WO2014146733A1 - Eisenbasierte formgedächtnislegierung - Google Patents

Eisenbasierte formgedächtnislegierung Download PDF

Info

Publication number
WO2014146733A1
WO2014146733A1 PCT/EP2013/065657 EP2013065657W WO2014146733A1 WO 2014146733 A1 WO2014146733 A1 WO 2014146733A1 EP 2013065657 W EP2013065657 W EP 2013065657W WO 2014146733 A1 WO2014146733 A1 WO 2014146733A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
shape memory
alloy
elements
weight
Prior art date
Application number
PCT/EP2013/065657
Other languages
English (en)
French (fr)
Inventor
Rainer FECHTE-HEINEN
Christian Höckling
Lothar Patberg
Jens-Ulrik Becker
Original Assignee
Thyssenkrupp Steel Europe Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thyssenkrupp Steel Europe Ag filed Critical Thyssenkrupp Steel Europe Ag
Priority to EP13741745.7A priority Critical patent/EP2976441B1/de
Publication of WO2014146733A1 publication Critical patent/WO2014146733A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/01Shape memory effect
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn

Definitions

  • the invention relates to an iron-based shape memory alloy.
  • Shape memory alloys are known from different material systems. Also iron based, i. Shape memory alloys consisting essentially of the element iron are known from the prior art. For example, European Patent Application EP 2 194 154 A1 discloses a
  • Shape memory alloy which has a two-way effect and consists of a low-cost, iron-based alloy.
  • European alloy which has a two-way effect and consists of a low-cost, iron-based alloy.
  • a patent application proposes to consider a certain combination of the elements of the group Mn, Si, Cr and Ni in addition to Fe in the alloy.
  • Japanese Unexamined Patent Publication JP-A 2003/268502 moreover discloses an iron-based shape memory alloy with Ni contents which is intended to form precipitates during the production process by adding titanium in the alloy.
  • this has the disadvantage that the Ni-Ti precipitates, the properties of the nickel with respect to the shape memory effect due to its binding to titanium can not be used.
  • Shape memory alloy based on an Fe-Mn-Si alloy system to which the elements Nb and C have been additionally added is known from the published patent application EP 1 348 772 A1. The ones added to these legi sys te n s
  • Precipitation types are described in the following documents, for example Va n d i u m co o st e ff e ff e d i n ds ngen in CN 1280444 C.
  • Ti-Nb-V-N carbides / nitrides and Ni 3 Ti as precipitation types are described in the Japanese documents
  • European patent application EP 2 141 251 A1 discloses vanadium nitrogen and vanadium carbon precipitates used for the shape memory alloying effect.
  • the Chinese patent application CN 101215678 B relates to a so-called Ti-Nb-C-N system.
  • An Nb-Ti-V-C system for forming precipitates is known from CN 100523263 C.
  • Russian Patent RU 2270267 Cl discloses a V-Nb-W-C precipitation system for imaging the
  • iron-based shape memory alloy systems are of interest in terms of a reduction in manufacturing costs, an increase in the activation or
  • the present invention has for its object, a
  • Iron-based shape memory alloy that provides a one-way shape memory effect that requires reduced manufacturing costs, has an increased activation temperature compared to copper and nickel base alloys, and that has a corrosion and mildew properties compared to nickel-free and chromium-containing concepts are improved.
  • the above object is achieved according to a first teaching of the present invention by a shape memory alloy consisting of an alloy with the following alloy components in weight percent:
  • group 2 of the elements Ti, Nb, W, V, Zr with the following contents
  • Alloy constituents Mn, Si, Cr, Ni and one of the elements of group 1 (N, C, B) and one of the elements of group 2 (Ti, Nb, W, V, Zr) may be the
  • the shape memory alloy optionally additionally contains the elements P, S, Mo, Cu, Al, Mg, O, Ca or Co, which can develop advantageous effects up to the stated values.
  • the effects on the shape memory effect affecting precipitations, the formation of which is influenced by the relationship of the two element groups, group 1 and group 2 show a significant, positive influence on the shape memory effect, provided that the sum of the constituents of the group 2 elements in atomic% of Alloy in proportion to the sum of the alloy components of Group 1 in atomic% in the range of 0.5 to 2.0.
  • a targeted stoichiometric ratio of the elements of group 1 to the elements of group 2 is set. It has been found that it is precisely at this ratio of
  • Group 2 alloy components to group 1 excretion formation is particularly favorable and supports the shape memory effect.
  • the ratio given is less than 0.5, the precipitating elements in the form of N, C and / or B can not be set and the shape memory effect is reduced since the group 1 elements are present in dissolved form in the microstructure. in the The result is also a negative effect on the reversibility of the
  • Phase transformation i. the reverse transformation of martensite into austenite. If the ratio of the sums of the alloying components formed in this way is greater than 2.0, unwanted solidifications due to the elements of the group 2 occur, which become lodged as free atoms in the microstructure and thus hinder the shape memory effect.
  • the Mangangeh old from 25 wt .-% to 32 wt .-% serves to stabilize the austenite in the structure and has particular influence on the switching temperature of
  • Shape memory material Below an Mn content of 25.0 wt .-% ferrite is increasingly formed, which adversely affects the shape memory effect. Increasing the Mn content above 32 wt .-% reduces the desired
  • Shape memory alloy at least 3.0 wt .-% Cr.
  • An increase in the Cr content to above 10.0 wt .-% in turn promotes ferrite formation, which, as already stated, has a negative effect on the shape memory effect.
  • Ni serves to stabilize the austenitic structure and also improves the formability of the material.
  • a Ni content below 0.1% by weight has no significant influence on the properties of the material.
  • Ni contents of more than 4.0% by weight lead to slight improvements only in connection with an increased Cr content
  • Cost savings of Ni content is limited to a maximum of 4.0 wt .-%.
  • the upper limit for all elements of group 1, ie N, C and B is at most 0.1% by weight.
  • the elements of group 2 (Ti, Nb, W, V, Zr) are present at a minimum level of 0.1% by weight, which applies to at least one element of this group.
  • the shape memory effect is positively influenced.
  • Phase transformation can be ensured by an appropriate content of one of the group 2 elements.
  • each individual element of group 2 does not exceed the maximum content of 1.5% by weight, more preferably the maximum content of each individual element is 1.2% by weight or 1.0% by weight, respectively This results in a reduction of unwanted solidifications.
  • the Cr content in weight percent is 3.0% ⁇ Cr ⁇ 8.0%, so that a good
  • Shape memory alloy is achieved.
  • the ferrite formation acts against the
  • the difference in Cr content and Ni content is 0% ⁇ Cr-Ni ⁇ 6.0%.
  • the maximum difference in the contents of Cr and Ni is limited to 6%. It has been found that an increase in the difference of the chromium and nickel content to more than 6 wt .-% leads to no appreciable improvements in the mechanical properties, but rather to the embrittlement of the material. A decrease in the difference to below 0%, i. that the nickel content is greater than the chromium content, however, may have a negative effect on the switching temperature, in which it is lowered and the
  • a further embodiment of the shape memory alloy comprises N, C and B in the following amount in percent by weight:
  • the shape memory alloy contains the elements N and / or C in amounts of at least 0.005% by weight and / or B in a content of at least 0.0001% by weight, the minimum contents can improve the formation of the precipitates.
  • the content of N and / or C is limited to a maximum of 0.1% by weight, preferably a maximum of 0.07% by weight, so that the precipitates do not become too large and can adversely affect the mechanical properties of the alloy .
  • the alloy contents of the alloying elements of the group 2 elements are limited. According to this
  • Embodiment are the alloying components of Group 2 elements
  • the upper limit is lowered to 1.0% by weight for each individual Group 2 element.
  • the formation of solidifications is thereby further reduced, so that the shape memory alloy has a good forming behavior.
  • Shape memory alloy sulfur, phosphorus and oxygen to contents of not more than 0.1 wt .-%, preferably to a maximum of 0.05 wt .-% and particularly preferably to a maximum of 0.03 wt .-% are limited to their negative influences, for example the corrosion resistance, reduce.
  • Molybdenum, copper and cobalt can be alloyed individually or in different combinations to improve the strength properties. A corresponding influence is limited in each case to contents of not more than 0.5% by weight.
  • Aluminum and magnesium can contribute individually or in combination to improve the corrosion resistance and also cause a reduction in the density of the molten steel. Their content is limited to a maximum of 5 wt .-%, preferably to a maximum of 2.0 wt .-%, more preferably to a maximum of 1.0 wt .-%.
  • calcium may be added to set sulfur present to avoid undesirable sulfur-manganese to MnS bonding.
  • the content of Ca is limited to a maximum of 0.015 wt .-%, preferably to a maximum of 0.01 wt .-%.
  • Comparative examples In embodiments Nos. 1 to 20 of the invention could be detected at sufficiently high switching temperature sufficient shape memory effect on samples. On the one hand, the comparative examples had problems with solidification, so that the shape memory effect was reduced
  • Produce flat product for example in the form of a strip and / or sheet as a long product, for example in the form of a wire, as a slab, billets or the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

Die Erfindung betrifft eine eisenbasierte Formgedächtnislegierung. Die Aufgabe, eine Formgedächtnislegierung auf Eisenbasis zur Verfügung zu stellen, welche einen Einweg-Formgedächtniseffekt bereitstellt, bei verringerten Herstellkosten eine erhöhte Aktivierungstemperatur im Vergleich zu Kupfer- und Nickelbasislegierungen aufweist und dessen Korrosions- und Umformeigenschaften im Vergleich zu nickelfreien und chromhaltigen Konzepten verbessert ist, wird durch eine Legierung mit den Merkmalen des Patentanspruches 1 gelöst.

Description

Eisenbasierte Formgedächtnislegierung
Die Erfindung betrifft eine eisenbasierte Formgedächtnislegierung.
Formgedächtnislegierungen sind aus unterschiedlichen Materialsystemen bekannt. Auch eisenbasierte, d.h. zu wesentlichen Teilen aus dem Element Eisen bestehende Formgedächtnislegierungen sind aus dem Stand der Technik bekannt. Beispielsweise offenbart die europäische Patentanmeldung EP 2 194 154 A1 eine
Formgedächtnislegierung, welche einen Zwei-Wege-Effekt aufweist und aus einer kostengünstigen, eisenbasierten Legierung besteht. Die genannte europäische
Patentanmeldung schlägt vor hierzu eine bestimmte Kombination der Elemente der Gruppe Mn, Si, Cr und Ni neben Fe in der Legierung zu berücksichtigen.
Aus der japanischen Offenlegungsschrift JP-A 2003/268502 ist darüber hinaus eine Formgedächtnislegierung auf Eisenbasis mit Ni-Gehalten bekannt, welche durch Zugabe von Titan in der Legierung Ausscheidungen während des Herstellungsprozesses bilden soll. Allerdings ergibt sich hierbei der Nachteil, dass durch die Ni-Ti-Ausscheidungen die Eigenschaften des Nickels in Bezug auf den Formgedächtniseffekt aufgrund dessen Bindung an Titan nicht genutzt werden kann. Eine weitere eisenbasierte
Formgedächtnislegierung auf Basis eines Fe-Mn-Si-Legierungssystems, welchem zusätzlich die Elemente Nb und C hinzugefügt wurden, ist aus der Offenlegungsschrift EP 1 348 772 A1 bekannt. Die in diesen Legi eru ngs sys te m e n zulegierten
Legierungsbestandteile Niob und Kohlenstoff unterstützen die Ausbildung von
Ausscheidungen, welche als Keimstellen für Gamma-Epsilon-Phasentransformationen dienen, welche dann Grundlage für den Formgedächtniseffekt ist. Auch die europäische Patentanmeldung EP 1 574 587 A1 beschreibt ein Legierungssystem, welches NbC-
Ausscheidungen zur Bereitstellung des Formgedächtniseffekts verwendet. In ähnlicher Weise wie die beiden Legierungsbestandteile Niob und Kohlenstoff lassen sich zwei Gruppen von Elementen bilden, welche ähnliche Funktionen aufweisen. Die eine Gruppe enthält dabei Vanadium, Niob, Titan, Wolfram und Zirkon, die andere Gruppe besteht aus Kohlenstoff, Stickstoff und Bor. Die gezielte Nutzung von unterschiedlichen
Ausscheidungstypen sind in den folgenden Dokumenten beschrieben, beispielsweise Va n a d i u m koh l ensto ff- Au ss ch e i d u ngen in der CN 1280444 C. Ti-Nb-V-N-Karbide/Nitride und Ni3Ti als Ausscheidungstypen werden in den japanischen Dokumenten
JP 2004/115864 sowie dem japanischen Patent JP 3970645 B2 offenbart. Die
europäische Patentanmeldung EP 2 141 251 AI offenbart Vanadiumstickstoff und Vanadiumkohlenstoff-Ausscheidungen, welche für den Formgedächtnislegierungseffekt verwendet werden. Die chinesische Patentanmeldung CN 101215678 B betrifft ein sogenanntes Ti-Nb-C-N-System. Ein Nb-Ti-V-C-System zur Bildung von Ausscheidungen ist aus der CN 100523263 C bekannt. Schließlich offenbart die russische Patentschrift RU 2270267 Cl ein V-Nb-W-C-Aussscheidungssystem zur Darstellung des
Formgedächtniseffekts. Die aus dem Stand der Technik bekannten
Formgedächtnislegierungssysteme auf Eisenbasis sind allerdings im Hinblick auf eine Verringerung der Herstellkosten, einer Erhöhung der Aktivierungs- bzw.
Schalttemperatur sowie ihrer Korrosions- und Umformeigenschaften
verbesserungswürdig.
Hiervon ausgehend hat die vorliegende Erfindung sich zur Aufgabe gestellt, eine
Formgedächtnislegierung auf Eisenbasis zur Verfügung zu stellen, welche einen Einweg- Formgedächtniseffekt bereitstellt, die verringerte Kosten zur Herstellung benötigt, eine erhöhte Aktivierungstemperatur im Vergleich zu Kupfer- und Nickelbasislegierungen aufweist und deren Korrosions- und U m f o r m ei ge n s ch a f te n im Vergleich zu nickelfreien und chromhaltigen Konzepten verbessert sind. Die oben genannte Aufgabe wird gemäß einer ersten Lehre der vorliegenden Erfindung gelöst durch eine Formgedächtnislegierung bestehend aus einer Legierung mit folgenden Legierungsbestandteilen in Gewichtsprozent:
Figure imgf000003_0001
Figure imgf000004_0001
wobei mindestens ein Element einer Gruppe 1 von Elementen vorhanden ist, wobei die Gruppe 1 aus den Elementen N, C, B mit folgenden Gehalten
Figure imgf000004_0002
besteht und für die Summe der Legierungsbestandteile der Gruppe 1 gilt:
Figure imgf000004_0003
und mindestens ein Element einer Gruppe 2 von Elementen vorhanden ist, die Gruppe 2 aus den Elementen Ti, Nb, W, V, Zr mit folgenden Gehalten
Figure imgf000004_0004
Figure imgf000004_0005
besteht und für die Summe der Legierungsbestandteile der Gruppe 2 gilt:
Figure imgf000005_0001
und für das Verhältnis der Summe der Legierungsbestandteile der Gruppe 1 und der Gruppe 2 jeweils in Atom-% gilt:
Figure imgf000005_0002
mit Rest Eisen und unvermeidbaren Verunreinigungen.
Neben den Pflichtbestandteilen der Formgedächtnislegierung, der
Legierungsbestandteile Mn, Si, Cr, Ni sowie eines der Elemente der Gruppe 1 (N, C, B) und eines der Elemente der Gruppe 2 (Ti, Nb, W, V, Zr) kann die
Formgedächtnislegierung zusätzlich die Elemente P, S, Mo, Cu, AI, Mg, O, Ca oder Co optional enthalten, welche bis zu den angegebenen Werten vorteilhafte Wirkungen entfalten können. Die den Formgedächtniseffekt beeinflussenden Ausscheidungen, deren Bildung durch das Verhältnis der beiden Elementgruppen, Gruppe 1 und Gruppe 2, zueinander beeinflusst wird, zeigen einen deutlichen, positiven Einfluss auf den Formgedächtniseffekt, sofern die Summe der Bestandteile der Elemente der Gruppe 2 in Atom-% der Legierung im Verhältnis zu der Summe der Legierungsbestandteile der Gruppe 1 in Atom-% im Bereich von 0,5 bis 2,0 liegt. Hierdurch wird ein gezieltes stöchiometrisches Verhältnis der Elemente der Gruppe 1 zu den Elementen der Gruppe 2 eingestellt Es wurde festgestellt, dass gerade bei diesem Verhältnis der
Legierungsbestandteile der Gruppe 2 zu der Gruppe 1 die Ausscheidungsbildung besonders günstig ist und den Formgedächtniseffekt unterstützt. Ist das angegebene Verhältnis beispielsweise kleiner als 0,5, können die Ausscheidungselemente in Form von N, C und/oder B nicht abgebunden werden und der Formgedächtniseffekt wird reduziert, da die Elemente der Gruppe 1 in gelöster Form im Gefüge vorliegen. Im Ergebnis wird zudem ein negativer Effekt auf die Reversibilität der
Phasentransformation, d.h. der Rückumwandlung von Martensit in Austenit, beobachtet. Wird das so gebildete Verhältnis der Summen der Legierungsbestandteile größer als 2,0 stellen sich unerwünschte Verfestigungen aufgrund der Elemente der Gruppe 2 ein, die sich als freie Atome im Gefüge einlagern und damit wiederum den Formgedächtniseffekt behindern.
Der Mangangeh alt von 25 Gew.-% bis 32 Gew.-% dient zur Stabilisierung des Austenits im Gefüge und hat insbesondere Einfluss auf die Schalttemperatur des
Formgedächtnismaterials. Unterhalb eines Mn-Gehalts von 25,0 Gew.-% wird vermehrt Ferrit gebildet, der sich nachteilig auf den Formgedächtniseffekt auswirkt. Erhöht man den Mn-Gehalt oberhalb von 32 Gew.-% verringert sich die gewünschte
Schalttemperatur zu sehr, so dass sich die Schalttemperatur und die möglichen
Einsatztemperaturen eines entsprechenden Bauteils zu stark annähern.
Silizium dient der Sicherstellung der Reversibilität der Phasenumwandlung von
Martensit in Austenit. Unterhalb von 3,0 Gew.-% bewirkt Si eine Reduzierung des Formgedächtniseffekts. Oberhalb von 8 Gew.-% kann eine Versprödung des Materials beobachtet werden. Zudem findet bei Si-Gehalten oberhalb von 8 Gew.-% die vermehrte Ausbildung der ungünstigen ferritischen Gefügebestandteile statt.
Um eine ausreichende Korrosionsbeständigkeit sicherzustellen, enthält die
Formgedächtnislegierung mindestens 3,0 Gew.-% Cr. Eine Steigerung des Cr-Gehaltes auf oberhalb von 10,0 Gew.-% begünstigt wiederum die Ferritbildung, welche sich, wie bereits ausgeführt, negativ auf den Formgedächtniseffekt auswirkt.
Nickel dient nun schließlich zur Stabilisierung des austenitischen Gefüges und verbessert zudem die Umformbarkeit des Materials. Ein Ni-Gehalt von unterhalb von 0,1 Gew.-% hat allerdings keinen signifikanten Einfluss auf die Eigenschaften des Materials. Ni-Gehalte von mehr als 4,0 Gew.-% führen jedoch lediglich in Zusammenhang mit einem erhöhten Cr-Anteil zu geringfügigen Verbesserungen, so dass zur Kosteneinsparung der Ni-Gehalt auf maximal 4,0 Gew.-% beschränkt wird. Um zu gewährleisten, dass die gewünschten Ausscheidungen erfolgen ohne sich negativ auf weitere Eigenschaften der Formgedächtnislegierung auszuwirken, ist als Obergrenze für alle Elemente der Gruppe 1, also N, C und B je maximal 0,1 Gew.-% vorgesehen. Die Elemente der Gruppe 2 (Ti, Nb, W, V, Zr) sind mit einem Mindestgehalt von 0,1 Gew.-% vorhanden, wobei dies mindestens für ein Element dieser Gruppe gilt. Mit einem
Gewichtsanteil von mindestens 0,1 Gew.-% für Ti, Nb, W, V und/oder Zr wird der Formgedächtniseffekt positiv beeinflusst. Insbesondere die Reversibilität der
Phasentransformation kann durch einen entsprechenden Gehalt eines der Gruppe 2 Elemente sichergestellt werden. Bevorzugt überschreitet jedes einzelne Element der Gruppe 2 den maximalen Gehalt von 1,5 Gew.-% nicht, besonders bevorzugt liegt der maximale Gehalt jedes einzelnen Elementes bei 1,2 Gew.-% bzw. bei 1,0 Gew.-%, da hieraus eine Reduktion der unerwünschten Verfestigungen erfolgt. Gemäß einer ersten Ausgestaltung der erfindungsgemäßen Formgedächtnislegierung beträgt der Cr-Gehalt in Gewichtsprozent 3,0 % < Cr < 8,0 %, so dass ein guter
Kompromiss zwischen Ferritbildung und Korrosionsbeständigkeit der
Formgedächtnislegierung erreicht wird. Die Ferritbildung wirkt gegen den
Formgedächtniseffekt, da Ferrit nicht die erwünschte Phasentransformation eingeht.
Gemäß einer weiteren Ausgestaltung der Formgedächtnislegierung gilt für die Differenz des Cr-Gehalts und des Ni-Gehalts: 0 %≤ Cr-Ni≤ 6,0 %. Die maximale Differenz der Gehalte von Cr und Ni ist insofern auf 6 % beschränkt. Es hat sich gezeigt, dass ein Ansteigen der Differenz des Chrom- und Nickelgehaltes auf über 6 Gew.-% zu keinen nennenswerten Verbesserungen der mechanischen Eigenschaften, sondern vielmehr zur Versprödung des Materials führt. Ein Absinken der Differenz auf unterhalb von 0 %, d.h. dass der Nickel-Gehalt größer ist als der Chrom-Gehalt, kann sich dagegen negativ auf die Schalttemperatur auswirken, in dem diese abgesenkt wird und sich der
Einsatztemperatur des Werkstoffes annähert. Gemäß einer weiteren Ausgestaltung der Formgedächtnislegierung gilt für das
Verhältnis der Summe der Legierungsbestandteile der Gruppe 1 und Gruppe 2 jeweils in Atom-%:
Figure imgf000008_0001
so dass einerseits der Formgedächtniseffekt vollständig gewährleistet werden kann und andererseits Verfestigungen aufgrund von freien Atomen der Gruppe 2 im Gefüge deutlich reduziert werden können.
Eine weitere Ausgestaltung der Formgedächtnislegierung weist N, C und B in folgender Menge in Gewichtsprozent:
Figure imgf000008_0002
auf. Enthält die Formgedächtnislegierung die Elemente N und/oder C in Gehalten von mindestens 0,005 Gew.-% und/oder B in einem Gehalt von mindestens 0,0001 Gew.-%, kann durch die Mindestgehalte die Bildung der Ausscheidungen verbessert werden. Durch die Obergrenze von 0,1 Gew.-%, vorzugsweise von 0,05 Gew.-%, besonders bevorzugt 0,01 Gew.-% von B, wird gewährleistet, dass die Oxidationsbeständigkeit der Formgedächtnislegierung nicht zu stark herabsinkt. Gleichzeitig wird der Gehalt von N und/oder C auf maximal 0,1 Gew.-%, vorzugsweise maximal 0,07 Gew.-% beschränkt, so dass die Ausscheidungen nicht zu groß werden und diese sich negativ auf mechanischen Eigenschaften der Legierung auswirken können. Bei einer weiteren Ausgestaltung der Legierung werden die Legierungsgehalte der Legierungsbestandteile der Elemente der Gruppe 2 beschränkt. Gemäß dieser
Ausführungsform betragen die Legierungsbestandteile der Elemente der Gruppe 2
Figure imgf000009_0001
wobei bevorzugt die Obergrenze auf 1,0 Gew.-% für jedes einzelne Element der Gruppe 2 herabgesenkt wird. Die Entstehung von Verfestigungen wird hierdurch weiter verringert, so dass die Formgedächtnislegierung ein gutes Umformverhalten aufweist. Schließlich sollten gemäß einer weiteren Ausführungsform der
Formgedächtnislegierung Schwefel, Phosphor und Sauerstoff auf Gehalte von maximal 0,1 Gew.-%, bevorzugt auf maximal 0,05 Gew.-% und besonders bevorzugt auf maximal 0,03 Gew.-% beschränkt werden, um deren negative Einflüsse, beispielsweise auf die Korrosionsbeständigkeit, zu verringern. Molybdän, Kupfer und Kobalt können einzeln oder in unterschiedlicher Kombination zur Verbesserung der Festigkeitseigenschaften zulegiert werden. Ein entsprechender Einfluss ist jeweils auf Gehalte von maximal 0,5 Gew.-% beschränkt. Aluminium und Magnesium können einzeln oder in Kombination zur Verbesserung der Korrosionsbeständigkeit beitragen und bewirken nebenbei auch eine Dichtereduzierung der Stahlschmelze. Ihr Gehalt ist auf maximal 5 Gew.-%, vorzugsweise auf maximal 2,0 Gew.-%, besonders bevorzugt auf maximal 1,0 Gew.-% beschränkt.
Gemäß einer weiteren Ausgestaltung kann Kalzium zur Abbindung von vorhandenem Schwefel zulegiert werden, um eine unerwünschte Bindung von Schwefel mit Mangan zu MnS zu vermeiden. Um die Korrosionsbeständigkeit nicht zu vermindern und zu große Verunreinigungen durch Ca zu vermeiden, wird der Gehalt: von Ca auf maximal 0,015 Gew.-%, vorzugsweise auf maximal 0,01 Gew.-% beschränkt.
Tabelle 1 zeigt nun verschiedene Ausführungsbeispiele der Erfindung und
Vergleichsbeispiele. An den Ausführungsbeispielen Nr. 1 bis 20 der Erfindung konnte bei ausreichend hoher Schalttemperatur ein ausreichender Formgedächtniseffekt an Proben nachgewiesen werden. Die Vergleichsbeispiele wiesen einerseits Probleme bezüglich Verfestigungen auf, so dass der Formgedächtniseffekt reduziert war
(Vergleichsbeispiel 1). Die beiden anderen Vergleichsbeispiele 2 und 3 zeigten einen deutlich schwächeren Formgedächtniseffekt als die Ausführungsbeispiele der Erfindung. Die erfindungsgemäße eisenbasierte Formgedächtnislegierung lässt sich als
Flachprodukt, beispielsweise in Form eines Bandes und/oder Bleches als Langprodukt, beispielsweise in Form eines Drahtes, als Bramme, Knüppel oder dergleichen erzeugen.
Figure imgf000011_0001

Claims

Patentansprüche
1. Formgedächtnislegierung bestehend aus einer Legierung mit folgenden
Legierungsbestandteilen in Gewichtsprozent:
Figure imgf000012_0002
wobei mindestens ein Element einer Gruppe 1 von Elementen vorhanden ist, wobei die Gruppe 1 aus den Elementen N, C, B mit folgenden Gehalten
Figure imgf000012_0003
Figure imgf000012_0004
besteht und für die Summe der Legierungsbestandteile der Gruppe 1 gilt:
Figure imgf000012_0001
und mindestens ein Element einer Gruppe 2 von Elementen vorhanden ist, die Gruppe 2 aus den Elementen Ti, Nb, W, V, Zr mit folgenden Gehalten
Figure imgf000013_0002
Figure imgf000013_0003
besteht und für die Summe der Legierungsbestandteile der Gruppe 2 gilt:
Figure imgf000013_0001
und für das Verhältnis der Summe der Legierungsbestandteile der Gruppe 1 und der Gruppe 2, jeweils in Atom-% gilt:
Figure imgf000013_0004
mit Rest Eisen und unvermeidbare Verunreinigungen.
2. Legierung nach Anspruch 1,
dadurch gekennzeichnet, dass
der Cr-Gehalt in Gewichtsprozent 3,0 %≤ Cr≤ 8,0 % beträgt.
3. Legierung nach Anspruch 1 oder 2,
dadurch gekennzeichnet, dass
für die Differenz des Cr-Gehalts und des Ni-Gehalts gilt:
Figure imgf000013_0005
4. Legierung nach einem der Ansprüche 1 bis 3,
dadurch gekennzeichnet, dass
für das Verhältnis der Summe der Legierungsbestandteile der Gruppe 1 und Gruppe 2, jeweils in Atom-% gilt
Figure imgf000014_0001
5. Legierung nach einem der Ansprüche 1 bis 4,
dadurch gekennzeichnet, dass
die Legierung zusätzlich N, C und/oder B in folgender Mindestmenge Gewichtsprozent enthält:
Figure imgf000014_0002
6. Legierung nach einem der Ansprüche 1 bis 5,
dadurch gekennzeichnet, dass
die Legierungsbestandteile der Elemente der Gruppe 2
Figure imgf000014_0003
betragen.
7. Legierung nach einem der Ansprüche 1 bis 6,
dadurch gekennzeichnet, dass
die Legierung einen Ca-Gehalt in Gewichtsprozent von maximal 0,015% aufweist.
PCT/EP2013/065657 2013-03-22 2013-07-24 Eisenbasierte formgedächtnislegierung WO2014146733A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP13741745.7A EP2976441B1 (de) 2013-03-22 2013-07-24 Eisenbasierte formgedächtnislegierung

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP13160731 2013-03-22
EP13160731.9 2013-03-22
EP13175891.4 2013-07-10
EP13175891 2013-07-10

Publications (1)

Publication Number Publication Date
WO2014146733A1 true WO2014146733A1 (de) 2014-09-25

Family

ID=48875045

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/065657 WO2014146733A1 (de) 2013-03-22 2013-07-24 Eisenbasierte formgedächtnislegierung

Country Status (2)

Country Link
EP (1) EP2976441B1 (de)
WO (1) WO2014146733A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110358963A (zh) * 2019-07-15 2019-10-22 哈尔滨工程大学 一种FeMnAlNi形状记忆合金及其制备方法
WO2020030384A1 (de) 2018-08-08 2020-02-13 Thyssenkrupp Steel Europe Ag Lösbares befestigungssystem umfassend formgedächtnismaterial und verfahren zur montage eines lösbaren befestigungssystems
WO2020030358A1 (de) 2018-08-08 2020-02-13 Thyssenkrupp Steel Europe Ag Inline vorrecken von formgedächtnislegierungen, insbesondere flachstahl
WO2020104290A1 (de) 2018-11-23 2020-05-28 Thyssenkrupp Steel Europe Ag Verfahren zum vorspannen eines bauwerks mit einer spannvorrichtung und verwendung einer solchen spannvorrichtung zum befestigen an einem bauwerk

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111235491B (zh) * 2019-12-27 2022-05-10 西北工业大学 一种高强度高塑性的形状记忆钢及其制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003268502A (ja) 2002-03-15 2003-09-25 Awaji Sangyo Kk 鉄基形状記憶合金
EP1348772A1 (de) 2002-03-20 2003-10-01 National Institute for Materials Science Verfahren zur Herstellung und thermischen Behandlung von Formgedächtnis- Fe-Mn-Si-Legierung mit NbC
JP2004115864A (ja) 2002-09-26 2004-04-15 Hiroshi Kubo 鉄基形状記憶合金
EP1574587A1 (de) 2002-12-18 2005-09-14 National Institute for Materials Science VERFAHREN ZUR THERMOMECHANISCHEN BEHANDLUNG FÜR EINE MIT NbC DOTIERTE Fe-Mn-Si-FORMGEDÄCHTNISLEGIERUNG
RU2270267C1 (ru) 2004-12-30 2006-02-20 Общество с ограниченной ответственностью Производственно-коммерческая фирма "Транс-Евразия" Дисперсионно-твердеющая аустенитная сталь с памятью формы
CN1280444C (zh) 2004-04-13 2006-10-18 刘文西 含碳化钒的铁基形状记忆合金及其形状记忆封隔器的应用
CN100523263C (zh) 2007-08-06 2009-08-05 大连海事大学 铁基形状记忆合金扣合键及其制造、使用方法
EP2141251A1 (de) 2008-06-25 2010-01-06 EMPA Dübendorf Auf Eisen, Mangan und Silizium basierende Formgedächtnislegierungen
CN101215678B (zh) 2008-01-17 2010-06-09 四川大学 含高温铁素体的免训练铸造铁基形状记忆合金
EP2194154A1 (de) 2008-12-04 2010-06-09 Daido Tokushuko Kabushiki Kaisha Zweiwege Formwiederherstellungslegierung

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003268502A (ja) 2002-03-15 2003-09-25 Awaji Sangyo Kk 鉄基形状記憶合金
JP3970645B2 (ja) 2002-03-15 2007-09-05 淡路マテリア株式会社 鉄基形状記憶合金の製造方法
EP1348772A1 (de) 2002-03-20 2003-10-01 National Institute for Materials Science Verfahren zur Herstellung und thermischen Behandlung von Formgedächtnis- Fe-Mn-Si-Legierung mit NbC
JP2004115864A (ja) 2002-09-26 2004-04-15 Hiroshi Kubo 鉄基形状記憶合金
EP1574587A1 (de) 2002-12-18 2005-09-14 National Institute for Materials Science VERFAHREN ZUR THERMOMECHANISCHEN BEHANDLUNG FÜR EINE MIT NbC DOTIERTE Fe-Mn-Si-FORMGEDÄCHTNISLEGIERUNG
CN1280444C (zh) 2004-04-13 2006-10-18 刘文西 含碳化钒的铁基形状记忆合金及其形状记忆封隔器的应用
RU2270267C1 (ru) 2004-12-30 2006-02-20 Общество с ограниченной ответственностью Производственно-коммерческая фирма "Транс-Евразия" Дисперсионно-твердеющая аустенитная сталь с памятью формы
CN100523263C (zh) 2007-08-06 2009-08-05 大连海事大学 铁基形状记忆合金扣合键及其制造、使用方法
CN101215678B (zh) 2008-01-17 2010-06-09 四川大学 含高温铁素体的免训练铸造铁基形状记忆合金
EP2141251A1 (de) 2008-06-25 2010-01-06 EMPA Dübendorf Auf Eisen, Mangan und Silizium basierende Formgedächtnislegierungen
EP2194154A1 (de) 2008-12-04 2010-06-09 Daido Tokushuko Kabushiki Kaisha Zweiwege Formwiederherstellungslegierung

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
DONG Z Z ET AL: "Microstructure change and shape memory characteristics in welded Fe-28Mn-6Si-5Cr-0.53Nb-0.06C alloy", MATERIALS SCIENCE AND ENGINEERING A: STRUCTURAL MATERIALS:PROPERTIES, MICROSTRUCTURE & PROCESSING, LAUSANNE, CH, vol. 438-440, 25 November 2006 (2006-11-25), pages 800 - 803, XP027953261, ISSN: 0921-5093, [retrieved on 20061125] *
KAJIWARA S ET AL: "Remarkable improvement of shape memory effect in Fe-Mn-Si based shape memory alloys by producing NbC precipitates", SCRIPTA MATERIALIA, ELSEVIER, AMSTERDAM, NL, vol. 44, no. 12, 8 June 2001 (2001-06-08), pages 2809 - 2814, XP004327836, ISSN: 1359-6462, DOI: 10.1016/S1359-6462(01)00978-2 *
KUBO H ET AL: "Characteristics of Fe-Mn-Si-Cr shape memory alloys in centrifugal casting", SCRIPTA MATERIALIA, ELSEVIER, AMSTERDAM, NL, vol. 55, no. 11, 1 December 2006 (2006-12-01), pages 1059 - 1062, XP027890159, ISSN: 1359-6462, [retrieved on 20061201] *
LI H ET AL: "Texture evolution analysis of warm-rolled Fe-28Mn-6Si-5Cr shape memory alloy", MATERIALS SCIENCE AND ENGINEERING A: STRUCTURAL MATERIALS:PROPERTIES, MICROSTRUCTURE & PROCESSING, LAUSANNE, CH, vol. 494, no. 1-2, 25 October 2008 (2008-10-25), pages 217 - 226, XP024100392, ISSN: 0921-5093, [retrieved on 20080825], DOI: 10.1016/J.MSEA.2008.05.013 *
RANA ABDUL SHAKOOR: "Effect of Samarium Additions on Shape Memory and Thermomechanical Behavior of Iron Based Shape Memory Alloys A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Materials Engineering", 1 January 2007 (2007-01-01), XP055089024, Retrieved from the Internet <URL:http://prr.hec.gov.pk/Thesis/29S.pdf> [retrieved on 20131119] *
WANG ET AL: "Improvement of shape memory effect in an Fe-Mn-Si-Cr-Ni-Nb-C alloy by NbC precipitated through ageing after pre-deformation", JOURNAL OF ALLOYS AND COMPOUNDS, ELSEVIER SEQUOIA, LAUSANNE, CH, vol. 437, no. 1-2, 24 April 2007 (2007-04-24), pages 208 - 210, XP022043027, ISSN: 0925-8388, DOI: 10.1016/J.JALLCOM.2006.07.060 *
WEN ET AL: "Principle and realization of improving shape memory effect in Fe-Mn-Si-Cr-Ni alloy through aligned precipitations of second-phase particles", ACTA MATERIALIA, ELSEVIER, OXFORD, GB, vol. 55, no. 19, 16 October 2007 (2007-10-16), pages 6526 - 6534, XP022301171, ISSN: 1359-6454, DOI: 10.1016/J.ACTAMAT.2007.08.005 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020030384A1 (de) 2018-08-08 2020-02-13 Thyssenkrupp Steel Europe Ag Lösbares befestigungssystem umfassend formgedächtnismaterial und verfahren zur montage eines lösbaren befestigungssystems
WO2020030358A1 (de) 2018-08-08 2020-02-13 Thyssenkrupp Steel Europe Ag Inline vorrecken von formgedächtnislegierungen, insbesondere flachstahl
DE102018119296A1 (de) * 2018-08-08 2020-02-13 Thyssenkrupp Ag Inline Vorrecken von Formgedächtnislegierungen, insbesondere Flachstahl
WO2020104290A1 (de) 2018-11-23 2020-05-28 Thyssenkrupp Steel Europe Ag Verfahren zum vorspannen eines bauwerks mit einer spannvorrichtung und verwendung einer solchen spannvorrichtung zum befestigen an einem bauwerk
DE102018129640A1 (de) 2018-11-23 2020-05-28 Thyssenkrupp Ag Verfahren zum Vorspannen eines Bauwerks mit einer Spannvorrichtung und Verwendung einer solchen Spannvorrichtung zum Befestigen an einem Bauwerk
CN110358963A (zh) * 2019-07-15 2019-10-22 哈尔滨工程大学 一种FeMnAlNi形状记忆合金及其制备方法

Also Published As

Publication number Publication date
EP2976441B1 (de) 2019-02-27
EP2976441A1 (de) 2016-01-27

Similar Documents

Publication Publication Date Title
DE60023699T2 (de) Warmfester rostfreier austenitischer stahl
DE60110861T2 (de) Wärmebeständiger Stahl
DE602004000140T2 (de) Rostfreier austenitischer Stahl
DE60213828T2 (de) Duplexstahllegierung
DE19941411B4 (de) Turbinen- oder Kesselbauteil
EP2976441B1 (de) Eisenbasierte formgedächtnislegierung
DE2714674C3 (de) Superlegierung mit hoher Dauerfestigkeit
DE3300392C2 (de)
DE19832430A1 (de) Stahllegierung
DE112016005830T5 (de) Metalldichtung und Verfahren zu ihrer Herstellung
AT410447B (de) Warmarbeitsstahlgegenstand
EP3899064B1 (de) Superaustenitischer werkstoff
WO2009074205A1 (de) Leitungsteil aus nickelarmem stahl für eine abgasanlage
DE3624969A1 (de) Weichmagnetischer rostfreier stahl fuer kaltverformung
DE3120978C2 (de) Ausscheidungshärtbare Kupferlegierung und Verwendung derartiger Legierungen für Stranggießkokillen
DE19735361B4 (de) Nichtrostender Austenitstahl
DE3903682A1 (de) Durch stickstoff verfestigte fe-ni-cr-legierung
DE1553841A1 (de) Messerklingen aus korrosionsbestaendigen austenitischen Edelstahl-Legierungen
EP0750686A1 (de) Korrosions- und verschleissbeständiger hartguss
DE10124393B4 (de) Hitzebeständiger Stahl, Verfahren zur thermischen Behandlung von hitzebeständigem Stahl, und Kompenten aus hitzebeständigem Stahl
DE2819529C2 (de) Verfahren zur Herstellung warmfester Gußstücke aus einer austenitischen Cr-Ni-Fe-Legierung
DE102008010749A1 (de) Stahllegierung für einen niedrig legierten Stahl zur Herstellung hochfester nahtloser Stahlrohre
DE3207162C1 (de) Hochwarmfeste Nickel-Eisen-Gusslegierung mit grosser Gefuegestabilitaet
DE2734068A1 (de) Hochtemperatur-oxydationsbestaendige legierungen
EP1445339B1 (de) Legierung und Gegenstand mit hoher Warmfestigkeit und hoher thermischer Stabilität

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13741745

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013741745

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE