layers
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/12Polarisers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • B29D11/00413Production of simple or compound lenses made by moulding between two mould parts which are not in direct contact with one another, e.g. comprising a seal between or on the edges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • B29D11/0048Moulds for lenses
    • B29D11/00528Consisting of two mould halves joined by an annular gasket
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C2202/00Generic optical aspects applicable to one or more of the subgroups of G02C7/00
    • G02C2202/16Laminated or compound lenses

Definitions

  • the present invention relates to a polarizing plastic lens for spectacles and a method of manufacturing a polarizing plastic lens for spectacles.
  • a polarizing plastic lens that blocks light of a predetermined polarization direction reflected by a water surface or the like (see, for example, Patent Document 1).
  • a polarized lens it is a plastic polarized lens formed by laminating a polarized film between two lens substrates, or the inside of the lens is polarized by injecting a raw material monomer around the polarized film and then polymerizing and curing it.
  • Plastic polarized lenses in which a film is embedded are known.
  • a gasket as described in Patent Document 1 is used.
  • a support convex portion for supporting a set of the polarizing film is formed on the inner surface of the side wall portion over the entire circumference, and the peripheral portion of the polarizing film is inserted and supported on the top surface of the support convex portion An insertion groove is also formed over the entire circumference. Then, the peripheral portion of the polarizing film is inserted into and supported in the insertion groove of the supporting convex portion, and the raw material monomer is injected around the polarizing film to manufacture the plastic polarizing lens.
  • the gasket is designed and held regardless of the thickness or shape difference (curved surface accuracy) of the polarizing film because the polarizing film is held by inserting it into the insertion groove provided in advance.
  • the holding position of the polarizing film is determined by the manufacturing accuracy.
  • the position of the polarizing film after molding will vary. Therefore, it is necessary to mold the lens to a thickness in consideration of the variation, and there is a problem that the lens becomes thicker than a normal plastic lens for glasses (a plastic lens for glasses without the polarizing film).
  • An object of the present invention is to provide a polarizing plastic lens for spectacles and a method for manufacturing a polarizing plastic lens for spectacles having the same thickness as a conventional plastic lens for spectacles.
  • One aspect of the present invention is a first lens substrate having a surface on the object side, a second lens substrate having a surface on the eyeball side, the first lens substrate and the second lens substrate And a polarizing film having a minimum value of 0.3 mm or more and 0.7 mm or less between the surface on the object side and the other.
  • the glasses having the same thickness as the ordinary finished product lens not provided with the polarizing film Polarized plastic lenses can be manufactured.
  • the minimum value of the distance between the surface on the object side and the polarizing film is less than 0.3 mm, it becomes difficult to form the surface on the eyeball side at the time of manufacture. It becomes difficult to manufacture.
  • the minimum value of the distance between the object-side surface and the polarizing film exceeds 0.7 mm, it is difficult to make the polarizing plastic lens for glasses thinner even if the eye-side surface is polished to the processing limit. Become.
  • the thickness of a typical finished lens without a polarizing film is about 1.1 mm at the thinnest point.
  • the processing limit which can thin the surface on the eyeball side by grinding is about 0.4 mm. Therefore, if the maximum value of the distance between the object side surface and the polarizing film exceeds 0.7 mm, the thickness of the finished lens exceeds 1.1 mm even if the eye side surface is polished to the processing limit. It can not be made as thin as a normal finished lens.
  • the polarizing plastic lens for spectacles means both a semi-finished lens and a finished product lens obtained by polishing the semi-finished lens.
  • the finished lens includes a lens that is lens-shaped according to the eyeglass frame and a lens before lens-shaped processing.
  • the polarizing film has a convex shape toward the surface on the object side.
  • the polarizing film since the polarizing film has a convex shape toward the surface on the object side, the polarizing film is formed of the first lens substrate and the second lens substrate along the curved surface on the object side. It can be placed in between. As a result, it is possible to provide a thin polarizing plastic lens for glasses.
  • the surface on the object side is a spherical surface.
  • the object-side surface is a spherical surface, it is possible to manufacture a polarizing plastic lens for spectacles using a general-purpose mold.
  • the surface on the eyeball side is a prescription surface.
  • the eyeglass-use polarizing plastic lens for correcting vision can be provided by polishing the eyeball-side surface according to the prescription of the wearer.
  • the first lens base and the second lens base have a refractive index of 1.60 or more.
  • the lens substrate having a high refractive index is used, it is possible to make the polarizing plastic lens for glasses thinner.
  • the polarizing film preferably contains polyvinyl alcohol.
  • PVA polyvinyl alcohol
  • Another aspect of the present invention is the first lens such that the minimum value of the distance to the concave surface of the first lens substrate mold in which the concave surface is formed is 0.3 mm or more and 0.7 mm or less Bonding at least a part of the peripheral part of the mold for the substrate and at least a part of the peripheral part of the polarizing film, and secondly on the opposite side of the mold for the lens substrate with the polarizing film interposed therebetween.
  • Arrangement of lens base mold, plastic raw material composition between the first lens base mold and the polarizing film, and between the polarizing film and the second lens base mold And injecting a substance to form a first lens base and a second lens base.
  • the peripheral portion of the first lens base mold so that the minimum value of the distance between the first lens base mold and the concave surface is 0.3 mm or more and 0.7 mm or less. Since a part is adhered to at least a part of the peripheral part of the polarizing film, the positional relationship between the first lens substrate mold and the polarizing film does not greatly fluctuate in the lens manufacturing process. As a result, it is possible to manufacture a polarizing plastic lens for spectacles in which the maximum value of the distance between the surface on the object side described above and the polarizing film is 0.3 mm or more and 0.7 mm or less.
  • FIG. 7 is a view showing the manufacturing process of the polarizing plastic lens for glasses according to the embodiment of the present invention.
  • the figure which shows the manufacturing method of the polarizing plastic lens for spectacles which concerns on one Embodiment of this invention. which shows the manufacturing method of the polarizing plastic lens for spectacles which concerns on one Embodiment of this invention.
  • FIG. 1 is a cross-sectional view of a polarizing plastic lens for glasses.
  • the lens in FIG. 1 is a semi-finished lens (hereinafter referred to as a plastic lens).
  • a lens obtained by polishing the plastic lens 100 according to a prescription is referred to as a finished product lens.
  • FIG. 1A shows an example of a polarizing plastic lens for glasses having a relatively small base curve
  • FIG. 1B shows an example of a polarizing plastic lens for glasses having a relatively large base curve.
  • the plastic lens 100 is a plastic lens for glasses, and a polarizing film 14 is formed between the first lens base 110 and the second lens base 120.
  • the first lens substrate 110 is provided on the front surface (object side) of the plastic lens 100, and the second lens substrate 120 is provided on the back surface (eyeball side).
  • the first lens substrate 110 has a surface 111 on the object side on the surface opposite to the surface facing the polarizing film 14, and the second lens substrate 120 faces the surface facing the polarizing film 14.
  • the eye-side surface 121 is on the opposite side.
  • the polarizing film 14 preferably has a convex shape toward the surface 111 on the object side.
  • the polarizing film 14 can be arrange
  • the possible thickness can be increased.
  • the first lens base 110 and the second lens base 120 are preferably made of transparent plastic having a refractive index of 1.60 or more.
  • materials of the first lens base 110 and the second lens base 120 include acrylic resin, thiourethane resin, thioepoxy resin, methacrylic resin, allyl resin, episulfide resin, polycarbonate resin and the like. . Among these, thiourethane resins and thioepoxy resins are preferable from the viewpoint of thinning.
  • the first lens base 110 and the second lens base 120 are preferably the same material.
  • the minimum value of the distance between the object-side surface 111 of the plastic lens 100 and the polarizing film 14 is 0.3 mm or more and 0.7 mm or less.
  • the position at which the distance between the surface 111 on the object side and the polarizing film 14 is minimum differs depending on the combination of the curvature of the surface 111 on the object side (base curve in the case of a single focus lens; unit is diopter) and the curvature of the polarizing film 14. Further, the point at which the distance between the surface 111 on the object side and the polarizing film 14 is minimum is not limited to one.
  • the vertex T of the surface 111 on the object side is the point at which the distance W1 to the polarizing film 14 is the smallest.
  • the outer peripheral portion of the surface 111 on the object side includes the point where the distance W1 to the polarizing film 14 is the smallest.
  • the vertex T of the surface 111 on the object side is a point at which the distance W1 with the polarizing film 14 is the smallest, and the distance between the vertex T and the polarizing film 14 is 0.3 mm or more. .7 mm or less.
  • the vertex T is an intersection point of a vertical line passing through the center of a circle when the semi-finished lens (plastic lens 100) is viewed in a plan view and the surface 111 on the object side.
  • the plastic lens 100 shown in FIG. 1B is a single-focus lens having a base curve of 10D, a curvature of the polarizing film 14 of 8D, and a positive prescription power.
  • the outer peripheral part of the surface 111 on the object side is the area where the distance W1 to the polarizing film 14 is the smallest.
  • the distance between the outer peripheral portion and the polarizing film 14 is 0.3 mm or more and 0.7 mm or less.
  • the surface on the side opposite to the surface facing the polarizing film 14 be the surface 111 on the object side, and the surface 111 on the object side be a spherical surface.
  • the plastic lens 100 can be easily manufactured, and can be manufactured using a general-purpose mold.
  • the eye side surface 121 is a prescription surface.
  • the eyeball side surface 121 of the second lens substrate 120 is polished to make the minimum value of the distance W2 between the second lens substrate 120 and the polarizing film 14 0.3 mm. To about 0.4 mm.
  • the minimum value of the thickness W of the finished product lens can be made equal to or less than 1.1 mm, which is as thin as that of a normal finished product lens.
  • a normal finished lens refers to an eyeglass lens in which a film such as a polarizing film is not provided between the first lens base 110 and the second lens base 120.
  • the position at which the thickness of the finished lens is minimum differs depending on the combination of the curvature of the surface 111 on the object side and the curvature of the polarizing film 14 and is not limited to one point.
  • the curvature of the polarizing film 14 is larger than the curvature of the surface 111 on the object side, the thickness W of the finished lens at the position of the vertex T is minimized.
  • the point at which the distance W1 between the surface 111 on the object side and the polarizing film 14 is the smallest coincides with the point at which the thickness W of the finished lens is the smallest.
  • Is a minimum value of the thickness W of the finished product lens the length of the line connecting the intersection point of the vertical line passing through the vertex T of the surface 111 on the object side and the surface 121 on the eyeball side and the vertex T is there. Further, the minimum value of the distance W1 in the plastic lens 100 and the minimum value of the distance W1 in the finished product lens coincide with each other. On the other hand, if the curvature of the polarizing film 14 is smaller than the curvature of the surface 111 on the object side, the outer peripheral portion of the surface 111 on the object side includes a point where the thickness W of the finished lens becomes minimum. .
  • the point at which the distance W1 between the surface 111 on the object side and the polarizing film 14 is minimum is not the same as the point at which the thickness W of the finished lens is minimum.
  • the distance W1 in the finished lens are not necessarily equal.
  • the outer peripheral portion of the object side surface 111 of the finished product lens the position where the lens side surface and the object side surface 111 intersect
  • the minimum value of the distance W1 in the finished product lens is larger than the minimum value of the distance W1 in the plastic lens 100 and is not limited to 0.7 mm or less.
  • the thickness W of the finished lens can be considered to be constant and minimum over the entire surface 111 on the object side. Further, with respect to the thickness W of the plastic lens 100, the thickness of the polarizing film 14 is negligible as described later, so the thickness of the polarizing film 14 is ignored for convenience.
  • the polarizing film 14 of the present embodiment is a film-like substrate in which a commercially available iodine-based polarizing film is subjected to curved surface processing to a predetermined curvature by press molding, vacuum molding or the like, and the outer shape is cut into a circular shape.
  • the thickness of the polarizing film 14 is preferably about 10 ⁇ m to 500 ⁇ m. If the thickness is less than 10 ⁇ m, the rigidity is weak and the handling becomes difficult. Moreover, when it exceeds 500 micrometers, when performing curved-surface process, it becomes difficult to obtain predetermined
  • the polarizing film used for the polarizing film 14 is preferably a single layer or multilayer film provided with a resin layer made of polyvinyl alcohol (PVA).
  • PVA is a material which is excellent in transparency, heat resistance, affinity with iodine or a dichroic dye which is a staining agent, and orientation during stretching.
  • a multilayer polarizing film 14 is formed by impregnating PVA with iodine and forming it into a film form to form a uniaxially stretched resin layer, and then laminating triacetyl cellulose (TAC) as a protective layer on both sides of the resin layer. Obtained by In addition, it is also possible to use the polarizing film produced using dichroic dye instead of iodine.
  • TAC triacetyl cellulose
  • a single-layer polarizing film it is also possible to use PVA not laminated with a protective layer with TAC, or a polarizing film using polyethylene terephthalate (PET) instead of PVA.
  • PET polyethylene terephthalate
  • the polarizing film 14 of PVA which is not laminated with a protective layer of TAC is used.
  • FIG. 2 is a view showing the manufacturing process of the plastic lens 100 according to the present embodiment.
  • the manufacturing method of the present embodiment is roughly divided into five steps as shown in FIG. The steps will be described in order below.
  • FIG. 3 is a view showing a method of forming the polarizing film 14 according to the present embodiment.
  • two spherically curved surfaces 12 are formed by pressing a flat sheet body 10 obtained by cutting a uniaxially stretched PVA film into a rectangular shape by a known pressing means.
  • the curvature of the curved surface 12 is set according to the base curve (curvature of the surface 111 on the object side) of the plastic lens 100 (see FIG. 1) to be manufactured.
  • the curvature of the curved surface 12 may be larger as the base curve is larger.
  • the polarizing film 14 may be formed to have the same curvature as the base curve of the plastic lens 100.
  • the size of the base curve is divided into several steps, and the curved surface 12 having a different curvature is set for each step.
  • the polarizing film 14 is obtained by cutting along the broken line K in the drawing while leaving the sheet 10 portion around the curved surface 12.
  • the diameter of the polarizing film 14 is, as shown in FIG. 3B, the inner diameter of the first mold (first lens base mold) 16 and the second mold (second lens base mold) 18 It is preferable that it is smaller than that.
  • the diameter of the polarizing film 14 in the present embodiment is smaller than the inner diameter of the first mold 16 by about 2 mm.
  • FIG. 4 is a plan view of the first mold 16 according to this embodiment as viewed from below (the eyeball side of the manufactured plastic lens 100).
  • the adhesive 20 is applied to the back surface 16 a of the first mold 16.
  • the adhesive 20 is applied to a plurality of places on the outer peripheral portion which is the peripheral portion of the back surface 16 a of the first mold 16. For example, it is applied to three or four places. In this embodiment, four points are applied on the border of four directions orthogonal to each other.
  • an ultraviolet curing adhesive 20 is applied to the outer peripheral portion of the polarizing film 14 with a dispenser.
  • the first mold 16 is a mold used to form one of the object side surface 111 and the eyeball side surface 121 of the plastic lens 100.
  • the first mold 16 is a mold used to form the object-side surface 111 of the plastic lens 100.
  • the first mold 16 is made of glass and circular in plan view.
  • the back surface 16a which is the concave surface of the first mold 16 is a curved surface for forming the object-side surface 111 of the plastic lens 100 to be formed.
  • the first mold 16 is not particularly limited in type (inorganic substance, organic substance) as long as it is a material having a property of transmitting ultraviolet light. In the present embodiment, crown glass is used for the first mold 16.
  • a transparent organic substance for example, resin
  • the advantage of cost reduction may be used, for example, in a mold for molding a small amount of sample product or the like.
  • the adhesive 20 used in the present embodiment is an ultraviolet curable resin material.
  • the ultraviolet curing resin material has the property of chemically changing from liquid to solid in response to the light energy of ultraviolet light.
  • the ultraviolet curable resin material is made of a synthetic resin containing a prepolymer, a monomer, a photopolymerization initiator and an additive.
  • the type of UV curable resin material used in the present embodiment is not particularly limited, but an appropriate one is selected according to the specifications of the monomer.
  • an ultraviolet curable epoxy resin P is used.
  • FIG. 5 is a view showing a method of applying the adhesive 20 to the first mold 16
  • FIG. 6 is a view showing a discharge device for applying the adhesive 20.
  • the outline of the discharge device 22 for applying the adhesive 20 will be described based on FIGS. 5 and 6.
  • the discharge device 22 includes a main body 24 in which a motor device (not shown) is incorporated, a rotary shaft 26 projecting upward from the main body 24, and a turntable 28 disposed at the upper end of the rotary shaft 26.
  • a flexible ring-shaped fixed pad 30 is set on the upper surface of the turntable 28 so as to be in contact with the periphery of the surface 16b of the first mold 16 (the side is shown in the figure).
  • the ring-shaped fixing pad 30 is used to prevent the fixing means of the first mold 16 from contacting the light transmitting surface of the surface 16b as much as possible.
  • a syringe 36 is attached to a rod 32 extending upward from the main body 24 via a slider 34.
  • the syringe 36 discharges the viscous adhesive 20 (ultraviolet curable epoxy resin P) from the needle 38 at the tip by a constant discharge amount by pneumatic pressure control by a dispenser device in the main body 24 (not shown).
  • a plurality of turntables 28 and syringes 36 in the discharge device 22 are prepared, and a single discharge device 22 can apply the adhesive 20 to a large number of first molds 16.
  • the outer periphery of the first mold 16 is applied as an adhesive 20 by a dispenser. After positioning the first mold 16, an adhesive is applied to the outer periphery of the first mold 16. As shown in FIGS. 5 and 6, the first mold 16 is placed on the fixing pad 30 of the turntable 28, the position of the syringe 36 is appropriately adjusted, and the needle 38 is the back surface 16 a of the first mold 16. It arranges in the position which counters the perimeter part of. Then, the discharge device 22 is driven.
  • the turntable 28 is rotated to rotate the first mold 16 in the circumferential direction, and when the position of the first mold 16 to which the adhesive 20 is to be applied reaches below the needle 38, the dispenser device is driven.
  • the adhesive 20 is discharged from the tip of the needle 38 to the outer peripheral portion of the back surface 16a.
  • the height of the adhesive 20 is formed to be approximately the same height for each position where the adhesive 20 is to be applied. Further, in order to set the minimum value of the distance W1 between the polarizing film 14 and the first mold 16 to 0.3 mm or more, the height of the adhesive 20 is set to 0.3 mm or more.
  • the height of the adhesive 20 may be adjusted according to the distance between the polarizing film 14 and the first mold 16.
  • FIG. 7 and 8 are views showing a method of manufacturing the plastic lens 100 according to the present embodiment.
  • the center height of the first mold 16 to be assembled and the height of the center of the held polarizing film 14 are measured.
  • the vertex height of the polarizing film 14 is measured using a non-contact type sensor (for example, Keyence CCD transmission type digital laser sensor IG series).
  • the contact height measurement probe for example, Nikon Digital Micro MF series or Mitutoyo Digimatic indicator 543 series
  • the minimum value of the distance H between the back surface 16 a of the first mold 16 and the polarizing film 14 (hereinafter also referred to as clearance H) is
  • the adhesive 20 is brought into contact with the polarizing film 14 so as to be close to 0.3 mm or more and 0.7 mm or less.
  • the ultraviolet irradiation device 40 is driven to irradiate ultraviolet light from the tip of the irradiation lamp 44 to the adhesive 20 to solidify the adhesive 20.
  • the irradiation time of the ultraviolet light may be short (several seconds to several tens of seconds) depending on the type of the selected adhesive 20, so that the influence on the manufacturing cycle can be suppressed.
  • the minimum value of the clearance H is equal to the minimum value of the distance W1 between the surface 111 on the object side and the polarizing film 14. It can be regarded.
  • the thickness of the cured monomer product changes due to heating, curing, etc., it is preferable to set the minimum value of the clearance H in consideration of the amount of change.
  • the second mold 18 is disposed opposite to the polarizing film 14 so as to have the set thickness W. That is, the polarizing film 14 is sandwiched by the first mold 16 and the second mold 18.
  • the second mold 18 is a circular plate made of glass.
  • the surface 18a of the second mold 18 is a curved surface for molding the surface 121 on the eyeball side of the plastic lens 100 to be molded.
  • the pair of first mold 16 and second mold 18 are held at a distance necessary for molding of the plastic lens 100, and the first and second An adhesive tape (space keeping member) 46 having an adhesive layer on one side is wound slightly more than one turn on the side surfaces of the two molds 16 and 18.
  • the first mold 16 and the second mold 18 are set on the fixing pad 52.
  • the fixed pad 52 is rotationally driven by a rotating shaft 54 projecting from a motor device (not shown).
  • the material of the adhesive tape 46 is not particularly limited. In addition, it is preferable to use a plastic adhesive tape from the viewpoint of ease of use, economy, and the like.
  • a substrate made of polypropylene and a substrate made of polyethylene terephthalate are prepared as the substrate of the pressure-sensitive adhesive tape, and a combination of acrylic, natural rubber and silicon is made as the adhesive.
  • the adhesive tape 46 may be provided with an injection hole (not shown) for injecting a monomer.
  • the state of the first mold 16 and the second mold 18 assembled with the polarizing film 14 interposed therebetween and the adhesive tape 46 is referred to as a matrix 48.
  • the monomer prepared for the assembled matrix 48 is injected into the pair of first mold 16 and second mold 18 and adhesive tape 46 using a syringe from the injection hole. And the monomer is filled so that no bubbles are left in the cavity 50.
  • the mold 48 filled with the monomer is placed in a heating furnace and heated.
  • the heating temperature is preferably 0 to 150 ° C., more preferably 10 to 130 ° C., preferably 5 to 50 hours, more preferably 10 to 25 hours, and polymerization is carried out.
  • the temperature is maintained at 30 ° C. for 7 hours, and then the temperature is raised to 30 to 120 ° C. over 10 hours.
  • the monomer is solidified to form a cured monomer product in which the polarizing film 14 is incorporated in the matrix 48.
  • the mold 48 is taken out of the heating furnace, the adhesive tape 46 is peeled off, and the first mold 16 and the second mold 18 and the cured monomer product are separated to obtain the plastic lens 100 (semi-finished lens) shown in FIG. .
  • the minimum value of the thickness W of the plastic lens 100 in the present embodiment is 5 mm.
  • the eyeball side surface 121 of the plastic lens 100 is polished to make the minimum value of the distance W2 between the second lens substrate 120 and the polarizing film 14 about 0.3 mm to 0.4 mm.
  • a finished product lens having a minimum value of W of 1.1 mm or less is obtained.
  • the finished product lens after the above-mentioned polishing processing may be further subjected to coating of a normal primer, a hard coat and an antireflective film, or a water and oil repellent treatment.
  • the minimum value of the clearance H is set to 0.3 mm or more and 0.7 mm or less
  • the minimum value of the distance W1 between the surface 111 on the object side and the polarizing film 14 is 0.3 mm or more and 0.7 mm
  • the following plastic lens 100 is obtained.
  • the plastic lens 100 by grinding the surface 121 on the eyeball side of the second lens substrate 120, the minimum value of the thickness W of the finished product lens can be made 1.1 mm or less. It is possible to provide a finished product lens that is equally thin.
  • the object-side surface 111 of the first lens base 110 is spherical, manufacturing is easy and a general-purpose mold can be used. Further, by setting the refractive index of the first lens base 110 and the second lens base 120 to 1.60, the plastic lens 100 can be made thinner. For example, in a lens with a large absolute value of prescription power (strength prescription), if a substrate with a high refractive index is used, the thickness can be made equal to that of a lens with a weaker power. Moreover, since PVA was used as the polarizing film 14, the polarizing plastic lens for spectacles can be provided simply.
  • the adhesive agent 20 is solidified by irradiating an ultraviolet-ray using photocurable resin in the said embodiment, you may harden it by heating using thermosetting resin.
  • the syringe 36 may be moved to apply the adhesive 20.
  • the target to which the adhesive 20 is applied in the above embodiment is not limited to the first mold 16 but may be applied to the polarizing film 14.
  • the adhesive 20 may be applied to the second mold 18 (mold for forming the eyeball side surface).
  • the adhesive is applied to such a height that the minimum value of the clearance H is 0.3 mm or more and 0.7 mm or less.
  • the difference between the minimum value of the distance between the first mold 16 and the second mold 18 and the minimum value of the clearance H may be the height of the adhesive.
  • the polarizing film 14 curved to spherical shape was mentioned as an example in the said embodiment, you may use the flat polarizing film 14. In addition, the polarizing film 14 may not necessarily have a circular shape.
  • the material of the polarizing film 14 of the above embodiment is not limited to the above.
  • a single-layer PVA is used in the above embodiment, a film (TPT) may be used in which both sides of a resin layer made of PVA are sandwiched by protective layers made of triacetyl cellulose. Also, the protective layer may be only on one side.
  • the configuration of the ejection device 22 according to the above-described embodiment is merely an example, and may be changed as appropriate to a means for applying the other adhesive 20 realized by another configuration.
  • the shapes of the first mold 16 and the second mold 18 are not limited to the shapes used in the above embodiment.
  • the finished lens may be a single focus lens or a progressive power lens.
  • Table 1 shows the details of Examples 1 to 12 and Comparative Examples 1 to 5.
  • a monomer is a monomer obtained by the above-mentioned "preparation of a monomer”.
  • H is the minimum value of clearance (hereinafter simply referred to as clearance H)
  • W1 is the minimum value of the distance between the eyeball-side surface of the plastic lens (semi-finished lens) and the polarizing film (hereinafter simply referred to as distance W1)
  • W is the finished lens Is the minimum value of thickness (hereinafter simply referred to as thickness W).
  • SF stands for semi-finish.
  • the position where the clearance is minimum is the central portion (the position of the vertex T) of the semi-finished lens when the base curve is less than 6 D, and the outer peripheral portion of the semi-finished lens when the base curve is 6 D or more Therefore, in each example, the clearance H was set at the relevant position.
  • the position at which the distance between the surface on the eyeball side and the polarizing film was minimized was the same position as setting the clearance H.
  • Ten lenses were made in each example and comparative example.
  • the curvature of the polarizing film is changed according to the base curve of the lens, but it is also possible to use a polarizing film having the same curvature in all the examples.
  • Example 1 The plastic lens 100 was obtained by the method described in the embodiment using the 1.60 thiourethane monomer obtained by the preparation of the monomers. Next, the above-mentioned polishing and surface treatment were applied to the obtained plastic lens 100 to obtain a finished product lens.
  • Example 2 A finished product lens was obtained in the same manner as in Example 1 except that the minimum value of the clearance H was changed to the value described in Table 1 in Example 1.
  • Example 3 A finished product lens was obtained in the same manner as in Example 1 except that the monomers in Example 1 were changed to the materials listed in Table 1.
  • Example 5 A finished product lens was obtained in the same manner as in Example 1 except that the polarizing film was changed to the materials described in Table 1 in Example 1.
  • Example 7 A finished product lens was obtained in the same manner as in Example 1 except that the base curve of the lens was changed to the values described in Table 1 in Example 1.
  • Example 8 A finished product lens was obtained in the same manner as in Example 1 except that the base curve of the lens was changed to the values described in Table 1 in Example 2.
  • Example 9 A finished product lens was obtained in the same manner as in Example 1 except that the base curve of the lens and the curvature of the polarizing film were changed to the values described in Table 1 in Example 1.
  • Example 11 A finished product lens was obtained in the same manner as in Example 1 except that the base curve of the lens and the curvature of the polarizing film were changed to the values described in Table 1 in Example 2.
  • Example 1 is the same as Example 1 except that instead of determining the minimum value of the clearance H by adhering the polarizing film to the adhesive, the polarizing film is inserted and held in the insertion groove provided in the gasket. Finished lens.
  • Examples 1 and 2 when the clearance H was 0.3 mm or more and 0.7 mm or less, a plastic lens having a distance W1 of 0.3 mm or more and 0.7 mm or less was obtained. Then, by polishing the second lens substrate of the plastic lens, a finished product lens having a thickness W of 1.1 mm was obtained without damaging the polarizing film. Also in Examples 3 to 4 in which the monomer is changed, Examples 5 to 6 in which the material of the polarizing film is changed, and Examples 7 to 12 in which the base curve of the lens is changed, a finished product having a thickness W of 1.1 mm is similarly obtained. A lens was obtained.
  • a plastic lens having a distance W1 of 0.3 mm (Examples 2 and 8) can be polished to a thickness W of about 0.6 mm to 0.7 mm, but it is completed when the thickness W is less than 1.1 mm. Since the strength of the product lens may be insufficient, the polishing is finished at 1.1 mm.
  • Comparative Example 1 and Comparative Example 3 since the clearance H is 0.2 mm, the monomer can be uniformly flowed between the first mold and the polarizing film in the monomer injection step. It was not possible to produce plastic lenses and finished lenses.
  • Comparative Example 2 and Comparative Example 4 since the clearance H is 0.8 mm, the thickness W1 of the finished product lens is 1.2 mm due to the limit of the polishing process on the prescription surface, which is thicker than the ordinary finished product lens became.
  • Comparative Example 5 since the plastic lens is manufactured using a gasket, it is difficult to absorb the variation in the curved surface accuracy of the polarizing film, and the distance W1 is 0.5 mm to 1 between 10 manufactured plastic lenses. Dispersion occurred in the range of 2 mm.
  • the second lens substrate can not be polished until the thickness W becomes 0.3 mm to 0.4 mm, and the thickness W of the finished lens is The thickness of the lens is 1.6 mm, which is thicker than a regular finished lens.
  • Polarized film 16 First mold (mold for first lens base) 16a back (concave surface) 18 second mold (mold for second lens base) 100 Plastic lens (Polarized plastic lens for glasses) 110: First lens base 111: Object side surface 120: Second lens base 121: Eye surface side (prescription surface) T: vertex.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Health & Medical Sciences (AREA)
  • Polarising Elements (AREA)
  • Eyeglasses (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

 通常の眼鏡用プラスチックレンズと同等の薄さを備えた眼鏡用偏光プラスチックレンズおよび眼鏡用偏光プラスチックレンズの製造方法を提供する。 プラスチックレンズは、物体側の面を有する第一のレンズ基材と、眼球側の面を有する第二のレンズ基材と、第一のレンズ基材と第二のレンズ基材との間に設けられ、かつ、物体側の面との距離の最小値が0.3mm以上0.7mm以下である偏光フィルムと、を含む。

Description

眼鏡用偏光プラスチックレンズおよび眼鏡用偏光プラスチックレンズの製造方法
 本発明は、眼鏡用偏光プラスチックレンズおよび眼鏡用偏光プラスチックレンズの製造方法に関する。
 従来、水面などにより反射された所定の偏光方向の光を遮断する偏光プラスチックレンズが知られている(例えば、特許文献1参照)。
 偏光レンズとしては、2枚のレンズ基材の間に偏光フィルムを貼り合わせて構成されたプラスチック偏光レンズや、偏光フィルムの周囲に原料モノマーを注入してから重合硬化することによって、レンズ内部に偏光フィルムが埋設されたプラスチック偏光レンズが知られている。
 レンズ内部に偏光フィルムが埋設されたプラスチック偏光レンズを製造する際には、特許文献1に記載されているようなガスケットが使用される。
 特許文献1に記載されたガスケットは、側壁部内面に偏光フィルムをセット支持するための支持凸部が全周にわたって形成されており、支持凸部の頂面には偏光フィルムの周縁部が差し込み支持される挿入溝が同じく全周にわたって形成されている。そして、支持凸部の挿入溝内に偏光フィルムの周縁部を差し込み支持し、偏光フィルムの周囲に原料モノマーを注入して、プラスチック偏光レンズを製造していた。
特開2001-311804号公報
 しかしながら、ガスケットを用いて偏光フィルムを保持する場合、あらかじめ設けられた挿入溝に挿し込むことによって偏光フィルムを保持するため、偏光フィルムの厚みや形状差(曲面精度)に関係なく、ガスケットの設計および製造精度で偏光フィルムの保持位置が決まってしまう。その結果、成形後の偏光フィルムの位置がばらついてしまう。そのため、当該ばらつきを考慮した厚さにレンズを成形する必要があり、通常の眼鏡用プラスチックレンズ(偏光フィルムを備えていない眼鏡用プラスチックレンズ)よりも厚みのあるレンズになってしまうという問題があった。
 本発明の目的は、通常の眼鏡用プラスチックレンズと同等の薄さを備えた眼鏡用偏光プラスチックレンズおよび眼鏡用偏光プラスチックレンズの製造方法を提供することにある。
 本発明の一態様は、物体側の面を有する第一のレンズ基材と、眼球側の面を有する第二のレンズ基材と、前記第一のレンズ基材と前記第二のレンズ基材との間に設けられ、かつ、前記物体側の面との距離の最小値が0.3mm以上0.7mm以下である偏光フィルムと、を含む、眼鏡用偏光プラスチックレンズである。
 この構成によれば、物体側の面と偏光フィルムとの距離の最小値が0.3mm以上0.7mm以下であるので、偏光フィルムを備えていない通常の完成品レンズと同等の薄さの眼鏡用偏光プラスチックレンズを製造することができる。ここで、物体側の面と偏光フィルムとの距離の最小値を0.3mm未満にしようとすると、製造時に、眼球側の面を形成することが困難となり、結果として、眼鏡用偏光プラスチックレンズを製造することが困難となる。一方、物体側の面と偏光フィルムとの距離の最小値が0.7mmを超えてしまうと、眼球側の面を加工限界まで研磨をしても、眼鏡用偏光プラスチックレンズの薄型化が困難となる。一般に、偏光フィルムを備えていない通常の完成品レンズの厚さは、最も薄い箇所で1.1mm程度である。また、眼球側の面を研磨によって薄くすることができる加工限界は0.4mm程度である。したがって、物体側の面と偏光フィルムとの距離の最大値が0.7mmを超えてしまうと、眼球側の面を加工限界まで研磨しても、完成品レンズの厚さが1.1mmを超えてしまうので、通常の完成品レンズと同等の薄さにすることができない。なお、眼鏡用偏光プラスチックレンズとは、セミフィニッシュレンズと、セミフィニッシュレンズを研磨して得られる完成品レンズのいずれをも意味する。完成品レンズは、眼鏡フレームに合わせて玉型加工したレンズおよび玉型加工前のレンズを含む。
 本態様において、前記偏光フィルムが、前記物体側の面に向かって凸形状を有することが好ましい。
 この構成によれば、偏光フィルムが物体側の面に向かって凸形状を有しているため、物体側の曲面に沿って偏光フィルムを第一のレンズ基材と第二のレンズ基材との間に配置させることができる。その結果、薄型の眼鏡用偏光プラスチックレンズを提供することができる。
 本態様において、前記物体側の面が球面であることが好ましい。
 この構成によれば、物体側の面が球面であるので、汎用のモールドを用いて眼鏡用偏光プラスチックレンズを製造できる。
 また、本態様において、眼球側の面が処方面であることが好ましい。
 この構成によれば、眼球側の面が処方面であるので、眼球側の面を装用者の処方に合わせて研磨することで、視力矯正用の眼鏡用偏光プラスチックレンズを提供することができる。
 本態様において、前記第一のレンズ基材および前記第二のレンズ基材は、屈折率が1.60以上であることが好ましい。
 この構成によれば、屈折率の高いレンズ基材を用いるので、眼鏡用偏光プラスチックレンズを一層薄型化できる。
 さらに、本態様において、前記偏光フィルムは、ポリビニルアルコールを含むことが好ましい。
 ポリビニルアルコール(以後、PVAと略記することがある。)は偏光材料として一般的であるので、PVAを偏光フィルムとして用いることによって、簡易に眼鏡用偏光プラスチックレンズを提供することができる。
 本発明の別の一態様は、凹面が形成された第一のレンズ基材用モールドの前記凹面との距離の最小値が0.3mm以上0.7mm以下となるように、前記第一のレンズ基材用モールドの周縁部の少なくとも一部と偏光フィルムの周縁部の少なくとも一部とを接着させることと、前記偏光フィルムを挟んで前記第一のレンズ基材用モールドと反対側に第二のレンズ基材用モールドを配置することと、前記第一のレンズ基材用モールドと前記偏光フィルムとの間、および、前記偏光フィルムと前記第二のレンズ基材用モールドとの間にプラスチック原料組成物を注入して、第一のレンズ基材および第二のレンズ基材を形成することと、を含む、眼鏡用偏光プラスチックレンズの製造方法である。
 この構成によれば、第一のレンズ基材用モールドの前記凹面との距離の最小値が0.3mm以上0.7mm以下となるように、第一のレンズ基材用モールドの周縁部の少なくとも一部と偏光フィルムの周縁部の少なくとも一部とを接着させるので、レンズの製造過程において、第一のレンズ基材用モールドと偏光フィルムとの位置関係が大きく変動することがない。その結果、上述した物体側の面と偏光フィルムとの距離の最大値が0.3mm以上0.7mm以下の眼鏡用偏光プラスチックレンズを製造することが可能となる。
本発明の一実施形態に係る眼鏡用偏光プラスチックレンズの断面図。(A)はベースカーブが相対的に小さい眼鏡用偏光プラスチックレンズの例、(B)はベースカーブが相対的に大きい眼鏡用偏光プラスチックレンズの例である。 本発明の一実施形態に係る眼鏡用偏光プラスチックレンズの製造工程を示す図。 本発明の一実施形態に係る偏光フィルムの成形方法を示す図。 本発明の一実施形態に係る眼鏡用偏光プラスチックレンズの製造方法を示す図。 本発明の一実施形態に係る眼鏡用偏光プラスチックレンズの製造方法を示す図。 本発明の一実施形態に係る眼鏡用偏光プラスチックレンズの製造方法を示す図。 本発明の一実施形態に係る眼鏡用偏光プラスチックレンズの製造方法を示す図。 本発明の一実施形態に係る眼鏡用偏光プラスチックレンズの製造方法を示す図。
 本発明の一実施形態を図面に基づいて説明する。
 図1は、眼鏡用偏光プラスチックレンズの断面図である。図1のレンズはセミフィニッシュレンズ(以下、プラスチックレンズという)である。なお、本実施形態において、プラスチックレンズ100を処方に合わせて研磨することにより得られたレンズを完成品レンズと言う。図1(A)はベースカーブが相対的に小さい眼鏡用偏光プラスチックレンズの例、図1(B)はベースカーブが相対的に大きい眼鏡用偏光プラスチックレンズの例である。
<レンズの構成>
 図1(A)、(B)に示すように、プラスチックレンズ100は、眼鏡用のプラスチックレンズであり、第一のレンズ基材110と第二のレンズ基材120との間に、偏光フィルム14が設けられた構成である。第一のレンズ基材110は、プラスチックレンズ100の表面(物体側)に設けられ、第二のレンズ基材120は、裏面(眼球側)に設けられている。そして、第一のレンズ基材110は、偏光フィルム14に対向する面と反対側の面に物体側の面111を有し、第二のレンズ基材120は、偏光フィルム14に対向する面と反対側の面に眼球側の面121を有する。ここで、偏光フィルム14は、プラスチックレンズ100において、物体側の面111に向かって凸形状を有することが好ましい。これにより、物体側の面111の形状に沿うように偏光フィルム14を配置できるので、眼球側の面121に向かって偏光フィルムが凸形状を有する場合よりも、第二のレンズ基材120における研磨可能な厚さを大きくすることができる。
 第一のレンズ基材110および第二のレンズ基材120は、屈折率が1.60以上の透明なプラスチック製であることが好ましい。第一のレンズ基材110および第二のレンズ基材120の材料としては、アクリル樹脂、チオウレタン系樹脂、チオエポキシ系樹脂、メタクリル系樹脂、アリル系樹脂、エピスルフィド系樹脂、ポリカーボネート樹脂等が例示できる。薄型化の観点から、これらの中でも、チオウレタン系樹脂およびチオエポキシ系樹脂が好ましい。なお、第一のレンズ基材110と第二のレンズ基材120とは同じ材料であることが好ましい。
 プラスチックレンズ100の物体側の面111と偏光フィルム14との距離の最小値は0.3mm以上0.7mm以下である。物体側の面111と偏光フィルム14との距離が最小となる位置は物体側の面111の曲率(単焦点レンズにおいてはベースカーブ、単位はディオプター)と偏光フィルム14の曲率との組み合わせによって異なる。また、物体側の面111と偏光フィルム14との距離が最小となる点は1点とは限らない。例えば、物体側の面111の曲率よりも偏光フィルム14の曲率の方が大きければ、物体側の面111の頂点Tが偏光フィルム14との距離W1が最も小さい点であり、物体側の面111の曲率よりも偏光フィルム14の曲率の方が小さければ、物体側の面111の外周部が偏光フィルム14との距離W1が最も小さい点を含む。物体側の面111の曲率と偏光フィルム14の曲率とが等しい場合には、物体側の面111の全体において偏光フィルム14との距離は一定して最小であるとみなすことができる。図1(A)に示されるプラスチックレンズ100は、ベースカーブが2D(ディオプター)、偏光フィルム14の曲率が3Dで処方度数がマイナスの単焦点レンズである。図1(A)のプラスチックレンズ100においては、物体側の面111の頂点Tが偏光フィルム14との距離W1が最も小さい点であり、頂点Tと偏光フィルム14との距離が0.3mm以上0.7mm以下である。ここで、頂点Tは、セミフィニッシュレンズ(プラスチックレンズ100)を平面視でみたときの円の中心を通る垂線と物体側の面111との交点とする。あるいは、完成品レンズにおけるアイポイント(眼鏡を掛けたときの第一眼位において視線と物体側の面111とが交わる点)またはフィッティングポイントであってもよい。図1(B)に示されるプラスチックレンズ100は、ベースカーブが10D、偏光フィルム14の曲率が8Dで処方度数がプラスの単焦点レンズである。図1(B)のプラスチックレンズ100においては、物体側の面111の外周部(レンズの側面と物体側の面111とが交差する位置)が偏光フィルム14との距離W1が最も小さい領域であり、外周部と偏光フィルム14との距離が0.3mm以上0.7mm以下である。
 また、第一のレンズ基材110は、偏光フィルム14に対向する面とは反対側の面が物体側の面111であって、物体側の面111は球面であることが好ましい。物体側の面111を球面とすることにより、プラスチックレンズ100の製造が容易になり、汎用のモールドを用いて製造することができる。
 第二のレンズ基材120は、眼球側の面121が処方面である。
 完成品レンズを製造するにあたっては、第二のレンズ基材120の眼球側の面121を研磨することにより、第二のレンズ基材120と偏光フィルム14との距離W2の最小値を0.3mmから0.4mm程度とする。その結果、完成品レンズの厚さWの最小値を通常の完成品レンズと同等の薄さの1.1mm以下とすることができる。ここで、通常の完成品レンズとは、偏光フィルム等のフィルムが第一のレンズ基材110と第二のレンズ基材120との間に設けられていない眼鏡用レンズを言う。また、完成品レンズの厚さが最小となる位置は、物体側の面111の曲率と偏光フィルム14の曲率との組み合わせによって異なり、1点とは限らない。例えば、物体側の面111の曲率よりも偏光フィルム14の曲率の方が大きければ、頂点Tの位置において完成品レンズの厚さWが最小となる。この場合、プラスチックレンズ100(セミフィニッシュレンズ)において物体側の面111と偏光フィルム14との距離W1が最小となる点と完成品レンズの厚さWが最小となる点は一致し、完成品レンズを平面視でみたときに物体側の面111の頂点Tを通る垂線と眼球側の面121との交点と頂点Tとを結ぶ線分の長さが完成品レンズの厚さWの最小値である。また、プラスチックレンズ100における距離W1の最小値と完成品レンズにおける距離W1の最小値は一致する。一方、物体側の面111の曲率よりも偏光フィルム14の曲率の方が小さければ、完成品レンズにおいて、物体側の面111の外周部が完成品レンズの厚さWが最小となる点を含む。この場合、プラスチックレンズ100において物体側の面111と偏光フィルム14との距離W1が最小となる点と完成品レンズの厚さWが最小となる点は必ずしも一致せず、プラスチックレンズ100における距離W1と完成品レンズにおける距離W1も等しいとは限らない。例えば、完成品レンズが玉型加工済みである場合には、完成品レンズの物体側の面111の外周部(レンズ側面と物体側の面111とが交差する位置)は、プラスチックレンズ100における物体側の面111の外周部よりも平面視において内側に位置し、完成品レンズにおける距離W1の最小値はプラスチックレンズ100における距離W1の最小値よりも大きく、0.7mm以下とは限らない。なお、物体側の面111の曲率と偏光フィルム14の曲率とが等しい場合には、物体側の面111の全体において完成品レンズの厚さWは一定して最小であるとみなすことができる。また、プラスチックレンズ100の厚さWに対して、偏光フィルム14の厚さは後述するように無視できる程度の厚さのため、便宜上、偏光フィルム14の厚みは無視している。
 本実施形態の偏光フィルム14は、市販のヨウ素系偏光フィルムがプレス成形、真空成形等によって所定の曲率に曲面加工が施され、外形が円形状に切り抜かれたフィルム状の基材である。偏光フィルム14の厚さは、10μm~500μm程度が好ましい。厚さが10μm未満の場合には、剛性が弱く、取り扱いが難しくなる。また500μmを超える場合には、曲面加工を施す際に、所定の曲率が得られ難くなる。
 偏光フィルム14に用いる偏光フィルムとしては、ポリビニルアルコール(PVA)からなる樹脂層を備える単層または多層のフィルムであることが好ましい。PVAは透明性、耐熱性、染色剤であるヨウ素または二色性染料との親和性、延伸時の配向性のいずれもが優れた材料である。
 多層の偏光フィルム14は、PVAにヨウ素を含浸させものをフィルム状に成形して一軸方向に延伸した樹脂層を形成後、当該樹脂層の両面にトリアセチルセルロース(TAC)を保護層として積層することにより得られる。
 なお、ヨウ素の替わりに二色性染料を用いて作製された偏光フィルムを使用することも可能である。また、単層の偏光フィルムとして、TACでの保護層を積層していないPVAや、PVAに替えてポリエチレンテレフタレート(PET)を用いた偏光フィルムを用いることもできる。本実施形態ではTACでの保護層を積層していないPVAの偏光フィルム14を用いる。
<レンズの製造方法>
 本実施形態のプラスチックレンズ100の製造方法を図面に基づいて説明する。
 図2は、本実施形態に係るプラスチックレンズ100の製造工程を示す図である。本実施形態の製造方法は、図2に示すように大きく分けて5つの工程によって実行される。以下、工程を順に説明する。
 (偏光フィルムの成形)
 図3は、本実施形態に係る偏光フィルム14の成形方法を示す図である。図3(A)に示すように、一軸延伸したPVA製フィルムを長方形形状にカットした平板状のシート体10を周知のプレス手段によってプレスすることで2つの球面形状の湾曲面12が形成される。湾曲面12の曲率は製造される予定のプラスチックレンズ100(図1参照)のベースカーブ(物体側の面111の曲率)に応じて設定されている。例えば、ベースカーブが大きいほど湾曲面12の曲率を大きくしてもよい。偏光フィルム14は、プラスチックレンズ100のベースカーブと同じ曲率に形成されていてもよい。本実施形態では、ベースカーブの大きさを数段階に区分し、各段階に対して異なる曲率の湾曲面12を設定する。本実施形態では各々の湾曲面12の周囲のシート体10部分を残しながら図の破線Kに沿ってカットして偏光フィルム14を得る。
 偏光フィルム14の径は、図3(B)に示すように、第一のモールド(第一のレンズ基材用モールド)16及び第二のモールド(第二のレンズ基材用モールド)18の内径よりも小さいことが好ましい。例えば、本実施形態における偏光フィルム14の径は、第一のモールド16の内径より2mm程度小さい。これにより、レンズ基材のモノマーをキャビティーに注入する場合に、偏光フィルム14の両側にモノマーが回り込むようになり、キャビティー内へのモノマーの注入をスムーズに行うことができる。
 (モールドの組立)
 図4は、本実施形態に係る第一のモールド16を下方(製造されるプラスチックレンズ100の眼球側)から見た平面図である。
 偏光フィルム14の成形の次に、第一のモールド16の裏面16aに接着剤20を塗布する。接着剤20は、第一のモールド16の裏面16aの周縁部である外周部に複数個所塗布される。例えば3、4箇所に塗布される。本実施形態では直交する4方向の縁取り上に4箇所塗布されている。例えば、偏光フィルム14の外周部に紫外線硬化タイプの接着剤20をディスペンサーで塗布する。
 第一のモールド16は、プラスチックレンズ100の物体側の面111および眼球側の面121のうちいずれか一方の面を形成することに用いられるモールドである。本実施形態では、第一のモールド16は、プラスチックレンズ100の物体側の面111を形成することに用いられるモールドである。第一のモールド16はガラス製で、平面視において円形状である。第一のモールド16の凹面である裏面16aは成形されるプラスチックレンズ100の物体側の面111を成形するための曲面とされている。第一のモールド16は、紫外線が透過する特性を有する材料であれば、特に種類(無機物、有機物)は問わない。本実施形態では、第一のモールド16にクラウンガラスを用いる。なお、光透過性の有機物(例えば樹脂)は、紫外線の照射により劣化するため、プラスチックレンズを大量に成形するモールドには適さない。しかし、コスト安の利点を利用して、例えば少量のサンプル製品等を成型するモールドに用いてもよい。
 本実施形態で用いる接着剤20は、紫外線硬化樹脂材である。紫外線硬化樹脂材は、周知のように紫外線の光エネルギーに反応して液体から固体に化学的に変化する特性を有する。紫外線硬化樹脂材は、プレポリマー、モノマー、光重合開始剤及び添加剤を含む合成樹脂からなる。なお、本実施形態に用いる紫外線硬化樹脂材としては、特に種類は限定しないが、モノマーの仕様に応じて適切なものを選択する。本実施形態においては、紫外線硬化性エポキシ樹脂Pを使用する。
 図5は、第一のモールド16に接着剤20を塗布する方法を示す図であり、図6は、接着剤20を塗布する吐出装置を示す図である。図5及び図6に基づいて接着剤20を塗布する吐出装置22の概略を説明する。吐出装置22は図示しないモーター装置が内蔵された本体24と本体24から上方に突出する回転軸26と回転軸26の上端に配設されたターンテーブル28とを備えている。ターンテーブル28上面には第一のモールド16の表面16b周縁近傍に当接する可撓性のあるリング状の固定パッド30がセットされている(図には側面が示されている)。リング状の固定パッド30を使用するのは第一のモールド16の固定手段を表面16bの光透過面になるべく接触させないためである。本体24から上方に延出されるロッド32にはスライダー34を介してシリンジ36が装着されている。シリンジ36は図示しない本体24内のディスペンサー装置による空圧制御によって先端のニードル38から粘性のある接着剤20(紫外線硬化性エポキシ樹脂P)を一定の吐出量で吐出させる。
 なお、実際には吐出装置22におけるターンテーブル28やシリンジ36は複数用意され、1台の吐出装置22で多数の第一のモールド16に接着剤20を塗布する処理が可能となっている。
 次に吐出装置22を使用した接着剤20の塗布方法について簡単に説明する。第一のモールド16の外周部に接着剤20としてディスペンサーで塗布する。第一のモールド16を位置決めした後、第一のモールド16の外周部に接着剤を塗布する。図5及び図6に示すように、ターンテーブル28の固定パッド30上に第一のモールド16を載置し、シリンジ36の位置を適宜調整して、ニードル38を第一のモールド16の裏面16aの外周部に対向する位置に配置する。そして、吐出装置22を駆動させる。つまりターンテーブル28を回転させて第一のモールド16を周方向に回転させ、第一のモールド16における接着剤20を塗布すべき位置がニードル38の下方に到達したところで、ディスペンサー装置を駆動させてニードル38先端から裏面16aの外周部に接着剤20を吐出させる。接着剤20の高さは、接着剤20を塗布すべき位置ごとにほぼ同じ高さに形成される。また、偏光フィルム14と第一のモールド16との距離W1の最小値を0.3mm以上とするために、接着剤20の高さは0.3mm以上とする。接着剤20の高さは、偏光フィルム14と第一のモールド16との距離に応じて調節してもよい。
 図7及び図8は、本実施形態に係るプラスチックレンズ100の製造方法を示す図である。
 まず、組み立てる第一のモールド16の中心高さ、保持された偏光フィルム14の中心の高さを計測する。偏光フィルム14の高さ測定では、偏光フィルム14は軟質であるため、非接触タイプのセンサー(例えば、キーエンスCCD透過型デジタルレーザーセンサー IGシリーズ)を用いて偏光フィルム14の頂点高さを測定する。
 第一のモールド16の高さ測定では、第一のモールド16は硬質なので、接触式の測定プローブ(例えば、NikonデジマイクロMFシリーズあるいはミツトヨデジマチックインジケーター543シリーズ)で第一のモールド16の頂点高さを測定する。
 次に、図7(A)に示すように、偏光フィルム14の表方向から第一のモールド16を偏光フィルム14上に載せる。あるいは、固定台51に保持された偏光フィルム14を、固定パッド52に保持された第一のモールド16に接近させる。
 次に、第一のモールド16と偏光フィルム14との中心高さを元に、第一のモールド16の裏面16aと偏光フィルム14との距離Hの最小値(以後、クリアランスHとも言う。)が0.3mm以上0.7mm以下となるまで近づけて偏光フィルム14に接着剤20を接触させる。その後紫外線照射装置40を駆動させて照射灯44先端から紫外線を接着剤20に照射し、接着剤20を固化させる。紫外線を照射する時間は、選択した接着剤20の種類にもよるが短時間(数秒~数十秒)で済むため、製造サイクルへの影響を抑えることができる。例えば、500mWで15秒間紫外線を照射する。なお、紫外線照射量が不足すると判断される場合には適宜ターンテーブル28を回転させて紫外線照射装置40による紫外線の照射を、形成させた接着剤20に継続して行うことも可能である。本実施形態では、後述する加熱・硬化等によるモノマーの収縮または膨張は無視できる程度であるため、クリアランスHの最小値は物体側の面111と偏光フィルム14との距離W1の最小値に等しいとみなすことができる。なお、加熱・硬化等によってモノマー硬化品の厚さが変化する場合には、変化量を考慮してクリアランスHの最小値を設定することが好ましい。
 次に、設定された厚さWとなるように第二のモールド18を偏光フィルム14に対向配置させる。すなわち、第一のモールド16及び第二のモールド18で偏光フィルム14を挟むようにする。第二のモールド18はガラス製の円形板状体とされている。第二のモールド18の表面18aは成形されるプラスチックレンズ100の眼球側の面121を成形するための曲面とされている。
 次に、図7(B)に示すように、一対の第一のモールド16及び第二のモールド18を、プラスチックレンズ100の成形に必要な間隔をとって保持し、2枚の第一及び第二のモールド16,18の側面に、片面に接着剤層を有する粘着テープ(間隔保持用部材)46を1周より少し多く巻き付ける。この際、第一のモールド16及び第二のモールド18は、固定パッド52にセットされている。固定パッド52は、図示しないモーター装置から突出する回転軸54により回転駆動される。
 粘着テープ46の材質は特に限定されない。なお、使いやすさや経済性等の観点から、プラスチックの粘着テープを使用することが好ましい。例えば、粘着テープの基材としてはポリプロピレン製のものとポリエチレンテレフタレート製のものを、粘着剤としてはアクリル系、天然ゴム系、シリコン系のものを各々組み合わせて用意する。なお、粘着テープ46には、モノマーを注入するための注入孔(図示せず)を設けても良い。
 偏光フィルム14を介在させて組み立てられた第一のモールド16及び第二のモールド18と粘着テープ46との状態を母型48とする。
 (モノマーの注入)
 次に、図8に示すように、組み立てられた母型48に対して調合されたモノマーを注入孔より注入器を用いて、一対の第一のモールド16及び第二のモールド18と粘着テープ46とで形成されたキャビティー50内に、キャビティー50内に気泡が残らないようにモノマーを充填する。
 (加熱・硬化)
 その後、モノマーを充填した母型48を加熱炉に入れて加熱する。ここで、加熱温度は、好ましくは0~150℃、より好ましくは10~130℃であり、好ましくは5~50時間、より好ましくは10~25時間かけて昇温し、重合を行う。例えば、30℃で7時間保持し、その後30~120℃まで10時間かけて昇温する。
 (脱型)
 加熱処理が終了すると、モノマーが固化して母型48内に偏光フィルム14が内蔵されたモノマー硬化品が成形される。母型48を加熱炉より取り出し、粘着テープ46を剥離し、第一のモールド16及び第二のモールド18とモノマー硬化品とを分離させて図1に示すプラスチックレンズ100(セミフィニッシュレンズ)を得る。なお、本実施形態におけるプラスチックレンズ100の厚さWの最小値は5mmである。
 (研磨加工)
 その後、プラスチックレンズ100の眼球側の面121を研磨加工して、第二のレンズ基材120と偏光フィルム14との距離W2の最小値を0.3mmから0.4mm程度とすることで、厚さWの最小値が1.1mm以下の完成品レンズを得る。
 (表面処理)
 上記研磨加工後の完成品レンズには、さらに通常のプライマー、ハードコート、および反射防止膜の塗布や、撥水撥油処理をおこなってもよい。
 本実施形態によれば、クリアランスHの最小値を0.3mm以上0.7mm以下に設定したので、物体側の面111と偏光フィルム14との距離W1の最小値が0.3mm以上0.7mm以下であるプラスチックレンズ100が得られる。プラスチックレンズ100において、第二のレンズ基材120の眼球側の面121を研磨すれば、完成品レンズの厚さWの最小値を1.1mm以下とすることができ、通常の完成品レンズと同等に薄型化された完成品レンズを提供できる。
 さらに、第一のレンズ基材110の物体側の面111を球面としたので、製造が容易であり、汎用のモールドを用いることができる。
 また、第一のレンズ基材110および第二のレンズ基材120の屈折率を1.60とすることで、プラスチックレンズ100をより薄型化できる。例えば、処方度数の絶対値が大きい(強度の処方の)レンズにおいては、高屈折率の基材を使用すれば、より弱い度数のレンズと同等の厚さとすることができる。
 また、偏光フィルム14としてPVAを用いたので、簡易に眼鏡用偏光プラスチックレンズを提供することができる。
 なお、本発明は、次のように変更して具体化することも可能である。
 上記実施形態では接着剤20を、光硬化性樹脂を使用して紫外線を照射することで固化させていたが、熱硬化性樹脂を使用して加熱によって固化させてもよい。
 上記実施形態では第一のモールド16を回転させて接着剤20を塗布するようにしていたが、シリンジ36側が移動して接着剤20を塗布する構成であっても構わない。
 上記実施形態で接着剤20を塗布する対象は、第一のモールド16に限らず、偏光フィルム14に塗布してもよい。また、第一のモールド16と偏光フィルム14とを近接させる場合、偏光フィルム14のみを移動させるだけでなく、第一のモールド16を移動させる方法や第一のモールド16と偏光フィルム14との両方を移動させて近接させてもよい。また、第二のモールド18(眼球側の面を形成するためのモールド)に接着剤20を塗布しても良い。この場合は、クリアランスHの最小値が0.3mm以上0.7mm以下となる高さまで接着剤を塗布する。例えば、第一のモールド16と第二のモールド18との間隔の最小値とクリアランスHの最小値との差を、接着剤の高さとしてもよい。
 上記実施形態では球面形状に湾曲した偏光フィルム14を例として挙げたが、平板な偏光フィルム14を使用してもよい。また、偏光フィルム14は必ずしも周囲が円形形状に構成されていなくともよい。
 上記実施形態の偏光フィルム14の材質は上記に限定されるものではない。上記実施形態では単層のPVAを用いたが、PVAからなる樹脂層の両面をトリアセチルセルロースからなる保護層で挟んだフィルム(TPT)を用いてもよい。また、保護層は片面だけでもよい。
 上記実施形態の吐出装置22の構成は一例であって他の構成で実現したその他の接着剤20を塗布させる手段に適宜変更することは自由である。
 また、第一のモールド16および第二のモールド18の形状は、上記実施形態で用いた形状に限らない。また、完成品レンズは単焦点レンズであっても、累進屈折力レンズであっても良い。
 次に実施例について説明する。
 まず、実施例に用いたモノマーの調合について、以下に説明する。
(モノマーの調合)
(1)1.60チオウレタン(屈折率が1.60のチオウレタンのモノマー)
 プラスチックレンズ原料として、ノルボルネンジイソシアネートを50g、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)を主成分とするポリチオール化合物を24g、4-メルカプトメチル-3,6-ジチア-1,8-オクタンジチオールを主成分とするポリチオール化合物を26gを混合し、十分に撹拌を行った。
 そこに紫外線吸収剤として商標名「SEESORB709」(シプロ化成工業製)を2.5g、内部離型剤として商標名「MR用内部離型剤」(三井化学社製)を0.1g添加し、混合した後、十分に撹拌して、完全に分散または溶解させたプラスチックレンズ原料中に、触媒としてジブチル錫ジクロライドを250ppm添加し、室温で十分に撹拌して均一な液体の組成物とした。ついで組成物を5mmHgに減圧して攪拌しながら30分間脱気を行った。
(2)1.67チオウレタン(屈折率が1.67のチオウレタン基材のモノマー)
 プラスチックレンズ原料として、m-キシレンジイソシアネートを50.6g、4,8-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン49.4gを混合し、十分に撹拌を行った。なお、4,8-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカンに代えて、4,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン或いは5,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカンを用いても良い。
 そこに紫外線吸収剤として商標名「SEESORB701」(シプロ化成工業製)を1.2g、内部離型剤として商標名「MR用内部離型剤」(三井化学社製)を0.1g添加し、混合した後、十分に撹拌して、完全に分散または溶解させたプラスチックレンズ原料中に、触媒としてジブチル錫ジクロライドを100ppm添加し、室温で十分に撹拌して均一液とした。
 ついで、組成物を5mmHgに減圧して攪拌しながら30分間脱気を行った。
(3)1.74チオエポキシ(屈折率が1.74のチオエポキシ基材のモノマー)
 プラスチックレンズ原料として、ビス-(2,3エピチオプロピル)ジスルフィドを90.0g、4,8-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン10.0gを混合し、十分に撹拌を行った。なお、ビス-(2,3エピチオプロピル)ジスルフィドを90.0g、4,8-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカンに代えて、4,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン或いは5,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカンを用いても良い。
 そこに紫外線吸収剤として商標名「SEESORB701」(シプロ化成工業製)を1.2g添加し、十分に撹拌して、完全に溶解させた。その後、触媒としてN,N-ジメチルシクロヘキシルアミンを0.10g混合し、室温で十分に撹拌して均一液とした。
 ついで、組成物を5mmHgに減圧して攪拌しながら30分間脱気を行った。
 表1に、実施例1~12および比較例1~5の詳細を示した。表1において、モノマーは上記「モノマーの調合」で得られたモノマーである。Hはクリアランスの最小値(以下単にクリアランスHという)、W1はプラスチックレンズ(セミフィニッシュレンズ)の眼球側の面と偏光フィルムとの距離の最小値(以下単に距離W1という)、Wは完成品レンズの厚さの最小値(以下単に厚さWという)である。SFはセミフィニッシュの略である。本実施例においては、クリアランスが最小となる位置は、ベースカーブが6D未満の場合にはセミフィニッシュレンズの中心部(頂点Tの位置)、ベースカーブが6D以上ではセミフィニッシュレンズの外周部であったので、それぞれの例においては、当該位置においてクリアランスHを設定した。作成されたプラスチックレンズにおいて、眼球側の面と偏光フィルムとの距離が最小となった位置は、クリアランスHを設定したのと同じ位置であった。各実施例および比較例において、10個のレンズを作成した。なお、一部の実施例において、レンズのベースカーブに応じて偏光フィルムの曲率を変更しているが、全ての例において同じ曲率の偏光フィルムを使用することも可能である。
(実施例1)
 モノマーの調合で得られた1.60チオウレタンのモノマーを用いて、実施形態に記載の方法でプラスチックレンズ100を得た。次いで、得られたプラスチックレンズ100に、上記研磨加工および表面処理を施し、完成品レンズを得た。
(実施例2)
 実施例1において、クリアランスHの最小値を表1に記載の値とした以外は、実施例1と同様にして完成品レンズを得た。
(実施例3~4)
 実施例1において、モノマーを表1に記載の材料に変更した以外は、実施例1と同様にして完成品レンズを得た。
(実施例5~6)
 実施例1において、偏光フィルムを表1に記載の材料に変更した以外は、実施例1と同様にして完成品レンズを得た。
(実施例7)
 実施例1において、レンズのベースカーブを表1に記載の値とした以外は、実施例1と同様にして完成品レンズを得た。
(実施例8)
 実施例2において、レンズのベースカーブを表1に記載の値とした以外は、実施例1と同様にして完成品レンズを得た。
(実施例9~10、12)
 実施例1において、レンズのベースカーブおよび偏光フィルムの曲率を表1に記載の値とした以外は、実施例1と同様にして完成品レンズを得た。
(実施例11)
 実施例2において、レンズのベースカーブおよび偏光フィルムの曲率を表1に記載の値とした以外は、実施例1と同様にして完成品レンズを得た。
(比較例1~2)
 実施例7または実施例8において、クリアランスHの最小値を表1に記載の値とした以外は、実施例1と同様にして作業を行った。
(比較例3~4)
 実施例10または実施例11において、クリアランスHの最小値を表1に記載の値とした以外は、実施例1と同様にして作業を行った。
(比較例5)
 実施例1において、接着剤に偏光フィルムを接着させることでクリアランスHの最小値を決定する代わりに、ガスケットに設けられた挿入溝に偏光フィルムを挿し込んで保持した以外は実施例1と同様にして完成品レンズを得た。
Figure JPOXMLDOC01-appb-T000001
 実施例1~2において、クリアランスHを0.3mm以上0.7mm以下としたところ、距離W1が0.3mm以上0.7mm以下であるプラスチックレンズが得られた。そして、プラスチックレンズの第二のレンズ基材を研磨することにより偏光フィルムを傷つけることなく、いずれも厚さWが1.1mmの完成品レンズが得られた。モノマーを変更した実施例3~4、偏光フィルムの材料を変更した実施例5~6、レンズのベースカーブを変更した実施例7~12においても、同様に厚さWが1.1mmの完成品レンズが得られた。ここで、距離W1が0.3mmのプラスチックレンズ(実施例2および8)は厚さWが0.6mmから0.7mm程度まで研磨可能であるが、厚さWを1.1mm未満とすると完成品レンズの強度が不足する場合があるため、1.1mmで研磨を終了している。
 これに対して、比較例1および比較例3では、クリアランスHを0.2mmとしたため、モノマーの注入工程において、第一のモールドと偏光フィルムとの間にモノマーを均一に流れこませることができず、プラスチックレンズおよび完成品レンズを製造することができなかった。また、比較例2および比較例4では、クリアランスHを0.8mmとしたため、処方面の研磨加工の限界により、完成品レンズの厚さW1が1.2mmとなり、通常の完成品レンズよりも厚くなった。比較例5では、プラスチックレンズをガスケットを用いて製造したので、偏光フィルムの曲面精度のばらつきを吸収することが困難であり、製造した10個のプラスチックレンズの間で距離W1に0.5mmから1.2mmの範囲でばらつきが生じた。その結果、偏光フィルムを傷つけてしまう可能性があるため、第二のレンズ基材を厚さWが0.3mmから0.4mmとなるまで研磨することができず、完成品レンズの厚さWは1.6mmと通常の完成品レンズよりも厚くなった。
 14…偏光フィルム、16…第一のモールド(第一のレンズ基材用モールド)、16a…裏面(凹面)、18…第二のモールド(第二のレンズ基材用モールド)、100…プラスチックレンズ(眼鏡用偏光プラスチックレンズ)、110…第一のレンズ基材、111…物体側の面、120…第二のレンズ基材、121…眼球側の面(処方面)、T…頂点。

