WO2013111778A1 - ハニカム構造体 - Google Patents

ハニカム構造体 Download PDF

Info

Publication number
WO2013111778A1
WO2013111778A1 PCT/JP2013/051313 JP2013051313W WO2013111778A1 WO 2013111778 A1 WO2013111778 A1 WO 2013111778A1 JP 2013051313 W JP2013051313 W JP 2013051313W WO 2013111778 A1 WO2013111778 A1 WO 2013111778A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell density
honeycomb structure
density region
region
cell
Prior art date
Application number
PCT/JP2013/051313
Other languages
English (en)
French (fr)
Inventor
真大 林
雅一 村田
浩之 松原
久野 央志
鈴木 宏昌
Original Assignee
株式会社デンソー
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー, トヨタ自動車株式会社 filed Critical 株式会社デンソー
Priority to DE112013000720.7T priority Critical patent/DE112013000720B4/de
Priority to US14/374,960 priority patent/US9533294B2/en
Priority to CN201380006690.5A priority patent/CN104066511B/zh
Publication of WO2013111778A1 publication Critical patent/WO2013111778A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/195Alkaline earth aluminosilicates, e.g. cordierite or anorthite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0006Honeycomb structures
    • C04B38/0009Honeycomb structures characterised by features relating to the cell walls, e.g. wall thickness or distribution of pores in the walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2803Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support
    • F01N3/2825Ceramics
    • F01N3/2828Ceramic multi-channel monoliths, e.g. honeycombs
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0081Uses not provided for elsewhere in C04B2111/00 as catalysts or catalyst carriers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3218Aluminium (oxy)hydroxides, e.g. boehmite, gibbsite, alumina sol
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/349Clays, e.g. bentonites, smectites such as montmorillonite, vermiculites or kaolines, e.g. illite, talc or sepiolite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/36Glass starting materials for making ceramics, e.g. silica glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/30Honeycomb supports characterised by their structural details
    • F01N2330/34Honeycomb supports characterised by their structural details with flow channels of polygonal cross section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/30Honeycomb supports characterised by their structural details
    • F01N2330/48Honeycomb supports characterised by their structural details characterised by the number of flow passages, e.g. cell density

Definitions

  • the present invention relates to a honeycomb structure used as a catalyst carrier for purifying exhaust gas from an internal combustion engine such as an automobile.
  • a honeycomb structure having partition walls provided in a lattice shape and a plurality of cells surrounded by the partition walls is known.
  • the honeycomb structure is used by being installed in an exhaust pipe serving as an exhaust gas passage. Then, high temperature exhaust gas is circulated through the honeycomb structure to activate the catalyst supported on the honeycomb structure and to purify the exhaust gas.
  • the honeycomb structure is disposed as close to the internal combustion engine as possible, and the temperature is raised quickly to a temperature at which the catalyst is activated. For this reason, the honeycomb structure is required to have higher exhaust gas purification performance, higher thermal shock resistance, and the like.
  • Patent Document 1 discloses a honeycomb structure that defines the relationship between the catalyst amount, the surface area, the cell density, and the like between the central portion and the outer peripheral portion.
  • Patent Document 2 discloses a honeycomb structure that defines the relationship between the opening ratio, the water absorption rate, and the like between the central portion and the outer peripheral portion.
  • Patent Document 3 an inner skin is formed between the first cell portion (center portion) and the second cell portion (outer peripheral portion), and the first cell portion and the second cell portion are A honeycomb structure defining a relationship such as cell density is disclosed.
  • Patent Document 4 discloses a honeycomb structure in which the number of radial webs (partitions) formed in the radial direction from the central portion toward the outer peripheral portion changes in the radial direction.
  • Patent Document 5 discloses a honeycomb structure in which the partition walls are curved in a convex shape from the center toward the outside, and the cell density at the center is smaller than the cell density at the outer periphery.
  • Patent Document 6 a plurality of honeycomb segments are joined and integrated, and the relationship between the honeycomb segment that does not constitute the outermost peripheral surface and the honeycomb segment that constitutes the outermost peripheral surface, such as the partition wall thickness, cell density, etc. Has disclosed a honeycomb structure.
  • the honeycomb structure of Patent Document 1 the relationship between the cell density between the central portion and the outer peripheral portion is not optimal, and sufficient exhaust gas purification performance cannot be ensured.
  • the water absorption rate and the aperture ratio of the outer peripheral portion are made larger than those of the central portion.
  • the pore diameter of the outer peripheral portion is increased. It is necessary to increase the pores themselves. Therefore, when trying to manufacture as an integrally molded product, extrusion molding is performed using raw materials having different particle diameters only at the outer peripheral portion, and there is a possibility that a difference in shrinkage rate occurs during drying or firing, resulting in cracks.
  • the honeycomb structure of Patent Document 5 has a structure in which exhaust gas concentrates and flows easily in the center, and a structure in which the cell density decreases non-uniformly toward the outside. It does not lead to performance improvements and the data is not disclosed. Furthermore, since the cross section perpendicular to the axial direction is elliptical, the temperature difference between the inner side and the outer side in the major axis direction becomes large, and the thermal shock resistance decreases. Moreover, in the honeycomb structure of Patent Document 6, since a plurality of segments are joined and integrated, the thickness of the partition wall at the joined portion is increased, and a portion having a locally large heat capacity is formed. Thereby, the temperature difference between the inner side and the outer side is increased, and the thermal shock resistance may be reduced.
  • the present invention has been made in view of such a background, and an object of the present invention is to provide a honeycomb structure capable of improving the thermal shock resistance while sufficiently ensuring the exhaust gas purification performance.
  • One aspect of the present invention is a cordierite-made honeycomb structure having a partition wall provided in a lattice shape and a plurality of cells formed so as to be surrounded by the partition wall.
  • the structure has a plurality of cell density regions configured so that the cell density changes stepwise in the radial direction from the center to the outer periphery in a cross section orthogonal to the axial direction, and the adjacent cell density regions
  • a boundary wall is provided between each other, and the plurality of cell density regions include a high cell density region having the highest cell density and an innermost cell density except for the outermost cell density region.
  • the low cell density region having the lowest cell density excluding the cell density region, and the actual volume of the honeycomb structure when the entire honeycomb structure is assumed to be constituted by the high cell density region is V
  • the high cell of the honeycomb structure When the actual volume of the density region is Va, the actual volume of the low cell density region is Vb, and the actual volume of the boundary wall separating the low cell density region and the cell density region immediately inside is Vs Further, the honeycomb structure satisfies the relationship of V ⁇ Va ⁇ Vb + Vs (claim 1).
  • the honeycomb structure includes a plurality of cells configured such that the cell density changes stepwise in the radial direction from the central portion toward the outer peripheral portion in a cross section orthogonal to the axial direction (hereinafter, appropriately referred to as a radial cross section). It has a density region.
  • a boundary wall that separates the two cell density regions is provided between adjacent cell density regions.
  • the thermal shock resistance can be improved while sufficiently ensuring the exhaust gas purification performance.
  • a high cell density region having a large heat capacity is disposed in a portion (for example, the central portion) through which exhaust gas flows most, and a low cell density region having a small heat capacity is disposed outside the high cell density region.
  • a boundary wall is provided between the cell density regions to separate them. Therefore, the strength can be increased and the thermal shock resistance can be further improved. Further, by adjusting the cell density between the inside and the outside of the honeycomb structure, it becomes possible to make the flow velocity distribution of the exhaust gas that tends to concentrate and flow inside (for example, the central portion) more uniform. Thereby, exhaust gas can be purified by effectively utilizing the entire honeycomb structure, and emission can be reduced.
  • Explanatory drawing which shows the radial direction cross section of the honeycomb structure of the comparative example C2 in an Example.
  • the graph which showed the relationship between the value of (V-Va) / (Vb + Vs) and temperature difference (DELTA) T ratio in an Example.
  • the graph which showed the relationship between cell density ratio Ma / Mb and an emission ratio in an Example.
  • the graph which showed the relationship between the distance from the center of a honeycomb structure, and the flow velocity in an Example.
  • the honeycomb structure according to the present invention has a plurality of cell density regions configured such that the cell density changes stepwise in the radial direction from the center to the outer periphery in a cross section orthogonal to the axial direction.
  • the honeycomb structure is divided into a plurality of regions (cell density regions) in the radial direction from the central portion toward the outer peripheral portion, and the cell density in each cell density region is constant. Further, the cell densities of adjacent cell density regions are different, and the cell density is configured to change stepwise in the radial direction.
  • the high cell density region is a cell density region having the highest cell density except for the outermost cell density region.
  • the low cell density region is a cell density region having the lowest cell density except for the innermost cell density region. Therefore, for example, when the honeycomb structure has two cell density regions, the inner side (center portion) and the outer side (outer peripheral portion), the inner side is inevitably a high cell density region and the outer side is a low cell density region.
  • the actual volume V is an actual volume of the honeycomb structure when it is assumed that the entire honeycomb structure is constituted by a high cell density region. That is, when a uniform honeycomb structure consisting only of a high cell density region is assumed, it is the actual volume of the honeycomb structure.
  • V ⁇ Va ⁇ Vb + Vs for example, a high cell density region is provided in a portion where the exhaust gas is most circulated (for example, the central portion), and the high cell density is obtained. Even if the low cell density region is arranged outside the region, the heat capacity on the outside becomes large, and the heat retaining property may be increased. Therefore, the temperature difference between the inside and outside during rapid cooling cannot be sufficiently suppressed, and the thermal shock resistance is lowered.
  • the actual volumes V, Va, Vb and Vs can be configured to satisfy the relationship of 1 ⁇ (V ⁇ Va) / (Vb + Vs) ⁇ 1.72 (Claim 2). Further, the actual volumes V, Va, Vb, and Vs can be configured to satisfy the relationship of 1.2 ⁇ (V ⁇ Va) / (Vb + Vs) ⁇ 1.58 (claim 3). In this case, the effect of suppressing the temperature difference between the inside and outside during rapid cooling and improving the thermal shock resistance can be sufficiently exhibited.
  • the thickness of the partition wall in the high cell density region is Ta and the thickness of the partition wall in the low cell density region is Tb
  • the structure satisfying Ta ⁇ Tb can be satisfied.
  • the strength of the entire honeycomb structure can be sufficiently ensured while adjusting the cell density in each cell density region. Thereby, the thermal shock resistance can be further improved.
  • the partition wall thickness Ta in the high cell density region may be in the range of 30 to 120 ⁇ m, for example.
  • the thickness Tb of the partition wall in the low cell density region can be set within a range of 50 to 200 ⁇ m, for example.
  • the cell density of the high cell density region is Ma and the cell density of the low cell density region is Mb
  • a configuration satisfying the relationship of 1 ⁇ Ma / Mb ⁇ 2 can be achieved.
  • the effect of reducing the emission and ensuring the exhaust gas purification performance can be sufficiently exhibited.
  • the relationship between the cell densities Ma and Mb is Ma / Mb ⁇ 1
  • the above-mentioned effect of ensuring the exhaust gas purification performance by adjusting the cell density of each cell density region and reducing the emission is sufficiently obtained.
  • the relationship between the cell densities Ma and Mb is Ma / Mb ⁇ 2
  • a high cell density region is disposed in a portion where exhaust gas is most circulated (for example, the central portion), and the outside of the high cell density region.
  • the outer cell density may be lowered, and the exhaust gas may easily flow outside. For this reason, the exhaust gas is not sufficiently purified, so-called blow-through, which passes through the honeycomb structure, may occur, and the exhaust gas purification performance may be deteriorated.
  • the cell density Ma of the high cell density region can be, for example, in the range of 62 to 186 cells / cm 2 .
  • the cell density Mb of the low cell density region can be set within the range of 46.5 to 139.5 cells / cm 2 , for example.
  • the radius of the honeycomb structure is R
  • the radius of the boundary wall separating the high cell density region and the cell density region immediately outside thereof is r
  • 0.2 ⁇ r / R It can be set as the structure satisfying the relationship of ⁇ 1. In this case, the effect of reducing the emission and ensuring the exhaust gas purification performance can be sufficiently exhibited. In order to obtain higher exhaust gas purification performance, it is desirable that the value of r / R be in the range of 0.5 to 0.8.
  • the radius R of the honeycomb structure and the radius r of the boundary wall are a radius of the honeycomb structure and a radius of the boundary wall in a cross section perpendicular to the axial direction (gas flow path direction) of the honeycomb structure.
  • the radii R and r are the radius when the honeycomb structure or the boundary wall is circular, and the radius of the inscribed circle when the shape is polygonal.
  • the high cell density region among the plurality of cell density regions may be arranged on the innermost side (claim 7).
  • a high cell density region with a large surface area is arranged in the portion where the exhaust gas is most circulated (for example, the central portion), so that the effect of reducing the emission and ensuring the exhaust gas purification performance is sufficiently exhibited. can do.
  • the low cell density region is inevitably disposed outside the high cell density region, so that the effect of improving the thermal shock resistance by suppressing the temperature difference between the inside and outside during rapid cooling is sufficiently exhibited. Can do.
  • the central axis of the high cell density region does not necessarily have to coincide with the central axis of the honeycomb structure.
  • the position of the high cell density region can be set at various positions depending on, for example, the shape of the exhaust pipe in which the honeycomb structure is disposed, the flow of exhaust gas, and the like.
  • the honeycomb structure may have two cell density regions, and a high cell density region may be disposed on the inner side (center portion) and a low cell density region may be disposed on the outer side (outer peripheral portion). .
  • a high cell density region may be disposed on the inner side (center portion) and a low cell density region may be disposed on the outer side (outer peripheral portion).
  • the honeycomb structure can have a structure in which three or more cell density regions are provided and the cell density is gradually reduced in the radial direction. In this case, it is possible to further enhance the effect of suppressing the temperature difference between the inside and outside during rapid cooling and improving the thermal shock resistance.
  • the cell density in the outermost cell density region becomes too low, and the strength (isostatic strength, etc.) of the honeycomb structure may be lowered. Therefore, it is desirable to increase the cell density in the outermost cell density region to ensure the strength of the honeycomb structure.
  • the honeycomb structure is used for, for example, a catalytic converter that purifies exhaust gas using a catalyst.
  • an exhaust gas purifying catalyst is supported on the surface of the partition wall of the honeycomb structure.
  • the porosity of the honeycomb structure can be set within a range of 10 to 70%, for example.
  • the shape of the cell may be, for example, a circle, a polygon (for example, a quadrangle, a hexagon) or the like in the radial cross section.
  • the outer shape of the cell density region can be, for example, a circle, a polygon, or the like in the radial cross section.
  • the thickness of the boundary wall can be set in the range of 20 to 250 ⁇ m, for example.
  • the shape of the boundary wall can be, for example, a circle or a polygon in the radial cross section.
  • Example E1 to E16 a plurality of honeycomb structures (Examples E1 to E16) as examples and a plurality of honeycomb structures (Comparative Examples C1 to C3) as comparative examples were produced, and these were subjected to thermal shock resistance and exhaust gas purification performance.
  • Example C1 to C3 a plurality of honeycomb structures
  • honeycomb structures (Examples E1 to E16) as examples will be described with reference to the drawings.
  • the honeycomb structure 1 has partition walls 11 provided in a lattice shape and a plurality of cells 12 formed by being surrounded by the partition walls 11, and is made of cordierite that is integrally formed. It is a honeycomb structure.
  • the honeycomb structure 1 has a plurality of cell density regions 2 configured such that the cell density changes stepwise in the radial direction from the central portion toward the outer peripheral portion in a cross section orthogonal to the axial direction X.
  • a boundary wall 14 is provided between the adjacent cell density regions 2 to separate them.
  • FIG. 1A and 2 to 3 show the case of two cell density regions 2 (21, 22) having different cell densities
  • FIG. 4 shows three cell density regions 2 ( 21, 22, 23), as shown in FIG. 1 (b), it has a plurality (4 or more, 21, 22,. There may be.
  • the plurality of cell density regions 2 are formed by removing the high cell density region 2a having the highest cell density and the innermost cell density region 2 except the outermost cell density region 2.
  • the actual volume of the honeycomb structure is V
  • the actual volume of the high cell density region 2a of the honeycomb structure 1 is Va
  • the low cell density region is V ⁇ Va ⁇ Vb + Vs, where Vb is the actual volume of 2b and Vs is the actual volume of the boundary wall 14 (14b) separating the low cell density region 2b and the cell density region 2 immediately inside it.
  • Vs. Meet This will be described in detail below.
  • the honeycomb structure 1 (Examples E1 to E16) is used as a carrier for a catalyst for exhaust gas purification, and is surrounded by partition walls 11 provided in a square lattice shape, and the partition walls 11. And a plurality of rectangular cells 12 formed in a cylindrical shape and a cylindrical outer peripheral wall 13 covering the outer peripheral side surface.
  • the honeycomb structure 1 is made of cordierite and is formed integrally as a whole.
  • the honeycomb structure 1 has a diameter of 103 mm and a length of 105 mm.
  • the honeycomb structures 1 of Examples E1 to E11 and E13 to E16 are 2 in the radial direction from the center to the outer periphery in the cross section orthogonal to the axial direction X (FIG. 1). It is divided into two cell density regions 2 (first cell density region 21 and second cell density region 22). The cell density in each cell density region 2 is constant. Moreover, the cell density of the adjacent cell density area
  • the first cell density region 21 corresponds to the above-described high cell density region 2a, and is disposed at the innermost portion in the center of the honeycomb structure 1.
  • the second cell density region 22 corresponds to the above-described low cell density region 2b, and is disposed on the outermost part of the honeycomb structure 1 on the outermost side.
  • the first cell density region 21 and the second cell density region 22 have the same cell 12 orientation.
  • the cells 12 may have different orientations (the cells 12 in the second cell density region 22 are inclined 45 ° with respect to the cells 12 in the first cell density region 21).
  • the honeycomb structure 1 of Example E12 has three cell density regions 2 (first cells) in the radial direction from the center toward the outer periphery in a cross section orthogonal to the axial direction X (FIG. 1). It is divided into a density region 21, a second cell density region 22, and a third cell density region 23).
  • the cell density in each cell density region 2 is constant.
  • region 2 differs, and it is comprised so that a cell density may change in steps in radial direction.
  • the first cell density region 21 corresponds to the above-described high cell density region 2a, and is disposed at the innermost portion in the center of the honeycomb structure 1.
  • the second cell density region 22 corresponds to the above-described low cell density region 2 b and is disposed just outside the first cell density region 21.
  • the third cell density region 23 has a cell density lower than that of the first cell density region 21 and higher than that of the second cell density region 22. Further, it is arranged just outside the second cell density region 22 and outside the honeycomb structure 1.
  • the strength (isostatic strength etc.) of the honeycomb structure 1 is ensured by preventing the cell density region 2 (low cell density region 2b) having the lowest cell density from being arranged on the outermost side.
  • the thickness of the partition wall 11 in the high cell density region 2a is Ta
  • the low cell density region 2b is Tb
  • the relationship of Ta ⁇ Tb is satisfied.
  • the cell density of the high cell density region 2a is Ma
  • the low cell density region 2b is satisfied.
  • each cell density region 2 first cell density region 21, second cell density region 22, third cell density region 23
  • the cell density (cells / cm 2 ), porosity (%), and cell density ratio Ma / Mb are as shown in Tables 1 and 2.
  • the cell density is measured by using a tool microscope, a microscope, or the like in the radial cross section of the honeycomb structure, and the cell density is substituted into a relational expression described later. Calculate the density (cpsi).
  • the cell pitch P of each cell density region 2 is measured five points at a time using a microscope (VHX-900, manufactured by Keyence Corporation), and the average value is defined as the average cell pitch.
  • the unit of cell density “cpsi” represents the number of cells per square inch. In Tables 1 and 2, the cell density unit “cpsi” is converted into “pieces / cm 2 ” and displayed.
  • the cell density (cpsi) ( 25.4 / p1)
  • the cell density is calculated from the relational expression 2 .
  • the cell density (cpsi) (2 / ⁇ 3) ⁇ (25.4 / p2)
  • the cell density is calculated from the relational expression of 2 .
  • a cylindrical boundary wall 14 is provided between the adjacent cell density regions 2 to separate the two.
  • the honeycomb structure 1 (FIG. 3) of Example E14 is octagonal, and the other honeycomb structures 1 (FIGS. 2 and 4) are circular.
  • the radius of the honeycomb structure 1 is R, and the boundary wall 14 that separates the high cell density region 2a (first cell density region 21) from the cell density region 2 (second cell density region 22) immediately outside the high cell density region 2a.
  • Example E14 since the boundary wall 14 is octagonal, the radius of the inscribed circle is r.
  • the values of the boundary wall thickness (mm) and the boundary wall position r / R of each honeycomb structure 1 (Examples E1 to E16) are as shown in Tables 1 and 2.
  • the actual volume of the honeycomb structure when the entire honeycomb structure 1 is assumed to be composed of the high cell density region 2a is V
  • the honeycomb The actual volume of the high cell density region 2a (first cell density region 21) of the structure 1 is Va
  • the actual volume of the low cell density region 2b (second cell density region 22) is Vb
  • V ⁇ Va ⁇ Vb + Vs where Vs is the actual volume of the boundary wall 14 (14b) separating the cell density region 22) and the cell density region 2 (first cell density region 21) immediately inside the cell density region 22). Satisfy the relationship.
  • the actual volumes V, Va, Vb, and Vs are as described above, where the radius of the honeycomb structure 1 is R, the radius of the boundary wall 14 is r, and the honeycomb structure
  • the axial length of 1 is L and the thickness of the boundary wall 14 is ts, it can be obtained by the following calculation formula.
  • OFA in the formula below is an abbreviation of “Open Front Area” and represents the aperture ratio of the cell 12.
  • V ⁇ ⁇ R 2 ⁇ L ⁇ (1 ⁇ OFA / 100) ⁇ (1 ⁇ porosity / 100)
  • Va ⁇ ⁇ (r ⁇ ts / 2) 2 ⁇ L ⁇ (1—OFA in high cell density region / 100) ⁇ (1 ⁇ porosity in high cell density region / 100)
  • Vb ⁇ R 2 ⁇ (r + ts / 2) 2 ⁇ ⁇ ⁇ ⁇ L ⁇ (1 ⁇ OFA / 100 in low cell density region) ⁇ ( 1 ⁇ porosity of the low cell density region / 100)
  • Vs ⁇ ⁇ (r + ts / 2) 2 ⁇ L ⁇ ⁇ ⁇ (r ⁇ ts / 2) 2 ⁇ L ⁇ ⁇ (1 ⁇ pores of the boundary wall Rate / 100)
  • honeycomb structure 9 (Comparative Examples C1 to C3) as a comparative example will be described with reference to the drawings.
  • the honeycomb structures 9 of the comparative examples C1 and C2 are different from the honeycomb structures 1 of the examples E1 to E16 described above in one cell density region (in Tables 1 and 2, the first structure). 1 cell density region). That is, the overall cell density is constant.
  • the honeycomb structure 9 of the comparative example C1 (FIG. 6) has a lower cell density than the honeycomb structure 9 of the comparative example C2 (FIG. 7).
  • Other basic configurations are the same as those of the honeycomb structures 1 of Examples E1 to E16 described above.
  • honeycomb structure of the comparative example C3 the relationship between the above actual volumes V, Va, Vb, and Vs is (V ⁇ Va) / (Vb + Vs) ⁇ 1.
  • Other basic configurations are the same as those of the honeycomb structures 1 of Examples E1 to E16 described above.
  • Tables 1 and 2 show the partition wall thickness (mm), cell density (cells / cm 2 ), porosity (%), etc. of each honeycomb structure 9 (Comparative Examples C1 to C3).
  • a method for manufacturing a honeycomb structure (Examples E1 to E16, Comparative Examples C1 to C3) will be described.
  • the raw material powder of the ceramic raw material contains kaolin, fused silica, aluminum hydroxide, alumina, talc, carbon particles, etc., and the chemical composition finally has a weight ratio of SiO 2 : 45 to 55%, Al 2 O 3
  • the composition was adjusted so as to have a composition containing cordierite as the main component: 33-42%, MgO: 12-18%.
  • a ceramic raw material is obtained by adding a predetermined amount of water, a binder or the like to the raw material powder and kneading.
  • the ceramic material is extruded using an extrusion mold to form a honeycomb formed body.
  • extrusion is performed using an extrusion mold having a slit groove having a shape corresponding to the shape of the partition wall.
  • the formed honeycomb formed body is dried by microwaves and cut into a desired length. Thereafter, the honeycomb formed body is fired at a predetermined temperature (for example, maximum temperature: 1390 to 1430 ° C.). Thereby, a honeycomb structure is obtained.
  • thermal shock resistance and exhaust gas purification performance of each honeycomb structure (Examples E1 to E16, Comparative Examples C1 to C3) are evaluated.
  • evaluation methods for thermal shock resistance and exhaust gas purification performance will be described.
  • the thermal shock resistance is evaluated by installing the honeycomb structure 1 (9) in an exhaust pipe 82 in a state where the honeycomb structure 1 (9) is wound around an alumina mat 81 to constitute a catalytic converter 8.
  • the exhaust gas purifying catalyst is previously supported on the honeycomb structure 1 (9).
  • the catalyst for example, a three-way catalyst containing at least one of platinum (Pt), rhodium (Rh) and palladium (Pd), which are noble metals, containing ⁇ -alumina, and an oxygen storage agent such as ceria. What was contained can be used.
  • two thermocouples H1 and H2 are installed at an intermediate position in the axial direction X.
  • thermocouple H1 is installed at the center (position of the central axis) of the cross section orthogonal to the axial direction X.
  • the other thermocouple H2 is installed at a distance corresponding to 10% of the diameter from the outer periphery to the inside.
  • the catalytic converter 8 is mounted on an engine (V-type 8-cylinder, 4.3L) and travels on a WOT (Wide open throttle). Then, the central portion (thermocouple H1) of the honeycomb structure 1 (9) is set to a predetermined temperature (1050 ° C.) and maintained in this state for a predetermined time (5 minutes). Thereafter, the engine speed is reduced to an idling state, and the honeycomb structure 1 (9) is rapidly cooled. A temperature difference ⁇ T (° C.) between the central portion (thermocouple H1) and the outer peripheral portion (thermocouple H2) of the honeycomb structure 1 (9) generated during the rapid cooling is measured. In this example, the temperature difference ⁇ T ratio is obtained based on the temperature difference ⁇ T (° C.) of the comparative example C2.
  • the exhaust gas purification performance was evaluated by preparing a honeycomb structure in which a catalyst carrying the honeycomb structure was mounted on the engine and carrying the catalyst equivalent to running for 100,000 km, and this was used as the engine S / C (Start). (Catalyst) position. Further, the honeycomb structure in which the catalyst is sufficiently deteriorated by heating in an electric furnace is mounted at the UF / C (Underfloor Catalyst) position of the engine. Then, the vehicle travels in a predetermined mode (LA # 4 evaluation mode), and the amount of emission (HC, CO, NOx) discharged is measured. In this example, the emission ratio is obtained based on the emission amount of Comparative Example C2.
  • the S / C position is a position immediately after the exhaust port of the engine (position upstream of the exhaust gas flow path) in the exhaust gas flow path through which exhaust gas from the engine flows.
  • the UF / C position is a position (a position on the downstream side of the exhaust gas flow path) that hits the vehicle floor further downstream of the S / C position in the exhaust gas flow path.
  • Tables 1 and 2 show the evaluation results of thermal shock resistance and exhaust gas purification performance.
  • the honeycomb structures of Examples E1 to E16 had (V ⁇ Va) / (Vb + Vs) ⁇ 1, and the temperature difference ⁇ T ratio and emission ratio were less than 1.
  • the honeycomb structures of Examples E1 to E7 and E11 to E16 are compared with Comparative Example C2 in which the overall cell density is constant, and Comparative Example C3 in which (V ⁇ Va) / (Vb + Vs) ⁇ 1.
  • the temperature difference ⁇ T can be reduced, and the temperature difference between the inside and outside during rapid cooling can be suppressed.
  • honeycomb structures of Examples E1, E4, and E8 to E11 can reduce the amount of emissions compared to Comparative Examples C1 and C2 in which the overall cell density is constant. From the above results, it was found that the honeycomb structures of Examples E1 to E16 were excellent in thermal shock resistance and exhaust gas purification performance.
  • FIG. 9 shows the relationship between the value of (V ⁇ Va) / (Vb + Vs) and the temperature difference ⁇ T ratio based on the results of Tables 1 and 2.
  • the temperature difference ⁇ T ratios of Examples E1 to E7, E11 to E16, and Comparative Example C3 are plotted.
  • the temperature difference ⁇ T can be reliably reduced (the temperature difference ⁇ T ratio is less than 1). Thermal shock resistance can be improved.
  • FIG. 10 shows the relationship between the cell density ratio Ma / Mb and the emission ratio based on the results of Tables 1 and 2.
  • the emission ratios of Examples E1, E4, E8, E9 and Comparative Example C2 are plotted.
  • the cell density ratio Ma / Mb of Comparative Example C2 is indicated by “ ⁇ ” in Tables 1 and 2.
  • the amount of emission is reduced. It is possible to reliably reduce the emission ratio (less than 1), and to improve the exhaust gas purification performance. Further, by setting 1.25 ⁇ Ma / Mb ⁇ 1.5, it is possible to further reduce the emission amount and further improve the exhaust gas purification performance.
  • FIG. 11 shows the relationship between the distance from the center of the honeycomb structure and the flow velocity.
  • the flow rate ratios of Examples E1, E8, E9, and Comparative Example C2 are plotted.
  • a method for measuring the flow velocity will be described.
  • the honeycomb structure 1 (9) carrying the exhaust gas purifying catalyst is installed in the exhaust pipe 82 in a state of being wound around the alumina mat 81 to constitute the catalytic converter 8.
  • an anemometer (not shown) is installed on the downstream side of the honeycomb structure.
  • a predetermined amount of air is circulated through the honeycomb structure 1 (9), and the flow velocity of the air immediately after passing through the honeycomb structure 1 (9) is measured with a flow meter.
  • the honeycomb structures of Examples E1, E8, and E9 have smaller variations in flow velocity between the inner side and the outer side than the honeycomb structure of Comparative Example C2 by adjusting the cell density ratio Ma / Mb. can do. That is, the flow velocity distribution can be made more uniform. Thereby, the amount of emissions can be reduced and the exhaust gas purification performance can be enhanced.
  • FIG. 12 shows the relationship between the boundary wall position r / R and the emission ratio based on the results of Tables 1 and 2.
  • the emission ratios of Examples E1, E10, E11 and Comparative Examples C1, C2 are plotted.
  • the boundary wall position r / R 0.
  • Comparative Example C2 has the same cell density as Examples E1, E10, and E11.
  • the boundary wall position r / R 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Toxicology (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Structural Engineering (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

 ハニカム構造体1は、径方向にセル密度が段階的に変化するよう構成された複数のセル密度領域2を有する。隣り合うセル密度領域2同士の間には境界壁14が設けられている。複数のセル密度領域2は、最も外側のセル密度領域2を除いた中で最もセル密度が高い高セル密度領域2aと、最も内側のセル密度領域2を除いた中で最もセル密度が低い低セル密度領域2bとを有する。ハニカム構造体1全体を高セル密度領域2aで構成したと仮定した場合のハニカム構造体の実体積をV、ハニカム構造体1の高セル密度領域2aの実体積をVa、低セル密度領域2bの実体積をVb、低セル密度領域2bとそのすぐ内側にあるセル密度領域2との間を隔てる境界壁14の実体積をVsとした場合にV-Va≧Vb+Vsの関係を満たす。

Description

ハニカム構造体
 本発明は、自動車等の内燃機関の排ガスを浄化するための触媒の担体として用いられるハニカム構造体に関する。
 自動車等の内燃機関の排ガスを浄化するための触媒の担体として、例えば、格子状に設けられた隔壁とその隔壁に囲まれて形成された複数のセルとを有するハニカム構造体が知られている。ハニカム構造体は、排ガスの通路となる排気管内に設置して用いられる。そして、高温の排ガスをハニカム構造体に流通させることにより、ハニカム構造体に担持した触媒を活性化させ、排ガスの浄化を行う。
 近年、自動車等の排ガス規制が厳しくなっていることから、内燃機関の始動直後に発生する有害物質(コールドエミッション)をより一層低減することが求められている。そのため、ハニカム構造体をできる限り内燃機関の近くに配置し、触媒が活性する温度まで早く昇温させるといった手段が用いられる。このようなことから、ハニカム構造体には、より高い排ガス浄化性能、より高い耐熱衝撃性等が要求される。
 例えば、特許文献1には、中心部と外周部との触媒量、表面積、セル密度等の関係を規定したハニカム構造体が開示されている。また、特許文献2には、中心部と外周部との開口率、吸水率等の関係を規定したハニカム構造体が開示されている。また、特許文献3には、第1のセル部(中心部)と第2のセル部(外周部)との間に内部皮を形成し、第1のセル部と第2のセル部とのセル密度等の関係を規定したハニカム構造体が開示されている。
 また、特許文献4には、中心部から外周部に向かって半径方向に形成された半径方向ウェブ(隔壁)の本数が径方向に変化するハニカム構造体が開示されている。また、特許文献5には、隔壁が中心から外側に向かって凸状に湾曲した形状であり、中心部のセル密度が外周部のセル密度よりも小さいハニカム構造体が開示されている。また、特許文献6には、複数のハニカムセグメントを接合して一体化されてなり、最外周面を構成しないハニカムセグメントと最外周面を構成するハニカムセグメントとの隔壁厚さ、セル密度等の関係を規定したハニカム構造体が開示されている。
特開2002-177794号公報 特開2008-18370号公報 特許第3219292号公報 特表2009-532605号公報 特許第4511396号公報 特許第4094823号公報
 しかしながら、特許文献1のハニカム構造体では、中心部と外周部とのセル密度の関係が最適であるとはいえず、排ガス浄化性能を十分に確保することができない。また、特許文献2のハニカム構造体では、外周部の吸水率や開口率を中心部に比べて大きくするが、外周部の吸水率を大きくするには、その外周部の気孔径を大きくしたり気孔そのものを増やしたりする必要がある。そのため、一体成形品として製造しようとすると、外周部だけ異なる粒子径の原料を用いて押出成形することになり、乾燥や焼成の際に収縮率差が生じてクラックが発生するおそれがある。また、エミッションの低減を図るためには、排ガスの流通量が多い中央部の気孔率を大きくして軽量化することが望ましいが、特許文献2のように外周部の気孔率を大きくする必要がある構造では、エミッションの低減を十分に図ることができない。また、特許文献2における中心部と外周部との開口率(セル密度)の関係も最適であるとはいえず、排ガス浄化性能を十分に確保することができない。
 また、特許文献3のハニカム構造体では、第1のセル部(中心部)と第2のセル部(外周部)とのセル密度の関係について記載されておらず、排ガス浄化性能も不明である。また、特許文献4のハニカム構造体では、半径方向ウェブ(隔壁)の本数が中心部に向かって減少しているため、高負荷領域(内燃機関が高回転状態)において排ガスが中心部に集中して流れ、排ガスが十分に浄化されずに吹き抜けてしまい、排ガス浄化性能を十分に確保することができない。
 また、特許文献5のハニカム構造体では、中心部に排ガスが集中して流れやすい構造や外側へ行くほどセル密度が不均一に低くなる部分が生じる構造となるため、排ガスの流れを考慮した浄化性能の向上につながるものではなく、そのデータも開示されていない。さらに、軸方向に直交する断面が楕円形状であるため、長径方向において内側と外側との温度差が大きくなり、耐熱衝撃性が低下してしまう。また、特許文献6のハニカム構造体では、複数のセグメントを接合して一体化されているため、接合部分の隔壁の厚みが大きくなり、局所的に熱容量が大きい部分が形成される。これにより、内側と外側との温度差が大きくなり、耐熱衝撃性が低下する場合がある。
 本発明は、かかる背景に鑑みてなされたもので、排ガス浄化性能を十分に確保しながら、耐熱衝撃性を向上させることができるハニカム構造体を提供しようとするものである。
 本発明の一の態様は、格子状に設けられた隔壁と該隔壁に囲まれて形成された複数のセルとを有し、一体成形されたコージェライト製のハニカム構造体であって、該ハニカム構造体は、軸方向に直交する断面において、中心部から外周部に向かって径方向にセル密度が段階的に変化するよう構成された複数のセル密度領域を有し、隣り合う該セル密度領域同士の間には、両者を隔てる境界壁が設けられており、上記複数のセル密度領域は、最も外側のセル密度領域を除いた中で最もセル密度が高い高セル密度領域と、最も内側のセル密度領域を除いた中で最もセル密度が低い低セル密度領域とを有し、上記ハニカム構造体全体を上記高セル密度領域で構成したと仮定した場合のハニカム構造体の実体積をV、上記ハニカム構造体の上記高セル密度領域の実体積をVa、上記低セル密度領域の実体積をVb、上記低セル密度領域とそのすぐ内側にある上記セル密度領域との間を隔てる上記境界壁の実体積をVsとした場合に、V-Va≧Vb+Vsの関係を満たすことを特徴とするハニカム構造体にある(請求項1)。
 上記ハニカム構造体は、軸方向に直交する断面(以下、適宜、径方向断面という)において、中心部から外周部に向かって径方向にセル密度が段階的に変化するよう構成された複数のセル密度領域を有する。また、隣り合うセル密度領域同士の間には、両者を隔てる境界壁が設けられている。そして、上記ハニカム構造体全体を高セル密度領域で構成したと仮定した場合のハニカム構造体の実体積をV、上記ハニカム構造体の高セル密度領域の実体積をVa、低セル密度領域の実体積をVb、低セル密度領域とそのすぐ内側にあるセル密度領域との間を隔てる境界壁の実体積をVsとした場合に、V-Va≧Vb+Vsの関係を満たすようにする。これにより、排ガス浄化性能を十分に確保しながら、耐熱衝撃性を向上させることができる。
 すなわち、内燃機関を高負荷で回転させた後、回転数を落としてアイドリング状態とした場合、ハニカム構造体は急激に冷やされ、特に排ガスが最も流通する部分はその度合いが大きい。そこで、例えば、排ガスが最も流通する部分(例えば中心部)に熱容量の大きい高セル密度領域を、その高セル密度領域の外側に熱容量の小さい低セル密度領域を配置し、上記の実体積の関係(V-Va≧Vb+Vs)を満たすようにすることで、全体のセル密度を同じとした場合に比べて、内側と外側との間に生じる温度差(以下、適宜、内外温度差という)を抑制することができる。これにより、耐熱衝撃性を向上させることができる。
 また、セル密度領域同士の間には、両者を隔てる境界壁が設けられている。そのため、強度を高めることができ、耐熱衝撃性をさらに向上させることができる。また、ハニカム構造体の内側と外側とでセル密度を調整することにより、内側(例えば中心部)に集中して流れやすい排ガスの流速分布をより均一化することが可能となる。これにより、ハニカム構造体全体を有効活用して排ガスの浄化を行うことができ、エミッションの低減を図ることができる。
 このように、排ガス浄化性能を十分に確保しながら、耐熱衝撃性を向上させることができるハニカム構造体を提供することができる。
本願発明に係るハニカム構造体を示す斜視説明図であり、(a)は、2つのセル密度領域を備える実施例を示し、(b)は複数のセル密度領域を備える実施例を示す。 実施例における、実施例E1~E11、E13、E15、E16のハニカム構造体の径方向断面を示す説明図。 実施例における、実施例E14のハニカム構造体の径方向断面を示す説明図。 実施例における、実施例E12のハニカム構造体の径方向断面を示す説明図。 実施例における、ハニカム構造体におけるセルピッチを示す説明図。 実施例における、比較例C1のハニカム構造体の径方向断面を示す説明図。 実施例における、比較例C2のハニカム構造体の径方向断面を示す説明図。 実施例における、ハニカム構造体を備えた触媒コンバータを示す説明図。 実施例における、(V-Va)/(Vb+Vs)の値と温度差ΔT比との関係を示したグラフ。 実施例における、セル密度比Ma/Mbとエミッション比との関係を示したグラフ。 実施例における、ハニカム構造体の中心からの距離と流速との関係を示したグラフ。 実施例における、境界壁位置r/Rとエミッション比との関係を示したグラフ。
 本願発明に係る上記ハニカム構造体は、上述のとおり、軸方向に直交する断面において、中心部から外周部に向かって径方向にセル密度が段階的に変化するよう構成された複数のセル密度領域を有する。すなわち、ハニカム構造体は、中心部から外周部に向かって径方向に複数の領域(セル密度領域)に分割されており、各セル密度領域内のセル密度は一定となっている。また、隣り合うセル密度領域のセル密度は異なっており、径方向においてセル密度が段階的に変化するよう構成されている。
 また、上記高セル密度領域は、上述のとおり、最も外側のセル密度領域を除いた中で最もセル密度が高いセル密度領域である。また、上記低セル密度領域は、上述のとおり、最も内側のセル密度領域を除いた中で最もセル密度が低いセル密度領域である。したがって、例えば、ハニカム構造体が内側(中心部)と外側(外周部)との2つのセル密度領域を有する場合、必然的に内側が高セル密度領域、外側が低セル密度領域となる。また、上記実体積Vは、上記ハニカム構造体全体を高セル密度領域で構成したと仮定した場合のハニカム構造体の実体積である。すなわち、高セル密度領域のみからなる一様なハニカム構造体を仮定した場合、そのハニカム構造体の実体積である。
 また、上記実体積V、Va、Vb及びVsの関係がV-Va<Vb+Vsである場合には、例えば、排ガスが最も流通する部分(例えば中心部)に高セル密度領域を、その高セル密度領域の外側に低セル密度領域を配置しても、外側の熱容量が大きくなり、保温性が高くなってしまうことがある。そのため、急冷時の内外温度差を十分に抑制することができず、耐熱衝撃性が低下してしまう。
 また、上記実体積V、Va、Vb及びVsは、1≦(V-Va)/(Vb+Vs)≦1.72の関係を満たす構成とすることができる(請求項2)。さらに、上記実体積V、Va、Vb及びVsは、1.2≦(V-Va)/(Vb+Vs)≦1.58の関係を満たす構成とすることができる(請求項3)。この場合には、急冷時の内外温度差を抑制して耐熱衝撃性を向上させるという効果を十分に発揮することができる。
 上記実体積V、Va、Vb及びVsの関係が(V-Va)/(Vb+Vs)>1.72である場合には、例えば、排ガスが最も流通する部分(例えば中心部)に高セル密度領域を、その高セル密度領域の外側に低セル密度領域を配置したときに、外側のセル密度が低くなり、外側に排ガスが流れやすくなってしまうことがある。そのため、急冷時に外側の温度のみが低くなり、内側は保温されてしまうことから、急冷時の内外温度差が生じやすくなるおそれがある。
 また、上記高セル密度領域における上記隔壁の厚みをTa、上記低セル密度領域における上記隔壁の厚みをTbとした場合に、Ta≦Tbの関係を満たす構成とすることができる(請求項4)。この場合には、各セル密度領域のセル密度を調整しながら、ハニカム構造体全体の強度を十分に確保することができる。これにより、耐熱衝撃性をさらに向上させることができる。
 なお、上記高セル密度領域における上記隔壁の厚みTaは、例えば、30~120μmの範囲内とすることができる。また、上記低セル密度領域における上記隔壁の厚みTbは、例えば、50~200μmの範囲内とすることができる。
 また、上記高セル密度領域のセル密度をMa、上記低セル密度領域のセル密度をMbとした場合に、1<Ma/Mb<2の関係を満たす構成とすることができる(請求項5)。 この場合には、エミッションの低減を図って排ガス浄化性能を確保するという効果を十分に発揮することができる。また、より高い排ガス浄化性能を得るために、Ma/Mbの値を1.25~1.5の範囲内とすることが望ましい。
 上記セル密度Ma及びMbの関係がMa/Mb≦1である場合には、各セル密度領域のセル密度を調整してエミッションの低減を図り、排ガス浄化性能を確保するという上述の効果を十分に発揮することができないおそれがある。一方、上記セル密度Ma及びMbの関係がMa/Mb≧2である場合には、例えば、排ガスが最も流通する部分(例えば中心部)に高セル密度領域を、その高セル密度領域の外側に低セル密度領域を配置したときに、外側のセル密度が低くなり、外側に排ガスが流れやすくなってしまうことがある。そのため、排ガスが十分に浄化されずにハニカム構造体を通過する、いわゆる吹き抜けが生じ、排ガス浄化性能が低下してしまうおそれがある。
 なお、上記高セル密度領域のセル密度Maは、例えば、62~186個/cm2の範囲内とすることができる。また、上記低セル密度領域のセル密度Mbは、例えば、46.5~139.5個/cm2の範囲内とすることができる。
 また、上記ハニカム構造体の半径をR、上記高セル密度領域とそのすぐ外側にある上記セル密度領域との間を隔てる上記境界壁の半径をrとした場合に、0.2≦r/R<1の関係を満たす構成とすることができる(請求項6)。この場合には、エミッションの低減を図って排ガス浄化性能を確保するという効果を十分に発揮することができる。また、より高い排ガス浄化性能を得るために、r/Rの値を0.5~0.8の範囲内とすることが望ましい。
 なお、上記ハニカム構造体の半径R及び上記境界壁の半径rは、ハニカム構造体の軸方向(ガス流路方向)に直交する断面におけるハニカム構造体の半径及び境界壁の半径である。また、上記半径R、rとは、ハニカム構造体や境界壁の形状が円形状である場合にはその半径、多角形状である場合にはその内接円の半径とする。
 また、上記複数のセル密度領域のうち、上記高セル密度領域が最も内側に配置されている構成とすることができる(請求項7)。この場合には、排ガスが最も流通する部分(例えば中心部)に表面積の大きい高セル密度領域を配置することになるため、エミッションの低減を図って排ガス浄化性能を確保するという効果を十分に発揮することができる。また、必然的に、高セル密度領域の外側に低セル密度領域が配置されることになるため、急冷時の内外温度差を抑制して耐熱衝撃性を向上させるという効果を十分に発揮することができる。なお、上記構成の場合、高セル密度領域の中心軸は、ハニカム構造体の中心軸と必ずしも一致した位置とする必要はない。高セル密度領域の位置は、例えば、ハニカム構造体を配置する排気管の形状や排ガスの流れ等によって様々な位置に設定することができる。
 また、上記ハニカム構造体は、2つのセル密度領域を有し、内側(中心部)に高セル密度領域を配置し、外側(外周部)に低セル密度領域を配置する構成とすることができる。 この場合には、エミッションの低減を図って排ガス浄化性能を確保するという効果と、急冷時の内外温度差を抑制して耐熱衝撃性を向上させるという効果とを十分に発揮することができる。
 また、上記ハニカム構造体は、3つ以上のセル密度領域を有し、径方向においてセル密度が段階的に低くなる構成とすることができる。この場合には、急冷時の内外温度差を抑制して耐熱衝撃性を向上させるという効果をより一層高めることができる。ただし、このような構成とした場合、最も外側のセル密度領域のセル密度が低くなりすぎてハニカム構造体の強度(アイソスタティック強度等)が低下するおそれがある。そこで、最も外側のセル密度領域のセル密度を高くして、ハニカム構造体の強度を確保することが望ましい。
 また、上記ハニカム構造体は、例えば、触媒によって排ガスを浄化する触媒コンバータ等に用いられる。この場合、上記ハニカム構造体の上記隔壁の表面に排ガス浄化用の触媒を担持して用いられる。また、上記ハニカム構造体の気孔率は、例えば、10~70%の範囲内とすることができる。
 また、上記セルの形状は、径方向断面において、例えば、円形、多角形(例えば、四角形、六角形)等とすることができる。また、上記セル密度領域の外形形状は、径方向断面において、例えば、円形、多角形等とすることができる。また、上記境界壁の厚みは、例えば、20~250μmの範囲内とすることができる。また、上記境界壁の形状は、径方向断面において、例えば、円形、多角形等とすることができる。
 本例では、実施例としての複数のハニカム構造体(実施例E1~E16)及び比較例としての複数のハニカム構造体(比較例C1~C3)を作製し、これらについて耐熱衝撃性、排ガス浄化性能の評価を行った。
 まず、実施例としてのハニカム構造体(実施例E1~E16)について、図を用いて説明する。図1~図4に示すごとく、ハニカム構造体1は、格子状に設けられた隔壁11と隔壁11に囲まれて形成された複数のセル12とを有し、一体成形されたコージェライト製のハニカム構造体である。また、ハニカム構造体1は、軸方向Xに直交する断面において、中心部から外周部に向かって径方向にセル密度が段階的に変化するよう構成された複数のセル密度領域2を有する。隣り合うセル密度領域2同士の間には、両者を隔てる境界壁14が設けられている。尚、図1(a)、図2~図3では、セル密度の異なる2つのセル密度領域2(21,22)の場合を示し、図4では、セル密度の異なる3つのセル密度領域2(21,22,23)の場合を示しているが、図1(b)に示すように、セル密度の異なる複数(4つ以上21,22,...2n)のセル密度領域を有するものであってもよい。
 同図に示すごとく、複数のセル密度領域2は、最も外側のセル密度領域2を除いた中で最もセル密度が高い高セル密度領域2aと、最も内側のセル密度領域2を除いた中で最もセル密度が低い低セル密度領域2bとを有する。また、ハニカム構造体1全体を高セル密度領域2aで構成したと仮定した場合のハニカム構造体の実体積をV、ハニカム構造体1の高セル密度領域2aの実体積をVa、低セル密度領域2bの実体積をVb、低セル密度領域2bとそのすぐ内側にあるセル密度領域2との間を隔てる境界壁14(14b)の実体積をVsとした場合に、V-Va≧Vb+Vsの関係を満たす。以下、これを詳説する。
 図1に示すごとく、ハニカム構造体1(実施例E1~E16)は、排ガス浄化用の触媒の担体として用いられるものであり、四角形格子状に設けられた隔壁11と、その隔壁11に囲まれて形成された四角形状の複数のセル12と、外周側面を覆う円筒状の外周壁13とを有する。また、ハニカム構造体1は、コージェライト製であり、全体を一体的に成形したものである。また、ハニカム構造体1の寸法は、直径が103mm、長さが105mmである。
 図2、図3に示すごとく、実施例E1~E11、E13~E16のハニカム構造体1は、軸方向X(図1)に直交する断面において、中心部から外周部に向かって径方向に2つのセル密度領域2(第1セル密度領域21、第2セル密度領域22)に分割されている。各セル密度領域2内のセル密度は一定となっている。また、隣り合うセル密度領域2のセル密度は異なっており、径方向においてセル密度が段階的に変化するよう構成されている。
 同図に示すごとく、第1セル密度領域21は、上述の高セル密度領域2aに該当し、ハニカム構造体1の中心部であって最も内側に配置されている。また、第2セル密度領域22は、上述の低セル密度領域2bに該当し、ハニカム構造体1の外周部であって最も外側に配置されている。なお、図2(a)に示すハニカム構造体1では、第1セル密度領域21と第2セル密度領域22とのセル12の向きは同じであるが、例えば、図2(b)に示すハニカム構造体1のように、セル12の向きが異なる(第2セル密度領域22のセル12が第1セル密度領域21のセル12に対して45°傾いている)構成とすることもできる。
 図4に示すごとく、実施例E12のハニカム構造体1は、軸方向X(図1)に直交する断面において、中心部から外周部に向かって径方向に3つのセル密度領域2(第1セル密度領域21、第2セル密度領域22、第3セル密度領域23)に分割されている。各セル密度領域2内のセル密度は一定となっている。また、隣り合うセル密度領域2のセル密度は異なっており、径方向においてセル密度が段階的に変化するよう構成されている。
 第1セル密度領域21は、上述の高セル密度領域2aに該当し、ハニカム構造体1の中心部であって最も内側に配置されている。また、第2セル密度領域22は、上述の低セル密度領域2bに該当し、第1セル密度領域21のすぐ外側に配置されている。また、第3セル密度領域23は、セル密度が第1セル密度領域21よりも低く、第2セル密度領域22よりも高い。また、第2セル密度領域22のすぐ外側であって、ハニカム構造体1の最も外側に配置されている。このように、最も外側に最もセル密度が低いセル密度領域2(低セル密度領域2b)が配置されないようにすることで、ハニカム構造体1の強度(アイソスタティック強度等)を確保している。
 また、図2~図4に示すごとく、ハニカム構造体1(実施例E1~E16)において、高セル密度領域2a(第1セル密度領域21)における隔壁11の厚みをTa、低セル密度領域2b(第2セル密度領域22)における隔壁11の厚みをTbとした場合に、Ta≦Tbの関係を満たしている。また、ハニカム構造体1(実施例E1~E4、E6、E8~E15)において、高セル密度領域2a(第1セル密度領域21)のセル密度をMa、低セル密度領域2b(第2セル密度領域22)のセル密度をMbとした場合に、1<Ma/Mb<2の関係を満たしている。なお、各ハニカム構造体1(実施例E1~E16)における各セル密度領域2(第1セル密度領域21、第2セル密度領域22、第3セル密度領域23)の隔壁の厚み(mm)、セル密度(個/cm2)、気孔率(%)、セル密度比Ma/Mbは、表1、表2に示すとおりである。
 ここで、各セル密度領域2のセル密度の測定方法について説明する。セル密度は、ハニカム構造体の径方向断面において、図5(a)、(b)に示すごとく、セルピッチPを工具顕微鏡やマイクロスコープ等を用いて測定し、後述する関係式に代入してセル密度(cpsi)を算出する。本例では、マイクロスコープ(キーエンス社製、VHX-900)を用いて各セル密度領域2のセルピッチPを5点ずつ測定し、その平均値を平均セルピッチとする。ここで、セル密度の単位「cpsi」は、1平方インチ当たりのセルの個数を表す。なお、表1、表2では、セル密度の単位「cpsi」を「個/cm2」に変換して表示している。
 例えば、図5(a)に示すごとく、実施例E1~E16のハニカム構造体1のように、セル12の形状が四角形の場合には、平均セルピッチをp1とすると、セル密度(cpsi)=(25.4/p1)2の関係式からセル密度を算出する。また、図5(b)に示すごとく、セル12の形状が六角形の場合には、平均セルピッチをp2とすると、セル密度(cpsi)=(2/√3)×(25.4/p2)2の関係式からセル密度を算出する。
 また、図2~図4に示すごとく、ハニカム構造体1(実施例E1~E16)において、隣り合うセル密度領域2同士の間には、両者を隔てる筒状の境界壁14が設けられている。境界壁14の形状は、実施例E14のハニカム構造体1(図3)が八角形状であり、それ以外のハニカム構造体1(図2、図4)が円形状である。また、ハニカム構造体1の半径をR、高セル密度領域2a(第1セル密度領域21)とそのすぐ外側にあるセル密度領域2(第2セル密度領域22)との間を隔てる境界壁14の半径をrとした場合に、0.2≦r/R<1の関係を満たしている。ここで、実施例E14のハニカム構造体1は境界壁14が八角形状であるため、その内接円の半径がrである。なお、各ハニカム構造体1(実施例E1~E16)の境界壁の厚み(mm)、境界壁位置r/Rの値は、表1、表2に示すとおりである。
 また、同図に示すごとく、ハニカム構造体1(実施例E1~E16)において、ハニカム構造体1全体を高セル密度領域2aで構成したと仮定した場合のハニカム構造体の実体積をV、ハニカム構造体1の高セル密度領域2a(第1セル密度領域21)の実体積をVa、低セル密度領域2b(第2セル密度領域22)の実体積をVb、低セル密度領域2b(第2セル密度領域22)とそのすぐ内側にあるセル密度領域2(第1セル密度領域21)との間を隔てる境界壁14(14b)の実体積をVsとした場合に、V-Va≧Vb+Vsの関係を満たす。すなわち、(V-Va)/(Vb+Vs)≧1の関係を満たす。なお、各ハニカム構造体1(実施例E1~E16)の(V-Va)/(Vb+Vs)の値は、表1、表2に示すとおりである。
 ここで、円筒形状のハニカム構造体1において、実体積V、Va、Vb及びVsは、上述したように、ハニカム構造体1の半径をR、境界壁14の半径をrとし、さらにハニカム構造体1の軸方向長さをL、境界壁14の厚みをtsとした場合、下記の計算式により求めることができる。なお、下記の計算式中の「OFA」とは、「Open Frontal Area」の略であり、セル12の開口率を表す。V=π×R2×L×(1-OFA/100)×(1-気孔率/100),Va=π×(r-ts/2)2×L×(1-高セル密度領域のOFA/100)×(1-高セル密度領域の気孔率/100),Vb={R2-(r+ts/2)2}×π×L×(1-低セル密度領域のOFA/100)×(1-低セル密度領域の気孔率/100),Vs={π×(r+ts/2)2×L}-{π×(r-ts/2)2×L}×(1-境界壁の気孔率/100)
 次に、比較例としてのハニカム構造体9(比較例C1~C3)について、図を用いて説明する。図6、図7に示すごとく、比較例C1、C2のハニカム構造体9は、上述した実施例E1~E16のハニカム構造体1と異なり、1つのセル密度領域(表1、表2では、第1セル密度領域として表示)のみで構成されている。すなわち、全体のセル密度が一定である。また、比較例C1のハニカム構造体9(図6)は、比較例C2のハニカム構造体9(図7)よりもセル密度が低い。その他の基本的な構成は、上述した実施例E1~E16のハニカム構造体1と同様である。
 また、比較例C3のハニカム構造体は、上述の実体積V、Va、Vb及びVsの関係が(V-Va)/(Vb+Vs)<1である。その他の基本的な構成は、上述した実施例E1~E16のハニカム構造体1と同様である。なお、各ハニカム構造体9(比較例C1~C3)の隔壁の厚み(mm)、セル密度(個/cm2)、気孔率(%)等は、表1、表2に示すとおりである。
 次に、ハニカム構造体(実施例E1~E16、比較例C1~C3)の製造方法について説明する。ハニカム構造体を製造するに当たっては、まず、セラミックス原料を準備する。セラミックス原料の原料粉末としては、カオリン、溶融シリカ、水酸化アルミニウム、アルミナ、タルク、カーボン粒子等を含有し、化学組成が重量比にて最終的にSiO2:45~55%、Al23:33~42%、MgO:12~18%となるコージェライトを主成分とする組成となるように調整したものを用いた。この原料粉末に水、バインダ等を所定量添加し、混錬することでセラミックス原料を得る。
 次いで、押出成形用金型を用いてセラミックス原料を押出成形し、ハニカム成形体を成形する。このとき、隔壁の形状に対応する形状のスリット溝を有する押出成形用金型を用いて押出成形を行う。そして、成形したハニカム成形体をマイクロ波により乾燥させ、所望の長さに切断する。その後、ハニカム成形体を所定の温度(例えば、最高温度:1390~1430℃)で焼成する。これにより、ハニカム構造体を得る。
 次に、各ハニカム構造体(実施例E1~E16、比較例C1~C3)の耐熱衝撃性、排ガス浄化性能について評価を行う。以下、耐熱衝撃性、排ガス浄化性能の評価方法について説明する。
 耐熱衝撃性の評価は、図8に示すごとく、ハニカム構造体1(9)をアルミナマット81で巻いた状態で排気管82内に設置し、触媒コンバータ8を構成する。このとき、ハニカム構造体1(9)には、予め排ガス浄化用の触媒を担持させておく。触媒としては、例えば、三元触媒として貴金属である白金(Pt)、ロジウム(Rh)、パラジウム(Pd)の少なくとも1種を含有し、γアルミナを含有したもの、さらにセリア等の酸素吸蔵剤を含有したもの等を用いることができる。また、ハニカム構造体1(9)には、軸方向Xの中間位置に2つの熱電対H1、H2を設置しておく。一方の熱電対H1は、軸方向Xに直交する断面の中心(中心軸の位置)に設置する。他方の熱電対H2は、外周から内側へ直径の1割に相当する距離の位置に設置する。
 次いで、触媒コンバータ8をエンジン(V型8気筒、4.3L)に搭載し、WOT(Wide open throttle)で走行する。そして、ハニカム構造体1(9)の中心部(熱電対H1)が所定の温度(1050℃)となるようにし、その状態で所定の時間(5分)維持する。その後、エンジンの回転数を落としてアイドリング状態とし、ハニカム構造体1(9)を急冷する。この急冷時に発生するハニカム構造体1(9)の中心部(熱電対H1)と外周部(熱電対H2)との温度差ΔT(℃)を測定する。本例では、比較例C2の温度差ΔT(℃)を基準とし、温度差ΔT比を求める。
 また、排ガス浄化性能の評価は、ハニカム構造体をエンジンに搭載して10万km走行したのと同等に担持した触媒を劣化させたハニカム構造体を準備し、これをエンジンのS/C(Start Catalyst)位置に搭載する。また、電気炉で加熱して触媒が十分に劣化されたハニカム構造体をエンジンのUF/C(Underfroor Catalyst)位置に搭載する。そして、所定のモード(LA♯4評価モード)で走行し、排出されるエミッション(HC、CO、NOx)量を測定する。本例では、比較例C2のエミッション量を基準とし、エミッション比を求める。ここで、S/C位置とは、エンジンからの排ガスが流通する排ガス流路において、エンジンの排気口の直後の位置(排ガス流路の上流側の位置)である。また、UF/C位置とは、排ガスの流路において、S/C位置のさらに下流側の車両の床下に当たる位置(排ガス流路の下流側の位置)である。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 次に、耐熱衝撃性、排ガス浄化性能の評価結果を表1、表2に示す。表1、表2からわかるように、実施例E1~E16のハニカム構造体は、(V-Va)/(Vb+Vs)≧1であり、温度差ΔT比やエミッション比が1未満であった。具体的には、実施例E1~E7、E11~E16のハニカム構造体は、全体のセル密度が一定である比較例C2、(V-Va)/(Vb+Vs)<1である比較例C3に比べて、温度差ΔTを小さくすることができ、急冷時の内外温度差を抑制することができる。また、実施例E1、E4、E8~E11のハニカム構造体は、全体のセル密度が一定である比較例C1、C2に比べて、エミッション量を低減することができる。以上の結果から、実施例E1~E16のハニカム構造体は、耐熱衝撃性や排ガス浄化性能に優れていることがわかった。
 また、図9は、表1及び表2の結果をもとに、(V-Va)/(Vb+Vs)の値と温度差ΔT比との関係を示したものである。同図には、実施例E1~E7、E11~E16、比較例C3の温度差ΔT比がプロットされている。同図からわかるように、1≦(V-Va)/(Vb+Vs)≦1.72とすることにより、温度差ΔTを確実に小さくする(温度差ΔT比を1未満とする)ことができ、耐熱衝撃性を高めることができる。特に、実施例E4、E5、E15、E16のように1.2≦(V-Va)/(Vb+Vs)≦1.63とすることにより、さらには実施例E4、E5、E15のように、1.2≦(V-Va)/(Vb+Vs)≦1.58とすることにより、その効果をより一層高めることができる。
 また、図10は、表1及び表2の結果をもとに、セル密度比Ma/Mbとエミッション比との関係を示したものである。同図には、実施例E1、E4、E8、E9、比較例C2のエミッション比がプロットされている。ここで、比較例C2は、セル密度比Ma/Mb=1としている。(尚、比較例C2のセル密度比Ma/Mbに関して、表1および表2では-で示している。)同図からわかるように、1<Ma/Mb<2とすることにより、エミッション量を確実に低減する(エミッション比を1未満とする)ことができ、排ガス浄化性能を高めることができる。また、1.25≦Ma/Mb≦1.5とすることにより、エミッション量をより低減することができ、排ガス浄化性能をさらに高めることができる。
 また、図11は、ハニカム構造体の中心からの距離と流速との関係を示したものである。同図には、実施例E1、E8、E9、比較例C2の流速比がプロットされている。ここで、流速の測定方法について説明する。図8を参照のごとく、排ガス浄化用の触媒を担持したハニカム構造体1(9)をアルミナマット81で巻いた状態で排気管82内に設置し、触媒コンバータ8を構成する。また、ハニカム構造体の下流側には、流速計(図示略)を設置しておく。次いで、ハニカム構造体1(9)に所定量の空気を流通させ、ハニカム構造体1(9)を通過した直後の空気の流速を流速計にて測定する。同図からわかるように、実施例E1、E8、E9のハニカム構造体は、セル密度比Ma/Mbの調整により、比較例C2のハニカム構造体に比べて内側と外側とにおける流速のばらつきを小さくすることができる。すなわち、流速分布をより均一化することができる。これにより、エミッション量を低減し、排ガス浄化性能を高めることができる。
 また、図12は、表1及び表2の結果をもとに、境界壁位置r/Rとエミッション比との関係を示したものである。同図には、実施例E1、E10、E11、比較例C1、C2のエミッション比がプロットされている。ここで、比較例C1は、実施例E1、E10、E11とセル密度が異なるため、境界壁位置r/R=0としている。(尚、比較例C1の境界壁位置r/Rに関して、表1および表2では-で示している。)また、比較例C2は、実施例E1、E10、E11とセル密度が同じであるため、境界壁位置r/R=1としている。(尚、比較例C2の境界壁位置r/Rに関して、表1及び表2では-で示している。)同図からわかるように、0.2≦r/R<1とすることにより、エミッション量を確実に低減する(エミッション比を1未満とする)ことができ、排ガス浄化性能を高めることができる。また、0.5≦r/R≦0.8とすることにより、エミッション量をより低減することができ、排ガス浄化性能をさらに高めることができる。
 1 ハニカム構造体
 11 隔壁
 12 セル
 14 境界壁
 2 セル密度領域
 2a 高セル密度領域
 2b 低セル密度領域

Claims (9)

  1.  格子状に設けられた隔壁(11)と該隔壁(11)に囲まれて形成された複数のセル(12)とを有し、一体成形されたコージェライト製のハニカム構造体(1)であって、該ハニカム構造体(1)は、軸方向(X)に直交する断面において、中心部から外周部に向かって径方向にセル密度が段階的に変化するよう構成された複数のセル密度領域(2)を有し、
     隣り合う該セル密度領域(2)同士の間には、両者を隔てる境界壁(14)が設けられており、
     上記複数のセル密度領域(2)は、最も外側のセル密度領域(2)を除いた中で最もセル密度が高い高セル密度領域(2a)と、最も内側のセル密度領域(2)を除いた中で最もセル密度が低い低セル密度領域(2b)とを有し、
     上記ハニカム構造体(1)全体を上記高セル密度領域(2a)で構成したと仮定した場合のハニカム構造体の実体積をV、上記ハニカム構造体(1)の上記高セル密度領域(2a)の実体積をVa、上記低セル密度領域(2b)の実体積をVb、上記低セル密度領域(2b)とそのすぐ内側にある上記セル密度領域(2)との間を隔てる上記境界壁(14)の実体積をVsとした場合に、V-Va≧Vb+Vsの関係を満たすことを特徴とするハニカム構造体(1)。
  2.  請求項1に記載のハニカム構造体(1)において、上記実体積V、Va、Vb及びVsは、1≦(V-Va)/(Vb+Vs)≦1.72の関係を満たすことを特徴とするハニカム構造体(1)。
  3.  請求項1又は2に記載のハニカム構造体(1)において、上記実体積V、Va、Vb及びVsは、1.2≦(V-Va)/(Vb+Vs)≦1.58の関係を満たすことを特徴とするハニカム構造体(1)。
  4.  請求項1~3のいずれか1項に記載のハニカム構造体(1)において、上記高セル密度領域(2a)における上記隔壁(11)の厚みをTa、上記低セル密度領域(2b)における上記隔壁(11)の厚みをTbとした場合に、Ta≦Tbの関係を満たすことを特徴とするハニカム構造体(1)。
  5.  請求項1~4のいずれか1項に記載のハニカム構造体(1)において、上記高セル密度領域(2a)のセル密度をMa、上記低セル密度領域(2b)のセル密度をMbとした場合に、1<Ma/Mb<2の関係を満たすことを特徴とするハニカム構造体(1)。
  6.  請求項1~5のいずれか1項に記載のハニカム構造体(1)において、該ハニカム構造体(1)の半径をR、上記高セル密度領域(2a)とそのすぐ外側にある上記セル密度領域(2)との間を隔てる上記境界壁(14)の半径をrとした場合に、0.2≦r/R<1の関係を満たすことを特徴とするハニカム構造体(1)。
  7.  請求項1~6のいずれか1項に記載のハニカム構造体(1)において、上記複数のセル密度領域(2)のうち、上記高セル密度領域(2a)が最も内側に配置されていることを特徴とするハニカム構造体(1)。
  8.  請求項5に記載のハニカム構造体(1)において、上記高セル密度領域(2a)のセル密度をMa、上記低セル密度領域(2b)のセル密度をMbとした場合に、1.25<Ma/Mb<1.5の関係を満たすことを特徴とするハニカム構造体(1)。
  9.  請求項6に記載のハニカム構造体(1)において、該ハニカム構造体(1)の半径をR、上記高セル密度領域(2a)とそのすぐ外側にある上記セル密度領域(2)との間を隔てる上記境界壁(14)の半径をrとした場合に、0.5≦r/R<0.8の関係を満たすことを特徴とするハニカム構造体(1)。
PCT/JP2013/051313 2012-01-27 2013-01-23 ハニカム構造体 WO2013111778A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112013000720.7T DE112013000720B4 (de) 2012-01-27 2013-01-23 Wabenstrukturkörper
US14/374,960 US9533294B2 (en) 2012-01-27 2013-01-23 Honeycomb structural body
CN201380006690.5A CN104066511B (zh) 2012-01-27 2013-01-23 蜂窝状结构体

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-015737 2012-01-27
JP2012015737 2012-01-27
JP2012248302A JP5892911B2 (ja) 2012-01-27 2012-11-12 ハニカム構造体
JP2012-248302 2012-11-12

Publications (1)

Publication Number Publication Date
WO2013111778A1 true WO2013111778A1 (ja) 2013-08-01

Family

ID=48873493

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/051313 WO2013111778A1 (ja) 2012-01-27 2013-01-23 ハニカム構造体

Country Status (5)

Country Link
US (1) US9533294B2 (ja)
JP (1) JP5892911B2 (ja)
CN (1) CN104066511B (ja)
DE (1) DE112013000720B4 (ja)
WO (1) WO2013111778A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013228189A (ja) * 2012-03-30 2013-11-07 Ngk Insulators Ltd 熱交換部材
WO2015111352A1 (en) * 2014-01-24 2015-07-30 Toyota Jidosha Kabushiki Kaisha Catalytic converter and method for designing the catalytic converter
JP2015181982A (ja) * 2014-03-20 2015-10-22 株式会社デンソー ハニカム構造体及びハニカム構造体の設計方法
JP2016010764A (ja) * 2014-06-30 2016-01-21 株式会社デンソー ハニカム構造体及びハニカム構造体の設計方法
JP2021519210A (ja) * 2019-03-25 2021-08-10 山東国瓷功能材料股▲フン▼有限公司Shandong Sinocera Functional Material Co., Ltd ハニカム構造体、ハニカム構造フィルター、及び押出成形金型

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5708670B2 (ja) 2013-01-18 2015-04-30 株式会社デンソー ハニカム構造体
JP5979044B2 (ja) * 2013-03-19 2016-08-24 株式会社デンソー ハニカム構造体
JP5939183B2 (ja) 2013-03-22 2016-06-22 株式会社デンソー ハニカム構造体
GB201317744D0 (en) * 2013-10-08 2013-11-20 Twigg Scient & Technical Ltd Improvements in nanoparticle counting
JP5904193B2 (ja) 2013-11-15 2016-04-13 株式会社デンソー ハニカム構造体の製造方法
JP6438939B2 (ja) * 2014-03-31 2018-12-19 日本碍子株式会社 ハニカム構造体
JP5704548B1 (ja) * 2014-04-24 2015-04-22 株式会社深井製作所 キャタライザエレメント及びキャタライザ
JP6485162B2 (ja) 2014-07-24 2019-03-20 株式会社デンソー 排ガス浄化フィルタ
JP6314783B2 (ja) * 2014-10-10 2018-04-25 株式会社デンソー 排ガス浄化フィルタ
JP2016125797A (ja) * 2015-01-08 2016-07-11 東京窯業株式会社 ハニカム構造体
JP6934702B2 (ja) * 2015-03-27 2021-09-15 株式会社デンソー 排ガス浄化フィルタ
JP6587565B2 (ja) * 2016-03-17 2019-10-09 日本碍子株式会社 ハニカム構造体
JP6620049B2 (ja) * 2016-03-25 2019-12-11 日本碍子株式会社 ハニカム構造体
JP6625920B2 (ja) * 2016-03-25 2019-12-25 トヨタ自動車株式会社 触媒コンバーター
JP6587567B2 (ja) * 2016-03-28 2019-10-09 日本碍子株式会社 ハニカム構造体、及びハニカム構造体の製造方法
JP6729356B2 (ja) * 2016-12-27 2020-07-22 株式会社デンソー 多孔質ハニカムフィルタ
JP6824770B2 (ja) * 2017-02-15 2021-02-03 日本碍子株式会社 ハニカム構造体
EP3691770A1 (en) 2017-10-02 2020-08-12 Corning Incorporated Ceramic honeycomb bodies and methods for canning thereof
US11813597B2 (en) 2018-03-29 2023-11-14 Corning Incorporated Honeycomb bodies with varying cell densities and extrusion dies for the manufacture thereof
JP7102223B2 (ja) * 2018-05-17 2022-07-19 日本碍子株式会社 ハニカム構造体
DE102019115266A1 (de) * 2018-06-27 2020-01-02 Denso Corporation Wabenstrukturkörper und abgasreinigungsfilter
JP2020040004A (ja) * 2018-09-07 2020-03-19 いすゞ自動車株式会社 パティキュレートフィルタ及びその製造方法
CN109944662A (zh) * 2019-03-25 2019-06-28 山东国瓷功能材料股份有限公司 蜂窝结构体和蜂窝结构过滤器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002177794A (ja) * 2000-09-29 2002-06-25 Denso Corp セラミック触媒体およびセラミック担体
JP2003254034A (ja) * 2002-02-26 2003-09-10 Ngk Insulators Ltd ハニカムフィルタ
JP2008018370A (ja) * 2006-07-14 2008-01-31 Denso Corp セラミック触媒体
JP2008200605A (ja) * 2007-02-20 2008-09-04 Denso Corp ハニカム構造体

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3853485A (en) * 1972-12-11 1974-12-10 Corning Glass Works Core member for catalytic oxidation converter
US5108685A (en) 1990-12-17 1992-04-28 Corning Incorporated Method and apparatus for forming an article with multi-cellular densities and/or geometries
JPH04332847A (ja) 1991-05-09 1992-11-19 Hitachi Ltd 白血球分析装置
JP4159155B2 (ja) 1998-01-22 2008-10-01 株式会社日本自動車部品総合研究所 セラミックハニカム構造体および押出金型
DE19938038A1 (de) 1998-09-14 2000-05-04 Ford Global Tech Inc Abgasbehandlungsvorrichtung mit variierender Zelldichte
JP4094823B2 (ja) 2001-04-03 2008-06-04 日本碍子株式会社 ハニカム構造体及びそのアッセンブリ
JP4640903B2 (ja) 2001-07-13 2011-03-02 日本碍子株式会社 ハニカム構造体、及びその製造方法
EP1415779B1 (en) 2001-07-13 2009-09-23 Ngk Insulators, Ltd. Honeycomb structural body, honeycomb filter, and method of manufacturing the structural body and the filter
JP4367683B2 (ja) * 2001-10-09 2009-11-18 日本碍子株式会社 ハニカムフィルター
JP4293753B2 (ja) * 2002-03-19 2009-07-08 日本碍子株式会社 ハニカムフィルター
JP2003340224A (ja) * 2002-05-30 2003-12-02 Ngk Insulators Ltd ハニカム構造体、及びその製造方法
JP4332847B2 (ja) 2003-10-20 2009-09-16 トヨタ自動車株式会社 排ガス浄化装置
US7279213B2 (en) * 2003-12-29 2007-10-09 Corning Incorporated High-strength thin-walled honeycombs
US7238217B2 (en) * 2004-04-23 2007-07-03 Corning Incorporated Diesel engine exhaust filters
JP4511396B2 (ja) 2005-03-22 2010-07-28 日本碍子株式会社 ハニカム構造体及びその製造方法
JP2006281134A (ja) 2005-04-01 2006-10-19 Ngk Insulators Ltd ハニカム構造体
EP1997788B1 (en) * 2006-03-17 2012-11-28 NGK Insulators, Ltd. Process for producing a cordierite-based honeycomb structure
US7575793B2 (en) 2006-03-31 2009-08-18 Corning Incorporated Radial cell ceramic honeycomb structure
US8273315B2 (en) * 2010-08-09 2012-09-25 Ford Global Technologies, Llc Engine emission control system
US8440155B2 (en) * 2011-08-19 2013-05-14 Corning Incorporated Flow modulating substrates for early light-off
US8747760B2 (en) * 2011-11-10 2014-06-10 GM Global Technology Operations LLC Catalytic converter
JP5708670B2 (ja) * 2013-01-18 2015-04-30 株式会社デンソー ハニカム構造体

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002177794A (ja) * 2000-09-29 2002-06-25 Denso Corp セラミック触媒体およびセラミック担体
JP2003254034A (ja) * 2002-02-26 2003-09-10 Ngk Insulators Ltd ハニカムフィルタ
JP2008018370A (ja) * 2006-07-14 2008-01-31 Denso Corp セラミック触媒体
JP2008200605A (ja) * 2007-02-20 2008-09-04 Denso Corp ハニカム構造体

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013228189A (ja) * 2012-03-30 2013-11-07 Ngk Insulators Ltd 熱交換部材
WO2015111352A1 (en) * 2014-01-24 2015-07-30 Toyota Jidosha Kabushiki Kaisha Catalytic converter and method for designing the catalytic converter
JP2015181982A (ja) * 2014-03-20 2015-10-22 株式会社デンソー ハニカム構造体及びハニカム構造体の設計方法
JP2016010764A (ja) * 2014-06-30 2016-01-21 株式会社デンソー ハニカム構造体及びハニカム構造体の設計方法
JP2021519210A (ja) * 2019-03-25 2021-08-10 山東国瓷功能材料股▲フン▼有限公司Shandong Sinocera Functional Material Co., Ltd ハニカム構造体、ハニカム構造フィルター、及び押出成形金型
JP7075507B2 (ja) 2019-03-25 2022-05-25 山東国瓷功能材料股▲フン▼有限公司 ハニカム構造体、ハニカム構造フィルター、及び押出成形金型
US11911723B2 (en) 2019-03-25 2024-02-27 Shandong Sinocera Functional Material Co., Ltd Honeycomb structure body, honeycomb structure filter, and extrusion molding die

Also Published As

Publication number Publication date
CN104066511A (zh) 2014-09-24
DE112013000720T5 (de) 2014-11-06
CN104066511B (zh) 2016-06-01
JP5892911B2 (ja) 2016-03-23
JP2013173134A (ja) 2013-09-05
US9533294B2 (en) 2017-01-03
DE112013000720B4 (de) 2024-05-29
US20150005153A1 (en) 2015-01-01

Similar Documents

Publication Publication Date Title
JP5892911B2 (ja) ハニカム構造体
JP5892910B2 (ja) ハニカム構造体
JP5771541B2 (ja) ハニカム構造体
US9080484B2 (en) Wall flow type exhaust gas purification filter
JP6339463B2 (ja) ハニカム構造体
JP2008018370A (ja) セラミック触媒体
JP6540260B2 (ja) ハニカム構造体及び自動車用触媒コンバータ
JP6238791B2 (ja) 目封止ハニカム構造体
JP6767914B2 (ja) ハニカム構造体
US20150252704A1 (en) Honeycomb structure body
JP6247343B2 (ja) ハニカム構造体
US10918988B2 (en) Honeycomb filter
JP6639977B2 (ja) ハニカムフィルタ
JP2014148924A (ja) 排ガス浄化装置
CN104936694B (zh) 催化转换器
JP6625920B2 (ja) 触媒コンバーター
CN109967133B (zh) 蜂窝结构体
JP2012200625A (ja) ハニカム構造体
JP6013243B2 (ja) ハニカム触媒体
JP2007289815A (ja) 排ガス浄化用触媒及びその製造方法
US11471869B2 (en) Honeycomb structure
JP4382574B2 (ja) ハニカム構造体の圧力損失予測方法、及びハニカム構造体の製造方法
CN220227005U (zh) 蜂窝过滤器
US10974187B2 (en) Honeycomb filter
CN104080533B (zh) 蜂窝状结构体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13741099

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14374960

Country of ref document: US

Ref document number: 1120130007207

Country of ref document: DE

Ref document number: 112013000720

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13741099

Country of ref document: EP

Kind code of ref document: A1