WO2013108835A1 - 有機elデバイス用ガラス基板及びそれを用いた有機elデバイス - Google Patents

有機elデバイス用ガラス基板及びそれを用いた有機elデバイス Download PDF

Info

Publication number
WO2013108835A1
WO2013108835A1 PCT/JP2013/050797 JP2013050797W WO2013108835A1 WO 2013108835 A1 WO2013108835 A1 WO 2013108835A1 JP 2013050797 W JP2013050797 W JP 2013050797W WO 2013108835 A1 WO2013108835 A1 WO 2013108835A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass substrate
organic
refractive index
thickness
glass
Prior art date
Application number
PCT/JP2013/050797
Other languages
English (en)
French (fr)
Inventor
篤 虫明
智基 柳瀬
誉子 東條
隆 村田
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to US14/372,314 priority Critical patent/US20150349280A1/en
Priority to CN201380004375.9A priority patent/CN104012172A/zh
Publication of WO2013108835A1 publication Critical patent/WO2013108835A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C15/00Surface treatment of glass, not in the form of fibres or filaments, by etching
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/095Glass compositions containing silica with 40% to 90% silica, by weight containing rare earths
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/854Arrangements for extracting light from the devices comprising scattering means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/858Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]

Definitions

  • the present invention relates to a glass substrate for an organic EL device and an organic EL device using the same.
  • Organic electroluminescence elements are light and thin, and can be driven with low power consumption.
  • a transparent electrode layer is provided on the surface of a translucent substrate (glass substrate)
  • an organic light emitting layer made of an organic EL material is provided on the surface of the transparent electrode layer
  • a counter electrode is provided on the surface of the organic light emitting layer. It is produced by providing. When a voltage is applied between the transparent electrode layer and the counter electrode, the light emitted in the organic light emitting layer is transmitted through the transparent electrode layer and the translucent substrate and extracted outside.
  • part of the light emitted in the organic light emitting layer causes total reflection due to the difference in refractive index between the organic light emitting layer and the glass substrate interface and the difference in refractive index between the glass substrate and the air interface. Be trapped.
  • an organic light emitting material having a refractive index nd of 1.9 and a glass substrate having a refractive index nd of 1.5 are used, the light extracted outside the organic EL element is light emitted in the organic light emitting layer. Of these, it is about 20 to 25%.
  • thermosetting resin such as polyimide
  • the present invention has been made in view of the above problems, and the technical problem thereof is an organic EL device that is not easily damaged by a physical impact and can improve light extraction efficiency without using a transparent resin sheet. Is to create a glass substrate.
  • the inventors have found that the above technical problem can be solved by regulating the refractive index of the glass substrate within a predetermined range and strictly regulating the surface shape of the glass substrate. It is proposed as an invention. That is, the glass substrate for an organic EL device of the present invention is characterized in that the refractive index nd is 1.55 or more, and at least one surface has a roughened surface with a surface roughness of Rt 50 to 10,000 nm. .
  • the “refractive index nd” can be measured by a commercially available refractive index measuring instrument (for example, a refractive index measuring instrument KPR-2000 manufactured by Calnew).
  • a measurement sample for example, a glass substrate is cut into 25 mm square by dicing, and then the glass substrate is laminated in a state where an immersion liquid having a refractive index nd matching is infiltrated between the glass substrates, and is 25 mm ⁇ 25 mm ⁇ about 3 mm.
  • a thick rectangular parallelepiped can be used.
  • the glass substrate is thin and takes the form of a glass film
  • a measurement sample for example, a plurality of 25 mm square glass films are cut out using a laser scriber, and then the refractive index nd is between the glass films.
  • a glass film can be laminated to form a rectangular parallelepiped having a thickness of 25 mm ⁇ 25 mm ⁇ about 3 mm.
  • Surface roughness Rt is a value measured by a method based on JIS R0601 (2001).
  • Organic EL device includes organic EL lighting and the like.
  • the glass substrate for an organic EL device of the present invention has a refractive index nd of 1.55 or more. In this way, since the difference in refractive index between the organic layer and the glass substrate is reduced, the light confined in the organic light emitting layer due to total reflection can be reduced. As a result, the light extraction efficiency of the organic EL device can be increased.
  • the refractive index nd is preferably 1.6 or more, particularly 1.7 or more.
  • the glass substrate for an organic EL device of the present invention has a roughened surface having a surface roughness Rt of 50 to 10,000 nm on at least one surface. If it does in this way, it will become possible to scatter the light in a glass substrate, and the light confined in a glass substrate can be reduced. As a result, the light extraction efficiency of the organic EL device can be increased.
  • the glass substrate for an organic EL device of the present invention has a roughened surface having a refractive index nd of 1.55 or more and a surface roughness RSm of 0.01 to 1000 ⁇ m on at least one surface. It is characterized by that.
  • surface roughness RSm is a value measured by a method based on JIS R0601: 2001. If the surface roughness RSm of the roughened surface is regulated to 0.01 to 1000 ⁇ m, it becomes possible to scatter light in the glass substrate and reduce light trapped in the glass substrate. As a result, the light extraction efficiency of the organic EL device can be increased.
  • the glass substrate for an organic EL device of the present invention has a refractive surface nd of 1.55 or more, a roughened surface having a surface roughness Rt / RSm of 0.01 to 1 on at least one surface. It is characterized by having. If the surface roughness Rt / RSm of the roughened surface is restricted to 0.01 to 1, light in the glass substrate can be scattered, and light confined in the glass substrate can be reduced. As a result, the light extraction efficiency of the organic EL device can be increased.
  • the roughened surface is formed only on one surface, and the surface roughness Rt of the other surface facing the roughened surface is 10 nm or less. It is preferable.
  • the “surface roughness Rt” is a value measured by a method based on JIS R0601 (2001). In this way, the quality of the transparent electrode such as indium-tin oxide (ITO) can be improved.
  • the roughened surface of the glass substrate for an organic EL device of the present invention is formed by a physical roughening treatment. In this way, the surface of the glass substrate can be uniformly roughened in a short time.
  • the physical roughening treatment is preferably a sandblast treatment.
  • the particle size of the blasting material used in sandblasting is preferably # 200 to # 4000, # 200 to # 2000, # 200 to # 1500, particularly # 200 to # 1200. If the particle size of the blasting material is too large, it becomes difficult to adjust the surface roughness Rt, RSm to an appropriate range, and it becomes difficult to increase the light extraction efficiency. On the other hand, if the particle size of the blast material is too small, the surface roughness Rt, RSm of the roughened surface becomes too large, and the in-plane strength of the glass substrate tends to decrease.
  • the physical roughening treatment is preferably a polishing treatment.
  • the particle size of the abrasive used in the polishing treatment is preferably # 220 to # 3000, # 300 to # 2000, # 400 to # 1500, particularly # 400 to # 1200.
  • the particle size of the abrasive is too large, it becomes difficult to adjust the surface roughness Rt and RSm within appropriate ranges, and it becomes difficult to increase the light extraction efficiency.
  • the particle size of the abrasive is too small, the surface roughness Rt, RSm of the roughened surface becomes too large, and the in-plane strength of the glass substrate tends to decrease.
  • the roughened surface of the glass substrate for an organic EL device of the present invention is further subjected to a chemical treatment after the physical roughening treatment. If it does in this way, it will become possible to remove the microcrack which arises by roughening processing etc., and the in-plane strength of a glass substrate can be raised.
  • the chemical solution preferably contains one or more selected from the group consisting of HF, HCl, H 2 SO 4 , HNO 3 , NH 4 F, NaOH, and NH 4 HF 2 , and in particular, a mixed solution of HF and NH 4 F or it is preferably a mixture of NH 4 F and NH 4 HF 2. These chemical solutions have good reactivity with glass, and can appropriately remove microcracks caused by roughening treatment or the like.
  • sandblasting can uniformly roughen a large-area glass substrate.
  • a large number of microcracks are generated on the roughened surface, resulting in physical impact in the manufacturing process of organic EL devices.
  • the glass substrate is easily damaged.
  • the higher the refractive index of the glass substrate the easier it is to generate microcracks on the roughened surface from the viewpoint of the skeletal structure of the glass. Therefore, when the chemical treatment is performed on the roughened surface, such a problem is easily solved.
  • These chemical solutions are preferably used at temperatures of 10 to 40 ° C., 15 to 35 ° C., particularly 20 to 30 ° C.
  • the chemical solution is likely to volatilize, which may cause problems in terms of safety and environment.
  • the chemical solution treatment is performed at a temperature of less than 10 ° C., the reaction rate between the glass and the chemical solution becomes too slow, and the production efficiency of the glass substrate tends to decrease.
  • the chemical treatment is preferably a chemical treatment with an acid.
  • the glass substrate for an organic EL device of the present invention preferably contains 30 to 70% by mass of SiO 2 as a glass composition.
  • the glass substrate for an organic EL device of the present invention preferably has an in-plane strength of 150 MPa or more, 300 MPa or more, 500 MPa or more, particularly 1000 MPa or more. If it does in this way, in the manufacturing process of an organic EL device, it will become difficult to damage a glass substrate by physical impact.
  • in-plane strength refers to a value measured in a ring-on-ring test. The ring-on-ring test is performed as follows, for example. First, a glass substrate (roughened surface side downward) is placed on a ring-shaped jig having a diameter of 25 mm, and then the glass substrate is pressed from above using a jig having a diameter of 12.5 mm. Specific conditions are as follows: weight meter: strength tester manufactured by Shimadzu Corporation, weight speed: 0.5 mm / min, push position: center. Finally, the breaking load when the glass substrate is broken is calculated as the in-plane strength.
  • the glass substrate for organic EL devices of this invention for illumination.
  • the organic EL device of the present invention is characterized by including the glass substrate for an organic EL device described above.
  • the glass substrate for an organic EL device has a refractive index nd of 1.55 or more and has a roughened surface on one surface. Both surfaces of the glass substrate may be roughened surfaces.
  • the surface roughness Rt of the roughened surface is 50 to 10,000 nm. If the surface roughness Rt of the roughened surface is too small, it becomes difficult for light to be reflected by the roughened surface, and it becomes difficult to increase the light extraction efficiency. Considering the light extraction efficiency, the surface roughness Rt of the roughened surface is preferably 300 nm or more, particularly preferably 500 nm or more. On the other hand, if the surface roughness Rt of the roughened surface is too large, the in-plane strength of the glass substrate tends to decrease. Considering the in-plane strength of the glass substrate, the surface roughness Rt of the roughened surface is preferably 9000 nm or less, particularly preferably 8000 nm or less.
  • the surface roughness RSm of the roughened surface is 0.1 to 1000 ⁇ m. If the surface roughness RSm of the roughened surface is too small, light is difficult to reflect on the roughened surface, and it is difficult to increase the light extraction efficiency. Considering the light extraction efficiency, the surface roughness RSm of the roughened surface is preferably 1 ⁇ m or more, particularly preferably 5 ⁇ m or more. On the other hand, if the surface roughness Rt of the roughened surface is too large, the in-plane strength of the glass substrate tends to decrease. Considering the in-plane strength of the glass substrate, the surface roughness RSm of the roughened surface is preferably 500 ⁇ m or less, particularly preferably 300 ⁇ m or less.
  • the ratio of the surface roughness Rt / RSm of the roughened surface is 0.01 to 1. If Rt / RSm is too small, the surface roughening treatment is insufficient, so that the glass substrate becomes wavy and the light extraction efficiency becomes insufficient. Considering the light extraction efficiency, Rt / RSm is preferably 0.03 or more, particularly preferably 0.05 or more. On the other hand, if Rt / RSm is too large, the in-plane strength of the glass substrate tends to decrease. Considering the in-plane strength of the glass substrate, 0.5 or less, particularly 0.1 or less is preferable.
  • Examples of the surface roughening treatment method include polishing treatment, sand blast treatment, atmospheric pressure plasma treatment, and repress. Note that these roughening methods are merely examples, and the present invention does not preclude the formation of a roughened surface on the surface of the glass substrate by other methods.
  • Etching gases used for atmospheric pressure plasma treatment include rare gases such as He, Ar, and Xe, total fluorocarbon gases such as CF 4 , C 2 F 6 , and C 4 F 8 , CHF 3 , and CH 2 F 2 Hydrogenated fluorocarbon gas, fluorocarbon gas such as CCl 2 F 2 and CHClF 2 , fluorocarbon gas such as CBrF 3 and CF 3 I, organic halogen gas not containing F such as CCl 4 and COCl 2 , Cl 2 , BCl 3 , SF 6 , NF 3 , HBr, SiCl 4 and other inorganic halogen gases, CH 4 , C 2 H 6 and other hydrocarbon gases, and other gases (eg, O 2 , H 2 , N 2 , CO) Can be mentioned.
  • rare gases such as He, Ar, and Xe
  • total fluorocarbon gases such as CF 4 , C 2 F 6 , and C 4 F 8 , CHF 3 , and CH
  • the other surface facing the roughened surface is preferably an unpolished surface, and the surface roughness Rt of the surface facing the roughened surface is 10 nm or less, 10 nm. Less than, 5 nm or less, 3 nm or less, and especially 1 nm or less are preferable. If the surface facing the roughened surface is an unpolished surface, the glass substrate will be difficult to break. Further, if the surface roughness Rt of the surface facing the roughened surface is reduced, the quality of the ITO formed on the surface is improved, so that the electric field distribution in the surface can be easily maintained, and as a result, Luminance unevenness hardly occurs in the surface. In addition, the resin plate is inferior in surface smoothness, and it is difficult to improve the quality of ITO.
  • the glass substrate for an organic EL device of the present embodiment preferably contains 30 to 70% by mass of SiO 2 as a glass composition.
  • SiO 2 is a component that forms a network of glass.
  • the meltability and moldability are lowered, or the refractive index becomes too small, making it difficult to match the refractive index of the organic light emitting layer.
  • the content of SiO 2 is too small, or hardly be vitrified, chemical resistance may be lowered, in-plane strength tends to decrease.
  • the glass substrate for an organic EL device of the present embodiment has, as a glass composition, 30% to 70% SiO 2 , 0 to 20% Al 2 O 3, 0 to 15% Li 2 O + Na 2 O + K 2 O, MgO + CaO + SrO + BaO 5 as a glass composition. It is preferable to contain -55%, TiO 2 0-20%, ZrO 2 0-15%. This makes it possible to increase the refractive index and the in-plane strength.
  • the reason for defining the content range of each component as described above will be shown. Note that “Li 2 O + Na 2 O + K 2 O” refers to the total amount of Li 2 O, Na 2 O, and K 2 O. “MgO + CaO + SrO + BaO” refers to the total amount of MgO, CaO, SrO, and BaO.
  • SiO 2 is a component that forms a network of glass.
  • the content of SiO 2 is preferably 30 to 70%. If the content of SiO 2 is too large, the meltability and moldability are lowered, or the refractive index is too small, making it difficult to match the refractive index of the organic light emitting layer. On the other hand, if the content of SiO 2 is too small, or hardly be vitrified, chemical resistance may be lowered, in-plane strength tends to decrease.
  • Al 2 O 3 is a component that forms a glass network and is a component that improves weather resistance.
  • the content of Al 2 O 3 is preferably 0 to 20%. If the content of Al 2 O 3 is too large, the refractive index becomes too small and it becomes difficult to match the refractive index of the organic light emitting layer, and in addition, devitrified crystals are likely to precipitate on the glass, resulting in overflow down. It becomes difficult to form glass by the draw method or the like.
  • B 2 O 3 is a component that forms a glass network.
  • the content of B 2 O 3 is preferably 0 to 20%.
  • the content of B 2 O 3 is too large, the chemical resistance decreases, the refractive index becomes too small, and it becomes difficult to match the refractive index of the organic light emitting layer. It becomes easy to precipitate and it becomes difficult to form glass by the overflow down draw method or the like.
  • the content of Li 2 O + Na 2 O + K 2 O is preferably 0 to 15%, 0 to 10%, particularly preferably 0 to 5%.
  • Li 2 O + Na 2 O + K content of 2 O is too large, or reduces the thermal shock resistance, so the acid resistance is low, in the patterning step of the ITO, a glass substrate is easily damaged by acid.
  • Li 2 O is a component that improves the meltability and moldability, and further improves the devitrification resistance.
  • the Li 2 O content is preferably 0 to 10%, particularly preferably 0 to 5%.
  • the content of Li 2 O is too large, or reduces the thermal shock resistance, so the acid resistance is low, in the patterning step of the ITO, a glass substrate is easily damaged by acid.
  • Na 2 O is a component that improves the meltability and moldability, and further improves the devitrification resistance.
  • the content of Na 2 O is preferably 0 to 10%, particularly preferably 0 to 5%. When the content of Na 2 O is too large, or reduces the thermal shock resistance, so the acid resistance is low, in the patterning step of the ITO, a glass substrate is easily damaged by acid.
  • K 2 O is a component that improves the meltability and moldability, and further improves the devitrification resistance.
  • the content of K 2 O is preferably 0 to 10%, particularly preferably 0 to 5%. When the content of K 2 O is too large, or reduces the thermal shock resistance, so the acid resistance is low, in the patterning step of the ITO, a glass substrate is easily damaged by acid.
  • MgO + CaO + SrO + BaO is a component that improves meltability and moldability. However, when there is too much content of MgO + CaO + SrO + BaO, devitrification resistance will fall easily. Therefore, the content of MgO + CaO + SrO + BaO is preferably 5 to 55%, 15 to 50%, particularly preferably 20 to 45%.
  • MgO is a component that improves meltability and moldability. However, when there is too much content of MgO, devitrification resistance will fall easily. Therefore, the content of MgO is preferably 0 to 20%.
  • CaO is a component that improves meltability and moldability. However, when there is too much content of CaO, devitrification resistance will fall easily. Therefore, the CaO content is preferably 0 to 20%, 1 to 15%, particularly 3 to 12%.
  • SrO is a component that increases the refractive index as well as the meltability and moldability. However, when there is too much content of SrO, devitrification resistance will fall easily. Therefore, the content of SrO is preferably 0 to 25%, 0.1 to 20%, particularly 1 to 15%.
  • BaO is a component that improves the meltability and moldability and also increases the refractive index. However, when there is too much content of BaO, devitrification resistance will fall easily. Therefore, the BaO content is preferably 0 to 45%, 5 to 40%, and particularly preferably 15 to 35%.
  • TiO 2 is a component that increases the refractive index. However, when the content of TiO 2 is too large, or colored glass, lowered resistance to devitrification tends higher density. Therefore, the content of TiO 2 is preferably 0 to 20%, 0.1 to 15%, particularly 1 to 7%.
  • ZrO 2 is a component that increases the refractive index. However, when the content of ZrO 2 is too high, there are cases where the devitrification resistance is extremely lowered. Therefore, the content of ZrO 2 is preferably 0 to 15%, 0.001 to 10%, particularly 1 to 7%.
  • ZnO is a component that improves meltability and moldability. However, when there is too much content of ZnO, devitrification resistance will fall easily. Therefore, the ZnO content is preferably 0 to 20%, particularly preferably 0 to 5%.
  • Rare earth oxides such as Nb 2 O 5 , La 2 O 3 , and Gd 2 O 3 are components that increase the refractive index, but the cost of the raw material itself is high, and if it is added in a large amount in the glass composition, it is resistant to devitrification. May decrease. Therefore, the total content of rare earth oxides is preferably 0 to 25%, particularly 3 to 15%.
  • the Nb 2 O 5 content is preferably 0 to 15%, particularly preferably 0.1 to 12%.
  • the content of La 2 O 3 is preferably 0 to 15%, particularly preferably 3 to 12%.
  • the content of Gd 2 O 3 is preferably 0 to 15%, particularly preferably 0 to 10%.
  • As a fining agent 0.001 to 3% of one or more selected from the group of As 2 O 3 , Sb 2 O 3 , SnO 2 , CeO 2 , F, SO 3 , and Cl can be added.
  • As 2 O 3 and Sb 2 O 3 are concerned about environmental influences, and therefore the content of these components is preferably less than 0.1%, particularly preferably less than 0.01%.
  • CeO 2 is a component that lowers the transmittance, so its content is preferably less than 0.1%, particularly preferably less than 0.01%.
  • F is a component that lowers moldability, its content is preferably less than 0.1%, particularly preferably less than 0.01%.
  • the fining agent is preferably one or more selected from the group of SnO 2 , SO 3 and Cl, and the content of these components is 0.001 to 3% in total, 0.001 to 1%, 0.01 to 0.5%, and more preferably 0.05 to 0.4% are preferable.
  • PbO is a component that increases the refractive index, but there is a concern about environmental influences. Therefore, the PbO content is preferably less than 0.1%.
  • the glass substrate for an organic EL device of the present embodiment is preferably formed by an overflow down draw method.
  • the “overflow down draw method” is also referred to as a fusion method, in which molten glass overflows from both sides of a heat-resistant bowl-like structure, and the overflowing molten glass is joined at the lower end of the bowl-like structure.
  • this is a method of producing a glass substrate by drawing downward. In this way, a glass substrate that is unpolished and has good surface quality can be formed. The reason is that, in the case of the overflow downdraw method, the surface to be the surface of the glass substrate is not in contact with the bowl-like refractory and is molded in a free surface state.
  • the structure and material of the bowl-shaped structure are not particularly limited as long as desired dimensions and surface quality can be realized.
  • the method of applying a force to the glass in order to perform the downward stretch molding is not particularly limited as long as desired dimensions and surface quality can be realized.
  • a method may be adopted in which a heat-resistant roll having a sufficiently large width is rotated and stretched in contact with glass, or a plurality of pairs of heat-resistant rolls are contacted only near the end face of the glass. It is also possible to adopt a method of stretching by stretching.
  • the glass substrate for an organic EL device of the present embodiment is preferably formed by a slot down draw method.
  • the slot down draw method can increase the dimensional accuracy of the glass substrate in the same manner as the overflow down draw method.
  • a roughened surface can be formed on the surface of the glass substrate by changing the shape of the slot.
  • the method for forming the glass substrate for an organic EL device of the present embodiment various methods other than the overflow down draw method and the slot down draw method can be adopted.
  • a float method, a rollout method, a redraw method, or the like can be employed.
  • a large glass substrate can be manufactured at low cost.
  • the plate thickness is preferably 2 mm or less, 1.5 mm or less, 1 mm or less, particularly 0.7 mm or less.
  • the plate thickness of the glass substrate is preferably 50 ⁇ m or more, 100 ⁇ m or more, particularly 200 ⁇ m or more.
  • the minimum curvature radius that the glass substrate can take is preferably 200 mm or less, 150 mm or less, 100 mm or less, 50 mm or less, particularly 30 mm or less. Note that the smaller the minimum radius of curvature that can be taken, the better the flexibility, so the degree of freedom of installation of organic EL lighting or the like increases.
  • the glass substrate for organic EL devices is used as the glass substrate 1.
  • the transparent electrode layer 2 examples include thin films of metals such as ITO, indium-zinc oxide (IZO), tin oxide, and Au, conductive polymers, conductive organic materials, and organic materials containing dopants (donors or acceptors). And a mixture of a conductor and a conductive organic material (including a polymer), or a laminate thereof.
  • the transparent electrode layer 2 is usually formed by a vapor phase growth method such as a sputtering method or an ion plating method.
  • the film thickness of the transparent electrode layer 2 is not particularly limited, but is preferably about 50 to 300 nm.
  • organic EL materials for forming the organic light emitting layer 3 include anthracene, naphthalene, pyrene, tetracene, coronene, perylene, phthaloperylene, naphthaloperylene, diphenylbutadiene, tetraphenylbutadiene, coumarin, oxadiazole, bisbenzoxazoline, bisstyryl, Cyclopentadiene, coumarin, oxadiazole, bisbenzoxazoline, bisstyryl, cyclopentadiene, quinoline metal complex, tris (8-hydroxyquinolinato) aluminum complex, tris (4-methyl-8-quinolinato) aluminum complex, tris ( 5-phenyl-8-quinolinato) aluminum complex, aminoquinoline metal complex, benzoquinoline metal complex, tri- (p-terphenyl-4-yl) amine, pyran, quinacridone A group consisting of rubrene, derivatives thereof, 1-aryl-2
  • phosphorescent materials for example, luminescent materials such as Ir complexes, Os complexes, Pt complexes, and europium complexes, and compounds or polymers having these in the molecule Can also be suitably used. These materials can be appropriately selected and used as necessary.
  • Examples of the material of the counter electrode 4 include aluminum, tin, magnesium, indium, calcium, gold, silver, copper, nickel, chromium, palladium, platinum, magnesium-silver alloy, magnesium-indium alloy, and aluminum-lithium alloy. Of these, aluminum is preferred.
  • the thickness of the counter electrode 4 is preferably 10 to 1000 nm, 30 to 500 nm, particularly 50 to 300 nm.
  • the counter electrode 4 can be formed by a vacuum film formation process such as vapor deposition or sputtering.
  • a conductive polymer, a hole injection layer, and a hole transport layer can be further laminated between the transparent electrode layer 2 and the organic light emitting layer 3, and between the organic light emitting layer 3 and the counter electrode 4. Further, an electron injection layer and an electron transport layer can be further laminated. Moreover, you may apply well-known layers other than these.
  • a glass substrate having a glass composition (No. 1) shown in Table 1 and having a thickness of 0.7 mm was prepared.
  • mirror polishing or roughening treatment alumina polishing or sandblasting
  • post-processing described in Table 1 is performed, and Samples A, B, C was obtained.
  • the mirror polishing of Sample A was performed using a cerium-based abrasive having a particle size of # 4000.
  • the alumina polishing of Sample B was performed using alumina having a particle size # 1000.
  • the sandblasting of Sample C was performed by using a blasting material having a particle size of # 600 (4 kg of Al 2 O 3 dispersed in 20 L of water) and spraying the blasting material onto the surface of the glass substrate at 2 MPa.
  • samples A to C were immersed in a 5% by mass HF aqueous solution at 25 ° C. for 30 minutes to perform HF treatment.
  • a transparent electrode layer ITO thinness: 100 nm was vapor-deposited on the surface not subjected to the roughening treatment, and then predetermined patterning was performed using a photomask and hydrochloric acid.
  • conductive polymer PEDOT-PSS hole transport layer ⁇ -NPD (thickness 60 nm), organic light emitting layer / electron transport layer Alq3 (thickness 50 nm), electron injection layer LiF (thickness 1 nm), counter electrode Al (thickness) 100 nm) and then sealed with a metal cap to produce an organic EL light emitting device.
  • a glass substrate having a glass composition (No. 2) described in Table 1 and having a thickness of 0.5 mm was prepared.
  • mirror polishing or roughening treatment alumina polishing or sandblasting
  • post-processing described in Table 1 is performed, and Samples D, E, F was obtained.
  • the mirror polishing of sample D was performed using a cerium-based abrasive having a particle size of # 4000.
  • the alumina polishing of Sample E was performed using alumina having a particle size # 1000.
  • the sandblasting of Sample F was performed by spraying the blasting material onto the surface of the glass substrate at 2 MPa using a blasting material having a particle size of # 400 (4 kg of Al 2 O 3 dispersed in 20 L of water).
  • samples D to F were immersed in a 5% by mass HF aqueous solution at 25 ° C. for 30 minutes for HF treatment.
  • a transparent electrode layer ITO thinness: 100 nm was vapor-deposited on the surface not subjected to the roughening treatment, and then predetermined patterning was performed using a photomask and hydrochloric acid.
  • conductive polymer PEDOT-PSS hole transport layer ⁇ -NPD (thickness 60 nm), organic light emitting layer / electron transport layer Alq3 (thickness 50 nm), electron injection layer LiF (thickness 1 nm), counter electrode Al (thickness) 100 nm) and then sealed with a metal cap to produce an organic EL light emitting device.
  • a glass substrate having a glass composition (No. 3) described in Table 1 and having a thickness of 1.0 mm was prepared.
  • the surface which becomes the atmosphere side is subjected to mirror polishing or roughening treatment (alumina polishing or sand blasting) described in Table 1, followed by post-processing described in Table 1, and samples G, H, I was obtained.
  • the mirror polishing of Sample G was performed using a cerium-based abrasive having a particle size of # 4000.
  • the alumina polishing of the sample H was performed using alumina having a particle size # 1000.
  • the sandblasting of Sample F was performed by spraying the blasting material onto the surface of the glass substrate at 2 MPa using a blasting material having a particle size of # 360 (4 kg of Al 2 O 3 dispersed in 20 L of water).
  • samples G to I were immersed in a 5% by mass HF aqueous solution and subjected to HF treatment at 25 ° C. for 30 minutes.
  • a transparent electrode layer ITO thinness: 100 nm was vapor-deposited on the surface not subjected to the roughening treatment, and then predetermined patterning was performed using a photomask and hydrochloric acid.
  • conductive polymer PEDOT-PSS hole transport layer ⁇ -NPD (thickness 60 nm), organic light emitting layer / electron transport layer Alq3 (thickness 50 nm), electron injection layer LiF (thickness 1 nm), counter electrode Al (thickness) 100 nm) and then sealed with a metal cap to produce an organic EL light emitting device.
  • a glass substrate having a glass composition (No. 4) described in Table 2 and having a thickness of 1.8 mm was prepared.
  • the surface which becomes the atmosphere side is subjected to mirror polishing or roughening treatment (alumina polishing or sand blasting) described in Table 2, followed by post-processing described in Table 2, and samples J, K, L was obtained.
  • the mirror polishing of Sample J was performed using a cerium-based abrasive having a particle size of # 4000.
  • the alumina polishing of the sample K was performed using alumina having a particle size # 1000.
  • the sandblasting of Sample L was performed by spraying the blasting material onto the surface of the glass substrate at 2 MPa using a blasting material having a particle size of # 320 (4 kg of Al 2 O 3 dispersed in 20 L of water).
  • samples J to L were immersed in a 5% by mass HF aqueous solution at 25 ° C. for 30 minutes for HF treatment.
  • a transparent electrode layer ITO thinness: 100 nm was vapor-deposited on the surface not subjected to the roughening treatment, and then predetermined patterning was performed using a photomask and hydrochloric acid.
  • conductive polymer PEDOT-PSS hole transport layer ⁇ -NPD (thickness 60 nm), organic light emitting layer / electron transport layer Alq3 (thickness 50 nm), electron injection layer LiF (thickness 1 nm), counter electrode Al (thickness) 100 nm) and then sealed with a metal cap to produce an organic EL light emitting device.
  • a glass substrate having a glass composition (No. 5) described in Table 2 and having a thickness of 0.7 mm was prepared.
  • the surface which becomes the atmosphere side is subjected to mirror polishing or roughening treatment (alumina polishing or sand blasting) described in Table 2, and then subjected to post-processing described in Table 2, and samples M, N, O was obtained.
  • the mirror polishing of the sample M was performed using a cerium-based abrasive having a particle size of # 4000.
  • the alumina polishing of Sample N was performed using alumina having a particle size # 1000.
  • the sand blasting of Sample O was performed by spraying the blasting material onto the surface of the glass substrate at 2 MPa using a blasting material having a particle size of # 280 (4 kg of Al 2 O 3 dispersed in 20 L of water).
  • samples M to O were immersed in a 5% by mass HF aqueous solution at 25 ° C. for 30 minutes to perform HF treatment.
  • a transparent electrode layer ITO thinness: 100 nm was vapor-deposited on the surface not subjected to the roughening treatment, and then predetermined patterning was performed using a photomask and hydrochloric acid.
  • conductive polymer PEDOT-PSS hole transport layer ⁇ -NPD (thickness 60 nm), organic light emitting layer / electron transport layer Alq3 (thickness 50 nm), electron injection layer LiF (thickness 1 nm), counter electrode Al (thickness) 100 nm) and then sealed with a metal cap to produce an organic EL light emitting device.
  • the mirror polishing of the sample P was performed using a cerium-based abrasive having a particle size of # 4000.
  • Alumina polishing of sample Q was performed using alumina having a particle size of # 1000.
  • the sandblasting of Sample R was performed by spraying the blasting material onto the surface of the glass substrate at 2 MPa using a blasting material having a particle size of # 600 (4 kg of Al 2 O 3 dispersed in 20 L of water). For samples P to R, post-processing and production of an organic EL light emitting device were not performed.
  • a glass substrate having a glass composition (No. 7) shown in Table 3 and having a thickness of 0.7 mm was prepared.
  • the surface which becomes the atmosphere side was subjected to mirror polishing or roughening treatment (alumina polishing or sandblasting) described in Table 3 to obtain samples S, T and U.
  • the mirror polishing of the sample S was performed using a cerium-based abrasive having a particle size of # 4000.
  • the alumina polishing of the sample T was performed using alumina having a particle size # 1000.
  • the sandblasting of Sample U was performed by spraying the blasting material onto the surface of the glass substrate at 2 MPa using a blasting material having a particle size of # 600 (4 kg of Al 2 O 3 dispersed in 20 L of water). Samples S to U were not post-processed.
  • the samples A to U were evaluated for the refractive index nd, the surface roughness Rt, RSm and the in-plane strength of the roughened surface, and the light extraction efficiency was evaluated for the samples A to O and S to U.
  • the refractive index nd is a value measured by a refractive index measuring instrument KPR-2000 manufactured by Carnew Co., Ltd. using a sample before the surface roughening treatment.
  • Surface roughness Rt and RSm are values measured by a method based on JIS R0601: 2001.
  • the light extraction efficiency is a value evaluated based on the value of the light extraction efficiency of the sample S using a luminance light distribution characteristic measuring device C9920-11 manufactured by Hamamatsu Photonics.
  • the in-plane strength is a value measured in a ring-on-ring test.
  • samples A to U mirror-polished surface / roughened surface side below
  • the sample was pressurized from above using a jig having a diameter of 12.5 mm.
  • load meter strength tester manufactured by Shimadzu Corporation
  • load speed 0.5 mm / min
  • push position center.
  • the sample subjected to the roughening treatment had a surface roughness Rt and RSm larger than that of the sample subjected to mirror polishing, and light scattering was promoted at the glass substrate-air interface.
  • the light extraction efficiency was good.
  • the higher the refractive index nd the better the light extraction efficiency.
  • the in-plane strength could be increased by performing HF treatment.
  • the surface roughness Rt of the mirror-polished surface of the sample subjected to mirror polishing and the surface of the surface facing the roughened surface of the sample subjected to roughening treatment The roughness Rt is adjusted to less than 1 nm.
  • Example No. Additional experiment for 5> a glass substrate having a glass composition (No. 5) described in Table 2 and having a thickness of 0.7 mm was prepared. Next, after the surface roughening treatment (alumina polishing or sand blasting) described in Table 4 was performed on the surface that becomes the atmosphere side, the post-processing described in Table 4 was performed if necessary, and samples a to k was obtained. The surface roughness Rt of the surface facing the roughened surface is adjusted to less than 1 nm.
  • Sand blasting of samples a to j is performed by spraying the blasting material onto the surface of the glass substrate at 2 MPa using a blasting material having a particle size of # 600 (4 kg of Al 2 O 3 dispersed in 20 L of water). It was.
  • the alumina polishing of the sample k was performed using alumina having a particle size # 1200.
  • samples a to g, j were immersed in an HF aqueous solution having the concentration shown in the table, and HF treatment was performed under the conditions shown in the table.
  • Samples h, i, and k were not post-processed.
  • predetermined patterning was performed using a photomask and hydrochloric acid.
  • conductive polymer PEDOT-PSS hole transport layer ⁇ -NPD (thickness 60 nm), organic light emitting layer / electron transport layer Alq3 (thickness 50 nm), electron injection layer LiF (thickness 1 nm), counter electrode Al (thickness) 100 nm) and then sealed with a metal cap to produce an organic EL light emitting device.
  • samples a to j the surface roughness Rt and RSm of the roughened surface were evaluated, and for samples a to k, the light extraction efficiency and the in-plane strength were evaluated.
  • Surface roughness Rt and RSm are values measured by a method based on JIS R0601: 2001.
  • the light extraction efficiency is a value evaluated using a luminance light distribution characteristic measuring device C9920-11 manufactured by Hamamatsu Photonics Co., Ltd. with reference to the value of the light extraction efficiency of the sample S in Table 3.
  • the in-plane strength is a value measured in a ring-on-ring test.
  • samples a to k (roughened surface side downward) after post-processing were placed on a ring-shaped jig having a diameter of 25 mm.
  • the sample was pressurized from above using a jig having a diameter of 12.5 mm.
  • Specific conditions were as follows: load meter: strength tester manufactured by Shimadzu Corporation, load speed: 0.5 mm / min, push position: center.
  • the fracture load when the samples a to k were broken was calculated as the in-plane strength.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

 本発明の有機EL用ガラス基板は、屈折率ndが1.55以上であって、少なくとも一方の表面に表面粗さRtが50~10000nmの粗面化面を有することを特徴とする。

Description

有機ELデバイス用ガラス基板及びそれを用いた有機ELデバイス
 本発明は、有機ELデバイス用ガラス基板及びそれを用いた有機ELデバイスに関する。
 有機エレクトロルミネッセンス素子(有機EL素子)は、軽量、薄肉であり、低消費電力で駆動可能であるため、面発光照明用途として大きな注目を集めている。この有機EL素子は、透光性基板(ガラス基板)の表面に透明電極層を設け、この透明電極層の表面に有機EL材料からなる有機発光層を設けると共に、有機発光層の表面に対向電極を設けることにより作製されている。そして、透明電極層と対向電極との間に電圧を印加すると、有機発光層中で発光した光が、透明電極層及び透光性基板を透過して、外部に取り出される。
 しかし、有機発光層中で発光した光の一部は、有機発光層-ガラス基板界面の屈折率差、ガラス基板-空気界面の屈折率差に起因して全反射を起こし、有機EL素子内に閉じ込められる。例えば、屈折率ndが1.9の有機発光材料と、屈折率ndが1.5のガラス基板とを用いた場合、有機EL素子の外部に取り出される光は、有機発光層中で発光した光の内、20~25%程度である。
 光取り出し効率の低下を抑制する手段として、ガラス基板の屈折率を高めて、ガラス基板と有機発光層の屈折率を整合させると共に、ガラス基板の表面に凹凸形状を有する透明樹脂シートを付与する方法が検討されている。このようなガラス基板と透明樹脂シートを用いると、有機発光層中で発光した光を効率的に外部に取り出すことができる。
 上記透明樹脂シートとして、通常、熱硬化性の樹脂、例えばポリイミドが用いられる。しかし、これらの樹脂の表面に凹凸形状を形成することは容易ではなく、有機ELデバイスの製造コストを高騰させるという問題が生じる。
 光取り出し効率を高める手段として、ガラス基板の表面に凹凸形状を物理的に形成することも考えられる。しかし、ガラス基板の表面に凹凸形状を物理的に形成すると、有機EL素子の製造工程において、物理的衝撃によってガラス基板が容易に破損するという問題が生じ得る。
 本発明は、上記問題に鑑みなされたものであり、その技術的課題は、物理的衝撃によって容易に破損せず、透明樹脂シートを用いなくても、光取り出し効率を高めることができる有機ELデバイス用ガラス基板を創案することである。
 本発明者等は、鋭意検討の結果、ガラス基板の屈折率を所定範囲に規制すると共に、ガラス基板の表面形状を厳密に規制することにより、上記技術的課題を解決し得ることを見出し、本発明として提案するものである。すなわち、本発明の有機ELデバイス用ガラス基板は、屈折率ndが1.55以上であって、少なくとも一方の表面に、表面粗さがRt50~10000nmの粗面化面を有することを特徴とする。
 ここで、「屈折率nd」は、市販の屈折率測定器(例えば、カルニュー社製の屈折率測定器KPR-2000)により測定することができる。測定試料として、例えばダイシングにより、ガラス基板を25mm角に切り出し、次にこのガラス基板間に屈折率ndが整合する浸液を浸透させた状態で、ガラス基板を積層し、25mm×25mm×約3mm厚の直方体としたものを用いることができる。また、ガラス基板が薄肉であり、ガラスフィルムの形態をなす場合は、測定試料として、例えば、レーザースクライバーを用いて25mm角のガラスフィルムを複数枚切り出し、次にこのガラスフィルム間に屈折率ndが整合する浸液を浸透させた状態で、ガラスフィルムを積層し、25mm×25mm×約3mm厚の直方体としたものを用いることができる。「表面粗さRt」は、JIS R0601(2001)に準拠した方法により測定した値である。「有機ELデバイス」には、有機EL照明等が含まれる。
 本発明の有機ELデバイス用ガラス基板は、屈折率ndが1.55以上である。このようにすれば、有機層-ガラス基板間の屈折率差が小さくなるため、全反射により有機発光層内に閉じ込められる光を低減することができる。その結果、有機ELデバイスの光取り出し効率を高めることができる。屈折率ndは、1.6以上、特に1.7以上が好ましい。
 また、本発明の有機ELデバイス用ガラス基板は、少なくとも一方の表面に、表面粗さRtが50~10000nmの粗面化面を有する。このようにすれば、ガラス基板中の光を散乱させることが可能になり、ガラス基板中に閉じ込められる光を低減することができる。その結果、有機ELデバイスの光取り出し効率を高めることができる。
 第二に、本発明の有機ELデバイス用ガラス基板は、屈折率ndが1.55以上であって、少なくとも一方の表面に、表面粗さRSmが0.01~1000μmの粗面化面を有することを特徴とする。ここで、「表面粗さRSm」は、JIS R0601:2001に準拠した方法により測定した値である。粗面化面の表面粗さRSmを0.01~1000μmに規制すれば、ガラス基板中の光を散乱させることが可能になり、ガラス基板中に閉じ込められる光を低減することができる。その結果、有機ELデバイスの光取り出し効率を高めることができる。
 第三に、本発明の有機ELデバイス用ガラス基板は、屈折率ndが1.55以上であって、少なくとも一方の表面に、表面粗さRt/RSmが0.01~1の粗面化面を有することを特徴とする。粗面化面の表面粗さRt/RSmを0.01~1に規制すれば、ガラス基板中の光を散乱させることが可能になり、ガラス基板中に閉じ込められる光を低減することができる。その結果、有機ELデバイスの光取り出し効率を高めることができる。
 第四に、本発明の有機ELデバイス用ガラス基板は、前記粗面化面が一方の表面のみに形成され、前記粗面化面に対向する他方の表面の表面粗さRtが10nm以下であることが好ましい。ここで、「表面粗さRt」は、JIS R0601(2001)に準拠した方法により測定した値である。このようにすれば、インジウム-錫酸化物(ITO)等の透明電極の品位を高めることができる。
 第五に、本発明の有機ELデバイス用ガラス基板は、前記粗面化面が物理的な粗面化処理により形成されてなることが好ましい。このようにすれば、短時間でガラス基板の表面を均一に粗面化処理することができる。
 第六に、本発明の有機ELデバイス用ガラス基板は、前記物理的な粗面化処理がサンドブラスト処理であることが好ましい。このようにすれば、短時間で大面積のガラス基板の表面を均一に粗面化処理することができる。サンドブラストで使用するブラスト材の粒度は、#200~#4000、#200~#2000、#200~#1500、特に#200~#1200が好ましい。ブラスト材の粒度が大き過ぎると、表面粗さRt、RSmを適正範囲に調整し難くなって、光取り出し効率を高め難くなる。一方、ブラスト材の粒度が小さ過ぎると、粗面化面の表面粗さRt、RSmが大きくなり過ぎて、ガラス基板の面内強度が低下し易くなる。
 第七に、本発明の有機ELデバイス用ガラス基板は、前記物理的な粗面化処理が研磨処理であることが好ましい。このようにすれば、短時間でガラス基板の表面を均一に粗面化処理することができる。研磨処理で用いる研磨材の粒度は、#220~#3000、#300~#2000、#400~#1500、特に#400~#1200が好ましい。研磨材の粒度が大き過ぎると、表面粗さRt、RSmを適正範囲に調整し難くなって、光取り出し効率を高め難くなる。一方、研磨材の粒度が小さ過ぎると、粗面化面の表面粗さRt、RSmが大きくなり過ぎて、ガラス基板の面内強度が低下し易くなる。
 第八に、本発明の有機ELデバイス用ガラス基板は、前記粗面化面が、前記物理的な粗面化処理後に更に薬液処理されてなることが好ましい。このようにすれば、粗面化処理等で生じるマイクロクラックを除去することが可能になり、ガラス基板の面内強度を高めることができる。薬液として、HF、HCl、HSO、HNO、NHF、NaOH、NHHFの群から選ばれる一種又は二種以上を含むことが好ましく、特にHFとNHFの混合液又はNHFとNHHFの混合液であることが好ましい。これらの薬液は、ガラスとの反応性が良好であり、粗面化処理等で生じるマイクロクラックを適正に除去することができる。
 例えば、サンドブラストは、大面積のガラス基板を均一に粗面化処理し得るが、サンドブラストを行うと、粗面化面に多数のマイクロクラックが生じて、有機ELデバイスの製造工程において、物理的衝撃によりガラス基板が破損し易くなる。そして、ガラス基板の屈折率が高い程、ガラスの骨格構造の観点から、粗面化面にマイクロクラックが発生し易くなる。そこで、粗面化面に薬液処理を行うと、このような問題を解消し易くなる。
 これらの薬液は、10~40℃、15~35℃、特に20~30℃の温度で使用されることが好ましい。40℃超の温度で薬液処理すると、薬液が揮発し易くなり、安全面、環境面で問題が生じ得る。一方、10℃未満の温度で薬液処理すると、ガラスと薬液の反応速度が遅くなり過ぎて、ガラス基板の製造効率が低下し易くなる。
 第九に、本発明の有機ELデバイス用ガラス基板は、前記薬液処理が酸による薬液処理であることが好ましい。
 第十に、本発明の有機ELデバイス用ガラス基板は、ガラス組成として、SiOを30~70質量%含むことが好ましい。
 第十一に、本発明の有機ELデバイス用ガラス基板は、面内強度が150MPa以上、300MPa以上、500MPa以上、特に1000MPa以上であることが好ましい。このようにすれば、有機ELデバイスの製造工程において、物理的衝撃によりガラス基板が破損し難くなる。ここで、「面内強度」は、リングオンリング試験で測定した値を指す。リングオンリング試験は、例えば、次のようにして行われる。まず直径25mmのリング状の冶具の上にガラス基板(粗面化面側を下方)を載置し、次に直径12.5mmの冶具を用いて、上方からガラス基板を加圧する。具体的な条件は、加重計:島津製作所製強度試験機、加重速度:0.5mm/分、押し位置:中央とする。最後に、ガラス基板が破損した時の破壊加重を面内強度として算出する。
 第十二に、本発明の有機ELデバイス用ガラス基板は、照明に用いることが好ましい。
 第十三に、本発明の有機ELデバイスは、上記の有機ELデバイス用ガラス基板を備えることを特徴とする。
本発明の有機ELデバイスの実施態様の一例を説明するための概略図である。
発明の実施の形態
 本発明の実施形態に係る有機ELデバイス用ガラス基板は、屈折率ndが1.55以上であって、一方の表面に粗面化面を有する。なお、ガラス基板の両方の表面が、それぞれ粗面化面とされていてもよい。
 上記の粗面化面の表面粗さRtは、50~10000nmである。粗面化面の表面粗さRtが小さ過ぎると、粗面化面で光が反射し難くなり、光取り出し効率を高め難くなる。光取り出し効率を考慮すると、粗面化面の表面粗さRtは300nm以上、特に500nm以上が好ましい。一方、粗面化面の表面粗さRtが大き過ぎると、ガラス基板の面内強度が低下し易くなる。ガラス基板の面内強度を考慮すると、粗面化面の表面粗さRtは9000nm以下、特に8000nm以下が好ましい。
 また、上記の粗面化面の表面粗さRSmは、0.1~1000μmである。粗面化面の表面粗さRSmが小さ過ぎると、粗面化面で光が反射し難くなり、光取り出し効率を高め難くなる。光取り出し効率を考慮すると、粗面化面の表面粗さRSmは1μm以上、特に5μm以上が好ましい。一方、粗面化面の表面粗さRtが大き過ぎると、ガラス基板の面内強度が低下し易くなる。ガラス基板の面内強度を考慮すると、粗面化面の表面粗さRSmは500μm以下、特に300μm以下が好ましい。
 上記の粗面化面の表面粗さRt/RSmの比は、0.01~1である。Rt/RSmが小さ過ぎると、粗面化処理が不十分であるため、ガラス基板がうねった状態になり、光取り出し効率が不十分になる。光取り出し効率を考慮すると、Rt/RSmは0.03以上、特に0.05以上が好ましい。一方、Rt/RSmが大き過ぎると、ガラス基板の面内強度が低下し易くなる。ガラス基板の面内強度を考慮すると、0.5以下、特に0.1以下が好ましい。
 粗面化処理の方法として、例えば、研磨処理、サンドブラスト処理、大気圧プラズマ処理、リプレス等が挙げられる。なお、これらの粗面化処理の方法は単なる例示であり、本発明では、その他の手法により、ガラス基板の表面に粗面化面を形成することを妨げるものではない。
 大気圧プラズマ処理で粗面化処理すれば、後に洗浄工程が不要になり、製造コストの低廉化を図ることができる。大気圧プラズマ処理に用いられるエッチングガスとして、He、Ar、Xe等の希ガス、CF、C、C等の全フッ化炭素ガス、CHF、CH等の水素化フッ化炭素ガス、CCl、CHClF等のフッ化塩化炭素ガス、CBrF、CFI等のフルオロカーボンガス、CCl、COCl等のFを含まない有機ハロゲンガス、Cl、BCl、SF、NF、HBr、SiCl等の無機ハロゲンガス、CH、C等の炭化水素ガス、その他のガス(例えばO、H、N、CO)が挙げられる。
 本実施形態の有機ELデバイス用ガラス基板において、粗面化面に対向する他方の表面は未研磨面であることが好ましく、粗面化面に対向する表面の表面粗さRtは10nm以下、10nm未満、5nm以下、3nm以下、特に1nm以下が好ましい。粗面化面に対向する表面を未研磨面にすれば、ガラス基板が破壊し難くなる。また、粗面化面に対向する表面の表面粗さRtを小さくすれば、その表面に形成されるITOの品位が向上するため、面内の電界の分布を均一に保ち易くなり、結果として、面内に輝度ムラが発生し難くなる。なお、樹脂板は、表面平滑性に劣り、ITOの品位を高めることが困難である。
 本実施形態の有機ELデバイス用ガラス基板は、ガラス組成として、SiOを30~70質量%含むことが好ましい。SiOは、ガラスのネットワークを形成する成分である。しかし、SiOの含有量が多過ぎると、溶融性、成形性が低下したり、屈折率が小さくなり過ぎて、有機発光層の屈折率に整合させ難くなる。一方、SiOの含有量が少な過ぎると、ガラス化し難くなったり、耐薬品性が低下したり、面内強度が低下し易くなる。
 本実施形態の有機ELデバイス用ガラス基板は、ガラス組成として、質量%で、SiO 30~70%、Al 0~20%、LiO+NaO+KO 0~15%、MgO+CaO+SrO+BaO 5~55%、TiO 0~20%、ZrO 0~15%含有することが好ましい。このようにすれば、屈折率、面内強度を高めることが可能になる。以下、各成分の含有範囲を上記のように規定した理由を示す。なお、「LiO+NaO+KO」は、LiO、NaO、及びKOの合量を指す。「MgO+CaO+SrO+BaO」は、MgO、CaO、SrO、及びBaOの合量を指す。
 SiOは、ガラスのネットワークを形成する成分である。SiOの含有量は30~70%が好ましい。SiOの含有量が多過ぎると、溶融性や成形性が低下したり、屈折率が小さくなり過ぎて、有機発光層の屈折率に整合させ難くなる。一方、SiOの含有量が少な過ぎると、ガラス化し難くなったり、耐薬品性が低下したり、面内強度が低下し易くなる。
 Alは、ガラスのネットワークを形成する成分であり、耐候性を高める成分である。Alの含有量は0~20%が好ましい。Alの含有量が多過ぎると、屈折率が小さくなり過ぎて、有機発光層の屈折率に整合させ難くなることに加えて、ガラスに失透結晶が析出し易くなって、オーバーフローダウンドロー法等でガラスを成形し難くなる。
 Bは、ガラスのネットワークを形成する成分である。Bの含有量は0~20%が好ましい。Bの含有量が多過ぎると、耐薬品性が低下したり、屈折率が小さくなり過ぎて、有機発光層の屈折率に整合させ難くなることに加えて、ガラスに失透結晶が析出し易くなって、オーバーフローダウンドロー法等でガラスを成形し難くなる。
 LiO+NaO+KOの含有量は0~15%、0~10%、特に0~5%が好ましい。LiO+NaO+KOの含有量が多過ぎると、耐熱衝撃性が低下したり、耐酸性が低くなって、ITOのパターニング工程において、酸によりガラス基板が破損し易くなる。
 LiOは、溶融性や成形性を高める成分であり、更には耐失透性を改善する成分である。LiOの含有量は0~10%、特に0~5%が好ましい。LiOの含有量が多過ぎると、耐熱衝撃性が低下したり、耐酸性が低くなって、ITOのパターニング工程において、酸によりガラス基板が破損し易くなる。
 NaOは、溶融性や成形性を高める成分であり、更には耐失透性を改善する成分である。NaOの含有量は0~10%、特に0~5%が好ましい。NaOの含有量が多過ぎると、耐熱衝撃性が低下したり、耐酸性が低くなって、ITOのパターニング工程において、酸によりガラス基板が破損し易くなる。
 KOは、溶融性や成形性を高める成分であり、更には耐失透性を改善する成分である。KOの含有量は0~10%、特に0~5%が好ましい。KOの含有量が多過ぎると、耐熱衝撃性が低下したり、耐酸性が低くなって、ITOのパターニング工程において、酸によりガラス基板が破損し易くなる。
 MgO+CaO+SrO+BaOは、溶融性や成形性を高める成分である。しかし、MgO+CaO+SrO+BaOの含有量が多過ぎると、耐失透性が低下し易くなる。よって、MgO+CaO+SrO+BaOの含有量は5~55%、15~50%、特に20~45%が好ましい。
 MgOは、溶融性や成形性を高める成分である。しかし、MgOの含有量が多過ぎると、耐失透性が低下し易くなる。よって、MgOの含有量は0~20%が好ましい。
 CaOは、溶融性や成形性を高める成分である。しかし、CaOの含有量が多過ぎると、耐失透性が低下し易くなる。よって、CaOの含有量は0~20%、1~15%、特に3~12%が好ましい。
 SrOは、溶融性や成形性を高めると共に、屈折率を高める成分である。しかし、SrOの含有量が多過ぎると、耐失透性が低下し易くなる。よって、SrOの含有量は0~25%、0.1~20%、特に1~15%が好ましい。
 BaOは、溶融性や成形性を高めると共に、屈折率を高める成分である。しかし、BaOの含有量が多過ぎると、耐失透性が低下し易くなる。よって、BaOの含有量は0~45%、5~40%、特に15~35%が好ましい。
 TiOは、屈折率を高める成分である。しかし、TiOの含有量が多過ぎると、ガラスが着色したり、耐失透性が低下したり、密度が高くなり易い。よって、TiOの含有量は0~20%、0.1~15%、特に1~7%好ましい。
 ZrOは、屈折率を高める成分である。しかし、ZrOの含有量が多過ぎると、耐失透性が極端に低下する場合がある。よって、ZrOの含有量は0~15%、0.001~10%、特に1~7%が好ましい。
 上記成分以外にも、例えば、以下の成分を添加してもよい。
 ZnOは、溶融性や成形性を高める成分である。しかし、ZnOの含有量が多過ぎると、耐失透性が低下し易くなる。よって、ZnOの含有量は0~20%、特に0~5%好ましい。
 Nb、La、Gd等の希土類酸化物は、屈折率を高める成分であるが、原料自体のコストが高く、またガラス組成中に多量に添加すると、耐失透性が低下する場合がある。よって、希土類酸化物の含有量は、合量で0~25%、特に3~15%が好ましい。なお、Nbの含有量は0~15%、特に0.1~12%が好ましい。Laの含有量は0~15%、特に3~12%が好ましい。Gdの含有量は0~15%、特に0~10%が好ましい。
 清澄剤として、As、Sb、SnO、CeO、F、SO、Clの群から選択された一種又は二種以上を0.001~3%添加することができる。ただし、As、Sbは、環境的な影響が懸念されるため、これらの成分の含有量は、各々0.1%未満、特に0.01%未満が好ましい。また、CeOは、透過率を低下させる成分であるため、その含有量は0.1%未満、特に0.01%未満が好ましい。更に、Fは、成形性を低下させる成分であるため、その含有量は0.1%未満、特に0.01%未満が好ましい。以上の点を考慮すると、清澄剤は、SnO、SO、Clの群から選択された一種又は二種以上が好ましく、これらの成分の含有量は、合量で0.001~3%、0.001~1%、0.01~0.5%、更には0.05~0.4%が好ましい。
 PbOは、屈折率を高める成分であるが、環境的な影響が懸念される。よって、PbOの含有量は0.1%未満が好ましい。
 本実施形態の有機ELデバイス用ガラス基板は、オーバーフローダウンドロー法で成形されてなることが好ましい。ここで、「オーバーフローダウンドロー法」は、フュージョン法とも称されており、耐熱性の樋状構造物の両側から溶融ガラスを溢れさせて、溢れた溶融ガラスを樋状構造物の下端で合流させながら、下方に延伸成形してガラス基板を作製する方法である。このようにすれば、未研磨で表面品位が良好なガラス基板を成形することができる。その理由は、オーバーフローダウンドロー法の場合、ガラス基板の表面となるべき面は樋状耐火物に接触せず、自由表面の状態で成形されるからである。樋状構造物の構造や材質は、所望の寸法や表面品位を実現できるものであれば、特に限定されない。また、下方への延伸成形を行うために、ガラスに対して力を印加する方法は、所望の寸法や表面品位を実現できるものであれば、特に限定されない。例えば、充分に大きい幅を有する耐熱性ロールをガラスに接触させた状態で回転させて延伸する方法を採用してもよいし、複数の対になった耐熱性ロールをガラスの端面近傍のみに接触させて延伸する方法を採用してもよい。
 本実施形態の有機ELデバイス用ガラス基板は、スロットダウンドロー法でガラス基板を成形することも好ましい。スロットダウンドロー法は、オーバーフローダウンドロー法と同様にして、ガラス基板の寸法精度を高めることができる。なお、スロットダウンドロー法は、スロットの形状を変更することにより、ガラス基板の表面に粗面化面を形成することもできる。
 本実施形態の有機ELデバイス用ガラス基板の成形方法として、オーバーフローダウンドロー法、スロットダウンドロー法以外にも、種々の方法を採用することができる。例えば、フロート法、ロールアウト法、リドロー法等を採用することができる。特に、フロート法でガラス基板を成形すれば、大型のガラス基板を安価に作製することができる。
 本実施形態の有機ELデバイス用ガラス基板において、板厚が小さい程、有機ELデバイスを軽量化し易くなると共に、ガラス基板の可撓性を高めることができる。そのため、板厚は2mm以下、1.5mm以下、1mm以下、特に0.7mm以下であることが好ましい。一方、板厚を極端に小さくし過ぎると、ガラス基板が破損し易くなるので、ガラス基板の板厚は、50μm以上、100μm以上、特に200μm以上であることが好ましい。ガラスフィルムの形態において、ガラス基板が取り得る最小曲率半径は200mm以下、150mm以下、100mm以下、50mm以下、特に30mm以下が好ましい。なお、取り得る最小曲率半径が小さい程、可撓性に優れるため、有機EL照明等の設置の自由度が高まる。
 以下、本発明の有機ELデバイスの実施形態の一例について、図1を参照しながら説明する。
 ガラス基板1として、上記の有機ELデバイス用ガラス基板を用いる。
 透明電極層2として、例えば、ITO、インジウム-亜鉛酸化物(IZO)、錫酸化物、Au等の金属の薄膜、導電性高分子、導電性の有機材料、ドーパント(ドナー又はアクセプタ)含有有機材料、導電体と導電性有機材料(高分子を含む)の混合物、又はこれらの積層体等を挙げることができる。透明電極層2は、通常、スパッタ法やイオンプレーティング法等の気相成長法により形成される。透明電極層2の膜厚は、特に限定されるものではないが、50~300nm程度が好ましい。
 有機発光層3を形成する有機EL材料として、例えば、アントラセン、ナフタレン、ピレン、テトラセン、コロネン、ペリレン、フタロペリレン、ナフタロペリレン、ジフェニルブタジエン、テトラフェニルブタジエン、クマリン、オキサジアゾール、ビスベンゾキサゾリン、ビススチリル、シクロペンタジエン、クマリン、オキサジアゾール、ビスベンゾキサゾリン、ビススチリル、シクロペンタジエン、キノリン金属錯体、トリス(8-ヒドロキシキノリナート)アルミニウム錯体、トリス(4-メチル-8-キノリナート)アルミニウム錯体、トリス(5-フェニル-8-キノリナート)アルミニウム錯体、アミノキノリン金属錯体、ベンゾキノリン金属錯体、トリ-(p-ターフェニル-4-イル)アミン、ピラン、キナクリドン、ルブレン、及びこれらの誘導体、1-アリール-2,5-ジ(2-チエニル)ピロール誘導体、ジスチリルベンゼン誘導体、スチリルアリーレン誘導体、スチリルアミン誘導体、及びこれらの発光性化合物からなる基を分子の一部分に有する化合物又は高分子等が挙げられる。また、上記材料に代表される蛍光色素由来の化合物のみならず、いわゆる燐光発光材料、例えばIr錯体、Os錯体、Pt錯体、ユーロピウム錯体等の発光材料、及びそれらを分子内に有する化合物又は高分子も好適に使用可能である。必要に応じて、これらの材料を適宜選択して用いることができる。
 対向電極4の材料として、アルミニウム、錫、マグネシウム、インジウム、カルシウム、金、銀、銅、ニッケル、クロム、パラジウム、白金、マグネシウム-銀合金、マグネシウム-インジウム合金、アルミニウム-リチウム合金等が挙げられるが、その中でもアルミニウムが好ましい。対向電極4の厚さは、好ましくは10~1000nm、30~500nm、特に50~300nmである。対向電極4は、蒸着やスパッタリング等の真空成膜プロセスにより形成することができる。
 透明電極層2と有機発光層3との間には、導電性高分子、正孔注入層、正孔輸送層を更に積層することができ、有機発光層3と対向電極4との間には、電子注入層、電子輸送層を更に積層することができる。また、これら以外の公知の層を適用しても構わない。
 以下、本発明の実施例を説明する。なお、以下の実施例は単なる例示である。本発明は、以下の実施例に何ら限定されない。
<試料No.1に対する実験>
 まず表1に記載のガラス組成(No.1)を有し、厚み0.7mmのガラス基板を用意した。次に、大気側になる表面に対して、鏡面研磨又は表1に記載の粗面化処理(アルミナ研磨又はサンドブラスト)を行った後、表1に記載の後加工を行い、試料A、B、Cを得た。
Figure JPOXMLDOC01-appb-T000001
 試料Aの鏡面研磨は、粒度♯4000のセリウム系研磨材を用いて行った。試料Bのアルミナ研磨は、粒度♯1000のアルミナを用いて行った。試料Cのサンドブラストは、粒度♯600のブラスト材(4kgのAlを20Lの水に分散させたもの)を用いて、ブラスト材をガラス基板の表面に2MPaで吹きつけることで行った。
 次に、試料A~Cを25℃の5質量%HF水溶液中に30分間浸漬させて、HF処理を行った。HF処理後、粗面化処理を行っていない表面上に、透明電極層ITO(厚み100nm)を蒸着させた後、フォトマスク及び塩酸を用いて、所定のパターニングを行った。続いて、導電性高分子PEDOT-PSS、正孔輸送層α-NPD(厚み60nm)、有機発光層兼電子輸送層Alq3(厚み50nm)、電子注入層LiF(厚み1nm)、対向電極Al(厚み100nm)を設けた後、金属キャップで封止して有機EL発光デバイスを作製した。
<試料No.2に対する実験>
 まず表1に記載のガラス組成(No.2)を有し、厚み0.5mmのガラス基板を用意した。次に、大気側になる表面に対して、鏡面研磨又は表1に記載の粗面化処理(アルミナ研磨又はサンドブラスト)を行った後、表1に記載の後加工を行い、試料D、E、Fを得た。
 試料Dの鏡面研磨は、粒度♯4000のセリウム系研磨材を用いて行った。試料Eのアルミナ研磨は、粒度♯1000のアルミナを用いて行った。試料Fのサンドブラストは、粒度♯400のブラスト材(4kgのAlを20Lの水に分散させたもの)を用いて、ブラスト材をガラス基板の表面に2MPaで吹きつけることで行った。
 次に、試料D~Fを25℃の5質量%HF水溶液中に30分間浸漬させて、HF処理を行った。HF処理後、粗面化処理を行っていない表面上に、透明電極層ITO(厚み100nm)を蒸着させた後、フォトマスク及び塩酸を用いて、所定のパターニングを行った。続いて、導電性高分子PEDOT-PSS、正孔輸送層α-NPD(厚み60nm)、有機発光層兼電子輸送層Alq3(厚み50nm)、電子注入層LiF(厚み1nm)、対向電極Al(厚み100nm)を設けた後、金属キャップで封止して有機EL発光デバイスを作製した。
<試料No.3に対する実験>
 まず表1に記載のガラス組成(No.3)を有し、厚み1.0mmのガラス基板を用意した。次に、大気側になる表面に対して、鏡面研磨又は表1に記載の粗面化処理(アルミナ研磨又はサンドブラスト)を行った後、表1に記載の後加工を行い、試料G、H、Iを得た。
 試料Gの鏡面研磨は、粒度♯4000のセリウム系研磨材を用いて行った。試料Hのアルミナ研磨は、粒度♯1000のアルミナを用いて行った。試料Fのサンドブラストは、粒度♯360のブラスト材(4kgのAlを20Lの水に分散させたもの)を用いて、ブラスト材をガラス基板の表面に2MPaで吹きつけることで行った。
 次に、試料G~Iを5質量%HF水溶液中に浸漬させて、25℃30分間の条件でHF処理を行った。HF処理後、粗面化処理を行っていない表面上に、透明電極層ITO(厚み100nm)を蒸着させた後、フォトマスク及び塩酸を用いて、所定のパターニングを行った。続いて、導電性高分子PEDOT-PSS、正孔輸送層α-NPD(厚み60nm)、有機発光層兼電子輸送層Alq3(厚み50nm)、電子注入層LiF(厚み1nm)、対向電極Al(厚み100nm)を設けた後、金属キャップで封止して有機EL発光デバイスを作製した。
<試料No.4に対する実験>
 まず表2に記載のガラス組成(No.4)を有し、厚み1.8mmのガラス基板を用意した。次に、大気側になる表面に対して、鏡面研磨又は表2に記載の粗面化処理(アルミナ研磨又はサンドブラスト)を行った後、表2に記載の後加工を行い、試料J、K、Lを得た。
Figure JPOXMLDOC01-appb-T000002
 試料Jの鏡面研磨は、粒度♯4000のセリウム系研磨材を用いて行った。試料Kのアルミナ研磨は、粒度♯1000のアルミナを用いて行った。試料Lのサンドブラストは、粒度♯320のブラスト材(4kgのAlを20Lの水に分散させたもの)を用いて、ブラスト材をガラス基板の表面に2MPaで吹きつけることで行った。
 次に、試料J~Lを25℃の5質量%HF水溶液中に30分間浸漬させて、HF処理を行った。HF処理後、粗面化処理を行っていない表面上に、透明電極層ITO(厚み100nm)を蒸着させた後、フォトマスク及び塩酸を用いて、所定のパターニングを行った。続いて、導電性高分子PEDOT-PSS、正孔輸送層α-NPD(厚み60nm)、有機発光層兼電子輸送層Alq3(厚み50nm)、電子注入層LiF(厚み1nm)、対向電極Al(厚み100nm)を設けた後、金属キャップで封止して有機EL発光デバイスを作製した。
<試料No.5に対する実験>
 まず表2に記載のガラス組成(No.5)を有し、厚み0.7mmのガラス基板を用意した。次に、大気側になる表面に対して、鏡面研磨又は表2に記載の粗面化処理(アルミナ研磨又はサンドブラスト)を行った後、表2に記載の後加工を行い、試料M、N、Oを得た。
 試料Mの鏡面研磨は、粒度♯4000のセリウム系研磨材を用いて行った。試料Nのアルミナ研磨は、粒度♯1000のアルミナを用いて行った。試料Oのサンドブラストは、粒度♯280のブラスト材(4kgのAlを20Lの水に分散させたもの)を用いて、ブラスト材をガラス基板の表面に2MPaで吹きつけることで行った。
 次に、試料M~Oを25℃の5質量%HF水溶液中に30分間浸漬させて、HF処理を行った。HF処理後、粗面化処理を行っていない表面上に、透明電極層ITO(厚み100nm)を蒸着させた後、フォトマスク及び塩酸を用いて、所定のパターニングを行った。続いて、導電性高分子PEDOT-PSS、正孔輸送層α-NPD(厚み60nm)、有機発光層兼電子輸送層Alq3(厚み50nm)、電子注入層LiF(厚み1nm)、対向電極Al(厚み100nm)を設けた後、金属キャップで封止して有機EL発光デバイスを作製した。
<試料No.6に対する実験>
 まず表3に記載のガラス組成(No.6)を有し、厚み0.5mmのガラス基板を用意した。次に、大気側になる表面に対して、鏡面研磨又は表3に記載の粗面化処理(アルミナ研磨又はサンドブラスト)を行い、試料P、Q、Rを得た。
Figure JPOXMLDOC01-appb-T000003
 試料Pの鏡面研磨は、粒度♯4000のセリウム系研磨材を用いて行った。試料Qのアルミナ研磨は、粒度♯1000のアルミナを用いて行った。試料Rのサンドブラストは、粒度♯600のブラスト材(4kgのAlを20Lの水に分散させたもの)を用いて、ブラスト材をガラス基板の表面に2MPaで吹きつけることで行った。なお、試料P~Rについて、後加工、有機EL発光デバイスの作製を行わなかった。
<試料No.7に対する実験>
 まず表3に記載のガラス組成(No.7)を有し、厚み0.7mmのガラス基板を用意した。次に、大気側になる表面に対して、鏡面研磨又は表3に記載の粗面化処理(アルミナ研磨又はサンドブラスト)を行い、試料S、T、Uを得た。
 試料Sの鏡面研磨は、粒度♯4000のセリウム系研磨材を用いて行った。試料Tのアルミナ研磨は、粒度♯1000のアルミナを用いて行った。試料Uのサンドブラストは、粒度♯600のブラスト材(4kgのAlを20Lの水に分散させたもの)を用いて、ブラスト材をガラス基板の表面に2MPaで吹きつけることで行った。なお、試料S~Uについて、後加工を行わなかった。
 次に、試料M~Oの粗面化処理を行っていない表面上に、透明電極層ITO(厚み100nm)を蒸着させた後、フォトマスク及び塩酸を用いて、所定のパターニングを行った。続いて、導電性高分子PEDOT-PSS、正孔輸送層α-NPD(厚み60nm)、有機発光層兼電子輸送層Alq3(厚み50nm)、電子注入層LiF(厚み1nm)、対向電極Al(厚み100nm)を設けた後、金属キャップで封止して有機EL発光デバイスを作製した。
 試料A~Uについて、屈折率nd、粗面化面の表面粗さRt、RSm、面内強度を評価すると共に、試料A~O、S~Uについて、光取り出し効率を評価した。
 屈折率ndは、粗面化処理を行う前の試料を用いて、カルニュー社製の屈折率測定器KPR-2000により測定した値である。
 表面粗さRt、RSmは、JIS R0601:2001に準拠した方法により測定した値である。
 光取り出し効率は、浜松ホトニクス社製の輝度配光特性測定装置C9920-11を用いて、試料Sの光取り出し効率の値を基準にして評価した値である。
 面内強度は、リングオンリング試験で測定した値である。まず直径25mmのリング状の冶具の上に後加工を行った後の試料A~U(鏡面研磨面/粗面化面側を下方)を載置した。次に、直径12.5mmの冶具を用いて、上方からサンプルを加圧した。具体的な条件は、加重計:島津製作所製の強度試験機、加重速度:0.5mm/分、押し位置:中央とした。最後に、試料A~Uが破損した時の破壊加重を面内強度として算出した。
 表1~3から明らかなように、粗面化処理を行った試料は、鏡面研磨を行った試料よりも表面粗さRt、RSmが大きく、ガラス基板-空気界面において光の散乱が促進されたため、光取り出し効率が良好であった。また、屈折率ndが高い程、光取り出し効率が良好になる傾向があった。更に、HF処理を行うことにより、面内強度を高めることができた。なお、表中には記載していないが、鏡面研磨を行った試料の鏡面研磨された面の表面粗さRtと、粗面化処理を行った試料の粗面化面に対向する表面の表面粗さRtは、それぞれ1nm未満に調整されている。
<試料No.5に対する追加実験>
 まず表2に記載のガラス組成(No.5)を有し、厚み0.7mmのガラス基板を用意した。次に、大気側になる表面に対して、表4に記載の粗面化処理(アルミナ研磨又はサンドブラスト)を行った後、必要に応じて、表4に記載の後加工を行い、試料a~kを得た。なお、粗面化面に対向する表面の表面粗さRtは1nm未満に調整されている。
Figure JPOXMLDOC01-appb-T000004
 試料a~jのサンドブラストは、粒度♯600のブラスト材(4kgのAlを20Lの水に分散させたもの)を用いて、ブラスト材をガラス基板の表面に2MPaで吹きつけることで行った。試料kのアルミナ研磨は、粒度♯1200のアルミナを用いて行った。
 次に、試料a~g、jについて、表中に示す濃度のHF水溶液中に浸漬させて、表中に示す条件でHF処理を行った。試料h、i、kについては、後加工を行わなかった。続いて、粗面化処理を行っていない表面上に、透明電極層ITO(厚み100nm)を蒸着させた後、フォトマスク及び塩酸を用いて、所定のパターニングを行った。続いて、導電性高分子PEDOT-PSS、正孔輸送層α-NPD(厚み60nm)、有機発光層兼電子輸送層Alq3(厚み50nm)、電子注入層LiF(厚み1nm)、対向電極Al(厚み100nm)を設けた後、金属キャップで封止して有機EL発光デバイスを作製した。
 試料a~jについて、粗面化面の表面粗さRt、RSmを評価すると共に、試料a~kについて、光取り出し効率、面内強度を評価した。
 表面粗さRt、RSmは、JIS R0601:2001に準拠した方法により測定した値である。
 光取り出し効率は、浜松ホトニクス社製輝度配光特性測定装置C9920-11を用いて、表3の試料Sの光取り出し効率の値を基準にして評価した値である。
 面内強度は、リングオンリング試験で測定した値である。まず直径25mmのリング状の冶具の上に後加工を行った後の試料a~k(粗面化面側を下方)を載置した。次に、直径12.5mmの冶具を用いて、上方からサンプルを加圧した。具体的な条件は、加重計:島津製作所製強度試験機、加重速度:0.5mm/分、押し位置:中央とした。最後に、試料a~kが破損した時の破壊加重を面内強度として算出した。
1 ガラス基板
2 透明電極層
3 有機発光層
4 対向電極

Claims (13)

  1.  屈折率ndが1.55以上であって、少なくとも一方の表面に、表面粗さRtが50~10000nmの粗面化面を有することを特徴とする有機ELデバイス用ガラス基板。
  2.  屈折率ndが1.55以上であって、少なくとも一方の表面に、表面粗さRSmが0.1~1000μmの粗面化面を有することを特徴とする有機ELデバイス用ガラス基板。
  3.  屈折率ndが1.55以上であって、少なくとも一方の表面に、表面粗さRt/RSmが0.01~1の粗面化面を有することを特徴とする有機ELデバイス用ガラス基板。
  4.  前記粗面化面が一方の表面のみに形成され、前記粗面化面に対向する他方の表面の表面粗さRtが10nm以下であることを特徴とする請求項1~3の何れか一項に記載の有機ELデバイス用ガラス基板。
  5.  前記粗面化面が物理的な粗面化処理により形成されてなることを特徴とする請求項1~3の何れか一項に記載の有機ELデバイス用ガラス基板。
  6.  前記物理的な粗面化処理がサンドブラスト処理であることを特徴とする請求項5に記載の有機ELデバイス用ガラス基板。
  7.  前記物理的な粗面化処理が研磨処理であることを特徴とする請求項5に記載の有機ELデバイス用ガラス基板。
  8.  前記粗面化面が、前記物理的な粗面化処理後に更に薬液処理されてなることを特徴とする請求項5に記載の有機ELデバイス用ガラス基板。
  9.  前記薬液処理が酸による薬液処理であることを特徴とする請求項8に記載の有機ELデバイス用ガラス基板。
  10.  ガラス組成として、SiOを30~70質量%含むことを特徴とする請求項1~3の何れか一項に記載の有機ELデバイス用ガラス基板。
  11.  面内強度が150MPa以上であることを特徴とする請求項1~3の何れか一項に記載の有機ELデバイス用ガラス基板。
  12.  照明に用いることを特徴とする請求項1~3の何れか一項に記載の有機ELデバイス用ガラス基板。
  13.  請求項1~3の何れか一項に記載の有機ELデバイス用ガラス基板を備えることを特徴とする有機ELデバイス。
PCT/JP2013/050797 2012-01-18 2013-01-17 有機elデバイス用ガラス基板及びそれを用いた有機elデバイス WO2013108835A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/372,314 US20150349280A1 (en) 2012-01-18 2013-01-17 Glass substrate for organic el device, and organic el device using same
CN201380004375.9A CN104012172A (zh) 2012-01-18 2013-01-17 有机el装置用玻璃基板及利用其而成的有机el装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-007629 2012-01-18
JP2012007629A JP6103335B2 (ja) 2012-01-18 2012-01-18 ガラス基板及びその製造方法、並びにガラス基板を用いた有機elデバイス

Publications (1)

Publication Number Publication Date
WO2013108835A1 true WO2013108835A1 (ja) 2013-07-25

Family

ID=48799258

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/050797 WO2013108835A1 (ja) 2012-01-18 2013-01-17 有機elデバイス用ガラス基板及びそれを用いた有機elデバイス

Country Status (5)

Country Link
US (1) US20150349280A1 (ja)
JP (1) JP6103335B2 (ja)
CN (1) CN104012172A (ja)
TW (1) TWI611608B (ja)
WO (1) WO2013108835A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103763864A (zh) * 2014-01-20 2014-04-30 深圳市志金电子有限公司 一种新型白玻璃基板制作方法
KR20170021476A (ko) * 2015-08-18 2017-02-28 스미또모 가가꾸 가부시키가이샤 편광판 및 그의 제조방법
WO2018221435A1 (ja) * 2017-05-31 2018-12-06 東洋アルミニウム株式会社 アルミニウム積層体およびその製造方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH065368A (ja) * 1992-06-19 1994-01-14 Konica Corp 有機エレクトロルミネッセンス素子
JPH09127312A (ja) * 1995-10-27 1997-05-16 Tomoegawa Paper Co Ltd 防眩材料及びそれを使用した偏光フィルム
JP2000231985A (ja) * 1999-02-12 2000-08-22 Denso Corp 有機el素子
WO2002098812A1 (fr) * 2001-06-04 2002-12-12 Nippon Sheet Glass Co., Ltd. Procede de production de substrat transparent, substrat transparent et element electroluminescent organique presentant ledit substrat transparent
WO2003045115A1 (fr) * 2001-11-22 2003-05-30 Nippon Soda Co.,Ltd. Dispositif electroluminescent
JP2004079208A (ja) * 2002-08-09 2004-03-11 Senyo Shoji Kk 有機el素子封止用ガラス部材及び前記ガラス部材を用いた有機elパネル
JP2004342523A (ja) * 2003-05-16 2004-12-02 Toyota Industries Corp 自発光デバイス
JP2009152148A (ja) * 2007-12-21 2009-07-09 Rohm Co Ltd 有機発光装置
WO2011048956A1 (ja) * 2009-10-22 2011-04-28 コニカミノルタホールディングス株式会社 装飾発光体およびその製造方法
JP2011165444A (ja) * 2010-02-08 2011-08-25 Panasonic Electric Works Co Ltd 発光装置
JP2011213568A (ja) * 2009-07-08 2011-10-27 Nippon Electric Glass Co Ltd ガラス板
JP2011222310A (ja) * 2010-04-09 2011-11-04 Mitsubishi Rayon Co Ltd 有機電界発光素子

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7122958B2 (en) * 2003-05-16 2006-10-17 Kabushiki Kaisha Toyota Jidoshokki Light-emitting apparatus and method for forming the same
JP5832101B2 (ja) * 2010-03-11 2015-12-16 住友化学株式会社 防眩性偏光板およびそれを用いた画像表示装置
US9085484B2 (en) * 2010-04-30 2015-07-21 Corning Incorporated Anti-glare surface treatment method and articles thereof

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH065368A (ja) * 1992-06-19 1994-01-14 Konica Corp 有機エレクトロルミネッセンス素子
JPH09127312A (ja) * 1995-10-27 1997-05-16 Tomoegawa Paper Co Ltd 防眩材料及びそれを使用した偏光フィルム
JP2000231985A (ja) * 1999-02-12 2000-08-22 Denso Corp 有機el素子
WO2002098812A1 (fr) * 2001-06-04 2002-12-12 Nippon Sheet Glass Co., Ltd. Procede de production de substrat transparent, substrat transparent et element electroluminescent organique presentant ledit substrat transparent
WO2003045115A1 (fr) * 2001-11-22 2003-05-30 Nippon Soda Co.,Ltd. Dispositif electroluminescent
JP2004079208A (ja) * 2002-08-09 2004-03-11 Senyo Shoji Kk 有機el素子封止用ガラス部材及び前記ガラス部材を用いた有機elパネル
JP2004342523A (ja) * 2003-05-16 2004-12-02 Toyota Industries Corp 自発光デバイス
JP2009152148A (ja) * 2007-12-21 2009-07-09 Rohm Co Ltd 有機発光装置
JP2011213568A (ja) * 2009-07-08 2011-10-27 Nippon Electric Glass Co Ltd ガラス板
WO2011048956A1 (ja) * 2009-10-22 2011-04-28 コニカミノルタホールディングス株式会社 装飾発光体およびその製造方法
JP2011165444A (ja) * 2010-02-08 2011-08-25 Panasonic Electric Works Co Ltd 発光装置
JP2011222310A (ja) * 2010-04-09 2011-11-04 Mitsubishi Rayon Co Ltd 有機電界発光素子

Also Published As

Publication number Publication date
TWI611608B (zh) 2018-01-11
CN104012172A (zh) 2014-08-27
JP2013149406A (ja) 2013-08-01
TW201342682A (zh) 2013-10-16
JP6103335B2 (ja) 2017-03-29
US20150349280A1 (en) 2015-12-03

Similar Documents

Publication Publication Date Title
TWI418526B (zh) 玻璃板
JP5239936B2 (ja) 有機el素子用ガラス基板及びその製造方法
JP2016509743A (ja) 光抽出層を有する柔軟な密封性薄膜
EP3016162B1 (en) Substrate for organic electronic devices and production method therefor
WO2012077708A1 (ja) 高屈折率ガラス
JP6449788B2 (ja) 有機発光ダイオードを有するデバイスのための基材
JP6103335B2 (ja) ガラス基板及びその製造方法、並びにガラス基板を用いた有機elデバイス
EP2973776B1 (en) Transparent conductive oxide coatings for organic light emitting diodes and solar devices
WO2015186584A1 (ja) 分相ガラス及び分相ガラスの製造方法並びに分相ガラスを用いた複合基板
TW201437175A (zh) 玻璃基板
CN104167240B (zh) 一种透明导电基板及其制备方法和有机电致发光器件
JP4114398B2 (ja) Ito膜付き基体の製造方法
JP2012121756A (ja) 高屈折率ガラス
JP5812241B2 (ja) 高屈折率ガラス
JP2011091063A (ja) Oledデバイスの性能を向上させるための改善された透明電極材料
JP2015164887A (ja) ガラス
JP2004111201A (ja) 発光素子用基板、発光素子用透明導電膜付き基板および発光素子
JP2012121757A (ja) 高屈折率ガラス
JP2022534166A (ja) ホウケイ酸塩光取り出し領域
JP2016147776A (ja) ガラス基板
KR20170050900A (ko) 유기전자장치
CN104051667A (zh) 有机电致发光器件及其封装方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13738160

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14372314

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13738160

Country of ref document: EP

Kind code of ref document: A1