Claims (7)

  1.  物体側の面を有する第一のレンズ基材と、
     眼球側の面を有する第二のレンズ基材と、
     前記第一のレンズ基材と前記第二のレンズ基材との間に設けられ、かつ、前記物体側の面との距離の最小値が0.3mm以上0.7mm以下である偏光フィルムと、
     を含む、眼鏡用偏光プラスチックレンズ。
  2.  前記偏光フィルムが、前記物体側の面に向かって凸形状を有する、請求項1に記載の眼鏡用偏光プラスチックレンズ。
  3.  前記物体側の面が球面である、請求項1または請求項2に記載の眼鏡用偏光プラスチックレンズ。
  4.  前記眼球側の面が処方面である、請求項1から請求項3のいずれかに記載の眼鏡用偏光プラスチックレンズ。
  5.  前記第一のレンズ基材および前記第二のレンズ基材は、屈折率が1.60以上である、請求項1から請求項4のいずれかに記載の眼鏡用偏光プラスチックレンズ。
  6.  前記偏光フィルムはポリビニルアルコールを含む、請求項1から請求項5のいずれかに記載の眼鏡用偏光プラスチックレンズ。
  7.  凹面が形成された第一のレンズ基材用モールドの前記凹面との距離の最小値が0.3mm以上0.7mm以下となるように、前記第一のレンズ基材用モールドの周縁部の少なくとも一部と偏光フィルムの周縁部の少なくとも一部とを接着させることと、
     前記偏光フィルムを挟んで前記第一のレンズ基材用モールドと反対側に第二のレンズ基材用モールドを配置することと、
     前記第一のレンズ基材用モールドと前記偏光フィルムとの間、および、前記偏光フィルムと前記第二のレンズ基材用モールドとの間にプラスチック原料組成物を注入して、第一のレンズ基材および第二のレンズ基材を形成することと、を含む、眼鏡用偏光プラスチックレンズの製造方法。
PCT/JP2013/000404 2012-02-07 2013-01-25 眼鏡用偏光プラスチックレンズおよび眼鏡用偏光プラスチックレンズの製造方法 WO2013118444A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/377,351 US9782941B2 (en) 2012-02-07 2013-01-25 Polarized plastic lens for spectacles and method for manufacturing polarized plastic lens for spectacles
EP13746050.7A EP2813883B1 (en) 2012-02-07 2013-01-25 Polarized plastic lens for glasses and method for manufacturing polarized plastics lens for glasses
CN201380008229.3A CN104105997B (zh) 2012-02-07 2013-01-25 眼镜用偏振塑料镜片及眼镜用偏振塑料镜片的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-024252 2012-02-07
JP2012024252A JP6110595B2 (ja) 2012-02-07 2012-02-07 眼鏡用偏光プラスチックレンズの製造方法

Publications (1)

Publication Number Publication Date
WO2013118444A1 true WO2013118444A1 (ja) 2013-08-15

Family

ID=48947222

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/000404 WO2013118444A1 (ja) 2012-02-07 2013-01-25 眼鏡用偏光プラスチックレンズおよび眼鏡用偏光プラスチックレンズの製造方法

Country Status (5)

Country Link
US (1) US9782941B2 (ja)
EP (1) EP2813883B1 (ja)
JP (1) JP6110595B2 (ja)
CN (1) CN104105997B (ja)
WO (1) WO2013118444A1 (ja)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2015006013A (es) * 2012-11-14 2016-03-07 Ehs Lens Philippines Inc Metodo para la elaboracion de lentes plasticas polarizantes.
ITPD20130209A1 (it) * 2013-07-26 2015-01-27 Safilo Spa Metodo di fabbricazione di una lente polarizzata per occhiali e lente fabbricata con detto metodo
US9977262B2 (en) * 2014-03-12 2018-05-22 Honeywell International, Inc. Electrochromic lenses and methods of fabricating the same
KR101625484B1 (ko) * 2015-05-18 2016-05-30 조정애 편광렌즈의 제조방법 및 이에 의해 제조된 편광렌즈
CN105204184B (zh) * 2015-10-12 2018-02-27 欧阳诚 一种钢化玻璃树脂偏光眼镜的制作方法
CN105527727A (zh) * 2016-02-16 2016-04-27 侯绪华 一种塑料偏光眼镜
KR102439383B1 (ko) 2016-09-28 2022-09-01 미츠비시 가스 가가쿠 가부시키가이샤 광학 렌즈
CN108908822A (zh) * 2018-06-21 2018-11-30 王中安 一种近视偏光树脂眼镜片的制造方法
US11962928B2 (en) 2018-12-17 2024-04-16 Meta Platforms Technologies, Llc Programmable pixel array
US11888002B2 (en) 2018-12-17 2024-01-30 Meta Platforms Technologies, Llc Dynamically programmable image sensor
US11850811B1 (en) * 2019-06-18 2023-12-26 Meta Platforms Technologies, Llc Monolithic compound lens
JP7232927B2 (ja) * 2019-09-25 2023-03-03 ホヤ レンズ タイランド リミテッド 眼鏡レンズおよびその製造方法
JP7350588B2 (ja) 2019-09-26 2023-09-26 ホヤ レンズ タイランド リミテッド 眼科用レンズ
US11935291B2 (en) 2019-10-30 2024-03-19 Meta Platforms Technologies, Llc Distributed sensor system
US11948089B2 (en) 2019-11-07 2024-04-02 Meta Platforms Technologies, Llc Sparse image sensing and processing
US11458699B2 (en) * 2019-12-09 2022-10-04 Meta Platforms Technologies, Llc Fabricating a lens assembly
US11825228B2 (en) 2020-05-20 2023-11-21 Meta Platforms Technologies, Llc Programmable pixel array having multiple power domains
JP2022136683A (ja) 2021-03-08 2022-09-21 ホヤ レンズ タイランド リミテッド 眼鏡用偏光レンズ、眼鏡用偏光レンズの製造方法、フレーム付き眼鏡の製造方法、および、眼鏡用偏光レンズの検査方法
EP4197762A1 (en) * 2021-12-16 2023-06-21 Essilor International Process and device for making a mold assembly suitable for molding an ophthalmic lens

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001311804A (ja) 2000-05-02 2001-11-09 Taretsukusu Kogaku Kogyo Kk プラスチック偏光レンズ及びその製造方法
JP2007316595A (ja) * 2006-04-27 2007-12-06 Seiko Epson Corp プラスチック偏光レンズ
WO2010114023A1 (ja) * 2009-03-31 2010-10-07 Hoya株式会社 累進屈折力眼鏡レンズの製造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4090830A (en) * 1974-07-03 1978-05-23 American Optical Corporation Mold for producing polarizing optical devices
JPS63184816A (ja) * 1987-01-28 1988-07-30 Hitachi Ltd キ−押下検出回路
US7077985B2 (en) * 2000-05-30 2006-07-18 Vision-Ease Lens Injection molding of lens
JP2003154555A (ja) * 2001-11-20 2003-05-27 Dainippon Printing Co Ltd 射出成形法による反射防止物品の製造方法
FR2847198B1 (fr) * 2002-11-18 2006-07-28 Marc Delery Procede pour fabriquer un verre de lunette correcteur et palet destine a la realisation d'un verre de lunette correcteur
JP2005067186A (ja) * 2003-08-20 2005-03-17 Hanii Optical Co Ltd 偏光レンズの製造方法、その製造方法に用いるガスケット金型の構造及びこれらによって製造した偏光レンズ
FR2897693B1 (fr) * 2006-02-23 2008-11-21 Essilor Int Element optique polarisant comprenant un film polariseur et procede de farbrication d'un tel element
CN101058232A (zh) * 2007-05-23 2007-10-24 上海康耐特光学有限公司 超薄型偏光光学树脂镜片的制造方法
JP5166785B2 (ja) 2007-06-25 2013-03-21 株式会社 サンルックス 偏光プラスチックレンズの製造方法
EP2203300B1 (en) * 2007-09-24 2015-08-19 Qspex Technologies, INC. Method for manufacturing polarized ophthalmic lenses
KR101259235B1 (ko) * 2008-02-07 2013-04-29 가부시키가이샤 호프닉켄큐쇼 플라스틱 편광 렌즈 및 그 제조방법
JP2010039220A (ja) * 2008-08-05 2010-02-18 Miyoshi Industrial Enterprise Inc 偏光レンズおよびその製造方法
CN101726764A (zh) * 2008-10-17 2010-06-09 金泰德 一种偏光镜片及其制造方法
JPWO2010073625A1 (ja) * 2008-12-22 2012-06-07 株式会社ニコン・エシロール 樹脂レンズの製造方法、樹脂レンズ製造用モールド、及び樹脂レンズ内挿用フィルム
JP5616642B2 (ja) * 2010-01-15 2014-10-29 伊藤光学工業株式会社 偏光素子の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001311804A (ja) 2000-05-02 2001-11-09 Taretsukusu Kogaku Kogyo Kk プラスチック偏光レンズ及びその製造方法
JP2007316595A (ja) * 2006-04-27 2007-12-06 Seiko Epson Corp プラスチック偏光レンズ
WO2010114023A1 (ja) * 2009-03-31 2010-10-07 Hoya株式会社 累進屈折力眼鏡レンズの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2813883A4

Also Published As

Publication number Publication date
JP2013160994A (ja) 2013-08-19
EP2813883A4 (en) 2015-10-14
US20150158259A1 (en) 2015-06-11
EP2813883A1 (en) 2014-12-17
JP6110595B2 (ja) 2017-04-05
CN104105997B (zh) 2016-07-20
US9782941B2 (en) 2017-10-10
EP2813883B1 (en) 2020-08-19
CN104105997A (zh) 2014-10-15

Similar Documents

Publication Publication Date Title
WO2013118444A1 (ja) 眼鏡用偏光プラスチックレンズおよび眼鏡用偏光プラスチックレンズの製造方法
JP6316184B2 (ja) 偏光レンズの製造方法
JP5851627B2 (ja) 偏光プラスチックレンズの製造方法
KR100510226B1 (ko) 정밀 복합 제품
JP6085310B2 (ja) 偏光プラスチックレンズの製造方法
CN103298603B (zh) 制造具有结构化表面的眼科透镜的方法
JPWO2019230884A1 (ja) 偏光フィルム、偏光フィルムの成型方法および偏光レンズの製造方法
JP2014142440A (ja) 偏光レンズの製造方法
CN114609835A (zh) 一种液晶变焦曲面透镜及其制备方法、成像系统
JP6150461B2 (ja) 眼鏡用偏光レンズの製造方法
JP2012198389A (ja) 眼鏡用偏光プラスチックレンズの製造方法
JPS6226289B2 (ja)
JPS61235113A (ja) 複合プラスチツクの製造方法
JP2016035597A (ja) 眼鏡用偏光プラスチックレンズの製造方法
JP2022533289A (ja) 高屈折偏光レンズの製造方法
EP4056356A1 (en) Polarized lens for spectacles, method for manufacturing polarized lens for spectacles, method for manufacturing framed spectacle, and method for inspecting polarized lens for spectacles
CN108472833B (zh) 镜片成形模的制造方法、眼镜镜片的制造方法及眼镜镜片
JP2002120232A (ja) プラスチックレンズの成形方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13746050

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14377351

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013746050

Country of ref document: EP