WO1995025826A1 - Korrosions- und verschleissbeständiger hartguss - Google Patents

Korrosions- und verschleissbeständiger hartguss Download PDF

Info

Publication number
WO1995025826A1
WO1995025826A1 PCT/EP1995/000759 EP9500759W WO9525826A1 WO 1995025826 A1 WO1995025826 A1 WO 1995025826A1 EP 9500759 W EP9500759 W EP 9500759W WO 9525826 A1 WO9525826 A1 WO 9525826A1
Authority
WO
WIPO (PCT)
Prior art keywords
corrosion
cast iron
wear
carbides
content
Prior art date
Application number
PCT/EP1995/000759
Other languages
English (en)
French (fr)
Inventor
Anja Dwars
Wolfgang Prechtl
Jörg SCHRÖPFER
Hermann Tischner
Original Assignee
Ksb Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ksb Aktiengesellschaft filed Critical Ksb Aktiengesellschaft
Priority to AU19477/95A priority Critical patent/AU678107B2/en
Priority to EP95912186A priority patent/EP0750686B1/de
Priority to BR9506610A priority patent/BR9506610A/pt
Priority to JP7524328A priority patent/JPH10500449A/ja
Priority to DE59502510T priority patent/DE59502510D1/de
Priority to US08/716,391 priority patent/US5795540A/en
Publication of WO1995025826A1 publication Critical patent/WO1995025826A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • C22C37/06Cast-iron alloys containing chromium
    • C22C37/08Cast-iron alloys containing chromium with nickel

Definitions

  • C-containing hard cast iron based on Fe is state of the art.
  • a cast of this grade is characterized by a C content of over 2.0% by weight. Examples of this are the materials No. 0.9630, No. 0.9635, No. 0.9645 and No. 0.9655. Due to the high consumption of Cr for carbide formation, these materials have no corrosion resistance beyond that of unalloyed cast iron.
  • a typical representative of this group is the material GX 170 CrMo 25 2.
  • a decisive disadvantage of this group of materials is that the corrosion resistance in chemically aggressive media, for example in acidic (pH 3), chloride-containing (50 g / 1 Cl) water from flue gas desulfurization plants , is only reached at very high Cr contents.
  • corrosion-resistant stainless steels are used for the abovementioned aggressive media, the wear resistance of which can be easily improved by the addition of low carbon contents ( ⁇ 0.5%) and the resulting low volume fraction of carbides.
  • a typical example of this is material 1.4464.
  • the formation of chromium carbides reduces the chromium content of the basic structure and the corrosion resistance decreases accordingly. A further increase in the carbon content is therefore not advisable.
  • One way to avoid chromium depletion of the matrix at higher carbon contents is to add other carbide-forming elements. This is practiced on steels with low chromium contents ( ⁇ 20%), which can be used with weakly corrosive media. An example of this is the
  • the invention has for its object to provide a metallic casting material which is characterized by high corrosion resistance in aggressive media and which comes close to the commercially available chilled cast iron grades in its wear resistance.
  • this cast material In addition to high corrosion and wear resistance, this cast material also has good castability, which enables it to be produced in conventional stainless steel foundries. This chilled cast iron is also easy to machine.
  • Vanadium is an element of the fifth subgroup; its associated carbides are characterized by good wetting properties and less solubility than chromium carbide in Fe-based alloys. At the same time, the solubility in the liquidus state is higher than that of the niobium carbide, so that vanadium-rich carbides predominantly form only in a late stage of solidification or only in the solid state, as a result of which a spatially uniform distribution of the carbides is achieved without increases in gravity. This is a prerequisite for achieving good wear resistance. Furthermore, contrary to previous assumptions, it has been shown that vanadium-rich carbides as carriers of wear resistance are on a par with other special carbides. The vanadium-rich mixed carbides are also favorable from a mechanical point of view due to their shape and the resulting lower notch effect. Vanadium remaining in the matrix does not adversely affect the mechanical properties.
  • the molybdenum content within the specified content limits is essential for corrosion resistance, especially in chloride-containing acidic media.
  • the Cu content is limited to 3% by mass in order to reduce the risk of cracking when casting thick-walled parts.
  • Low copper contents result in better corrosion resistance in oxidizing media and are therefore part of commercially available high-alloy duplex steels.
  • Another advantage of the Cu content permissible in the material according to the invention is the possibility of using recycled material from commercially available, high-alloy cast steel when melting.
  • the ratio of the phase fractions ferrite and austenite in the matrix can be set in a defined manner.
  • the positive properties of a duplex structure in stainless steels are known.
  • the extremely high brittleness of the hard cast grades with high C contents and a carbide network in a ferritic matrix is avoided by the predominant incorporation of the vanadium-rich carbides in the austenitic phase.
  • the risk of cracking in the case of tensions between carbides and matrix is not as great as in the case of a purely ferritic matrix.
  • heat treatment at normal solution annealing temperatures is necessary, and at the same time better machinability is achieved.
  • niobium content is added to the chilled cast iron, so that
  • niobium content is limited to a maximum of 4% by weight in order to avoid the precipitation of primary niobium carbides in the melt, since these strongly segregate due to their different density to the matrix.
  • the material according to the invention shows due to the lower one
  • Another advantage of this material is that, given the wear resistance, the corrosion resistance
  • Variation of the alloying elements relevant to corrosion chemistry can be set according to the requirement profile, whereby it should be noted that with increasing alloy content the producibility (castability, machinability) becomes more difficult.
  • the material according to the invention shows a clear superiority compared to the previously known chilled cast iron grades used for hydroabrasive wear.
  • Fig. 1 is a diagram of the removal rates of the materials with hydroabrasive wear.
  • Fig. 2 is a diagram of the corrosion rates in strongly acidic medium (pH 0.5; 10 g / 1 Cl -; 60 ° C).
  • a model wear apparatus was used, in which quartz sand-water in a mixing ratio of 1: 1 with a grain size of 0.9-1.2 mm was used as an attack medium.
  • the test duration was two hours each.
  • a speed of 3000 1 / min was run.
  • Each material sample had a diameter of 55 mm and a thickness of 5 mm.
  • the ordinates of the diagrams shown in FIGS. 1 and 2 each show the removal in mm / a.
  • the letters A to D are used to document known materials, which are described in more detail in a subsequent first table, while the identifications E (1) to E (3) relate to three variants of the material according to the invention, the composition of which is set out in a second table is.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Mold Materials And Core Materials (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Ceramic Products (AREA)
  • Fuel Cell (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Powder Metallurgy (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

Die Erfindung hat einen Hartguß zum Gegenstand, der sich durch eine hohe Korrosionsbeständigkeit in aggressiven Medien auszeichnet und der in seiner Verschleißbeständigkeit den handelsüblichen Hartgußsorten nahekommt. Der erfindungsgemäße Hartguß hat folgende Zusammensetzung in Gewichts-%: Cr = 26 bis 36, Ni « 10, Mo = 2 bis 6, Cu « 3, N « 0,2, Si « 1,5, Mn « 1,5, V = 4 bis 9, C = 1,4 bis 1,9, Rest Fe und erschmelzungsbedingte Verunreinigungen.

Description

Beschreibung
Korrosions- und verschleißbeständiger Hartguß
Bei hydroabrasiver Verschleißbeanspruchung ist der Einsatz von C-haltigem Cr-Hartguß auf Fe-Basis Stand der Technik. Ein Guß dieser Sorte zeichnet sich durch einen C-Gehalt von über 2,0 Gewichts-% aus. Als Beispiel hierfür seien die Werkstoffe Nr. 0.9630, Nr. 0.9635, Nr. 0.9645 und Nr. 0.9655 genannt. Bedingt durch den hohen Verbrauch an Cr zur Carbidbildung weisen diese Werkstoffe allerdings keine über das Maß von unlegiertem Gußeisen hinausgehende Korrosionsbeständigkeit auf.
Durch Absenkung des C-Gehaltes und Erhöhung des Cr-Gehaltes ist es möglich, die Korrosionsbeständigkeit leicht zu erhöhen, wobei jedoch eine verringerte Verschleißbeständigkeit in Kauf genommen werden muß. Ein typischer Vertreter dieser Gruppe ist der Werkstoff G-X 170 CrMo 25 2. Ein entscheidender Nachteil dieser Werkstoffgruppe ist, daß die Korrosionsbeständigkeit in chemisch aggressiven Medien, beispielsweise in sauren (pH 3) , chloridhaltigen (50 g/1 Cl) Wässern von Rauchgas- Entschwefelungsanlagen, erst bei sehr hohen Cr-Gehalten erreicht wird. Hohe Cr-Gehalte in Fe-Basis-Legierungen, wie z. B. bei den bekannten Werkstoffen G-X 160 CrNiMoCu 42 2 2 2 bzw. G-X 140 CrMnNiMoCu 41 4 2 2 1, haben aber den Nachteil, daß sie die mechanischen Eigenschaften entscheidend verschlechtern und die Gießbarkeit erheblich beeinträchtigen. Aus diesem Grund werden für die genannten aggressiven Medien korrosionsbeständige Edelstahle verwendet, deren Verschlei߬ beständigkeit durch die Zugabe geringer Kohlenstoffgehalte (< 0,5 %) und den sich dadurch ergebenden geringen Volumen¬ anteil an Carbiden leicht verbessert werden kann. Ein typisches Beispiel hierfür ist der Werkstoff 1.4464. Durch die Bildung der Chromcarbide sinkt der Chromgehalt des Grundgefuges und die Korrosionsbeständigkeit verringert sich entsprechend. Daher ist eine weitere Erhöhung des Kohlenstoffgehaltes nicht zweckmäßig.
Eine Möglichkeit zur Vermeidung einer Chromverarmung der Matrix bei höheren Kohlenstoffgehalten ist die Zugabe anderer carbidbildender Elemente. Dies wird bei Stählen mit niedrigen Chromgehalten (< 20 %) praktiziert, die bei schwach korrosiven Medien eingesetzt werden können. Beispiel hierfür ist die
DE-A-42 02 339. Als besonders vorteilhaft wurde der Zusatz von Niob angesehen, da dieses Legierungselement reine MC-Carbide bildet. Das Element Vanadium wurde hierfür als nicht günstig betrachtet, da es mit Chrom und Eisen Mischcarbide bildet, die als weniger verschleißbeständig gelten.
Weiterhin sind Versuche bekannt, die chemisch-tribologische Beständigkeit des hoch chromhaltigen Werkstoffes 1.4464 durch die Zugabe geringer Mengen Niob, Vanadium oder Titan zu erhöhen (M. Pohl, A. Ibach, A. Oldewurtel: Neue Guß- und Schmiedestähle mit verbesserter chemisch/tribologischer Beständigkeit. Tagungsband zur 5. Präsentation TRIBOLOGIE 1991, Koblenz, Seite 368 bis 376) . Bedingt durch den beibehaltenen geringen Kohlenstoffgehalt konnte die Verschleißbeständigkeit aber nur teilweise gering verbessert werden.
Der Erfindung liegt die Aufgabe zugrunde, einen metallischen Gußwerkstoff zu schaffen, der sich durch eine hohe Korrosionsbeständigkeit in aggressiven Medien auszeichnet und der in seiner Verschleißbeständigkeit den handelsüblichen Hartgußsorten nahekommt.
Erreicht wird dies durch einen Hartguß mit der im kennzeichnenden Teil des Anspruches 1 genannten
Zusammensetzung. Neben einer hohen Korrosions- und Verschlei߬ beständigkeit besitzt dieser Gußwerkstoff auch eine gute Gießbarkeit, was dessen Herstellung in konventionellen Edelstahlgießerein ermöglicht. Außerdem ist dieser Hartguß gut bearbeitbar.
Erreicht wird dies vor allem durch den Chromgehalt von 26 bis 36 Gewichts-%, einen Kohlenstoffgehalt von 1,4 bis 1,9 Gewichts-%, der einen ausreichend hohen Volumenanteil an Carbiden bewirkt, und einen Vanadiumgehalt von mehr als 4
Gewichts-%, der durch die Bildung von vanadiumreichen Carbiden die Chromverarmung der Matrix verringert. Dadurch kann die sonst notwendige überproportionale Erhöhung des Chromgehaltes vermieden werden.
Aus der Zugabe von Vanadium ergeben sich noch weitere Vorteile. Vanadium ist ein Element der fünften Nebengruppe, seine zugehörigen Carbide zeichnen sich durch gute Benetzungs- eigenschaften und eine geringere Löslichkeit als Chromcarbid in Fe-Basis-Legierungen aus. Gleichzeitig ist die Löslichkeit im Liquiduszustand höher als die des Niobcarbides, so daß sich vanadiumreiche Carbide vorwiegend erst in einem späten Stadium der Erstarrung bzw. erst im festen Zustand bilden, wodurch eine räumlich gleichmäßige Verteilung der Carbide ohne Schwerkraftseigerungen erreicht wird. Dies ist eine zur Erzielung guter Verschleißbeständigkeit notwendige Voraussetzung. Weiterhin hat sich entgegen bisherigen Annahmen gezeigt, daß vanadiumreiche Carbide als Träger der Verschleißbeständigkeit anderen Sondercarbiden ebenbürtig sind. Die vanadiumreichen Mischcarbide sind zudem aufgrund ihrer Form und der daraus resultierenden geringeren Kerbwirkung aus bruchmechanischer Sicht günstig. In der Matrix verbleibendes Vanadium wirkt sich nicht nachteilig auf die mechanischen Eigenschaften aus.
Der Molybdän-Gehalt in den vorgegebenen Gehaltsgrenzen ist wesentlich für die Korrosionsbeständigkeit, vor allem in chloridhaltigen sauren Medien.
Der Cu-Gehalt wird auf 3 MA-% beschränkt, um die Rißgefahr beim Abguß von dickwandigen Teilen zu verringern. Geringe Kupfergehalte bewirken eine bessere Korrosionsbeständigkeit in oxidierenden Medien und sind deshalb Bestandteil von handelsüblichen hochlegierten Duplex-Stählen. Ein weiterer Vorteil des im erfindungsgemäßen Werkstoff zulässigen Cu-Gehaltes ist die Möglichkeit, beim Erschmelzen Recyclingmaterial von handelsüblichem, hochlegiertem Stahlguß zu verwenden.
Durch die gezielte Zugabe des Austenitbildners Nickel im Konzentrationsbereich von 6 bis 10 MA-% nach Patentanspruch 2 kann das Verhältnis der Phasenanteile Ferrit und Austenit in der Matrix definiert eingestellt werden. Die positiven Eigenschaften eines Duplex-Gefüges in rostfreien Stählen sind bekannt. Die extrem hohe Sprödigkeit der Hartgußsorten mit hohen C-Gehalten und einem Carbid-Netz in ferritischer Matrix wird durch die überwiegende Einlagerung der vanadiumreichen Carbide in der austenitischen Phase vermieden. Da diese im Gegensatz zur Ferritphase nicht durch Ausscheidung intermetallischer Phasen oder durch Entmischungsvorgänge versprödet, ist die Rißgefahr bei Spannungen zwischen Carbiden und Matrix nicht so groß wie bei rein ferritischer Matrix. Um einen Gefügeaufbau, bestehend aus einer ferritisch- austenitischen Matrix mit eingelagerten Carbiden zu erreichen, ist eine Wärmebehandlung bei üblichen Lösungsglühtemperaturen notwendig, gleichzeitig wird hierdurch eine bessere Bearbeitbarkeit erreicht.
Zusätzlich bietet sich die Möglichkeit, durch weitere gezielte Wärmebehandlungen entsprechend den ZTU-Schaubildern von hochlegierten Stählen die bekannte Neigung des Ferrits zur Bildung von Ausscheidungen zur Härtesteigerung zu nutzen und somit die Verschleißbeständigkeit zusätzlich zu erhöhen.
Gemäß Patentanspruch 3 wird ein auf maximal 4 Gewichts-% begrenzter Niobanteil dem Hartguß beigefügt, um so die
Möglichkeit einer sekundären Ausscheidung von eutektoiden Niobcarbiden zu ermöglichen, welche zu einer Erhöhung der Verschleißbeständigkeit beitragen können. Der Niobgehalt wird auf maximal 4 Gewichts-% begrenzt, um die Ausscheidung von primären Niobcarbiden in der Schmelze zu vermeiden, da diese aufgrund ihrer unterschiedlichen Dichte zur Matrix stark seigern.
Im Vergleich zu den Chromhartgußsorten zeigt der erfindungsgemäße Werkstoff, bedingt durch den niedrigeren
Cr-Gehalt der Carbide, eine geringere Korrosionsanfälligkeit, insbesondere gegen selektive Korrosion.
Ein weiterer Vorteil dieses Werkstoffes ist, daß bei gegebener Verschleißbeständigkeit die Korrosionsbeständigkeit durch
Variation der korrosionschemisch relevanten Legierungselemente entsprechend dem Anforderungsprofil eingestellt werden kann, wobei zu beachten ist, daß mit zunehmendem Legierungsgehalt die Herstellbarkeit (Gießbarkeit, spanende Bearbeitbarkeit) erschwert wird. Der erfindungsgemäße Werkstoff zeigt in bezug auf die Kombination von Korrosions- und Verschleißbeständigkeit eine deutliche Überlegenheit im Vergleich zu den bisher bekannten, für hydroabrasiven Verschleiß eingesetzten Hartgußsorten.
Dies läßt sich anhand eines als Beispiel dienenden Vergleichs verdeutlichen, in welchem drei Varianten des erfindungsgemäßen Werkstoffs vier bekannter Hartgußsorten gegenübergestellt werden. Es zeigt die
Fig. 1 ein Diagramm der Abtragsraten der Werkstoffe bei hydroabrasivem Verschleiß, und die
Fig. 2 ein Diagramm der Korrosionsraten in starksaurem Medium (pH 0,5; 10 g/1 Cl - ; 60 °C) .
Für die Ermittlung der Abtragsraten gemäß Fig. 1 wurde eine Modellverschleiß-Apparatur eingesetzt, in welcher als Angriffsmittel Quarzsand-Wasser in einem Mischungsverhältnis von 1:1 mit einer Korngröße von 0,9 - 1,2 mm verwendet wurde. Die Versuchsdauer betrug jeweils zwei Stunden. Es wurde eine Drehzahl von 3000 1/min gefahren. Jede Werkstoffprobe hatte einen Durchmesser von 55 mm und eine Dicke von 5 mm.
Die Ordinaten der in dem Fig. 1 und 2 dargestellten Diagramme zeigen jeweils den Abtrag in mm/a. Auf den Abszissen sind mit den Buchstaben A bis D bekannte, in einer nachfolgenden ersten Tafel näher bezeichnete Werkstoffe belegt, während sich die Kennzeichnungen E (1) bis E (3) auf drei Varianten des erfindungsgemäßen Werkstoffes beziehen, deren Zusammensetzung in einer zweiten Tafel dargelegt ist.
Tafel 1: Für die Versuche herangezogene bekannte Werkstoffe Kenn z e i chnung Kurzname
A G-X 250 CrMo 15 3
B G-X 170 CrMo 25 2
C G-X 3 CrNiMoCu 24 6
D G-X 40 CrNiMo 27 5
Tafel 2: LegierungsZusammensetzung der für die Versuche benutzten erfindungsgemäßen Werkstoffe
Kennzeichnung C Si Mn Cr Ni Mo Cu V Fe
E (1) 1,5 0,8 0,6 26,6 7,9 2,6 1 ,8 5,2 Rest
E (2) 1,5 1,2 0,8 30,1 8,2 2,4 1 ,7 5,0 Rest
E (3) 1,8 0,8 0,9 31,8 8,7 2,8 1,8 8,9 Rest

Claims

Patentansprüche
Korrosions- und verschleißbeständiger Hartguß, gekennzeichnet durch folgende Zusammensetzung in Gewichts-%:
Cr = 26 bis 36
Ni < 10
Mo = 2 bis 6
Cu < 3
N < 0,2
Si < 1,5
Mn < 1,5
V = 4 bis 9 c = 1,4 bis 1,9
Rest Fe und erschmelzungsbedingte Verunreinigungen.
2. Hartguß nach Anspruch 1, gekennzeichnet durch einen Nickelgehalt von 6 bis 10 Gewichts-%.
3. Hartguß nach Anspruch 1 oder 2, gekennzeichnet durch bis zu 4 Gewichts-% Nb als weiteren Bestandteil.
4. Verwendung eines Hartgusses nach einem der Ansprüche 1 bis 3 für Bauteile, welche mit fließenden feststoffhaltigen, korrosiven Medien in Berührung kommen.
5. Verwendung eines Hartgusses nach einem der Ansprüche 1 bis 3 für Pumpen und Armaturen, die mit feststoffhaltigen, korrosiven Medien in Berührung kommen.
PCT/EP1995/000759 1994-03-18 1995-03-02 Korrosions- und verschleissbeständiger hartguss WO1995025826A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
AU19477/95A AU678107B2 (en) 1994-03-18 1995-03-02 Corrosion and wear-resistant chill casting
EP95912186A EP0750686B1 (de) 1994-03-18 1995-03-02 Korrosions- und verschleissbeständiger hartguss
BR9506610A BR9506610A (pt) 1994-03-18 1995-03-02 Material fundido duro resistente à corrosao e ao desgaste e seu emprego
JP7524328A JPH10500449A (ja) 1994-03-18 1995-03-02 耐食性及び耐摩耗性チル鋳物
DE59502510T DE59502510D1 (de) 1994-03-18 1995-03-02 Korrosions- und verschleissbeständiger hartguss
US08/716,391 US5795540A (en) 1994-03-18 1995-03-02 Corrosion and wear-resistant chill casting

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4409278A DE4409278A1 (de) 1994-03-18 1994-03-18 Korrosions- und verschleißbeständiger Hartguß
DEP4409278.4 1994-03-18

Publications (1)

Publication Number Publication Date
WO1995025826A1 true WO1995025826A1 (de) 1995-09-28

Family

ID=6513163

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1995/000759 WO1995025826A1 (de) 1994-03-18 1995-03-02 Korrosions- und verschleissbeständiger hartguss

Country Status (10)

Country Link
US (1) US5795540A (de)
EP (1) EP0750686B1 (de)
JP (1) JPH10500449A (de)
CN (1) CN1044494C (de)
AT (1) ATE167238T1 (de)
AU (1) AU678107B2 (de)
BR (1) BR9506610A (de)
DE (2) DE4409278A1 (de)
ES (1) ES2120187T3 (de)
WO (1) WO1995025826A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020003854A1 (de) 2020-06-26 2021-12-30 KSB SE & Co. KGaA Kreiselpumpe zur Förderung feststoffhaltiger Medien

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6004507A (en) * 1997-08-11 1999-12-21 Alphatech, Inc. Material formulation for galvanizing equipment submerged in molten and aluminum zinc melts
US6406563B2 (en) * 1999-04-28 2002-06-18 Yutaka Kawano Stainless spheroidal carbide cast iron
JP4216412B2 (ja) * 1999-07-23 2009-01-28 ジャパンマテックス株式会社 パッキン材料およびそれを用いたパッキン
US6511554B1 (en) * 2001-07-05 2003-01-28 Yutaka Kawano Stainless spheroidal carbide cast iron material
US9499889B2 (en) 2014-02-24 2016-11-22 Honeywell International Inc. Stainless steel alloys, turbocharger turbine housings formed from the stainless steel alloys, and methods for manufacturing the same
CN107574352A (zh) * 2017-09-12 2018-01-12 江苏金利化工机械有限公司 一种可硬化的奥氏体合金
CN110273099A (zh) * 2018-03-13 2019-09-24 自贡双源石化设备制造有限公司 喷射管用耐磨蚀合金、用途及制备的喷头、喷射管
CN109295382B (zh) * 2018-10-22 2020-01-24 河南科技大学 一种高氮耐磨耐蚀合金及其制备方法
DE102020003847A1 (de) 2020-06-26 2021-12-30 KSB SE & Co. KGaA Kreiselpumpe zur Förderung feststoffhaltiger Medien
US11492690B2 (en) * 2020-07-01 2022-11-08 Garrett Transportation I Inc Ferritic stainless steel alloys and turbocharger kinematic components formed from stainless steel alloys

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1303517B (de) * 1964-10-28 1971-12-23 Gebr Boehler & Co
JPH042744A (ja) * 1990-04-19 1992-01-07 Hitachi Metals Ltd 高耐食高耐摩耗性工具部品材料
DE4202339A1 (de) * 1991-01-29 1992-08-13 Doerrenberg Edelstahl Gmbh Korrosionsbestaendiger, hochverschleissfester, haertbarer stahl

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2297686A (en) * 1940-07-30 1942-10-06 Haynes Stellite Co Chromium-vanadium-iron alloy cutting tool
US2709132A (en) * 1951-10-11 1955-05-24 Latrobe Steel Co Ferrous alloys and corrosion and wearresisting articles made therefrom
US3086858A (en) * 1960-07-22 1963-04-23 West Coast Alloys Co Hard cast alloy
US3086859A (en) * 1960-08-30 1963-04-23 Du Pont Columbium base alloys
DE2738091A1 (de) * 1977-08-24 1979-03-01 Wahl Verschleiss Tech Verbundgusskoerper und verfahren zu seiner herstellung
DE2818734A1 (de) * 1978-04-28 1979-10-31 Wahl Verschleiss Tech Beschussbestaendiger koerper
US4200457A (en) * 1979-01-22 1980-04-29 Cape Arthur T Ferrous base alloy for hard facing
DE2922737C2 (de) * 1979-06-05 1982-08-05 Verschleiß-Technik Dr.-Ing. Hans Wahl GmbH & Co, 7302 Ostfildern Verbundteil
AU596351B2 (en) * 1982-08-16 1990-05-03 Wundowie Foundry Pty Ltd Tillage points
JPS60501958A (ja) * 1983-10-24 1985-11-14 ジ−アイダブリユ.インダストリ−ス.インコ−ポレ−テツド 耐摩耗性白鋳鉄
JPH0717984B2 (ja) * 1986-10-21 1995-03-01 三菱マテリアル株式会社 耐摩耗性のすぐれた炭化物分散型Fe基焼結合金の製造法
EP0438560B1 (de) * 1989-08-04 1996-04-24 Warman International Limited Ferrochromlegierung

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1303517B (de) * 1964-10-28 1971-12-23 Gebr Boehler & Co
JPH042744A (ja) * 1990-04-19 1992-01-07 Hitachi Metals Ltd 高耐食高耐摩耗性工具部品材料
DE4202339A1 (de) * 1991-01-29 1992-08-13 Doerrenberg Edelstahl Gmbh Korrosionsbestaendiger, hochverschleissfester, haertbarer stahl

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020003854A1 (de) 2020-06-26 2021-12-30 KSB SE & Co. KGaA Kreiselpumpe zur Förderung feststoffhaltiger Medien

Also Published As

Publication number Publication date
EP0750686B1 (de) 1998-06-10
BR9506610A (pt) 1997-09-09
JPH10500449A (ja) 1998-01-13
ATE167238T1 (de) 1998-06-15
US5795540A (en) 1998-08-18
AU678107B2 (en) 1997-05-15
CN1143982A (zh) 1997-02-26
CN1044494C (zh) 1999-08-04
ES2120187T3 (es) 1998-10-16
DE4409278A1 (de) 1995-09-21
EP0750686A1 (de) 1997-01-02
DE59502510D1 (de) 1998-07-16
AU1947795A (en) 1995-10-09

Similar Documents

Publication Publication Date Title
DE69010234T2 (de) Hochfester Stahl mit hohem Chromgehalt und mit sehr guten Zähigkeits- und Oxidationsbeständigkeitseigenschaften.
DE60110861T2 (de) Wärmebeständiger Stahl
DE19907749A1 (de) Gesinterter Hartmetallkörper und dessen Verwendung
WO2010009700A1 (de) Stahllegierung für einen ferritischen stahl mit ausgezeichneter zeitstandfestigkeit und oxidationsbeständigkeit bei erhöhten einsatztemperaturen
DE102006010782A1 (de) Rostfreier Stahl mit hoher Härte und ausgezeichneten Hochglanzoberflächeneigenschaften sowie Verfahren zu dessen Herstellung
DE19712020A1 (de) Vollmartensitische Stahllegierung
DE19941411A1 (de) Hitzebeständiger Stahl
EP0750686B1 (de) Korrosions- und verschleissbeständiger hartguss
DE4498699B4 (de) Verwendung eines Rostfreien Stahls mit ausgezeichnetem Korrosionswiderstand gegenüber Salzschmelzen
EP3850114A1 (de) Korrosionsbeständiger und ausscheidungshärtender stahl, verfahren zur herstellung eines stahlbauteils und stahlbauteil
AT393642B (de) Verwendung einer eisenbasislegierung zur pulvermetallurgischen herstellung von teilen mit hoher korrosionsbestaendigkeit, hoher verschleissfestigkeit sowie hoher zaehigkeit und druckfestigkeit, insbesondere fuer die kunststoffverarbeitung
EP3899064B1 (de) Superaustenitischer werkstoff
EP0914485B1 (de) Austenitische nickel-chrom-stahllegierung
EP1274872B1 (de) Verfahren zur herstellung eines stickstofflegierten, sprühkompaktierten stahls, verfahren zu seiner herstellung
DE2447137A1 (de) Gegen gruebchenkorrosion bestaendige stahllegierung
DE3545182A1 (de) Austenitischer, stickstoffhaltiger crnimomn-stahl, verfahren zu seiner herstellung und seine verwendung
DE4202828C2 (de) Verwendung einer verschleißbeständigen Legierung
DE2937460C2 (de)
WO2014146733A1 (de) Eisenbasierte formgedächtnislegierung
DE3017466C2 (de) Nickel-Kobalt-Chrom-Legierung
EP0760019B1 (de) Hartguss mit hoher korrosions- und verschleissbeständigkeit
DE1553841B2 (de) Verwendung einer austenitischen kaltverfestigten Edelstahl-Legierung für Messerklingen
DE3130179C2 (de) Ferritischer, hitzebeständiger Stahl
DE4231695C2 (de) Verwendung eines Stahls für Werkzeuge
WO2003083149A1 (de) Hartmetall-oder cermet-schneidwerstoff sowie dessen verwendung

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 95192063.4

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR CA CN CZ HU JP KR NO RU US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1995912186

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 08716391

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1995912186

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: CA

WWG Wipo information: grant in national office

Ref document number: 1995912186

Country of ref document: EP