WO2013105507A1 - アクチュエータおよびその駆動方法 - Google Patents

アクチュエータおよびその駆動方法 Download PDF

Info

Publication number
WO2013105507A1
WO2013105507A1 PCT/JP2013/000075 JP2013000075W WO2013105507A1 WO 2013105507 A1 WO2013105507 A1 WO 2013105507A1 JP 2013000075 W JP2013000075 W JP 2013000075W WO 2013105507 A1 WO2013105507 A1 WO 2013105507A1
Authority
WO
WIPO (PCT)
Prior art keywords
tio
layer
electrode layer
laminate
actuator
Prior art date
Application number
PCT/JP2013/000075
Other languages
English (en)
French (fr)
Inventor
上田 路人
貴聖 張替
田中 良明
足立 秀明
藤井 映志
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2013527217A priority Critical patent/JP5397573B1/ja
Publication of WO2013105507A1 publication Critical patent/WO2013105507A1/ja
Priority to US13/962,448 priority patent/US9391260B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • H10N30/204Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators using bending displacement, e.g. unimorph, bimorph or multimorph cantilever or membrane benders
    • H10N30/2041Beam type
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • H10N30/208Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators using shear or torsion displacement, e.g. d15 type devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/07Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base
    • H10N30/074Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing
    • H10N30/076Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing by vapour phase deposition
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8542Alkali metal based oxides, e.g. lithium, sodium or potassium niobates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8561Bismuth-based oxides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0833Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
    • G02B26/0858Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD the reflecting means being moved or deformed by piezoelectric means

Definitions

  • the present invention relates to an actuator and a method of driving the same.
  • FIG. 13 shows an actuator disclosed in Patent Document 1.
  • the actuator 100 includes a support layer 104, a first electrode layer 105, a first piezoelectric layer 106R, a second piezoelectric layer 106L, a second electrode layer 107R, and a third electrode layer 107L.
  • the first piezoelectric actuator 108R is configured of the right half 104R of the support layer 104, the right half 105R of the first electrode layer 105, the first piezoelectric layer 106R, and the second electrode layer 107R.
  • the second piezoelectric actuator 108L includes the left half 104L of the support layer 104, the left half 105L of the first electrode layer 105, the second piezoelectric layer 106L, and the third electrode layer 107L.
  • a torsion bar 102 is fixed to the bottom of the support layer 104.
  • the torsion bar 102 is sandwiched between the first piezoelectric actuator 108R and the second piezoelectric actuator 108L in the sectional view of FIG.
  • the torsion bar 102 has a longitudinal direction orthogonal to both the stacking direction of these layers 104 to 107 (that is, the vertical direction in FIG. 13) and the longitudinal direction of the support layer 104 (that is, the horizontal direction in FIG. 13). ing.
  • a mirror 101 is provided at one end of the torsion bar 102.
  • a voltage of 0 volts, a negative voltage, and a positive voltage are applied to the first electrode layer 105, the second electrode layer 107R, and the third electrode layer 107L, respectively.
  • the actuator 100 is twisted and the mirror 101 is tilted.
  • An object of the present invention is to provide a novel actuator and a method of driving the same.
  • the present invention is a method of driving an actuator 1 and comprises the following steps: Preparing the actuator 1 comprising First stacked body 11a, Second stacked body 11 b, A first support 13a, The second support 13 b and the slope 25, where
  • the first stacked body 11a includes a first electrode layer 5a, a first (Bi, Na, Ba) TiO 3 layer 7a, and a second electrode layer 9a.
  • the first electrode layer 5a, the first (Bi, Na, Ba) TiO 3 layer 7a is sandwiched between the first electrode layer 5a and the second electrode layer 9a.
  • Both the first (Bi, Na, Ba) TiO3 layer 7a and the second (Bi, Na, Ba) TiO3 layer 7b are preferentially oriented in the [001] crystal axis direction,
  • the + Z direction is parallel to the [011] crystal axis direction,
  • the -Z direction is the opposite of the + Z direction,
  • the + X direction is parallel to the longitudinal direction of the first stacked body 11a,
  • the -X direction is the opposite of the + X direction,
  • the + Y direction is orthogonal to both the + X direction and the + Z direction in a right-handed coordinate system,
  • the -Y direction is the reverse of the + Y direction,
  • the stacking direction of the first stacked body 11a is parallel to the + Z direction,
  • the second stacked body 11b includes a third electrode layer 5b, a second (Bi, Na, Ba) TiO 3 layer 7b, and a fourth electrode layer 9b.
  • the second (Bi, Na, Ba) TiO 3 layer 7b is sandwiched between the third electrode layer 5b and the fourth electrode layer 9b along the + Z direction,
  • the inclined portion 25 is sandwiched between the first stacked body 11 a and the second stacked body 11 b along the X direction,
  • the inclined portion 25 includes a first end 25a and a second end 25b.
  • the first end 25a and the second end 25b are respectively located on the + Y side and the -Y side in the XY plane, One end of the first laminate 11a is fixed to the first support 13a, One end of the second stacked body 11b is fixed to the second support 13b, In the XY plane, the angle Q formed between the X direction and the [100] direction is greater than 0 degree and less than 90 degrees, and a voltage V5a, V9a, which satisfies the following condition A or condition B: V5b and V9b are respectively applied to the first electrode layer 5a, the second electrode layer 9a, the third electrode layer 5b and the fourth electrode layer 9b, and one of the first end 25a and the second end 25b Tilting the inclined portion 25 so that the second moves in the + Z direction and the other in the -Z direction (b) Condition A: V5a> V9a and V5b ⁇ V9b Condition B: V5a ⁇ V9a and V5b> V9b.
  • step (b) In the step (b), the condition B is satisfied, The first end 25a moves in the + Z direction, and the second end 25b moves in the -Z direction.
  • A5. The method according to item A1, wherein The angle Q is 30 degrees or more and 60 degrees or less.
  • A6 The method according to item A1, wherein The first electrode layer 5a is integrally formed with the third electrode layer 5b.
  • A7 The method according to item A1, wherein A first (Bi, Na, Ba) TiO 3 layer 7a is integrally formed with the second (Bi, Na, Ba) TiO 3 layer 7b.
  • A8 The method according to item A1, wherein The first (Bi, Na, Ba) TiO 3 layer 7a is formed of (Bi 0.5 Na) 0.5 TiO 3 -BaTiO 3 , and the second (Bi, Na, Ba) TiO 3 layer 7b is formed of 0.5 Na) 0.5 TiO 3 -BaTiO 3 is formed.
  • An actuator comprising: First stacked body 11a, Second stacked body 11 b, A first support 13a, The second support 13 b and the slope 25, where
  • the first stacked body 11a includes a first electrode layer 5a, a first (Bi, Na, Ba) TiO 3 layer 7a, and a second electrode layer 9a.
  • the first electrode layer 5a, the first (Bi, Na, Ba) TiO 3 layer 7a is sandwiched between the first electrode layer 5a and the second electrode layer 9a.
  • Both the first (Bi, Na, Ba) TiO 3 layer 7 a and the second (Bi, Na, Ba) TiO 3 layer 7 b are preferentially oriented in the [001] crystal axis direction,
  • the + Z direction is parallel to the [011] crystal axis direction,
  • the -Z direction is the opposite of the + Z direction,
  • the + X direction is parallel to the longitudinal direction of the first stacked body 11a,
  • the -X direction is the opposite of the + X direction,
  • the + Y direction is orthogonal to both the + X direction and the + Z direction in a right-handed coordinate system,
  • the -Y direction is the reverse of the + Y direction,
  • the stacking direction of the first stacked body 11a is parallel to the + Z direction,
  • the second stacked body 11b includes a third electrode layer 5b, a second (Bi, Na, Ba) TiO 3 layer 7b, and a fourth electrode layer 9b.
  • the second (Bi, Na, Ba) TiO 3 layer 7b is sandwiched between the third electrode layer 5b and the fourth electrode layer 9b along the + Z direction,
  • the inclined portion 25 is sandwiched between the first stacked body 11 a and the second stacked body 11 b along the X direction,
  • the inclined portion 25 includes a first end 25a and a second end 25b.
  • the first end 25a and the second end 25b are respectively located on the + Y side and the -Y side in the XY plane, One end of the first laminate 11a is fixed to the first support 13a, One end of the second stacked body 11b is fixed to the second support 13b, In the XY plane, the angle Q formed between the X direction and the [100] direction is greater than 0 degrees and less than 90 degrees.
  • the angle Q is 15 degrees or more and 75 degrees or less.
  • the angle Q is 30 degrees or more and 60 degrees or less.
  • the first electrode layer 5a is integrally formed with the third electrode layer 5b, The actuator according to item B1.
  • the first (Bi, Na, Ba) TiO 3 layer 7a is integrally formed with the second (Bi, Na, Ba) TiO 3 layer 7b, The actuator according to item B1.
  • the first (Bi, Na, Ba) TiO 3 layer 7a is formed of (Bi 0.5 Na) 0.5 TiO 3 -BaTiO 3
  • the second (Bi, Na, Ba) TiO 3 layer 7b is formed of 0.5 Na) 0.5 TiO 3 -BaTiO 3 is formed,
  • the 1 (Bi, Na, Ba) TiO 3 layer 7a is, (1-x) (Bi 0.5, Na 0.5) TiO 3) -x (BaTiO 3) layer (0.01 ⁇ x ⁇ 0. 15) and (1-y) [(Bi , Na, Ba) TiO 3] is formed of a laminate of -YBiFeO 3 layer (0.20 ⁇ y ⁇ 0.50), and the 2 (Bi, Na (Ba) TiO 3 layer 7b is formed of (1-x) (Bi 0.5 , Na 0.5 ) TiO 3 ) -x (BaTiO 3 ) layer (0.01 ⁇ x ⁇ 0.15) and (1 ⁇ y) [(Bi, Na, Ba) TiO 3 ] -yBiFeO 3 layer (0.20 ⁇ y ⁇ 0.50), which is formed of a laminate
  • the present invention provides a novel actuator and a method of driving the same.
  • FIG. 1A is a perspective view of an actuator 1 according to an embodiment.
  • FIG. 1B is a modification of FIG. 1A.
  • FIG. 2 is a cross-sectional view taken along the line A-A 'included in FIG.
  • FIG. 3 shows coordinate axes in the embodiment.
  • FIG. 4 shows a method of driving an actuator 1 according to an embodiment.
  • FIG. 5 is a perspective view of the actuator 1 according to the embodiment.
  • FIG. 6A is a cross-sectional view of line C1-C1 'included in FIG. 5 while the actuator 1 is in operation.
  • 6B is a cross-sectional view of line C2-C2 'included in FIG. 5 while the actuator 1 is operating.
  • FIG. 6C is a cross-sectional view of line C3-C3 'included in FIG. 5 while the actuator 1 is operating.
  • FIG. 7 is a perspective view of another actuator 1 according to the embodiment.
  • FIG. 8 shows coordinate axes in Examples 1 to 8 and Comparative Examples 1 and 2.
  • FIG. 9A shows one procedure included in the method of producing an actuator according to Example 1.
  • FIG. 9B continues to FIG. 9A and shows one procedure included in the method of fabricating an actuator according to Example 1.
  • FIG. 9C continues to FIG. 9B and shows one procedure included in the method of producing the actuator according to Example 1.
  • FIG. 9D continues to FIG. 9C and shows one procedure included in the method of fabricating an actuator according to Example 1.
  • FIG. 9E follows FIG.
  • FIG. 10 shows an X-ray diffraction profile of the piezoelectric film according to Example 1.
  • FIG. 11 is a cross-sectional view taken along the line B-B 'included in FIG.
  • FIG. 12 shows coordinate axes in Comparative Example 3.
  • FIG. 13 is a cross-sectional view of the actuator 100 disclosed in Patent Document 1. As shown in FIG.
  • FIG. 1A shows an actuator 1 according to a first embodiment.
  • the actuator 1 includes a first stacked body 11 a, a second stacked body 11 b, a first support 13 a, a second support 13 b, and an inclined portion 25.
  • FIG. 2 shows a cross-sectional view taken along line AA ′ included in FIG. 1A.
  • the first stacked body 11a includes a first electrode layer 5a, a first (Bi, Na, Ba) TiO 3 layer 7a, and a second electrode layer 9a in this order.
  • the first electrode layer 5 a is formed on the substrate 3.
  • the first (Bi, Na, Ba) TiO 3 layer 7a and the second electrode layer 9a are stacked in this order on the first electrode layer 5a.
  • the second laminate 11b includes the third electrode layer 5b, the second (Bi, Na, Ba) TiO 3 layer 7b, and the fourth electrode layer 9b in this order.
  • the first stacked body 11 a and the second stacked body 11 b are desirably rectangular. As will be described later, as shown in FIG. 1A, the longitudinal direction of the first stacked body 11a is parallel to the + X direction.
  • the first (Bi, Na, Ba) TiO 3 layer 7a and the second (Bi, Na, Ba) TiO 3 layer 7b are preferentially oriented in the [011] crystal axis direction.
  • “[011] crystal axis direction” is simply described as “[011] direction”.
  • the first (Bi, Na, Ba) TiO 3 layer 7a and the second (Bi, Na, Ba) TiO 3 layer 7b are oriented only in the [011] direction.
  • the actuator 1 does not operate. See Comparative Example 3 below.
  • (Bi, Na, Ba) TiO 3 is a material known as a piezoelectric.
  • (Bi, Na, Ba) TiO 3 is referred to as “NBT-BT” or “BNT-BT”.
  • a representative example of (Bi, Na, Ba) TiO 3 is (Bi 0.5 , Na 0.5 ) TiO 3 -BaTiO 3 . More precisely, this is (1-x) (Bi 0.5 , Na 0.5 ) TiO 3 -x (BaTiO 3 ).
  • X represents a value of 0.01 or more and 0.15 or less.
  • TiO 3 may contain other metal oxides. Examples of other metal oxide is BiFeO 3. (Bi, Na, Ba) TiO 3 may contain an impurity to improve piezoelectric performance. Examples of impurities are silver, niobium, tantalum or manganese.
  • the first (Bi, Na, Ba) TiO 3 layer 7a may be formed of two or more (Bi, Na, Ba) TiO 3 layers. These two or more (Bi, Na, Ba) TiO 3 layers may have different compositions.
  • the first (Bi, Na, Ba) TiO 3 layer 7a is a (1-x) (Bi 0.5 , Na 0.5 ) TiO 3 ) -x (BaTiO 3 ) layer (0.01 ⁇ x ⁇ 0.1) and (1-y) [(Bi , Na, Ba) TiO 3] may be formed from -YBiFeO 3-layer laminate (0.20 ⁇ y ⁇ 0.50). See Examples 6-8 described below.
  • the second (Bi, Na, Ba) TiO 3 layer 7b is also formed from two or more (Bi, Na, Ba) TiO 3 layers. obtain.
  • the first electrode layer 5a and the second electrode layer 5b be preferentially oriented in the [011] direction.
  • the first electrode layer 5a and the second electrode layer 5b can be formed of a metal film or an oxide conductor film. Two or more thin films may be used. Examples of metal film materials are platinum, palladium or gold. Examples of the material of the oxide conductor are nickel oxide, ruthenium oxide, iridium oxide, strontium ruthenate, or lanthanum nickelate.
  • the first (Bi, Na, Ba) TiO 3 layer 7a and the second (Bi, Na, Ba) TiO 3 layer 7b may contain small amounts of impurities such as manganese or iron to improve their piezoelectric properties.
  • the first (Bi, Na, Ba) TiO 3 layer 7a and the second (Bi, Na, Ba) TiO 3 layer 7b can be formed by sputtering.
  • the first electrode layer 5a be integrally formed on the substrate 3 together with the third electrode layer 5b.
  • the first (Bi, Na, Ba) TiO 3 layer 7a be integrally formed with the second (Bi, Na, Ba) TiO 3 layer 7b.
  • An example of the material of the substrate 3 may be magnesium oxide or strontium titanate.
  • a (110) magnesium oxide substrate is preferable because the first (Bi, Na, Ba) TiO 3 layer 7a is easily preferentially oriented in the + Z direction.
  • the second electrode layer 9a and the fourth electrode layer 9b need to be electrically insulated. This is because the voltage applied to the second electrode layer 9a is different from the voltage applied to the fourth electrode layer 9b, as described later.
  • An example of the material of the second insulating layer 9a and the fourth electrode layer 9b is gold.
  • the length of the second electrode layer 9a in the + X direction be equal to the length of the fourth electrode layer 9b in the + X direction.
  • the inclined portion 25 be provided at the center of the actuator 1.
  • the first stack 11a and the second stack 11b can be formed separately. Thereafter, as shown in FIG. 1B, one end of the first stacked body 11a may be bonded to one end of the second stacked body 11b by epoxy resin or solder.
  • the + X direction is a direction parallel to the longitudinal direction of the first stacked body 11 a.
  • the -X direction is the reverse of the + X direction.
  • the + Z direction is a direction parallel to the stacking direction of the first stacked body 11a and is parallel to the [011] direction.
  • the stacking direction of the first stacked body 11a is the [011] direction.
  • the -Z direction is the reverse of the + Z direction.
  • the + Y direction is a direction orthogonal to both the + X direction and the + Z direction.
  • the -Y direction is the reverse of the + Y direction.
  • the inclined portion 25 is sandwiched between the first stack 11a and the second stack 11b along the + X direction.
  • the first stacked body 11a and the second stacked body 11b are adjacent to each other along the + X direction so that the sloped portion 25 is sandwiched therebetween.
  • the shape of the inclined portion 25 is not limited.
  • the inclined portion 25 is desirably plate-shaped.
  • the inclined portion 25 has the same width as the first stacked body 11a and the second stacked body 11b.
  • width means a length along the + Y direction.
  • the inclined portion 25 preferably has a mirror 30 on the surface. The mirror 30 reflects light.
  • the inclined portion 25 includes a first end 25a and a second end 25b.
  • the first end 25 a is located on the + Y side.
  • the second end 25b is located on the -Y side.
  • first stacked body 11a is fixed to the first support 13a. It is desirable that the first support 13a has a plate shape. More specifically, one end on the + X side of the first stacked body 11 a is fixed to the side surface of the plate-like first support 13 a by epoxy resin or solder. Similarly, one end of the second stacked body 11 b is fixed to the second support 13 a. More specifically, one end on the ⁇ X side of the second stacked body 11 b is fixed to the side surface of the second support 13 b.
  • the angle Q formed between the + X direction and the [100] direction is greater than 0 degrees and less than 90 degrees.
  • the angle Q is preferably 15 degrees or more and 75 degrees or less.
  • the angle Q is more preferably 30 degrees or more and 60 degrees or less.
  • Step (b) Next, a method of driving such an actuator 1 will be described below.
  • voltages V5a, V9a, V5b and V9b satisfying the following condition A are respectively applied to the first electrode layer 5a, the second electrode layer 9a, the third electrode layer 5b and the fourth electrode layer. Apply to 9b.
  • this voltage application causes the first end 25a to move in the -Z direction, and the second end 25b to move in the + Z direction.
  • the actuator 1 is twisted.
  • the inclined portion 25 is inclined.
  • the tilt angle is defined as the angle P. See FIG. A power supply (not shown) may be used for this voltage application.
  • FIG. 11 shows a cross-sectional view taken along the line B-B 'included in FIG.
  • the value of the voltage V5a be equal to the value of the voltage V5b. More desirably, the values of voltage V5a and voltage V5b are both 0 volt.
  • condition A voltages V5a, V9a, V5b, and V9b satisfying the following condition B are respectively applied to the first electrode layer 5a, the second electrode layer 9a, the third electrode layer 5b, and the fourth electrode layer 9b. Apply.
  • Condition B V5a ⁇ V9a and V5b> V9b
  • This voltage application moves the first end 25a in the + Z direction, and moves the second end 25b in the -Z direction.
  • the actuator 1 is twisted.
  • the inclined portion 25 is inclined. See also FIG.
  • the actuator 1 When the voltage is not applied, the actuator 1 returns to its original state. In other words, the inclination angle P returns to 0 degrees.
  • Example 1 In Example 1, the actuator 1 shown in FIG. 7 was manufactured. In the first embodiment, the angle Q is set to 45 degrees.
  • the first laminate 11a had a length of 8 mm in the X direction and a length of 2 mm in the Y direction.
  • the substrate 3 was an MgO single crystal substrate having a thickness of 50 micrometers.
  • the inclined portion 25 had a length of 2 mm in the X direction and a length of 4 mm in the Y direction.
  • the actuator 1 was fabricated according to the procedure shown in FIGS. 9A-9E.
  • the MgO single crystal substrate 3 was prepared.
  • the MgO single crystal substrate 3 had the surface normal only in the [011] direction and no other axial direction.
  • the MgO single crystal substrate 3 had a thickness of 0.5 mm.
  • the first electrode layer 5a and the third electrode layer 5b made of platinum were integrally formed on the surface of the MgO single crystal substrate 3 by RF magnetron sputtering.
  • the first electrode layer 5a and the third electrode layer 5b had the [011] axis direction. In other words, the normal direction of the first electrode layer 5a and the third electrode layer 5b was the [011] direction.
  • the first electrode layer 5a and the third electrode layer 5b had a thickness of 250 nm.
  • Target Platinum metal Atmosphere: Argon gas RF power: 15 W Substrate temperature: 300 ° C.
  • a (Bi, Na, Ba) TiO 3 layer having a thickness of 2.7 micrometers is formed on the surfaces of the first electrode layer 5a and the third electrode layer 5b by RF magnetron sputtering.
  • a first (Bi, Na, Ba) TiO 3 layer 7a and a second (Bi, Na, Ba) TiO 3 layer 7b were integrally formed.
  • Target the above composition atmosphere: mixed gas of argon and oxygen (Ar / O 2 flow ratio: 50/50) RF output: 170 W Substrate temperature: 650 ° C.
  • the crystal structures of the first (Bi, Na, Ba) TiO 3 layer 7a and the second (Bi, Na, Ba) TiO 3 layer 7b were analyzed by the X-ray diffraction method.
  • FIG. 10 shows the results of the X-ray diffraction profile.
  • the intensity of the reflection peak was a very high value of 255,956 cps.
  • the first (Bi, Na, Ba) TiO 3 layer 7a and the second (Bi, Na, Ba) TiO 3 layer 7b according to Example 1 are oriented in the [011] direction, ie, + Z. It means that it was strongly oriented in the direction.
  • a mask layer 71 was formed on the surfaces of the first (Bi, Na, Ba) TiO 3 layer 7a and the second (Bi, Na, Ba) TiO 3 layer 7b.
  • the mask layer 71 was formed by RF magnetron sputtering.
  • the mask layer 71 was formed of a chromium layer having a thickness of 0.3 micrometers.
  • Target Metal Chromium Atmosphere: Argon gas RF power: 150 W Substrate temperature: room temperature A resist is applied on the mask layer 71, exposed and developed to form a resist pattern 73. See Figure 9A.
  • the mask layer 71 was dry etched using the resist pattern 73 as a mask.
  • Etching gas mixed gas of chlorine and oxygen (Cl 2 / O 2 flow ratio: 40/20)
  • RF output 600W Bias output: 100 W
  • the resist pattern 73 was removed by ashing with oxygen plasma. Thereafter, as shown in FIG. 9B, a mask pattern 75 was formed. As shown in FIG. 8, the angle Q was set to 45 degrees.
  • Unnecessary portions of the first (Bi, Na, Ba) TiO 3 layer 7 a and the second (Bi, Na, Ba) TiO 3 layer 7 b were dry etched using the mask pattern 75.
  • Etching gas mixed gas of methane tetrafluoride and argon (CF 4 / Ar flow ratio: 30/70)
  • RF output 1000W
  • Bias output 100 W
  • unnecessary portions of the first electrode layer 5a and the third electrode layer 5b were dry etched using the mask pattern 75 again.
  • Etching gas Argon RF power: 800 W Bias output: 100 W
  • the mask pattern 75 was removed by wet etching using diammonium chromium (IV) nitrate.
  • a resist film 77 was formed on the back surface of the MgO single crystal substrate 3.
  • the MgO single crystal substrate 3 was wet etched using hot phosphoric acid. Thereafter, the resist film 77 is removed by ashing using oxygen plasma.
  • the second electrode layer 9a and the fourth electrode layer 9b are respectively made of the first (Bi, Na, Ba) TiO 3 layer 7a and the second (Bi, Na, Ba) TiO.sub.3. It formed in the surface of the front side of the three- layer 7b using the shadow mask (not shown) by the vapor deposition method.
  • the second electrode layer 9a and the fourth electrode layer 9b were formed of a gold film having a thickness of 100 nanometers.
  • the mirror 30 is formed on the inclined portion 25. This mirror 30 was also formed of a gold film having a thickness of 100 nanometers.
  • the actuator 1 was produced.
  • the actuator 1 thus obtained was driven as follows.
  • the laser beam was irradiated to the inclined portion 25.
  • the laser light was reflected by the mirror 30.
  • the reflected light was projected on a screen located away from the actuator 1.
  • the inclination angle P was calculated based on the movement distance of the reflected light projected onto the screen.
  • Example 2 An actuator similar to that according to Example 1 was made except that the angle Q was set to 30 degrees.
  • voltages of 0 volts, -30 volts, 0 volts and +30 volts respectively represent the first electrode layer 5a, the second electrode layer 9a, the third electrode layer 5b and the fourth electrode layer 9b.
  • the inclined portion 25 is inclined.
  • the inclination angle P is shown in Table 2.
  • Example 3 An actuator similar to that according to Example 1 was made except that the angle Q was set to 15 degrees.
  • voltages of 0 volts, -30 volts, 0 volts and +30 volts respectively represent the first electrode layer 5a, the second electrode layer 9a, the third electrode layer 5b and the fourth electrode layer 9b.
  • the inclined portion 25 is inclined.
  • the inclination angle P is shown in Table 2.
  • Example 4 An actuator similar to that according to Example 1 was made except that the angle Q was set to 60 degrees.
  • voltages of 0 volts, -30 volts, 0 volts and +30 volts respectively represent the first electrode layer 5a, the second electrode layer 9a, the third electrode layer 5b and the fourth electrode layer 9b.
  • the inclined portion 25 is inclined.
  • the inclination angle P is shown in Table 2.
  • Example 5 An actuator similar to that according to Example 1 was made except that the angle Q was set to 75 degrees.
  • voltages of 0 volts, -30 volts, 0 volts and +30 volts respectively represent the first electrode layer 5a, the second electrode layer 9a, the third electrode layer 5b and the fourth electrode layer 9b.
  • the inclined portion 25 is inclined.
  • the inclination angle P is shown in Table 2.
  • FIG. 12 shows coordinate axes in Comparative Example 3.
  • the angle Q was set to 45 degrees.
  • voltages of 0 volts, -30 volts, 0 volts and +30 volts respectively represent the first electrode layer 5a, the second electrode layer 9a, the third electrode layer 5b and the fourth electrode layer 9b.
  • the inclined portion 25 is inclined.
  • the inclination angle P is shown in Table 2.
  • the angle Q needs to be more than 0 degrees and less than 90 degrees.
  • the angle Q is preferably 15 degrees or more and 75 degrees or less.
  • the angle Q is more preferably 30 degrees or more and 60 degrees or less.
  • the (Bi, Na, Ba) TiO 3 layer needs to be preferentially oriented in the [011] direction. More preferably, the (Bi, Na, Ba) TiO 3 layer is oriented only in the [011] direction.
  • the first (Bi, Na, Ba) TiO 3 layer 7a and the second (Bi, Na, Ba) TiO 3 layer 7b are (Bi, Na, Ba) TiO 3 layers and (1-y) [(Bi, Na) , Ba) TiO 3 ] -yBiFeO 3
  • An actuator similar to that according to Example 1 was fabricated except that it was replaced by a stack of 3 layers.
  • voltages of 0 volts, -30 volts, 0 volts and +30 volts respectively represent the first electrode layer 5a, the second electrode layer 9a, the third electrode layer 5b and the fourth electrode layer 9b.
  • the inclined portion 25 is inclined.
  • the inclination angle P is shown in Table 3.
  • the (Bi, Na, Ba) TiO 3 layer and the (1-y) [(Bi, Na, Ba) TiO 3 ] -yBiFeO 3 layer were formed as follows.
  • a (Bi, Na, Ba) TiO 3 layer was deposited on the surfaces of the first electrode layer 5a and the third electrode layer 5b by RF magnetron sputtering.
  • the (Bi, Na, Ba) TiO 3 layer had a thickness of 1.35 micrometers.
  • the above composition atmosphere mixed gas of argon and oxygen (Ar / O 2 flow ratio: 50/50)
  • RF output 170 W
  • Substrate temperature 650 ° C.
  • Atmosphere mixed gas of argon and oxygen (flow ratio of Ar / O 2 : 50/50)
  • RF output 170 W
  • Substrate temperature 650 degrees Celsius
  • the (Bi, Na, Ba) TiO 3 layer has a thickness of 1.6 micrometers
  • the (1-y) [(Bi, Na, Ba) TiO 3 ] -yBiFeO 3 (y 0.3) layer
  • An actuator similar to that according to Example 6 was made except that it had a thickness of 1.1 micrometers.
  • voltages of 0 volts, -30 volts, 0 volts and +30 volts respectively represent the first electrode layer 5a, the second electrode layer 9a, the third electrode layer 5b and the fourth electrode layer 9b.
  • the inclined portion 25 is inclined.
  • the inclination angle P is shown in Table 3.
  • An actuator similar to that according to Example 6 was made except that it had a thickness of 1.6 micrometers.
  • voltages of 0 volts, -30 volts, 0 volts and +30 volts respectively represent the first electrode layer 5a, the second electrode layer 9a, the third electrode layer 5b and the fourth electrode layer 9b.
  • the inclined portion 25 is inclined.
  • the inclination angle P is shown in Table 3.
  • An actuator according to embodiments may be used in a laser scanner.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Micromachines (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

新規なアクチュエータおよびその駆動方法を提供することを目的として、本発明のアクチュエータはいずれも、[001]結晶軸方向に優先配向した、第1(Bi,Na,Ba)TiO層および第2(Bi,Na,Ba)TiO層を備え、積層体の長手方向に平行なX方向および[100]方向のと間に形成される角度Qは、0度より大きくかつ90度未満である。

Description

アクチュエータおよびその駆動方法
 本発明は、アクチュエータおよびその駆動方法に関する。
 図13は、特許文献1に開示されているアクチュエータを示す。
 このアクチュエータ100は、支持体層104、第1電極層105、第1圧電体層106R、第2圧電体層106L、第2電極層107R、および第3電極層107Lを具備する。
 2つの圧電アクチュエータ108R、108Lが、このアクチュエータ100に形成されている。第1圧電アクチュエータ108Rは、支持体層104の右半分104R、第1電極層105の右半分105R、第1圧電体層106R、および第2電極層107Rから構成されている。第2圧電アクチュエータ108Lは、支持体層104の左半分104L、第1電極層105の左半分105L、第2圧電体層106L、および第3電極層107Lから構成されている。
 トーションバー102が、支持体層104の底面に固定されている。トーションバー102は、図13の断面視において第1圧電アクチュエータ108Rおよび第2圧電アクチュエータ108Lに挟まれている。トーションバー102は、これらの層104~107の積層方向(すなわち、図13の上下方向)および支持体層104の長手方向(すなわち、図13の左右方向)の両方に直交する長手方向を有している。トーションバー102の一端にはミラー101が設けられている。
 0ボルトの電圧、負電圧、および正電圧が、それぞれ、第1電極層105、第2電極層107R、および第3電極層107Lに印加される。この電圧印加によって、図13に示されるように、アクチュエータ100が捻られ、ミラー101が傾く。
特開2009-169290号公報
 本発明の目的は、新規なアクチュエータおよびその駆動方法を提供することである。
 A1.本発明は、アクチュエータ1を駆動する方法であって、以下の工程を具備する:
 以下を具備する前記アクチュエータ1を用意する工程(a)、
   第1積層体11a、
   第2積層体11b、
   第1支持体13a、
   第2支持体13b、および
   傾斜部25、ここで、
   前記第1積層体11aは、第1電極層5a、第1(Bi,Na,Ba)TiO層7a、および第2電極層9aを具備し、
   前記第1(Bi,Na,Ba)TiO層7aが、前記第1電極層5aおよび前記第2電極層9aの間に挟まれるように、前記第1電極層5a、前記第1(Bi,Na,Ba)TiO層7a、および前記第2電極層9aは積層されており、
 前記第1(Bi,Na,Ba)TiO3層7aおよび前記第2(Bi,Na,Ba)TiO3層7bは、いずれも、[001]結晶軸方向に優先配向し、
  +Z方向は、[011]結晶軸方向に平行であり、
  -Z方向は、前記+Z方向の逆方向であり、
   +X方向は、前記第1積層体11aの長手方向に平行であり、
   -X方向は、前記+X方向の逆方向であり、
   +Y方向は、右手座標系において(a right-handed coordinate system)前記+X方向および前記+Z方向のいずれにも直交し、
   -Y方向は、前記+Y方向の逆方向であり、
   前記第1積層体11aの積層方向は+Z方向に平行であり、
   前記第2積層体11bは、第3電極層5b、第2(Bi,Na,Ba)TiO層7b、および第4電極層9bを具備し、
   前記第2(Bi,Na,Ba)TiO層7bは、+Z方向に沿って、前記第3電極層5bおよび前記第4電極層9bの間に挟まれ、
   前記傾斜部25は、前記X方向に沿って、前記第1積層体11aおよび前記第2積層体11bの間に挟まれており、
   前記傾斜部25は、第1端部25aおよび第2端部25bを具備し、
   第1端部25aおよび第2端部25bは、XY面内において、それぞれ+Y側および-Y側に位置しており、
   前記第1積層体11aの一端は第1支持体13aに固定されており、
   前記第2積層体11bの一端は第2支持体13bに固定されており、
   XY面内において、前記X方向および[100]方向の間に形成される角度Qは、0度より大きくかつ90度未満であり、そして
 以下の条件Aまたは条件Bを充足する電圧V5a、V9a、V5b、およびV9bを、それぞれ第1電極層5a、第2電極層9a、第3電極層5b、および第4電極層9bに印加し、前記第1端部25aおよび前記第2端部25bの一方が+Z方向に、他方が-Z方向に移動するように前記傾斜部25を傾ける工程(b)
 条件A:V5a>V9aかつV5b<V9b
 条件B:V5a<V9aかつV5b>V9b。
 A2.項目A1に記載の方法であって、
 工程(b)において、前記条件Aが充足され、
 前記第1端部25aが-Z方向に、第2端部25bが+Z方向に移動する。
 A3.項目A1に記載の方法であって、工程(b)において、
 工程(b)において、前記条件Bが充足され、
 前記第1端部25aが+Z方向に、第2端部25bが-Z方向に移動する。
 A4.項目A1に記載の方法であって、
 前記角度Qが15度以上75度以下である。
 A5.項目A1に記載の方法であって、
 前記角度Qが30度以上60度以下である。
 A6.項目A1に記載の方法であって、
 第1電極層5aが第3電極層5bに一体的に形成されている。
 A7.項目A1に記載の方法であって、
 第1(Bi,Na,Ba)TiO層7aが第2(Bi,Na,Ba)TiO層7bと一体的に形成されている。
 A8.項目A1に記載の方法であって、
 第1(Bi,Na,Ba)TiO層7aが(Bi0.5Na)0.5TiO-BaTiOから形成され、かつ
 第2(Bi,Na,Ba)TiO層7bが(Bi0.5Na)0.5TiO-BaTiOから形成されている。
 A9.項目A1に記載の方法であって、
 第1(Bi,Na,Ba)TiO層7aが、(1-x)(Bi0.5,Na0.5)TiO)-x(BaTiO)層(0.01≦x≦0.15)および(1-y)[(Bi,Na,Ba)TiO]-yBiFeO層(0.20≦y≦0.50)の積層体から形成されており、かつ
 第2(Bi,Na,Ba)TiO層7bが、(1-x)(Bi0.5,Na0.5)TiO)-x(BaTiO)層(0.01≦x≦0.15)および(1-y)[(Bi,Na,Ba)TiO]-yBiFeO層(0.20≦y≦0.50)の積層体から形成されている。
 B1.アクチュエータであって、以下を具備する:
   第1積層体11a、
   第2積層体11b、
   第1支持体13a、
   第2支持体13b、および
   傾斜部25、ここで、
   前記第1積層体11aは、第1電極層5a、第1(Bi,Na,Ba)TiO層7a、および第2電極層9aを具備し、
   前記第1(Bi,Na,Ba)TiO層7aが、前記第1電極層5aおよび前記第2電極層9aの間に挟まれるように、前記第1電極層5a、前記第1(Bi,Na,Ba)TiO層7a、および前記第2電極層9aは積層されており、
 前記第1(Bi,Na,Ba)TiO層7aおよび前記第2(Bi,Na,Ba)TiO層7bは、いずれも、[001]結晶軸方向に優先配向し、
  +Z方向は、[011]結晶軸方向に平行であり、
  -Z方向は、前記+Z方向の逆方向であり、
   +X方向は、前記第1積層体11aの長手方向に平行であり、
   -X方向は、前記+X方向の逆方向であり、
   +Y方向は、右手座標系において(a right-handed coordinate system)前記+X方向および前記+Z方向のいずれにも直交し、
   -Y方向は、前記+Y方向の逆方向であり、
   前記第1積層体11aの積層方向は+Z方向に平行であり、
   前記第2積層体11bは、第3電極層5b、第2(Bi,Na,Ba)TiO層7b、および第4電極層9bを具備し、
   前記第2(Bi,Na,Ba)TiO層7bは、+Z方向に沿って、前記第3電極層5bおよび前記第4電極層9bの間に挟まれ、
   前記傾斜部25は、前記X方向に沿って、前記第1積層体11aおよび前記第2積層体11bの間に挟まれており、
   前記傾斜部25は、第1端部25aおよび第2端部25bを具備し、
   第1端部25aおよび第2端部25bは、XY面内において、それぞれ+Y側および-Y側に位置しており、
   前記第1積層体11aの一端は第1支持体13aに固定されており、
   前記第2積層体11bの一端は第2支持体13bに固定されており、
   XY面内において、前記X方向および[100]方向の間に形成される角度Qは、0度より大きくかつ90度未満である。
 B2.前記角度Qが15度以上75度以下である、
項目B1に記載のアクチュエータ。
 B3.前記角度Qが30度以上60度以下である、
項目B1に記載のアクチュエータ。
 B4.第1電極層5aが第3電極層5bに一体的に形成されている、
項目B1に記載のアクチュエータ。
 B5.第1(Bi,Na,Ba)TiO層7aが第2(Bi,Na,Ba)TiO層7bと一体的に形成されている、
項目B1に記載のアクチュエータ。
 B6.第1(Bi,Na,Ba)TiO層7aが(Bi0.5Na)0.5TiO-BaTiOから形成され、かつ
 第2(Bi,Na,Ba)TiO層7bが(Bi0.5Na)0.5TiO-BaTiOから形成されている、
項目B1に記載のアクチュエータ。
 B7.第1(Bi,Na,Ba)TiO層7aが、(1-x)(Bi0.5,Na0.5)TiO)-x(BaTiO)層(0.01≦x≦0.15)および(1-y)[(Bi,Na,Ba)TiO]-yBiFeO層(0.20≦y≦0.50)の積層体から形成されており、かつ
 第2(Bi,Na,Ba)TiO層7bが、(1-x)(Bi0.5,Na0.5)TiO)-x(BaTiO)層(0.01≦x≦0.15)および(1-y)[(Bi,Na,Ba)TiO]-yBiFeO層(0.20≦y≦0.50)の積層体から形成されている、
項目B1に記載のアクチュエータ。
 本発明は、新規なアクチュエータおよびその駆動方法を提供する。
図1Aは、実施形態によるアクチュエータ1の斜視図である。 図1Bは、図1Aの変形例である。 図2は、図1に含まれるA-A’線の断面図である。 図3は、実施形態における座標軸を示す。 図4は、実施形態によるアクチュエータ1を駆動する方法を示す。 図5は、実施形態によるアクチュエータ1の斜視図である。 図6Aは、アクチュエータ1が動作している間の図5に含まれるC1-C1’線の断面図である。 図6Bは、アクチュエータ1が動作している間の図5に含まれるC2-C2’線の断面図である。 図6Cは、アクチュエータ1が動作している間の図5に含まれるC3-C3’線の断面図である。 図7は、実施形態による他のアクチュエータ1の斜視図である。 図8は、実施例1~8および比較例1~2における座標軸を示す。 図9Aは、実施例1によるアクチュエータを作製する方法に含まれる1手順を示す。 図9Bは、図9Aに続き、実施例1によるアクチュエータを作製する方法に含まれる1手順を示す。 図9Cは、図9Bに続き、実施例1によるアクチュエータを作製する方法に含まれる1手順を示す。 図9Dは、図9Cに続き、実施例1によるアクチュエータを作製する方法に含まれる1手順を示す。 図9Eは、図9Dに続き、実施例1によるアクチュエータを作製する方法に含まれる1手順を示す。 図10は、実施例1による圧電体膜のX線回折プロファイルを示す。 図11は、図7に含まれるB-B’線の断面図である。 図12は、比較例3における座標軸を表す。 図13は、特許文献1に開示されたアクチュエータ100の断面図である。
 本発明の実施形態が、図面を参照しながら、以下、説明される。
 (実施形態1)
 (工程(a))
 図1Aは、実施形態1によるアクチュエータ1を示す。このアクチュエータ1は、第1積層体11a、第2積層体11b、第1支持体13a、第2支持体13b、および傾斜部25を具備する。
 図2は、図1Aに含まれるA-A’線の断面図を示す。第1積層体11aは、第1電極層5a、第1(Bi,Na,Ba)TiO層7a、および第2電極層9aをこの順に具備する。第1電極層5aは、基板3上に形成されている。第1(Bi,Na,Ba)TiO層7aおよび第2電極層9aは、第1電極層5a上に、この順で積層されている。
 この第1積層体11aと同様に、第2積層体11bは、第3電極層5b、第2(Bi,Na,Ba)TiO層7b、および第4電極層9bをこの順に具備する。
 第1積層体11aおよび第2積層体11bは、長方形であることが望ましい。後述するが、図1Aに示されるように、第1積層体11aの長手方向は、+X方向に平行である。
 第1(Bi,Na,Ba)TiO層7aおよび第2(Bi,Na,Ba)TiO層7bは、[011]結晶軸方向に優先的に配向している。なお、以下の文章では、「[011]結晶軸方向」を単に「[011]方向」と記載する。望ましくは、第1(Bi,Na,Ba)TiO層7aおよび第2(Bi,Na,Ba)TiO層7bは、[011]方向にのみ配向している。第1(Bi,Na,Ba)TiO層7aおよび第2(Bi,Na,Ba)TiO層7bが、[011]方向以外の方向に配向している場合、アクチュエータ1は動作しない。後述される比較例3を参照せよ。
 (Bi,Na,Ba)TiOは、圧電体として知られている材料である。(Bi,Na,Ba)TiOは、「NBT-BT」または「BNT-BT」と言われる。(Bi,Na,Ba)TiOの代表例は、(Bi0.5,Na0.5)TiO-BaTiOである。より正確には、これは(1-x)(Bi0.5,Na0.5)TiO-x(BaTiO)である。Xは、0.01以上0.15以下の値を表す。
 (Bi,Na,Ba)TiOは、他の金属酸化物を含有し得る。他の金属酸化物の例は、BiFeOである。(Bi,Na,Ba)TiOは、圧電性能を向上させるため、不純物を含有し得る。不純物の例は、銀、ニオブ、タンタルまたはマンガンである。
 第1(Bi,Na,Ba)TiO層7aは、2層以上の(Bi,Na,Ba)TiO層から形成され得る。これらの2層以上の(Bi,Na,Ba)TiO層は、異なる組成を有し得る。例えば、第1(Bi,Na,Ba)TiO層7aは、(1-x)(Bi0.5,Na0.5)TiO)-x(BaTiO)層(0.01≦x≦0.1)および(1-y)[(Bi,Na,Ba)TiO]-yBiFeO層(0.20≦y≦0.50)の積層体から形成され得る。後述される実施例6~8を参照せよ。第1(Bi,Na,Ba)TiO層7aと同様に、第2(Bi,Na,Ba)TiO層7bもまた、2層以上の(Bi,Na,Ba)TiO層から形成され得る。
 第1電極層5aおよび第2電極層5bは、[011]方向に優先配向していることが望ましい。第1電極層5aおよび第2電極層5bは、金属膜または酸化物導電体膜から形成され得る。2層以上の薄膜が用いられ得る。金属膜の材料の例は、白金、パラジウム、または金である。酸化物導電体の材料の例は、酸化ニッケル、酸化ルテニウム、酸化イリジウム、ルテニウム酸ストロンチウム、またはニッケル酸ランタンである。
 第1(Bi,Na,Ba)TiO層7aおよび第2(Bi,Na,Ba)TiO層7bは、マンガンまたは鉄のような少量の不純物を含有し得、その圧電特性を改善する。第1(Bi,Na,Ba)TiO層7aおよび第2(Bi,Na,Ba)TiO層7bは、スパッタリング法により形成され得る。
 図1Aに示されるように、第1電極層5aは、基板3上に第3電極層5bと共に一体的に形成されていることが望ましい。同様に、第1(Bi,Na,Ba)TiO層7aは、第2(Bi,Na,Ba)TiO層7bと共に一体的に形成されていることが望ましい。基板3の材料の例は、酸化マグネシウムまたはチタン酸ストロンチウムであり得る。第1(Bi,Na,Ba)TiO層7aが容易に+Z方向へ優先配向するため、(110)酸化マグネシウム基板が好ましい。
 第2電極層9aおよび第4電極層9bは、電気的に絶縁されている必要がある。これは、後述されるように、第2電極層9aに印加される電圧は、第4電極層9bに印加される電圧とは異なるからである。第2絶縁層9aおよび第4電極層9bの材料の例は、金である。
 第2電極層9aの+X方向に沿った長さは、第4電極層9bの+X方向に沿った長さと等しいことが望ましい。言い換えれば、傾斜部25は、アクチュエータ1の中央に設けられることが望ましい。
 図1Aとは異なり、第1積層体11aおよび第2積層体11bが別個に形成され得る。その後、図1Bに示されるように、第1積層体11aの一端が第2積層体11bの一端にエポキシ樹脂または半田によって接合され得る。
 ここで、本明細書において用いられる3つの方向が以下のように定義される。
 +X方向は、第1積層体11aの長手方向に平行な方向である。
 -X方向は、+X方向の逆方向である。
 +Z方向は、第1積層体11aの積層方向に平行な方向であり、かつ[011]方向に平行である。言い換えれば、第1積層体11aの積層方向は、[011]方向である。
 -Z方向は、+Z方向の逆方向である。
 +Y方向は、+X方向にも+Z方向のいずれにも直交する方向である。
 -Y方向は、+Y方向の逆方向である。
 図1Aに示されるように、傾斜部25は、+X方向に沿って、第1積層体11aおよび第2積層体11bの間に挟まれている。言い換えれば、第1積層体11aおよび第2積層体11bは、+X方向に沿って、傾斜部25がそれらの間に挟まれるように、互いに隣接している。
 傾斜部25の形状は限定されない。傾斜部25は、板状であることが望ましい。図1Aでは、傾斜部25は、第1積層体11aおよび第2積層体11bと同じ幅を有する。ここで、「幅」とは、+Y方向に沿った長さを意味する。しかし、図7に示されるように、傾斜部25は、第1積層体11aよりも大きい幅を有することが望ましい。傾斜部25は、表面にミラー30を有することが望ましい。ミラー30は、光を反射する。
 傾斜部25は、第1端部25aおよび第2端部25bを具備する。XY面内において、第1端部25aは、+Y側に位置する。XY面内において、第2端部25bは、-Y側に位置する。
 第1積層体11aの一端は、第1支持体13aに固定されている。第1支持体13aは板状であることが望ましい。より詳細には、第1積層体11aの+X側の一端が、板状の第1支持体13aの側面にエポキシ樹脂または半田によって固定されている。同様に、第2積層体11bの一端は、第2支持体13aに固定されている。より詳細には、第2積層体11bの-X側の一端が、第2支持体13bの側面に固定されている。
 図3に示されるように、+X方向および[100]方向の間に形成される角度Qは、0度より大きく、90度より小さい。後述される実施例1~5から明らかなように、角度Qは15度以上75度以下であることが好ましい。後述される実施例1~3から明らかなように、角度Qは30度以上60度以下であることがより好ましい。
 角度Qが0度に等しい、すなわち、+X方向が[100]方向に平行である場合には、アクチュエータは駆動しない。後述される比較例1を参照せよ。同様に、角度Qが90度、すなわち、+X方向が[01-1]方向に平行である場合には、アクチュエータは駆動しない。後述される比較例2を参照せよ。
 (工程(b))
 次に、このようなアクチュエータ1を駆動する方法が以下、説明される。
 図4に示されるように、以下の条件Aを充足する電圧V5a、V9a、V5b、およびV9bを、それぞれ第1電極層5a、第2電極層9a、第3電極層5b、および第4電極層9bに印加する。
 条件A:V5a>V9aかつV5b<V9b
 図5、図6A、図6B、図6C、および図11に示されるように、この電圧印加は第1端部25aを-Z方向に移動させ、かつ第2端部25bを+Z方向に移動させる。このようにして、アクチュエータ1は捻られる。言い換えれば、傾斜部25は傾けられる。傾斜角は角度Pとして定義される。図11を参照せよ。電源(図示せず)が、この電圧印加のために用いられ得る。
 図5、図6A、図6B、および図6Cが以下、より詳細に説明される。図6A、図6B、および図6Cは、それぞれ、図5に含まれるC1-C1’線の断面図、C2-C2’線の断面図、およびC3-C3’線の断面図を示す。図11は、図7に含まれるB-B’線の断面図を示す。
 電圧が印加されると、図6Aに示されるように、第1積層体11aおよび第2積層体11bの+Y側の端部が-Z方向に移動する。このようにして、第1端部25aは、-Z方向に移動する。一方、電圧が印加されると、図6Cに示されるように、第1積層体11aおよび第2積層体11bの-Y側の端部が-Z方向に移動する。このようにして、第2端部25aは、+Z方向に移動する。図11も参照せよ。
 第1電極層5aおよび第3電極層5bは一体的に形成されていることが望ましいため、電圧V5aの値は電圧V5bの値に等しいことが望ましい。より望ましくは、電圧V5aおよび電圧V5bの値はいずれも0ボルトである。
 (V5a-V9a)の値は、30ボルト以下であることが望ましい。言い換えれば、望ましくは、電圧V9aの値は、0ボルト未満-30ボルト以上である。同様に、(V9b-V5b)の値も、30ボルト以下であることが望ましい。言い換えれば、望ましくは、電圧V9bの値は、0ボルトを超えて30ボルト以下である。望ましくは、電圧V9aの値は、電圧V9bの値に等しい。従って、望ましい条件Aは、V9b>V5a=V5b=0ボルト>V9aである。
 条件Aに代えて、以下の条件Bを充足する電圧V5a、V9a、V5b、およびV9bを、それぞれ第1電極層5a、第2電極層9a、第3電極層5b、および第4電極層9bに印加する。
 条件B:V5a<V9aかつV5b>V9b
 この電圧印加は、第1端部25aを+Z方向に移動させ、かつ第2端部25bを-Z方向に移動させる。このようにして、アクチュエータ1は捻られる。言い換えれば、傾斜部25は傾けられる。図11も参照せよ。
 電圧が印加されなくなると、アクチュエータ1は元に戻る。言い換えれば、傾斜角Pは0度に戻る。
 (実施例)
 以下の実施例は、本発明をより詳細に説明する。
 (実施例1)
 実施例1では、図7に示されるアクチュエータ1が作製された。実施例1では、角度Qは45度に設定された。
 第1積層体11aは、8ミリメートルのX方向の長さ、2ミリメートルのY方向の長さを有していた。基板3は、50マイクロメートルの厚みを有するMgO単結晶基板であった。傾斜部25は、2ミリメートルのX方向の長さ、および4ミリメートルのY方向の長さを有していた。
 図9A~図9Eに示される手順に従って、アクチュエータ1が作製された。
 MgO単結晶基板3が用意された。このMgO単結晶基板3は、表面の法線が[011]方向のみを有し、他の軸方向を有していなかった。MgO単結晶基板3は、0.5ミリメートルの厚みを有していた。
 このMgO単結晶基板3の表面に、RFマグネトロンスパッタリング法により、白金からなる第1電極層5aおよび第3電極層5bが一体的に形成された。第1電極層5aおよび第3電極層5bは、[011]軸方向を有していた。言い換え得れば、第1電極層5aおよび第3電極層5bの法線方向は[011]方向であった。第1電極層5aおよび第3電極層5bは、250ナノメートル厚みを有していた。
 RFマグネトロンスパッタリング法の条件は以下に記述される。
  ターゲット:金属白金
  雰囲気:アルゴンガス
  RF出力:15W
  基板温度:摂氏300度
 次に、2.7マイクロメートルの厚みを有する(Bi,Na,Ba)TiO層が、RFマグネトロンスパッタリング法により、第1電極層5aおよび第3電極層5bの表面に堆積され、第1(Bi,Na,Ba)TiO層7aおよび第2(Bi,Na,Ba)TiO層7bを一体的に形成した。
 RFマグネトロンスパッタリング法の条件は以下に記述される。
  ターゲット:上記の組成物
  雰囲気:アルゴンおよび酸素の混合ガス(Ar/O流量比:50/50)
  RF出力:170W
  基板温度:摂氏650度
 第1(Bi,Na,Ba)TiO層7aおよび第2(Bi,Na,Ba)TiO層7bの結晶構造が、X線回折法により解析された。図10は、X線回折プロファイルの結果を示す。
 反射ピークの強度は、255,956cpsという非常に高い値であった。図10に示されるプロファイルは、実施例1による第1(Bi,Na,Ba)TiO層7aおよび第2(Bi,Na,Ba)TiO層7bが、[011]方向に配向、すなわち+Z方向に強く配向していたことを意味する。
 次に、マスク層71が、第1(Bi,Na,Ba)TiO層7aおよび第2(Bi,Na,Ba)TiO層7bの表面に形成された。マスク層71はRFマグネトロンスパッタリング法により形成された。マスク層71は、0.3マイクロメートルの厚みを有するクロム層から形成された。
 RFマグネトロンスパッタリング法の条件は以下に記述される。
  ターゲット: 金属クロム
  雰囲気: アルゴンガス
  RF出力: 150W
  基板温度:室温
 マスク層71の上にレジストを塗布し、露光および現像を経てレジストパターン73を形成する。図9Aを参照せよ。
 レジストパターン73をマスクとして用いて、マスク層71がドライエッチングされた。
 ドライエッチングの条件は以下に記述される。
  エッチングガス:塩素および酸素の混合ガス(Cl/O流量比:40/20)
  RF出力:600W
  バイアス出力:100W
 レジストパターン73は、酸素プラズマによるアッシング処理により除去された。その後、図9Bに示されるように、マスクパターン75が形成された。図8に示されるように、角度Qは45度に設定された。
 このマスクパターン75を用いて、第1(Bi,Na,Ba)TiO層7aおよび第2(Bi,Na,Ba)TiO層7bの不要な部分がドライエッチングされた。
 ドライエッチングの条件は以下に記述される。
  エッチングガス:四フッ化メタンおよびアルゴンの混合ガス(CF/Ar流量比:30/70)
  RF出力:1000W
  バイアス出力:100W
 次に、再度マスクパターン75を用いて、第1電極層5aおよび第3電極層5bの不要な部分をドライエッチングした。
  ドライエッチングの条件は以下に記述される。
  エッチングガス:アルゴン
  RF出力:800W
  バイアス出力:100W
 マスクパターン75が、硝酸第2セリウムアンモニウム(diammonium cerium(IV) nitrate)を用いるウェットエッチングにより除去された。
 図9Cに示されるように、レジスト膜77がMgO単結晶基板3の裏面に形成された。
 図9Dに示されるように、MgO単結晶基板3が、熱リン酸を用いてウェットエッチングされた。その後、レジスト膜77は、酸素プラズマを用いるアッシング処理によって除去された。
 最後に、図9Eに示されるように、第2電極層9aおよび第4電極層9bが、それぞれ、第1(Bi,Na,Ba)TiO層7aおよび第2(Bi,Na,Ba)TiO層7bの表側の面に、蒸着法により、シャドウマスク(図示せず)を用いて形成された。第2電極層9aおよび第4電極層9bは、100ナノメートルの厚みを有する金膜から形成された。同様に、ミラー30が傾斜部25に形成された。このミラー30もまた、100ナノメートルの厚みを有する金膜から形成された。このようにして、アクチュエータ1が作製された。
 このようにして得られたアクチュエータ1は、以下のように駆動された。
 まず、レーザ光が傾斜部25に照射された。このレーザ光は、ミラー30によって反射された。反射光は、アクチュエータ1から離して配置されたスクリーンに投射された。
 次に、第1電極層5a、第2電極層9a、第3電極層5b、および第4電極層9bに、表1に示される電圧が印加され、傾斜部25を傾斜させた。傾斜角Pが、スクリーンに投射された反射光の移動距離に基づいて算出された。
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、傾斜部25が傾斜した。
 (実施例2)
 角度Qが30度に設定されたことを除き、実施例1によるアクチュエータと同様のアクチュエータが作製された。実施例1と同様に、0ボルト、-30ボルト、0ボルト、および+30ボルトの電圧が、それぞれ、第1電極層5a、第2電極層9a、第3電極層5b、および第4電極層9bに印加され、傾斜部25を傾斜させた。傾斜角Pは表2に示される。
 (実施例3)
 角度Qが15度に設定されたことを除き、実施例1によるアクチュエータと同様のアクチュエータが作製された。実施例1と同様に、0ボルト、-30ボルト、0ボルト、および+30ボルトの電圧が、それぞれ、第1電極層5a、第2電極層9a、第3電極層5b、および第4電極層9bに印加され、傾斜部25を傾斜させた。傾斜角Pは表2に示される。
 (実施例4)
 角度Qが60度に設定されたことを除き、実施例1によるアクチュエータと同様のアクチュエータが作製された。実施例1と同様に、0ボルト、-30ボルト、0ボルト、および+30ボルトの電圧が、それぞれ、第1電極層5a、第2電極層9a、第3電極層5b、および第4電極層9bに印加され、傾斜部25を傾斜させた。傾斜角Pは表2に示される。
 (実施例5)
 角度Qが75度に設定されたことを除き、実施例1によるアクチュエータと同様のアクチュエータが作製された。実施例1と同様に、0ボルト、-30ボルト、0ボルト、および+30ボルトの電圧が、それぞれ、第1電極層5a、第2電極層9a、第3電極層5b、および第4電極層9bに印加され、傾斜部25を傾斜させた。傾斜角Pは表2に示される。
 (比較例1)
 角度Qが0度に設定されたことを除き、実施例1によるアクチュエータと同様のアクチュエータが作製された。実施例1と同様に、0ボルト、-30ボルト、0ボルト、および+30ボルトの電圧が、それぞれ、第1電極層5a、第2電極層9a、第3電極層5b、および第4電極層9bに印加され、傾斜部25を傾斜させた。傾斜角Pは表2に示される。
 (比較例2)
 角度Qが90度に設定されたことを除き、実施例1によるアクチュエータと同様のアクチュエータが作製された。実施例1と同様に、0ボルト、-30ボルト、0ボルト、および+30ボルトの電圧が、それぞれ、第1電極層5a、第2電極層9a、第3電極層5b、および第4電極層9bに印加され、傾斜部25を傾斜させた。傾斜角Pは表2に示される。
 (比較例3)
 +Z方向が[001]方向であることを除き、実施例1によるアクチュエータと同様のアクチュエータが作製された。図12は、比較例3における座標軸を示す。比較例3では、角度Qは45度に設定された。実施例1と同様に、0ボルト、-30ボルト、0ボルト、および+30ボルトの電圧が、それぞれ、第1電極層5a、第2電極層9a、第3電極層5b、および第4電極層9bに印加され、傾斜部25を傾斜させた。傾斜角Pは表2に示される。
Figure JPOXMLDOC01-appb-T000002
 表2から明らかなように、角度Qは0度を超え、かつ90度未満であることが必要である。角度Qは15度以上75度以下が好ましい。角度Qは、30度以上60度以下がより好ましい。
 比較例3から明らかなように、(Bi,Na、Ba)TiO層は[011]方向に優先配向することが必要である。(Bi,Na、Ba)TiO層は[011]方向にのみ配向することがより好ましい。
 (実施例6)
 第1(Bi,Na,Ba)TiO層7aおよび第2(Bi,Na,Ba)TiO層7bが、(Bi,Na,Ba)TiO層および(1-y)[(Bi,Na,Ba)TiO]-yBiFeO層の積層体に置換されたことを除き、実施例1によるアクチュエータと同様のアクチュエータが作製された。実施例1と同様に、0ボルト、-30ボルト、0ボルト、および+30ボルトの電圧が、それぞれ、第1電極層5a、第2電極層9a、第3電極層5b、および第4電極層9bに印加され、傾斜部25を傾斜させた。傾斜角Pは表3に示される。
 (Bi,Na,Ba)TiO層および(1-y)[(Bi,Na,Ba)TiO]-yBiFeO層は、以下のように形成された。
 まず、(Bi,Na,Ba)TiO層が、第1電極層5aおよび第3電極層5bの表面に、RFマグネトロンスパッタリング法により堆積された。この(Bi,Na,Ba)TiO層は、1.35マイクロメートルの厚みを有していた。
 RFマグネトロンスパッタリング法の条件は以下に記述される。
  ターゲット:上記の組成物
  雰囲気:アルゴンと酸素との混合ガス(Ar/O流量比:50/50)
  RF出力:170W
  基板温度:摂氏650度
 次に、(1-y)[(Bi,Na,Ba)TiO]-yBiFeO(y=0.3)層が、(Bi,Na,Ba)TiO層の表面に、RFマグネトロンスパッタリング法により堆積された。この(1-y)[(Bi,Na,Ba)TiO]-yBiFeO(y=0.3)層は、1.35マイクロメートルの厚みを有していた。
 RFマグネトロンスパッタリング法の条件は以下に記述される。
  ターゲット:上記の組成物。
  雰囲気:アルゴンと酸素との混合ガス(Ar/Oの流量比:50/50)
  RF出力:170W
  基板温度:摂氏650度
 (実施例7)
 (Bi,Na,Ba)TiO層が1.6マイクロメートルの厚みを有し、かつ(1-y)[(Bi,Na,Ba)TiO]-yBiFeO(y=0.3)層が1.1マイクロメートルの厚みを有していたことを除き、実施例6によるアクチュエータと同様のアクチュエータが作製された。実施例1と同様に、0ボルト、-30ボルト、0ボルト、および+30ボルトの電圧が、それぞれ、第1電極層5a、第2電極層9a、第3電極層5b、および第4電極層9bに印加され、傾斜部25を傾斜させた。傾斜角Pは表3に示される。
 (実施例8)
 (Bi,Na,Ba)TiO層が1.1マイクロメートルの厚みを有し、かつ(1-y)[(Bi,Na,Ba)TiO]-yBiFeO(y=0.3)層が1.6マイクロメートルの厚みを有していたことを除き、実施例6によるアクチュエータと同様のアクチュエータが作製された。実施例1と同様に、0ボルト、-30ボルト、0ボルト、および+30ボルトの電圧が、それぞれ、第1電極層5a、第2電極層9a、第3電極層5b、および第4電極層9bに印加され、傾斜部25を傾斜させた。傾斜角Pは表3に示される。
Figure JPOXMLDOC01-appb-T000003
 実施形態によるアクチュエータは、レーザスキャナに用いられ得る。
 1  アクチュエータ
 5a  第1電極層
 5b  第3電極層
 7a  第1(Bi,Na,Ba)TiO
 7b  第2(Bi,Na,Ba)TiO
 9a  第2電極層
 9b  第4電極層
 11a  第1積層体
 11b  第2積層体
 13a  第1支持体
 13b  第2支持体
 25  傾斜部
 25a  第1端部
 25b  第2端部
 Q  [100]方向および第1積層体11aの長手方向、すなわち、+X方向の間に形成される角度
 P  傾斜角

Claims (19)

  1.  アクチュエータ1を駆動する方法であって、以下の工程を具備する:
     以下を具備する前記アクチュエータ1を用意する工程(a)、
       第1積層体、
       第2積層体、
       第1支持体、
       第2支持体、および
       傾斜部、ここで、
       前記第1積層体は、第1電極層、第1(Bi,Na,Ba)TiO層、および第2電極層を具備し、
       前記第1(Bi,Na,Ba)TiO層が、前記第1電極層および前記第2電極層の間に挟まれるように、前記第1電極層、前記第1(Bi,Na,Ba)TiO層、および前記第2電極層は積層されており、
     前記第1(Bi,Na,Ba)TiO層および前記第2(Bi,Na,Ba)TiO層は、いずれも、[001]結晶軸方向に優先配向し、
      +Z方向は、[011]結晶軸方向に平行であり、
      -Z方向は、前記+Z方向の逆方向であり、
       +X方向は、前記第1積層体の長手方向に平行であり、
       -X方向は、前記+X方向の逆方向であり、
       +Y方向は、右手座標系において前記+X方向および前記+Z方向のいずれにも直交し、
       -Y方向は、前記+Y方向の逆方向であり、
       前記第1積層体の積層方向は+Z方向に平行であり、
       前記第2積層体は、第3電極層、第2(Bi,Na,Ba)TiO層、および第4電極層を具備し、
       前記第2(Bi,Na,Ba)TiO層は、+Z方向に沿って、前記第3電極層および前記第4電極層の間に挟まれ、
       前記傾斜部は、前記X方向に沿って、前記第1積層体および前記第2積層体の間に挟まれており、
       前記傾斜部は、第1端部および第2端部を具備し、
       第1端部および第2端部は、XY面内において、それぞれ+Y側および-Y側に位置しており、
       前記第1積層体の一端は第1支持体に固定されており、
       前記第2積層体の一端は第2支持体に固定されており、
       XY面内において、前記X方向および[100]方向の間に形成される角度Qは、0度より大きくかつ90度未満であり、そして
     以下の条件Aまたは条件Bを充足する電圧V5a、V9a、V5b、およびV9bを、それぞれ第1電極層、第2電極層、第3電極層、および第4電極層に印加し、前記第1端部および前記第2端部の一方が+Z方向に、他方が-Z方向に移動するように前記傾斜部を傾ける工程(b)
     条件A:V5a>V9aかつV5b<V9b
     条件B:V5a<V9aかつV5b>V9b。
  2.  工程(b)において、前記条件Aが充足され、
     前記第1端部が-Z方向に、第2端部が+Z方向に移動する、
    請求項1に記載の方法。
  3.  工程(b)において、前記条件Bが充足され、
     前記第1端部が+Z方向に、第2端部が-Z方向に移動する。
    請求項1に記載の方法。
  4.  前記角度Qが15度以上75度以下である、
    請求項1に記載の方法。
  5.  前記角度Qが30度以上60度以下である、
    請求項1に記載の方法。
  6.  第1電極層が第3電極層に一体的に形成されている、
    請求項1に記載の方法。
  7.  第1(Bi,Na,Ba)TiO層が第2(Bi,Na,Ba)TiO層と一体的に形成されている、
    請求項1に記載の方法。
  8.  第1(Bi,Na,Ba)TiO層が(Bi0.5Na)0.5TiO-BaTiOから形成され、かつ
     第2(Bi,Na,Ba)TiO層が(Bi0.5Na)0.5TiO-BaTiOから形成されている、
    請求項1に記載の方法。
  9.  第1(Bi,Na,Ba)TiO層が、(1-x)(Bi0.5,Na0.5)TiO)-x(BaTiO)層(0.01≦x≦0.15)および(1-y)[(Bi,Na,Ba)TiO]-yBiFeO層(0.20≦y≦0.50)の積層体から形成されており、かつ
     第2(Bi,Na,Ba)TiO層が、(1-x)(Bi0.5,Na0.5)TiO)-x(BaTiO)層(0.01≦x≦0.15)および(1-y)[(Bi,Na,Ba)TiO]-yBiFeO層(0.20≦y≦0.50)の積層体から形成されている、
    請求項1に記載の方法。
  10. アクチュエータであって、以下を具備する:
       第1積層体、
       第2積層体、
       第1支持体、
       第2支持体、および
       傾斜部、ここで、
       前記第1積層体は、第1電極層、第1(Bi,Na,Ba)TiO層、および第2電極層を具備し、
       前記第1(Bi,Na,Ba)TiO層が、前記第1電極層および前記第2電極層の間に挟まれるように、前記第1電極層、前記第1(Bi,Na,Ba)TiO層、および前記第2電極層は積層されており、
     前記第1(Bi,Na,Ba)TiO層および前記第2(Bi,Na,Ba)TiO層は、いずれも、[001]結晶軸方向に優先配向し、
      +Z方向は、[011]結晶軸方向に平行であり、
      -Z方向は、前記+Z方向の逆方向であり、
       +X方向は、前記第1積層体の長手方向に平行であり、
       -X方向は、前記+X方向の逆方向であり、
       +Y方向は、右手座標系において前記+X方向および前記+Z方向のいずれにも直交し、
       -Y方向は、前記+Y方向の逆方向であり、
       前記第1積層体の積層方向は+Z方向に平行であり、
       前記第2積層体は、第3電極層、第2(Bi,Na,Ba)TiO層、および第4電極層を具備し、
       前記第2(Bi,Na,Ba)TiO層は、+Z方向に沿って、前記第3電極層および前記第4電極層の間に挟まれ、
       前記傾斜部は、前記X方向に沿って、前記第1積層体および前記第2積層体の間に挟まれており、
       前記傾斜部は、第1端部および第2端部を具備し、
       第1端部および第2端部は、XY面内において、それぞれ+Y側および-Y側に位置しており、
       前記第1積層体の一端は第1支持体に固定されており、
       前記第2積層体の一端は第2支持体に固定されており、
       XY面内において、前記X方向および[100]方向の間に形成される角度Qは、0度より大きくかつ90度未満である。
  11.  前記角度Qが15度以上75度以下である、
    請求項10に記載のアクチュエータ。
  12.  前記角度Qが30度以上60度以下である、
    請求項10に記載のアクチュエータ。
  13.  第1電極層が第3電極層に一体的に形成されている、
    請求項10に記載のアクチュエータ。
  14.  第1(Bi,Na,Ba)TiO層が第2(Bi,Na,Ba)TiO層と一体的に形成されている、
    請求項10に記載のアクチュエータ。
  15.  第1(Bi,Na,Ba)TiO層が(Bi0.5Na)0.5TiO-BaTiOから形成され、かつ
     第2(Bi,Na,Ba)TiO層が(Bi0.5Na)0.5TiO-BaTiOから形成されている、
    請求項10に記載のアクチュエータ。
  16.  第1(Bi,Na,Ba)TiO層が、(1-x)(Bi0.5,Na0.5)TiO)-x(BaTiO)層(0.01≦x≦0.15)および(1-y)[(Bi,Na,Ba)TiO]-yBiFeO層(0.20≦y≦0.50)の積層体から形成されており、かつ
     第2(Bi,Na,Ba)TiO層が、(1-x)(Bi0.5,Na0.5)TiO)-x(BaTiO)層(0.01≦x≦0.15)および(1-y)[(Bi,Na,Ba)TiO]-yBiFeO層(0.20≦y≦0.50)の積層体から形成されている、
    請求項10に記載のアクチュエータ。
  17.  以下の条件Aまたは条件Bを充足する電圧V5a、V9a、V5b、およびV9bを、それぞれ第1電極層、第2電極層、第3電極層、および第4電極層に印加した時に、前記第1端部および前記第2端部の一方が+Z方向に、他方が-Z方向に移動するように前記傾斜部が傾く、請求項10に記載のアクチュエータ。
     条件A:V5a>V9aかつV5b<V9b
     条件B:V5a<V9aかつV5b>V9b。
  18.  前記条件Aが充足され、かつ前記第1端部が-Z方向に、第2端部が+Z方向に移動する、請求項17に記載のアクチュエータ。
  19.  前記条件Bが充足され、かつ前記第1端部が+Z方向に、第2端部が-Z方向に移動する、請求項17に記載のアクチュエータ。
PCT/JP2013/000075 2012-01-13 2013-01-11 アクチュエータおよびその駆動方法 WO2013105507A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013527217A JP5397573B1 (ja) 2012-01-13 2013-01-11 アクチュエータおよびその駆動方法
US13/962,448 US9391260B2 (en) 2012-01-13 2013-08-08 Actuator and method for driving the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-004997 2012-01-13
JP2012004997 2012-01-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/962,448 Continuation US9391260B2 (en) 2012-01-13 2013-08-08 Actuator and method for driving the same

Publications (1)

Publication Number Publication Date
WO2013105507A1 true WO2013105507A1 (ja) 2013-07-18

Family

ID=48781456

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/000075 WO2013105507A1 (ja) 2012-01-13 2013-01-11 アクチュエータおよびその駆動方法

Country Status (3)

Country Link
US (1) US9391260B2 (ja)
JP (1) JP5397573B1 (ja)
WO (1) WO2013105507A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017141529A1 (ja) * 2016-02-17 2018-02-22 三菱電機株式会社 ミラー駆動装置およびその製造方法
JP2020102539A (ja) * 2018-12-21 2020-07-02 Tdk株式会社 圧電組成物及び圧電素子

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220059753A1 (en) * 2018-09-12 2022-02-24 Tdk Corporation Dielectric thin film, dielectric thin film element, piezoelectric actuator, piezoelectric sensor, head assembly, head stack assembly, hard disk drive, printer head and inkjet printer device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0458769A (ja) * 1990-06-26 1992-02-25 Toshiba Corp 圧電回転微動装置
JPH0697527A (ja) * 1992-09-17 1994-04-08 Yasuyoshi Nakamura ねじり変位デバイス
JPH11261127A (ja) * 1998-03-10 1999-09-24 Matsushita Electric Ind Co Ltd 圧電部品、圧電センサおよび圧電アクチュエータ、ならびにインクジェットプリンタヘッド
JP2000232331A (ja) * 1999-02-10 2000-08-22 Univ Tohoku KNbO3圧電素子
JP2004253762A (ja) * 2002-12-24 2004-09-09 Kyocera Corp 圧電トランス
JP2005506829A (ja) * 2001-10-22 2005-03-03 クレアホリック・ソシエテ・アノニム 圧電駆動装置
JP2005139064A (ja) * 2003-10-14 2005-06-02 Jfe Mineral Co Ltd 圧電単結晶、圧電単結晶素子およびその製造方法ならびに1−3コンポジット圧電素子
JP2008004781A (ja) * 2006-06-23 2008-01-10 Fujifilm Corp 圧電膜、圧電素子、インクジェット式記録ヘッド、及びインクジェット式記録装置
JP2008187881A (ja) * 2007-01-31 2008-08-14 Seiko Epson Corp アクチュエータ、アクチュエータの製造方法、光スキャナおよび画像形成装置
JP2009142046A (ja) * 2007-12-05 2009-06-25 Seiko Epson Corp アクチュエータおよび画像形成装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2842685A (en) * 1955-12-23 1958-07-08 Gulton Ind Inc Bender tuned array
JP2003142479A (ja) * 2001-11-02 2003-05-16 Fujitsu Ltd 半導体装置、エピタキシャル膜の製造方法、およびレーザアブレーション装置
EP1679393B1 (en) 2003-10-14 2011-12-28 JFE Mineral Company, Ltd. Piezoelectric single crystal, piezoelectric single crystal element and method for preparation thereof
JP5252687B2 (ja) 2008-01-18 2013-07-31 スタンレー電気株式会社 光偏向器
JP4767369B1 (ja) * 2010-01-07 2011-09-07 パナソニック株式会社 圧電発電素子および圧電発電素子を用いた発電方法
CN102639431B (zh) * 2010-08-23 2014-11-05 松下电器产业株式会社 致动器和驱动致动器的方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0458769A (ja) * 1990-06-26 1992-02-25 Toshiba Corp 圧電回転微動装置
JPH0697527A (ja) * 1992-09-17 1994-04-08 Yasuyoshi Nakamura ねじり変位デバイス
JPH11261127A (ja) * 1998-03-10 1999-09-24 Matsushita Electric Ind Co Ltd 圧電部品、圧電センサおよび圧電アクチュエータ、ならびにインクジェットプリンタヘッド
JP2000232331A (ja) * 1999-02-10 2000-08-22 Univ Tohoku KNbO3圧電素子
JP2005506829A (ja) * 2001-10-22 2005-03-03 クレアホリック・ソシエテ・アノニム 圧電駆動装置
JP2004253762A (ja) * 2002-12-24 2004-09-09 Kyocera Corp 圧電トランス
JP2005139064A (ja) * 2003-10-14 2005-06-02 Jfe Mineral Co Ltd 圧電単結晶、圧電単結晶素子およびその製造方法ならびに1−3コンポジット圧電素子
JP2008004781A (ja) * 2006-06-23 2008-01-10 Fujifilm Corp 圧電膜、圧電素子、インクジェット式記録ヘッド、及びインクジェット式記録装置
JP2008187881A (ja) * 2007-01-31 2008-08-14 Seiko Epson Corp アクチュエータ、アクチュエータの製造方法、光スキャナおよび画像形成装置
JP2009142046A (ja) * 2007-12-05 2009-06-25 Seiko Epson Corp アクチュエータおよび画像形成装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017141529A1 (ja) * 2016-02-17 2018-02-22 三菱電機株式会社 ミラー駆動装置およびその製造方法
US10852529B2 (en) 2016-02-17 2020-12-01 Mitsubishi Electric Corporation Mirror driving apparatus and method for manufacturing thereof
JP2020102539A (ja) * 2018-12-21 2020-07-02 Tdk株式会社 圧電組成物及び圧電素子
JP7167700B2 (ja) 2018-12-21 2022-11-09 Tdk株式会社 圧電組成物及び圧電素子

Also Published As

Publication number Publication date
JPWO2013105507A1 (ja) 2015-05-11
JP5397573B1 (ja) 2014-01-22
US20130320806A1 (en) 2013-12-05
US9391260B2 (en) 2016-07-12

Similar Documents

Publication Publication Date Title
WO2016111280A1 (ja) 圧電薄膜及び圧電振動子
WO2015033791A1 (ja) 圧電薄膜素子及びその製造方法
JP2020123664A (ja) 積層型圧電素子
WO2013105507A1 (ja) アクチュエータおよびその駆動方法
JP2006330178A (ja) 光学装置及び光学装置の製造方法
JP6922128B2 (ja) 薄膜キャパシター及びその製造方法
JP6202202B2 (ja) 圧電薄膜、圧電薄膜素子及びターゲット並びに圧電薄膜及び圧電薄膜素子の製造方法
US8217555B2 (en) Actuator and method for driving actuator
JP6647399B2 (ja) 導電性フィルム、電子ペーパー、タッチパネル、及びフラットパネルディスプレイ
TW434626B (en) Cold cathode field emission device and cold cathode field emission display
JP2006295142A (ja) 圧電素子
JP6910631B2 (ja) 膜構造体及びその製造方法
JP2019533197A (ja) Euv放射を反射する多層膜ミラーおよびその製造方法
JP2002043643A (ja) 薄膜圧電素子
JP2010034206A (ja) 圧電素子及び圧電素子の製造方法
JP2006332368A (ja) 圧電薄膜素子及びその製造方法
JP2003197992A (ja) 積層型圧電体及びその製造方法
JP6973745B2 (ja) Pzt薄膜積層体の製造方法
JP2014504029A (ja) 電気積層素子
KR100807316B1 (ko) 전류-전압 발생용 적층형 압전소자의 구조
JP3334651B2 (ja) 圧電トランス及びその製造方法
CN110869818B (zh) 防尘透镜及其制造方法
JPH0888419A (ja) マイクロアクチュエータおよびその製造方法
WO2020045095A1 (ja) 第1段階セラミック集合基板、第2段階セラミック集合基板、第2段階セラミック集合基板の製造方法、および、積層電子部品の製造方法
JP2018022768A (ja) 圧電素子

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013527217

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13735705

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 13735705

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE