CN110331341B - 高成型性能高强度热镀锌双相钢及其生产方法 - Google Patents

高成型性能高强度热镀锌双相钢及其生产方法 Download PDF

Info

Publication number
CN110331341B
CN110331341B CN201910773612.7A CN201910773612A CN110331341B CN 110331341 B CN110331341 B CN 110331341B CN 201910773612 A CN201910773612 A CN 201910773612A CN 110331341 B CN110331341 B CN 110331341B
Authority
CN
China
Prior art keywords
hot
temperature
phase steel
dual
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910773612.7A
Other languages
English (en)
Other versions
CN110331341A (zh
Inventor
王敏莉
郑之旺
余灿生
郑昊青
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pangang Group Panzhihua Iron and Steel Research Institute Co Ltd
Original Assignee
Pangang Group Panzhihua Iron and Steel Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pangang Group Panzhihua Iron and Steel Research Institute Co Ltd filed Critical Pangang Group Panzhihua Iron and Steel Research Institute Co Ltd
Priority to CN201910773612.7A priority Critical patent/CN110331341B/zh
Publication of CN110331341A publication Critical patent/CN110331341A/zh
Application granted granted Critical
Publication of CN110331341B publication Critical patent/CN110331341B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Abstract

本发明涉及高成型性能高强度热镀锌双相钢及其生产方法,属于双相钢冶金技术领域。本发明提供的热镀锌双相钢化学成分包括C:0.05~0.10%,Si:0.20~0.50%,Mn:1.50~2.50%,Cr:0.40~1.00%,Mo:0.10~0.50%,Al:0.02~0.06%,Nb:0.010~0.050%,V:0.04~0.10%,P≤0.015%,S≤0.005%,N≤0.006%,制备方法包括冶炼、热轧、酸轧、热镀锌退火工序,热镀锌退火采用预氧化还原工艺。本发明制备的热镀锌双相钢成形性能、焊接性能和镀锌性能优良,达到高强度高延伸的要求。

