WO2013105302A1 - 光ファイバの製造方法および製造装置並びに光ファイバ - Google Patents

光ファイバの製造方法および製造装置並びに光ファイバ Download PDF

Info

Publication number
WO2013105302A1
WO2013105302A1 PCT/JP2012/072904 JP2012072904W WO2013105302A1 WO 2013105302 A1 WO2013105302 A1 WO 2013105302A1 JP 2012072904 W JP2012072904 W JP 2012072904W WO 2013105302 A1 WO2013105302 A1 WO 2013105302A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
core tube
insulating material
glass
glass fiber
Prior art date
Application number
PCT/JP2012/072904
Other languages
English (en)
French (fr)
Inventor
榎本 正
巌 岡崎
山崎 卓
正敏 早川
学 塩崎
憲博 上ノ山
古庄 勝
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to US14/345,699 priority Critical patent/US9475722B2/en
Priority to EP13736334.7A priority patent/EP2803643B1/en
Priority to RU2014132870A priority patent/RU2612176C2/ru
Priority to PCT/JP2013/050218 priority patent/WO2013105579A1/ja
Priority to JP2013553299A priority patent/JP5907177B2/ja
Priority to KR1020147018607A priority patent/KR20140121397A/ko
Priority to CN201380005190.XA priority patent/CN104039724B/zh
Publication of WO2013105302A1 publication Critical patent/WO2013105302A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/029Furnaces therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01225Means for changing or stabilising the shape, e.g. diameter, of tubes or rods in general, e.g. collapsing
    • C03B37/0124Means for reducing the diameter of rods or tubes by drawing, e.g. for preform draw-down
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/0253Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/027Fibres composed of different sorts of glass, e.g. glass optical fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/027Fibres composed of different sorts of glass, e.g. glass optical fibres
    • C03B37/02718Thermal treatment of the fibre during the drawing process, e.g. cooling
    • C03B37/02727Annealing or re-heating
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/30Means for continuous drawing from a preform
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/40Monitoring or regulating the draw tension or draw rate
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/56Annealing or re-heating the drawn fibre prior to coating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/60Optical fibre draw furnaces
    • C03B2205/62Heating means for drawing
    • C03B2205/63Ohmic resistance heaters, e.g. carbon or graphite resistance heaters
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/60Optical fibre draw furnaces
    • C03B2205/70Draw furnace insulation
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/60Optical fibre draw furnaces
    • C03B2205/82Means for sealing the fibre exit or lower end of the furnace
    • C03B2205/83Means for sealing the fibre exit or lower end of the furnace using gas
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/60Optical fibre draw furnaces
    • C03B2205/90Manipulating the gas flow through the furnace other than by use of upper or lower seals, e.g. by modification of the core tube shape or by using baffles
    • C03B2205/92Manipulating the gas flow through the furnace other than by use of upper or lower seals, e.g. by modification of the core tube shape or by using baffles using means for gradually reducing the cross-section towards the outlet or around the preform draw end, e.g. tapered
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12166Manufacturing methods
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • the present invention relates to an optical fiber manufacturing method and apparatus for drawing an optical fiber while heating and melting a glass preform for optical fiber, and an optical fiber obtained thereby.
  • An optical fiber is manufactured by heating and melting a glass base material for optical fiber (hereinafter referred to as a glass base material) using a dedicated drawing furnace, drawing the glass fiber, and applying a protective coating to the outer surface thereof.
  • a furnace core tube into which a glass base material is inserted is disposed in a furnace casing, the core tube is heated by a heating device disposed outside the core tube, and glass fiber is heated from the lower end of the heated and melted glass base material. Is suspended and pulled out from the lower outlet of the core tube.
  • heat-resistant carbon is usually used.
  • the core tube includes argon (Ar), helium (He), nitrogen (N 2 ), etc. Of inert gas.
  • the inert gas sent into the core tube flows in a downward direction from the upper side of the core tube. In that case, together with the glass fiber drawn from the glass base material, the inert gas flows from the lower side to the outside. Released.
  • the space around the neckdown of the glass preform becomes larger, and the temperature distribution of the gas flowing through this space becomes uneven. Tends to grow.
  • problems such as increased connection loss at the time of connector connection occur. For this reason, a method of suppressing the diameter variation of the glass fiber by using He gas having good thermal conductivity as the inert gas and making the temperature distribution uniform is used.
  • a protective tube also referred to as a lower chimney or a lower extension tube
  • the glass fiber immediately after drawing is isolated from the outside air to suppress the diameter fluctuation of the glass fiber due to the disturbance of the outside air.
  • the glass fiber is rapidly cooled when He gas is used in the protective tube.
  • the glass fiber that has been heated and melted is distorted due to the vibration of atoms and molecules in the glass due to its thermal energy, and the atoms and molecules that are in a messy state are rearranged in the process of cooling the glass.
  • the structure relaxation proceeds, and is frozen and solidified in equilibrium at a predetermined temperature.
  • Equilibrium temperature which is an indicator of glass structure randomness, is also called virtual temperature.When glass is cooled slowly, the disordered state of atoms and molecules in the glass is relatively relaxed, and the virtual temperature is lowered to the low temperature side. Moving.
  • the glass when the glass is rapidly cooled, the rearrangement of atoms and molecules in the glass is frozen and solidified in a disordered state, and the virtual temperature moves to the high temperature side.
  • He when He is used, the glass fiber in the heated and melted state immediately after drawing is quenched in the protective tube by the He gas having good thermal conductivity, so that atoms and molecules in the glass are frozen in a messy state. Therefore, it is said that the fictive temperature is high, the Rayleigh scattering intensity of the optical fiber cannot be reduced, and the transmission loss increases.
  • Patent Document 1 a gas mixed layer in which a gas having low thermal conductivity is mixed with He gas is provided between the vicinity of the outlet of the core tube and the protective tube, and glass is provided. Suppressing rapid cooling of the fiber is disclosed.
  • Patent Document 2 discloses that a drawn glass fiber is introduced into a slow cooling part, and the glass fiber is slowly cooled by heating at room temperature or with Ar gas for temperature adjustment.
  • Patent Document 3 when a glass fiber is drawn from a glass base material, heat treatment (slow cooling) is performed to bring the fictive temperature to a predetermined range, and the residual stress (tensile stress) of the glass fiber is set inside the cladding layer. It is disclosed that the transmission loss is reduced by reducing the radial distribution difference by reducing the distance from the outside to the outside.
  • optical fibers Single-mode optical fibers
  • optical connectors are frequently used for connecting optical fibers, and the use of multi-fiber optical connectors is increasing.
  • the optical fiber is attached to the multi-fiber optical connector by inserting a glass fiber into a fiber insertion hole formed in the connector molded body with high accuracy.
  • the glass fiber diameter is large, insertion is impossible, and when the glass fiber diameter is small, the center position of the insertion hole is shifted, resulting in poor connection loss. That is, when the diameter variation of the glass fiber of the optical fiber to be used is large with respect to the attachment of the multi-fiber optical connector, problems such as a decrease in manufacturing yield and an increase in connection loss become obvious.
  • the present invention has been made in view of the above-described circumstances, and manufacture of an optical fiber that uses an inexpensive inert gas and an inexpensive auxiliary device while suppressing a variation in the diameter of the glass fiber while reducing an increase in transmission loss. It is an object to provide a method and a manufacturing apparatus, and an optical fiber manufactured thereby.
  • An optical fiber manufacturing method and manufacturing apparatus includes a core tube in which a glass base material for optical fibers is inserted, and a heating unit that is disposed outside the core tube and heats the core tube from the outside.
  • An optical fiber is produced by drawing an optical fiber while heating and melting a glass base material, and leading it out from a lead-out port at the bottom of the core tube.
  • a gas containing 50% or more of argon is used as an inert gas, and a heat insulating material region whose upper part is surrounded by a heat insulating material having a length of Db (mm) is surrounded by a heat insulating material at the lower part of the core tube.
  • a protective tube having a length of Da (mm) is provided.
  • the lengths of Da and Db are set to satisfy “V / Da ⁇ 1.0 and V / Db ⁇ 2.3”.
  • the glass fiber temperature at the outlet of the protective tube is set to 1500 ° C. or less, and the outer diameter of the glass fiber at the outlet of the protective tube is set within a range of +0.2 ⁇ m or less from the outer diameter of the target glass fiber. . Further, it is preferable that the value obtained by dividing the Grashof number Gr in the protective tube by the square of the Reynolds number Re is 1 or less.
  • the optical fiber manufactured by the above method has a standard deviation value of the glass fiber diameter of 0.15 ⁇ m or less, and the reflection spectrum in the vicinity of 1120 cm ⁇ 1 of the optical fiber has a peak at 1199.83 cm ⁇ 1 or more, or absorption spectrum of 2250 cm -1 vicinity has a peak at 2248.54Cm -1 or more. Further, the residual stress of the optical fiber manufactured by the above method monotonously increases from the inner side to the outer side in the radial direction, and the gradient when the tensile stress distribution in the section is linearly approximated is +0.0 to +0.0.
  • the pressure is preferably 5 MPa / ⁇ m.
  • the use of expensive He gas can be reduced, and the diameter fluctuation of the glass fiber can be reduced and transmission loss can be reduced without using a special device for slowly cooling the drawn glass fiber.
  • An optical fiber having a predetermined value or less can be obtained.
  • the outline of the manufacturing method and manufacturing apparatus of the optical fiber of this invention is demonstrated.
  • a resistance furnace that heats the core tube with a heater will be described as an example.
  • the present invention can also be applied to an induction furnace in which a high-frequency power source is applied to the coil to induction-heat the core tube.
  • 10 is a drawing furnace
  • 11 is a glass preform (glass preform) for optical fiber
  • 11a is a lower end portion of the glass preform
  • 12 is a glass fiber
  • 13 is a furnace core tube
  • 14 is a furnace casing
  • 15 is a heater.
  • 16, 18 are heat insulating materials
  • 17 is a protective tube
  • 17a is a heat insulating material region
  • 17b is a non-heat insulating material region.
  • the drawing of the optical fiber is performed by heating and melting a lower portion of a glass base material 11 for optical fiber (hereinafter referred to as a glass base material) that is suspended and supported from the lower end portion 11a of the glass base material. 12 is melted and drooped and drawn so as to have a predetermined glass fiber diameter.
  • An optical fiber drawing furnace 10 for this purpose is provided with a heater 15 for heating so as to surround a furnace core tube 13 into which a glass base material 11 is inserted and supplied, and carbon felt so that the heat of the heater 15 is not dissipated to the outside.
  • the structure is surrounded by a carbon heat insulating material 16 such as a carbon molded heat insulating material and surrounded by a furnace casing 14.
  • the glass base material 11 is suspended and supported by a suspension mechanism (not shown), and is sequentially controlled to move downward as the optical fiber is drawn.
  • the furnace casing 14 is formed of a metal having excellent corrosion resistance, such as stainless steel, and a cylindrical furnace core tube 13 (described later) formed of high-purity carbon is disposed at the center.
  • an inert gas such as argon, helium, nitrogen, etc. is flowed into the core tube 13, and this inert gas passes through the gap between the glass base material 11 and the core tube 13. Most of them are discharged to the outside together with the drawn glass fiber 12 through a protective tube 17 provided in such a manner that the core tube 13 is extended below the drawing furnace 10.
  • the protective tube 17 has a function of suppressing the rapid fluctuation of the glass fiber 12 that has been heated and softened, and at the same time, cooling and hardening to some extent to suppress the diameter fluctuation of the glass fiber. Note that a shutter or the like may be provided at the lower end of the protective tube 17.
  • the protective tube 17 is formed of the same metal as the core tube, such as carbon or stainless steel, but can be separated from the core tube 13 and is installed so as to be connected to the lower end of the core tube 13.
  • a gas containing 50% or more of Ar is used as an inert gas flowing in the furnace core tube 13. That is, the Ar gas may be 100%, and even when a mixed gas of He gas and Ar gas is used, a gas containing 50% or more of Ar is used.
  • Ar gas it is possible to suppress the rapid cooling of the glass fiber 12 melted and drooped from the lower end portion 11a of the glass base material 11 and to facilitate structural relaxation of the glass fiber as compared with the case of using 100% He gas. It becomes possible.
  • the upper side (upstream side) of the protective tube 17 provided below the drawing furnace 10 is surrounded by a heat insulating material 18 to suppress heat dissipation from this, and the temperature of the glass fiber immediately after drawing is alleviated from being rapidly cooled.
  • a heat insulating material 18 to suppress heat dissipation from this, and the temperature of the glass fiber immediately after drawing is alleviated from being rapidly cooled.
  • the temperature of the glass fiber 12 is preferably 1600 ° C. or higher in the heat insulating material region 17a. Thereby, the structural relaxation of the glass fiber in the process of cooling the glass can be facilitated.
  • a non-heat insulating material region 17b (up to the lower end position of the protective tube) without heat insulating material is provided to promote cooling of the glass fiber 12 after the structure relaxation than the upper side. That is, it is preferable to suppress the glass fiber with the glass structure fixed so that the subsequent cooling is performed to some extent quickly so that the equipment height (the length of the protective tube) does not become too high.
  • the use of Ar gas and the provision of the heat insulating material region 17a of the protective tube 17 dull the outer diameter of the glass fiber on the outlet side, and the outer diameter at the outlet of the protective tube 17 is the target value (final outer If it is larger than a predetermined value with respect to (diameter), the diameter fluctuation of the glass fiber also increases.
  • the glass fiber outer diameter needs to be reduced to +0.2 ⁇ m or less of the target outer diameter.
  • the glass fiber 12 is preferably cooled so that the temperature of the glass fiber 12 reaches 1500 ° C. or less in the non-insulating material region 17b.
  • the glass fiber diameter variation tends to increase as the temperature of the glass fiber increases, and as shown in FIG. 2B, the target value of the glass fiber diameter.
  • the outer diameter value at the outlet of the protective tube 17 tends to be larger than the target value.
  • the glass fiber temperature at the draw furnace outlet can be measured with an infrared sensor or the like, and the glass fiber diameter can be measured with a laser outer diameter measuring instrument or the like.
  • the length of the protective tube and the heat insulating material region for setting the glass fiber temperature to the predetermined temperature described above depends on the drawing speed V (m / min) of the drawn glass fiber, and it is necessary to increase the length as the drawing speed increases. There is.
  • the drawing speed is 1000 (m / min), for example, Da ⁇ 1000 mm and Db ⁇ 435 mm.
  • the heat insulating material region 17 a of the protective tube 17 can be formed by arranging a heat insulating material 18 on the outer periphery of the protective tube 17.
  • the heat insulating material 18 can use the same thing as the heat insulating material 16 which covers the heater 15 of a drawing furnace, and suppresses that the heat
  • the heat insulating material region 17a can alleviate the rapid cooling of the glass fiber 12 melted and drooped from the lower end portion 11a of the glass base material 11, and can promote the structural relaxation of the glass fiber.
  • Ar gas has a smaller thermal conductivity than He gas (about 1/8 of He gas), and the neck-down shape of the lower end portion 11a of the glass base material is extended. It becomes easy to be influenced by flow etc.).
  • the glass fiber diameter fluctuation can be set to a desired value (standard deviation 0.15 ⁇ m or less) by setting the pressure fluctuation in the furnace core tube at 1 Hz or less to ⁇ 0.5 Pa or less.
  • a desired value standard deviation 0.15 ⁇ m or less
  • the pressure in the furnace core tube can be easily measured by providing a pressure measuring port at an appropriate location of the drawing furnace and installing a pressure gauge.
  • the pressure fluctuation in the furnace core tube also occurs due to the flow of gas in the protective tube 17. Specifically, when the value (Gr / Re 2 ) obtained by dividing the Glasshof number Gr in the protective tube by the square of the Reynolds number Re is larger than 1, the gas flow in the protective tube is disturbed by the effect of buoyancy and the pressure fluctuations Is induced. This pressure variation acts on the lower end portion 11a of the glass base material, and the glass fiber diameter varies. Therefore, it is preferable to set the inner diameter of the protective tube so that the above value (Gr / Re 2 ) in the protective tube is 1 or less.
  • the Grashof number Gr and the Reynolds number Re are as follows: the gas flow velocity is w, the kinematic viscosity coefficient is ⁇ , the inner diameter of the protective tube is d, the gravitational acceleration is g, the body expansion coefficient is ⁇ , and the temperature difference is ⁇ .
  • Reynolds number: Re wd / ⁇
  • the optical fiber manufactured by the above-described method is capable of advancing the structural relaxation of glass by using an Ar gas and adopting a slow cooling structure with a protective tube surrounded by a heat insulating material, using He gas, Compared with the case where the slow cooling structure is not provided, the fictive temperature can be lowered and the transmission loss can be reduced to some extent, and the manufacturing cost can be greatly reduced.
  • the glass fiber temperature at the outlet of the protective tube is kept within a predetermined range, and the outer diameter when exposed to the outside air is reduced by reducing the diameter within the protective tube to +0.2 ⁇ m or less of the target outer diameter. By suppressing the fluctuation, the diameter fluctuation of the glass fiber can be reduced.
  • the standard deviation value of the glass fiber diameter is preferably 0.15 ⁇ m or less. This optical fiber can improve the yield for attaching the multi-fiber optical connector and reduce the connection loss.
  • the transmission loss can be reduced by about 0.002 dB / km in a wavelength band of about 1.55 ⁇ m. That is, by reducing the fictive temperature, it is possible to promote the relaxation of the glass structure and reduce transmission loss. Since the calculated value of the virtual temperature differs depending on the measurement method and the calculation formula used, it is preferable to assume the virtual temperature at the reflection spectrum peak position or the absorption spectrum peak position having a virtual temperature dependency.
  • the glass fibers according to the invention which is drawn in the manner described above, or 1,120 cm -1 reflection spectral peak position near exists in 1119.83Cm -1 or higher, or an absorption spectrum peak position of 2250 cm -1 vicinity 2248 It is preferably present at .54 cm ⁇ 1 or more.
  • FIG. 3 is a diagram illustrating an example of a residual stress (cladding stress) distribution in the radial direction of the glass fiber.
  • “a” is an optical fiber drawn by Ar gas
  • “b” is an optical fiber drawn by using conventional He gas
  • “c” is disclosed in Citation 3.
  • An example of an optical fiber is shown.
  • the residual stress above zero is tensile stress
  • the downward stress is compressive stress.
  • the outer surface of the glass fiber is brought into contact with the outer surface of the glass fiber and rapidly cooled.
  • a large residual stress is generated by tension on the outer peripheral side. Residual stress due to compression occurs toward the inside of the cladding layer, and residual stress due to compression occurs in the central core region. That is, an optical fiber having a large difference in radial direction distribution of residual stress is obtained.
  • the optical fiber “c” is disclosed in Patent Document 3, and almost all of the cladding layer portion is tensile stress, and the tensile stress decreases from the inside to the outside of the cladding layer.
  • this stress distribution since the radial distribution difference of the residual stress of the glass fiber is small, it can be expected that transmission loss is small and Rayleigh scattering is also suppressed to a low level.
  • a heat treatment of descent ⁇ rise ⁇ descent is performed in the cooling process of the glass fiber.
  • the temperature fluctuation of the glass fiber suggests that the surrounding gas temperature does not change monotonously, and the gas flow tends to be disturbed, so that the fluctuation of the glass fiber diameter may increase.
  • the special heat processing apparatus slow cooling apparatus as shown in the cited reference 2 is needed for the heat processing of glass fiber.
  • the optical fiber “a” according to the present invention which is gradually cooled in the above-described heat insulating material region using Ar gas, Ar gas having low thermal conductivity is in contact with the outer peripheral surface of the glass fiber, and the protection is achieved.
  • Ar gas having low thermal conductivity is in contact with the outer peripheral surface of the glass fiber, and the protection is achieved.
  • the rapid cooling of the glass fiber is mitigated.
  • the tensile stress on the outer peripheral side of the cladding layer is reduced, and the residual stress gradually and monotonously increases from the inside to the outside of the cladding layer.
  • the gradient when the stress distribution from the inner side to the outer side of the cladding layer is linearly approximated is +0.0 MPa / ⁇ m to +0.5 MPa.
  • This gradient is in a state where the difference in the radial distribution of the residual stress is small, the distortion of the internal stress is small, and the increase in transmission loss due to the fluctuation of the glass density is effectively reduced.
  • FIG. 4 shows test results for evaluating the manufacturing method with the objective of setting the above-described glass fiber diameter variation to 0.15 ( ⁇ m) or less and transmission loss to 0.185 (dB / km) or less.
  • the optical fibers used for the test are single-mode optical fibers having a glass fiber diameter of 125 ⁇ m, and the drawing furnace used for manufacturing the optical fibers has the structure shown in FIG.
  • the presence or absence of the heat insulating material region 17a above the protective tube 17 and the gas introduced into the reactor core tube were tested in three ways: He gas 100%, Ar gas 100%, Ar gas 50% + He gas 50% mixed gas.
  • Sample 1 is based on a manufacturing method close to a standard in which the gas introduced into the core tube is He gas 100% and the heat insulating material region 17a is not provided in the upper portion of the protective tube.
  • the gas introduced into the core tube is He gas 100% and the heat insulating material region 17a is not provided in the upper portion of the protective tube.
  • Sample 2 is the same as Sample 1 except that the heat insulating material region 17a is not provided, and the gas introduced into the core tube is a mixed gas of Ar gas 50% + He gas 50%.
  • the diameter fluctuation of the glass fiber did not reach the target, so other characteristics were not measured.
  • Sample 3 is the same as Samples 1 and 2 except that the insulating material region is not provided as in Sample 1, and the gas introduced into the core tube is Ar gas 100%.
  • (Gr / Re 2 ) was increased, and the diameter fluctuation of the glass fiber was larger than that of Sample 2.
  • the gas introduced into the core tube is 100% Ar gas, and the heat insulating material region 17a is provided on the upper portion of the protective tube 17 so as to be approximately 1 ⁇ 2 the length of the protective tube. It is.
  • the glass fiber diameter fluctuation was smaller than that of the sample 3, but (Gr / Re 2 ) was larger than 1, so the glass fiber diameter fluctuation did not reach the target.
  • Sample 5 is provided with a heat insulating material region 17a at the top of the protective tube as in sample 4, and the gas introduced into the core tube is a mixed gas of Ar gas 50% + He gas 50% as in sample 2.
  • the length Db of the heat insulating material region 17a is shortened to about 1 ⁇ 2 that of the sample 4.
  • Sample 6 is provided with a heat insulating material region 17a in the same manner as Sample 5, and the gas introduced into the core tube is a mixed gas of Ar gas 50% + He gas 50%.
  • the heat insulating material region 17 a on the upper portion of the protective tube 17 is approximately 1 ⁇ 2 of the length of the protective tube as in the sample 4.
  • Sample 7 is provided with a heat insulating material region 17a as in sample 4, and the gas introduced into the core tube is 100% Ar gas, and (Gr / Re 2 ) is 0.1, which is smaller than that of sample 6. .
  • the transmission loss achieved the target value, and the diameter fluctuation of the glass fiber could be set to 0.1 ⁇ m below the target value. That is, even if Ar gas is 100%, it can be said that the diameter fluctuation of the glass fiber can be suppressed by setting (Gr / Re 2 ) to 1 or less.
  • the reflection peak in the vicinity of 1120 cm ⁇ 1 of Samples 6 and 7 showing good characteristics is in the range of 1119.83 cm ⁇ 1 or more, and the absorption peak in the vicinity of 2250 cm ⁇ 1 is in the range of 2248.54 cm ⁇ 1 or more.
  • the reflection peaks and absorption peaks of Samples 1 to 5 are out of this range.
  • the clad stress is 0.5 MPa / ⁇ m or less in Samples 6 and 7, whereas it is larger than 0.5 MPa / ⁇ m in Samples 1 to 5.

Abstract

 安価な不活性ガスの使用と、安価な補助装置で、ガラスファイバの径変動を抑制しつつ伝送損失の増加を少なくした光ファイバの製造方法と製造装置、並びにそれにより製造される光ファイバを提供する。光ファイバ用ガラス母材(11)が挿入される炉心管(13)と、炉心管の外部に配され、炉心管を外側から加熱する加熱手段(15)とを備え、光ファイバ用ガラス母材を加熱溶融させながら光ファイバ(12)を線引きして、炉心管の下部の導出口から外部に導出させて光ファイバを製造する。不活性ガスとしてアルゴン50%以上を含有するガスを用い、炉心管の下部に、その上部が長さDb(mm)の断熱材(18)で囲われた断熱材領域(17a)と、その下部が断熱材で囲われていない非断熱材領域(17b)と、からなる長さDa(mm)の保護管(17)を設け、保護管出口におけるガラスファイバ温度を1500℃以下になるようにする。

Description

光ファイバの製造方法および製造装置並びに光ファイバ
 本発明は、光ファイバ用ガラス母材を加熱溶融しながら光ファイバを線引きする光ファイバの製造方法および製造装置、並びにそれにより得られる光ファイバに関する。
 光ファイバは、専用の線引炉を用いて光ファイバ用のガラス母材(以下、ガラス母材という)を加熱溶融してガラスファイバを線引きし、その外面に保護被覆を施して製造される。線引炉は、炉筐体内にガラス母材が挿入される炉心管を配し、炉心管の外部に配された加熱装置で炉心管を加熱し、加熱溶融されたガラス母材下端からガラスファイバを垂下させ、炉心管の下方出口から引出すように構成されている。炉心管には、通常、耐熱性のあるカーボンが用いられるが、該炉心管の酸化を防ぐ、等のために炉心管内には、アルゴン(Ar)、ヘリウム(He)、窒素(N)などの不活性ガスが送り込まれる。
 炉心管内に送り込まれた不活性ガスは、多くの場合、炉心管の上方から下方に向かって流れる場合が多く、その場合、ガラス母材から線引きされたガラスファイバと共に、炉心管の下方から外部に放出される。太径のガラス母材を用いた線引きでは、ガラス母材のネックダウン周辺での空間が大きくなり、この空間部分を流れるガスの温度分布が不均一となるため、線引きされるガラスファイバ径の変動が大きくなりやすい。ガラスファイバ径の変動が大きくなると、コネクタ接続時に接続ロスが大きくなるなどの不具合が生じる。このため、不活性ガスとして熱伝導性の良いHeガスを用い、温度分布の均一化を図ることでガラスファイバの径変動を抑制する方法が用いられたりする。また、炉心管の下部に保護管(下煙突若しくは下部延長管ともいう)を設けて、線引直後のガラスファイバを外気から隔離して外気の乱れによるガラスファイバの径変動を抑制している。
 しかし、Heガスは熱伝導率が良いため、保護管内でHeガスを用いると、ガラスファイバは急冷される。加熱溶融されたガラスファイバは、その熱エネルギーによりガラス内の原子や分子が振動して配列が乱雑になっており、乱雑状態にある原子や分子は、ガラスが冷却される過程で再配列によりガラスの構造緩和が進行し、所定の温度で平衡して凍結され固化される。ガラス構造の乱雑さの指標となる平衡温度は仮想温度とも言われ、ガラスの冷却がゆっくり行われる場合は、ガラス内の原子や分子の乱雑状態が比較的に緩和され、仮想温度が低温側に移動する。他方、ガラスが急冷されると、ガラス内の原子や分子の再配列が乱雑状態のまま凍結固化され、仮想温度は高温側に移動する。
 上記したように、Heを用いると、線引直後の加熱溶融状態にあるガラスファイバが、保護管内で熱伝導率の良いHeガスによって急冷されるため、ガラス内の原子や分子が乱雑状態で凍結されることから、仮想温度は高い状態となっており、光ファイバのレイリー散乱強度を低減することができず、伝送損失が大きくなると言われている。
 上記の事象に対応するため、例えば、特許文献1には、炉心管の出口近傍と保護管との間に、Heガスに熱伝導率の低いガスを混合させたガス混在層を設けて、ガラスファイバの急冷を抑制することが開示されている。
 また、特許文献2には、線引きされたガラスファイバを徐冷部に導入し、温度調節用のArガスで常温または加熱して、ガラスファイバを徐冷することが開示されている。
 また、特許文献3には、ガラス母材からガラスファイバを引き出す際に、熱処理(徐冷)を施して仮想温度を所定範囲にすると共に、ガラスファイバの残留応力(引張応力)をクラッド層の内側から外側に向けて低減させて、径方向分布差を小さくして伝送損失を小さくすることが開示されている。
特許第4356155号公報 特開2003-176149号公報 特許第4663277号公報
 情報化社会の進展により、汎用的な光ファイバ(シングルモード光ファイバ)の用途は、長距離の光信号伝送から比較的に短距離の宅内への引き落とし、宅内のLAN形成など多岐にわたる。これに伴う光ファイバの接続には、光コネクタが多用されており、特に多心の光コネクタの使用が増加している。この多心光コネクタへの光ファイバ付けは、コネクタ成形体に高精度で形成されたファイバ挿入孔に、ガラスファイバを挿着することによって行われる。この場合、ガラスファイバ径が大きい場合は挿着が不可となり、ガラスファイバ径が小さい場合は挿入孔の中心位置がずれて、接続損失不良が生じる。すなわち、多心光コネクタ付けに対して、使用する光ファイバのガラスファイバの径変動が大きいと、製造上の歩留まり低下や接続損失の増加という問題が顕在化してくる。
 光ファイバのガラスファイバの径変動を小さくするには、上述したようにガラス母材から線引きする工程で、Heガスの使用が必要とされる。しかし、Heガスは、ArガスやN2ガス等の他の不活性ガスと較べて、極めて高価で光ファイバの製造コストを押し上げる大きな要因となっている。これ対して、Heガスを回収し再使用する提案もあるが、設備が大掛かりで、初期投資やランニングコストの面で合理的ではない。
 また、伝送損失を小さくするには、線引直後のガラスファイバを徐冷することが必要とされるが、特許文献1~3に示すように、徐冷のためのガス供給装置や加熱手段の設置も、初期投資やランニングコストがかかるうえに、条件設定や調整の手間もかかるという問題がある。
 本発明は、上述した実状に鑑みてなされたもので、安価な不活性ガスの使用と、安価な補助装置で、ガラスファイバの径変動を抑制しつつ伝送損失の増加を少なくした光ファイバの製造方法と製造装置、並びにそれにより製造される光ファイバを提供することを目的とする。
 本発明による光ファイバの製造方法および製造装置は、光ファイバ用ガラス母材が挿入される炉心管と、炉心管の外部に配され、炉心管を外側から加熱する加熱手段とを備え、光ファイバ用ガラス母材を加熱溶融させながら光ファイバを線引きして、炉心管の下部の導出口から外部に導出させて光ファイバを製造するものである。
 不活性ガスにアルゴン50%以上を含有するガスを用い、炉心管の下部に、その上部が長さDb(mm)の断熱材で囲われた断熱材領域と、その下部が断熱材で囲われていない非断熱材領域と、からなる長さDa(mm)の保護管を設ける。
 そして、光ファイバの線引速度をV(m/分)としたときに、前記のDa及びDbの長さを、「V/Da≦1.0 且つ V/Db≦2.3」を満たすように設定し、保護管出口におけるガラスファイバ温度を1500℃以下になるように、及び、保護管出口におけるガラスファイバの外径が目標ガラスファイバ外径から+0.2μm以下の範囲内に入るようにする。
 また、保護管内におけるグラスホフ数Grをレイノルズ数Reの2乗で除した値が、1以下となるようにするのが好ましい。
 上記の方法で製造された光ファイバは、ガラスファイバ径の標準偏差値が0.15μm以下であり、光ファイバの1120cm-1近傍の反射スペクトルが1119.83cm-1以上にピークをもつ、若しくは、2250cm-1近傍の吸収スペクトルが2248.54cm-1以上にピークをもっている。
 また、上記の方法で製造された光ファイバの残留応力が径方向内側から外側に向かって単調増加すると共に、前記の区間の引張応力分布を直線近似したときの勾配が、+0.0~+0.5MPa/μmであるのが好ましい。
 本発明によれば、高価なHeガスの使用を低減でき、また
、線引きされたガラスファイバを徐冷するための特別な装置を用いなくても、ガラスファイバの径変動が少なく、しかも伝送損失を所定値以下とした光ファイバを得ることができる。
本発明の光ファイバの製造に用いる線引炉の一例を説明する図である。 ガラスファイバ温度とガラスファイバの径変動、保護管出口におけるガラスファイバ外径値の関係を示す図である。 本発明によるガラスファイバの残留応力について説明する図である。 本発明の評価結果を示す図である。
 図1により、本発明の光ファイバの製造方法と製造装置の概略を説明する。なお、以下ではヒータにより炉心管を加熱する抵抗炉を例に説明するが、コイルに高周波電源を印加し、炉心管を誘導加熱する誘導炉にも、本発明は適用可能である。
 図において、10は線引炉、11は光ファイバ用ガラス母材(ガラス母材)、11aはガラス母材下端部、12はガラスファイバ、13は炉心管、14は炉筐体、15はヒータ、16,18は断熱材、17は保護管、17aは断熱材領域、17bは非断熱材領域、を示す。
 光ファイバの線引きは、図1に示すように、吊下げ支持される光ファイバ用ガラス母材11(以下、ガラス母材という)の下部を加熱溶融することによりガラス母材下端部11aからガラスファイバ12を溶融垂下させ、所定のガラスファイバ径となるように線引きして行われる。このための光ファイバ線引炉10は、ガラス母材11が挿入供給される炉心管13を囲むようにして、加熱用のヒータ15を配し、このヒータ15の熱が外部に放散されないようにカーボンフェルトや、カーボン製成型断熱材等、カーボン製の断熱材16で囲い、その外側全体を炉筐体14で囲って構成される。
 ガラス母材11は、吊り機構(図示省略)により吊り下げ支持され、光ファイバの線引き進行にしたがって下方に順次移動制御される。炉筐体14は、ステンレス等の耐食性に優れた金属で形成され、中心部に高純度のカーボンで形成された後述する円筒状の炉心管13が配される。炉心管13の酸化・劣化を防ぐために、炉心管13内には、アルゴン、ヘリウム、窒素等の不活性ガスが流し込まれ、この不活性ガスは、ガラス母材11と炉心管13の隙間を通って、その大部分は線引炉10の下方に炉心管13を延長する形態で設けた保護管17を介して、線引されたガラスファイバ12と共に外部に放出される。
 保護管17は、加熱軟化しているガラスファイバ12の急冷を緩和すると同時にある程度冷却硬化させてガラスファイバの径変動を抑える機能を有している。なお、保護管17の下端にシャッター等が設けられる場合もある。この保護管17は、炉心管と同様なカーボン、若しくはステンレス等の金属で形成されるが、炉心管13とは分割することもでき、炉心管13の下端に連結するようにして設置される。
 本発明においては、上記構成の線引炉10を用いて光ファイバを線引きするに際して、炉心管13内に流す不活性ガスとして、Arが50%以上含有するガスを用いる。すなわち、Arガスが100%であってもよく、HeガスとArガスの混合ガスを用いる場合においても、Arを50%以上含有するガスを用いている。
 Arガスの使用により、Heガスを100%使用する場合に比べて、ガラス母材11の下端部11aから溶融垂下するガラスファイバ12の急冷を抑制し、ガラスファイバの構造緩和を進めやすくすることが可能となる。
 ガラスファイバの構造緩和を進めるには、Ar50%以上としたときに効果的で、特許文献1、2に開示のように、炉心管13の出口付近で徐冷のための温度調整用ガス等を導入する必要がなくなる。この結果、ガラスファイバに対して別口からのガス導入による淀みや干渉が生じるのをなくし、ガラスファイバ振動やガラスファイバ径変動を起こす要因を排除することができる。また、価格的に高価なHeガスの使用を50%以上減らすことができ、コスト面での効果も顕著となる。
 線引炉10の下方に設けた保護管17の上部側(上流側)は、断熱材18で囲ってここからの放熱を抑制し、線引直後のガラスファイバの温度が急冷するのを緩和するようにする。この断熱材18で覆われた範囲を断熱材領域17aとすると、この断熱材領域17a内ではガラスファイバ12の温度が1600℃以上となっていることが好ましい。これにより、ガラスが冷却される過程でのガラスファイバの構造緩和を進行させやすくすることができる。
 断熱材領域17aの下方側(下流側)は、断熱材なしの非断熱材領域17b(保護管の下端位置まで)を設けて、構造緩和後のガラスファイバ12の冷却を上部側よりも促進させる。すなわち、ガラス構造が固定化されたガラスファイバは、それ以降の冷却をある程度速やかに行い、設備高さ(保護管の長さ)があまりにも高くなりすぎないように、抑制するのが好ましい。
 しかし、Arガスの使用と保護管17の断熱材領域17aを設けることで、出口側のガラスファイバ外径の縮径が鈍って、保護管17の出口での外径が、目標値(最終外径)に対して所定値以上に大きくなっていると、ガラスファイバの径変動も増加する。
 つまり、保護管17の出口から導出されたガラスファイバは、外気に直接曝されることから、ガラスファイバ外径は目標外径の+0.2μm以下まで縮径されている必要がある。このためには、非断熱材領域17b内でガラスファイバ12の温度が、1500℃以下に達するように冷却されているのが好ましい。ガラスファイバの温度が高くなるにつれて、図2(A)に示すように、ガラスファイバの径変動が大きくなる傾向が見られ、また、図2(B)に示すように、ガラスファイバ径の目標値を125μmとしたとき、保護管17の出口における外径値は、目標値より大きくなる傾向が見られる。
 なお、線引炉出口でのガラスファイバ温度の測定は、赤外線センサー等で測定することができ、ガラスファイバ径はレーザ外径測定器等を用いて測定することができる。
 ガラスファイバ温度を上記した所定の温度とするための保護管及び断熱材領域の長さは、線引きされるガラスファイバの線速V(m/分)に依存し、線速が速いほど長くする必要がある。保護管の長さをDa(mm)、断熱材領域の長さをDb(mm)としたとき、V/Da≦1.0 且つ V/Db≦2.3となるようにするのが好ましい。この式を当てはめると、線引速度を、例えば、1000(m/分)とすると、Da≧1000mm、Db≧435mmとなる。
 保護管17の断熱材領域17aは、保護管17の外周に断熱材18を配して形成することができる。断熱材18は、線引炉のヒータ15を覆う断熱材16と同じものを用いることができ、ヒータ15で熱せられた保護管17の熱が外部に放熱されるのを抑制する。この断熱材領域17aは、ガラス母材11の下端部11aから溶融垂下されたガラスファイバ12が急冷するのを緩和し、ガラスファイバの構造緩和を進行させることができる。したがって、この断熱材領域17aに、従来のように、別途Arガスを流し込んだり、加熱装置で加熱したりしなくてもよくなり、大掛かりなガス供給装置や加熱装置を不要とし、光ファイバの製造コストの削減を図ることができる。
 上述したように、Arガスを使用することにより、製造コストを下げることができると共に、ガラスファイバの構造緩和を進行させて仮想温度を低温側に移し、ガラス内の原子や分子の配列状態を整え、光ファイバのレイリー散乱強度を低減し伝送損失を小さくすることが可能となる。
 しかし、Arガスは熱伝導性がHeガスに比べて小さく(Heガスの1/8程度)、ガラス母材の下端部11aのネックダウンの形状が伸びるため、Arガスの使用は外乱(ガスの流れなど)による影響を受けやすくなる。
 例えば、周辺のガス流の乱れに鋭敏に反応して、ネックダウンの形状や垂下されるガラスファイバの径変動が生じやすくなる。このため、ガラス母材の下端部11aの近傍において、炉心管13をネックダウンの形状に合わせて縮径し、不活性ガスの流れが乱れるのを抑制することとしても良い。このように縮径することにより、ヒータ15からの放射熱を効果的にガラス母材側に反射させ、加熱効率を高めることもできる。
 また、炉心管内の圧力変動によってもガラスファイバ径が変動する。しかし、調査の結果、炉心管内における1Hz以下での圧力変動を±0.5Pa以下とすることで、ガラスファイバの径変動を所望の値(標準偏差0.15μm以下)にできることが判明した。ちなみに、Heガスを用いた場合は、圧力変動による影響がほとんどないことも判明している。なお、炉心管内の圧力は、線引炉の適当な箇所に圧力測定口を設けて、圧力計を設置することで容易に計測することができる。
 炉心管内の圧力変動は、保護管17内のガスの流れ方によっても発生する。具体的には、保護管内のグラスホフ数Grをレイノルズ数Reの2乗で除した値(Gr/Re)が1より大きい場合に、保護管内のガスの流れが浮力の効果により乱れて圧力変動が誘起される。この圧力変動が、ガラス母材の下端部11aに作用してガラスファイバ径が変動する。したがって、保護管内における上記の値(Gr/Re)を1以下となるように保護管内径等を設定するのが好ましい。
 なお、グラスホフ数Gr、レイノルズ数Reは、ガス流速をw、動粘性係数をν、保護管内径をd、重力加速度をg、体膨張係数をβ、温度差をΔθとしたとき、
 レイノルズ数: Re=wd/ν
 グラホフ数:  Gr=(dgβΔθ)/(ν
の式で表される。石英ガラス光ファイバの線引プロセスでは、β=1/Tとすることができ、またT(温度)=1850K(ケルビン)、Δθ=1550Kを代表値として計算する。
 上述した方法で製造された光ファイバは、Arガスの使用と上部を断熱材で囲った保護管による徐冷構造の採用により、ガラスの構造緩和を進行させることができ、Heガスを使用し、徐冷構造を設けない場合に比べ、仮想温度を下げ、伝送損失をある程度小さくすることを可能にすると共に、製造コストを大きく低減することができる。そして、保護管出口のガラスファイバ温度を所定の範囲内に収め、保護管内で目標外径の+0.2μm以下にまで縮径することにより外気に曝される際の外径を小さくすると共に、圧力変動を抑えることにより、ガラスファイバの径変動を低減することができる。なお、ガラスファイバ径の標準偏差値は、0.15μm以下であることが好ましい。この光ファイバは、多心光コネクタ付けに対しての歩留まりを良好にすると共に、接続損失を小さくすることができる。
 ガラスファイバの線引過程における冷却で、例えば、ガラスファイバの仮想温度を30℃下げると、概ね1.55μmの波長帯で伝送損失を0.002dB/km程度低減することができる。すなわち、仮想温度を下げることでガラスの構造緩和を推し進め、伝送損失を下げることが可能となる。
 なお、仮想温度は測定方法や用いる計算式により算出値が異なることから、仮想温度依存性のある反射スペクトルピーク位置、若しくは、吸収スペクトルピーク位置で仮想温度を想定するのが好ましい。
 つまり、上述した方法で線引きされた本発明によるガラスファイバは、1120cm-1近傍の反射スペクトルピーク位置が1119.83cm-1以上に存在するか、若しくは、2250cm-1近傍の吸収スペクトルピーク位置が2248.54cm-1以上に存在するのが好ましい。
 また、冷却されたガラスファイバは、引張りと圧縮の残留応力を有している。図3は、そのガラスファイバの径方向の残留応力(クラッド応力)分布の一例を示す図である。図において、「a」はArガスを用いて線引きした本発明で対象とする光ファイバ、「b」は従来のHeガスを用いて線引した光ファイバ、「c」は引用文献3に開示の光ファイバの例を示す。なお、図の残留応力がゼロより上方が引張応力となり、下方が圧縮応力となる。
 従来のHeガスを用いて、徐冷を行うことなく冷却した光ファイバ「b」においては、ガラスファイバの外面に熱伝導性のよいHeガスが接触して急冷されるため、ガラスファイバのクラッド層の外周側に引張による大きな残留応力が生じる。そして、クラッド層の内側に向かって圧縮による残留応力が生じ、中央のコア領域では圧縮による残留応力が生じる。すなわち、残留応力の径方向分布差が大きい光ファイバとなる。
 一方、光ファイバ「c」は、特許文献3に開示のもので、クラッド層部分のほぼ全域が引張応力で、該引張応力はクラッド層の内側から外側に向けて減少している。この応力分布によれば、ガラスファイバの残留応力の径方向分布差が小さいので、伝送損失が小さく、かつ、レイリー散乱も低く抑えることが期待できるとされている。しかしながら、斯かる応力分布を得るには、ガラスファイバの冷却過程で、降下→上昇→降下の熱処理を経ることを意味している。ガラスファイバの温度変動は、周囲のガス温度が単調に変化していないことを示唆しており、ガス流に乱れを生じやすい状態となって、ガラスファイバ径の変動が大きくなる虞がある。また、ガラスファイバの熱処理に、引用文献2に示すような特別な熱処理装置(徐冷装置)が必要となる。
 これに対し、Arガスを用いて、上述した断熱材領域で徐冷した本発明による光ファイバ「a」においては、ガラスファイバの外周面に熱伝導性の低いArガスが接触し、しかも、保護管の周りに断熱材を配した断熱材領域で、ガラスファイバの急冷が緩和される。この結果、クラッド層の外周側の引張応力が低減され、クラッド層の内側から外側に向かって緩やかに単調増加する残留応力となる。
 具体的には、クラッド層の内側から外側に向かっての応力分布を直線近似したときの勾配が、+0.0MPa/μm~+0.5MPaとなるように形成される。この勾配は、残留応力の径方向分布差が小さく、内部応力のゆがみが小さく、ガラス密度のゆらぎ等による伝送損失の増加が効果的に低減される状態となっている。
 図4は、上述したガラスファイバの径変動を0.15(μm)以下、伝送損失を0.185(dB/km)以下、とすることを目標として、製造方法について評価した試験結果を示したものである。なお、試験に用いた光ファイバ(試料1~7)は、ガラスファイバ径が125μmのシングルモードの光ファイバで、光ファイバ製造に用いた線引炉は、図1で示した構造のもので、保護管17上部の断熱材領域17aの有無、炉心管内に導入するガスを、Heガス100%、Arガス100%、Arガス50%+Heガス50%の混合ガス、の3通りで試験した。
 試料1は、炉心管内に導入するガスがHeガス100%で、保護管の上部に断熱材領域17aを設けない標準に近い製造方法によるものである。評価結果は、ガラスファイバの径変動は少ないものの、伝送損失が目標値には未達で、従来品の光ファイバと同程度のものであった。
 試料2は、試料1と同様に断熱材領域17aを設けないもので、炉心管内に導入するガスがArガス50%+Heガス50%の混合ガスとする以外は、試料1と同じである。評価結果は、ガラスファイバの径変動が目標未達であったため、その他の特性については測定しなかった。
 試料3は、試料1と同様に断熱材領域を設けないもので、炉心管内に導入するガスを、Arガス100%とする以外は、試料1,2と同じである。評価結果は、(Gr/Re)が大きくなって、試料2よりもさらにガラスファイバの径変動が大きかった。
 試料4は、試料3と同様に炉心管内に導入するガスをArガス100%とし、保護管17の上部に保護管の長さのおよそ1/2の長さで断熱材領域17aを設けたものである。評価結果は、試料3よりはガラスファイバの径変動は小さくなったが、(Gr/Re)は1より大きいため、ガラスファイバの径変動は目標未達であった。
 試料5は、試料4と同様に保護管の上部に断熱材領域17aを設け、炉心管内に導入するガスを試料2と同様に、Arガス50%+Heガス50%の混合ガスとしたものある。しかし、断熱材領域17aの長さDbを試料4の場合のおよそ1/2と短くしている。評価結果は、ガラスファイバの径変動は試料4よりは良くなったが、クラッド部の応力勾配(クラッド応力)は下がらず、伝送損失も未達であった。
 試料6は、試料5と同様に断熱材領域17aを設け、炉心管内に導入するガスをArガス50%+Heガス50%の混合ガスとしたものである。但し、保護管17の上部の断熱材領域17aは、試料4と同じく保護管の長さのおよそ1/2の長さとしている。評価結果は、伝送損失を目標値以下とすると共に、ガラスファイバの径変動を目標値以下の0.15μmとすることができた。すなわち、保護管17の上部の断熱材領域17aを所定長さとすることで、ガラスファイバの径変動を抑制することができると言える。
 試料7は、試料4と同様に断熱材領域17aを設け、炉心管内に導入するガスをArガス100%としたものであり、(Gr/Re)は、試料6より小さい0.1としている。評価結果は、伝送損失が目標値を達成すると共に、ガラスファイバの径変動を目標値以下の0.1μmとすることができた。すなわち、Arガスが100%であっても、(Gr/Re)を1以下とすることでガラスファイバの径変動を抑制することができると言える。
 なお、良好な特性を示した試料6,7の1120cm-1近傍の反射ピークは、1119.83cm-1以上の範囲にあり、2250cm-1近傍の吸収ピークは2248.54cm-1以上の範囲にあるのに対し、試料1~5の反射ピーク、吸収ピークは、この範囲を外れている。
 また、クラッド応力は、試料6,7では0.5MPa/μm以下であるのに対し、試料1~5では0.5MPa/μmより大きくなっている。
10…線引炉、11…光ファイバ用ガラス母材(ガラス母材)、11a…ガラス母材下端部、12…ガラスファイバ、13…炉心管、14…炉筐体、15…ヒータ、16,18…断熱材、17…保護管、17a…断熱材領域、17b…非断熱材領域。

Claims (6)

  1.  光ファイバ用ガラス母材が挿入される炉心管と、前記炉心管の外部に配され、前記炉心管を外側から加熱する加熱手段とを備え、前記光ファイバ用ガラス母材を加熱溶融させながらガラスファイバを線引きして、前記炉心管の下部の導出口から外部に導出する光ファイバの製造方法であって、
     不活性ガスにアルゴン50%以上を含有するガスを用い、前記炉心管の下部に、その上部が長さDb(mm)の断熱材で囲われた断熱材領域と、その下部が断熱材で囲われていない非断熱材領域と、からなる長さDa(mm)の保護管を設け、
     前記光ファイバの線引速度をV(m/分)としたときに、前記Da及び前記Dbの長さを、「V/Da≦1.0 且つ V/Db≦2.3」を満たすように設定し、前記保護管の出口における前記ガラスファイバの温度を1500℃以下になるように、及び、前記保護管の出口における前記ガラスファイバの外径が目標ガラスファイバ外径から+0.2μm以下の範囲内に入るようにすることを特徴とする光ファイバの製造方法。
  2.  前記保護管の内部におけるグラスホフ数Grをレイノルズ数Reの2乗で除した値が、1以下となるようにすることを特徴とする請求項1に記載の光ファイバの製造方法。
  3.  光ファイバ用ガラス母材が挿入される炉心管と、前記炉心管の外部に配され、前記炉心管を外側から加熱する加熱手段とを備え、前記光ファイバ用ガラス母材を加熱溶融させながらガラスファイバを線引きして、前記炉心管の下部の導出口から外部に導出する光ファイバの製造装置であって、
     不活性ガスにアルゴン50%以上を含有するガスを用い、前記炉心管の下部に、その上部が長さDb(mm)の断熱材で囲われた断熱材領域と、その下部が断熱材で囲われていない非断熱材領域と、からなる長さDa(mm)の保護管を設け、
     前記ガラスファイバの温度が1500℃以下になるように、及び、前記保護管の出口における前記ガラスファイバの外径が目標ガラスファイバ外径から+0.2μm以下の範囲内に入るように、前記光ファイバの線引速度をV(m/分)としたときに、前記Da及びDbの長さが「V/Da≦1.0 且つ V/Db≦2.3」を満たすように設定することを特徴とする光ファイバの製造装置。
  4.  請求項1または2に記載の製造方法により製造された光ファイバであって、ガラスファイバ径の標準偏差値が0.15μm以下であることを特徴とする光ファイバ。
  5.  前記光ファイバの1120cm-1近傍の反射スペクトルが1119.83cm-1以上にピークをもつ、若しくは、2250cm-1近傍の吸収スペクトルが2248.54cm-1以上にピークをもつことを特徴とする請求項4に記載の光ファイバ。
  6.  前記光ファイバの残留応力が径方向内側から外側に向かって単調増加すると共に、前記区間の引張応力分布を直線近似したときの勾配が、+0.0~+0.5MPa/μmであることを特徴とする請求項4または5に記載の光ファイバ。
PCT/JP2012/072904 2012-01-10 2012-09-07 光ファイバの製造方法および製造装置並びに光ファイバ WO2013105302A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US14/345,699 US9475722B2 (en) 2012-01-10 2013-01-09 Optical fiber producing method and apparatus and optical fiber
EP13736334.7A EP2803643B1 (en) 2012-01-10 2013-01-09 Optical fiber production method and optical fiber
RU2014132870A RU2612176C2 (ru) 2012-01-10 2013-01-09 Способ и устройство для изготовления оптического волокна и оптическое волокно
PCT/JP2013/050218 WO2013105579A1 (ja) 2012-01-10 2013-01-09 光ファイバの製造方法および製造装置並びに光ファイバ
JP2013553299A JP5907177B2 (ja) 2012-01-10 2013-01-09 光ファイバの製造方法
KR1020147018607A KR20140121397A (ko) 2012-01-10 2013-01-09 광섬유의 제조 방법 및 제조 장치, 및 광섬유
CN201380005190.XA CN104039724B (zh) 2012-01-10 2013-01-09 光纤的制造方法及制造装置以及光纤

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012001743 2012-01-10
JP2012-001743 2012-01-10

Publications (1)

Publication Number Publication Date
WO2013105302A1 true WO2013105302A1 (ja) 2013-07-18

Family

ID=48781267

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2012/072904 WO2013105302A1 (ja) 2012-01-10 2012-09-07 光ファイバの製造方法および製造装置並びに光ファイバ
PCT/JP2013/050218 WO2013105579A1 (ja) 2012-01-10 2013-01-09 光ファイバの製造方法および製造装置並びに光ファイバ

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/050218 WO2013105579A1 (ja) 2012-01-10 2013-01-09 光ファイバの製造方法および製造装置並びに光ファイバ

Country Status (7)

Country Link
US (1) US9475722B2 (ja)
EP (1) EP2803643B1 (ja)
JP (1) JP5907177B2 (ja)
KR (1) KR20140121397A (ja)
CN (1) CN104039724B (ja)
RU (1) RU2612176C2 (ja)
WO (2) WO2013105302A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021519252A (ja) * 2018-03-22 2021-08-10 コーニング インコーポレイテッド 光ファイバ線引きシステムにおけるフロー不安定性抑制方法および装置

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5817801B2 (ja) * 2013-10-10 2015-11-18 住友電気工業株式会社 光ファイバ冷却装置及び光ファイバ製造方法
CN104496171B (zh) * 2014-11-27 2016-09-07 南京华信藤仓光通信有限公司 降低光纤损耗的方法
JP6545568B2 (ja) * 2015-08-11 2019-07-17 株式会社フジクラ 光ファイバ素線の製造方法
US10308544B2 (en) * 2015-10-13 2019-06-04 Corning Incorporated Gas reclamation system for optical fiber production
WO2018102531A1 (en) * 2016-11-30 2018-06-07 Corning Incorporated Method and apparatuse for controlling glass tube taper
JPWO2019044703A1 (ja) * 2017-08-28 2020-10-08 住友電気工業株式会社 光ファイバの製造方法
KR102109233B1 (ko) 2017-09-18 2020-05-12 주식회사 엘지화학 인장강도가 향상된 탄소나노튜브 섬유 제조 방법
JP2019120894A (ja) 2018-01-11 2019-07-22 住友電気工業株式会社 光ファイバ、光ファイバ心線および光伝送システム
KR102645920B1 (ko) * 2018-03-23 2024-03-08 스미토모 덴키 고교 가부시키가이샤 노내 가스 공급 장치, 광 파이버 제조 장치, 광 파이버의 제조 방법
WO2020027125A1 (ja) * 2018-08-01 2020-02-06 住友電気工業株式会社 光接続部品
JP7360270B2 (ja) 2018-09-18 2023-10-12 株式会社フジクラ 光ファイバの製造方法及び光ファイバの製造装置
JP7281328B2 (ja) * 2019-04-12 2023-05-25 日東電工株式会社 プラスチック光ファイバーの製造方法
EP4149894A1 (en) 2020-05-15 2023-03-22 Corning Incorporated Optical fiber forming apparatus
CN113788613B (zh) * 2021-11-16 2022-02-15 成都中住光纤有限公司 一种光纤制备系统及其方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08188439A (ja) * 1995-01-13 1996-07-23 Sumitomo Electric Ind Ltd 光ファイバ線引装置および線引方法
JPH10182181A (ja) * 1996-12-18 1998-07-07 Shin Etsu Chem Co Ltd 光ファイバの製造方法
JP2003335545A (ja) * 2002-03-15 2003-11-25 Furukawa Electric Co Ltd:The 光ファイバの線引き方法および線引き装置
JP2004224587A (ja) * 2003-01-20 2004-08-12 Sumitomo Electric Ind Ltd 光ファイバ母材の線引き方法及び線引き装置
JP2006240930A (ja) * 2005-03-04 2006-09-14 Hitachi Cable Ltd 光ファイバ線引炉及び光ファイバの線引方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5879425A (en) * 1971-09-20 1999-03-09 Litton Systems, Inc. Method for fabrication of microchannel multiplier plates
US4437870A (en) * 1981-11-05 1984-03-20 Corning Glass Works Optical waveguide fiber cooler
NL8203843A (nl) * 1982-10-04 1984-05-01 Philips Nv Werkwijze en inrichting voor het trekken van een optische vezel uit een vaste voorvorm die in hoofdzaak uit sio2 en gedoteerd sio2 bestaat.
DE3625731A1 (de) * 1986-07-30 1988-02-11 Kabelmetal Electro Gmbh Verfahren zur herstellung von lichtwellenleitern
SU1740337A1 (ru) * 1990-01-15 1992-06-15 Нижегородский Городской Центр Научно-Технического Творчества Молодежи Устройство дл выт жки оптических волокон
US5284499A (en) * 1992-05-01 1994-02-08 Corning Incorporated Method and apparatus for drawing optical fibers
US5637130A (en) * 1993-07-13 1997-06-10 Sumitomo Electric Industries, Inc. Method and furnace for drawing optical fibers
DE4339077C2 (de) * 1993-11-16 1997-03-06 Rheydt Kabelwerk Ag Verfahren zum Ziehen einer optischen Faser und Vorrichtung zu dessen Durchführung
JP3314906B2 (ja) * 1995-07-05 2002-08-19 住友電気工業株式会社 光ファイバ線引き炉
KR0165211B1 (ko) * 1995-09-29 1998-12-15 김광호 광섬유의 인출 장치
DE69916079T2 (de) 1998-06-24 2005-02-17 Pirelli & C. S.P.A. Verfahren und vorrichtung zum drehen einer beschichteten optischen faser während des ziehens aus einer vorform
CN1247477C (zh) 1999-05-27 2006-03-29 住友电气工业株式会社 光纤的制造装置和制造方法
JP4356155B2 (ja) 1999-10-12 2009-11-04 住友電気工業株式会社 光ファイバの製造方法
JP3937665B2 (ja) * 1999-11-01 2007-06-27 住友電気工業株式会社 光ファイバ製造方法
WO2002048060A2 (en) * 2000-12-14 2002-06-20 Corning Incorporated Method and apparatus for continuously manufacturing optical preform and fiber
JP4389409B2 (ja) 2001-05-31 2009-12-24 住友電気工業株式会社 光ファイバの製造方法
US20020178762A1 (en) * 2001-06-01 2002-12-05 Foster John D. Methods and apparatus for forming and controlling the diameter of drawn optical glass fiber
JP2003176149A (ja) 2001-12-07 2003-06-24 Fujikura Ltd 光ファイバ素線の製造方法および装置
WO2004007383A1 (ja) * 2002-07-10 2004-01-22 Sumitomo Electric Industries, Ltd. 光ファイバ及びその製造方法
JP4663277B2 (ja) 2004-08-18 2011-04-06 株式会社フジクラ 光ファイバ素線及びその製造方法
JP5023016B2 (ja) * 2007-08-10 2012-09-12 信越化学工業株式会社 光ファイバ製造装置および線引き炉のシール方法
JP5624796B2 (ja) * 2010-04-30 2014-11-12 株式会社フジクラ 光ファイバ素線の製造装置及び製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08188439A (ja) * 1995-01-13 1996-07-23 Sumitomo Electric Ind Ltd 光ファイバ線引装置および線引方法
JPH10182181A (ja) * 1996-12-18 1998-07-07 Shin Etsu Chem Co Ltd 光ファイバの製造方法
JP2003335545A (ja) * 2002-03-15 2003-11-25 Furukawa Electric Co Ltd:The 光ファイバの線引き方法および線引き装置
JP2004224587A (ja) * 2003-01-20 2004-08-12 Sumitomo Electric Ind Ltd 光ファイバ母材の線引き方法及び線引き装置
JP2006240930A (ja) * 2005-03-04 2006-09-14 Hitachi Cable Ltd 光ファイバ線引炉及び光ファイバの線引方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021519252A (ja) * 2018-03-22 2021-08-10 コーニング インコーポレイテッド 光ファイバ線引きシステムにおけるフロー不安定性抑制方法および装置
JP7328984B2 (ja) 2018-03-22 2023-08-17 コーニング インコーポレイテッド 光ファイバ線引きシステムにおけるフロー不安定性抑制方法および装置

Also Published As

Publication number Publication date
EP2803643A1 (en) 2014-11-19
RU2612176C2 (ru) 2017-03-02
JPWO2013105579A1 (ja) 2015-05-11
WO2013105579A1 (ja) 2013-07-18
CN104039724B (zh) 2017-02-22
CN104039724A (zh) 2014-09-10
US20140226948A1 (en) 2014-08-14
US9475722B2 (en) 2016-10-25
EP2803643A4 (en) 2015-10-14
EP2803643B1 (en) 2018-04-04
KR20140121397A (ko) 2014-10-15
JP5907177B2 (ja) 2016-04-26
RU2014132870A (ru) 2016-02-27

Similar Documents

Publication Publication Date Title
JP5907177B2 (ja) 光ファイバの製造方法
CN102667554B (zh) 低损耗光纤
JP2005162610A (ja) 光ファイバの作製方法
JP6545568B2 (ja) 光ファイバ素線の製造方法
JP2018525661A (ja) 大きい有効面積及び低い曲げ損失を有する光ファイバ
WO2013084765A1 (ja) 光ファイバ、光伝送システムおよび光ファイバ製造方法
CN111032588B (zh) 光纤的制造方法
US11091385B2 (en) Method for manufacturing optical fiber
WO2000073224A1 (fr) Dispositif de production et procede pour fibre optique
CN100389084C (zh) 光纤的制造装置和制造方法
JP2944534B2 (ja) 光ファイバの引出方法及び装置
US10927033B2 (en) Optical fiber production method
US11008245B2 (en) Optical fiber production method
JP2000335933A (ja) 光ファイバの製造方法及び製造装置
JP2003335545A (ja) 光ファイバの線引き方法および線引き装置
US11667560B2 (en) Manufacturing method for optical fiber and manufacturing apparatus for optical fiber
JP4252891B2 (ja) 光ファイバの線引き方法
JP2001114525A (ja) 光ファイバの製造方法及び製造装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12865396

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12865396

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP