WO2013108856A1 - アクリルゴム/フッ素ゴム組成物の製造方法、架橋性組成物、積層体および耐熱エアーゴムホース - Google Patents

アクリルゴム/フッ素ゴム組成物の製造方法、架橋性組成物、積層体および耐熱エアーゴムホース Download PDF

Info

Publication number
WO2013108856A1
WO2013108856A1 PCT/JP2013/050849 JP2013050849W WO2013108856A1 WO 2013108856 A1 WO2013108856 A1 WO 2013108856A1 JP 2013050849 W JP2013050849 W JP 2013050849W WO 2013108856 A1 WO2013108856 A1 WO 2013108856A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluororubber
acrylic rubber
rubber
crosslinking
mass
Prior art date
Application number
PCT/JP2013/050849
Other languages
English (en)
French (fr)
Inventor
水野 剛
正英 淀川
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to EP13739137.1A priority Critical patent/EP2805988B1/en
Priority to CN201380006083.9A priority patent/CN104093769B/zh
Priority to JP2013554348A priority patent/JP5994791B2/ja
Publication of WO2013108856A1 publication Critical patent/WO2013108856A1/ja
Priority to US14/335,385 priority patent/US9718895B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/02Layered products comprising a layer of natural or synthetic rubber with fibres or particles being present as additives in the layer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a non-planar shape
    • B32B1/08Tubular products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/04Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B25/042Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material of natural rubber or synthetic rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • B32B27/322Layered products comprising a layer of synthetic resin comprising polyolefins comprising halogenated polyolefins, e.g. PTFE
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/203Solid polymers with solid and/or liquid additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/14Peroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L13/00Compositions of rubbers containing carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/18Homopolymers or copolymers or tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L11/00Hoses, i.e. flexible pipes
    • F16L11/04Hoses, i.e. flexible pipes made of rubber or flexible plastics
    • F16L11/12Hoses, i.e. flexible pipes made of rubber or flexible plastics with arrangements for particular purposes, e.g. specially profiled, with protecting layer, heated, electrically conducting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/022 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • B32B2250/248All polymers belonging to those covered by group B32B25/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2270/00Resin or rubber layer containing a blend of at least two different polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/54Yield strength; Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/714Inert, i.e. inert to chemical degradation, corrosion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2597/00Tubular articles, e.g. hoses, pipes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/18Homopolymers or copolymers of tetrafluoroethylene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2351/00Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • C08J2351/04Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers grafted on to rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/22Mixtures comprising a continuous polymer matrix in which are dispersed crosslinked particles of another polymer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2312/00Crosslinking
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L11/00Hoses, i.e. flexible pipes
    • F16L11/04Hoses, i.e. flexible pipes made of rubber or flexible plastics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/3154Of fluorinated addition polymer from unsaturated monomers

Definitions

  • the present invention relates to a method for producing an acrylic rubber / fluororubber composition, a crosslinkable composition containing an acrylic rubber / fluororubber composition and a crosslinker for fluororubber, and a laminate having a layer formed by curing the crosslinkable composition.
  • Body and heat-resistant air rubber hose are used to produce an acrylic rubber / fluororubber composition, a crosslinkable composition containing an acrylic rubber / fluororubber composition and a crosslinker for fluororubber, and a laminate having a layer formed by curing the crosslinkable composition.
  • Rubber hose is used for automobile parts and other industrial parts.
  • heat-resistant air rubber hoses are used for turbochargers of diesel vehicles.
  • the heat-resistant air rubber hose attached to the turbocharger has a role of supplying high-temperature and high-pressure compressed gas compressed by the turbocharger to the engine.
  • This compressed gas also contains high-temperature mist such as fuel discharged from the engine and engine oil.
  • the heat resistant air rubber hose is required to have high heat resistance, chemical resistance, oil resistance and pressure resistance.
  • Patent Document 1 discloses a vinylidene fluoride-hexafluoropropylene elastic copolymer, a vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene elastic copolymer, a tetrafluoroethylene-propylene elastic copolymer, a tetrafluoroethylene-fluoride.
  • a laminated rubber hose is disclosed in which an inner layer of fluororubber such as vinylidene-propylene elastic copolymer and an outer layer of acrylic rubber are co-vulcanized and bonded.
  • fluororubber has poor affinity with other rubber materials such as acrylic rubber, and the laminated rubber hose of Patent Document 1 has insufficient adhesion between the fluororubber layer and the acrylic rubber layer.
  • the fluororubber compositions there is an acrylic rubber / fluororubber composition in which crosslinked acrylic rubber particles are dispersed in a continuous fluororubber phase.
  • the acrylic rubber / fluororubber composition is molded, crosslinked, and used as a molded product such as an automobile part or an industrial article.
  • Patent Document 2 discloses both fluororubber, acrylic rubber, fluororubber and acrylic rubber.
  • a method is disclosed in which a third elastomer capable of co-crosslinking and a crosslinking agent for acrylic rubber are blended and dynamically crosslinked while giving shear deformation.
  • Patent Document 3 discloses that an internally crosslinked epoxy group-containing acrylic rubber latex having a gel content of 80% by weight or more and a fluororubber latex are mixed in a latex state, and then the obtained mixed latex is co-coagulated.
  • a method of manufacturing is disclosed.
  • the present invention relates to a method for producing an acrylic rubber / fluororubber composition capable of forming a layer excellent in interlayer adhesion with a layer formed by crosslinking fluororubber, and a layer excellent in interlayer adhesion with a layer formed by crosslinking fluororubber.
  • An object of the present invention is to provide a cross-linkable composition capable of forming a resin, an inexpensive laminate excellent in interlayer adhesion with a layer formed by cross-linking fluororubber, heat resistance, acid resistance and alkali resistance, and a heat-resistant air rubber hose. .
  • the present invention provides a method for producing an acrylic rubber / fluororubber composition, a crosslinkable composition, a laminate and a heat-resistant air rubber hose having the following constitution.
  • a method for producing an acrylic rubber / fluororubber composition in which particles of crosslinked acrylic rubber (B) are dispersed in a continuous phase of fluororubber (A), Fluorine rubber (A), a crosslinking agent for acrylic rubber that does not react with the fluororubber (A), and a crosslinking aid for acrylic rubber that does not react with the fluororubber (A) are kneaded, and the crosslinking agent for acrylic rubber
  • a method for producing an acrylic rubber / fluororubber composition [2] The method for producing an acrylic rubber / fluororubber composition according to the above [1], wherein the fluororubber (A) is a copolymer containing a repeating unit based on tetrafluoroethylene and a repeating unit based on propylene. .
  • the molar ratio of the repeating unit based on tetrafluoroethylene and the repeating unit based on propylene in the fluororubber (A) is 40/60 to 70/30.
  • the acrylic rubber (B) contains 30 to 100% by mass of repeating units based on (meth) acrylic monomers, 0 to 30% by mass of repeating units based on ethylene, and 0 to 40% of repeating units based on vinyl acetate. %, And 0.1 to 20% by mass of a repeating unit based on a crosslinking group-containing monomer,
  • [6] The method for producing an acrylic rubber / fluororubber composition according to the above [5], wherein the crosslinking group of the crosslinking group-containing monomer is an epoxy group.
  • step (1) with respect to 100 parts by mass of the fluororubber (A), 0.5 to 20 parts by mass of the crosslinking agent for acrylic rubber and 0.05 of the crosslinking aid for acrylic rubber
  • the acrylic rubber (B) is cross-linked while kneading the fluororubber composition and the acrylic rubber (B) under heating, and the fluororubber (A)
  • the acrylic rubber / fluororubber composition according to any one of the above [1] to [7], wherein the crosslinked acrylic rubber (B) particles having an average particle diameter of 2 to 30 ⁇ m are dispersed in the continuous phase.
  • a crosslinkable composition comprising an acrylic rubber / fluororubber composition produced by the production method according to any one of [1] to [8] above, and a crosslinker for fluororubber .
  • the crosslinkability according to [9] or [10], wherein the content of the cross-linking agent for fluororubber is 0.1 to 10 parts by mass with respect to 100 parts by mass of the fluororubber (A). Composition.
  • crosslinking aid for fluororubber triallyl cyanurate, triallyl isocyanurate, triacryl formal, triallyl trimellitate, dipropargyl terephthalate, diallyl phthalate, tetraallyl terephthalamide, or triallyl phosphate
  • the crosslinkable composition according to any one of the above [9] to [12] further containing carbon black as a filler.
  • a laminate comprising a layer formed by crosslinking the crosslinkable composition according to any one of [9] to [13] and a layer formed by crosslinking the fluororubber (C). .
  • the fluororubber (A), the crosslinking agent for acrylic rubber, and the crosslinking aid for acrylic rubber are kneaded.
  • a fluororubber composition containing a rubber crosslinking aid with good dispersibility is obtained.
  • a shearing force is applied to the acrylic rubber (B) to form particles.
  • An acrylic rubber / fluororubber composition in which particles of the crosslinked acrylic rubber (B) are dispersed in the continuous phase of A) is obtained.
  • the cross-linking agent for acrylic rubber and the cross-linking aid for acrylic rubber are dispersed almost uniformly in the fluororubber composition, the cross-linking property of the acrylic rubber (B) is excellent, and the heating temperature during cross-linking is low. Can be suppressed. For this reason, the acrylic rubber / fluororubber composition can be produced with high productivity while suppressing thermal deterioration of the rubber.
  • the laminate of the present invention has a layer formed by crosslinking the crosslinkable composition of the present invention and a layer formed by crosslinking the fluororubber (C).
  • the heat-resistant air rubber hose of the present invention has a tubular outer layer formed by crosslinking a crosslinkable composition and a tubular inner layer formed by crosslinking fluororubber (C) provided on the inner periphery of the outer layer. Even in a high-temperature environment, both layers have excellent interlayer adhesion. Furthermore, even when used in an automotive air hose that requires high-temperature and high-pressure resistance, there is no oil oozing out to the surface of the heat-resistant air rubber hose, and excellent durability can be exhibited.
  • the fluorororubber (A) used in the method for producing the acrylic rubber / fluororubber composition of the present invention is not particularly limited, and conventionally known ones can be used.
  • tetrafluoroethylene / propylene copolymer tetrafluoroethylene / propylene / vinylidene fluoride copolymer, tetrafluoroethylene / propylene / vinyl fluoride copolymer, tetrafluoroethylene / propylene / perfluoro (propyl vinyl ether) copolymer
  • Polymer tetrafluoroethylene / propylene / perfluoro (methyl vinyl ether) copolymer, tetrafluoroethylene / propylene / perfluoro (ethyl vinyl ether) copolymer, tetrafluoroethylene / propylene / trifluoroethylene copolymer, tetrafluoroethylene / propylene / Pen
  • copolymers may be used individually by 1 type, and may use 2 or more types together.
  • a copolymer containing a repeating unit based on tetrafluoroethylene (hereinafter referred to as “repeat unit based on TFE”) and a repeating unit based on propylene (hereinafter referred to as “repeat unit based on P”) It is preferable because of excellent acid resistance and alkali resistance.
  • a molar ratio of the repeating unit based on TFE and the repeating unit based on P ((repeat unit based on TFE) / (repeat unit based on P) )) Is preferably 40/60 to 70/30, more preferably 45/55 to 65/35, and most preferably 50/50 to 60/40.
  • repeating units based on monomers other than tetrafluoroethylene and propylene hereinafter referred to as “repeating units based on other monomers”
  • the content of the copolymer is preferably 10 mol% or less, and more preferably 5 mol% or less. Particularly preferred is 0.1 to 5 mol%.
  • a particularly preferred specific example of the fluororubber (A) is a tetrafluoroethylene / propylene copolymer because it is superior in acid resistance and alkali resistance.
  • examples of commercially available tetrafluoroethylene / propylene copolymers include “AFLAS150P” (manufactured by Asahi Glass Co., Ltd.).
  • the fluorine content of the fluororubber (A) is preferably 40 to 75% by mass, more preferably 45 to 75% by mass, and most preferably 50 to 75% by mass. When the fluorine content is in the above range, the heat resistance, chemical resistance, electrical insulation and steam resistance are excellent.
  • the acrylic rubber (B) used in the method for producing the acrylic rubber / fluororubber composition of the present invention is not particularly limited, and conventionally known ones can be used.
  • the acrylic rubber for example, an acrylic rubber having one or more of acrylic monomers or methacrylic monomers (hereinafter, both acrylic monomers and methacrylic monomers are referred to as “(meth) acrylic monomers”) as a main component, etc. Can be mentioned.
  • acrylic monomer examples include acrylates such as methyl acrylate, ethyl acrylate, propyl acrylate, n-butyl acrylate, n-octyl acrylate, methoxymethyl acrylate, methoxyethyl acrylate, and ethoxyethyl acrylate.
  • methacryl monomer the methacrylate corresponding to the said acrylic monomer is mentioned.
  • the content of repeating units based on (meth) acrylic monomers in the acrylic rubber is 30 to 100% by mass
  • the content of repeating units based on ethylene is 0 to 30% by mass
  • the content of the repeating unit based on is preferably 0 to 40% by mass.
  • the content of the repeating unit based on the (meth) acrylic monomer in the acrylic rubber is more preferably 40 to 100% by mass, further preferably 50 to 100% by mass, and particularly preferably 70 to 100% by mass.
  • the repeating unit based on ethylene is contained, the content is more preferably 0.1 to 20% by mass, and most preferably 1 to 10% by mass.
  • the acrylic rubber (B) preferably contains a repeating unit based on a crosslinking group-containing monomer.
  • the content is preferably 0.1 to 20% by mass, more preferably 1 to 10% by mass, and most preferably 2 to 5% by mass.
  • the acrylic rubber (B) is excellent in crosslinkability.
  • the crosslinking group-containing monomer include monomers having an active halogen group, an epoxy group, a carboxyl group, a hydroxyl group, an amide group, a diene group, and the like.
  • a crosslinking group an epoxy group and a carboxyl group are preferable and an epoxy group is more preferable.
  • the crosslinking group-containing monomer having an epoxy group glycidyl methacrylate and the like are preferable.
  • the crosslinking group-containing monomer having a carboxyl group monobutyl maleate or the like is preferable.
  • the acrylic rubber (B) is preferably an acrylic rubber that undergoes amine crosslinking, and more preferably an acrylic rubber having an epoxy group.
  • an acrylic rubber having an epoxy group is “DENKA ER-5300” (manufactured by Denki Kagaku Kogyo Co., Ltd.).
  • the crosslinking agent for acrylic rubber used in the method for producing the acrylic rubber / fluororubber composition of the present invention has no reactivity with the fluororubber (A).
  • the acrylic rubber crosslinking agent is preferably a compound having an amide, acid or isocyanate group. Of these, those having an amino group such as guanidines, imidazoles and the like are preferable.
  • Examples of the guanidines include diphenylguanidine, triphenylguanidine, di-o-tolylguanidine, o-tolylbiguanide, dicatechol borate of di-o-tolylguanidine, diphenylguanidine phthalate, mixed diarylguanidine and the like.
  • Examples of imidazoles include not only imidazoles but also substituted imidazoles in which hydrogen atoms bonded to carbon atoms and / or nitrogen atoms of the imidazole ring are substituted with various hydrocarbon groups.
  • imidazole 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl -2-Methylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-phenylimidazole and the like are preferable.
  • Guanidines and imidazoles can be used alone or in combination of two or more. Guanidines and imidazoles may be used in combination.
  • the crosslinking aid for acrylic rubber used in the method for producing the acrylic rubber / fluororubber composition of the present invention has no reactivity with the fluororubber (A).
  • a crosslinking aid include polyamine-based crosslinking aids and organic acid ammonium salts.
  • the polyamine-based crosslinking aid is not particularly limited as long as it is in the form of a compound having two or more amino groups or a compound having two or more amino groups at the time of crosslinking.
  • a compound in which a plurality of hydrogen atoms of an aliphatic hydrocarbon or an aromatic hydrocarbon is substituted with an amino group or a hydrazide structure (a structure represented by —CONHNH 2 , CO represents a carbonyl group) is preferable.
  • aliphatic polyamines such as hexamethylenediamine, hexamethylenediamine carbamate, tetramethylenepentamine, hexamethylenediamine cinnamaldehyde adduct, hexamethylenediamine dibenzoate salt; (2) 2 , 2-bis ⁇ 4- (4-aminophenoxy) phenyl ⁇ propane, 4,4′-methylenedianiline, m-phenylenediamine, p-phenylenediamine, 4,4′-methylenebis (o-chloroaniline), etc.
  • Aromatic polyamines (3) compounds having two or more hydrazide structures such as isophthalic acid dihydrazide, adipic acid dihydrazide, and sebacic acid dihydrazide; (4) ammonium isocyanurate.
  • organic acid ammonium salt include ammonium benzoate, ammonium adipate, zinc dimethyldithiocarbamate, and the like. Ammonium benzoate is preferred because of its excellent crosslinkability and availability.
  • the method for producing the acrylic rubber / fluororubber composition of the present invention is produced by the following steps (1) and (2).
  • Step (1) a fluororubber composition containing a cross-linking agent for acrylic rubber and a cross-linking aid for acrylic rubber by kneading the fluororubber (A), a cross-linking agent for acrylic rubber, and a cross-linking aid for acrylic rubber.
  • Step (2) While the fluororubber composition obtained in the step (1) and the acrylic rubber (B) are kneaded under heating, the acrylic rubber (B) is cross-linked to obtain a continuous fluororubber (A).
  • the step of dispersing particles of the acrylic rubber (B) crosslinked in the phase will be described in more detail.
  • the fluorororubber (A), the acrylic rubber crosslinking agent, and the acrylic rubber crosslinking aid are kneaded.
  • Fluorine rubber (A) which has good roll processability, is mixed with an acrylic rubber crosslinking agent and an acrylic rubber crosslinking aid and kneaded, so that the acrylic rubber crosslinking agent and the acrylic rubber crosslinking aid are dispersed almost uniformly.
  • a rubber composition is obtained.
  • the mixing ratio of the fluororubber (A), the acrylic rubber cross-linking agent, and the acrylic rubber cross-linking aid was 0.1 parts by mass of the acrylic rubber cross-linking agent with respect to 100 parts by mass of the fluororubber (A).
  • the crosslinking aid for acrylic rubber is preferably 0.05 to 10 parts by mass, the crosslinking agent for acrylic rubber is 1.5 to 15 parts by mass, and the crosslinking aid for acrylic rubber is 0.5. More preferably, it is ⁇ 5 parts by mass. If the amount of crosslinking agent for acrylic rubber or crosslinking aid for acrylic rubber is too small, the crosslinking density of acrylic rubber tends to be low, and the mechanical properties, oil resistance, and heat resistance of the crosslinked acrylic rubber / fluorinated rubber composition Etc. may be insufficient.
  • the ratio of the crosslinking agent for acrylic rubber and the crosslinking aid for acrylic rubber is preferably 10 to 50 parts by mass of the crosslinking aid for acrylic rubber with respect to 100 parts by mass of the crosslinking agent for acrylic rubber. Part by mass is more preferable. If the ratio of the crosslinking agent for acrylic rubber and the crosslinking aid for acrylic rubber is within the above range, the crosslinking property is high and the crosslinking reaction can be completed within a predetermined time.
  • the kneading method of the fluororubber (A), the crosslinking agent for acrylic rubber, and the crosslinking aid for acrylic rubber is not particularly limited, and can be performed by a conventionally known method.
  • the kneading temperature is preferably 30 to 100 ° C, more preferably 50 to 80 ° C.
  • the kneading time is preferably 5 to 60 minutes, more preferably 10 to 30 minutes.
  • a kneading apparatus for example, a kneader, a Banbury mixer, a single screw extruder, a twin screw extruder, or the like can be used.
  • the acrylic rubber (B) is crosslinked while kneading the fluororubber composition obtained in the step (1) and the acrylic rubber (B) under heating.
  • a shearing force is applied to the acrylic rubber (B).
  • (B) is dispersed as particles, and an acrylic rubber / fluororubber composition in which particles of crosslinked acrylic rubber (B) are dispersed in the continuous phase of fluororubber (A) is obtained.
  • the particle size of the crosslinked acrylic rubber (B) is kept smaller.
  • the acrylic rubber (B) has excellent cross-linking properties and the heating temperature during dynamic cross-linking. Can be kept low.
  • the dynamic crosslinking of the acrylic rubber (B) only the acrylic rubber (B) is crosslinked and the fluororubber (A) is not substantially crosslinked, but a part of the fluororubber (A) is acrylic rubber (B ) May be physically entangled and pseudo-crosslinked. Whether the fluororubber (A) is artificially crosslinked with the acrylic rubber (B) can be evaluated by measuring the gel component ratio of the acrylic rubber / fluororubber composition.
  • the fluororubber (A) itself is not substantially cross-linked by dynamic cross-linking, the gel component of the acrylic rubber / fluororubber composition after the dynamic cross-linking is detected more than the charged amount of the acrylic rubber (B). Then, it can be seen that a part of the fluororubber (A) is physically entangled with the acrylic rubber (B) and is pseudo-crosslinked.
  • fluororubber (A) is more than 50% by mass, the cost reduction effect is small.
  • fluororubber (A) is less than 5% by mass, normal properties such as tensile strength, elongation and hardness of the rubber composition obtained by crosslinking the acrylic rubber / fluororubber composition are lowered.
  • interlayer adhesiveness with the layer formed by cross-linking fluororubber is lowered.
  • the kneading ratio of the acrylic rubber (B), the crosslinking agent for acrylic rubber and the crosslinking aid for acrylic rubber in the fluororubber composition Is preferably 0.5 to 15 parts by mass of the crosslinking agent for acrylic rubber and 0.1 to 7 parts by mass of the crosslinking aid for acrylic rubber with respect to 100 parts by mass of the acrylic rubber (B). More preferably, the crosslinking agent for rubber is 1 to 10 parts by mass, the crosslinking aid for acrylic rubber is 0.5 to 5 parts by mass, the crosslinking agent for acrylic rubber is 2 to 7 parts by mass, and the crosslinking aid for acrylic rubber. Is most preferably 1 to 3 parts by mass.
  • step (2) rubber softener, plasticizer, filler, antioxidant, heat stabilizer, ultraviolet absorber, colorant, processing aid, lubricant, lubricant, flame retardant, electrification as necessary
  • Various compounding agents such as an inhibitor may be added and kneaded. These compounding agents may be kneaded in advance in the acrylic rubber (B), and the fluororubber composition may be added thereto and kneaded.
  • the content of these compounding agents is 0.1 to 100 parts by mass, preferably 0.1 to 70 parts by mass with respect to 100 parts by mass of the acrylic rubber / fluororubber composition.
  • the kneading method of the fluororubber composition and the acrylic rubber (B) is not particularly limited, and various extruders, Banbury mixers, kneaders, and rolls can be used.
  • an internal mixer such as a Banbury mixer or a kneader is used.
  • the heating temperature at the time of kneading is preferably 100 to 250 ° C, more preferably 120 to 200 ° C, and particularly preferably 150 to 180 ° C.
  • the temperature is lower than 100 ° C, the reactivity is poor and the crosslinking of the acrylic rubber (B) may be insufficient.
  • the temperature is higher than 250 ° C, the rubber may be deteriorated.
  • the kneading time is preferably 3 to 60 minutes, more preferably 5 to 30 minutes. If the kneading time is less than 3 minutes, the acrylic rubber (B) may be insufficiently crosslinked. If it exceeds 60 minutes, the kneading cost increases, which is not preferable.
  • the kneading time is within the above range, the acrylic rubber (B) is sufficiently crosslinked, and the crosslinked acrylic rubber (B) particles are dispersed in the continuous phase of the fluororubber (A). Is obtained.
  • crosslinked acrylic rubber (B) particles are dispersed in the continuous phase of fluororubber (A).
  • the average particle diameter of the crosslinked acrylic rubber (B) particles is preferably 2 to 30 ⁇ m, more preferably 5 to 20 ⁇ m, and most preferably 10 to 15 ⁇ m.
  • grains of acrylic rubber (B) observes the cross section of an acrylic rubber / fluorine rubber composition with a scanning electron microscope, and 30 acrylic rubber particles arbitrarily selected. The average size was used as the average particle size.
  • the gel component ratio of the acrylic rubber / fluororubber composition is preferably 50% or more, and more preferably 80% or more. In particular, the gel component ratio is preferably 80 to 100%.
  • the ratio of the gel component of the acrylic rubber / fluororubber composition is such that the mass (W1) of the insoluble component that does not dissolve in toluene is obtained by immersing the acrylic rubber / fluororubber composition in toluene for 24 hours. A value ((W1 / W2) ⁇ 100) obtained by dividing the value (W1 / W2) divided by the mass (W2) of the fluororubber composition was used.
  • the crosslinkable composition of this invention contains the acrylic rubber / fluororubber composition obtained by the said manufacturing method, and the crosslinking agent for fluororubbers.
  • the cross-linking agent for fluororubber is not particularly limited as long as it has reactivity with fluororubber, and a conventionally known one can be used.
  • an organic peroxide is preferable because a crosslinked rubber having excellent heat resistance can be obtained. Any organic peroxide can be used as long as it can easily generate radicals under heating or in the presence of a redox system, but those having a half-life of 1 minute are preferably 130 to 220 ° C. .
  • ⁇ , ⁇ ′-bis (t-butylperoxy) -p-diisopropylbenzene is preferable because it is excellent in peroxide crosslinkability of the fluororubber (A).
  • the content of the cross-linking agent for fluororubber is preferably 0.1 to 10 parts by weight, more preferably 0.2 to 7 parts by weight, and 0.5 to 5 parts by weight with respect to 100 parts by weight of the fluororubber (A). Is particularly preferred. When the content of the fluororubber crosslinking agent is within the above range, the crosslinking efficiency is high and the amount of ineffective decomposition can be suppressed.
  • the crosslinkable composition of the present invention preferably further contains a crosslinking aid for fluororubber.
  • the crosslinking aid for fluororubber include triallyl cyanurate, triallyl isocyanurate, triacryl formal, triallyl trimellitate, dipropargyl terephthalate, diallyl phthalate, tetraallyl terephthalamide, triallyl phosphate and the like. Of these, triallyl isocyanurate is preferable.
  • the content of the crosslinking aid for fluororubber is preferably 0.1 to 50 parts by mass, more preferably 1 to 30 parts by mass, and particularly preferably 2 to 25 parts by mass with respect to 100 parts by mass of the fluororubber (A). .
  • the crosslinking rate is slow and the crosslinking degree is low. If the amount is too large, the elongation of the crosslinked rubber may be low. Within this range, a crosslinked rubber having a high crosslinking rate, a high degree of crosslinking, and excellent properties can be obtained.
  • various compounding agents can be further blended by a conventional method as necessary.
  • compounding agents include rubber softeners, plasticizers, fillers, antioxidants, heat stabilizers, UV absorbers, colorants, processing aids, lubricants, lubricants, flame retardants, antistatic agents, and the like.
  • the filler include carbon black, white carbon, clay, talc, calcium carbonate, polytetrafluoroethylene, a fluororesin such as an ethylene / tetrafluoroethylene copolymer, glass fiber, and carbon fiber. Carbon black has the effect of reinforcing the crosslinked rubber.
  • furnace black there is no restriction
  • the content of carbon black is preferably 5 to 100 parts by mass and more preferably 10 to 80 parts by mass with respect to 100 parts by mass of the acrylic rubber / fluororubber composition. If the carbon black content is too small, the reinforcing effect of the crosslinked rubber may not be sufficiently obtained, and if too large, the elongation of the crosslinked rubber may be low. Within the above range, the balance between strength and elongation is good.
  • the content of fillers other than carbon black is preferably 5 to 200 parts by weight, more preferably 10 to 100 parts by weight, based on 100 parts by weight of the acrylic rubber / fluororubber composition.
  • processing aid examples include higher fatty acids and alkali metal salts of higher fatty acids, and stearic acid, stearates, and laurates are preferred.
  • the content of the processing aid is preferably 0.1 to 20 parts by weight, more preferably 0.2 to 10 parts by weight, particularly 1 to 5 parts by weight, based on 100 parts by weight of the acrylic rubber / fluororubber composition. preferable.
  • the crosslinkable composition of the present invention is molded into various shapes by various known molding methods and used as a molded product.
  • the molding method include injection molding, extrusion molding, and compression molding.
  • the obtained molded product can be used for various automotive parts, industrial products and the like by utilizing its excellent properties.
  • the crosslinkable composition of this invention can form the layer excellent in adhesiveness with the layer formed by bridge
  • a laminate having a layer and a layer formed by crosslinking fluororubber is preferred.
  • a heat-resistant outer layer having a tubular outer layer formed by crosslinking a crosslinkable composition and a tubular inner layer formed by crosslinking fluororubber (C) provided on the inner periphery of the outer layer.
  • An air rubber hose is mentioned. This heat-resistant air rubber hose is excellent in adhesion between the layers even in a high temperature environment.
  • the fluorororubber (A) and the fluororubber (C) contained in the crosslinkable composition preferably contain the same material, and the fluororubber (A) and fluororubber ( C) are preferably both tetrafluoroethylene / propylene copolymers. If fluororubber (A) and fluororubber (C) are tetrafluoroethylene / propylene copolymers, laminates and heat-resistant air with high interlayer adhesion, excellent heat resistance, chemical resistance, oil resistance, and pressure resistance It can be a rubber hose.
  • the heat-resistant air rubber hose can be manufactured as follows, for example.
  • each material of the crosslinkable fluororubber composition for forming the inner layer for example, fluororubber (C), a crosslinker for fluororubber, a crosslink auxiliary for fluororubber, and a filler such as carbon black as necessary are prepared, and these are kneaded using a kneader such as a two-roll roll, a Banbury mixer, or a kneader.
  • a kneader such as a two-roll roll, a Banbury mixer, or a kneader.
  • the same fluororubber (A) as described above can be used.
  • the crosslinking agent for fluororubber the crosslinking aid for fluororubber, and other compounding agents, the same ones as those used for the production of the acrylic rubber / fluororubber composition described above can be used.
  • the order of kneading of the respective components is not particularly limited, but the components that are difficult to react or decompose due to heat generated during kneading are sufficiently kneaded with the fluororubber (C) and then easily reacted or decomposed.
  • the fluorororubber crosslinking agent and the like which are easy-to-use components.
  • the temperature at 120 ° C. or lower, which is a temperature at which the cross-linking agent for fluororubber is not easily decomposed by water cooling.
  • distributed each compounding agent in a solvent is also employable.
  • the crosslinkable fluororubber composition prepared as described above and the crosslinkable composition of the present invention are coextruded into a hose shape using an extruder, and then heat-crosslinked under predetermined conditions (for example, 160 to
  • the heat-resistant air rubber hose of the present invention is obtained by performing secondary crosslinking in an oven under predetermined conditions (for example, 3 hours at 165 ° C.) at 190 ° C.
  • the heat-resistant air rubber hose obtained by this method is laminated and integrated by firmly bonding the interface between the inner layer and the outer layer without an adhesive during crosslinking.
  • the heat-resistant air rubber hose of the present invention is formed by extruding a crosslinkable fluororubber composition for forming an inner layer with an extrusion molding machine into a single-layer structure hose, and extruding the crosslinkable composition of the present invention on the outer peripheral surface of the hose. It can also be produced by crosslinking after extrusion using a machine. Also by this method, the interface between the inner layer and the outer layer is firmly bonded without an adhesive and laminated and integrated. In some cases, an adhesive may be used as an auxiliary agent. Further, if necessary, a reinforcing yarn layer (polyester, vinylon, aramid, nylon, etc.) may be provided between the layers.
  • the thickness of the inner layer of the heat-resistant air rubber hose of the present invention is preferably 0.2 to 3.0 mm, and more preferably 0.2 to 0.5 mm from the viewpoint of cost reduction.
  • the heat-resistant air rubber hose of the present invention may be formed into a straight shape by, for example, a vacuum sizing method, or may be formed into a bellows structure using a corrugator.
  • the heat-resistant air rubber hose of the present invention is excellent in heat resistance, chemical resistance, oil resistance and pressure resistance, and is an air hose for automobiles requiring high temperature and high pressure resistance (turbo air hose, blow-by gas hose, emission control) It is particularly preferably used for applications such as hoses.
  • FEF carbon Tokai Carbon Co., Seast SO
  • MT carbon THENMAX N-990, manufactured by Canarb Limited.
  • St-Na manufactured by NOF Corporation, sodium stearate, non-sar SN-1 powder
  • St-Zn manufactured by NOF Corporation, zinc stearate, zinc stearate GP.
  • Anti-aging agent (1) Nocrack CD: 4,4′-bis ( ⁇ , ⁇ -dimethylbenzyl) diphenylamine manufactured by Ouchi Shinsei Chemical Co., Ltd.
  • the cross section of the acrylic rubber / fluororubber composition was observed with a scanning electron microscope (magnification 1000 times), and the average value of 30 arbitrarily selected acrylic rubber particles was measured as the average particle diameter. As a result, the average particle diameter of the acrylic rubber particles was 10 ⁇ m.
  • the observation results are shown in FIG.
  • the obtained acrylic rubber / fluororubber composition was immersed in toluene for 24 hours, and the mass (W1) of insoluble components not dissolved in toluene was divided by the mass (W2) of the acrylic rubber / fluororubber composition.
  • the gel component ratio of the acrylic rubber / fluororubber composition was calculated by converting (W1 / W2) into a percentage, the gel component ratio was 96%.
  • Example 3 100 parts by mass of fluororubber (A) (AFLAS 150L), 1 part by mass of an acrylic rubber cross-linking agent (Curesol 2MZ-H), and 2 parts by mass of an acrylic rubber cross-linking aid (Varnock AB-S) Roll mixing was performed to obtain a base compound (fluororubber composition). 20 parts by mass of the obtained base compound and 80 parts by mass of acrylic rubber (B) (DENKA ER-5300) were used with a lab plast mill R-30 manufactured by Toyo Seiki Co., Ltd. Were kneaded for 5 minutes under the conditions of a rotation speed of 40 rpm and an internal temperature of Laboplast Mill of about 170 ° C. Thereafter, 2.5 parts by mass of a processing aid (St—Zn) was added and kneaded for 1 minute under the same conditions to dynamically crosslink the acrylic rubber (B) to obtain an acrylic rubber / fluororubber composition. It was.
  • A fluororubber
  • Example 4 100 parts by mass of fluororubber (A) (AFLAS 150L), 3 parts by mass of an acrylic rubber cross-linking agent (Curesol 2MZ-H), and 3 parts by mass of an acrylic rubber cross-linking aid (Varnock AB-S) Roll mixing was performed to obtain a base compound (fluororubber composition). 20 parts by mass of the obtained base compound and 80 parts by mass of acrylic rubber (B) (DENKA ER-5300) were used with a Laboplast mill KF70V2 manufactured by Toyo Seiki Co., Ltd. The mixture was kneaded for 5 minutes under the conditions of several 40 rpm and the temperature in the lab plast mill of about 170 ° C.
  • the obtained crosslinkable composition was subjected to press crosslinking (pressure 20 MPa) at 170 ° C. for 20 minutes, and then subjected to oven hot air crosslinking at 165 ° C. for 3 hours to prepare a crosslinked rubber sheet having a thickness of 2 mm.
  • press crosslinking pressure 20 MPa
  • oven hot air crosslinking at 165 ° C. for 3 hours
  • normal physical properties were evaluated in accordance with JIS K6251 and JIS K6253.
  • the tensile strength was 8.0 MPa
  • the elongation was 225%
  • the hardness (shore-A) was 61.
  • the fluororubber (A) phase was dispersed in the acrylic rubber (B) phase. It was. Moreover, when the average particle diameter of acrylic rubber (B) was measured like Example 1, the average particle diameter of acrylic rubber (B) was 150 micrometers.
  • Comparative Example 2 In Comparative Example 1, 100 parts by mass of the acrylic rubber / fluororubber composition, 2.4 parts by mass of the acrylic rubber cross-linking agent (CN-25), and 0% of the acrylic rubber cross-linking aid (Varnock AB-S) 0.8 parts by mass, 0.5 parts by mass of a fluororubber crosslinking agent (Park Mill D), 50 parts by mass of a filler (FEF carbon), 5 parts by mass of a fluororubber crosslinking aid (TAIC), A crosslinkable composition of Comparative Example 2 was obtained in the same manner as Comparative Example 1, except that 2 parts by mass of the processing aid (St-Zn) was kneaded using a roll. About the obtained crosslinkable composition, it carried out similarly to Example 1, and evaluated the normal state physical property. The tensile strength was 11.2 MPa, the elongation was 241%, and the hardness (shore-A) was 74.
  • the tensile strength was 11.2 MPa
  • the elongation
  • Comparative Example 3 In Comparative Example 1, 50 parts by mass of the base compound and 50 parts by mass of acrylic rubber (B) (Denka ER-5300) were kneaded in the same manner as in Comparative Example 1 using an acrylic rubber / A fluororubber composition was obtained. When the surface of the obtained acrylic rubber / fluororubber composition was observed with a scanning electron microscope (500 times magnification), the fluororubber (A) phase was dispersed in the acrylic rubber (B) continuous phase. It was. The reason was inferred from the following.
  • the elemental analysis result of the surface observed with a microscope showed that the concentration of the fluorine element was hardly detected as 0.0 mass%.
  • the observation results with a scanning electron microscope are shown in FIG. Moreover, when the average particle diameter of acrylic rubber (B) was measured like Example 1, the average particle diameter of acrylic rubber (B) was 500 micrometers or more.
  • Comparative Example 4 In Comparative Example 1, 20 parts by mass of the base compound and 80 parts by mass of acrylic rubber (B) (Denka ER-5300) were kneaded in the same manner as in Comparative Example 1 using an acrylic rubber / A fluororubber composition was obtained. When the surface of the obtained acrylic rubber / fluororubber composition was observed with a scanning electron microscope (500 times magnification), the fluororubber (A) phase was dispersed in the continuous phase of the acrylic rubber (B). Was. The reason was inferred from the following.
  • the elemental analysis results of the surface observed with a microscope showed that the concentration of elemental fluorine was 0.0% by mass and was hardly detected. Moreover, when the average particle diameter of acrylic rubber (B) was measured like Example 1, the average particle diameter of acrylic rubber (B) was not able to be measured.
  • Example 1 About the obtained crosslinkable composition, it carried out similarly to Example 1, and evaluated the normal state physical property.
  • the tensile strength was 6.8 MPa
  • the elongation was 506%
  • the hardness (shore-A) was 66.
  • Table 1 The compositions and normal physical properties of the crosslinkable compositions of Examples 1, 3, 4 and Comparative Examples 1 to 4 are summarized in Table 1.
  • the laminates of Examples 2, 5, and 6 were excellent in terms of interlayer adhesion under normal and high temperature environments.
  • the laminate of Comparative Example 5 had low normal physical properties of the acrylic rubber / fluororubber composition layer.
  • the peeling state was interface peeling.
  • the laminate of Comparative Example 6 was excellent in normal properties because most of the acrylic rubber / fluororubber composition layer was formed of acrylic rubber.
  • the peeled state was interfacial peeling.
  • the laminate of Comparative Example 7 although the normal physical properties of the acrylic rubber / fluororubber composition layer were improved as compared with Comparative Example 5, the peeled state was not sufficient for interlayer adhesion. Interfacial peeling and interlayer adhesion was low.
  • the laminate of Comparative Example 8 was excellent in normal physical properties because most of the acrylic rubber / fluororubber composition layer was composed of fluororubber, but the interlayer adhesion was not sufficient. Moreover, since there was much content of fluororubber, it was expensive.
  • the heat resistant air rubber hose obtained from the crosslinkable composition containing the acrylic rubber / fluororubber composition of the present invention is excellent in heat resistance, chemical resistance, oil resistance and pressure resistance, and is industrially useful. In particular, it is used favorably as an air hose for automobiles (turbo air hose, blow-by gas hose, emission control hose, etc.) that requires high temperature and high pressure resistance.
  • air hose for automobiles turbines
  • blow-by gas hose blow-by gas hose, emission control hose, etc.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

 フッ素ゴムを架橋してなる層との層間接着性に優れる層を形成可能なアクリルゴム/フッ素ゴム組成物の製造方法を提供する。 フッ素ゴム(A)と、アクリルゴム用架橋剤と、アクリルゴム用架橋助剤とを混練して、アクリルゴム用架橋剤およびアクリルゴム用架橋助剤を含有するフッ素ゴム組成物を得て、得られたフッ素ゴム組成物と、アクリルゴム(B)とを、フッ素ゴム(A)/アクリルゴム(B)=5/95~50/50の質量比で、加熱下に混練しながらアクリルゴム(B)を架橋させて、フッ素ゴム(A)の連続相中に架橋したアクリルゴム(B)の粒子が分散したアクリルゴム/フッ素ゴム組成物を製造する方法。

Description

アクリルゴム/フッ素ゴム組成物の製造方法、架橋性組成物、積層体および耐熱エアーゴムホース
 本発明は、アクリルゴム/フッ素ゴム組成物の製造方法、アクリルゴム/フッ素ゴム組成物とフッ素ゴム用架橋剤とを含有する架橋性組成物、架橋性組成物を硬化してなる層を有する積層体および耐熱エアーゴムホースに関する。
 ゴムホースは、自動車部品やその他の工業用部品などに用いられている。例えば、ディーゼル車のターボチャージャー等には、耐熱エアーゴムホースが用いられている。ターボチャージャーに装着した耐熱エアーゴムホースは、ターボチャージャーで圧縮された高温高圧の圧縮ガスをエンジンに供給する役割がある。この圧縮ガスには、エンジンから排出される燃料やエンジンオイル等の高温ミストも混入する。このため、耐熱エアーゴムホースには、高い耐熱性、耐薬品性、耐油性および耐圧性が要求される。
 従来から、耐熱エアーゴムホースには、アクリルゴムが用いられてきた。近年では、耐熱エアーゴムホースの耐熱性に対する要求が厳しくなってきており、アクリルゴムでは、要求特性を満たさなくなってきている。このような要求特性を満たす材料として、フッ素ゴムがある。フッ素ゴムは、耐熱性、耐薬品性、耐油性、耐圧性等の特性に優れることから、耐熱エアーゴムホースの材料として好適である。しかしながら、フッ素ゴムは高価であることから、耐熱エアーゴムホースのコストが高くなるという問題があった。
 そこで、フッ素ゴムと、アクリルゴム等の安価な材料との積層体とすることで、ゴムホースのコストを抑える試みが行われている。
 特許文献1には、フッ化ビニリデン-ヘキサフルオロプロピレン弾性共重合体、フッ化ビニリデン-ヘキサフルオロプロピレン-テトラフルオロエチレン弾性共重合体、テトラフルオロエチレン-プロピレン弾性共重合体、テトラフルオロエチレン-フッ化ビニリデン-プロピレン弾性共重合体等のフッ素ゴムの内層と、アクリルゴムの外層とが共加硫接着されてなる積層ゴムホースが開示されている。
 しかしながら、一般的にフッ素ゴムは、アクリルゴム等の他のゴム材料との親和性が乏しく、特許文献1の積層ゴムホースは、フッ素ゴム層とアクリルゴム層との接着性が十分ではなかった。特に高温環境下では、両者の接合界面において剥離する場合があった。
 ところで、フッ素ゴム組成物の一つに、フッ素ゴムの連続相中に、架橋したアクリルゴムの粒子が分散したアクリルゴム/フッ素ゴム組成物がある。該アクリルゴム/フッ素ゴム組成物は、成形し、架橋して、自動車部品や工業用品等の成形品として用いられている。
 フッ素ゴムの連続相中に、架橋したアクリルゴムの粒子が分散したアクリルゴム/フッ素ゴム組成物の製造方法として、特許文献2には、フッ素ゴムと、アクリルゴムと、フッ素ゴムおよびアクリルゴムの両者に共架橋し得る第3のエラストマーと、アクリルゴム用架橋剤とを配合し、せん断変形を与えながら動的架橋して製造する方法が開示されている。
 また、特許文献3には、ゲル含量80重量%以上の内部架橋したエポキシ基含有アクリルゴムのラテックスとフッ素ゴムのラテックスとをラテックス状態で混合し、次いで、得られた混合ラテックスを共凝固して製造する方法が開示されている。
 しかしながら、特許文献2に開示された方法では、動的架橋は通常200℃以上の高温で行わなければならず、量産性に乏しかった。また、この方法では、第3のエラストマーを配合することが必要であって、第3のエラストマーを配合せずに動的架橋を行うと、フッ素ゴム相とアクリルゴム粒子との界面に剥離が生ずるため、機械的特性が十分ではなかった。
 また、特許文献3の方法では、異種材料のラテックス同士を混合しているが、異種材料のラテックス同士を商業的に混合するには、既存製品へのコンタミ懸念などから、新規凝固槽を建設するなどの大幅な設備投資が必要になり、コスト増加の要因となるため工業的に相応しくなかった。
 また、特許文献2,3では、フッ素ゴムの積層体とした際の層間接着性に関して何ら検討されていない。
日本特開2004-17485号公報 日本特開平1-299859公報 日本特許第4168189号公報
 本発明は、フッ素ゴムを架橋してなる層との層間接着性に優れる層を形成できるアクリルゴム/フッ素ゴム組成物の製造方法、フッ素ゴムを架橋してなる層との層間接着性に優れる層を形成できる架橋性組成物、フッ素ゴムを架橋してなる層との層間接着性、耐熱性、耐酸性、耐アルカリ性に優れた安価な積層体、および耐熱エアーゴムホースを提供することを目的とする。
 本発明は、以下の構成を有する、アクリルゴム/フッ素ゴム組成物の製造方法、架橋性組成物、積層体および耐熱エアーゴムホースを提供する。
 [1]フッ素ゴム(A)の連続相中に、架橋したアクリルゴム(B)の粒子が分散したアクリルゴム/フッ素ゴム組成物の製造方法であって、
 フッ素ゴム(A)と、前記フッ素ゴム(A)と反応しないアクリルゴム用架橋剤と、前記フッ素ゴム(A)と反応しないアクリルゴム用架橋助剤とを混練して、前記アクリルゴム用架橋剤および前記アクリルゴム用架橋助剤を含有するフッ素ゴム組成物を得る工程(1)と、
 前記工程(1)で得られたフッ素ゴム組成物と、アクリルゴム(B)とを、フッ素ゴム(A)/アクリルゴム(B)=5/95~50/50の質量比で、加熱下に混練しながら前記アクリルゴム(B)を架橋させて、前記フッ素ゴム(A)の連続相中に架橋した前記アクリルゴム(B)の粒子を分散させる工程(2)とを含むことを特徴とするアクリルゴム/フッ素ゴム組成物の製造方法。
 [2]前記フッ素ゴム(A)が、テトラフルオロエチレンに基づく繰返し単位とプロピレンに基づく繰返し単位とを含有する共重合体である上記[1]に記載のアクリルゴム/フッ素ゴム組成物の製造方法。
 [3]前記フッ素ゴム(A)におけるテトラフルオロエチレンに基づく繰返し単位とプロピレンに基づく繰返し単位とのモル比(TFEに基づく繰返し単位/Pに基づく繰返し単位)が、40/60~70/30である上記[2]に記載のアクリルゴム/フッ素ゴム組成物の製造方法。
 [4]前記フッ素ゴム(A)のフッ素含有量が、40~75質量%である上記[1]~[3]のいずれかに記載のアクリルゴム/フッ素ゴム組成物の製造方法。
 [5]前記アクリルゴム(B)が、(メタ)アクリルモノマーに基づく繰返し単位を30~100質量%、エチレンに基づく繰返し単位を0~30質量%、酢酸ビニルに基づく繰返し単位を0~40質量%、および架橋基含有モノマーに基づく繰返し単位を0.1~20質量%含有する、上記[1]~[4]のいずれかに記載のアクリルゴム/フッ素ゴム組成物の製造方法。
 [6]前記架橋基含有モノマーの有する架橋基がエポキシ基である上記[5]に記載のアクリルゴム/フッ素ゴム組成物の製造方法。
 [7]前記工程(1)において、前記フッ素ゴム(A)の100質量部に対し、前記アクリルゴム用架橋剤の0.5~20質量部と、前記アクリルゴム用架橋助剤の0.05~10質量部とを混練して、前記フッ素ゴム組成物を得る、上記[1]~[6]のいずれかに記載のアクリルゴム/フッ素ゴム組成物の製造方法。
 [8]前記工程(2)において、前記フッ素ゴム組成物と、前記アクリルゴム(B)とを、加熱下に混練しながら前記アクリルゴム(B)を架橋させて、前記フッ素ゴム(A)の連続相中に、平均粒子径が2~30μmの架橋した前記アクリルゴム(B)の粒子を分散させる、上記[1]~[7]のいずれかに記載のアクリルゴム/フッ素ゴム組成物の製造方法。
 [9]上記[1]~[8]のいずれかに記載の製造方法で製造されたアクリルゴム/フッ素ゴム組成物と、フッ素ゴム用架橋剤とを含有することを特徴とする架橋性組成物。
 [10]前記フッ素ゴム用架橋剤が有機過酸化物である上記[9]に記載の架橋性組成物。
 [11]前記フッ素ゴム用架橋剤の含有量が、前記フッ素ゴム(A)の100質量部に対し、0.1~10質量部である、上記[9]または[10]に記載の架橋性組成物。
 [12]フッ素ゴム用架橋助剤として、トリアリルシアヌレート、トリアリルイソシアヌレート、トリアクリルホルマール、トリアリルトリメリテート、ジプロパルギルテレフタレート、ジアリルフタレート、テトラアリルテレフタールアミド、またはトリアリルホスフェートをさらに含有する上記[9]~[11]のいずれかに記載の架橋性組成物。
 [13]充填剤として、カーボンブラックをさらに含有する上記[9]~[12]のいずれかに記載の架橋性組成物。
 [14]上記[9]~[13]のいずれかに記載の架橋性組成物を架橋してなる層と、フッ素ゴム(C)を架橋してなる層とを有することを特徴とする積層体。
 [15]前記フッ素ゴム(C)が、テトラフルオロエチレンに基づく繰返し単位とプロピレンに基づく繰返し単位を含有する共重合体である上記[14]に記載の積層体。
 [16]上記[9]~[13]のいずれかに記載の架橋性組成物を架橋してなる管状の外層と、該外層の内周に設けられた、フッ素ゴム(C)を架橋してなる管状の内層とを有することを特徴とする耐熱エアーゴムホース。
 [17]前記フッ素ゴム(C)が、テトラフルオロエチレンに基づく繰返し単位とプロピレンに基づく繰返し単位を含有する共重合体である上記[16]に記載の耐熱エアーゴムホース。
 本発明のアクリルゴム/フッ素ゴム組成物の製造方法によれば、フッ素ゴム(A)と、アクリルゴム用架橋剤と、アクリルゴム用架橋助剤とを混練するので、アクリルゴム用架橋剤およびアクリルゴム用架橋助剤が分散性よく含有されるフッ素ゴム組成物が得られる。
 さらに、該フッ素ゴム組成物とアクリルゴム(B)とを、加熱下に混練しながらアクリルゴム(B)を架橋させることで、せん断力がアクリルゴム(B)に加わって粒子となり、フッ素ゴム(A)の連続相中に架橋したアクリルゴム(B)の粒子が分散したアクリルゴム/フッ素ゴム組成物が得られる。
 また、フッ素ゴム組成物には、アクリルゴム用架橋剤とアクリルゴム用架橋助剤とがほぼ均一に分散しているので、アクリルゴム(B)の架橋性に優れ、架橋時における加熱温度を低く抑えることができる。このため、ゴムの熱劣化を抑制し、生産性よくアクリルゴム/フッ素ゴム組成物を製造できる。
 また、本発明の架橋性組成物によれば、フッ素ゴム(A)の含有量が少量であっても、フッ素ゴムを架橋してなる層との層間接着性に優れる層を形成できる。
 また、本発明の積層体は、本発明の架橋性組成物を架橋してなる層と、フッ素ゴム(C)を架橋してなる層とを有するので、高温環境下においても両者の層間接着性に優れる。
 また、本発明の耐熱エアーゴムホースは、架橋性組成物を架橋してなる管状の外層と、該外層の内周に設けられたフッ素ゴム(C)を架橋してなる管状の内層とを有するので、高温環境下においても両者の層間接着性に優れる。更には、高温高圧耐性が要求される自動車用のエアー系ホースの用途で用いた場合であっても、耐熱エアーゴムホース表面へのオイルの染み出し等がなく、優れた耐久性を発揮できる。
実施例1のアクリルゴム/フッ素ゴム組成物の表面についての、走査型電子顕微鏡(倍率500倍)での観測結果を示す図面である。 実施例1のアクリルゴム/フッ素ゴム組成物の断面についての、走査型電子顕微鏡(倍率1000倍)での観測結果を示す図面である。 比較例3のアクリルゴム/フッ素ゴム組成物の表面についての、走査型電子顕微鏡(倍率500倍)での観測結果を示す図面である。
 本発明のアクリルゴム/フッ素ゴム組成物の製造方法で用いるフッ素ゴム(A)は、特に限定は無く、従来公知のものを用いることができる。
 例えば、テトラフルオロエチレン/プロピレン共重合体、テトラフルオロエチレン/プロピレン/フッ化ビニリデン共重合体、テトラフルオロエチレン/プロピレン/フッ化ビニル共重合体、テトラフルオロエチレン/プロピレン/ペルフルオロ(プロピルビニルエーテル)共重合体、テトラフルオロエチレン/プロピレン/ペルフルオロ(メチルビニルエーテル)共重合体、テトラフルオロエチレン/プロピレン/ペルフルオロ(エチルビニルエーテル)共重合体、テトラフルオロエチレン/プロピレン/トリフルオロエチレン共重合体、テトラフルオロエチレン/プロピレン/ペンタフルオロプロピレン共重合体、テトラフルオロエチレン/プロピレン/クロロトリフルオロエチレン共重合体、テトラフルオロエチレン/プロピレン/エチリデンノルボルネン共重合体、フッ化ビニリデン/ヘキサフルオロプロピレン共重合体、フッ化ビニリデン/ヘキサフルオロプロピレン/テトラフルオロエチレン共重合体、フッ化ビニリデン/ヘキサフルオロプロピレン/ペルフルオロ(エチルビニルエーテル)共重合体、フッ化ビニリデン/ヘキサフルオロプロピレン/ペルフルオロ(メチルビニルエーテル)共重合体等が挙げられる。
 これらの共重合体を、1種単独で用いてもよく、2種以上を併用してもよい。なかでも、テトラフルオロエチレンに基づく繰返し単位(以下、「TFEに基づく繰返し単位」と記す)とプロピレンに基づく繰返し単位(以下、「Pに基づく繰返し単位」と記す)を含有する共重合体が、耐酸性、耐アルカリ性に優れることから好ましい。TFEに基づく繰返し単位とPに基づく繰返し単位を含有する共重合体において、TFEに基づく繰返し単位と、Pに基づく繰返し単位とのモル比((TFEに基づく繰返し単位)/(Pに基づく繰返し単位))は、40/60~70/30が好ましく、45/55~65/35がより好ましく、50/50~60/40が最も好ましい。
 また、テトラフルオロエチレンおよびプロピレン以外のモノマーに基づく繰返し単位(以下、「他のモノマーに基づく繰返し単位」と記す)を含有してもよいが、他のモノマーに基づく繰返し単位を含有する場合、その含有量は、共重合体中に10モル%以下であることが好ましく、5モル%以下であることがより好ましい。特に好ましくは、0.1~5モル%である。
 フッ素ゴム(A)の特に好ましい具体例としては、耐酸性、耐アルカリ性により優れるのでテトラフルオロエチレン/プロピレン共重合体である。テトラフルオロエチレン/プロピレン共重合体の市販品の例としては、「AFLAS150P」(旭硝子社製)等が挙げられる。
 フッ素ゴム(A)のフッ素含有量は、40~75質量%が好ましく、45~75質量%がより好ましく、50~75質量%が最も好ましい。フッ素含有量が上記範囲にあると、耐熱性、耐薬品性、電気絶縁性、耐スチーム性に優れる。
 本発明のアクリルゴム/フッ素ゴム組成物の製造方法で用いるアクリルゴム(B)は、特に限定は無く、従来公知のものを用いることができる。
 アクリルゴムとしては、例えば、アクリルモノマーもしくはメタクリルモノマー(以下、アクリルモノマーとメタクリルモノマーとの両方を「(メタ)アクリルモノマー」と記す)の1種または2種以上を主成分とするアクリルゴム等が挙げられる。
 上記アクリルモノマーとしては、例えば、メチルアクリレート、エチルアクリレート、プロピルアクリレート、n-ブチルアクリレート、n-オクチルアクリレート、メトキシメチルアクリレート、メトキシエチルアクリレート、エトキシエチルアクリレート等のアクリレートが挙げられる。
 また、上記メタクリルモノマーとしては、上記アクリルモノマーに対応するメタクリレートが挙げられる。
 アクリルゴム(B)の具体例として、アクリルゴム中の(メタ)アクリルモノマーに基づく繰返し単位の含有量が30~100質量%、エチレンに基づく繰返し単位の含有量が0~30質量%、酢酸ビニルに基づく繰返し単位の含有量が0~40質量%であることが好ましい。アクリルゴム中の(メタ)アクリルモノマーに基づく繰返し単位の含有量は、40~100質量%がより好ましく、50~100質量%が更に好ましく、70~100質量%が特に好ましい。エチレンに基づく繰返し単位を含有する場合には、その含有量は、0.1~20質量%がより好ましく、1~10質量%が最も好ましい。酢酸ビニルに基づく繰返し単位を含有する場合には、その含有量は、0.1~30質量%がより好ましく、1~20質量%が最も好ましい。この範囲にあると、耐熱性に優れる。
 アクリルゴム(B)は、架橋基含有モノマーに基づく繰返し単位を含有することが好ましい。その含有量は0.1~20質量%が好ましく、1~10質量%がより好ましく、2~5質量%が最も好ましい。この範囲にあると、アクリルゴム(B)は、架橋性に優れる。
 架橋基含有モノマーとしては、活性ハロゲン基、エポキシ基、カルボキシル基、水酸基、アミド基、ジエン基等を有するモノマーが挙げられる。なかでも、架橋基としては、エポキシ基、カルボキシル基が好ましく、エポキシ基がより好ましい。エポキシ基を有する架橋基含有モノマーとしては、グリシジルメタアクリレート等が好ましい。カルボキシル基を有する架橋基含有モノマーとしては、マレイン酸モノブチル等が好ましい。
 本発明では、アクリルゴム用架橋剤として、過酸化物架橋するフッ素ゴムと反応しないものを用いるので、アクリルゴム(B)としては、アミン架橋するアクリルゴムが好ましく、エポキシ基を有するアクリルゴムがより好ましい。
 エポキシ基を有するアクリルゴムの市販品の例としては、「デンカER-5300」(電気化学工業社製)が挙げられる。
 本発明のアクリルゴム/フッ素ゴム組成物の製造方法で用いるアクリルゴム用架橋剤は、フッ素ゴム(A)に対して反応性を有しないものである。アクリルゴム(B)がエポキシ基を有する場合、アクリルゴム用架橋剤としては、アミド、酸、もしくはイソシアネート基を有する化合物が好ましい。なかでも、グアニジン類またはイミダゾール類やその類似物のようなアミノ基を有するものが好ましい。
 グアニジン類としては、ジフェニルグアニジン、トリフェニルグアニジン、ジ-o-トリルグアニジン、o-トリルビグアニド、ジ-o-トリルグアニジンのジカテコールほう酸塩、ジフェニルグアニジンフタレート、混合ジアリールグアニジンなどが挙げられる。イミダゾール類としては、イミダゾールのみならず、イミダゾール環の炭素原子および/または窒素原子に結合した水素原子が、各種炭化水素基で置換された置換イミダゾールが挙げられる。具体的には、イミダゾール、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-フェニルイミダゾールなどが好ましい。
 グアニジン類やイミダゾール類は、1種または2種以上を併用することができる。またグアニジン類とイミダゾール類を併用してもよい。
 本発明のアクリルゴム/フッ素ゴム組成物の製造方法で用いるアクリルゴム用架橋助剤は、フッ素ゴム(A)に対して反応性を有しないものである。そのような架橋助剤としては、例えば、ポリアミン系架橋助剤、有機酸のアンモニウム塩等が挙げられる。
 ポリアミン系架橋助剤は、2つ以上のアミノ基を有する化合物、または、架橋時に2つ以上のアミノ基を有する化合物の形態になるものであれば特に限定されない。脂肪族炭化水素や芳香族炭化水素の複数の水素原子が、アミノ基またはヒドラジド構造(-CONHNHで表される構造、COはカルボニル基を表す。)で置換された化合物が好ましい。その具体例としては、(1)ヘキサメチレンジアミン、ヘキサメチレンジアミンカルバメート、テトラメチレンペンタミン、ヘキサメチレンジアミンシンナムアルデヒド付加物、ヘキサメチレンジアミンジベンゾエート塩などの脂肪族多価アミン類;(2)2,2-ビス{4-(4-アミノフェノキシ)フェニル}プロパン、4,4’-メチレンジアニリン、m-フェニレンジアミン、p-フェニレンジアミン、4,4’-メチレンビス(o-クロロアニリン)などの芳香族多価アミン類;(3)イソフタル酸ジヒドラジド、アジピン酸ジヒドラジド、セバシン酸ジヒドラジドなどのヒドラジド構造を2つ以上有する化合物;(4)イソシアヌル酸アンモニウムなどが挙げられる。
 有機酸のアンモニウム塩としては、安息香酸アンモニウム、アジピン酸アンモニウム、ジメチルジチオカルバミン酸亜鉛等が挙げられ、架橋性および入手性にも優れているという理由から安息香酸アンモニウムが好ましい。
 本発明のアクリルゴム/フッ素ゴム組成物の製造方法は、以下の工程(1)および(2)によって製造される。
 工程(1):フッ素ゴム(A)と、アクリルゴム用架橋剤と、アクリルゴム用架橋助剤とを混練して、アクリルゴム用架橋剤およびアクリルゴム用架橋助剤を含有するフッ素ゴム組成物を得る工程。
 工程(2):工程(1)で得られたフッ素ゴム組成物と、アクリルゴム(B)とを、加熱下に混練しながらアクリルゴム(B)を架橋させて、フッ素ゴム(A)の連続相中に架橋した前記アクリルゴム(B)の粒子を分散させる工程。
 以下、各工程についてさらに詳しく説明する。
 工程(1)では、フッ素ゴム(A)と、アクリルゴム用架橋剤と、アクリルゴム用架橋助剤とを混練する。ロール加工性の良いフッ素ゴム(A)に、アクリルゴム用架橋剤およびアクリルゴム用架橋助剤を加えて混練するので、アクリルゴム用架橋剤およびアクリルゴム用架橋助剤がほぼ均一に分散したフッ素ゴム組成物が得られる。
 工程(1)において、フッ素ゴム(A)、アクリルゴム用架橋剤、およびアクリルゴム用架橋助剤の混合割合は、フッ素ゴム(A)の100質量部に対し、アクリルゴム用架橋剤が0.5~20質量部、アクリルゴム用架橋助剤が0.05~10質量部であることが好ましく、アクリルゴム用架橋剤が1.5~15質量部、アクリルゴム用架橋助剤が0.5~5質量部であることがより好ましい。アクリルゴム用架橋剤やアクリルゴム用架橋助剤の使用量が少なすぎると、アクリルゴムの架橋密度が低くなり易く、架橋後のアクリルゴム/フッ素ゴム組成物の機械的特性、耐油性、耐熱性などが不十分となる場合がある。一方、アクリルゴム用架橋剤やアクリルゴム用架橋助剤の使用量が多すぎると、アクリルゴムの架橋密度が高くなりすぎ、架橋後のアクリルゴム/フッ素ゴム組成物の伸びが低下する傾向にある。
 アクリルゴム用架橋剤とアクリルゴム用架橋助剤との割合は、アクリルゴム用架橋剤の100質量部に対し、アクリルゴム用架橋助剤が10~50質量部であることが好ましく、20~40質量部がより好ましい。アクリルゴム用架橋剤とアクリルゴム用架橋助剤との割合が上記範囲内であれば、架橋性が高く、所定の時間内で架橋反応を完了できる。
 工程(1)において、フッ素ゴム(A)と、アクリルゴム用架橋剤と、アクリルゴム用架橋助剤との混練方法は、特に限定はなく、従来公知の方法で行うことができる。混練温度は、30~100℃が好ましく、50~80℃がより好ましい。混練時間は5~60分が好ましく、10~30分がより好ましい。混練装置としては、例えば、ニーダー、バンバリーミキサー、単軸押出機、二軸押出機等を用いることができる。
 工程(2)では、工程(1)で得られたフッ素ゴム組成物と、アクリルゴム(B)とを、加熱下に混練しながらアクリルゴム(B)を架橋させる。フッ素ゴム組成物とアクリルゴム(B)とを、加熱下に混練しながらアクリルゴム(B)を架橋(動的架橋)させることで、せん断力がアクリルゴム(B)に加わることにより、アクリルゴム(B)は粒子として分散し、フッ素ゴム(A)の連続相中に架橋したアクリルゴム(B)の粒子が分散したアクリルゴム/フッ素ゴム組成物が得られる。
 また、架橋したアクリルゴム(B)の粒径はより小さい状態を保つ。これは、アクリルゴム(B)とフッ素ゴム(A)との界面での分子の絡み合いが、より多く生じているためであると考えられる。この場合、せん断力を加えるのを止めると、アクリルゴム(B)の粒子同士の会合が起き、粒径が大きくなり分子の絡み合いも減少することになる。このように、混錬しながらアクリルゴム(B)を架橋することにより、良好な分散状態のままの系を固定することができる。
 また、フッ素ゴム組成物には、アクリルゴム用架橋剤とアクリルゴム用架橋助剤とがほぼ均一に分散しているので、アクリルゴム(B)の架橋性に優れ、動的架橋時における加熱温度を低く抑えることができる。
 なお、アクリルゴム(B)の動的架橋において、アクリルゴム(B)のみが架橋し、フッ素ゴム(A)は実質的に架橋しないが、フッ素ゴム(A)の一部が、アクリルゴム(B)に物理的に絡み合って、疑似的に架橋していてもよい。フッ素ゴム(A)が、アクリルゴム(B)と疑似的に架橋しているかどうかは、アクリルゴム/フッ素ゴム組成物のゲル成分比率を測定することで評価できる。すなわち、動的架橋ではフッ素ゴム(A)自体は実質的に架橋しないので、動的架橋後のアクリルゴム/フッ素ゴム組成物のゲル成分が、アクリルゴム(B)の仕込み量よりも多く検出されれば、フッ素ゴム(A)の一部が、アクリルゴム(B)と物理的に絡み合って、疑似的に架橋していることが分かる。
 工程(2)において、フッ素ゴム組成物と、アクリルゴム(B)との混合割合は、質量比で、フッ素ゴム(A)/アクリルゴム(B)=5/95~50/50であり、好ましくは10/90~30/70であり、より好ましくは、15/85~20/80である。フッ素ゴム(A)が50質量%超であると、コスト低減効果が小さい。フッ素ゴム(A)が5質量%未満であると、アクリルゴム/フッ素ゴム組成物を架橋したゴム組成物の引張強度、伸び、硬度等の常態物性が低下する。更には、積層体とした際において、フッ素ゴムを架橋してなる層との層間接着性が低下する。
 上記工程(2)において混練される、フッ素ゴム組成物とアクリルゴム(B)においては、アクリルゴム(B)とフッ素ゴム組成物中のアクリルゴム用架橋剤とアクリルゴム用架橋助剤の混練割合は、アクリルゴム(B)の100質量部に対して、アクリルゴム用架橋剤が0.5~15質量部、アクリルゴム用架橋助剤が0.1~7質量部であることが好ましく、アクリルゴム用架橋剤が1~10質量部、アクリルゴム用架橋助剤が0.5~5質量部であることがより好ましく、アクリルゴム用架橋剤が2~7質量部、アクリルゴム用架橋助剤が1~3質量部であることが最も好ましい。
 工程(2)において、必要に応じて、ゴム用軟化剤、可塑剤、充填剤、酸化防止剤、熱安定剤、紫外線吸収剤、着色剤、加工助剤、滑剤、潤滑剤、難燃剤、帯電防止剤などの各種配合剤を添加して混練してもよい。これらの配合剤は、あらかじめアクリルゴム(B)中に混錬し、これにフッ素ゴム組成物を添加して混錬してもよい。
 これらの配合剤の含有量は、アクリルゴム/フッ素ゴム組成物の100質量部に対して、0.1~100質量部、好ましくは0.1~70質量部である。
 工程(2)において、フッ素ゴム組成物と、アクリルゴム(B)との混練方法は、特に限定されることなく、各種押出機、バンバリーミキサー、ニーダー、ロールを用いることができる。好ましくは、バンバリーミキサー、ニーダーなどのインターナルミキサーを用いる。
 工程(2)において、混練時の加熱温度は、100~250℃が好ましく、120~200℃がより好ましく、150~180℃が特に好ましい。100℃未満であると反応性に乏しくアクリルゴム(B)の架橋が不十分な場合があり、250℃を超えるとゴムが劣化する恐れがある。
 工程(2)において、混練時間は、3~60分が好ましく、5~30分がより好ましい。混練時間が3分未満であると、アクリルゴム(B)の架橋が不十分な場合がある。60分を超えると混練コストが上昇し好ましくない。混練時間が上記範囲にあると、アクリルゴム(B)が十分架橋して、フッ素ゴム(A)の連続相中に架橋したアクリルゴム(B)の粒子が分散してアクリルゴム/フッ素ゴム組成物が得られる。
 本発明の製造方法で得られるアクリルゴム/フッ素ゴム組成物は、フッ素ゴム(A)の連続相中に架橋したアクリルゴム(B)の粒子が分散している。架橋したアクリルゴム(B)の粒子の平均粒子径は、好ましくは2~30μmであり、より好ましくは5~20μmであり、最も好ましくは10~15μmである。なお、本発明において、アクリルゴム(B)の粒子の平均粒子径は、アクリルゴム/フッ素ゴム組成物の断面を、走査型電子顕微鏡にて観察し、任意に選択した30個のアクリルゴム粒子の大きさの平均値を、平均粒子径として用いた。
 また、アクリルゴム/フッ素ゴム組成物のゲル成分比率は、50%以上が好ましく、80%以上がより好ましい。特には、ゲル成分比率は、80~100%が好ましい。
 なお、本発明において、アクリルゴム/フッ素ゴム組成物のゲル成分比率は、アクリルゴム/フッ素ゴム組成物をトルエンに24時間浸漬し、トルエンに溶解しない不溶性成分の質量(W1)を、アクリルゴム/フッ素ゴム組成物の質量(W2)で除した値(W1/W2)を百分率で表した値((W1/W2)×100)を用いた。
 本発明の架橋性組成物は、上記製造方法で得られたアクリルゴム/フッ素ゴム組成物と、フッ素ゴム用架橋剤とを含有する。
 フッ素ゴム用架橋剤としては、フッ素ゴムに対して反応性を有するものであれば特に限定は無く、従来公知のものを使用できる。なかでも、耐熱性に優れた架橋ゴムが得られることから有機過酸化物が好ましい。有機過酸化物としては、加熱下や、酸化還元系の存在下で容易にラジカルを発生するものであれば使用できるが、半減期が1分となる温度が130~220℃であるものが好ましい。
 その具体例としては、1,1-ジ(t-ヘキシルパーオキシ)-3,5,5-トリメチルシクロへキサン、2,5-ジメチルへキサン-2,5-ジヒドロパーオキシド、ジ-t-ブチルパーオキシド、t-ブチルクミルパーオキシド、ジクミルパーオキシド、α,α’-ビス(t-ブチルパーオキシ)-p-ジイソプロピルベンゼン、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)-へキサン、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)-へキシン-3、ジベンゾイルパーオキシド、t-ブチルパーオキシベンゼン、2,5-ジメチル-2,5-ジ(ベンゾイルパーオキシ)へキサン、t-ブチルパーオキシマレイン酸、t-ヘキシルパーオキシイソプロピルモノカーボネート等が挙げられる。なかでも、α,α’-ビス(t-ブチルパーオキシ)-p-ジイソプロピルベンゼンは、フッ素ゴム(A)のパーオキシド架橋性に優れるので好ましい。
 フッ素ゴム用架橋剤の含有量は、フッ素ゴム(A)の100質量部に対し、0.1~10質量部が好ましく、0.2~7質量部がより好ましく、0.5~5質量部が特に好ましい。フッ素ゴム用架橋剤の含有量が上記範囲にあると、架橋効率が高く、無効分解の生成量も抑制できる。
 本発明の架橋性組成物は、更に、フッ素ゴム用架橋助剤を含有することが好ましい。
 フッ素ゴム用架橋助剤としては、トリアリルシアヌレート、トリアリルイソシアヌレート、トリアクリルホルマール、トリアリルトリメリテート、ジプロパルギルテレフタレート、ジアリルフタレート、テトラアリルテレフタールアミド、トリアリルホスフェート等が挙げられる。中でも、トリアリルイソシアヌレートが好ましい。
 フッ素ゴム用架橋助剤の含有量は、フッ素ゴム(A)の100質量部に対し、0.1~50質量部が好ましく、1~30質量部がより好ましく、2~25質量部が特に好ましい。含有量が少なすぎると、架橋速度が遅く、架橋度も低い。多すぎると、架橋ゴムの伸びが低い場合がある。この範囲にあると、架橋速度が速く、架橋度が高く、特性に優れた架橋ゴムが得られる。
 本発明の架橋性組成物は、更に、必要に応じて各種配合剤を常法により配合できる。配合剤としては、例えば、ゴム用軟化剤、可塑剤、充填剤、酸化防止剤、熱安定剤、紫外線吸収剤、着色剤、加工助剤、滑剤、潤滑剤、難燃剤、帯電防止剤などが挙げられる。
 上記充填剤としては、カーボンブラック、ホワイトカーボン、クレー、タルク、炭酸カルシウム、ポリテトラフルオロエチレン、エチレン/テトラフルオロエチレン共重合体等のフッ素樹脂、ガラス繊維、炭素繊維などが挙げられる。
 カーボンブラックは、架橋ゴムを補強する効果を有する。カーボンブラックとしては、特に制限はなく、フッ素ゴムの充填剤として用いられているものであれば使用できる。
 その具体例としては、ファーネスブラック、アセチレンブラック、サーマルブラック、チャンネルブラック、グラファイト等が挙げられる。なかでも、ファーネスブラックがより好ましい。ファーネスブラックの具体例としては、HAF-LSカーボン、HAFカーボン、HAF-HSカーボン、FEFカーボン、GPFカーボン、APFカーボン、SRF-LMカーボン、SRF-HMカーボン、MTカーボン等が挙げられる。特にMTカーボンが好ましい。
 カーボンブラックの含有量は、アクリルゴム/フッ素ゴム組成物の100質量部に対し、5~100質量部が好ましく、10~80質量部がより好ましい。カーボンブラックの含有量が少なすぎると、架橋ゴムの補強効果が十分得られない場合があり、多すぎると架橋ゴムの伸びが低い場合がある。上記の範囲であると、強度と伸びとのバランスが良好である。
 カーボンブラック以外の充填剤の含有量は、アクリルゴム/フッ素ゴム組成物の100質量部に対し、5~200質量部が好ましく、10~100質量部がより好ましい。
 上記加工助剤としては、高級脂肪酸、高級脂肪酸のアルカリ金属塩等が挙げられ、ステアリン酸、ステアリン酸塩、ラウリン酸塩が好ましい。加工助剤の含有量は、アクリルゴム/フッ素ゴム組成物の100質量部に対し、0.1~20質量部が好ましく、0.2~10質量部がより好ましく、1~5質量部が特に好ましい。
 本発明の架橋性組成物は、従来公知の種々の成形法により、種々の形状に成形して、成形品として用いられる。成形方法としては、例えば射出成形、押出成形、圧縮成形などの方法が挙げられる。得られる成形品は、その優れた性質を利用して各種の自動車用部品、工業用品などに利用できる。なかでも、本発明の架橋性組成物は、フッ素ゴム(C)を架橋してなる層との接着性に優れた層を形成できるので、成形品としては、架橋性組成物を架橋してなる層とフッ素ゴムを架橋してなる層とを有する積層体が好ましい。かかる積層体の好ましい一例としては、架橋性組成物を架橋してなる管状の外層と、該外層の内周に設けられた、フッ素ゴム(C)を架橋してなる管状の内層とを有する耐熱エアーゴムホースが挙げられる。この耐熱エアーゴムホースは、高温環境下においても両者の層間接着性に優れる。
 本発明の積層体および耐熱エアーゴムホースにおいて、架橋性組成物に含まれるフッ素ゴム(A)と、フッ素ゴム(C)は、同じ材料を含むものであることが好ましく、フッ素ゴム(A)およびフッ素ゴム(C)が、ともにテトラフルオロエチレン/プロピレン共重合体であることが好ましい。フッ素ゴム(A)およびフッ素ゴム(C)がテトラフルオロエチレン/プロピレン共重合体であれば、層間接着性が高く、耐熱性、耐薬品性、耐油性、耐圧性に優れた積層体および耐熱エアーゴムホースとすることができる。
 耐熱エアーゴムホースは、例えば、次のようにして製造することができる。
 まず、内層形成用の架橋性フッ素ゴム組成物の各材料、例えば、フッ素ゴム(C)、フッ素ゴム用架橋剤、フッ素ゴム用架橋助剤、および必要に応じてカーボンブラック等の充填剤やその他の配合剤を準備し、これらを2本ロール、バンバリーミキサー、ニーダー等の混練機を用いて混練する。
 フッ素ゴム(C)としては、上述したフッ素ゴム(A)と同様のものを使用できる。また、フッ素ゴム用架橋剤、フッ素ゴム用架橋助剤、その他の配合剤としては、上述したアクリルゴム/フッ素ゴム組成物の製造に用いるものと同様のものを使用できる。
 各成分の混錬の順序は特に制限されないが、混練時の発熱によって、反応や分解しにくい成分である充填剤等をフッ素ゴム(C)と十分に混錬した後、反応しやすい成分あるいは分解しやすい成分であるフッ素ゴム用架橋剤等を、混練することが好ましい。混練時には、混練機を水冷して、フッ素ゴム用架橋剤が分解しにくい温度である120℃以下を維持することが好ましい。また、各配合剤を溶剤に溶解、分散した状態でフッ素ゴム(C)に混練する方法も採用できる。
 上記のようにして調製した架橋性フッ素ゴム組成物と、本発明の架橋性組成物とを押出成形機を用いてホース状に共押出成形した後、所定の条件で加熱架橋(例えば、160~190℃で5~30分)し、次いで、所定の条件(例えば、165℃で3時間)でオーブンにて2次架橋を行うことにより、本発明の耐熱エアーゴムホースが得られる。
 この方法によって得られる耐熱エアーゴムホースは、架橋時に内層と外層の界面が接着剤なしで強固に接着して、積層し一体化している。
 また、本発明の耐熱エアーゴムホースは、内層形成用の架橋性フッ素ゴム組成物を押出成形機で押出して単層構造のホースにし、このホース外周面に、本発明の架橋性組成物を押出成形機を用いて押出成形した後、架橋することでも作製できる。この方法によっても、内層と外層の界面が、接着剤なしで強固に接着し、積層一体化する。場合によっては接着剤を補助剤として用いても良い。また、必要に応じ、その層間に補強糸層(ポリエステル、ビニロン、アラミド、ナイロン等)を設けても良い。
 本発明の耐熱エアーゴムホースの内層の厚みは、0.2~3.0mmであることが好ましく、コストを抑える点で、0.2~0.5mmがより好ましい。
 なお、本発明の耐熱エアーゴムホースは、例えば、真空サイジング法によってストレート形状に成形しても、コルゲーターを用いて蛇腹構造に成形しても差し支えない。
 本発明の耐熱エアーゴムホースは、耐熱性、耐薬品性、耐油性、耐圧性に優れており、高温高圧耐性が要求される自動車用のエアー系ホース(ターボエアーホース、ブローバイガス用ホース、エミッションコントロールホース等)の用途に特に好ましく用いられる。
 以下、本発明の実施例および比較例を挙げて詳細に説明するが、これらに限定して解釈されるものではない。
(使用した材料)
 [フッ素ゴム(A)]
(1)AFLAS 150L:旭硝子社製、テトラフルオロエチレン/プロピレン2元共重合体、過酸化物架橋タイプ、フッ素含有量は57質量%、ムーニー粘度(100℃、ML1+10=35)。
 [アクリルゴム(B)]
(1)デンカER-5300:電気化学工業社製、架橋点としてエポキシ基を含有するn-ブチルアクリレート/エチレン/酢酸ビニル3元系共重合体、アミンおよび過酸化物架橋タイプ。
 [フッ素ゴム(C)]
(1)AFLAS 150P:旭硝子社製、テトラフルオロエチレン/プロピレン2元共重合体、過酸化物架橋タイプ、フッ素含有量は57質量%、ムーニー粘度(100℃、ML1+10=95)。
 [アクリルゴム用架橋剤]
(1)CN-25:電気化学工業社製、1-シアノエチル-2-メチルイミダゾール、
(25%フィラー含有タイプ)、
(2)キュアゾール2MZ-H:四国化成製、2-メチルイミダゾール。
 [アクリルゴム用架橋助剤]
(1)バルノック AB-S:大内新興化学工業社製、安息香酸アンモニウム。
[フッ素ゴム用架橋助剤]
(1)TAIC:日本化成社製、トリアリルイソシアヌレート。
 [フッ素ゴム用架橋剤]
(1)パーブチルP:日油社製、α,α’-ビス(t-ブチルパーオキシ)-p-ジイソプロピルベンゼン、
(2)パークミルD:日油社性、ビス(1-フェニル-1-メチルエチル)ペルオキシド、
(3)パーカードックス14R-P:化薬アクゾ製、α,α’-ビス(t-ブチルパーオキシ)-p-ジイソプロピルベンゼン。
 [充填剤]
(1)FEFカーボン:東海カーボン社製、シーストSO、
(2)MTカーボン:Canarb Limited社製、THENMAX N-990。
 [加工助剤]
(1)St-Na:日油社製、ステアリン酸ナトリウム、ノンサールSN-1パウダー、
(2)St-Zn:日油社製、ステアリン酸亜鉛、ジンクステアレート GP。
 [老化防止剤]
(1)ノクラックCD:大内新興化学工業社製、4,4'-ビス(α,α-ジメチルベンジル)ジフェニルアミン。
(架橋性組成物の調製)
 (実施例1)
 フッ素ゴム(A)(AFLAS 150L)の100質量部と、アクリルゴム用架橋剤(CN-25)の12質量部と、アクリルゴム用架橋助剤(バルノック AB-S)の4質量部とをロール混練して、ベースコンパウンド(フッ素ゴム組成物)を得た。
 得られたベースコンパウンドの23.2質量部と、アクリルゴム(B)(デンカER-5300)の80質量部とを東洋精機社製ラボプラストミルR-30を用い、充填率約80%、ラボプラストミルの回転数40rpm、ラボプラストミル内温度約170℃の条件で、20分間混練して、アクリルゴム(B)の動的架橋を行い、アクリルゴム/フッ素ゴム組成物を得た。得られたアクリルゴム/フッ素ゴム組成物の表面を、走査型電子顕微鏡(倍率500倍)にて観察したところ、架橋したアクリルゴム(B)の粒子が分散し、フッ素ゴム(A)の連続相で覆われていた。その理由は、以下のことから推論した。すなわち、表面上に存在する連続相が、フッ素ゴムかどうかを確認するために行った、走査型電子顕微鏡で観察した表面の元素分析結果において、フッ素元素が濃度9.3質量%で検出されたことによる。
 走査型電子顕微鏡での観測結果を図1に示す。
 また、アクリルゴム/フッ素ゴム組成物の断面を、走査型電子顕微鏡(倍率1000倍)にて観察し、任意に選択した30個のアクリルゴム粒子の大きさの平均値を、平均粒子径として測定したところ、アクリルゴム粒子の平均粒子径は10μmであった。観測結果を図2に示す。
 また、得られたアクリルゴム/フッ素ゴム組成物を、トルエンに24時間浸漬し、トルエンに溶解しない不溶性成分の質量(W1)を、アクリルゴム/フッ素ゴム組成物の質量(W2)で除した値(W1/W2)を、百分率に換算して、アクリルゴム/フッ素ゴム組成物のゲル成分比率を算出したところ、ゲル成分比率は96%であった。
 次に、得られたアクリルゴム/フッ素ゴム組成物の100質量部と、フッ素ゴム用架橋剤(パークミルD)の0.5質量部と、充填剤(FEFカーボン)の50質量部と、フッ素ゴム用架橋助剤(TAIC)の5質量部と、加工助剤(St-Zn)の2質量部とをロールを用いて混練し、実施例1の架橋性組成物を得た。
 得られた架橋性組成物を、170℃で20分間プレス架橋(圧力20MPa)した後、165℃で3時間のオーブン熱風架橋を行い、厚さ2mmの架橋ゴムシートを作製した。この架橋ゴムシートを用いて、JIS K6251およびJIS K 6253に準拠して、常態物性を評価した。引張強度は10.1MPa、伸びは222%、硬度(shore-A)は75であった。
(実施例3)
 フッ素ゴム(A)(AFLAS 150L)の100質量部と、アクリルゴム用架橋剤(キュアゾール2MZ-H)の1質量部と、アクリルゴム用架橋助剤(バルノック AB-S)の2質量部とをロール混練して、ベースコンパウンド(フッ素ゴム組成物)を得た。
 得られたベースコンパウンドの20質量部と、アクリルゴム(B)(デンカER-5300)の80質量部とを東洋精機社製ラボプラストミルR-30を用い、充填率約80%、ラボプラストミルの回転数40rpm、ラボプラストミル内温度約170℃の条件で、5分間混練した。その後、加工助剤(St-Zn)の2.5質量部を添加して、同条件で1分間混練し、アクリルゴム(B)の動的架橋を行い、アクリルゴム/フッ素ゴム組成物を得た。
 次に、得られたアクリルゴム/フッ素ゴム組成物の100質量部と、フッ素ゴム用架橋剤(パーカードックス14R-P)の0.5質量部と、充填剤(MTカーボン)の50質量部と、フッ素ゴム用架橋助剤(TAIC)の5質量部と、加工助剤(St-Zn)の2質量部と、老化防止剤(ノクラックCD)の1質量部とをロールを用いて混練し、実施例3の架橋性組成物を得た。
 得られた架橋性組成物を、170℃で20分間プレス架橋(圧力20MPa)した後、165℃で3時間のオーブン熱風架橋を行い、厚さ2mmの架橋ゴムシートを作製した。この架橋ゴムシートを用いて、JIS K6251およびJIS K 6253に準拠して、常態物性を評価した。引張強度は8.5MPa、伸びは250%、硬度(shore-A)は42であった。
 (実施例4)
 フッ素ゴム(A)(AFLAS 150L)の100質量部と、アクリルゴム用架橋剤(キュアゾール2MZ-H)の3質量部と、アクリルゴム用架橋助剤(バルノック AB-S)の3質量部とをロール混練して、ベースコンパウンド(フッ素ゴム組成物)を得た。
 得られたベースコンパウンドの20質量部と、アクリルゴム(B)(デンカER-5300)の80質量部とを東洋精機社製ラボプラストミルKF70V2を用い、充填率約80%、ラボプラストミルの回転数40rpm、ラボプラストミル内温度約170℃の条件で、5分間混練した。その後、加工助剤(St-Zn)の2.5質量部を添加して、同条件で1分間混練し、アクリルゴム(B)の動的架橋を行い、アクリルゴム/フッ素ゴム組成物を得た。
 次に、得られたアクリルゴム/フッ素ゴム組成物の100質量部と、フッ素ゴム用架橋剤(パーカードックス14R-P)の0.5質量部と、充填剤(MTカーボン)の50質量部と、フッ素ゴム用架橋助剤(TAIC)の5質量部と、加工助剤(St-Zn)の2質量部と、老化防止剤(ノクラックCD)の1質量部とをロールを用いて混練し、実施例4の架橋性組成物を得た。
 得られた架橋性組成物を、170℃で20分間プレス架橋(圧力20MPa)した後、165℃で3時間のオーブン熱風架橋を行い、厚さ2mmの架橋ゴムシートを作製した。この架橋ゴムシートを用いて、JIS K6251およびJIS K 6253に準拠して、常態物性を評価した。引張強度は8.0MPa、伸びは225%、硬度(shore-A)は61であった。
 (比較例1)
 フッ素ゴム(A)(AFLAS 150L)の100質量部をロール混練して、ベースコンパウンド(フッ素ゴム組成物)を得た。
 得られたベースコンパウンドの20質量部と、アクリルゴム(B)(デンカER-5300)の80質量部とをラボプラストミルを用い、充填率約80%、ラボプラストミルの回転数40rpm、ラボプラストミル内温度約170℃の条件で、20分間混練して、アクリルゴム/フッ素ゴム組成物を得た。
 得られたアクリルゴム/フッ素ゴム組成物の外観を、走査型電子顕微鏡(倍率500倍)にて観察したところ、アクリルゴム(B)の相中に、フッ素ゴム(A)の相が分散していた。また、実施例1と同様にしてアクリルゴム(B)の平均粒子径を測定したところ、アクリルゴム(B)の平均粒子径は150μmであった。
 次に、得られたアクリルゴム/フッ素ゴム組成物の100質量部と、フッ素ゴム用架橋剤(パークミルD)の0.5質量部と、充填剤(FEFカーボン)の50質量部と、フッ素ゴム用架橋助剤(TAIC)の5質量部と、加工助剤(St-Zn)の2質量部とをロールを用いて混練し、比較例1の架橋性組成物を得た。
 得られた架橋性組成物について、実施例1と同様にして常態物性を評価した。引張強度は4.1MPa、伸びは501%、硬度(shore-A)は84であった。
 (比較例2)
 比較例1において、アクリルゴム/フッ素ゴム組成物の100質量部と、アクリルゴム用架橋剤(CN-25)の2.4質量部と、アクリルゴム用架橋助剤(バルノック AB-S)の0.8質量部と、フッ素ゴム用架橋剤(パークミルD)の0.5質量部と、充填剤(FEFカーボン)の50質量部と、フッ素ゴム用架橋助剤(TAIC)の5質量部と、加工助剤(St-Zn)の2質量部とをロールを用いて混練した以外は、比較例1と同様にして比較例2の架橋性組成物を得た。
 得られた架橋性組成物について、実施例1と同様にして常態物性を評価した。引張強度は11.2MPa、伸びは241%、硬度(shore-A)は74であった。
 (比較例3)
 比較例1において、ベースコンパウンドの50質量部と、アクリルゴム(B)(デンカER-5300)の50質量部とをラボプラストミルを用い、比較例1と同様にして混練して、アクリルゴム/フッ素ゴム組成物を得た。
 得られたアクリルゴム/フッ素ゴム組成物の表面を、走査型電子顕微鏡(倍率500倍)にて観察したところ、アクリルゴム(B)の連続相中に、フッ素ゴム(A)の相が分散していた。その理由は、以下のことから推論した。すなわち、表面上に存在する連続相がフッ素ゴムでないことを確認するため、顕微鏡で観察した表面の元素分析結果において、フッ素元素の濃度は0.0質量%とほぼ検出されなかったためである。走査型電子顕微鏡による観測結果を図3に示す。
 また、実施例1と同様にしてアクリルゴム(B)の平均粒子径を測定したところ、アクリルゴム(B)の平均粒径は500μm以上であった。
 次に、得られたアクリルゴム/フッ素ゴム組成物の100質量部と、フッ素ゴム用架橋剤(パークミルD)の0.5質量部と、充填剤(FEFカーボン)の50質量部と、フッ素ゴム用架橋助剤(TAIC)の5質量部と、加工助剤(St-Zn)の2質量部とをロールを用いて混練し、比較例3の架橋性組成物を得た。
 得られた架橋性組成物について、実施例1と同様にして常態物性を評価した。引張強度は4.7MPa、伸びは438%、硬度(shore-A)は75であった。
 (比較例4)
 比較例1において、ベースコンパウンドの20質量部と、アクリルゴム(B)(デンカER-5300)の80質量部とをラボプラストミルを用い、比較例1と同様にして混練して、アクリルゴム/フッ素ゴム組成物を得た。
 得られたアクリルゴム/フッ素ゴム組成物の表面を、走査型電子顕微鏡(倍率500倍)にて表面観察したところ、アクリルゴム(B)の連続相中に、フッ素ゴム(A)の相が分散していた。その理由は、以下のことから推論した。すなわち、表面上に存在する連続相がフッ素ゴムでないことを確認するため、顕微鏡で観察した表面の元素分析結果において、フッ素元素の濃度は0.0質量%となり、ほぼ検出されなかったためである。また、実施例1と同様にしてアクリルゴム(B)の平均粒子径を測定したところ、アクリルゴム(B)の平均粒子径は測定できなかった。
 次に、得られたアクリルゴム/フッ素ゴム組成物の100質量部と、フッ素ゴム用架橋剤(パークミルD)の0.5質量部と、充填剤(FEFカーボン)の50質量部と、フッ素ゴム用架橋助剤(TAIC)の5質量部と、加工助剤(St-Zn)の2質量部とをロールを用いて混練し、比較例4の架橋性組成物を得た。
 得られた架橋性組成物について、実施例1と同様にして常態物性を評価した。引張強度は6.8MPa、伸びは506%、硬度(shore-A)は66であった。
 実施例1、3、4、および比較例1~4の架橋性組成物の組成と常態物性を表1にまとめて記す。
Figure JPOXMLDOC01-appb-T000001
 (積層体)
 フッ素ゴム(C)(AFLAS 150P)の100質量部と、充填剤(FEFカーボン)の20質量部と、フッ素ゴム用架橋助剤(TAIC)の5質量部と、加工助剤(St-Na)の1質量部と、フッ素ゴム用架橋剤(パーブチルP)の0.5質量部とを準備し、これらを、ロールを用いて混練することにより、架橋性フッ素ゴム組成物を調製した。
 上記架橋性フッ素ゴム組成物の未架橋ゴムシートと、実施例1、3、4および比較例1~4の架橋性組成物の未架橋ゴムシートとを重ね合わせて、170℃で20分間プレス架橋した後、165℃で3時間のオーブン中にて2次架橋して、実施例2,5,6、および比較例5~8の積層体を作製した。なお、該積層体は、架橋後のフッ素ゴム組成物層の厚みが1mm、架橋後のアクリルゴム/フッ素ゴム組成物層の厚みが1mmとなるように作製した。
 得られた積層体を用いて、下記の基準に従い、各特性の評価を行った。その結果を、表2に記す。
 〔常態における層間接着性〕
 各積層シートから、厚み2mm(各1mmずつ)、幅25.4mmの試験片を短冊状に切り出し、試験片を作製した。該試験片の外層を、引張試験機(JIS B 7721)を用いて、毎分50mmの速度で引き剥がし、層間接着力(N/mm)を測定した。また、層間の剥離状態を目視にて観察した。剥離面が完全に材破していたものを○(優)、剥離面が一部材破していたものを△(良)、界面で剥離していたものを×(不良)と、評価した。
 〔高温環境下での層間接着性〕
 各積層シートから、厚み2mm(各1mmずつ)、幅25.4mmの試験片を短冊状に切り出し、試験片を作製した、該試験片を、150℃に保持した恒温槽付き引張試験機(JIS B 7721)中に10分間放置した後、試験片の外層を毎分50mmの速度で引き剥がし、層間接着力(N/mm)を測定した。また、層間の剥離状態を目視にて観察した。剥離面が完全に材破していたものを○(優)、剥離面が一部材破していたものを△(良)、界面で剥離していたものを×(不良)と、評価した。
Figure JPOXMLDOC01-appb-T000002
 上記表2の結果から、実施例2、5、6の積層体は、常態および高温環境下での層間接着性に関して優れた結果が得られた。
 これに対して、比較例5の積層体は、表2に示されるように、アクリルゴム/フッ素ゴム組成物層の常態物性が低かった。また、層間接着性について、その剥離状態は界面剥離であった。
 また、比較例6の積層体は、アクリルゴム/フッ素ゴム組成物層の大部分がアクリルゴムで形成されているため、常態物性が優れていた。しかし、比較例6の積層体層間接着性について、その剥離状態は界面剥離であった。
 また、比較例7の積層体は、アクリルゴム/フッ素ゴム組成物層の常態物性は、比較例5に比べて改善されているものの、十分ではなく、また、層間接着性について、その剥離状態は界面剥離であり、層間接着性が低かった。
 比較例8の積層体は、アクリルゴム/フッ素ゴム組成物層の大部分がフッ素ゴムで構成されているので常態物性は優れていたが、層間接着性は十分ではなかった。また、フッ素ゴムの含有量が多いため、高コストであった。
 本発明のアクリルゴム/フッ素ゴム組成物を含有する架橋性組成物から得られる耐熱エアーゴムホースは、耐熱性、耐薬品性、耐油性、耐圧性に優れており産業上有用である。特に、高温高圧耐性が要求される自動車用のエアー系ホース(ターボエアーホース、ブローバイガス用ホース、エミッションコントロールホース等)として、良好に用いられる。
 なお、2012年1月18日に出願された日本特許出願2012-007865号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。

Claims (17)

  1.  フッ素ゴム(A)の連続相中に、架橋したアクリルゴム(B)の粒子が分散したアクリルゴム/フッ素ゴム組成物の製造方法であって、
     フッ素ゴム(A)と、前記フッ素ゴム(A)と反応しないアクリルゴム用架橋剤と、前記フッ素ゴム(A)と反応しないアクリルゴム用架橋助剤とを混練して、前記アクリルゴム用架橋剤および前記アクリルゴム用架橋助剤を含有するフッ素ゴム組成物を得る工程(1)と、
     前記工程(1)で得られたフッ素ゴム組成物と、アクリルゴム(B)とを、フッ素ゴム(A)/アクリルゴム(B)=5/95~50/50の質量比で、加熱下に混練しながら前記アクリルゴム(B)を架橋させて、前記フッ素ゴム(A)の連続相中に架橋した前記アクリルゴム(B)の粒子を分散させる工程(2)とを含むことを特徴とするアクリルゴム/フッ素ゴム組成物の製造方法。
  2.  前記フッ素ゴム(A)が、テトラフルオロエチレンに基づく繰返し単位とプロピレンに基づく繰返し単位を含有する共重合体である請求項1に記載のアクリルゴム/フッ素ゴム組成物の製造方法。
  3.  前記フッ素ゴム(A)における、テトラフルオロエチレンに基づく繰返し単位とプロピレンに基づく繰返し単位とのモル比((TFEに基づく繰返し単位)/(Pに基づく繰返し単位))が、40/60~70/30である請求項2に記載のアクリルゴム/フッ素ゴム組成物の製造方法。
  4.  前記フッ素ゴム(A)のフッ素含有量が、40~75質量%である請求項1~3のいずれか1項に記載のアクリルゴム/フッ素ゴム組成物の製造方法。
  5.  前記アクリルゴム(B)が、(メタ)アクリルモノマーに基づく繰返し単位を30~100質量%、エチレンに基づく繰返し単位を0~30質量%、酢酸ビニルに基づく繰返し単位を0~40質量%、および架橋基含有モノマーに基づく繰返し単位を0.1~20質量%含有する、請求項1~4のいずれか1項に記載のアクリルゴム/フッ素ゴム組成物の製造方法。
  6.  前記架橋基含有モノマーの有する架橋基がエポキシ基である請求項5に記載のアクリルゴム/フッ素ゴム組成物の製造方法。
  7.  前記工程(1)において、前記フッ素ゴム(A)の100質量部に対し、前記アクリルゴム用架橋剤の0.5~20質量部と、前記アクリルゴム用架橋助剤の0.05~10質量部とを混練して、前記フッ素ゴム組成物を得る、請求項1~6のいずれか1項に記載のアクリルゴム/フッ素ゴム組成物の製造方法。
  8.  前記工程(2)において、前記フッ素ゴム組成物と、前記アクリルゴム(B)とを、加熱下に混練しながら前記アクリルゴム(B)を架橋させて、前記フッ素ゴム(A)の連続相中に、平均粒子径が2~30μmの架橋した前記アクリルゴム(B)の粒子を分散させる、請求項1~7のいずれか1項に記載のアクリルゴム/フッ素ゴム組成物の製造方法。
  9.  請求項1~8のいずれか1項に記載の製造方法で製造されたアクリルゴム/フッ素ゴム組成物と、フッ素ゴム用架橋剤とを含有することを特徴とする架橋性組成物。
  10.  前記フッ素ゴム用架橋剤が有機過酸化物である請求項9に記載の架橋性組成物。
  11.  前記フッ素ゴム用架橋剤の含有量が、前記フッ素ゴム(A)の100質量部に対し、0.1~10質量部である、請求項9または10に記載の架橋性組成物。
  12.  フッ素ゴム用架橋助剤として、トリアリルシアヌレート、トリアリルイソシアヌレート、トリアクリルホルマール、トリアリルトリメリテート、ジプロパルギルテレフタレート、ジアリルフタレート、テトラアリルテレフタールアミド、またはトリアリルホスフェートをさらに含有する請求項9~11のいずれか1項に記載の架橋性組成物。
  13.  充填剤として、カーボンブラックをさらに含有する請求項9~12のいずれか1項に記載の架橋性組成物。
  14.  請求項9~13のいずれか1項に記載の架橋性組成物を架橋してなる層と、フッ素ゴム(C)を架橋してなる層とを有することを特徴とする積層体。
  15.  前記フッ素ゴム(C)が、テトラフルオロエチレンに基づく繰返し単位とプロピレンに基づく繰返し単位を含有する共重合体である請求項14に記載の積層体。
  16.  請求項9~13のいずれか1項に記載の架橋性組成物を架橋してなる管状の外層と、該外層の内周に設けられた、フッ素ゴム(C)を架橋してなる管状の内層とを有することを特徴とする耐熱エアーゴムホース。
  17.  前記フッ素ゴム(C)が、テトラフルオロエチレンに基づく繰返し単位とプロピレンに基づく繰返し単位を含有する共重合体である請求項16に記載の耐熱エアーゴムホース。
PCT/JP2013/050849 2012-01-18 2013-01-17 アクリルゴム/フッ素ゴム組成物の製造方法、架橋性組成物、積層体および耐熱エアーゴムホース WO2013108856A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP13739137.1A EP2805988B1 (en) 2012-01-18 2013-01-17 Method for producing acrylic rubber/fluoro-rubber composition, crosslinked composition, laminate body, and heat-resistant air rubber hose
CN201380006083.9A CN104093769B (zh) 2012-01-18 2013-01-17 丙烯酸类橡胶/氟橡胶组合物的制造方法、交联性组合物、层叠体及耐热空气橡胶软管
JP2013554348A JP5994791B2 (ja) 2012-01-18 2013-01-17 アクリルゴム/フッ素ゴム組成物の製造方法、架橋性組成物、積層体および耐熱エアーゴムホース
US14/335,385 US9718895B2 (en) 2012-01-18 2014-07-18 Process for producing acrylic rubber/fluorinated rubber composition, crosslinkable composition, laminate and heat resistant air rubber hose

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012007865 2012-01-18
JP2012-007865 2012-01-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/335,385 Continuation US9718895B2 (en) 2012-01-18 2014-07-18 Process for producing acrylic rubber/fluorinated rubber composition, crosslinkable composition, laminate and heat resistant air rubber hose

Publications (1)

Publication Number Publication Date
WO2013108856A1 true WO2013108856A1 (ja) 2013-07-25

Family

ID=48799279

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/050849 WO2013108856A1 (ja) 2012-01-18 2013-01-17 アクリルゴム/フッ素ゴム組成物の製造方法、架橋性組成物、積層体および耐熱エアーゴムホース

Country Status (5)

Country Link
US (1) US9718895B2 (ja)
EP (1) EP2805988B1 (ja)
JP (1) JP5994791B2 (ja)
CN (1) CN104093769B (ja)
WO (1) WO2013108856A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019070039A1 (ja) * 2017-10-05 2019-04-11 Agc株式会社 積層体の製造方法及び積層体
WO2020204079A1 (ja) * 2019-04-04 2020-10-08 Agc株式会社 積層体の製造方法および積層体
WO2020204076A1 (ja) * 2019-04-04 2020-10-08 Agc株式会社 積層体の製造方法および積層体
JP7389355B2 (ja) 2020-04-07 2023-11-30 日本製鉄株式会社 高炉用非焼成含炭塊成鉱の製造方法
WO2024004310A1 (ja) * 2022-06-30 2024-01-04 デンカ株式会社 ゴム組成物及びその硬化物

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150041473A1 (en) * 2012-03-13 2015-02-12 Daikin Industries, Ltd. Automotive filler cap
WO2018110701A1 (ja) * 2016-12-15 2018-06-21 ユニマテック株式会社 カルボキシル基含有アクリルゴム組成物およびそれを用いたゴム積層体

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01299859A (ja) 1988-05-27 1989-12-04 Japan Synthetic Rubber Co Ltd フッ素ゴム組成物および架橋可能なフッ素ゴム組成物
JPH0641379A (ja) * 1992-02-27 1994-02-15 Bayer Ag フツ素含有ゴムとアクリル酸エステルゴムとを基剤とする遊離基加硫可能な混合物
JPH06298899A (ja) * 1993-04-14 1994-10-25 Asahi Glass Co Ltd 加硫性ゴム組成物
JP2004017485A (ja) 2002-06-17 2004-01-22 Asahi Glass Co Ltd 積層ゴムホース
WO2005111140A1 (ja) * 2004-05-17 2005-11-24 Daikin Industries, Ltd. 熱可塑性重合体組成物
JP2007056068A (ja) * 2005-08-22 2007-03-08 National Institute Of Advanced Industrial & Technology 耐熱性ならびに耐薬品性に優れた熱可塑性エラストマー、その製造方法及びその用途
JP2007126631A (ja) * 2005-10-05 2007-05-24 Sumitomo Electric Ind Ltd 樹脂組成物とそれを用いた電線・ケーブル、絶縁チューブおよび熱収縮チューブ
JP4168189B2 (ja) 1998-01-14 2008-10-22 ソルバーユ ソレクシス エッセ.ピー.ア. アクリルゴムとフッ素ゴムとの複合体、その製造方法および加硫性ゴム組成物
WO2012026549A1 (ja) * 2010-08-25 2012-03-01 ダイキン工業株式会社 ホース

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6028444A (ja) * 1983-07-27 1985-02-13 Daikin Ind Ltd 加工容易な含フツ素熱可塑性ゴム組成物
JP3133142B2 (ja) * 1992-04-09 2001-02-05 日信化学工業株式会社 架橋用組成物
DE69535442T2 (de) * 1994-12-09 2007-12-06 Daikin Industries, Ltd. Kautschukzusammensetzung mit niedrigem druckverformungsrest
JPH11310678A (ja) * 1998-04-27 1999-11-09 Daikin Ind Ltd 低膨潤性ゴム組成物およびそれより得られる成型品
CN1954029A (zh) * 2004-05-17 2007-04-25 大金工业株式会社 热塑性聚合物的组合物
US7718736B2 (en) * 2005-06-30 2010-05-18 Freudenberg-Nok General Partnership Base resistant FKM-TPV elastomers
JP5023449B2 (ja) * 2005-08-08 2012-09-12 日油株式会社 熱可塑性エラストマー組成物
JP5428150B2 (ja) * 2007-11-20 2014-02-26 旭硝子株式会社 架橋性に優れる架橋性含フッ素エラストマー、およびその製造方法
CN101628485A (zh) * 2009-08-13 2010-01-20 浙江峻和橡胶科技有限公司 中冷器胶管的制造方法
WO2011040576A1 (ja) * 2009-10-01 2011-04-07 旭硝子株式会社 架橋性フッ素ゴム組成物および架橋ゴム物品
JP2011249268A (ja) * 2010-05-31 2011-12-08 Hitachi Cable Ltd 含フッ素エラストマ被覆電線、及び含フッ素エラストマ被覆電線の製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01299859A (ja) 1988-05-27 1989-12-04 Japan Synthetic Rubber Co Ltd フッ素ゴム組成物および架橋可能なフッ素ゴム組成物
JPH0641379A (ja) * 1992-02-27 1994-02-15 Bayer Ag フツ素含有ゴムとアクリル酸エステルゴムとを基剤とする遊離基加硫可能な混合物
JPH06298899A (ja) * 1993-04-14 1994-10-25 Asahi Glass Co Ltd 加硫性ゴム組成物
JP4168189B2 (ja) 1998-01-14 2008-10-22 ソルバーユ ソレクシス エッセ.ピー.ア. アクリルゴムとフッ素ゴムとの複合体、その製造方法および加硫性ゴム組成物
JP2004017485A (ja) 2002-06-17 2004-01-22 Asahi Glass Co Ltd 積層ゴムホース
WO2005111140A1 (ja) * 2004-05-17 2005-11-24 Daikin Industries, Ltd. 熱可塑性重合体組成物
JP2007056068A (ja) * 2005-08-22 2007-03-08 National Institute Of Advanced Industrial & Technology 耐熱性ならびに耐薬品性に優れた熱可塑性エラストマー、その製造方法及びその用途
JP2007126631A (ja) * 2005-10-05 2007-05-24 Sumitomo Electric Ind Ltd 樹脂組成物とそれを用いた電線・ケーブル、絶縁チューブおよび熱収縮チューブ
WO2012026549A1 (ja) * 2010-08-25 2012-03-01 ダイキン工業株式会社 ホース

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2805988A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019070039A1 (ja) * 2017-10-05 2019-04-11 Agc株式会社 積層体の製造方法及び積層体
JPWO2019070039A1 (ja) * 2017-10-05 2020-10-22 Agc株式会社 積層体の製造方法及び積層体
RU2768403C2 (ru) * 2017-10-05 2022-03-24 ЭйДжиСи Инк. Способ производства ламината и ламинат
JP7088203B2 (ja) 2017-10-05 2022-06-21 Agc株式会社 積層体の製造方法及び積層体
WO2020204079A1 (ja) * 2019-04-04 2020-10-08 Agc株式会社 積層体の製造方法および積層体
WO2020204076A1 (ja) * 2019-04-04 2020-10-08 Agc株式会社 積層体の製造方法および積層体
JP7389355B2 (ja) 2020-04-07 2023-11-30 日本製鉄株式会社 高炉用非焼成含炭塊成鉱の製造方法
WO2024004310A1 (ja) * 2022-06-30 2024-01-04 デンカ株式会社 ゴム組成物及びその硬化物

Also Published As

Publication number Publication date
US20140329096A1 (en) 2014-11-06
JPWO2013108856A1 (ja) 2015-05-11
EP2805988B1 (en) 2017-01-04
JP5994791B2 (ja) 2016-09-21
CN104093769A (zh) 2014-10-08
EP2805988A4 (en) 2015-09-23
CN104093769B (zh) 2016-01-20
US9718895B2 (en) 2017-08-01
EP2805988A1 (en) 2014-11-26

Similar Documents

Publication Publication Date Title
JP5994791B2 (ja) アクリルゴム/フッ素ゴム組成物の製造方法、架橋性組成物、積層体および耐熱エアーゴムホース
JP5273048B2 (ja) 含フッ素樹脂および架橋フッ素ゴムを含む熱可塑性樹脂組成物
JP5788751B2 (ja) 積層体、架橋物及び成形部材
JP2010042669A (ja) フッ素ゴム積層体およびその製造方法
EP1676879A2 (en) Dynamic vulcanization of non-nitrile rubbers in fluoroplastic polymers
WO2006082843A1 (ja) 架橋性組成物およびそれからなる積層体
JPH11509874A (ja) エラストマーのポリマー組成物への接着力を改善するための組成物
JPH0579696B2 (ja)
JP2008308657A (ja) 燃料部品
JP2610145B2 (ja) ゴム組成物
WO1995019880A1 (fr) Stratifie de couches de composition de caoutchouc vulcanisable, procede de production du stratifie de caoutchouc et stratifie de caoutchouc
WO2017155106A1 (ja) フッ素樹脂組成物、成形材料および成形体
WO2012081413A1 (ja) 積層体
JP2011116004A (ja) フッ素ポリマー積層体の製造方法、それにより得られるフッ素ポリマー積層体、及び、非フッ素ゴム組成物
JP2011190412A (ja) 架橋性ゴム組成物及びその製造方法、並びに、ゴム成形品及びその製造方法
JP6992801B2 (ja) ゴム積層体
JP6955384B2 (ja) パーフルオロエラストマー組成物及びシール材
JP6293503B2 (ja) アクリルエラストマー、アクリルエラストマー組成物および積層体
JP5401954B2 (ja) ゴム層とフッ素樹脂層からなる積層体および加硫用ゴム組成物
JP2021105179A (ja) 未架橋ゴム組成物並びにそれを用いて製造されるゴム製品及びその製造方法
WO2014080948A1 (ja) アクリル系エラストマー、アクリル系エラストマー組成物、積層体、架橋物及び成形部材
JP2005239835A (ja) 架橋性フッ素ゴム組成物
WO2014123037A1 (ja) 積層体
JP2013056979A (ja) 架橋性フッ素ゴム組成物、及び、フッ素ゴム成形品
JP5870816B2 (ja) 積層体および積層体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13739137

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013554348

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2013739137

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013739137

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE