WO2013113718A1 - Duplexstahl mit verbesserter kerbschlagzähigkeit und zerspanbarkeit - Google Patents

Duplexstahl mit verbesserter kerbschlagzähigkeit und zerspanbarkeit Download PDF

Info

Publication number
WO2013113718A1
WO2013113718A1 PCT/EP2013/051721 EP2013051721W WO2013113718A1 WO 2013113718 A1 WO2013113718 A1 WO 2013113718A1 EP 2013051721 W EP2013051721 W EP 2013051721W WO 2013113718 A1 WO2013113718 A1 WO 2013113718A1
Authority
WO
WIPO (PCT)
Prior art keywords
duplex steel
steel according
duplex
weight
steel
Prior art date
Application number
PCT/EP2013/051721
Other languages
English (en)
French (fr)
Inventor
Frank WISCHNOWSKI
Original Assignee
Klaus Kuhn Edelstahlgiesserei Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Klaus Kuhn Edelstahlgiesserei Gmbh filed Critical Klaus Kuhn Edelstahlgiesserei Gmbh
Priority to KR20147024454A priority Critical patent/KR20140127843A/ko
Priority to EP13701640.8A priority patent/EP2809818B1/de
Priority to CN201380006194.XA priority patent/CN104254627A/zh
Priority to JP2014555177A priority patent/JP6322145B2/ja
Priority to ES13701640.8T priority patent/ES2581524T3/es
Publication of WO2013113718A1 publication Critical patent/WO2013113718A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Definitions

  • the present invention relates to a new duplex steel, in particular lean duplex steel, with improved notched impact strength and machinability.
  • duplex steels are of particular importance on the stainless steel market. These are increasingly displaced by duplex steels.
  • duplex steels Four main types of duplex steel are known today: standard duplex, super duplex, hyperduplex and lean duplex. The differences between these are the chemical composition as well as the different mechanical and corrosion properties.
  • Duplex steels are based on a two-phase structure composed of approximately equal proportions of a ferrite (a-iron) phase and an austenite (y-iron) phase.
  • the duplex steels are characterized by their combination of properties, the ferritic phase providing substantially high strength and stress corrosion cracking (SCC) resistance and the austenitic phase being responsible for ductility and general corrosion resistance.
  • SCC stress corrosion cracking
  • Duplex steels which are among the stainless and acid resistant steels, have existed for more than 70 years.
  • U.S. Patent 4,798,635 describes a ferritic-austenitic steel alloy having high corrosion resistance and good weldability, the steel alloy consisting essentially of the following elements:
  • the balance of this composition is iron and the usual impurities.
  • the contents of the elements are matched to one another in such a way that the ferrite content ⁇ is between 35 and 65%.
  • the alloy is particularly suitable for environments where the alloy has temperatures above 60 ° C as well as chlorides in amounts up to 1,000 ppm is exposed simultaneously, the austenite phase is resistant to cold deformation in the range between 10 and 30%.
  • This alloy was developed in the forging sector to reduce alloying costs. By saving the alloying elements nickel and molybdenum, a duplex steel with comparable strength but reduced corrosion resistance was produced.
  • the alloy is also suitable as a casting alloy.
  • WO 02/27056 A1 (EP 1 327 008 A1) deals with a ferritic-austenitic stainless steel with a microstructure consisting essentially of 35 to 65% by volume of ferrite and 35 to 65% by volume of austenite, and has a chemical composition containing by weight:
  • Mo + W / 2 optionally Mo and / or W in a total amount of not more than 1.0 (Mo + W / 2),
  • Ni eq Ni + 0.5 Mn + 30 (C + N) + 0.5 (Cu + Co).
  • the nickel and molybdenum content in the alloy should be reduced, but at the same time the desired good properties for duplex steel should be achieved.
  • duplex steel having improved notch impact strength and machinability
  • the duplex steel having the following chemical composition or consisting of:
  • a ferritic-austenitic stainless steel particularly a lean duplex steel, preferably a lean-duplex casting alloy
  • a lean-duplex casting alloy which has improved impact strength and machinability.
  • an alloy was made available according to the invention which, in addition to high strength, has a good notched impact strength even at low temperatures (for example -40 ° C.).
  • the steel alloy according to the invention exhibits good weldability.
  • the necessity and type of heat treatment after welding will depend on the chemical composition of the materials and consumables, the shape of the component, the wall thickness, the welding conditions, the strength properties, the extent of non-destructive testing and, if necessary, compliance with additional conditions.
  • the steel provided according to the invention has good corrosion resistance.
  • the Equivalent to Pitting Resistance (abbreviated as PRE: Eitting resistance equivalent), also referred to as the "effective sum" is used to estimate the corrosion resistance of a nickel-containing alloy against pitting or crevice corrosion
  • PRE Equivalent to Pitting Resistance
  • the pitting sum is calculated according to the following formula:
  • Duplex cast alloy of the present invention now has a PRE value of over 26 defined by the following formula:
  • duplex steel according to the invention has particularly good mechanical properties.
  • the steel according to the invention can preferably be used where the duplex steel is advantageous due to its properties. These are, for example, areas where high strength, good weldability, good machinability, good notched impact strength, in particular also at low temperatures play a role. Only examples are: drum coats in centrifuges or decanter construction, pressure vessels, also in the form of welded construction, rolls for the chemical industry and the paper industry.
  • alloying elements it is fundamentally to be distinguished whether they are carbide, austenite or ferrite formers, ie. H. for what purpose they are added to the steel.
  • Each alloy element gives the steel specific properties depending on its content. Multiple alloying elements may enhance the effect, but may have opposite effects and influence each other accordingly, resulting in a complex overall effect that is not readily predictable.
  • the presence of certain alloying elements in the steel only creates the prerequisite for a desired property, but only the processing and heat treatment shows the actual characteristics achieved.
  • carbon is an optional ingredient. It is an element for stabilizing the austenite phase. Carbon lowers the melting point as an alloying element in iron, and as an interstitial dissolved alloying element it increases its strength. As the carbon content increases, the formation of M 23 C 6 carbides increases, reducing ductility, toughness and corrosion resistance. Therefore, according to the invention, less than 0.070% by weight of carbon is used. less than 0.050 wt%, more preferably less than 0.030 wt%, to improve corrosion resistance.
  • Silicon which is also only an optional component of the steel alloy of the present invention, is a ferrite stabilizer and serves as a deoxidizer. It has the disadvantageous effect of accelerating the formation of brittle intermetallic phases (sigma and similar phases) at higher contents, thereby reducing the ductility of the steel. Silicon increases strength and wear resistance, increases the fluidity of molten steel, and thereby reduces surface defects in casting. At high levels of silicon, the additive increases scale resistance, acid resistance and corrosion resistance. Silicon is therefore used according to the invention in a content ⁇ 1.5% by weight, preferably ⁇ 1.0% by weight, more preferably less than 0.50% by weight, in order to improve the toughness.
  • Manganese is an austenitic stabilizer. It serves, for example, to increase the solubility of nitrogen. Manganese binds sulfur as manganese sulfides and thereby reduces the adverse influence of iron sulfide, has a deoxidizing effect during the melting of duplex stainless steels and serves to improve the hot workability of the steels. Manganese therefore has a favorable effect on forgeability and weldability. The yield strength, the strength and the wear resistance are increased by a manganese addition. Manganese increases the tensile strength and thus the load capacity. However, a large amount of manganese impairs corrosion resistance and facilitates the formation of the brittle intermetallic phases which are undesirable. Accordingly, according to the present invention, the manganese content is limited to ⁇ 1.0% by weight, more preferably less than 0.50% by weight, to improve the toughness. Manganese may also be completely absent as an optional ingredient in the steel of the present invention.
  • chrome (melting point 1920 ° C):
  • chromium is an essential element, in particular with regard to the maintenance of the corrosion resistance and for the adjustment of the ferrite-austenite ratio. Chromium has a ferrite-stabilizing effect. If the chromium content is too high, there is an increased formation of intermetallic compounds such as the sigma phase, which results in embrittlement of the material. Chromium is therefore used in the duplex steel of the present invention in the range of 21.0 to 23.0 weight percent.
  • Nickel is a cubic face centered element, and therefore acts in the
  • Range of the solution annealing temperature austenite-stabilizing austenite-stabilizing. It has a favorable effect on the toughness of the steel as it increases the stacking fault energy of the austenite. With increasing stacking fault energy, the mechanical and / or thermal transformation of austenite into martensite is made more difficult, thereby increasing the toughness of the steel.
  • Excessively high nickel contents at specified chromium and molybdenum contents increase the austenite content and thus reduce the strength.
  • the raw material price of nickel is relatively high compared to the other alloying elements and varies greatly, so that according to the invention other alloying elements are used as far as possible to replace nickel. According to the invention, therefore, a nickel content of 1.0 to 3.0 wt .-%, preferably 2.0 to 3.0 wt .-% is used.
  • Copper is also a stabilizer of the austenite phase and also has a favorable influence on the corrosion resistance, especially in acidic media. Since the solubility of copper in the ferritic phase of the duplex steel decreases rapidly at low temperatures, a copper-rich phase precipitates in the ferrite. This increases the yield strength ratio. Furthermore, copper can reduce pitting corrosion resistance. According to the invention therefore a copper content of 1.0 to 3.0 wt .-%, preferably 1.5 to 2.5 wt .-% is used. Furthermore, copper such as nickel has a positive effect on the low temperature toughness.
  • Nitrogen is an austenite former, ie it stabilizes the austenitic structural constituent. Nitrogen is usually interstitially dissolved in duplex steel, with 95% of the nitrogen being enriched in austenite. This leads to a strong lattice strain of the austenite and thus to a hardness increase of the austenitic phase and to an increase in strength of the duplex steel as a whole. This lattice strain of austenite leads to a reduction of toughness with decreasing temperature. With increasing contents of dissolved nitrogen, the resistance to perforation and crevice corrosion is also increased.
  • the nitrogen content according to the invention is 0.10 to 0.30 wt .-%, preferably 0.15 to 0.25 wt .-%.
  • Molybdenum is an optional ingredient in the duplex steel alloy of the present invention. Molybdenum serves to stabilize the ferritic phase. Molybdenum is a very large atom compared to iron. As a dissolved substitution atom, it therefore causes the yield strength and tensile strength to increase. The addition of molybdenum also improves corrosion resistance, especially in media containing chloride. Excessive levels of molybdenum lead to embrittlement of the steel during its production. Since the raw material prices for molybdenum are very high and volatile, only a low Mo content of ⁇ 0.5 wt .-% is used.
  • the steel according to the invention preferably has substantially no further added constituents but only iron and unavoidable impurities.
  • Unavoidable impurities are, for example, sulfur, phosphorus and the like.
  • the duplex stainless steel of the invention is a cost effective alternative to austenitic steels, especially in the form of a lean duplex alloy, preferably lean duplex cast alloy, which has particularly good properties, such as improved impact strength, especially at low temperatures (eg, -40 ° C) C), good machinability, high strength and good weldability without the need for post heat treatment.
  • the duplex stainless steel, particularly in the form of a cast alloy, of the present invention is particularly useful in various applications Applications advantageous where a requirement profile is present, for which the erfindungsgennäße steel is particularly suitable.
  • the invention also relates to the use of the duplex steel according to the invention in areas in which pressure and / or temperatures below 0 ° C are of importance. Particularly preferred uses are:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

Die Erfindung betrifft einen Duplexstahl mit verbesserter Kerbschlagzähigkeit und Zerspanbarkeit, wobei der Duplexstahl die folgende chemische Zusammensetzung aufweist oder hieraus besteht: C < 0,070 Gew.-%, Si < 1,5 Gew.-%, Mn < 1,0 Gew.-%, Cr 21,0 bis 23,0 Gew.-%, Ni 1,0 bis 3,0 Gew.-%, Cu 1,0 bis 3,0 Gew.-%, N 0,10 bis 0,30 Gew.-% Mo < 0,5 Gew.-% und dem Rest an Eisen und Verunreinigungen. Der erfindungsgemäße Duplexstahl zeichnet sich durch gute Verschweißbarkeit ohne erforderliche Wärmebehandlung, gute Zerspanbarkeit, hohe Festigkeit, gute Kerbschlagarbeit bei tiefen Temperaturen (beispielsweise - 40°C) aus und ist insbesondere für Druckbehälter geeignet.

Description

Duplexstahl mit verbesserter Kerbschlagzähigkeit und Zerspanbarkeit Beschreibung
Die vorliegende Erfindung bezieht sich auf einen neuen Duplexstahl, insbesondere Lean-Duplexstahl, mit verbesserter Kerbschlagzähigkeit und Zerspanbarkeit.
Von besonders großer Bedeutung auf den Markt für rostfreien Edelstahl sind bislang austenitische nichtrostende Stähle. Diese werden zunehmend durch Duplexstähle verdrängt. Heutzutage sind vier Haupttypen an Duplexstahl bekannt: Standard-Duplex, Superduplex, Hyperduplex und Lean- Duplex. Die Unterschiede zwischen diesen sind die chemische Zusammensetzung sowie die verschiedenen mechanischen und Korrosionseigenschaften. Duplexstähle beruhen auf einem zweiphasigen Gefüge, aufgebaut aus annähernd gleichen Anteilen einer Ferrit(a-Eisen)-Phase und einer Austenit(y-Eisen)-Phase. Die Duplexstähle zeichnen sich durch ihre Kombination von Eigenschaften aus, wobei die ferritische Phase im Wesentlichen hohe Festigkeit und SCC-Beständigkeit (Stress Corrosion Cracking) bereitstellt und die austenitische Phase für die Duktilität und allgemeine Korrosionsbeständigkeit verantwortlich ist. Die Duplexstähle, die zu den rost- und säurebeständigen Stählen gehören, gibt es seit mehr als 70 Jahren.
In den letzten Jahren haben sich die Preise für Legierungselemente, insbesondere Nickel und Molybdän, deutlich erhöht. Insbesondere der hohe Preis für Nickel war der Ausgangspunkt, um eine Entwicklung voranzutreiben, um Ersatzlegierungen mit Edelstahleigenschaften bereitzustellen, welche dieselben hohen Festigkeitseigenschaften sowie praktisch dieselben Korrosionseigenschaften bei einem deutlich verringerten Legierungsanteil an teurem Nickel und Molybdän bereitstellen.
Ein Ergebnis dieser Entwicklung ist der Lean-Duplexstahl. Bis vor wenigen Jahren war die Herstellung von diesem korrosionsbeständigen Duplexstahl mit niedrigem Legierungsanteil an Nickel und Molybdän zu umständlich und teuer. Aufgrund neuer Produktionsverfahren gelang es, die Herstellung von Lean-Duplexstahl für die Industriefertigung zu ermöglichen. Die Beständigkeit von Lean-Duplexstahl gegen Spannungsriss- und Lochkorrosion ist höher als bei vergleichbaren austenitischen Edelstahlen. Bei gleicher thermischer Belastung und Wärmeleitfähigkeit dehnt sich der Stahl weniger stark aus. Außerdem hat der Werkstoff, der im Wesentlichen zu gleichen Teilen aus Ferrit und Austenit besteht, eine doppelt so hohe Grundfestigkeit auch im geschweißten Zustand gegenüber austenitischen Stählen. Diese Eigenschaften lassen sich zur konstruktiven Verschlankung von Befestigungselementen in der Gebäudetechnik verwenden. Beispielsweise kommt man mit weniger Befestigungspunkten aus, wodurch eine Vereinfachung der Montage resultiert, als auch eine Verringerung der Anzahl an Wärmebrücken beim Fassadenbau. Eine Reduzierung des Kohlenstoffgehalts bei Herstellung führte beim Lean- Duplexstahl zu einer besseren Zähigkeit, als auch zu besseren Duktilitätseigenschaften.
Stand der Technik
Auf dem Gebiet der ferritisch-austenitischen Duplexstähle sind eine große Anzahl an Schmiedelegierungen bzw. Gusslegierungen beschrieben worden. Nachfolgend sollen einige Vorschläge aus dem Stand der Technik im Einzelnen erläutert werden:
50 beschriebt das US-Patent 4 798 635 eine ferritisch-austenitische Stahllegierung mit hoher Korrosionsbeständigkeit und guter Schweißbarkeit, wobei die Stahllegierung im Wesentlichen aus den folgenden Elementen besteht:
C nicht mehr als 0,06 Gew.-%
51 nicht mehr als 1,5 Gew.-%
Mn nicht mehr als 2,0 Gew.-%
Cr 21,0 bis 24,5 Gew.-%
Ni 2,0 bis 5,5 Gew.-%
Cu 0,01 bis 1,0 Gew.-%
N 0,05 bis 0,3 Gew.-%
und der Rest dieser Zusammensetzung aus Eisen und den üblichen Verunreinigungen besteht. Die Gehalte der Elemente sind hierbei derart aufeinander abgestimmt, dass der Ferritgehalt α zwischen 35 und 65% liegt. Die Legierung ist insbesondere für Umgebungen geeignet, wobei die Legierung Temperaturen oberhalb 60°C sowie Chloriden in Mengen bis zu 1.000 ppm gleichzeitig ausgesetzt wird, wobei die Austenitphase gegen eine Kaltverformung im Bereich zwischen 10 und 30% beständig ist.
Diese Legierung wurde im Schmiedesektor entwickelt, um die Legierungskosten zu reduzieren. Durch Einsparung der Legierungselemente Nickel und Molybdän wurde ein Duplexstahl mit vergleichbarer Festigkeit, jedoch reduzierter Korrosionsbeständigkeit hergestellt. Die Legierung ist auch als Gusslegierung geeignet.
Weiterhin beschäftigt sich die WO 02/27056 AI (EP 1 327 008 AI) mit einem ferritisch-austenitischen rostfreien Stahl mit einer Mikrostruktur, die im Wesentlichen aus 35 bis 65 Vol.-% Ferrit und 35 bis 65 Vol.-% Austenit besteht und eine chemische Zusammensetzung aufweist, die in Gewichtsprozent enthält:
0,005 bis 0,07 C,
0,1 bis 2,0 Si,
3 bis 8 Mn,
19 bis 23 Cr,
0,5 bis 1,7 Ni,
gegebenenfalls Mo und/oder W in einer Gesamtmenge von maximal 1,0 (Mo + W /2),
gegebenenfalls Cu bis maximal 1,0,
0,15 bis 0,30 N,
den Rest Eisen und Verunreinigungen.
Weiterhin sollen die nachfolgenden Bedingungen jeweils für die Ferrit- und Austenitbildner, d.h. für die Chrom- und Nickeläquivalente, gelten:
20 < Creq < 24,5
10 < Nieq, wobei
Creq = Cr + 1,5 Si + Mo + 2 Ti + 0,5 Nb und
Nieq = Ni + 0,5 Mn + 30 (C + N) + 0,5 (Cu + Co).
Zur weiteren Reduzierung der Legierungskosten wurde in diesem Stahl der Chromgehalt weiter reduziert und das teure Nickel teilweise durch Mangan ersetzt.
Eine zur WO 02/27056 AI identische chemische Zusammensetzung für rostfreien Stahl wurde insbesondere als Gußlegierung in der WO 2009/138570 AI (EP 2 279 276 AI) beschrieben. Der beschriebene hohe Mangangehalt und die im Vergleich zur Schmiedelegierung größere Korngröße führen bei dieser Legierung zu einer Verschiebung der Übergangstemperatur und verspröden den Werkstoff bei tiefen Anwendungstemperaturen.
Aus dem Stand der Technik gemäß der EP 1 867 748 AI ist auch eine Legierung mit der nachfolgenden Zusammensetzung bekannt:
C < 0,05 Gew.-%
21 Gew.-% < Cr < 25 Gew.-%,
1 Gew.-% < Ni < 2,95 Gew.-%,
0,16 Gew.-% < N < 0,28 Gew.-%,
Mn < 2,0 Gew.-%,
Mo+W/2 < 0,5 Gew.-%,
Mo < 0,45 Gew.-%,
W < 0,15 Gew.-%,
Si < 1,4 Gew.-%,
AI < 0,05 Gew.-%,
0,11 Gew.-% < Cu < 0,50 Gew.-%,
S < 0,010 Gew.-%,
P < 0,040 Gew.-%,
B < 0,0005 Gew.-%,
Co < 0,5 Gew.-%,
REM < 0,1 Gew.-%,
V < 0,5 Gew.-%,
Ti < 0,1 Gew.-%,
Nb < 0,3 Gew.-%,
Mg < 0,1 Gew.-%,
und dem Rest an Eisen und Verunreinigungen.
Hierbei handelt es sich daher um eine Schmiedelegierung, die bis zu 2% Mangan aufweist, jedoch kein Kupfer.
Weiterhin wurde auf der 8. Konferenz über rostfreie Duplexstähle in Beaune, Frankreich, vom 13. bis 15. Oktober 2010, eine neue Legierung mit der Werkstoffnummer 1.4669 von der Firma Ugitech vorgestellt. Jedoch weist diese Legierung einen Mangangehalt von 1 - 3 Gew-% auf und unterscheidet sich daher ebenfalls von der erfindungsgemäßen Legierung.
Darstellung der Erfindung: Aufgabe, Lösung, Vorteile
Der vorliegenden Erfindung liegt somit die Aufgabe zugrunde, einen ferritisch-austenitischen rostfreien Stahl bereitzustellen, welcher die Nachteile aus dem Stand der Technik vermeidet, der einen geringeren Anteil an kostspieligen Legierungselementen aufweist als herkömmlicher, kommerziell erhältlicher Duplexstahl, aber dennoch gute Eigenschaften bereitstellt, insbesondere hohe Festigkeit und gute Korrosionsbeständigkeit, gute Gießbarkeit und Verarbeitbarkeit. Insbesondere soll der Nickel- und Molybdängehalt in der Legierung reduziert werden, wobei gleichzeitig jedoch die gewünscht guten Eigenschaften für Duplexstahl erzielt werden sollen.
Die oben geschilderte Aufgabe wird erfindungsgemäß gelöst durch einen Duplexstahl mit verbesserter Kerbschlagzähigkeit und Zerspanbarkeit, wobei der Duplexstahl die folgende chemische Zusammensetzung aufweist oder hieraus besteht:
C < 0,070 Gew.-%,
Si < 1,5 Gew.-%,
Mn < 1,0 Gew.-%,
Cr 21,0 bis 23,0 Gew.-%,
Ni 1,0 bis 3,0 Gew.-%,
Cu 1,0 bis 3,0 Gew.-%,
N 0,10 bis 0,30 Gew.-%
Mo < 0,5 Gew.-%
und dem Rest an Eisen und Verunreinigungen.
Demgemäß wird ein ferritisch-austenitischer rostfreier Stahl, insbesondere ein Lean-Duplexstahl, bevorzugt eine Lean-Duplex-Gusslegierung, bereitgestellt, die eine verbesserte Kerbschlagzähigkeit und Zerspanbarkeit aufweist. Durch die Wahl der Legierungszusammensetzung wurde erfindungsgemäß eine Legierung zur Verfügung gestellt, die neben einer hohen Festigkeit eine gute Kerbschlagzähigkeit auch bei tiefen Temperaturen (beispielsweise -40°C) aufweist. Auch zeigt die erfindungsgemäße Stahllegierung eine gute Schweißbarkeit. Die Notwendigkeit und Art der Wärmebehandlung nach dem Schweißen ergeben sich in Abhängigkeit von der chemischen Zusammensetzung der Werkstoffe und Schweißzusätze, der Form des Bauteils, der Wanddicke, den Schweißbedingungen, den Festigkeitseigenschaften, dem Umfang der zerstörungsfreien Prüfung und soweit notwendig von der Einhaltung zusätzlicher Bedingungen.
Weiterhin weist der erfindungsgemäß bereitgestellte Stahl eine gute Korrosionsbeständigkeit auf. Das Äquivalent für die Beständigkeit gegenüber Lochfraß (abgekürzt als PRE: Eitting resistance equivalent), auch bezeichnet als „Wirksumme", dient zur Abschätzung der Korrosionsbeständigkeit einer nickelhaltigen Legierung gegenüber Lochfraß- oder Spaltkorrosion. Lochfraßkorrosion bezeichnet im Allgemeinen klein erscheinende oder punktförmige Korrosionsstellen in Oberflächen von Metallen, die sich unterhalb der Oberfläche erheblich ausweiten können. Spaltkorrosion ist eine örtlich beschleunigte Korrosion und führt im Bereich von Spalten (z. B. Fügespalten) zur Ablagerung von Korrosionen. Die Fähigkeit des Stahls, sich gegen diese Form der Korrosion zu schützen, hängt von unterschiedlichen Gehalten der Legierungselemente ab. Die Lochfraß-Wirksumme wird gemäß der nachfolgenden Formel berechnet:
PRE = [Gew.-%]Cr + 3,3 [Gew.-%]Mo + 16 [Gew.-%]N,
wobei der Prozentsatz der Elemente Chrom, Molybdän und Stickstoff, bezogen auf das Gewicht, in die Formel eingeht. Je höher die Wirksumme ist, desto beständiger ist der Werkstoff gegenüber Lochfraß- bzw. Spaltkorrosion.
Die chemische Zusammensetzung des Stahls, insbesondere der Lean-
Duplex-Gusslegierung, der vorliegenden Erfindung weist nun einen durch die nachfolgende Formel definierten PRE-Wert von über 26 auf:
PRE = [Gew.-%]Cr + 3,3 [Gew.-%]Mo + 16 [Gew.-%]N > 26
Weiterhin weist der erfindungsgemäße Duplexstahl besonders gute mechanische Eigenschaften auf.
Die Mindestanforderungen an den Werkstoff bei RT gemäß der vorliegenden Erfindung sind wie folgt:
Dehngrenze: Rp0,2 > 400 MPa Zugfestigkeit: Rm > 600 MPa
Dehnung: A > 30 %
Kerbschlagarbeit: Av > 80 J
Av (-40°C) > 27 J.
Der erfindungsgemäße Stahl kann bevorzugt dort eingesetzt werden, wo der Duplexstahl aufgrund seiner Eigenschaften von Vorteil ist. Dies sind beispielsweise Bereiche, wo hohe Festigkeit, gute Schweißbarkeit, gute Zerspanbarkeit, gute Kerbschlagzähigkeit, insbesondere auch bei tiefen Temperaturen eine Rolle spielen. Lediglich beispielhaft seien genannt: Trommelmäntel in Zentrifugen oder Dekanterbau, Druckbehälter, auch in Form von Schweißkonstruktion, Walzen für die chemische Industrie und die Papierindustrie.
Nachfolgend werden die einzelnen Legierungselemente des erfindungsgemäßen Lean-Duplexstahls hinsichtlich ihrer Eigenschaften, Bedeutung und Wechselwirkungen im Stahl im Einzelnen erläutert:
Bei den Legierungselementen ist grundsätzlich zu unterscheiden, ob sie Carbid-, Austenit- oder Ferritbildner sind, d. h. zu welchem Zweck sie dem Stahl zulegiert werden. Jedes Legierungselement verleiht dem Stahl je nach Gehalt spezifische Eigenschaften. Mehrere Legierungselemente können die Wir- kung gegebenenfalls erhöhen, können aber auch entgegengesetzte Wirkungen haben und sich gegenseitig entsprechend beeinflussen, so dass eine komplexe Gesamtwirkung resultieren kann, die nicht ohne weiteres vorhersehbar ist. Die Gegenwart bestimmter Legierungselemente im Stahl schafft nur die Voraussetzung für eine gewünschte Eigenschaft, aber erst die Verarbeitung und Wärme- behandlung zeigt die tatsächlich erzielten Charakteristika.
Kohlenstoff (Schmelzpunkt 3974°C):
In der erfindungsgemäßen Stahllegierung ist Kohlenstoff ein optionaler Bestandteil. Es ist ein Element zur Stabilisierung der Austenitphase. Kohlenstoff senkt als Legierungselement in Eisen den Schmelzpunkt, als interstitielles gelös- tes Legierungselement erhöht es die Festigkeit. Mit zunehmendem Kohlenstoff- Gehalt steigt die Gefahr der Bildungen von M23C6-Carbiden, wodurch die Duktili- tät, die Zähigkeit und die Korrosionsbeständigkeit reduziert werden. Daher werden erfindungsgemäß weniger als 0,070 Gew.-% Kohlenstoff verwendet, bevor- zugt weniger als 0,050 Gew.-%, noch bevorzugter weniger als 0,030 Gew.-%, um die Korrosionsbeständigkeit zu verbessern.
Silicium (Schmelzpunkt 1410°C):
Silicium, das ebenfalls nur einen optionalen Bestandteil der Stahllegierung der vorliegenden Erfindung darstellt, ist ein Ferritstabilisator, und dient als Desoxidationsmittel. Es hat die nachteilige Wirkung, dass es bei höheren Gehalten die Bildung von spröden intermetallischen Phasen (Sigma- und ähnliche Phasen) beschleunigt und hierdurch die Duktilität des Stahls reduziert. Silicium erhöht die Festigkeit und Verschleissfestigkeit, vergrößert die Fluidität von geschmolzenem Stahl und verringert dadurch Oberflächendefekte bei der Gußherstellung. Bei hohen Gehalten an Silizium erhöht der Zusatz die Zunderbeständigkeit, Säurebeständigkeit und Korrosionsbeständigkeit. Silicium wird daher erfindungsgemäß in einem Gehalt < 1,5 Gew.-%, bevorzugt < 1,0 Gew.-% noch bevorzugter weniger als 0,50 Gew.-% verwendet, um die Zähigkeit zu verbessern.
Mangan (Schmelzpunkt 1221°C):
Mangan ist ein austenitischer Stabilisator. Es dient beispielsweise dazu, die Löslichkeit von Stickstoff zu erhöhen. Mangan bindet Schwefel als Mangan-sulfide und verringert dadurch den ungünstigen Einfluss des Eisensulfides, hat eine desoxidierende Wirkung während des Schmelzens von nichtrostenden Duplexstählen und dient zur Verbesserung der Warmbearbeitbarkeit der Stähle. Mangan wirkt sich daher günstig auf die Schmiedbarkeit und Schweißbarkeit aus. Die Streckgrenze, die Festigkeit und der Verschleißwiderstand werden durch einen Manganzusatz erhöht. Mangan erhöht die Zugfestigkeit und somit auch die Belastbarkeit. Jedoch beeinträchtigt eine große Menge an Mangan die Korrosionsbeständigkeit und erleichtert die Bildung der spröden intermetallischen Phasen, die unerwünscht sind. Demgemäß wird erfindungsgemäß der Mangangehalt auf < 1,0 Gew.-% geschränkt, noch bevorzugter weniger als 0,50 Gew.-%, um die Zähigkeit zu verbessern. Mangan kann als fakultativer Bestandteil im erfindungsgemäßen Stahl auch gänzlich fehlen.
Chrom (Schmelzpunkt 1920°C): Im erfindungsgemäßen Stahl ist Chrom ein wesentliches Element, insbesondere im Hinblick auf die Aufrechterhaltung der Korrosionsbeständigkeit und zur Einstellung des Ferrit-Austenitverhältnisses. Chrom wirkt ferritstabilisierend. Bei einem zu hohen Chromgehalt kommt es zu einer verstärkten Bildung von intermetallischen Verbindungen wie der Sigma-Phase, womit eine Versprödung des Werkstoffes einher geht. Chrom wird daher im erfindungsgemäßen Duplexstahl im Bereich von 21,0 bis 23,0 Gew.-% verwendet.
Nickel (Schmelzpunkt 1455°C):
Nickel ist ein kubisch flächenzentriertes Element, und wirkt daher im
Bereich der Lösungsglühtemperatur austenitstabilisierend. Es weist eine günstige Wirkung auf die Zähigkeit des Stahls auf, da es die Stapelfehlerenergie des Austenits erhöht. Mit zunehmender Stapelfehlerenergie wird die mechanische - und/oder thermische Umwandlung des Austenits in Martensit erschwert und dadurch die Zähigkeit des Stahls gesteigert. Zu hohe Nickelgehalte bei festgelegten Chrom- und Molybdängehalten führen zur Anhebung des Austenitgehalts und damit zur Reduzierung der Festigkeit. Der Rohmaterialpreis von Nickel ist relativ hoch im Vergleich zu den anderen Legierungselementen und schwankt stark, so dass erfindungsgemäß andere Legierungselemente soweit als mögliche eingesetzt werden, um Nickel zu ersetzen. Erfindungsgemäß wird daher ein Nickelgehalt von 1,0 bis 3,0 Gew.-%, bevorzugt 2,0 bis 3,0 Gew.-% eingesetzt.
Kupfer (Schmelzpunkt 1083°C):
Auch Kupfer ist ein Stabilisator der Austenitphase und hat zudem einen günstigen Einfluss auf die Korrosionsbeständigkeit, insbesondere in sauren Medien. Da die Löslichkeit von Kupfer in der ferritischen Phase des Duplex-Stahls bei tiefen Temperaturen rasch abnimmt, scheidet sich eine kupfereiche Phase im Ferrit aus. Hierdurch wird das Dehngrenzen- Festigkeitsverhältnis erhöht. Weiterhin kann Kupfer die Lochfraß- bzw. Rostfraßbeständigkeit reduzieren. Erfindungsgemäß wird daher ein Kupfergehalt von 1,0 bis 3,0 Gew.-%, bevorzugt 1,5 bis 2,5 Gew.-% verwendet. Desweiteren besitzt Kupfer wie Nickel eine positive Wirkung auf die Tieftemperaturzähigkeit.
Stickstoff: Stickstoff ist ein Austenitbildner, d. h. er stabilisiert den austenitischen Gefügebestandteil. Stickstoff ist in der Regel im Duplex-Stahl intersitiell gelöst, wobei 95 % des Stickstoffs im Austenit angereichert sind. Dies führt zu einer starken Gitterverspannung des Austenits und damit zu einer Härtesteigerung der austenitischen Phase und zu einer Festigkeitssteigerung des Duplexstahls insgesamt. Diese Gitterverspannung des Austenits führt zu einer Reduzierung der Zähigkeit mit sinkender Temperatur. Mit steigenden Gehalten an gelöstem Stickstoff wird auch die Beständigkeit gegen Loch- und Spaltkorrosion erhöht.
Nicht gelöster Stickstoff vermindert jedoch die Zähigkeit durch die Bil- dung von Nitriden in der ferritischen Phase. Daher beträgt der Stickstoffgehalt erfindungsgemäß 0,10 bis 0,30 Gew.-%, bevorzugt 0,15 bis 0,25 Gew.-%.
Molybdän (Schmelzpunkt 2622°C):
Molybdän ist ein optionaler Bestandteil in der erfindungsgemäßen Duplexstahllegierung. Molybdän dient zur Stabilisierung der ferritischen Phase. Molybdän ist im Vergleich zum Eisen ein sehr großes Atom. Als gelöstes Substitutionsatom bewirkt es daher die Erhöhung der Streckgrenze und Zugfestigkeit. Mit dem Zusatz von Molybdän wird auch die Korrosionsbeständigkeit besonders in chloridhaltigen Medien verbessert. Zu hohe Gehalte an Molybdän führen zu einer Versprödung des Stahls bei dessen Herstellung. Da die Rohstoffpreise für Molybän sehr hoch und volatil sind, kommt nur ein geringer Mo-Gehalt von < 0,5 Gew.-% zum Einsatz.
Neben den oben erwähnten Elementen weist der erfindungsgemäße Stahl bevorzugt im Wesentlichen keine weiteren hinzugefügten Bestandteile auf, sondern nur Eisen und unvermeidbare Verunreinigungen. Unvermeidbare Verunreinigungen sind beispielsweise Schwefel, Phosphor und dergleichen.
Somit stellt der erfindungsgemäße rostfreie Duplexstahl eine kostengünstige Alternative zu austenitischen Stählen dar, insbesondere in Form einer Lean- Duplexlegierung, bevorzugt Lean-Duplex-Gußlegierung, die über besonders gute Eigenschaften verfügt, wie einer verbesserten Kerbschlagzähigkeit, insbesondere bei tiefen Temperaturen (beispielsweise -40°C), guter Zerspanbarkeit, hoher Festigkeit und guter Schweißbarkeit ohne erforderliche Wärmenachbehandlung. Der rostfreie Duplexstahl, insbesondere in Form einer Gußlegierung, der vorliegenden Erfindung ist insbesondere bei verschiedenen Anwendungen vorteilhaft, wo ein Anforderungsprofil vorliegt, für welches der erfindungsgennäße Stahl besonders geeignet ist.
Gegenstand der Erfindung ist auch die Verwendung des erfindungsgemäßen Duplexstahls in Bereichen, in denen Druck und/oder Temperaturen unterhalb von 0°C von Bedeutung sind. Besonders bevorzugte Verwendungen sind:
- im Zentrifugen- und Dekanterbau, insbesondere für Trommelmäntel,
- für Druckbehälter aller Art,
- für Walzen in der chemischen Industrie und der Papierindustrie.
Nachfolgend wird die vorliegende Erfindung anhand von Beispielen erläutert, welche die erfindungsgemäße Lehre veranschaulichen, diese aber nicht beschränken sollen.
Beispiele:
Es wurden die folgenden in Tabelle 1 angegebenen Schmelzen, die eine chemische Zusammensetzung gemäß dem erfindungsgemäßen Duplexstahl aufweisen, hergestellt:
Tabelle 1
Figure imgf000012_0001
Für die in Tabelle 1 angegebenen Schmelzen wurden die folgenden in Tabelle 2 angegebenen mechanischen Kennwerte bei Raumtemperatur bestimmt:
Tabelle 2
Schmelze Rp0,2 RP1,0 Rm A Z Avl Av2 Av3 Av
[MPa] [MPa] [MPa] {%] [%] [J] [J] [%] mittel
[96]
C 39895 438 497 663 45 59 169 170 183 174
B 40674 432 486 659 42 42 222 234 200 219
D 24640 442 494 634 42 48 158 152 145 152 Für die Kerbschlagarbeit bei tieferen Temperaturen wurden die folgenden in Tabelle 3 angegebenen Kennwerte ermittelt:
Tabelle 3
Figure imgf000013_0001
Die ermittelten und oben angegebenen Kennwerte in den Tabellen 2 und 3 bestätigen die vorteilhaften Eigenschaften des erfindungsgemäßen Duplexstahl.

Claims

PATENTANSPRÜCHE
1. Duplexstahl mit verbesserter Kerbschlagzähigkeit und Zerspanbarkeit, wobei der Duplexstahl die folgende chemische Zusammensetzung aufweist oder hieraus besteht:
C < 0,070 Gew.-%,
Si < 1,5 Gew.-%,
Mn < 1,0 Gew.-%,
Cr 21,0 bis 23,0 Gew.-%,
Ni 1,0 bis 3,0 Gew.-%,
Cu 1,0 bis 3,0 Gew.-%,
N 0,10 bis 0,30 Gew.-%
Mo < 0,5 Gew.-%
und dem Rest an Eisen und Verunreinigungen.
2. Duplexstahl nach Anspruch 1, dadurch gekennzeichnet, dass dieser bis zu 0,050 Gew.-% Kohlenstoff enthält.
3. Duplexstahl nach Anspruch 1, dadurch gekennzeichnet, dass dieser bis zu 0,030 Gew-% Kohlenstoff enthält.
4. Duplexstahl nach mindestens einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass dieser < 1,0 Gew.-% Silicium enthält.
5. Duplexstahl nach mindestens einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass dieser < 0,50 Gew.-% Silicium enthält
6. Duplexstahl nach mindestens einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass dieser < 1,0 Gew.-% Mangan enthält.
7. Duplexstahl nach mindestens einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass dieser < 0,50 Gew.-% Mangan enthält
8. Duplexstahl nach mindestens einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass dieser 21,5 bis 22,5 Gew.-% Chrom enthält.
9. Duplexstahl nach mindestens einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass dieser 2,0 bis 3,0 Gew.-% Nickel enthält.
10. Duplexstahl nach mindestens einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass dieser 1,5 bis 2,5 Gew.-% Kupfer enthält.
11. Duplexstahl nach mindestens einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass dieser 0,15 bis 0,25 Gew.-% Stickstoff enthält.
12. Duplexstahl nach mindestens einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Volumenfraktion der ferritischen Phase im Bereich von 35 bis 65% liegt, und dass die Volumenfraktion der austenitischen Phase im Bereich von 35 bis 65% liegt.
13. Duplexstahl nach mindestens einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Lochfraß-Wirksumme (PRE), definiert durch die nachfolgende Formel:
PRE = [Gew.-%]Cr + 3,3 [Gew.-%]Mo + 16 [Gew.-%]N
größer 26 beträgt.
14. Duplexstahl nach mindestens einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Kerbschlagarbeit Av (Raumtemperatur) > 80 J beträgt.
15. Duplexstahl nach mindestens einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Kerbschlagarbeit Av (-40°C) > 27 J beträgt.
16. Verwendung des Duplexstahls nach mindestens einem der vorangehenden Ansprüche in Bereichen, in denen Druck und/oder Temperaturen unterhalb von 0°C von Bedeutung sind.
17. Verwendung des Duplexstahls nach mindestens einem der vorangehenden Ansprüche
- im Zentrifugen- und Dekanterbau, insbesondere für Trommelmäntel,
- für Druckbehälter aller Art,
- für Walzen in der chemischen Industrie und der Papierindustrie.
PCT/EP2013/051721 2012-02-03 2013-01-30 Duplexstahl mit verbesserter kerbschlagzähigkeit und zerspanbarkeit WO2013113718A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR20147024454A KR20140127843A (ko) 2012-02-03 2013-01-30 개선된 노치충격강도 및 가공성을 갖는 듀플렉스스틸
EP13701640.8A EP2809818B1 (de) 2012-02-03 2013-01-30 Duplexstahl mit verbesserter kerbschlagzähigkeit und zerspanbarkeit
CN201380006194.XA CN104254627A (zh) 2012-02-03 2013-01-30 具有更好的缺口冲击韧性和切削加工性的双相钢
JP2014555177A JP6322145B2 (ja) 2012-02-03 2013-01-30 ノッチ付き衝撃強さ及び機械加工性を改善した二相鋼
ES13701640.8T ES2581524T3 (es) 2012-02-03 2013-01-30 Acero dúplex con un índice de resiliencia y una maquinabilidad mejorados

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012100908.2 2012-02-03
DE102012100908A DE102012100908A1 (de) 2012-02-03 2012-02-03 Duplexstahl mit verbesserter Kerbschlagzähigkeit und Zerspanbarkeit

Publications (1)

Publication Number Publication Date
WO2013113718A1 true WO2013113718A1 (de) 2013-08-08

Family

ID=47624080

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/051721 WO2013113718A1 (de) 2012-02-03 2013-01-30 Duplexstahl mit verbesserter kerbschlagzähigkeit und zerspanbarkeit

Country Status (7)

Country Link
EP (1) EP2809818B1 (de)
JP (1) JP6322145B2 (de)
KR (1) KR20140127843A (de)
CN (1) CN104254627A (de)
DE (1) DE102012100908A1 (de)
ES (1) ES2581524T3 (de)
WO (1) WO2013113718A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110331341B (zh) * 2019-08-21 2021-05-11 攀钢集团攀枝花钢铁研究院有限公司 高成型性能高强度热镀锌双相钢及其生产方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4798635A (en) 1984-03-30 1989-01-17 Santrade Limited Ferritic-austenitic stainless steel
JPH02305940A (ja) * 1989-05-22 1990-12-19 Nippon Steel Corp 建築建材用二相ステンレス鋼
WO2002027056A1 (en) 2000-09-27 2002-04-04 Avestapolarit Aktiebolag (Publ) Ferritic-austenitic stainless steel
JP2006183129A (ja) * 2004-01-29 2006-07-13 Jfe Steel Kk 成形性に優れるオーステナイト・フェライト系ステンレス鋼
EP1867748A1 (de) 2006-06-16 2007-12-19 Industeel Creusot Duplex-Edelstahl
JP2009035782A (ja) * 2007-08-02 2009-02-19 Nippon Steel & Sumikin Stainless Steel Corp 耐食性と加工性に優れたフェライト・オーステナイト系ステンレス鋼およびその製造方法
WO2009138570A1 (en) 2008-05-16 2009-11-19 Outokumpu Oyj Stainless steel product, use of the product and method of its manufacture
EP2172574A1 (de) * 2007-08-02 2010-04-07 Nippon Steel & Sumikin Stainless Steel Corporation Ferritisch-austenitischer edelstahl mit hervorragender korrosionsbeständigkeit und bearbeitbarkeit sowie herstellungsverfahren dafür

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1106501A (en) * 1966-02-24 1968-03-20 Crucible Steel Co America Free machining stainless steels
JPH05230535A (ja) * 1991-07-16 1993-09-07 Kubota Corp 製紙機械用サクションロールの製法
JP5288980B2 (ja) * 2008-10-02 2013-09-11 新日鐵住金ステンレス株式会社 衝撃靭性に優れた二相ステンレス熱間圧延鋼材とその製造方法
JP5511208B2 (ja) * 2009-03-25 2014-06-04 新日鐵住金ステンレス株式会社 耐食性の良好な省合金二相ステンレス鋼材とその製造方法
JP5366609B2 (ja) * 2009-03-26 2013-12-11 新日鐵住金ステンレス株式会社 耐食性の良好な省合金二相ステンレス鋼材とその製造方法
JP5404280B2 (ja) * 2009-09-25 2014-01-29 新日鐵住金ステンレス株式会社 溶接熱影響部の耐食性に優れた高強度省合金型二相ステンレス鋼
JP5406233B2 (ja) * 2011-03-02 2014-02-05 新日鐵住金ステンレス株式会社 二相ステンレス鋼を合わせ材とするクラッド鋼板およびその製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4798635A (en) 1984-03-30 1989-01-17 Santrade Limited Ferritic-austenitic stainless steel
JPH02305940A (ja) * 1989-05-22 1990-12-19 Nippon Steel Corp 建築建材用二相ステンレス鋼
WO2002027056A1 (en) 2000-09-27 2002-04-04 Avestapolarit Aktiebolag (Publ) Ferritic-austenitic stainless steel
EP1327008A1 (de) 2000-09-27 2003-07-16 Avestapolarit Aktiebolag (publ) Ferritisch-austenistischer rostfreier stahl
JP2006183129A (ja) * 2004-01-29 2006-07-13 Jfe Steel Kk 成形性に優れるオーステナイト・フェライト系ステンレス鋼
EP1867748A1 (de) 2006-06-16 2007-12-19 Industeel Creusot Duplex-Edelstahl
JP2009035782A (ja) * 2007-08-02 2009-02-19 Nippon Steel & Sumikin Stainless Steel Corp 耐食性と加工性に優れたフェライト・オーステナイト系ステンレス鋼およびその製造方法
EP2172574A1 (de) * 2007-08-02 2010-04-07 Nippon Steel & Sumikin Stainless Steel Corporation Ferritisch-austenitischer edelstahl mit hervorragender korrosionsbeständigkeit und bearbeitbarkeit sowie herstellungsverfahren dafür
WO2009138570A1 (en) 2008-05-16 2009-11-19 Outokumpu Oyj Stainless steel product, use of the product and method of its manufacture
EP2279276A1 (de) 2008-05-16 2011-02-02 Outokumpu Oyj Edelstahlprodukt, verwendung des produkts und herstellungsverfahren

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DEUTSCHE EDELSTAHLWERKE: "1 .4362 Nichtrostender austenitischer Chrom-Nickel-Stahl", 1 March 2008 (2008-03-01), XP002695796, Retrieved from the Internet <URL:http://www.dew-stahl.com/fileadmin/files/dew-stahl.com/documents/Publikationen/Werkstoffdatenblaetter/RSH/1.4362_de.pdf> [retrieved on 20130422] *
DEUTSCHE EDELSTAHLWERKE: "1.4462 Nichtrostender austenitisch-ferritischer Chrom-Nickel-Molybdän-Stahl", 1 March 2008 (2008-03-01), XP002695797, Retrieved from the Internet <URL:http://www.dew-stahl.com/fileadmin/files/dew-stahl.com/documents/Publikationen/Werkstoffdatenblaetter/RSH/1.4462_de.pdf> [retrieved on 20130422] *
KUHN EDELSTAHL: "Dekanterbau", 14 June 2011 (2011-06-14), pages 1 - 4, XP002695795, Retrieved from the Internet <URL:http://www.kuhn-edelstahl.de/frontend/media/downloads/broschueren/p2-dekanter.pdf> [retrieved on 20130422] *

Also Published As

Publication number Publication date
KR20140127843A (ko) 2014-11-04
ES2581524T3 (es) 2016-09-06
EP2809818A1 (de) 2014-12-10
DE102012100908A1 (de) 2013-08-08
EP2809818B1 (de) 2016-04-06
JP2015511272A (ja) 2015-04-16
JP6322145B2 (ja) 2018-05-09
CN104254627A (zh) 2014-12-31

Similar Documents

Publication Publication Date Title
DE102012014068B3 (de) Austenitische Stahllegierung mit ausgezeichneter Zeitstandfestigkeit sowie Oxidations- und Korrosionsbeständigkeit bei erhöhten Einsatztemperaturen
DE60023699T2 (de) Warmfester rostfreier austenitischer stahl
DE602006000160T2 (de) Hitzbeständige Legierung für bei 900oC nachhaltige Auslassventile und Auslassventile aus dieser Legierung
DE69203906T2 (de) Niedrig legierter, hitzebeständiger Stahl mit verbesserter Dauerstandfestigkeit und Zähigkeit.
DE69303518T2 (de) Hitzebeständiger, ferritischer Stahl mit niedrigem Chromgehalt und mit verbesserter Dauerstandfestigkeit und Zäheit
DE69008575T2 (de) Hitzebeständiger ferritischer Stahl mit ausgezeichneter Festigkeit bei hohen Temperaturen.
DE3117539C2 (de)
DE60124227T2 (de) Duplex rostfreier stahl
DE69003202T2 (de) Hochfeste, hitzebeständige, niedrig legierte Stähle.
EP1891248A1 (de) Austenitischer leichtbaustahl und seine verwendung
DE69821493T2 (de) Verwendung eines hitzebeständigen Gussstahles für Bauteile von Turbinengehäuse n
AT152291B (de) Chrom-Mangan-Stähle mit 0¨01 1¨5% Kohlenstoff, 5 25% Chrom, 10 35% Mangan.
EP3899064B1 (de) Superaustenitischer werkstoff
DE69204123T2 (de) Hitzebeständiges ferritisches Stahl mit hohem Chromgehalt und mit höhere Beständigkeit gegen Versprödung durch intergranuläre Ausscheidung von Kupfer.
DE69025468T2 (de) Austenitischer rostfreier Stahl
DE60310316T2 (de) Gegen Schwefelsäure und Nassverfahrensphosphorsäure resistente Ni-Cr-Mo-Cu-Legierungen
WO2014146733A1 (de) Eisenbasierte formgedächtnislegierung
EP0455625B1 (de) Hochfeste korrosionsbeständige Duplexlegierung
WO1995025826A1 (de) Korrosions- und verschleissbeständiger hartguss
EP2809818B1 (de) Duplexstahl mit verbesserter kerbschlagzähigkeit und zerspanbarkeit
DE69928696T2 (de) Martensitischer, rostfreier stahl
DE2752082A1 (de) Austenitischer nichtrostender stahl
DE102008010749A1 (de) Stahllegierung für einen niedrig legierten Stahl zur Herstellung hochfester nahtloser Stahlrohre
CH704427A1 (de) Schweisszusatzwerkstoff.
AT411905B (de) Legierung und gegenstand mit hoher warmfestigkeit und hoher thermischer stabilität

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13701640

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2014555177

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013701640

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147024454

Country of ref document: KR

Kind code of ref document: A