WO2013084765A1 - 光ファイバ、光伝送システムおよび光ファイバ製造方法 - Google Patents

光ファイバ、光伝送システムおよび光ファイバ製造方法 Download PDF

Info

Publication number
WO2013084765A1
WO2013084765A1 PCT/JP2012/080714 JP2012080714W WO2013084765A1 WO 2013084765 A1 WO2013084765 A1 WO 2013084765A1 JP 2012080714 W JP2012080714 W JP 2012080714W WO 2013084765 A1 WO2013084765 A1 WO 2013084765A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
optical
less
central core
wavelength
Prior art date
Application number
PCT/JP2012/080714
Other languages
English (en)
French (fr)
Inventor
中西 哲也
小西 達也
一也 桑原
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to EP12856367.3A priority Critical patent/EP2790045B1/en
Priority to CN201280060590.6A priority patent/CN103988103B/zh
Publication of WO2013084765A1 publication Critical patent/WO2013084765A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/028Optical fibres with cladding with or without a coating with core or cladding having graded refractive index
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/027Fibres composed of different sorts of glass, e.g. glass optical fibres
    • C03B37/02718Thermal treatment of the fibre during the drawing process, e.g. cooling
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/027Fibres composed of different sorts of glass, e.g. glass optical fibres
    • C03B37/02718Thermal treatment of the fibre during the drawing process, e.g. cooling
    • C03B37/02727Annealing or re-heating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/04Fibre optics, e.g. core and clad fibre compositions
    • C03C13/045Silica-containing oxide glass compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/04Fibre optics, e.g. core and clad fibre compositions
    • C03C13/045Silica-containing oxide glass compositions
    • C03C13/046Multicomponent glass compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/07Impurity concentration specified
    • C03B2201/075Hydroxyl ion (OH)
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/08Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant
    • C03B2201/12Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant doped with fluorine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/20Doped silica-based glasses doped with non-metals other than boron or fluorine
    • C03B2201/23Doped silica-based glasses doped with non-metals other than boron or fluorine doped with hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/56Annealing or re-heating the drawn fibre prior to coating

Definitions

  • the present invention relates to an optical fiber, an optical transmission system, and an optical fiber manufacturing method.
  • An optical fiber used as an optical transmission line in an optical transmission network corresponding to a transmission speed of 100 Gbit / s or more is required to have low loss and low nonlinearity.
  • the nonlinear refractive index of the optical fiber is n 2 and the effective area of the optical fiber is Aeff
  • the nonlinearity of the optical fiber is defined by n 2 / Aeff.
  • the effective area Aeff of a general-purpose single mode optical fiber (SMF) compliant with the ITU-T G.652 standard is about 80 ⁇ m 2 at a wavelength of 1550 nm.
  • SMF general-purpose single mode optical fiber
  • it is desirable effective area Aeff is 110 [mu] m 2 or more 180 [mu] m 2 or less.
  • the effective area Aeff increases, the microbend loss increases and the loss increases when the cable is formed. Further, when the effective area Aeff increases, the connection loss with the general-purpose single mode optical fiber increases. Although it depends on the refractive index structure of the optical fiber, the Young's modulus and thickness of the coating resin, etc., the effective area Aeff is preferably 150 ⁇ m 2 or less in consideration of the effect of the effective area Aeff on the microbend and connection loss. .
  • An optical fiber (PSCF) having a core made of pure silica is known as an optical fiber for reducing loss.
  • an optical fiber (GCF) including GeO 2 in the core has been considered to be inferior to PSCF with respect to the large-capacity communication as described above because Rayleigh scattering loss is larger than PSCF due to GeO 2 concentration fluctuation.
  • PSCF is generally expensive. There is a need for an inexpensive optical fiber that can achieve low loss and low nonlinearity.
  • the present invention relates to an inexpensive and low-loss optical fiber that is suitably used as an optical transmission line in an optical transmission network, an optical transmission system in which such an optical fiber is laid as a transmission line, and such an optical fiber. It aims to provide a method that can be used.
  • the optical fiber of the present invention is an optical fiber made of silica glass, and includes a central core including a central axis, an optical cladding surrounding the central core, and a jacket surrounding the optical cladding.
  • the central core contains GeO 2 , the relative refractive index difference ⁇ core is 0.2% or more and 0.32% or less, the relative refractive index difference at the radial coordinate r is ⁇ (r), and the core radius is a.
  • the refractive index volume v represented by is 9% ⁇ ⁇ m 2 or more and 18% ⁇ ⁇ m 2 or less.
  • the jacket has a relative refractive index difference ⁇ J of 0.03% or more and 0.20% or less.
  • the fictive temperature of the glass constituting the central core is 1400 ° C. or higher and 1560 ° C. or lower, the stress remaining in the central core is compressive stress, the 2 m fiber cutoff wavelength is 1300 nm or longer, and the cutoff wavelength when the fiber length is 100 m. Is 1500 nm or less, the effective area at a wavelength of 1550 nm is 110 ⁇ m 2 or more, and the transmission loss at a wavelength of 1550 nm is 0.19 dB / km or less.
  • the fictive temperature may be 1530 ° C. or lower.
  • the ESI (Equivalent Step Index) refractive index is used as the refractive index of the central core.
  • the diameter at which the differential value of the change in the radial direction of the refractive index at the boundary between the optical cladding and the jacket is the maximum is defined as the outer diameter of the optical cladding, and the refractive index of the jacket is from the outer diameter of the optical cladding to the outermost periphery of the glass.
  • the optical fiber of the present invention may have a transmission loss at a wavelength of 1550 nm of 0.178 dB / km or less and a transmission loss at a wavelength of 1310 nm of 0.315 dB / km or less.
  • a stress of a portion of 50% or more of the cross-sectional area of the jacket may be a tensile stress.
  • the absolute value of the stress remaining in the central core may be 30 MPa or less.
  • the increase in transmission loss due to the OH group at a wavelength of 1383 nm may be 0.02 dB / km or less.
  • the central core may contain fluorine.
  • the viscosity of the jacket may be higher than the viscosity of the central core by 0.3 poise or more.
  • the change in the relative refractive index difference of the central core when annealed at a temperature of 1300 ° C. for 1 minute or more after drawing may be 0.002% or more and 0.02% or less.
  • the stress difference between the central core and the optical cladding may be 20 MPa or less.
  • A ⁇ exp (B / ⁇ )
  • A 6.5 ⁇ 10 11 or less
  • B 48 It may be .5 or more.
  • a primary coating layer and a secondary coating layer surrounding the jacket may be further provided, and the Young's modulus of the secondary coating layer may be 800 MPa or more, and the Young's modulus of the primary coating layer may be 0.2 MPa or more and 1 MPa or less.
  • the strand outer diameter may be 240 ⁇ m or more, and the thickness of the secondary coating layer may be 10 ⁇ m or more.
  • the optical transmission system of the present invention is an optical transmission system including two repeaters and an optical transmission path connecting the two repeaters, and the optical transmission path has a distance of 70 km or more. A section of 90% or more of the path is constituted by the optical fiber of the present invention.
  • the optical transmission system of the present invention is an optical transmission system including an optical transmission path constituted by the optical fiber of the present invention, and performs distributed Raman amplification of signal light in this optical fiber.
  • the optical fiber manufacturing method of the present invention is a method of manufacturing a drawn optical fiber by melting an optical fiber preform in a drawing furnace, and a cross section of the optical fiber at the time when the drawn optical fiber comes out of the drawing furnace.
  • the average temperature is set to 1200 ° C. or more and 1550 ° C. or less.
  • the drawn optical fiber may have a temperature of 1000 ° C. or higher and may be inserted into a heating furnace installed downstream of the drawing furnace.
  • an optical fiber preform includes a central core including a central axis, an optical cladding that surrounds the central core, and a jacket that surrounds the optical cladding, and an interface between the optical cladding and the jacket.
  • the OH concentration may be 1000 wtppm or less.
  • an inexpensive and low-loss optical fiber that is suitably used as an optical transmission line in an optical transmission network is provided.
  • GeO 2 is a graph showing the relationship between L / V and reachable fictive temperature of the optical fiber which is contained in the core.
  • the present inventor increases loss components other than Rayleigh scattering (hereinafter referred to as “surplus loss”) even if Rayleigh scattering is reduced by reducing the fictive temperature of the glass by slow cooling. It has been found that an optical fiber with a low loss is not always obtained. As far as the present inventor knows, S. Sakaguchi et al. And JP2006-58494A, which describe the reduction of optical fiber loss by slow cooling of glass, and the reduction of optical fiber loss by viscosity matching between the central core and the cladding. According to M.
  • FIG. 1 is a cross-sectional view of an optical fiber 1 according to an embodiment of the present invention.
  • the optical fiber 1 is an optical fiber made of SiO 2 glass, and includes a central core 11 including a central axis, an optical cladding 12 surrounding the central core 11, and a jacket 13 surrounding the optical cladding 12.
  • the central core 11 contains GeO 2 and may further contain a fluorine element.
  • the optical cladding 12 has a refractive index lower than that of the central core 11.
  • the optical cladding 12 may be pure SiO 2 glass or may be made of SiO 2 glass containing fluorine element.
  • the jacket 13 is made of pure SiO 2 glass and may contain a chlorine element.
  • the loss of the optical fiber 1 can be reduced by reducing the Rayleigh scattering of the optical fiber 1.
  • it is effective to reduce the fictive temperature of the glass of the optical fiber 1.
  • the cooling rate of the spun optical fiber is decreased to promote the structural relaxation of the glass network.
  • This is a method of reducing the fictive temperature (slow cooling method).
  • the second method is a method for reducing the fictive temperature of the glass by adding a small amount of an additive that promotes structural relaxation of the central core 11 and does not increase transmission loss by light absorption to the central core 11.
  • Rayleigh scattering may be reduced by either the first method or the second method, and Rayleigh scattering may be reduced by appropriately combining both methods.
  • the slow cooling method was used.
  • the manufacturing method of the optical fiber 1 is as follows. First, a core that guides light is generated by a gas phase synthesis method such as VAD, OVD, MCVD, and PCVD, and a jacket layer is added around the core by a VAD, OVD, APVD, rod-in collapse method, or the like. Then, an optical fiber preform is formed. Here, an intermediate optical cladding layer may be further provided between the core and the jacket by VAD, OVD, MCVD, rod-in collapse method or the like. The optical fiber preform thus prepared is held by a drawing tower, the lower end is heated to a temperature higher than the working point, and the tip of the molten glass droplet is appropriately drawn and spun to obtain a glass fiber.
  • a gas phase synthesis method such as VAD, OVD, MCVD, and PCVD
  • a jacket layer is added around the core by a VAD, OVD, APVD, rod-in collapse method, or the like.
  • the glass fiber While controlling the take-off speed so that the outer diameter of the glass fiber becomes a predetermined value, it is formed as an optical fiber having a resin coating layer through a die for adhering resin, a UV furnace for curing the resin, etc.
  • the optical fiber is wound by a winding bobbin.
  • the resin coating layer has a two-layer structure, and includes a primary coating layer that prevents external force from being directly transmitted to the glass fiber, and a secondary coating layer that prevents damage.
  • the dies for applying the respective resin layers may be arranged in series in the spinning process. Moreover, you may apply
  • the surface temperature of the glass fiber when entering the die can be controlled to a suitable temperature.
  • a lower Reynolds number of the gas flowing in the apparatus for controlling the cooling rate is desirable because vibration due to generation of turbulent flow applied to the spun fiber is reduced.
  • controlling the cooling rate of the glass fiber it is possible to reduce the Rayleigh scattering and obtain an optical fiber having a low transmission loss.
  • the UV furnace for curing the resin can appropriately control the curing speed of the resin by feedback controlling the temperature inside the furnace in addition to the intensity of the UV light.
  • a magnetron or an ultraviolet LED is preferably used.
  • an ultraviolet LED since the light source itself does not generate heat, a mechanism for supplying warm air is provided separately so that the temperature in the furnace becomes appropriate.
  • the degree of decrease in the UV light power during drawing is set in advance. It is possible to monitor and adjust the UV light power by the drawing time so that the power of the UV light applied to the coating layer becomes constant. Further, the UV light leaking from the core tube may be monitored and controlled so that the power of the UV light applied to the coating layer is constant. Thereby, the breaking strength of the optical fiber that is uniform over the entire length of the optical fiber can be obtained.
  • the thickness of the secondary coating layer is preferably set appropriately so as to maintain the damage resistance.
  • the thickness of the secondary coating layer is preferably 10 ⁇ m or more, more preferably 20 ⁇ m or more.
  • the optical fiber 1 manufactured in this manner and wound by the winding bobbin is colored as necessary and used as a final product such as an optical cable or an optical cord.
  • the optical fiber spun in the drawing furnace enters the die through the quenching section and the heating furnace which are the lower ends of the drawing furnace.
  • the quenching section extends from a taper portion at the lower end of the melted optical fiber preform from 90% of the preform diameter to 5% to a section where the spun optical fiber reaches 1400 ° C. And continuously cooling at a cooling rate of 1000 ° C./s or more and 20000 ° C./s or less.
  • the heating furnace is provided below a surface (drawing furnace outlet) where the spun optical fiber substantially exits from the drawing furnace. The distance from the exit of the drawing furnace to the entrance of the heating furnace is 1 m or less.
  • FIG. 2 is a conceptual diagram of an optical fiber manufacturing apparatus used in the embodiment of the optical fiber manufacturing method of the present invention.
  • a heat insulation structure that prevents a decrease in the temperature of the spun optical fiber 1 may be provided.
  • the temperature of the optical fiber when entering the heating furnace 20 is preferably 1000 ° C. or higher, more preferably 1400 ° C. or higher.
  • the length L of the heating furnace is set so that L / V is 0.05 s or more when the drawing speed is V.
  • the heating furnace is preferably composed of a plurality of furnaces. Thereby, the cooling rate of the optical fiber can be controlled more precisely.
  • the cooling rate until the optical fiber entering the heating furnace is cooled to a temperature of 1100 ° C. or lower is preferably 5000 ° C./s or lower.
  • the drawing speed V is preferably 20 m / s or more.
  • the length L of the heating furnace needs to be 4 m.
  • FIG. 3 shows that GeO 2 was contained in the core based on the data in Table 1 of K. Saito et al., J. Am. Ceram. Soc., Vol. 89 [1], pp. 65-69 (2006). It is a graph which shows the relationship between L / V and reachable virtual temperature in an optical fiber. When L / V ⁇ 0.5 s is allowed from the request for economy, the reachable fictive temperature is 1400 ° C.
  • FIG. 4 and 5 are graphs showing the relationship between the virtual temperature and the transmission loss in the optical fiber, which is created based on the equation (2) of K. Saito et al.
  • FIG. 4 shows a case where the relative refractive index difference of the central core is 0.32%
  • FIG. 5 shows a case where the relative refractive index difference of the central core is 0.2%.
  • “excess loss” refers to transmission loss (including macrobendros and microbendross) other than those caused by Rayleigh scattering, Brillouin scattering, and Raman scattering. It can be seen that when the surplus loss is 0.03 dB / km or more, it is difficult to set the transmission loss at a wavelength of 1550 nm to 0.18 dB / km even if the fictive temperature is 1400 ° C.
  • FIG. 6 is a graph showing the relationship between the stress remaining in the core and the excess loss. It can be seen that the surplus loss can be reduced to 0.03 dB / km or less by making the residual stress of the core a compressive stress. Moreover, surplus loss can be 0.025 dB / km or less by setting it as the compressive stress whose absolute value is 5 MPa or more.
  • a lower loss optical fiber can be obtained because Rayleigh scattering due to the concentration fluctuation component is reduced by reducing the relative refractive index difference of the central core.
  • the stress difference between the central core and the optical cladding is 20 MPa or less because the yield at which the surplus loss is 0.03 dB / km is 90% or more.
  • the above-mentioned stress should just adjust the average value in a center core, and the stress may fluctuate in the center core.
  • the central core 11 of the optical fiber 1 contains GeO 2 and has a relative refractive index difference ⁇ core of 0.2% or more and 0.32% or less.
  • ⁇ core of 0.2% or more and 0.32% or less.
  • formula (2) The refractive index volume v represented by is 9% ⁇ ⁇ m 2 or more and 18% ⁇ ⁇ m 2 or less.
  • the jacket 13 has a relative refractive index difference ⁇ J of 0.03% or more and 0.20% or less.
  • the fictive temperature of the glass constituting the central core 11 is 1400 ° C. or higher and 1560 ° C. or lower.
  • the stress remaining in the central core 11 is a compressive stress.
  • the 2 m fiber cutoff wavelength is 1300 nm or more, and the cutoff wavelength at a fiber length of 100 m is 1500 nm or less.
  • the effective area at a wavelength of 1550 nm is 110 ⁇ m 2 or more, and the transmission loss at a wavelength of 1550 nm is 0.19 dB / km or less.
  • the optical fiber 1 can significantly reduce non-linearity compared to a general-purpose single mode optical fiber without excessively increasing the microbend loss at a wavelength of 1550 nm.
  • An optical fiber is manufactured by slowly drawing an optical fiber preform from which such characteristics (refractive index profile, cutoff wavelength, effective area) are obtained. 4 and 5, Rayleigh scattering can be reduced by setting the fictive temperature of the core to 1560 ° C. or lower, preferably 1530 ° C. or lower. Furthermore, it is desirable that the fictive temperature is low. However, when realizing a fictive temperature of 1400 ° C. or lower by slow cooling drawing, it is necessary to make L / V excessively large, and it becomes difficult to satisfy economic efficiency. Further low loss can be realized by adding a trace amount of an additive (alkali metal) that reduces the viscosity of the core.
  • an additive alkali metal
  • the residual strain of the core is a compressive stress while reducing the fictive temperature, it is possible to realize a range where the excess loss is 0.03 dB / km or less from FIG. 6, and the transmission loss at the wavelength of 1550 nm is 0.00.
  • a fiber with 190 dB / km or less can be easily obtained.
  • the increase in loss after cable formation due to the increase in microbend loss can be suppressed. Can do.
  • the transmission loss after cable formation is 0.19 dB / km or less, preferably 0.18 dB / km or less, and more preferably 0.178 dB / km or less.
  • the optical fiber having the pure silica as the central core can reduce the loss, the optical fiber having the pure silica as the central core is generally expensive to manufacture.
  • An optical fiber satisfying the above with a core whose refractive index is increased by GeO 2 has an economic advantage as an optical fiber for high-speed and large-capacity communication exceeding 100 Gbit / s.
  • the 2 m fiber cutoff wavelength is 1400 nm or more. More preferably, the absolute value of the compressive stress is 5 MPa or more. More preferably, the transmission loss at a wavelength of 1550 nm is 0.178 dB / km or less, and the transmission loss at a wavelength of 1310 nm is 0.315 dB / km or less. More preferably, the transmission loss at a wavelength of 1550 nm is 0.175 dB / km or less, and the transmission loss at a wavelength of 1310 nm is 0.310 dB / km or less.
  • the refractive index structure may be any of a step type, a W type, a trench type, and a ring core type.
  • a portion in which most of the power of light propagates in the refractive index profile and substantially determines the mode field is defined as a central core, and a portion surrounding the central core is defined as an optical cladding.
  • the residual stress of an optical fiber is measured using birefringence in an optical fiber as described in JP2009-168813A.
  • the residual stress of the optical fiber can also be measured from the amount of change in the refractive index obtained by performing surface analysis of the refractive index of the cross section of the optical fiber and the photoelastic coefficient specific to the material.
  • FIG. 7 is a graph showing the radial distribution of the residual stress of the optical fiber.
  • the viscosity of the core at the same temperature is lower than the viscosity of the jacket.
  • the compressive stress changes depending on the drawing tension. In principle, it is known that a higher compressive stress remains as the drawing tension increases.
  • the tension applied to the optical fiber glass during drawing is desirably 50 g or more, more preferably 100 g or more.
  • an absolute value of the core compressive stress can be adjusted to 5 MPa or more by adding an additive for reducing the viscosity of the core in the core.
  • the alkali metal element can greatly reduce the viscosity of the silica glass in a small amount, the influence on the increase in Rayleigh scattering due to the concentration fluctuation can be suppressed to a small extent and it is desirable as an additive.
  • the concentration of the alkali metal element in the core after drawing is preferably 1 wtppb or more and 10 wtppm or less.
  • FIG. 8 is a graph showing the relationship between the Raman intensity and the Raman shift.
  • a baseline is drawn in the wavenumber range between 525 cm ⁇ 1 and 475 cm ⁇ 1 to calculate the D1 peak area sandwiched between the baseline and the spectrum.
  • a base line is drawn in a wave number range between 880 cm ⁇ 1 and 740 cm ⁇ 1 to calculate an 800 cm ⁇ 1 peak area sandwiched between the base line and the spectrum.
  • the ratio of the D1 peak area to the 800 cm ⁇ 1 peak area and the IR method (D.-L. Kim et al., J. Non-Cryst. Solids, Vol.286, pp.136) using bulk glass or the like in advance. -138 (2001)
  • the virtual temperature of the optical fiber can be obtained using the relationship with the virtual temperature measured.
  • a stress of a portion of 50% or more of the cross-sectional area of the jacket in a cross section perpendicular to the fiber axis is a tensile stress. Since the residual stress in the optical fiber is zero when integrated over the entire cross section, to make the residual stress in the central core a compressive stress, it is necessary to leave a tensile force in the jacket for the amount of compressive force applied to the central core. is there. By adjusting the tension, thermal history, and composition of the optical fiber so that the cross-sectional area of 50% or more of the jacket becomes the tensile stress, it becomes easy to realize the residual stress of the central core as the compressive stress.
  • the absolute value of the stress remaining in the central core is 30 MPa or less. More preferably, the absolute value of the stress remaining in the central core is 10 MPa or less.
  • the optical fiber of this embodiment preferably has an increase in transmission loss due to OH groups at a wavelength of 1383 nm of 0.02 dB / km or less.
  • the presence of OH absorption causes an increase in transmission loss at a wavelength of 1550 nm.
  • the increase in transmission loss due to the OH group at a wavelength of 1383 nm is 0.02 dB / km or less, it is desirable because the increase in transmission loss at a wavelength of 1550 nm can be 0.004 dB / km or less.
  • the optical fiber of the present embodiment preferably includes fluorine in the central core portion. Further, it is preferable that the viscosity of the jacket at a temperature of 1300 ° C. is higher than the viscosity of the central core by 0.3 poise or more. Since fluorine is contained in the core part, the viscosity of the core is lowered, so that it is easy to make the residual stress in the core part a compressive stress, and transmission loss independent of wavelength can be reduced. However, since the Rayleigh scattering resulting from concentration fluctuations increases when fluorine is increased, it is preferable that the amount of decrease in the relative refractive index by addition of fluorine is ⁇ 0.1% or more and 0% or less.
  • the change in the relative refractive index difference of the central core is 0.002% or more and 0.02% or less when annealed at a temperature of 1300 ° C. for 1 minute or more after drawing. It is.
  • the change in the relative refractive index difference of the central core is 0.002% or more and 0.02% or less, the excess loss increases the stress in the core.
  • the stress difference between the central core and the optical cladding is 20 MPa or less.
  • the stress difference between the central core and the optical cladding part is 20 MPa or less.
  • the optical fiber of the present embodiment further includes a primary coating layer and a secondary coating layer surrounding the jacket, the Young's modulus of the secondary coating layer is 800 MPa or more, and the Young's modulus of the primary coating layer is 0.2 MPa or more and 1 MPa or less. Preferably there is. By doing so, it is possible to reduce the microbend loss and suppress the increase in the transmission loss during cable formation.
  • the optical fiber of the present embodiment preferably has a strand outer diameter of 240 ⁇ m or more and a secondary coating layer thickness of 10 ⁇ m or more.
  • a larger coating diameter is desirable.
  • the strand outer diameter is 240 ⁇ m or more, a practically sufficient microbend loss can be obtained.
  • the glass diameter of the optical fiber may be adjusted. In that case, a larger glass outer diameter is desirable.
  • optical transmission system using the optical fiber of the present invention as an optical transmission line has the following aspect.
  • the distance of the optical transmission path between repeaters is 70 km or more, and the optical fiber of the present invention is laid in a section of 90% or more of the optical transmission path.
  • the distance of the optical transmission line between the repeaters is 100 km or more, and the optical fiber of the present invention is preferably laid in a section of 90% or more of the optical transmission line. The longer the distance of the optical transmission path between repeaters, the greater the effect of transmission loss on OSNR.
  • the optical fiber of the present invention the performance required for the transmission equipment can be further relaxed.
  • the optical transmission system of the second aspect is provided with the optical fiber of the present invention, and performs distributed Raman amplification of signal light in this optical fiber.
  • the excitation efficiency of distributed Raman amplification can be increased.
  • the method of manufacturing the optical fiber of the present embodiment is a method of manufacturing an optical fiber by drawing a base material in a drawing furnace, wherein the spun optical fiber exits the drawing furnace and is substantially air.
  • the average temperature of the cross section of the optical fiber at the contact position is set to 1200 ° C. or more and 1550 ° C. or less.
  • the temperature of the optical fiber at a position in contact with the air at the outlet of the drawing furnace is higher than 1550 ° C., the controllability of the outer diameter of the optical fiber is impaired due to the generation of turbulence. Therefore, the temperature is desirably 1550 ° C. or lower.
  • the cooling rate is excessively increased, transmission loss increases. Therefore, it is desirable to set the above temperature range.
  • the temperature of the optical fiber when entering a heating furnace installed downstream of the drawing furnace is 1000 ° C. or higher.
  • the holding temperature of the optical fiber that can promote a decrease in the fictive temperature is 1000 ° C. or higher.
  • the temperature at which the optical fiber enters the heating furnace is 1200 ° C. or higher.
  • the optical fiber manufacturing method of the present embodiment it is preferable to draw using a base material having an OH concentration of 1000 wtppm or less at the interface between the optical cladding and the jacket.
  • a base material having an OH concentration of 1000 wtppm or less By slowing down the cooling rate of the optical fiber, the diffusion of OH groups in the base material is facilitated, so that the OH absorption loss at a wavelength of 1383 nm increases.
  • the OH concentration at the interface between the optical cladding and the jacket to 1000wtppm or less, there is no excessive OH concentration gradient, and OH diffuses into the core even if the cooling rate is reduced by slow cooling drawing, etc. Can be prevented.
  • the OH concentration is 800 wtppm or less.
  • the thickness of the OH diffusion layer at the interface is 50 nm or less in terms of optical fiber diameter.
  • the optical fiber of the present invention is useful for an optical transmission line that requires a large OSNR.

Abstract

 光伝送ネットワークにおいて好適に用いられる安価で低損失の光ファイバを提供する。光ファイバは、中心コア、光学クラッドおよびジャケットを備える。中心コアは、相対屈折率差が0.2%以上0.32%以下であり、屈折率体積が9%・μm以上18%・μm以下である。ジャケットは、相対屈折率差が0.03%以上0.20%以下である。中心コアを構成するガラスの仮想温度が1400℃以上1560℃以下であり、中心コアに残留する応力が圧縮応力であり、2mファイバカットオフ波長が1300nm以上であり、ファイバ長100mでのカットオフ波長が1500nm以下であり、波長1550nmにおける実効断面積が110μm以上であり、波長1550nmにおける伝送損失が0.19dB/km以下である。

Description

光ファイバ、光伝送システムおよび光ファイバ製造方法
 本発明は、光ファイバ、光伝送システムおよび光ファイバ製造方法に関するものである。
 100Gbit/s以上の伝送速度に対応する光伝送ネットワークにおいて光伝送路として用いられる光ファイバには低損失および低非線形性が求められる。光ファイバの非線形屈折率をnとし、光ファイバの実効断面積をAeffとすると、光ファイバの非線形性はn/Aeffによって規定される。実効断面積Aeffが大きいほどコアへの光パワー密度の集中が避けられるので、非線形性は低減される。ITU-T G.652規格に準拠した汎用のシングルモード光ファイバ(SMF)の実効断面積Aeffは波長1550nmにおいて約80μmである。しかし、非線形性を低減した光ファイバとしては、実効断面積Aeffが110μm以上180μm以下であることが望ましい。
 しかし、実効断面積Aeffが大きくなると、マイクロベンド損失が大きくなり、ケーブル化時に損失が大きくなる。また、実効断面積Aeffが大きくなると、汎用シングルモード光ファイバとの接続損失が大きくなる。光ファイバの屈折率構造、被覆樹脂のヤング率および厚み等により異なるが、実効断面積Aeffがマイクロベンドや接続損失に与える影響を考慮した場合、実効断面積Aeffは150μm以下であるのが好ましい。
 低損失化を図った光ファイバとして、純シリカからなるコアを有する光ファイバ(PSCF)が知られている。一方、GeOをコアに含む光ファイバ(GCF)は、GeOの濃度揺らぎによりPSCFよりレーリー散乱損失が大きいので、上述のような大容量通信に関してPSCFよりも劣ると考えられていた。しかし、PSCFは一般に高価である。低損失および低非線形を実現することができる安価な光ファイバが求められている。
 S. Sakaguchi et al., Applied Optics, Vol.37, No.33, pp.7708-7711 (1998)およびJP2006-58494Aは、GCFの損失を低減する技術を記載している。この技術は、光ファイバ母材を線引して光ファイバを製造する際に該光ファイバを徐冷することでファイバを構成するガラスの仮想温度を低減し、光ファイバにおけるレーリー散乱を低減して低損失化を図るものである。
 本発明は、光伝送ネットワークにおいて光伝送路として好適に用いられる安価で低損失の光ファイバ、このような光ファイバが伝送路として敷設された光伝送システム、および、このような光ファイバを製造することができる方法を提供することを目的とする。
 本発明の光ファイバは、シリカガラスからなる光ファイバであって、中心軸を含む中心コアと、中心コアを囲む光学クラッドと、光学クラッドを囲むジャケットとを備える。中心コアは、GeOを含み、相対屈折率差Δcoreが0.2%以上0.32%以下であり、動径座標rにおける相対屈折率差をΔ(r)としコア半径をaとしたとき(1)式:
Figure JPOXMLDOC01-appb-M000002
で表される屈折率体積vが9%・μm以上18%・μm以下である。ジャケットは、相対屈折率差ΔJが0.03%以上0.20%以下である。中心コアを構成するガラスの仮想温度が1400℃以上1560℃以下であり、中心コアに残留する応力が圧縮応力であり、2mファイバカットオフ波長が1300nm以上であり、ファイバ長100mでのカットオフ波長が1500nm以下であり、波長1550nmにおける実効断面積が110μm以上であり、波長1550nmにおける伝送損失が0.19dB/km以下である。仮想温度は、1530℃以下であってもよい。
 ここで、本明細書では、「相対屈折率差」を、光学クラッドの屈折率noptical claddingを基準とした各部の屈折率差: Δobject=(nobject-noptical cladding)/noptical cladding と定義する。中心コアの屈折率としてESI(Equivalent step index)屈折率を用いる。光学クラッドとジャケットとの境界における屈折率の径方向変化の微分値が最大となる径を光学クラッドの外径と定義し、ジャケットの屈折率は、光学クラッドの外径からガラスの最外周までの屈折率の平均値とする。
 本発明の光ファイバは、波長1550nmにおける伝送損失が0.178dB/km以下であり、波長1310nmにおける伝送損失が0.315dB/km以下であってもよい。ファイバ軸に垂直な断面においてジャケットの断面積のうち50%以上の部分の応力が引張応力であってもよい。中心コアに残留する応力の絶対値が30MPa以下であってもよい。波長1383nmにおけるOH基による伝送損失増加が0.02dB/km以下であってもよい。中心コアにフッ素を含んでもよい。温度1300℃においてジャケットの粘性が中心コアの粘性と比べて0.3poise以上高くてもよい。線引後に温度1300℃で1分以上に亘ってアニールした際の中心コアの相対屈折率差における変化が0.002%以上0.02%以下であってもよい。
 また、本発明の光ファイバは、中心コアと光学クラッド部との応力差が20MPa以下であってもよい。波長1600nm以上の波長範囲における波長λに対する伝送損失αの依存性をα=A・exp(B/λ) なる式で近似したときに、Aが6.5×1011以下であり、Bが48.5以上であってもよい。ジャケットを囲む一次被覆層および二次被覆層を更に備え、二次被覆層のヤング率が800MPa以上であり、一次被覆層のヤング率が0.2MPa以上1MPa以下であってもよい。素線外径が240μm以上であり、二次被覆層の厚みが10μm以上であってもよい。
 本発明の光伝送システムは、二基のリピータと、該二基のリピータとを接続する光伝送路とを含む光伝送システムであって、光伝送路の距離が70km以上であり、その光伝送路の90%以上の区間が本発明の光ファイバで構成されている。或いは、本発明の光伝送システムは、本発明の光ファイバで構成される光伝送路を含む光伝送システムであって、この光ファイバにおいて信号光の分布ラマン増幅を行う。
 本発明の光ファイバ製造方法は、線引炉において光ファイバ母材を溶融して引き出し光ファイバを製造する方法であって、引き出された光ファイバが線引炉から出た時点における光ファイバの断面の平均温度を1200℃以上1550℃以下とする。引き出された光ファイバの温度が1000℃以上で線引炉の下流に設置された加熱炉に入線させてもよい。本発明の光ファイバ製造方法におい、光ファイバ母材は、中心軸を含む中心コアと、この中心コアを囲む光学クラッドと、この光学クラッドを囲むジャケットとを備え、光学クラッドとジャケットとの界面でのOH濃度が1000wtppm以下であってもよい。
 本発明によれば、光伝送ネットワークにおいて光伝送路として好適に用いられる安価で低損失の光ファイバが提供される。
本発明の実施形態の光ファイバの断面図である。
本発明の実施形態の光ファイバ製造方法で使われる光ファイバ製造装置の概念図である。
GeOがコアに含有された光ファイバにおけるL/Vと到達可能な仮想温度との関係を示すグラフである。
光ファイバにおける仮想温度と伝送損失との関係を示すグラフである。
光ファイバにおける仮想温度と伝送損失との関係を示すグラフである。
コアに残留している応力と余剰損失との関係を示すグラフである。
光ファイバの残留応力の径方向分布を示すグラフである。
ラマン強度とラマンシフトとの関係を示すグラフである。
 以下、添付図面を参照して、本発明を実施するための形態を詳細に説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。
 本発明者は、中心コアがGeOを含む場合、徐冷によりガラスの仮想温度を低減してレーリー散乱を低減しても、レーリー散乱以外の損失成分(以降「余剰損失」という。)が増加する場合があり、必ずしも低損失な光ファイバを得られるとは限らないことを見出した。本発明者の知る限り、ガラスの徐冷による光ファイバの低損失化について記載されたS. Sakaguchi et al.およびJP2006-58494Aや、中心コアとクラッドとの粘度整合による光ファイバの低損失化について記載されたM. Ohashi et al., IEEE Photonics Technology Letters, vol.5, No.7, pp.812-814 (1993)には、中心コアにGeOを含む光ファイバの余剰損失と中心コアの残留応力の絶対値の関係については言及されていない。
 図1は、本発明の実施形態である光ファイバ1の断面図である。光ファイバ1は、SiOガラスからなる光ファイバであって、中心軸を含む中心コア11と、中心コア11を囲む光学クラッド12と、光学クラッド12を囲むジャケット13とを備える。中心コア11は、GeOを含み、更にフッ素元素を含んでいてもよい。光学クラッド12は、中心コア11の屈折率より低い屈折率を有する。光学クラッド12は、純SiOガラスであってもよいし、フッ素元素を含むSiOガラスからなっていてもよい。ジャケット13は、純SiOガラスで構成され、塩素元素を含んでいてもよい。
 光ファイバ1のレーリー散乱を低減することで、光ファイバ1の損失を低減することができる。レーリー散乱を低減するには、光ファイバ1のガラスの仮想温度を低減することが有効である。ガラスの仮想温度の低減する方法として以下のような第1の方法および第2の方法がある。
 第1の方法は、光ファイバ母材を線引して光ファイバ1を製造する際に、紡糸された光ファイバの冷却速度を遅くすることで、ガラスのネットワークの構造緩和を進めて、ガラスの仮想温度を低減する方法(徐冷法)である。第2の方法は、中心コア11の構造緩和を促進しつつ光吸収により伝送損失を増大しない微量の添加物を中心コア11に添加して、ガラスの仮想温度を低減する方法である。
 光ファイバ1は、第1の方法および第2の方法のいずれによりレーリー散乱が低減されてもよく、また、両方法が適宜に組み合わされてレーリー散乱が低減されてもよい。以下では徐冷法が用いられた。
 光ファイバ1の製造方法は以下のとおりである。先ず、VAD、OVD、MCVD、PCVDといった気相合成法により光が導波するコアを作成し、該コアの周囲にVAD、OVD、APVD、ロッドインコラプス法やそれに類する方法によりジャケット層を付加して、光ファイバ母材を形成する。ここでコアとジャケットとの間に更に、VAD、OVD、MCVD、ロッドインコラプス法やそれに類する方法により中間光学クラッド層を設けても良い。このようにして作成した光ファイバ母材を線引タワーに把持し、下端部を作業点以上の温度に加熱し、溶融したガラスの滴の先端を適宜延伸して紡糸し、ガラスファイバとする。ガラスファイバの外径が所定の値になるよう、引き取り速度を制御しながら、樹脂を付着させるダイス、樹脂を硬化させるUV炉等を通過させて樹脂被覆層を有する光ファイバ素線となし、その光ファイバ素線を巻き取りボビンにより巻き取る。
 樹脂被覆層は、2層構造を有しており、外力が直接にガラスファイバに伝わらないようにする一次被覆層と、外傷を防止する二次被覆層とを含む。それぞれの樹脂層を塗布するダイスは紡糸工程において直列的に配置されても良い。また、2層を同時に排出するダイスにより塗布しても良く、この場合、線引タワーの高さを低くすることができるので、線引建屋の建造コストを軽減することができる。
 また、紡糸後のガラスファイバの冷却速度を制御する装置を線引炉とダイスとの間に設けることで、ダイスに入る際のガラスファイバの表面温度を好適な温度に制御することができる。冷却速度を制御する装置内に流すガスのレイノルズ数は低い方が、紡糸したファイバへ与えられる乱流の発生による振動が軽減されるので望ましい。また、ガラスファイバの冷却速度を制御することで、レーリー散乱を低減し、伝送損失の低い光ファイバを得ることができる。
 樹脂を硬化させるためのUV炉は、UV光の強度のほかに炉内部の温度をフィードバック制御することで、樹脂の硬化速度を適切に制御することができる。UV炉としては、マグネトロンや紫外LEDが好適に用いられる。紫外LEDを用いる場合は、光源そのものは発熱しないので、炉内の温度が適切になるように温風を入れる機構が別途備えられる。また、樹脂から脱離する成分がUV炉の炉心管の内面に付着し、被覆層に到達するUV光のパワーが線引中に変化するので、予め線引中のUV光パワーの減少度合いをモニタし、被覆層に照射されるUV光のパワーが一定となるように、線引時間によりUV光パワーを調節しても良い。また、炉心管から漏れ出るUV光をモニタして、被覆層に照射されるUV光のパワーが一定となるように制御しても良い。これにより、光ファイバ全長において均質な光ファイバの破断強度を得ることができる。
 2層の被覆層のうち二次被覆層の厚さは、耐外傷性を保持できるよう、適切に設定することが好ましい。一般に、二次被覆層の厚みは、10μm以上、更に好ましくは20μm以上であることが好ましい。このようにして製造され巻き取りボビンにより巻き取られた光ファイバ1は、必要に応じて着色され、光ケーブルや光コードといった最終製品として使用される。
 本発明の実施形態では、線引炉において紡糸された光ファイバは、線引炉の下端部である急冷部および加熱炉を経てダイスに入る。急冷部は、溶融された光ファイバ母材の下端部において母材径の90%の径から5%の径になるまでのテーパー部分から、紡糸された光ファイバが温度1400℃になる部分までを、連続的に1000℃/s以上20000℃/s以下の冷却速度で冷却する。加熱炉は、紡糸された光ファイバが実質的に線引炉から出る面(線引炉出口)より下部に設けられている。線引炉の出口から加熱炉の入り口まで距離は1m以下である。図2は、本発明の光ファイバ製造方法の実施形態で使われる光ファイバ製造装置の概念図である。母材2を線引する線引炉10の出口から加熱炉20の入り口までの間は、紡糸された光ファイバ1の温度の低下を防止する保温構造となっていてもよい。加熱炉20に入る際の光ファイバの温度は、1000℃以上であることが好ましく、更に好ましくは1400℃以上である。
 これにより、加熱炉において光ファイバが再加熱され実質的に構造緩和できる温度(一般にはガラス転移点以上の温度)まで上昇するまでの加熱炉の長さを短くすることができ、構造緩和時間をより長く取ることができる。加熱炉の長さLは、線引速度Vとしたときに、L/Vが0.05s以上となるように設定される。加熱炉は複数の炉から構成されていることが望ましい。これにより、光ファイバの冷却速度をより精密に制御することができる。加熱炉に入った光ファイバが温度1100℃以下に冷却されるまでの冷却速度は5000℃/s以下であることが好ましい。このような加熱炉を用いて光ファイバを製造することで、レーリー散乱が低減された光ファイバを得ることができる。
 L/Vを大きくすることにより、ガラスの仮想温度の低減を図ることができる。しかし、経済性を考慮した場合、線引速度Vは20m/s以上であることが好ましい。例えば、L/V=0.2sを実現する場合、加熱炉の長さLは4mであることが必要となる。このように、製造設備の建造コストの低減と線速の増加による加工費の低減との両立には一定の限界がある。図3は、K. Saito et al., J. Am. Ceram. Soc., Vol.89 [1], pp.65-69 (2006)のTable1のデータに基づく、GeOがコアに含有された光ファイバにおけるL/Vと到達可能な仮想温度の関係を示すグラフである。経済性の要請からL/V<0.5sまでを許容した場合、到達可能な仮想温度は1400℃となる。
 図4および図5は、K. Saito et al.の式(2)に基づいて作成された、光ファイバにおける仮想温度と伝送損失との関係を示すグラフである。図4は、中心コアの相対屈折率差が0.32%である場合を示し、図5は、中心コアの相対屈折率差が0.2%である場合を示す。ここで「余剰損失」とは、レーリー散乱、ブリルアン散乱、ラマン散乱に起因した損失以外の伝送損失(マクロベンドロスおよびマイクロベンドロスを含む)のことである。余剰損失が0.03dB/km以上となると、仮想温度を1400℃としても、波長1550nmにおける伝送損失を0.18dB/kmとすることが困難であることが分かる。
 上記のように、徐冷によりガラスの仮想温度を低下させてレーリー散乱を低減したとしても、レーリー散乱成分以外の余剰損失が増加してしまう場合、安定して波長1550nmにおける伝送損失を0.18dB/km以下とすることは難しい。そこで本発明者は、余剰損失の増加要因を解明し、その結果、余剰損失とコアの残留応力との間に良い相関が得られることを見出した。図6は、コアに残留している応力と余剰損失との関係を示すグラフである。コアの残留応力を圧縮応力とすることで、余剰損失を0.03dB/km以下にすることができることが分かる。また、絶対値が5MPa以上である圧縮応力とすることで、余剰損失を0.025dB/km以下にすることができる。
 図4と図5との対比により、中心コアの相対屈折率差が低減することにより、濃度揺らぎの成分に由来するレーリー散乱が低減することから、更に低損失の光ファイバが得られることが読み取れる。また、その他の要件として、中心コアと光学クラッドとの応力差を20MPa以下とすることで、余剰損失が0.03dB/kmとなる歩留りが90%以上となるので望ましい。また、上述の応力は、中心コアにおける平均値を調整すればよく、中心コアの中で応力が変動していても構わない。
 光ファイバ1の中心コア11は、GeOを含み、相対屈折率差Δcoreが0.2%以上0.32%以下である。動径座標rにおける相対屈折率差をΔ(r)としコア半径をaとしたとき(2)式: 
Figure JPOXMLDOC01-appb-M000003
で表される屈折率体積vが9%・μm以上18%・μm以下である。ジャケット13は、相対屈折率差ΔJが0.03%以上0.20%以下である。
 更に、光ファイバ1において、中心コア11を構成するガラスの仮想温度は1400℃以上1560℃以下である。中心コア11に残留する応力は圧縮応力である。2mファイバカットオフ波長が1300nm以上であり、ファイバ長100mでのカットオフ波長が1500nm以下である。また、波長1550nmにおける実効断面積が110μm以上であり、波長1550nmにおける伝送損失が0.19dB/km以下である。光ファイバ1は、波長1550nmにおけるマイクロベンド損失を過度に大きくすることなく、汎用のシングルモード光ファイバより非線形性を有意に低減することできる。
 このような特性(屈折率プロファイル、カットオフ波長、実効断面積)が得られる光ファイバ母材を徐冷線引することで光ファイバを製造する。図4および図5より、コアの仮想温度を1560℃以下好ましくは1530℃以下とすることで、レーリー散乱を低減することができる。更に仮想温度は低い方が望ましいが、徐冷線引により仮想温度1400℃以下を実現にする場合、L/Vを過度に大きくする必要があり、経済性を満足することが困難となる。更なる低損失は、コアの粘性を低減する添加物(アルカリ金属)を微量に添加することで実現できる。このように仮想温度を低減しながら、コアの残留歪が圧縮応力であれば、図6より余剰損失が0.03dB/km以下の範囲を実現することができ、波長1550nmにおける伝送損失が0.190dB/km以下となるファイバを容易に得ることができる。
 上記より、レーリー散乱、ブリルアン散乱、ラマン散乱に起因した伝送損失を低く保ちつつ本実施形態の光ファイバの構造を採用することで、マイクロベンドロス増によるケーブル化後のロスの増加を抑制することができる。ケーブル化後の伝送損失は0.19dB/km以下、好ましくは0.18dB/km以下、更に好ましくは0.178dB/km以下である。また、純シリカを中心コアとした光ファイバの方が損失を低くすることできるが、一般に純シリカを中心コアとした光ファイバは製造コストが高い。GeOにより屈折率を上昇させたコアで上記を満足する光ファイバは、100Gbit/sを超える高速大容量通信向け光ファイバとして経済的な優位性を持つ。
 光ファイバ1では、より好ましくは、2mファイバカットオフ波長は1400nm以上である。より好ましくは、圧縮応力の絶対値は5MPa以上である。より好ましくは、波長1550nmにおける伝送損失が0.178dB/km以下であり、波長1310nmにおける伝送損失が0.315dB/km以下である。また、更に好ましくは、波長1550nmにおける伝送損失が0.175dB/km以下であり、波長1310nmにおける伝送損失が0.310dB/km以下である。
 本発明の光ファイバは、GeOを含む中心コアを有していれば、屈折率構造がステップ型、W型、トレンチ型、リングコア型のいずれであっても構わない。この場合、屈折率プロファイルにおいて光のパワーの大部分が伝搬しモードフィールドを実質的に決定する部分を中心コアと定義し、その中心コアを取り囲む部位を光学クラッドとする。
 光ファイバの残留応力は、JP2009-168813Aに記載されているように、光ファイバ中の複屈折を利用して測定される。また、光ファイバの残留応力は、光ファイバ断面の屈折率の面分析を行って得られる屈折率の変化量および材料に固有の光弾性係数からも測定が可能である。図7は、光ファイバの残留応力の径方向分布を示すグラフである。GeOがコアに含有された光ファイバであってジャケットが実質的に純シリカからなる光ファイバでは、同温度におけるコアの粘性がジャケットの粘性に比べて低いので、線引後の光ファイバのコアには圧縮応力が残留する(図7、L/V=0s)。圧縮応力は、線引張力により変化する。原理的に、線引張力が高いほど大きな圧縮応力が残留することが知られている。
 一方、徐冷された光ファイバでは、圧縮応力が緩和され、圧縮応力の絶対値が低下する。図7には、L/V=0s、0.12s、0.40sと変化させた場合の残留応力が示されている。加熱炉における光ファイバの滞在時間を長くすると、コアの圧縮応力の絶対値は徐々に低下することが分かる。コアに残留する応力を圧縮応力とするには、L/Vを0.4sよりも短くすることが望ましい。また、光ファイバが冷却される過程において、加熱炉に到達するまでの光ファイバの温度が加熱炉の内表面温度より高い状態に保たれることによっても、コアの圧縮応力を過度に低下させないことができる。また、原理的に、加熱炉が長いほど徐冷の効果は大きくなり圧縮応力の変化量は大きくなる。
 例えば、加熱炉の長さが2m以上である場合、L/Vを0.2s以下に保つことが好適である。また、線引き中の光ファイバガラスに印加される張力は、50g以上であることが望ましく、更に好ましくは100g以上である。
 その他のコアの応力の調整方法として、コア中にコアの粘性を低減する添加物を入れることで、コアの圧縮応力の絶対値を5MPa以上に調整することができる。アルカリ金属元素は、微量でシリカガラスの粘性を大きく低減することが可能であるので、濃度揺らぎによるレーリー散乱の増加への影響を軽微に抑制でき、添加物として望ましい。但し、アルカリ金属元素を過度に添加すると、ガラス構造欠陥が増加して、水素特性や放射線特性が悪化するので適切な添加量に調節されることが好ましい。線引後におけるコア中のアルカリ金属元素の濃度は1wtppb以上10wtppm以下であることが望ましい。
 図8は、ラマン強度とラマンシフトとの関係を示すグラフである。525cm-1と475cm-1の間の波数範囲にベースラインを引き、ベースラインとスペクトルとの間に挟まれたD1ピーク面積を算出する。また、880cm-1と740cm-1の間の波数範囲にベースラインを引き、ベースラインとスペクトルとの間に挟まれた800cm-1ピーク面積を算出する。そして、800cm-1ピーク面積に対するD1ピーク面積の比と、予めバルクガラス等を用いてIR法(D.-L. Kim et al., J. Non-Cryst. Solids, Vol.286, pp.136-138 (2001))により測定しておいた仮想温度との関係を用いて、光ファイバの仮想温度を求めることができる。
 本実施形態の光ファイバは、ファイバ軸に垂直な断面においてジャケットの断面積のうち50%以上の部分の応力が引張応力であるのが好適である。光ファイバに残留する応力は断面全体で積算するとゼロであるので、中心コアの残留応力を圧縮応力とするには、中心コアに掛かかった圧縮力の分、ジャケットに引張力を残留させる必要がある。ジャケットの50%以上の断面積が引張応力となるように光ファイバの張力、熱履歴、組成を調節することで、中心コアの残留応力を圧縮応力とすることが実現容易となる。
 本実施形態の光ファイバは、中心コアに残留する応力の絶対値が30MPa以下であるのが好適である。更に好ましくは中心コアに残留する応力の絶対値が10MPa以下であるのが好適である。中心コアの応力を圧縮応力とし、且つその絶対値を30MPa以下とすることで、徐冷線引によるレーリー散乱の低減効果を十分に得つつ、余剰損失を0.02dB/km以下とすることができるので望ましい。
 本実施形態の光ファイバは、波長1383nmにおけるOH基による伝送損失増加が0.02dB/km以下であるのが好適である。OH吸収が存在すると波長1550nmにおける伝送損失の増加を招く。波長1383nmにおけるOH基による伝送損失増加が0.02dB/km以下である場合、波長1550nmにおける伝送損失の増加が0.004dB/km以下とできるので望ましい。
 本実施形態の光ファイバは、中心コア部にフッ素を含むのが好適である。また、温度1300℃においてジャケットの粘性が中心コアの粘性と比べて0.3poise以上高いのが好適である。コア部にフッ素が含まれていることにより、コアの粘性が低下するので、コア部の残留応力を圧縮応力にすることが容易となり、波長無依存の伝送損失を低減することができる。但し、フッ素を増加させると濃度揺らぎに由来したレーリー散乱が増加するので、フッ素添加による相対屈折率低下量は-0.1%以上0%以下となる濃度とすることが好ましい。
 本実施形態の光ファイバは、線引後に温度1300℃で1分以上に亘ってアニールした際の中心コアの相対屈折率差における変化が0.002%以上0.02%以下であるのが好適である。アニールによる屈折率の変化量を測定することで、光ファイバのコアにおける残留応力を簡便に評価することができ、品質管理が容易となる。中心コアの相対屈折率差の変化が0.002%以上0.02%以下であることにより、コア中の応力を余剰損失が増加しない。
 本実施形態の光ファイバは、中心コアと光学クラッド部との応力差が20MPa以下であるのが好適である。中心コアと光学クラッド部との応力差を20MPa以下とすることで、圧縮応力が0MPa以上5MPa以下において、余剰損失0.03dB/km以下が高歩留りで得られる。
 本実施形態の光ファイバは、波長1600nm以上の波長範囲における波長λに対する伝送損失αの依存性を α=A・exp(B/λ) なる式で近似したときに、Aが6.5×1011以下であり、Bが48.5以上であるのが好適である。曲げ損失や、添加物の赤外吸収による波長1600nm以上の損失が上記の範囲から外れる場合、顕著な余剰損失の増加が波長1550nmにおいてみられるようになる。損失が上記の範囲になるように、屈折率構造や添加物の量を調節することが望ましい。
 本実施形態の光ファイバは、ジャケットを囲む一次被覆層および二次被覆層を更に備え、二次被覆層のヤング率が800MPa以上であり、一次被覆層のヤング率が0.2MPa以上1MPa以下であるのが好適である。このようすることで、マイクロベンド損失を低減し、ケーブル化時の伝送損失の増加を抑制することができる。
 本実施形態の光ファイバは、素線外径が240μm以上であり、二次被覆層の厚みが10μm以上であるのが好適である。マイクロベンドロスを一定値以下に保つためには、被覆径は大きい方が望ましい。素線外径を240μm以上とすることで、実用上十分なマイクロベンド損失を得ることができる。被覆径を調節してマイクロベンド損失を低減するほかに、光ファイバのガラス径を調節しても構わない。その場合、ガラス外径は大きい方が望ましい。
 本発明の光ファイバを光伝送路として用いる光伝送システムは、以下のような態様であるのが好ましい。
 第1態様の光伝送システムは、リピータ間の光伝送路の距離が70km以上であり、その光伝送路の90%以上の区間で本発明の光ファイバが敷設されている。本発明の光ファイバを用いることで、リピータ間の光伝送路のOSNRを改善することができるので、伝送機器の性能に対する要求を緩和することができる。リピータ間の光伝送路の距離が100km以上であり、その光伝送路の90%以上の区間で本発明の光ファイバが敷設されているのが好適である。リピータ間の光伝送路の距離が長い方が、伝送損失のOSNRに与える影響が大きくなる。本発明の光ファイバを用いることで、更に伝送機器に求められる性能を緩和することができる。
 第2態様の光伝送システムは、本発明の光ファイバが敷設されており、この光ファイバにおいて信号光の分布ラマン増幅を行う。光伝送路の伝送損失を低減することで、分布ラマン増幅の励起効率を高くすることができる。
 本実施形態の光ファイバを製造する方法は、線引炉において母材を線引して光ファイバを製造する方法であって、紡糸された光ファイバが線引炉から出て実質的に空気と接触する位置における光ファイバの断面の平均温度を1200℃以上1550℃以下とする。線引炉の出口の空気と接触する位置における光ファイバの温度が1550℃より高い場合、乱流の発生により光ファイバの外径の制御性を損なう。このことから、該温度が1550℃以下であることが望ましい。一方、冷却速度を過度に大きくすると伝送損失の上昇を招く。したがって、上記の温度範囲とすることが望ましい。
 本実施形態の光ファイバ製造方法は、線引炉の下流に設置された加熱炉に入線する際の光ファイバの温度を1000℃以上とするのが好適である。コアにGeOを含んだ光ファイバにおいて、仮想温度の低下を促進できる光ファイバの保持温度は1000℃以上となる。加熱炉への入線温度が1000℃より低い場合、徐冷効果が発揮されない時間が増加するので、仮想温度の低下による損失低減効果を十分に得られない。より好ましくは光ファイバの加熱炉への入線温度は1200℃以上である。
 本実施形態の光ファイバ製造方法は、光学クラッドとジャケットとの界面でのOH濃度が1000wtppm以下である母材を用いて線引するのが好適である。光ファイバの冷却速度を遅くすることにより、母材中のOH基の拡散が進み易くなるので、波長1383nmにおけるOH吸収損失が大きくなる。光学クラッドとジャケットとの界面のOH濃度を1000wtppm以下とすることで、過度なOH濃度の勾配を作ることが無く、徐冷線引等により冷却速度の低減を行ってもコアへのOHの拡散を防止できる。好ましくはOH濃度が800wtppm以下である。また、同界面におけるOHの拡散層の厚みは光ファイバ径換算で50nm以下である。
 本発明の光ファイバは、大きなOSNRが求められる光伝送路様に有用である。

Claims (18)

  1.  シリカガラスからなる光ファイバであって、
     中心軸を含む中心コアと、この中心コアを囲む光学クラッドと、この光学クラッドを囲むジャケットとを備え、
     前記中心コアは、GeOを含み、相対屈折率差Δcoreが0.2%以上0.32%以下であり、動径座標rにおける相対屈折率差をΔ(r)としコア半径をaとしたとき(1)式:
    Figure JPOXMLDOC01-appb-M000001
    で表される屈折率体積vが9%・μm以上18%・μm以下であり、
     前記ジャケットは、相対屈折率差ΔJが0.03%以上0.20%以下であり、
     前記中心コアを構成するガラスの仮想温度が1400℃以上1560℃以下であり、
     前記中心コアに残留する応力が圧縮応力であり、
     2mファイバカットオフ波長が1300nm以上であり、
     ファイバ長100mでのカットオフ波長が1500nm以下であり、
     波長1550nmにおける実効断面積が110μm以上であり、
     波長1550nmにおける伝送損失が0.19dB/km以下である
    光ファイバ。
  2.  前記仮想温度が1530℃以下である請求項1に記載の光ファイバ。
  3.  波長1550nmにおける伝送損失が0.178dB/km以下であり、
     波長1310nmにおける伝送損失が0.315dB/km以下である
    請求項1または請求項2に記載の光ファイバ。
  4.  ファイバ軸に垂直な断面において前記ジャケットの断面積のうち50%以上の部分の応力が引張応力である請求項1乃至請求項3のいずれか一項に記載の光ファイバ。
  5.  前記中心コアに残留する応力の絶対値が30MPa以下である
    請求項1乃至請求項4のいずれか一項に記載の光ファイバ。
  6.  波長1383nmにおけるOH基による伝送損失増加が0.02dB/km以下である
    請求項1乃至請求項5のいずれか一項に記載の光ファイバ。
  7.  前記中心コアにフッ素を含む請求項1乃至請求項6のいずれか一項に記載の光ファイバ。
  8.  温度1300℃において前記ジャケットの粘性が前記中心コアの粘性と比べて0.3poise以上高い請求項1乃至請求項7のいずれか一項に記載の光ファイバ。
  9.  線引後に温度1300℃で1分以上に亘ってアニールした際の前記中心コアの相対屈折率差の変化が0.002%以上0.02%以下である
    請求項1乃至請求項8のいずれか一項に記載の光ファイバ。
  10.  前記中心コアと前記光学クラッド部との応力差が20MPa以下である
    請求項1乃至請求項9のいずれか一項に記載の光ファイバ。
  11.  波長1600nm以上の範囲において、λが波長であって、最小二乗法によりα=A・exp(B/λ) なる式で近似され、Aが6.5×1011以下であり、Bが48.5以上である伝送損失αを有する
    請求項1乃至請求項10のいずれか一項に記載の光ファイバ。
  12.  前記ジャケットを囲む一次被覆層および二次被覆層を更に備え、
     前記二次被覆層のヤング率が800MPa以上であり、
     前記一次被覆層のヤング率が0.2MPa以上1MPa以下である
    請求項1乃至請求項11のいずれか一項に記載の光ファイバ。
  13.  素線外径が240μm以上であり、二次被覆層の厚みが10μm以上である
    請求項1乃至請求項12のいずれか一項に記載の光ファイバ。
  14.  二基のリピータと、前記二基のリピータとを接続する光伝送路とを含む光伝送システムであって、
     前記光伝送路の距離が70km以上であり、その光伝送路の90%以上の区間が請求項1乃至13のいずれか1項に記載の光ファイバで構成されている光伝送システム。
  15.  請求項1乃至13のいずれか1項に記載の光ファイバで構成される光伝送路を含む光伝送システムであって、この光ファイバにおいて信号光の分布ラマン増幅を行う光伝送システム。
  16.  線引炉において光ファイバ母材を溶融して引き出し光ファイバを製造する方法であって、
     引き出された光ファイバが前記線引炉から出た時点における前記光ファイバの断面の平均温度を1200℃以上1550℃以下とする光ファイバ製造方法。
  17.  前記引き出された光ファイバを、該光ファイバの温度が1000℃以上で前記線引炉の下流に設置された加熱炉に入線させる請求項16に記載の光ファイバ製造方法。
  18.  前記光ファイバ母材は、中心軸を含む中心コアと、この中心コアを囲む光学クラッドと、この光学クラッドを囲むジャケットとを備え、前記光学クラッドと前記ジャケットとの界面でのOH濃度が1000wtppm以下である請求項16に記載の光ファイバ製造方法。
PCT/JP2012/080714 2011-12-09 2012-11-28 光ファイバ、光伝送システムおよび光ファイバ製造方法 WO2013084765A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP12856367.3A EP2790045B1 (en) 2011-12-09 2012-11-28 Optical fiber and optical transmission system
CN201280060590.6A CN103988103B (zh) 2011-12-09 2012-11-28 光纤、光传输系统和光纤制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-270269 2011-12-09
JP2011270269A JP5831189B2 (ja) 2011-12-09 2011-12-09 光ファイバおよび光伝送システム

Publications (1)

Publication Number Publication Date
WO2013084765A1 true WO2013084765A1 (ja) 2013-06-13

Family

ID=48572045

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/080714 WO2013084765A1 (ja) 2011-12-09 2012-11-28 光ファイバ、光伝送システムおよび光ファイバ製造方法

Country Status (5)

Country Link
US (1) US8687936B2 (ja)
EP (1) EP2790045B1 (ja)
JP (1) JP5831189B2 (ja)
CN (1) CN103988103B (ja)
WO (1) WO2013084765A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2933240A4 (en) * 2012-12-12 2016-09-21 Sumitomo Electric Industries PROCESS FOR PRODUCING OPTICAL FIBER AND OPTICAL FIBER
JP2017048082A (ja) * 2015-09-01 2017-03-09 住友電気工業株式会社 マルチモード光ファイバの製造方法
JP2021085815A (ja) * 2019-11-29 2021-06-03 シーシーエス株式会社 光照射装置、検査システム、及び、光照射方法

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013073354A1 (ja) 2011-11-14 2013-05-23 住友電気工業株式会社 光ファイバおよび光伝送システム
JP6459215B2 (ja) 2014-05-14 2019-01-30 住友電気工業株式会社 光ファイバ及び光ファイバの評価方法
US9658395B2 (en) 2014-10-21 2017-05-23 Ofs Fitel, Llc Low loss optical fiber and method of making the same
US9919955B2 (en) * 2015-07-24 2018-03-20 Ofs Fitel, Llc Optical fiber with low loss and nanoscale structurally homogeneous core
CN104991307A (zh) * 2015-07-31 2015-10-21 长飞光纤光缆股份有限公司 一种超低衰减大有效面积的单模光纤
JP6295234B2 (ja) * 2015-08-04 2018-03-14 株式会社フジクラ 光ファイバの製造方法
JP2017081796A (ja) 2015-10-29 2017-05-18 株式会社フジクラ 光ファイバの製造方法
JP6243887B2 (ja) 2015-10-29 2017-12-06 株式会社フジクラ 光ファイバの製造方法
WO2017170652A1 (ja) 2016-04-01 2017-10-05 株式会社フジクラ 光ファイバ、及び、その製造方法
JP6911307B2 (ja) * 2016-09-13 2021-07-28 住友電気工業株式会社 光ファイバおよび光ファイバ心線
JP6457579B2 (ja) 2017-04-10 2019-01-23 株式会社フジクラ 光ファイバの製造方法
US10451795B2 (en) * 2017-11-16 2019-10-22 Ofs Fitel, Llc Optical fiber for applications requiring high system optical signal-to-noise ratio performance and low degradation from nonlinear impairments
EP3822673A4 (en) 2018-07-13 2021-08-11 Sumitomo Electric Industries, Ltd. OPTICAL FIBER
CN113678039B (zh) * 2019-04-10 2023-11-28 住友电气工业株式会社 光纤
US20230016133A1 (en) * 2019-12-13 2023-01-19 Sumitomo Electric Industries, Ltd. Optical fiber
CN111272306B (zh) * 2020-02-25 2021-11-23 西安石油大学 一种基于双密闭腔的光纤微结构传感器件制备方法
CN116097141A (zh) * 2020-09-17 2023-05-09 古河电气工业株式会社 多芯光纤
JP2022139016A (ja) * 2021-03-11 2022-09-26 古河電気工業株式会社 マルチコアファイバ、マルチコアファイバの製造方法、マルチコアファイバ母材、およびマルチコアファイバ母材の製造方法
CN113340504B (zh) * 2021-07-13 2022-03-01 中国工程物理研究院激光聚变研究中心 一种从熔石英假想温度分布获取残余应力分布的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002267868A (ja) * 2001-03-13 2002-09-18 Furukawa Electric Co Ltd:The 光ファイバ
JP2006058494A (ja) 2004-08-18 2006-03-02 Fujikura Ltd 光ファイバ素線及びその製造方法
JP2007052458A (ja) * 2006-10-30 2007-03-01 Sumitomo Electric Ind Ltd 光ファイバ、光ファイバ母材の製造方法、及び光ファイバの製造方法
JP2008094633A (ja) * 2006-10-05 2008-04-24 Sumitomo Electric Ind Ltd 光ファイバ母材製造方法
WO2009066429A1 (ja) * 2007-11-19 2009-05-28 Mitsubishi Cable Industries, Ltd. 光ファイバ及びその製造方法
JP2009168813A (ja) 2008-01-14 2009-07-30 Gwangju Inst Of Science & Technology 光ファイバの残留応力測定装置
WO2009096557A1 (ja) * 2008-01-30 2009-08-06 Asahi Glass Co., Ltd. エネルギー伝送用または紫外光伝送用光ファイバプリフォームおよびその製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2355823A1 (en) * 2000-08-28 2002-02-28 Sumitomo Electric Industries, Ltd. Optical fiber and method of making the same
JP2002148466A (ja) * 2000-08-28 2002-05-22 Sumitomo Electric Ind Ltd 光ファイバ及びその製造方法
WO2007122630A2 (en) * 2006-04-24 2007-11-01 Sterlite Optical Technologies Ltd. Single mode optical fiber having reduced macrobending and attenuation loss and method for manufacturing the same
US7787731B2 (en) * 2007-01-08 2010-08-31 Corning Incorporated Bend resistant multimode optical fiber
US8374472B2 (en) * 2007-06-15 2013-02-12 Ofs Fitel, Llc Bend insensitivity in single mode optical fibers
US8385701B2 (en) * 2009-09-11 2013-02-26 Corning Incorporated Low bend loss optical fiber
JP2011095532A (ja) * 2009-10-30 2011-05-12 Hitachi Cable Ltd 光ファイバ及びその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002267868A (ja) * 2001-03-13 2002-09-18 Furukawa Electric Co Ltd:The 光ファイバ
JP2006058494A (ja) 2004-08-18 2006-03-02 Fujikura Ltd 光ファイバ素線及びその製造方法
JP2008094633A (ja) * 2006-10-05 2008-04-24 Sumitomo Electric Ind Ltd 光ファイバ母材製造方法
JP2007052458A (ja) * 2006-10-30 2007-03-01 Sumitomo Electric Ind Ltd 光ファイバ、光ファイバ母材の製造方法、及び光ファイバの製造方法
WO2009066429A1 (ja) * 2007-11-19 2009-05-28 Mitsubishi Cable Industries, Ltd. 光ファイバ及びその製造方法
JP2009168813A (ja) 2008-01-14 2009-07-30 Gwangju Inst Of Science & Technology 光ファイバの残留応力測定装置
WO2009096557A1 (ja) * 2008-01-30 2009-08-06 Asahi Glass Co., Ltd. エネルギー伝送用または紫外光伝送用光ファイバプリフォームおよびその製造方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
D. -L. KIM ET AL., J. NON-CRYST. SOLIDS, vol. 286, 2001, pages 136 - 138
K. SAITO ET AL., J. AM. CERAM. SOC., vol. 89, no. 1, 2006, pages 65 - 69
M. OHASHI ET AL., IEEE PHOTONICS TECHNOLOGY LETTERS, vol. 5, no. 7, 1993, pages 812 - 814
S. SAKAGUCHI ET AL., APPLIED OPTICS, vol. 37, no. 33, 1998, pages 7708 - 7711
See also references of EP2790045A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2933240A4 (en) * 2012-12-12 2016-09-21 Sumitomo Electric Industries PROCESS FOR PRODUCING OPTICAL FIBER AND OPTICAL FIBER
US9527765B2 (en) 2012-12-12 2016-12-27 Sumitomo Electric Industries, Ltd. Optical fiber manufacturing method and optical fiber
US9932265B2 (en) 2012-12-12 2018-04-03 Sumitomo Electric Industries, Ltd. Method of making an optical fiber containing an alkali metal in the core
JP2017048082A (ja) * 2015-09-01 2017-03-09 住友電気工業株式会社 マルチモード光ファイバの製造方法
JP2021085815A (ja) * 2019-11-29 2021-06-03 シーシーエス株式会社 光照射装置、検査システム、及び、光照射方法

Also Published As

Publication number Publication date
EP2790045A1 (en) 2014-10-15
EP2790045B1 (en) 2018-12-26
US8687936B2 (en) 2014-04-01
US20130148934A1 (en) 2013-06-13
JP5831189B2 (ja) 2015-12-09
JP2013122502A (ja) 2013-06-20
CN103988103A (zh) 2014-08-13
CN103988103B (zh) 2017-06-16
EP2790045A4 (en) 2016-01-06

Similar Documents

Publication Publication Date Title
WO2013084765A1 (ja) 光ファイバ、光伝送システムおよび光ファイバ製造方法
JP6020045B2 (ja) 光ファイバ
JP6048031B2 (ja) 光ファイバ製造方法
US8676014B2 (en) Optical fiber and method of manufacturing optical fiber
US9120693B2 (en) Multi-core optical fiber ribbons and methods for making the same
JP2017526601A (ja) 高塩素含有量の低減衰光ファイバー
US20090052853A1 (en) Holey fiber and method of manufacturing the same
JP2012020908A (ja) 光ファイバの製造方法及び光ファイバ
CN103323908A (zh) 一种单模光纤及其制造方法
CN109298482A (zh) 一种低衰减和低弯曲损耗的大有效面积单模光纤
US20150139600A1 (en) Method of producing preform for coupled multi-core fiber, method of producing coupled multi-core fiber, and coupled multi-core fiber
WO2015200191A1 (en) Low attenuation fiber with viscosity matched core and inner clad
WO2022134668A1 (zh) 光纤结构、光纤结构的生产方法及光缆结构
JP2006512266A (ja) 低スプライス損失の光ファイバ及び該光ファイバを製造する方法
CN103443673B (zh) 光纤和光传输系统
KR20050084469A (ko) 접속손실이 낮은 광섬유 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12856367

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE