WO2010009700A1 - Stahllegierung für einen ferritischen stahl mit ausgezeichneter zeitstandfestigkeit und oxidationsbeständigkeit bei erhöhten einsatztemperaturen - Google Patents

Stahllegierung für einen ferritischen stahl mit ausgezeichneter zeitstandfestigkeit und oxidationsbeständigkeit bei erhöhten einsatztemperaturen Download PDF

Info

Publication number
WO2010009700A1
WO2010009700A1 PCT/DE2009/000953 DE2009000953W WO2010009700A1 WO 2010009700 A1 WO2010009700 A1 WO 2010009700A1 DE 2009000953 W DE2009000953 W DE 2009000953W WO 2010009700 A1 WO2010009700 A1 WO 2010009700A1
Authority
WO
WIPO (PCT)
Prior art keywords
max
steel
steel alloy
elements
alloy according
Prior art date
Application number
PCT/DE2009/000953
Other languages
English (en)
French (fr)
Inventor
Bernd Hahn
Joachim Konrad
André Schneider
Charles Stallybrass
Original Assignee
V & M Deutschland Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by V & M Deutschland Gmbh filed Critical V & M Deutschland Gmbh
Priority to EP09775941.9A priority Critical patent/EP2307586B1/de
Priority to US13/055,345 priority patent/US9080230B2/en
Priority to JP2011519034A priority patent/JP5844150B2/ja
Priority to CN200980128791.3A priority patent/CN102137948B/zh
Publication of WO2010009700A1 publication Critical patent/WO2010009700A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12014All metal or with adjacent metals having metal particles

Definitions

  • the invention relates to a steel alloy for a ferritic steel with excellent creep strength and oxidation resistance at elevated use temperatures according to claim 1.
  • the invention relates to seamless or welded tubes made of this steel alloy, the z. B. are used as heat exchanger tubes in heaters or power plant boilers in temperature ranges from about 62O 0 C to about 750 0 C.
  • High temperature, high creep, and corrosion resistant high temperature materials for use, for example, in power plants are generally based on either ferritic, ferritic / martensitic or austenitic iron-based alloys, or nickel-base alloys.
  • the specific requirements in the lower temperature stages of the heat exchanger tubes consist in particular in a low thermal expansion.
  • Austenitic grades can not be used since their thermal expansion is too high in the described temperature range. For the elevated temperatures in the boiler, the previously available ferritic / martensitic materials are no longer in question, since with sufficient corrosion resistance whose creep or heat resistance is no longer sufficient.
  • a sufficient combination of properties of corrosion resistance and heat resistance offer nickel-based alloys with nickel contents of over 50 wt .-%.
  • the steels are thus extremely expensive and the processing to seamless pipes is also quite problematic.
  • austenitic steels are currently being used.
  • disadvantage here are the high alloying costs (Ni up to 30%), poor processability and lack of thermal conductivity.
  • Chromium-rich ferritic steel is significantly cheaper compared to austenitic stainless steel and has a higher coefficient of thermal conductivity and a lower thermal expansion coefficient.
  • chromium-rich ferritic steel also has a high oxidation resistance, which is advantageous for a hot steam, z. B. in heaters or boilers, is.
  • oxide films form as a coating (scale or scale layer), they can detach at corresponding boiler temperature and / or boiler pressure changes, settle in the steel pipes and clog them.
  • ferritic iron-based alloys for pipes or pipelines, which offer the required creep and corrosion properties even at higher operating temperatures above 620 ° C. For example, creep rupture strengths of 105 hours at this temperature stress for a load of 100 MPa without breakage should be achieved.
  • Steels which are available for use at temperatures of up to about 62O 0 C or 65O 0 C are ferritic / martensitic steels with Cr contents of, for example. B. 8 to 15%.
  • Corresponding steels are disclosed, for example, in DE 19941 411 A1, DE 692 04 123 T2, US 2006/0060270 A1, DE 601 10 861 T2 and DE 69608 744 T2.
  • the alloy concepts disclosed there generally have expensive alloy additives or are also unsuitable for use in temperature ranges above 620 ° C.
  • Concepts based on incoherent MX or M 2 X precipitations to increase creep resistance (DE 199 41 411 A1, DE 601 10 861 T2, US 2006/0060270 A1) have several disadvantages.
  • the abovementioned precipitation phases can not be produced in sufficient proportions by volume since an increase in the content of the metallic (eg Ti 1 Nb or V) as well as the non-metallic components (C or N) not only leads to an increase in the phase fraction, but also the solution temperature the phase increased. As a result, the formation temperature of the precipitates is above a reasonable heat treatment temperature and sometimes even above the solidus temperature of the alloy.
  • the metallic eg Ti 1 Nb or V
  • C or N the non-metallic components
  • the formation temperature of the precipitates is directly related to their size, one obtains either a relatively small volume fraction of effective reinforcing particles ( ⁇ 1%) or a high volume fraction of coarse particles (> 1 ⁇ m), which remain ineffective with regard to creep resistance.
  • the MX and M 2 X particles preferably precipitate in the interior of the grain. It is to be expected that at use temperatures> 630 ° C the influence of grain boundary creep increases in relation to dislocation creep.
  • a depletion of reinforcement phases at grain boundaries is therefore to be regarded as particularly critical.
  • the incoherent precipitates are more prone to coarsening than coherent because, on the one hand, the interfacial energy as a driving force for interface minimization is higher than for coherent particles and, on the other hand, easily diffusing elements such as C and N are part of these particles.
  • the alloy described in WO 03/029505 is a further development of the known under the name Kanthai FeCrAI alloy, the z. B. for heating elements for temperatures above 1000 0 C is used.
  • This alloy has a high chromium and aluminum content to ensure the most efficient conversion of electrical energy into heat.
  • the combination of high chromium and aluminum contents means that these alloys are fully ferritic at chromium contents above 16% and aluminum contents above 4%, even at temperatures above 750 ° C., so that an austenite-ferrite transformation is possibly only possible to a limited extent.
  • Such steels are not suitable for use in the power station sector, and chromium contents above 16% also impair the deformation capacity at typical processing temperatures when rolling seamless pipes (900 - 1200 ° C.). This reduced deformability can lead to the formation of cracks during rolling. As a result, such alloys are not suitable for the production of pipes and sheets.
  • US Pat. No. 6,332,936 B1 describes exclusively powder-metallurgically produced intermetallic alloys for the production of sheet metals based on the Fe-Al system and contains the intermetallic phases Fe3AI, Fe2Al5, FeAl3, FeAl, FeAIC, Fe3AIC and combinations of these phases.
  • the described FeAl-B2 phase is used exclusively as a matrix in these publications.
  • the powder metallurgy production of such an intermetallic alloy is unsuitable for the large-scale production of pipes and sheets.
  • the object of the invention is to provide a cost-effective steel alloy for a ferritic at use temperature steel, which satisfies the stated requirements regarding creep rupture strength and oxidation resistance, even at operating temperatures up to about 750 0 C.
  • Another object is to produce from this steel alloy workpieces such. As hot-rolled seamless or welded tubes, sheets, castings or tool steels to provide.
  • the inventive alloy concept differs fundamentally from the known alloy concepts.
  • the at operating temperature fully ferritic to about 75O 0 C alloy obtained their excellent creep and corrosion properties according to the new innovative approach by coherent finely divided precipitates of nanoparticles of a stabilized by chromium (Ni, Co) AI-B2 intermetallic order phase.
  • the precipitates are coherent to the ferritic matrix and uniformly and finely distributed throughout the grain both within the grain and near grain boundaries. Advantages of this steel alloy are significantly lower cost and also the coherent precipitates of the intermetallic (Ni, Co) AI-B2-phase effect compared to known alloy concepts significant increase in creep resistance at temperatures above 620 0 C and even above 650 ° C to about 750 0 C.
  • the concept underlying this invention dispenses with expensive or hard-to-obtain elements for producing an intermetallic amplification phase.
  • the (Ni, Co) Al phase with B2 structure requires significantly lower Ni or Co contents than available austenitic steels.
  • the peculiarity of the B2 phase in the Fe-Cr-Al (Ni 1 Co) system lies in the pronounced miscibility gap that can be controlled via the Cr content for (Ni 1 Co) Ai.
  • B2 phase contents in steel above 8 mol% (VS2) are unfavorable because of the associated reduction in toughness and poorer machinability of the steel and should therefore be avoided.
  • the elements Ni, Al and small amounts of Fe could be detected.
  • Fe, Cr 1 Al and Si could be detected in the matrix.
  • the mean particle radius of the B2-NiAl phase is about 40 nm, the molar phase fraction about 5.6%.
  • the coarsening in the period of conventional qualifications is well below the maximum effective mean particle radius value of about 500 nm.
  • the B2 phase can be sufficiently stabilized at application temperatures above 620 0 C to about 750 ° C
  • the steel according to the invention Cr is alloyed in contents of 2 to ⁇ 16 wt .-%.
  • an advantageous embodiment of the invention is obtained by setting an excess of AI in relation to Ni or Co (superstoichiometric for the adjustment of NiAl or CoAI) also a further significant increase in the oxidation resistance.
  • the composition should be chosen so that at the application temperature, a stable structure of ferritic structure and the (Ni, Co) AI-B2 phase is given as main components.
  • the following composition in% by weight must be observed:
  • the elements Si and Mn can be present either only in the context of steel-like accompanying elements or alloyed for additional solid solution hardening in amounts of up to 1% in each case. As favorable contents of max. 0.4% for Si and 0.5% for Mn. Si serves to slightly increase the heat resistance. If this is in the foreground of the application, higher levels are recommended. Mn has a negative effect on the steam oxidation behavior at higher levels. If this risk does not exist in the application, Mn can be added as an additional element to increase the strength at room temperature and elevated temperatures.
  • the C content is of minor importance for the present alloy concept, but should not exceed a value of 1.0%. As favorable, maximum contents of 0.5% have been found. Contents above 1% complicate the processability and favor the formation of coarse and thus harmful special carbides. At C contents below 0.5%, the formation of special carbides is already greatly reduced. Depending on the operating temperature, however, the C content must be adjusted in order to avoid a strong precipitation and growth of these special carbides when used.
  • Toughness of the steel set a homogeneous and fine grain structure, which over a
  • Microalloying one or more elements of V, Ti 1 Ta, Zr or Nb is achieved, wherein the carbon present in the steel is bound in the form of fine MX carbides.
  • the following maximum contents have been found to be favorable: max. 0.3% V, max. 0.1% Ti 1 max. 1.0% Ta, max. 0.05% Zr 1 max. 0.2% Nb, where a maximum total content of 0.5% has proven favorable.
  • Mo and W which are alloyed with maximum contents of 1% (Mo) and 2% (W), respectively can be.
  • the N content should be set as low as possible and is limited to max. Limit 0,0200%.
  • surfactants to both internal interfaces, such as grain boundaries and phase boundaries, as well as the protective oxide layer interfaces; to influence specifically.
  • These include the elements Hf, B, Y, Se, Te, Sb, La and Zr, which are alloyed in the range of the sum content of ⁇ O 1 1%.
  • the steel alloy advantageous z. B. can be used for heat exchanger tubes in the power plant area, the use is not limited thereto.
  • this steel alloy is also suitable for the production of sheet metal, castings, centrifugal castings or Tools for mechanical processing (tool steels) can be used, with the field of application via pressure vessels; Boilers, turbines, nuclear power plants or the chemical apparatus construction, that extends to all areas with corresponding temperature requirements and corrosion stresses.
  • the steel alloy according to the invention is particularly advantageous because of the excellent Zeitsta ⁇ dfestmaschine and oxidation properties above 620 0 C to about 750 0 C, the use is, for example, even at temperatures above 500 0 C advantageous if it depends more on the strength of the material.
  • FIG. 1 shows an image of the microstructure, generated by means of STEM, as well as the EDX-determined chemical composition of the matrix and the B2 phase of VS1.
  • FIG. 2 shows the results of isothermal creep tests at 650 degrees Celsius and constant voltage on samples of the laboratory melt VS3.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

Die Erfindung betrifft eine Stahllegierung für einen bei Einsatztemperatur ferritischen Stahl mit ausgezeichneter Zeitstandfestigkeit und Korrosionsbeständigkeit, insbesondere bei Einsatztemperaturn ≤ 750 ° C, mit folgender chemischer Zusammensetzung (in Gew.-%): C ≤ 1,0 %; Si ≤ 1,0 %; Mn ≤ 1,0 %; P max. 0,05 %; S max. 0,01 %; 2 ≤ Al ≤ 12 %; 3 ≤ Cr < 16 %; 2 ≤ Ni ≤ 10 % und/oder 2 ≤ CO ≤ 10 % mit 2 ≤ NI+Co ≤ [%Cr] + 2,07x[%Al] >= 0,95x([%Ni] + [%Co]); N max. 0,0200 %; Rest Eisen mit erschmelzungsbedingten Verunreinigungen, mit optionaler Zugabe eines oder mehrerer Elemente von V, Ti, Ta, Zr und Nb; mit optionaler Zugabe eines oder beider Elemente von Mo und W; mit optionaler Zugabe eines oder mehrerer Elemente von Hf, B, Se, Y, Te, Sb, La und Zr im Bereich eines Summengehaltes von < 0,1 % mit der Maßgabe, dass das Stahlgefüge gleichmäßig verteilte kohärente Ausscheidungen auf Basis einer Chrom stabilisierten (Ni, Co)Al-B2 intermetallischen Ordnungsphase enthält.

Description

Stahllegierung für einen ferritischen Stahl mit ausgezeichneter Zeitstandfestigkeit und Oxidationsbeständigkeit bei erhöhten Einsatztemperaturen
Beschreibung
Die Erfindung betrifft eine Stahllegierung für einen ferritischen Stahl mit ausgezeichneter Zeitstandfestigkeit und Oxidationsbeständigkeit bei erhöhten Einsatztemperaturen gemäß Patentanspruch 1.
Insbesondere betrifft die Erfindung nahtlose oder geschweißte Rohre aus dieser Stahllegierung, die z. B. als Wärmetauscherrohre in Erhitzern oder Kraftwerkskesseln in Temperaturbereichen von über 62O0C bis etwa 7500C eingesetzt werden.
Hochtemperaturwerkstoffe mit hoher Zeitstandfestigkeit und Korrosionsbeständigkeit für beispielsweise die Anwendung in Kraftwerken basieren im Allgemeinen entweder auf ferritischen, ferritisch/martensitischen oder austenitischen Eisenbasislegierungen oder auf Nickelbasislegierungen. Die spezifischen Anforderungen in den unteren Temperaturstufen der Wärmetauscherrohre bestehen insbesondere in einer geringen Wärmedehnung.
Austenitische Güten sind nicht einsetzbar, da ihre thermische Ausdehnung im beschriebenen Temperaturbereich zu hoch ist. Für die erhöhten Temperaturen im Kessel kommen die bislang verfügbaren ferritisch/martensitischen Werkstoffe auch nicht mehr in Frage, da bei ausreichender Korrosionsbeständigkeit deren Zeitstand- bzw. Warmfestigkeit nicht mehr genügt.
Eine hinreichende Eigenschaftskombination aus Korrosionsbeständigkeit und Warmfestigkeit bieten Nickelbasislegierungen mit Nickelgehalten von über 50 Gew.-%. Die Stähle sind dadurch extrem teuer und die Verarbeitung zu nahtlosen Rohren ist zudem recht problematisch. Für Kraftwerkkessel-Komponenten mit geringeren Anforderungen an die thermische Ausdehnung werden bislang Rohre aus austenitischen Stählen eingesetzt. Von Nachteil sind hier die hohen Legierungskosten (Ni bis 30%), schlechte Verarbeitbarkeit und mangelnde Wärmeleitfähigkeit.
Chromreicher ferritischer Stahl ist im Vergleich zu austenitischem rostfreiem Stahl deutlich preisgünstiger und weist dazu noch einen höheren Wärmleitungskoeffizienten und einen niedrigeren Wärmeausdehnungskoeffizienten auf. Außerdem besitzt chromreicher ferritischer Stahl auch noch eine hohe Oxidationsbeständigkeit, die vorteilhaft für einen Heißdampfeinsatz, z. B. in Erhitzern oder Kesseln, ist.
Wenn sich jedoch Oxidfilme als Belag (Zunder oder Zunderschicht) ausbilden, können sich diese bei entsprechenden Kesseltemperatur- und/oder Kesseldruck-Veränderungen ablösen, in den Stahlrohren festsetzen und diese verstopfen.
Die Unterdrückung von Dampfoxidation ist daher neben der geforderten Zeitstandfestigkeit bzw. Warmfestigkeit eines der vordringlich zu lösenden Probleme.
Zur Verbesserung des Wirkungsgrades bei der Energieerzeugung in Kraftwerksanlagen besteht zunehmend die Anforderung, die Dampftemperatur auf über 6200C und auch den Dampfdruck im Kessel zu erhöhen.
Vom Markt werden daher ferritische Eisenbasislegierungen für Rohre bzw. Rohrleitungen gefordert, die auch bei höheren Einsatztemperaturen oberhalb von 620°C die benötigten Zeitstand- und Korrosionseigenschaften bieten. Beispielsweise sollten Zeitstandsfestigkeiten von 105 Stunden bei dieser Temperaturbeanspruchung für eine Last von 100 MPa ohne Bruch erreicht werden.
Stähle, die bis etwa 62O0C bzw. 65O0C Anwendungstemperatur zur Verfügung stehen, sind ferritisch/martensitische Stähle mit Cr-Gehalten von z. B. 8 bis 15%.
Entsprechende Stähle gehen beispielsweise aus den Schriften DE 19941 411 A1, DE 692 04 123 T2, US 2006/0060270 A1, DE 601 10 861 T2 und DE 69608 744 T2 hervor. Die dort offenbarten Legierungskonzepte weisen zumeist teure Legierungszusätze auf oder sind zudem für den Einsatz in Temperaturbereichen oberhalb 6200C nicht geeignet. Konzepte, die auf inkohärenten MX oder M2X-Ausscheidungen zur Steigerung der Kriechfestigkeit beruhen (DE 199 41 411 A1, DE 601 10 861 T2, US 2006/0060270 A1) haben mehrere Nachteile.
Die genannten Ausscheidungsphasen sind nicht in ausreichenden Volumenanteilen darstellbar, da eine Erhöhung des Gehalts der metallischen (z. B. Ti1 Nb oder V) wie auch der nichtmetallischen Komponenten (C oder N) nicht nur zur Erhöhung des Phasenanteiles führt, sondern auch die Lösungstemperatur der Phase erhöht. Dadurch liegt die Entstehungstemperatur der Ausscheidungen oberhalb einer sinnvollen Wärmebehandlungstemperatur und zum Teil sogar über der Solidustemperatur der Legierung.
Da die Entstehungstemperatur der Ausscheidungen direkt mit ihrer Größe zusammenhängt, erhält man entweder einen relativ geringen Volumenanteil wirksamer Verstärkungsteilchen (<1%) oder aber einen hohen Volumenanteil grober Teilchen (>1μm), die wirkungslos hinsichtlich der Kriechfestigkeit bleiben. Die MX und M2X-Teilchen scheiden sich bevorzugt im Korninneren aus. Es ist zu erwarten, dass bei Einsatztemperaturen >630°C der Einfluss des Korngrenzenkriechens im Verhältnis zum Versetzungskriechen ansteigt.
Eine Verarmung an Verstärkungsphasen an Korngrenzen ist daher als besonders kritisch zu betrachten.
Des Weiteren neigen die inkohärenten Ausscheidungen stärker zur Vergröberung als kohärente, da zum Einen die Grenzflächenenergie als Triebkraft zur Grenzflächenminimierung höher ist als bei kohärenten Teilchen und zum Anderen leicht diffundierende Elemente wie C und N Bestandteil dieser Teilchen sind.
Andere bekannte Legierungskonzepte die intermetallische Phasen zur Steigerung der Kriechfestigkeit ferritischer oder martensitischer Stähle verwenden (DE 698 08 744 T2) basieren auf teuren Legierungsmitteln.
Für die Einstellung eines ausreichend hohen Volumenanteils intermetallischer Phasen mit der Struktur L10 oder L12 sind die extrem teuren und bislang nur in geringen Mengen verfügbaren Legierungselemente Pt und Pd in Gehalten um 1 Gew.-% notwendig.
Die in der WO 03/029505 beschriebene Legierung ist eine Weiterentwicklung der unter dem Namen Kanthai bekannten FeCrAI-Legierung, die z. B. für Heizelemente für Temperaturen oberhalb von 10000C eingesetzt wird. Diese Legierung weist einen hohen Chrom- und Aluminiumgehalt auf, um eine möglichst effiziente Umwandlung von elektrischer Energie in Wärme zu gewährleisten.
Die Kombination von hohen Chrom- und Aluminiumgehalten führt dazu, dass diese Legierungen bei Chromgehalten oberhalb von 16% und Aluminiumgehalten oberhalb von 4% auch bei Temperaturen oberhalb von 750 0C voll ferritisch sind, also eine Austenit-Ferrit- Umwandlung allenfalls eingeschränkt möglich ist. Für den Einsatz im Kraftwerksbereich sind solche Stähle nicht geeignet, zudem verschlechtern Chromgehalte oberhalb von 16% das Verformungsvermögen bei typischen Verarbeitungstemperaturen beim Walzen von nahtlosen Rohren (900 - 1200 0C). Dieses verminderte Verformungsvermögen kann zur Bildung von Rissen beim Walzen führen. Dadurch sind solche Legierungen nicht zur Herstellung von Rohren und Blechen geeignet.
Die US 6,332,936 B1 beschreibt ausschließlich pulvermetallurgisch erzeugte intermetallische Legierungen zur Herstellung von Blechen auf der Basis des Systems Fe-Al und enthält die intermetallischen Phasen Fe3AI, Fe2AI5, FeAI3, FeAI, FeAIC, Fe3AIC und Kombinationen dieser Phasen. Eine ungeordnete Phase, wie z. B. Ferrit, ist darin nicht enthalten. Die beschriebene FeAI-B2-Phase findet in diesen Schriften ausschließlich als Matrix ihre Anwendung. Die pulvermetallurgische Herstellung einer derartigen intermetallischen Legierung ist für die großtechnische Herstellung von Rohren und Blechen ungeeignet.
Aufgabe der Erfindung ist es, eine kostengünstige Stahllegierung für einen bei Einsatztemperatur ferritischen Stahl anzugeben, die auch bei Einsatztemperaturen bis ca. 7500C die genannten Anforderungen hinsichtlich Zeitstandfestigkeit und Oxidationsbeständigkeit sicher erfüllt.
Eine weitere Aufgabe besteht darin, aus dieser Stahllegierung hergestellte Werkstücke, wie z. B. warmgewalzte nahtlose oder geschweißte Rohre, Bleche, Gusswerkstücke oder Werkzeugstähle, bereitzustellen.
Die Hauptaufgabe wird mit den Merkmalen des Anspruches 1 gelöst. Vorteilhafte Weiterbildungen sind Gegenstand von Unteransprüchen. Erfindungsgemäße Werkstücke werden durch Anspruch 7 bereitgestellt.
Nach der Lehre der Erfindung wird eine Stahllegierung mit folgender chemischer Zusammensetzung (in Gew.-%) vorgeschlagen:
C ≤ 1,0 % Si ≤ 1,0 % Mn ≤ 1 ,0 %
P max. 0,05 %
S max. 0,01 %
2 < AI < 12 %
2 < Cr < 16 %
2 < Ni ≤ 10 % und/oder
2 < Co < 10 % mit
2 < Ni+Co ≤ 15 % und
0,11x[%Cr] + 2,07x[%AI] >= 0,95x([%Ni] + [%Co])
N max. 0,0200 %
Rest Eisen mit erschmelzungsbedingten Verunreinigungen,
- mit optionaler Zugabe eines oder mehrerer Elemente von V, Ti, Ta, Zr und Nb,
- mit optionaler Zugabe eines oder beider Elemente von Mo und W
- mit optionaler Zugabe eines oder mehrere Elemente von Hf, B, Se, Y1 Te1 Sb, La und Zr im Bereich eines Summengehaltes von < 0,1 % mit der Maßgabe, dass das Stahlgefüge gleichmäßig verteilte kohärente Ausscheidungen auf Basis einer Chrom stabilisierten (Ni,Co)AI-B2 intermetallischen Ordnungsphase enthält.
Das erfindungsgemäße Legierungskonzept unterscheidet sich grundsätzlich von den bekannten Legierungskonzepten. Die bei Einsatztemperatur bis etwa 75O0C voll ferritische Legierung erhält ihre hervorragenden Zeitstand- und Korrosionseigenschaften gemäß dem neuen innovativen Ansatz durch kohärente fein verteilte Ausscheidungen von Nanopartikeln einer mittels Chrom stabilisierten (Ni,Co)AI-B2 intermetallischen Ordnungsphase.
Die Ausscheidungen sind kohärent zur ferritischen Matrix und gleichmäßig und fein im Gefüge verteilt sowohl im Korninneren als auch nahe an Korngrenzen. Vorteile dieser Stahllegierung sind die deutlich geringeren Kosten und außerdem bewirken die kohärenten Ausscheidungen der intermetallischen (Ni,Co)AI-B2-Phase eine gegenüber bekannten Legierungskonzepten deutliche Steigerung der Zeitstandfestigkeit bei Temperaturen oberhalb 6200C und sogar oberhalb 650°C bis etwa 7500C.
Das dieser Erfindung zugrundeliegende Konzept verzichtet auf teure oder schwer verfügbare Elemente zur Erzeugung einer intermetallischen Verstärkungsphase. Die (Ni,Co)AI-Phase mit B2-Struktur benötigt deutlich geringere Ni- bzw. Co-Gehalte als verfügbare austenitische Stähle. Die Besonderheit der B2-Phase im Fe-Cr-AI(Ni1Co) System liegt in der ausgeprägten und über den Cr-Gehalt steuerbaren Mischungslücke für (Ni1Co)Ai.
Damit kann über die Variation der Gehalte an Cr, AI und Ni bzw. Co gezielt ein hoher Volumenanteil bei Einsatztemperatur und eine prozesstechnisch sinnvolle Lösungstemperatur eingestellt werden.
Verschiedene Versuchsschmelzen (VS) sind in der nachfolgenden Tabelle aufgeführt.
B2-Phasengehalte im Stahl oberhalb von 8 mol% (VS2) sind ungünstig wegen der damit verbundenen Verringerung der Zähigkeit und der schlechteren mechanischen Bearbeitbarkeit des Stahls und sollten deshalb vermieden werden.
Aufgrund der Kohärenz der B2-Phase im ferritischen Kristallgitter kann außerdem eine sehr feine und gleichmäßige Verteilung der Ausscheidungen erzielt werden. Aufgrund der geringen Grenzflächenenergie ergibt sich eine geringe Triebkraft zur Vergröberung (Figur 1).
Figure imgf000008_0001
Tabelle: Versuchsschmelzen mit Angaben der chemischen Zusammensetzungen (in Gew.-%) und der thermodynamisch berechneten Werte für den molaren Anteil der B2-Phase sowie ihre Auflösungstemperatur (B2 sol) Diese feine Verteilung der B2-Phase führt zu einer Steigerung der Kriechbeständigkeit und einer sehr niedrigen Kriechrate im Bereich des sekundären Kriechens (Figur 2).
In der B2-Phase konnten die Elemente Ni, AI und geringe Mengen Fe nachgewiesen werden. In der Matrix konnten Fe, Cr1 AI und Si nachgewiesen werden. Der mittlere Teilchenradius der B2-NiAI-Phase liegt bei etwa 40 nm, der molare Phasenanteil bei etwa 5,6%.
Die Vergröberung der Teilchen der B2-NiAI-Phase wurde mit Hilfe eines Programms zur Berechnung von Ausscheidungs- und Wachstumsverhalten von Phasen berechnet. Bei einer simulierten Auslagerung bei 6500C wird nach 100.000 h ein mittlerer Teilchenradius von 147 nm berechnet.
Damit liegt die Vergröberung im Zeitraum üblicher Qualifizierungen deutlich unterhalb des als maximalem wirksamen mittleren Teilchenradius zu bezeichnenden Wert von ca. 500 nm.
Damit die B2-Phase bei Anwendungstemperaturen oberhalb 6200C bis etwa 750°C ausreichend stabilisiert werden kann, wird dem Stahl erfindungsgemäß Cr in Gehalten von 2 bis < 16 Gew.-% zulegiert.
In einer vorteilhaften Ausgestaltung der Erfindung erhält man durch die Einstellung eines Überschusses an AI im Verhältnis zu Ni bzw. Co (überstöchiometrisch zur Einstellung von NiAI bzw. CoAI) zudem eine weitere signifikante Steigerung des Oxidationswiderstandes.
Die Überschussanteile an AI werden dabei abhängig von den Cr-Gehalten zusätzlich zum stöchiometrischen Anteil der B2-(Ni,Co)AI-Bildung wie folgt festgelegt:
2% Cr: >8% AI,
5% Cr: >3% Al1
15,9% Cr: >2,5% AI, bei Zwischenwerten des Cr gilt lineare Interpolation des Al-Überschussgehaltes.
Grundsätzlich sollte die Zusammensetzung so gewählt werden, dass bei der Anwendungstemperatur ein stabiles Gefüge aus ferritischer Struktur und der (Ni,Co)AI-B2- Phase als Hauptbestandteile gegeben ist. Zur Gewährleistung der ferritischen Struktur bei Einsatztemperatur ist folgende Zusammensetzung in Gew.-% einzuhalten:
0, 11x[%Cr] + 2,07x[%AI] >= 0,95x([%Ni] + [%Co])
Wegen der hohen Grundhärte der erfindungsgemäßen Stahllegierung bei Raumtemperatur ist es zur Gewährleistung der mechanischen Bearbeitbarkeit und der mechanischen Eigenschaften, wie z. B. Zähigkeit, vorteilhaft B2-Phasengehalte von < 8 mol.% einzustellen. Dies wird durch eine Begrenzung der Summe der Ni- und Co-Gehalte auf werte ≤ 15% erreicht.
Die Elemente Si und Mn können sowohl als nur im Rahmen stahlüblicher Begleitelemente vorhanden sein oder für eine zusätzliche Mischkristallhärtung in Gehalten von jeweils bis zu 1% zulegiert werden. Als günstig haben sich Gehalte von max. 0,4 % für Si und 0,5 % für Mn herausgestellt. Si dient der leichten Erhöhung der Warmfestigkeit. Falls diese im Vordergrund der Anwendung liegt, sind höhere Gehalte empfehlenswert. Mn wirkt sich in höheren Gehalten negativ auf das Dampfoxidationsverhalten aus. Besteht dieses Risiko nicht im Anwendungsfall, kann Mn als zusätzliches Element zur Steigerung der Festigkeit bei Raumtemperatur und erhöhten Temperaturen verstärkt zulegiert werden.
Falls zur Desoxidation des Stahls kein zusätzliches Si zulegiert wird, erfolgt die Desoxidation über den bereits sehr hohen Gehalt an AI.
Der C-Gehalt ist für das vorliegende Legierungskonzept von untergeordneter Bedeutung, sollte aber einen Wert von 1 ,0 % nicht überschreiten. Als günstig haben sich maximale Gehalte von 0,5 % erwiesen. Gehalte oberhalb 1% erschweren die Verarbeitbarkeit und begünstigen die Entstehung von groben und damit schädlichen Sonderkarbiden. Bei C- Gehalten unterhalb 0,5 % ist die Entstehung der Sonderkarbide bereits stark vermindert. Abhängig von der Einsatztemperatur muss allerdings der C-Gehalt angepasst werden, um bei Anwendung ein starkes Ausscheiden und Wachstum dieser Sonderkarbide zu vermeiden.
Eine Verschlechterung der Verarbeitbarkeit wurde auch bei Cr-Gehalten oberhalb von 16% beobachtet, so dass der Cr-Gehalt erfindungsgemäß auf unter 16% begrenzt ist. Weiterhin wird durch Gehalte Cr-Gehalte über 16 % außerdem die Ferrit-Austenit-Phasenumwandlung behindert, die bei der erfindungsgemäßen Legierung oberhalb der Anwendungstemperatur einsetzt. Diese Phasenumwandlung erlaubt in vorteilhafter Weise eine Modifikation des Gefüges und damit der mechanischen Eigenschaften. Zusätzlich kann durch die Zugabe von Cr, das bevorzugt in der ferritischen Phase gelöst ist, der Unterschied im Gitterparameter zwischen der ferritischen Phase und den B2-Ausscheidungen gesteuert werden. Co hingegen ist bevorzugt in der B2-Phase gelöst und gestattet es, den Gitterparameter dieser Phase zu steuern, so dass durch beide Effekte die Kinetik der Vergröberung der Ausscheidung beeinflusst werden kann.
In einer weiteren vorteilhaften Ausgestaltung wird zur Steigerung der Grundfestigkeit und
Zähigkeit des Stahls eine homogene und feine Kornstruktur eingestellt, die über eine
Mikrolegierung eines oder mehrere Elemente von V, Ti1 Ta, Zr oder Nb erreicht wird, wobei der im Stahl vorhandene Kohlenstoff in Form feiner MX-Karbide abgebunden wird. Als günstig haben sich folgende maximalen Gehalte herausgestellt: max. 0,3 % V, max. 0,1 % Ti1 max. 1,0 % Ta, max. 0,05 % Zr1 max. 0,2 % Nb wobei sich als günstig ein maximaler Gesamtgehalt von 0,5 % herausgestellt hat.
Weitere Elemente, die in Frage kommen, um die Festigkeit/Zeitstandfestigkeit auf dem Wege der Mischkristallhärtung oder der Ausscheidung feiner intermetallischer Phasen zu erhöhen, sind Mo und W, die mit maximalen Gehalten von 1 % (Mo) bzw. 2 % (W) zulegiert werden können.
Wegen der unerwünschten Bildung von primären AIN sollte der N-Gehalt so gering wie möglich eingestellt werden und ist auf max. 0,0200 % zu begrenzen.
Darüber hinaus können vorteilhaft grenzflächenaktive Elemente zulegiert werden, um sowohl innere Grenzflächen, wie Korngrenzen und Phasengrenzen, wie auch die Grenzflächen zur schützenden Oxidschicht; gezielt zu beeinflussen. Dazu gehören die Elemente Hf, B, Y, Se, Te, Sb, La und Zr, die im Bereich des Summengehaltes von < O11 % zulegiert werden.
Wenngleich die Stahllegierung vorteilhaft z. B. für Wärmetauscherrohre im Kraftwerksbereich angewendet werden kann, ist der Einsatz jedoch nicht hierauf beschränkt. Neben der Herstellung von Rohren, die nahtlos warmgewalzt oder geschweißt sein können, ist diese Stahllegierung auch für die Herstellung von Blechen, Guss-, Schleudergussteilen oder Werkzeugen zur mechanischen Bearbeitung (Werkzeugstähle) einsetzbar, wobei sich das Anwendungsgebiet über Druckbehälter; Kessel, Turbinen, Kernkraftwerke oder den chemischen Apparatebau, d. h. auf alle Bereiche mit entsprechenden Temperaturanforderungen und Korrosionsbeanspruchungen, erstreckt.
Auch wenn die erfindungsgemäße Stahllegierung wegen der hervorragenden Zeitstaπdfestigkeit und Oxidationseigenschaften besonders vorteilhaft oberhalb von 6200C bis etwa 7500C einsetzbar ist, so ist der Einsatz beispielsweise auch schon bei Temperaturen oberhalb 5000C vorteilhaft wenn es mehr auf die Festigkeit des Werkstoffs ankommt.
Erläuterungen zu den Figuren
In Fig. 1 ist dargestellt ein Bild der Mikrostruktur, erzeugt mittels STEM, sowie die mittels EDX ermittelte chemische Zusammensetzung der Matrix und der B2-Phase von VS1.
In Fig. 2 sind dargestellt die Ergebnisse von isothermen Kriechversuchen bei 650 Grad Celsius und konstanter Spannung an Proben der Laborschmelze VS3.

Claims

Patentansprüche
1. Stahllegierung für einen bei Einsatztemperatur ferritischen Stahl mit ausgezeichneter Zeitstandfestigkeit und Korrosionsbeständigkeit, insbesondere bei Einsatztemperaturen < 7500C, mit folgender chemischer Zusammensetzung (in Gew.-%): C < 1,0 % Si < 1 ,0 % Mn ≤ 1 ,0 % P max. 0,05 % S max. 0,01 % 2 < AI < 12 % 3 ≤ Cr < 16 % 2 < Ni < 10 % und/oder 2 < Co < 10 % mit
2 < Ni+Co ≤ 15 % und
0,11x[%Cr] + 2,07x[%AI] >= 0,95x([%Ni] + [%Co]) N max. 0,0200 % Rest Eisen mit erschmelzungsbedingten Verunreinigungen, mit optionaler Zugabe eines oder mehrerer Elemente von V, Ti, Ta, Zr und Nb, mit optionaler Zugabe eines oder beider Elemente von Mo und W mit optionaler Zugabe eines oder mehrere Elemente von Hf, B, Se1 Y1 Te, Sb1
La und Zr im Bereich eines Summengehaltes von < 0, 1 % mit der Maßgabe, dass das Stahlgefüge gleichmäßig verteilte kohärente Ausscheidungen auf Basis einer Chrom stabilisierten (Ni,Co)AI-B2 intermetallischen Ordnungsphase enthält.
2. Stahllegierung nach Anspruch 1 dadurch gekennzeichnet, dass die Partikelgröße der Ausscheidungen im Mittel kleiner als 500 nm ist.
3. Stahllegierung nach Anspruch 2 dadurch gekennzeichnet, dass die Partikelgröße der Ausscheidungen im Mittel kleiner als 50 nm ist.
4. Stahllegierung nach einem der Ansprüche 1 - 3 dadurch gekennzeichnet, dass die optional zulegierten Elemente folgende Gehalte aufweisen: max. 0,3 % V1 max. 0,1 % Ti, max. 1 ,0 % Ta1 max. 0,05 % Zr, max. 0,2 % Nb, max. 1 ,0 % Mo, max. 2,0 % W
5. Stahllegierung nach einem der Ansprüche 1 - 4 dadurch gekennzeichnet, dass der C-Gehalt max. 0,5 %, der Si-Gehalt max. 0,4 % und der Mn-Gehalt max. 0,5 % beträgt.
6. Stahllegierung nach einem der Ansprüche 1 - 5 dadurch gekennzeichnet, dass der maximale Anteil der B2-Phase im Stahl 8 mol.% beträgt.
7. Nahtloses oder geschweißtes Stahlrohr, Stahlblech oder durch Gießen hergestelltes Werkstück oder Werkzeugstahl mit ausgezeichneter Zeitstandfestigkeit und Korrosionsbeständigkeit insbesondere bei Einsatztemperaturen ≤ 75O0C, hergestellt aus einer Stahllegierung nach mindestens einem der Ansprüche 1 bis 6.
PCT/DE2009/000953 2008-07-23 2009-07-03 Stahllegierung für einen ferritischen stahl mit ausgezeichneter zeitstandfestigkeit und oxidationsbeständigkeit bei erhöhten einsatztemperaturen WO2010009700A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP09775941.9A EP2307586B1 (de) 2008-07-23 2009-07-03 Stahllegierung für einen ferritischen stahl mit ausgezeichneter zeitstandfestigkeit und oxidationsbeständigkeit bei erhöhten einsatztemperaturen
US13/055,345 US9080230B2 (en) 2008-07-23 2009-07-03 Steel alloy for ferritic steel having excellent creep strength and oxidation resistance at elevated usage temperatures
JP2011519034A JP5844150B2 (ja) 2008-07-23 2009-07-03 高使用温度において優れたクリープ強度および耐酸化性を有するフェライト鋼用の鋼合金
CN200980128791.3A CN102137948B (zh) 2008-07-23 2009-07-03 在提高的使用温度下具有优异蠕变强度和耐氧化性的铁素体钢的合金钢

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102008034817.1 2008-07-23
DE102008034817 2008-07-23
DE102009031576A DE102009031576A1 (de) 2008-07-23 2009-06-30 Stahllegierung für einen ferritischen Stahl mit ausgezeichneter Zeitstandfestigkeit und Oxidationsbeständigkeit bei erhöhten Einsatztemperaturen
DE102009031576.4 2009-06-30

Publications (1)

Publication Number Publication Date
WO2010009700A1 true WO2010009700A1 (de) 2010-01-28

Family

ID=41171102

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2009/000953 WO2010009700A1 (de) 2008-07-23 2009-07-03 Stahllegierung für einen ferritischen stahl mit ausgezeichneter zeitstandfestigkeit und oxidationsbeständigkeit bei erhöhten einsatztemperaturen

Country Status (7)

Country Link
US (1) US9080230B2 (de)
EP (1) EP2307586B1 (de)
JP (1) JP5844150B2 (de)
CN (1) CN102137948B (de)
AR (1) AR072594A1 (de)
DE (1) DE102009031576A1 (de)
WO (1) WO2010009700A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017021565A1 (es) 2015-08-05 2017-02-09 Gerdau Investigacion Y Desarrollo Europa, S.A. Acero débilmente aleado de alta resistencia y alta resistencia a la oxidación en caliente
CN115074601A (zh) * 2022-05-24 2022-09-20 湘潭大学 一种制备高体积分数b2强化铁素体合金的方法

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104046891B (zh) * 2013-03-13 2017-04-26 香港城市大学 纳米金属间化合物强化的超高强度铁素体钢及其制造方法
CN103352177B (zh) * 2013-06-17 2015-12-23 浙江浦宁不锈钢有限公司 一种强度增强的钢材
CN103614654A (zh) * 2013-10-22 2014-03-05 芜湖市鸿坤汽车零部件有限公司 一种用于发动机罩的合金钢材料及其制备方法
CN103667891A (zh) * 2013-11-08 2014-03-26 张超 一种用于输送含氯根的混酸液体泵的合金钢材料及其制备方法
CN103643175A (zh) * 2013-11-12 2014-03-19 铜陵市肆得科技有限责任公司 一种阀芯用合金钢材料及其制备方法
KR101595436B1 (ko) 2014-09-23 2016-02-19 한국원자력연구원 다층구조 핵연료 피복관 및 이의 제조방법
CN104785775A (zh) * 2015-04-21 2015-07-22 苏州统明机械有限公司 一种用于热喷涂的耐氧化合金钢粉末及其制备方法
CN104895638B (zh) * 2015-05-17 2017-12-01 嵊州亿源投资管理有限公司 一种汽车发动机进气门
CN107794459B (zh) * 2015-05-18 2019-05-24 南京市星淳机械有限公司 一种汽车发动机气缸盖
CN104895639B (zh) * 2015-05-24 2018-03-16 新昌县勤勉贸易有限公司 一种耐高温气缸排气门组
ES2791887T3 (es) 2016-03-29 2020-11-06 Deutsche Edelstahlwerke Specialty Steel Gmbh & Co Kg Acero con densidad reducida y procedimiento para la fabricación de un producto plano de acero o un producto alargado de acero a partir de un acero de este tipo
SG11201808855UA (en) 2016-04-22 2018-11-29 Sandvik Intellectual Property A tube and a method of manufacturing a tube
DE102016111591A1 (de) * 2016-06-24 2017-12-28 Sandvik Materials Technology Deutschland Gmbh Verfahren zum Umformen einer Luppe aus einer ferritischen FeCrAl-Legierung in ein Rohr
US10883160B2 (en) 2018-02-23 2021-01-05 Ut-Battelle, Llc Corrosion and creep resistant high Cr FeCrAl alloys
CN108330405A (zh) * 2018-03-30 2018-07-27 四川六合锻造股份有限公司 一种耐腐蚀性能优异且耐高温性能好的优质合金
CN110029273A (zh) * 2019-04-23 2019-07-19 洛阳中伟环保科技有限公司 一种磨机用无碳合金隔仓板
CN109930076A (zh) * 2019-04-23 2019-06-25 洛阳中伟环保科技有限公司 一种磨机用无碳合金钢球
CN110042308A (zh) * 2019-04-23 2019-07-23 洛阳中伟环保科技有限公司 一种磨机用无碳合金衬板
KR102255111B1 (ko) * 2019-07-31 2021-05-24 주식회사 포스코 내식성이 우수한 배기계용 페라이트계 강판
KR102324087B1 (ko) * 2019-12-18 2021-11-10 한전원자력연료 주식회사 페라이트계 합금 및 이를 이용한 핵연료 피복관의 제조방법
SE543967C2 (en) * 2020-02-11 2021-10-12 Blykalla Reaktorer Stockholm Ab A martensitic steel
CN111534763B (zh) * 2020-06-22 2022-02-11 益阳金能新材料有限责任公司 一种耐磨合金钢及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03236449A (ja) * 1990-02-10 1991-10-22 Sumitomo Metal Ind Ltd ごみ焼却廃熱ボイラ管用高クロム鋼
US20020124913A1 (en) * 2000-12-04 2002-09-12 Hitachi Metals, Ltd. Ferritic Fe-Cr-Ni-Al alloy having exellent oxidation resistance and high strength and a plate made of the alloy
WO2003029505A1 (en) * 2001-10-02 2003-04-10 Sandvik Ab Ferritic stainless steel for use in high temperature applications and method for producing a foil of the steel

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA928537A (en) * 1968-06-28 1973-06-19 Allegheny Ludlum Corporation Oxidation resistant stainless steel
JPS5225806B2 (de) * 1972-09-20 1977-07-09
JPS5129963B2 (de) * 1973-07-18 1976-08-28
JPS5915976B2 (ja) * 1975-09-03 1984-04-12 住友金属工業株式会社 耐酸化性の優れたフエライト系ステンレス鋼
JP2970955B2 (ja) 1991-06-03 1999-11-02 住友金属工業株式会社 耐カッパーチェッキング性に優れた高クロムフェライト系耐熱鋼
JPH08218154A (ja) 1995-02-14 1996-08-27 Nippon Steel Corp 耐金属間化合物析出脆化特性の優れた高強度フェライト系耐熱鋼
SE508595C2 (sv) * 1997-08-12 1998-10-19 Sandvik Ab Användning av en ferritisk Fe-Cr-Al-legering vid framställning av kompoundrör, samt kompoundrör och användning av röret
US6030472A (en) 1997-12-04 2000-02-29 Philip Morris Incorporated Method of manufacturing aluminide sheet by thermomechanical processing of aluminide powders
JP4221518B2 (ja) 1998-08-31 2009-02-12 独立行政法人物質・材料研究機構 フェライト系耐熱鋼
JP3518515B2 (ja) 2000-03-30 2004-04-12 住友金属工業株式会社 低・中Cr系耐熱鋼
JP4836063B2 (ja) * 2001-04-19 2011-12-14 独立行政法人物質・材料研究機構 フェライト系耐熱鋼とその製造方法
JP3550132B2 (ja) * 2002-04-15 2004-08-04 東北特殊鋼株式会社 析出硬化型軟磁性フェライト系ステンレス鋼
US7520942B2 (en) 2004-09-22 2009-04-21 Ut-Battelle, Llc Nano-scale nitride-particle-strengthened high-temperature wrought ferritic and martensitic steels
CN100507051C (zh) * 2007-10-23 2009-07-01 山东理工大学 具有纳米析出相强化的铁素体系耐热钢及其制造方法
FR2933990B1 (fr) * 2008-07-15 2010-08-13 Aubert & Duval Sa Acier martensitique durci a teneur faible en cobalt, procede de fabrication d'une piece a partir de cet acier, et piece ainsi obtenue

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03236449A (ja) * 1990-02-10 1991-10-22 Sumitomo Metal Ind Ltd ごみ焼却廃熱ボイラ管用高クロム鋼
US20020124913A1 (en) * 2000-12-04 2002-09-12 Hitachi Metals, Ltd. Ferritic Fe-Cr-Ni-Al alloy having exellent oxidation resistance and high strength and a plate made of the alloy
WO2003029505A1 (en) * 2001-10-02 2003-04-10 Sandvik Ab Ferritic stainless steel for use in high temperature applications and method for producing a foil of the steel

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
STALLYBRASS C ET AL: "Ferritic Fe-Al-Ni-Cr alloys with coherent precipitates for high-temperature applications", MATERIALS SCIENCE AND ENGINEERING A: STRUCTURAL MATERIALS:PROPERTIES, MICROSTRUCTURE & PROCESSING, LAUSANNE, CH, vol. 387-389, 15 December 2004 (2004-12-15), pages 985 - 990, XP004664336, ISSN: 0921-5093 *
STALLYBRASS C ET AL: "The strengthening effect of (Ni,Fe)Al precipitates on the mechanical properties at high temperatures of ferritic Fe-Al-Ni-Cr alloys", INTERMETALLICS, ELSEVIER SCIENCE PUBLISHERS B.V, GB, vol. 13, no. 12, 1 December 2005 (2005-12-01), pages 1263 - 1268, XP004989700, ISSN: 0966-9795 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017021565A1 (es) 2015-08-05 2017-02-09 Gerdau Investigacion Y Desarrollo Europa, S.A. Acero débilmente aleado de alta resistencia y alta resistencia a la oxidación en caliente
CN115074601A (zh) * 2022-05-24 2022-09-20 湘潭大学 一种制备高体积分数b2强化铁素体合金的方法
CN115074601B (zh) * 2022-05-24 2023-12-26 湘潭大学 一种制备高体积分数b2强化铁素体合金的方法

Also Published As

Publication number Publication date
CN102137948A (zh) 2011-07-27
AR072594A1 (es) 2010-09-08
JP5844150B2 (ja) 2016-01-13
JP2011528752A (ja) 2011-11-24
US9080230B2 (en) 2015-07-14
EP2307586A1 (de) 2011-04-13
EP2307586B1 (de) 2018-10-10
DE102009031576A1 (de) 2010-03-25
US20110189496A1 (en) 2011-08-04
CN102137948B (zh) 2014-06-11

Similar Documents

Publication Publication Date Title
EP2307586B1 (de) Stahllegierung für einen ferritischen stahl mit ausgezeichneter zeitstandfestigkeit und oxidationsbeständigkeit bei erhöhten einsatztemperaturen
US20200056272A1 (en) Twinning/transformation induced plasticity high entropy steels and method of manufacturing the same
DE602006000160T2 (de) Hitzbeständige Legierung für bei 900oC nachhaltige Auslassventile und Auslassventile aus dieser Legierung
DE60015728T2 (de) Wärmebeständiger legierungsdraht
DE102012011162B4 (de) Nickel-Chrom-Legierung mit guter Verarbeitbarkeit, Kriechfestigkeit und Korrosionsbeständigkeit
DE102014001328B4 (de) Aushärtende Nickel-Chrom-Eisen-Titan-Aluminium-Legierung mit guter Verschleißbeständigkeit, Kriechfestigkeit, Korrosionsbeständigkeit und Verarbeitbarkeit
DE3686121T2 (de) Hochfester hitzebestaendiger ferritischer stahl mit hohem chromgehalt und verfahren zu seiner herstellung.
DE102012014068B3 (de) Austenitische Stahllegierung mit ausgezeichneter Zeitstandfestigkeit sowie Oxidations- und Korrosionsbeständigkeit bei erhöhten Einsatztemperaturen
DE69010234T2 (de) Hochfester Stahl mit hohem Chromgehalt und mit sehr guten Zähigkeits- und Oxidationsbeständigkeitseigenschaften.
DE69303518T2 (de) Hitzebeständiger, ferritischer Stahl mit niedrigem Chromgehalt und mit verbesserter Dauerstandfestigkeit und Zäheit
DE60203865T2 (de) Ferritischer wärmebeständiger stahl
DE69406511T2 (de) Fe-Ni-Cr-Basis-Superlegierung, Motorenventil und kettengewirkter Netzwerkträgerkörper für einen Abgaskatalysator
WO2019121879A1 (de) Verfahren zum additiven fertigen eines gegenstandes aus einem maraging-stahlpulver
DE102014001330A1 (de) Aushärtende Nickel-Chrom-Kobalt-Titan-Aluminium-Legierung mit guter Verschleißbeständigkeit, Kriechfestigkeit, Korrosionsbeständigkeit und Verarbeitbarkeit
DE69414529T2 (de) Superlegierung auf Fe-Basis
WO2016016437A2 (de) Kobaltbasissuperlegierung
DE69829012T2 (de) Ferritischer,wärmebeständiger Stahl und Verfahren zur Herstellung
DE69904336T2 (de) Hochchromhaltiger, wärmebeständiger, feritischer stahl
DE69332505T2 (de) Rostfreier ferritischer stahl mit hervorragenden hochtemperaturkorrosionseigenschaften und zunderadhesion
WO2021110217A1 (de) Nickel-chrom-eisen-aluminium-legierung mit guter verarbeitbarkeit, kriechfestigkeit und korrosionsbeständigkeit sowie deren verwendung
WO2021110218A1 (de) Nickel-chrom-aluminium-legierung mit guter verarbeitbarkeit, kriechfestigkeit und korrosionsbeständigkeit sowie deren verwendung
WO1995025826A1 (de) Korrosions- und verschleissbeständiger hartguss
DE69620722T2 (de) Hochfester wärmebeständiger austenitischer Stahl mit verbesserter Schweissbarkeit
DE112013000549B4 (de) Rostfreier ferritischer Stahl und Verfahren zur Herstellung eines Hochtemperaturbauteils
WO2017125147A1 (de) Stahlflachprodukt und verfahren zu seiner herstellung

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980128791.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09775941

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2009775941

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2011519034

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 472/CHENP/2011

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 13055345

Country of ref document: US