Description

高成型性能高强度热镀锌双相钢及其生产方法
技术领域
本发明属于双相钢冶金技术领域,具体涉及高成型性能高强度热镀锌双相钢及其生产方法。
背景技术
随着汽车轻量化技术的发展,汽车用钢朝着高强钢方向发展已成为必然趋势。双相钢具有低屈服强度、高抗拉强度和优良塑性等特点,成为汽车用首选高强钢,其用量预计在汽车用先进高强钢中将超过70%。随着国内汽车板产能的不断释放,高强钢市场的竞争也越来越激烈,低成本高性能的双相钢已经成为各企业追求的目标,受到极大关注。
专利CN 102021482A公开了一种冷轧热镀锌双相钢及其制造方法,其优选化学成分百分比为:C:0.095~0.12%,Si:0.60~1.20%,Mn:1.90~2.50%,Cr:0.40~0.60%,Mo:0.04~0.30%,Nb:0.005~0.025%,Ti:0.01~0.05%,P≤0.010%,S≤0.006%,N≤0.003%,余量为Fe及不可避免杂质;通过760~840℃保温、1~40℃/s快冷、450-465℃快冷并进行热镀锌,得到了抗拉强度大于1180MPa的热镀锌双相钢。尽管通过其化学成分和制备方法得到优良综合力学性能的热镀锌双相钢,但其C、Si含量较高,使其焊接性能明显降低;同时Mo、Ti、Nb复合后使热轧负荷明显增加。
专利CN 105132817A公开了1200MPa级冷轧退火双相钢及其生产方法,其化学成分百分比为:C:0.14~0.20%,Si:0.2~0.6%,Mn:1.50~2.00%,Cr:0.30~0.70%,Nb:0.015~0.030%,Ti:0.010~0.030%,P≤0.010%,S≤0.005%,N≤0.005%,余量为Fe及不可避免杂质;通过860~880℃终轧、550~680℃卷取、760~820℃保温、630~760℃缓冷、250~300℃进行过时效处理,得到了抗拉强度大于1200MPa的冷轧双相钢。尽管通过其化学成分和制备方法得到优良综合力学性能冷轧双相钢,但是其C含量较高,使其焊接性能明显降低,同时Ti、Nb复合使热轧负荷明显增加。
综上所述,现有技术主要单方面考虑了双相钢的力学性能,没有综合考虑成形性能、镀锌性能和焊接性能等因素。
发明内容
为解决上述现有技术存在的问题,本发明提供高成型性能高强度热镀锌双相钢,以重量百分比计所述双相钢的化学成分包括C:0.05~0.10%,Si:0.20~0.50%,Mn:1.50~2.50%,Cr:0.40~1.00%,Mo:0.10~0.50%,Al:0.02~0.06%,Nb:0.010~0.050%,V:0.04~0.10%,P≤0.015%,S≤0.005%,N≤0.006%,余量为Fe及不可避免杂质。
作为优选的,本发明提供高成型性能高强度热镀锌双相钢,以重量百分比计所述双相钢的化学成分包括C:0.06~0.09%,Si:0.30~0.45%,Mn:1.60~2.10%,Cr:0.50~0.80%,Mo:0.20~0.40%,Al:0.02~0.05%,Nb:0.020~0.040%,V:0.05~0.09%,P≤0.015%,S≤0.005%,N≤0.006%,余量为Fe及不可避免杂质。
本发明同时还公开了高成型性能高强度热镀锌双相钢的生产方法,包括以下步骤:
(1)冶炼工序:根据设定的化学成分进行冶炼;
(2)热轧工序:将铸坯经过加热、除磷、热轧和层流冷却后获得热轧卷;
(3)酸轧工序:将上述热轧卷经过酸洗后冷轧;
(4)热镀锌退火工序:经过热镀锌退火后,制成所需热镀锌双相钢。
其中,步骤(1)冶炼工序根据上述高成型性能高强度热镀锌双相钢的化学成分进行冶炼。
其中,步骤(2)热轧工序精轧开轧温度为1000~1100℃,终轧温度为840~920℃,卷取温度为580~630℃。
其中,步骤(3)酸轧工序冷轧压下率为40~70%。
其中,步骤(1)冶炼过程在转炉中控制V含量,通过控制原有铁水中V含量,而不是额外添加钒铁合金。
其中,步骤(4)热镀锌退火工序先在氧化炉内进行加热,然后在有保护气氛的还原炉进行再结晶退火,最后在密封情况下进入锌锅进行热镀锌。
其中,步骤(4)热镀锌退火工序炉内保护气氛露点温度为-25~-60℃。
其中,退火温度为760~800℃,从退火温度快速冷却至锌池炉鼻温度440~460℃,其快冷速率CR1为50~80℃/s,镀锌后以4~10℃/s的终冷速率CR2冷却至室温。
本发明的有益效果:
本发明热镀锌双相钢采用低C、Mn以保证热镀锌双相钢的优良焊接性能,添加Nb、V通过晶粒细化和析出强化来提高其强度和韧性,采用低成本Si抑制碳化物析出使奥氏体充分富碳以提高其强度;本发明热镀锌退火采用预氧化还原工艺改善双相钢表面镀锌质量;本发明制备的热镀锌双相钢成形性能、焊接性能和镀锌性能优良,屈服强度为480~525MPa,抗拉强度为850~890MPa,伸长率(A80)为18.8~20.0%,达到高强度高延伸的要求,具有显著的经济效益和社会效益。
附图说明
图1为实施例1所得热镀锌双相钢的微观组织形貌图;
图2为实施例1所得热镀锌双相钢的复杂冲压零件图。
具体实施方式
本发明提供一种高成型性能高强度热镀锌双相钢,以重量百分比计所述双相钢的化学成分包括C:0.05~0.10%,Si:0.20~0.50%,Mn:1.50~2.50%,Cr:0.40~1.00%,Mo:0.10~0.50%,Al:0.02~0.06%,Nb:0.010~0.050%,V:0.04~0.10%,P≤0.015%,S≤0.005%,N≤0.006%,余量为Fe及不可避免杂质。
本发明双相钢化学成分的设计思路如下:
碳:C作为双相钢最重要的组分之一,决定了钢板的强度、塑性和成形性能。C是钢铁材料中固溶强化效果最明显的元素,钢中固溶C含量增加0.1%,其强度可提高约450MPa。C含量过低时,奥氏体的稳定性和马氏体淬硬性下降,导致强度偏低,双相钢中一般不低于0.02%;C含量过高时,双相钢的塑性和焊接性能下降,双相钢中一般不高于0.15%。因此,本发明C含量为0.05~0.10%,优选为0.06~0.09%。
硅:Si能固溶于铁素体和奥氏体中提高钢的强度,其作用仅次于C、P,较Mn、Cr、Ti和Ni等元素强;Si还可以抑制铁素体中碳化物的析出,使固溶C原子充分向奥氏体中富集,从而提高其稳定性。然而,Si含量过高时,Si在加热炉中形成的表面氧化铁皮很难去除,增加了除磷难度;同时在退火过程中易向表面富集形成SiO2,从而导致漏镀等表面缺陷。因此,本发明Si含量为0.20~0.50%,优选为0.30~0.60%。
锰:Mn是良好的脱氧剂和脱硫剂,也是钢中常用的固溶强化元素,双相钢中一般不低于1.20%。Mn既可与C结合形成多种碳化物起到沉淀强化的作用,也可溶于基体中增强固溶强化效果。Mn易与S结合形成高熔点化合物MnS,从而消除或削弱由于FeS引起的热脆现象,改善钢的热加工性能。Mn可以提高奥氏体稳定性,使C曲线右移,从而显著降低马氏体的临界冷却速率。但Mn含量过高时,易在退火过程中向表面富集,形成大量锰化物,从而导致表面镀锌质量下降。因此,在本发明中Mn含量为1.50~2.50%,优选为1.60~2.10%。
铬:Cr可以显著延迟珠光体和贝氏体转变,从而使奥氏体充分转变为马氏体组织。由于Cr较Mo具有明显的成本优势,所以大量添加于热镀锌双相钢中。因此,在本发明中,Cr含量为0.40~1.00%,优选为0.50~0.80%。
钼:Mo与Cr作用相似,明显迟珠光体和贝氏体转变,从而获得高体积分数的马氏体,以保证热镀锌双相钢的强度。另外,Mo氧化物吉布斯自由能与Fe氧化物相当,故Mo不会影响双相钢的表面镀锌质量,但其价格较昂贵。因此,在本发明中,Mo含量为0.10~0.50%,优选为0.20~0.40%。
铌:Nb在双相钢中主要以NbC形式存在,具有显著晶粒细化和弥散沉淀强化的作用。在热镀锌退火加热过程中,未溶解NbC颗粒可以钉扎铁素体晶界,从而起到细化晶粒的作用;退火温度增加至两相区时,NbC溶解温度较低,故充分溶解于基体中,同时固溶C原子向奥氏体中富集以提高其稳定性;在冷却过程中,铁素体中的NbC将重新析出,从而生产明显的沉淀强化。因此,Nb含量为0.010~0.050%,优选为0.020~0.040%。
钒:V在双相钢中主要以VC形式存在,具有显著晶粒细化和弥散沉淀强化的作用。在热镀锌退火加热过程中,未溶解VC颗粒可以钉扎铁素体晶界,从而起到细化晶粒的作用;退火温度增加至两相区时,VC溶解温度较低,故充分溶解于基体中,同时固溶C原子向奥氏体中富集以提高其稳定性;在退火过程中,铁素体中的VC将重新析出,从而生产明显的沉淀强化。因此,在本发明中,V含量为0.04~0.10%,优选为0.05~0.09%。
铝:Al是钢中常见的脱氧剂,同时可以形成AlN钉扎晶界,从而起到细化晶粒的作用;另外,Al与Si作用相似,可以抑制碳化物析出,从而使奥氏体充分富碳。因此,本发明中Al含量为0.02~0.06%,优选为0.02~0.05%。
本发明还提供高成型性能高强度热镀锌双相钢的生产方法,当通过铸造板坯生产钢板时,具体可按照如下步骤进行:
(1)冶炼工序:根据上述所设计的化学成分进行冶炼,并在转炉中控制V含量(是通过控制原有铁水中V含量,而不是额外添加钒铁合金),然后通过铸造成板坯;
(2)热轧工序:将铸坯经过加热、除磷、热轧和层流冷却后获得热轧卷,其中精轧开轧温度为1000~1100℃,终轧温度为840~920℃,卷取温度为580~630℃;
(3)酸轧工序:将上述热轧卷经过酸洗后冷轧成为冷轧薄带钢,其中冷轧压下率为40~70%;
(4)热镀锌退火工序:将上述冷轧薄带钢经过热镀锌退火后,制成所需热镀锌双相钢钢板。具体的,在炉内进行退火处理,从炉中取出冷却至一定温度,进入锌池热镀锌,其中炉内保护气氛露点温度为-25~-60℃,退火温度为760~800℃,从退火温度快速冷却至锌池炉鼻温度440~460℃,其快冷速率CR1为50~80℃/s,镀锌后以4~10℃/s的终冷速率CR2冷却至室温。其中,通过炉内保护气氛露点温度检测,确定炉内实际气体分压,从而控制合适的保护气氛(如氢气)含量。
为了改善双相钢表面镀锌质量,本发明热镀锌退火还采用了预氧化还原工艺,具体的,在连续热镀锌生产线上,线内包含氧化炉和还原炉两部分,带钢先在氧化炉内进行加热,把带钢表面残存的轧制油等烧掉,净化表面,然后通过有保护气氛的还原炉进行再结晶退火,最后在密封情况下进入锌锅进行热镀锌。作为优选的,氧化炉内加热温度控制在690~750℃。
以下通过实施例和对比例对本发明作进一步的解释和说明。
实施例1
本实施例高成型性能高强度热镀锌双相钢按如下工艺进行生产:
(1)冶炼工序:C:0.076%,Si:0.25%,Mn:2.0%,Cr:0.49%,Mo:0.22%,Als:0.039%,Nb:0.03%,V:0.05%,P:0.010%,S:0.002%,N:0.004%,并在转炉中控制V含量,通过控制原有铁水中V含量,而不是额外添加钒铁合金,,然后通过铸造成板坯,厚度200mm;
(2)热轧工序:将铸坯经过加热、除磷、热轧和层流冷却后获得热轧卷,其中加热温度为1250℃,精轧温度为1080℃,终轧温度为840~900℃,卷取温度为580~600℃,热轧板厚度2.8mm;
(3)酸轧工序:将上述热轧卷经过酸洗后冷轧成为冷轧薄带钢,其中冷轧压下率为50.0%;
(4)热镀锌退火工序:将上述冷轧薄带钢经过热镀锌退火后,制成所需热镀锌双相钢钢板。其中,氧化炉中加热到720℃,还原炉内保护气氛露点温度为-25~-60℃,退火温度为790℃,从退火温度快速冷却至锌池炉鼻温度440~460℃,其快冷速率CR1为63℃/s,镀锌后以6.0℃/s的终冷速率CR2冷却至室温。
经检测,本实施例的热镀锌双相钢微观组织如图1所示,表面镀锌质量如图2所示,屈服强度499MPa,抗拉强度883MPa,伸长率A8018.8%,屈强比0.57,本实施例的热镀锌双相钢C、Mn含量较低,微观组织由铁素体、马氏体组成,表面镀锌质量良好,具有良好的焊接性能,伸长率高,达到高强度高延伸的要求。
实施例2
本实施例高成型性能高强度热镀锌双相钢按如下工艺进行生产:
(1)冶炼工序:C:0.081%,Si:0.27%,Mn:2.1%,Cr:0.52%,Mo:0.20%,Als:0.033%,Nb:0.02%,V:0.06%,P:0.011%,S:0.003%,N:0.003%,并在转炉中控制V含量,通过控制原有铁水中V含量,而不是额外添加钒铁合金,,然后通过铸造成板坯,厚度200mm;
(2)热轧工序:将铸坯经过加热、除磷、热轧和层流冷却后获得热轧卷,其中加热温度为1250℃,精轧温度为1070℃,终轧温度为890~920℃,卷取温度为600~630℃,热轧板厚度3.5mm;
(3)酸轧工序:将上述热轧卷经过酸洗后冷轧成为冷轧薄带钢,其中冷轧压下率为54.2%;
(4)热镀锌退火工序:将上述冷轧薄带钢经过热镀锌退火后,制成所需热镀锌双相钢钢板。其中,氧化炉中加热到728℃,还原炉内保护气氛露点温度为-25~-60℃,退火温度为800℃,从退火温度快速冷却至锌池炉鼻温度440~460℃,其快冷速率CR1为58℃/s,镀锌后以8.0℃/s的终冷速率CR2冷却至室温。
经检测,本实施例的热镀锌双相钢屈服强度520MPa,抗拉强度878MPa,伸长率A8019.9%,屈强比0.59,本实施例的热镀锌双相钢C、Mn含量较低,微观组织由铁素体、马氏体组成,表面镀锌质量良好,具有良好的焊接性能,伸长率高,达到高强度高延伸的要求。
以上详细描述了本发明的优选实施方式,但是,本发明并不限于上述实施方式中的具体细节,在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,这些简单变型均属于本发明的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本发明对各种可能的组合方式不再另行说明。
此外,本发明的各种不同的实施方式之间也可以进行任意组合,只要其不违背本发明的思想,其同样应当视为本发明所公开的内容。

Claims (1)

1.高成型性能高强度热镀锌双相钢,其特征在于:以重量百分比计所述双相钢的化学成分包括C:0.081%,Si:0.27%,Mn:2.1%,Cr:0.52%,Mo:0.20%,Als:0.033%,Nb:0.02%,V:0.06%,P:0.011%,S:0.003%,N:0.003%,余量为Fe及不可避免杂质;
所述高成型性能高强度热镀锌双相钢由以下方法制备而成:
(1)冶炼工序:根据设定的化学成分进行冶炼,并在转炉中控制V含量,通过控制原有铁水中V含量,而不是额外添加钒铁合金,然后通过铸造成板坯,厚度200mm;
(2)热轧工序:将铸坯经过加热、除鳞 、热轧和层流冷却后获得热轧卷,其中加热温度为1250℃,精轧温度为1070℃,终轧温度为890~920℃,卷取温度为600~630℃,热轧板厚度3.5mm;
(3)酸轧工序:将热轧卷经过酸洗后冷轧成为冷轧薄带钢,其中冷轧压下率为54.2%;
(4)热镀锌退火工序:将冷轧薄带钢经过热镀锌退火后,制成所需热镀锌双相钢钢板;其中,氧化炉中加热到728℃,还原炉内保护气氛露点温度为-25~-60℃,退火温度为800℃,从退火温度快速冷却至锌池炉鼻温度440~460℃,其快冷速率CR1为58℃/s,镀锌后以8.0℃/s的终冷速率CR2冷却至室温;
所述高成型性能高强度热镀锌双相钢屈服强度520MPa,抗拉强度878MPa,伸长率A8019.9%,屈强比0.59,微观组织由铁素体、马氏体组成。
CN201910773612.7A 2019-08-21 2019-08-21 高成型性能高强度热镀锌双相钢及其生产方法 Active CN110331341B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910773612.7A CN110331341B (zh) 2019-08-21 2019-08-21 高成型性能高强度热镀锌双相钢及其生产方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910773612.7A CN110331341B (zh) 2019-08-21 2019-08-21 高成型性能高强度热镀锌双相钢及其生产方法

Publications (2)

Publication Number Publication Date
CN110331341A CN110331341A (zh) 2019-10-15
CN110331341B true CN110331341B (zh) 2021-05-11

Family

ID=68150050

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910773612.7A Active CN110331341B (zh) 2019-08-21 2019-08-21 高成型性能高强度热镀锌双相钢及其生产方法

Country Status (1)

Country Link
CN (1) CN110331341B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113737108A (zh) * 2020-05-27 2021-12-03 宝山钢铁股份有限公司 一种耐延迟开裂的电镀锌超强双相钢及其制造方法
WO2022206917A1 (zh) * 2021-04-02 2022-10-06 宝山钢铁股份有限公司 高成形性热镀铝锌或热镀锌铝镁双相钢及其快速热处理热镀制造方法
CN115181917B (zh) * 2021-04-02 2023-09-12 宝山钢铁股份有限公司 780MPa级别低碳低合金高成形性双相钢及快速热处理制造方法
CN114045437A (zh) * 2021-11-16 2022-02-15 攀钢集团攀枝花钢铁研究院有限公司 800MPa级热镀锌用增强塑性双相钢及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012100908A1 (de) * 2012-02-03 2013-08-08 Klaus Kuhn Edelstahlgiesserei Gmbh Duplexstahl mit verbesserter Kerbschlagzähigkeit und Zerspanbarkeit
CN106011631B (zh) * 2016-07-11 2018-01-26 攀钢集团攀枝花钢铁研究院有限公司 一种800MPa级低碳热镀锌双相钢及其制备方法
CN107761006B (zh) * 2017-10-23 2019-12-03 攀钢集团攀枝花钢铁研究院有限公司 低碳热镀锌超高强双相钢及其制备方法

Also Published As

Publication number Publication date
CN110331341A (zh) 2019-10-15

Similar Documents

Publication Publication Date Title
CN109097705B (zh) 一种800MPa级冷轧热镀锌双相钢及其生产方法
CN108796375B (zh) 一种抗拉强度1000MPa级热镀锌高强钢及其减量化生产方法
CN108823507B (zh) 一种抗拉强度800MPa级热镀锌高强钢及其减量化生产方法
CN110331341B (zh) 高成型性能高强度热镀锌双相钢及其生产方法
JP6043801B2 (ja) 温間プレス成形用鋼板、温間プレス成形部材、及びこれらの製造方法
CN106011643B (zh) 一种抗拉强度590MPa级冷轧双相钢及其制备方法
CN105925912B (zh) 抗拉强度780MPa级含钒冷轧双相钢及其制备方法
CN105950998A (zh) 一种1000MPa级低碳热镀锌双相钢及其制备方法
JP2023065520A (ja) 靭性、延性及び強度に優れた鋼板及びその製造方法
CN105803321A (zh) 一种980MPa级含钒超细晶粒冷轧双相钢及其制备方法
CN110172640B (zh) 500MPa级高加工硬化率热镀锌双相钢板及其制备方法
CN105603325A (zh) 一种600MPa级含钒热镀锌双相钢及其制备方法
CN112593154A (zh) 屈服强度超过700MPa的980MPa级冷轧双相钢及其生产方法
JP2023153941A (ja) 加工性に優れた冷延鋼板、溶融亜鉛めっき鋼板、及びこれらの製造方法
CN106011631B (zh) 一种800MPa级低碳热镀锌双相钢及其制备方法
CN105937011B (zh) 低屈服强度冷轧高强度钢板及其制备方法
CN111172466B (zh) 一种塑性增强的抗拉强度590MPa级冷轧双相钢及其生产方法
CN113403550B (zh) 高塑性耐疲劳的冷轧热镀锌dh1180钢板及制备方法
CN107747039A (zh) 一种高扩孔性能冷轧双相钢及其制备方法
CN110343969A (zh) 高强度热镀锌复相钢及其生产方法
CN110343971B (zh) 超高强度热镀锌复相钢及其生产方法
CN113512679A (zh) 高延伸率高强度热镀锌钢板及其生产方法
CN109518080A (zh) 冷轧低成本超高强双相钢及其制备方法
CN110358967A (zh) 厚规格热镀锌复相钢及其生产方法
KR20130143278A (ko) 도금성 및 굽힘성이 우수한 고강도 강판 제조 방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant