WO2013099306A1 - 排水処理装置 - Google Patents

排水処理装置 Download PDF

Info

Publication number
WO2013099306A1
WO2013099306A1 PCT/JP2012/059742 JP2012059742W WO2013099306A1 WO 2013099306 A1 WO2013099306 A1 WO 2013099306A1 JP 2012059742 W JP2012059742 W JP 2012059742W WO 2013099306 A1 WO2013099306 A1 WO 2013099306A1
Authority
WO
WIPO (PCT)
Prior art keywords
treatment apparatus
biological treatment
wastewater
treatment device
control unit
Prior art date
Application number
PCT/JP2012/059742
Other languages
English (en)
French (fr)
Inventor
上村 一秀
拓洋 前田
守賢 西田
康亮 鴫石
寺倉 誠一
英夫 鈴木
岳 近藤
Original Assignee
三菱重工メカトロシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工メカトロシステムズ株式会社 filed Critical 三菱重工メカトロシステムズ株式会社
Priority to SG11201402216WA priority Critical patent/SG11201402216WA/en
Priority to US14/358,169 priority patent/US9938172B2/en
Priority to CN201280056106.2A priority patent/CN103974911B/zh
Publication of WO2013099306A1 publication Critical patent/WO2013099306A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/006Regulation methods for biological treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/04Aerobic processes using trickle filters
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/06Aerobic processes using submerged filters
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1205Particular type of activated sludge processes
    • C02F3/1226Particular type of activated sludge processes comprising an absorbent material suspended in the mixed liquor
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1236Particular type of activated sludge installations
    • C02F3/1268Membrane bioreactor systems
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1236Particular type of activated sludge installations
    • C02F3/1268Membrane bioreactor systems
    • C02F3/1273Submerged membrane bioreactors
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/4604Treatment of water, waste water, or sewage by electrochemical methods for desalination of seawater or brackish water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/4608Treatment of water, waste water, or sewage by electrochemical methods using electrical discharges
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/34Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/001Upstream control, i.e. monitoring for predictive control
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/08Chemical Oxygen Demand [COD]; Biological Oxygen Demand [BOD]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/20Total organic carbon [TOC]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/40Liquid flow rate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the present invention relates to a wastewater treatment apparatus for performing purification treatment to reuse industrial wastewater.
  • Industrial wastewater from the plant is subjected to purification treatment such as removal of heavy metal components and suspended particles, and decomposition and removal of organic substances by microorganisms.
  • Purified treated water is generally released into the environment, but in places where it is difficult to secure industrial water, treated water that has been purified from industrial wastewater is reused as industrial water.
  • a membrane separation activated sludge method MBR
  • a biofilm method Biofilm Reactor, BFR
  • the membrane separation activated sludge method is a method of decomposing organic matter in waste water using activated sludge in a tank and separating treated water and activated sludge using a filtration membrane.
  • the membrane-separated activated sludge method has an advantage that the activated sludge concentration can be increased, and a sedimentation tank for separating the treated water and the activated sludge is unnecessary, so that the volumetric efficiency is high.
  • the water quality that is, the concentration of organic matter in the wastewater largely fluctuates in a short period of time, the treatment capacity cannot follow the change in the concentration of organic matter, and the concentration of organic matter in the treated water may exceed the regulation value.
  • the biofilm method is a method in which activated sludge is deposited in the form of a film on the surface of a carrier to decompose organic matter in waste water.
  • the membrane (biofilm) surface is treated in the same way as normal activated sludge, but the membrane inner surface is in a dormant state due to lack of nutrient sources.
  • the sludge inside the biofilm is activated. That is, the thickness of the activated sludge varies depending on the variation of the organic matter concentration. Since the amount of activated sludge according to the organic matter concentration is maintained, it is possible to continue the treatment in response to fluctuations in the organic matter concentration.
  • Patent document 1 is disclosing the water treatment apparatus which is equipped with a biological treatment tank and can respond when the time series fluctuation
  • water before treatment is taken into a flow rate adjustment tank, and the flow rate of water sent to the biological treatment means and the water sent to the ozone treatment means is determined according to the amount of water pollution load in the flow rate adjustment tank. I have control.
  • Patent Document 1 requires a flow rate adjustment tank that temporarily stores wastewater, and thus the volumetric efficiency of the device is poor. Also, ozone treatment is expensive. Furthermore, an additional facility for preventing ozone leakage is required, and the operation is complicated such as monitoring ozone leakage.
  • the object of the present invention is to provide a wastewater treatment apparatus capable of stably treating wastewater even with large water quality fluctuations with a simple apparatus.
  • the present invention provides a first biological treatment apparatus for treating wastewater by a membrane separation activated sludge method, a second biological treatment apparatus for treating wastewater by a biofilm method, and the first biological treatment apparatus.
  • a load unit is calculated from the load concentration and the flow rate, a measurement unit that measures the load concentration and the flow rate in the wastewater that circulates upstream of the biological treatment device and the second biological treatment device, and according to the load amount Determining a distribution ratio between the flow rate of the waste water to be fed to the first biological treatment apparatus and the flow rate of the waste water to be fed to the second biological treatment apparatus, and based on the distribution ratio,
  • a wastewater treatment apparatus including a control unit that adjusts a flow rate of the wastewater to be fed to a first biological treatment apparatus and a flow rate of the wastewater to be fed to the second biological treatment apparatus.
  • the load amount is COD or BOD.
  • the treatment apparatus using the membrane separation activated sludge method cannot follow the treatment capacity when the water quality of the wastewater fluctuates in a short time.
  • the processing apparatus using the biofilm method can change the processing capacity according to the change in water quality.
  • the above characteristics are utilized, and the organic matter decomposition treatment is performed by using the membrane separation activated sludge method and the biofilm method in combination.
  • the load concentration and flow rate in the wastewater are monitored, and based on the load amount calculated from the load concentration and flow rate, the distribution ratio of wastewater to the treatment equipment adopting each method is determined, and the distribution ratio is determined. Based on this, the flow rate of the wastewater supplied to each processing device is controlled.
  • drain containing the load amount exceeding a processing capacity can flow into the processing apparatus using the membrane separation activated sludge method, and it can prevent that the organic substance in the water after a process exceeds a regulation value.
  • the wastewater treatment apparatus of the present invention can cope with fluctuations in water quality and can continue stable wastewater treatment.
  • control unit stores a first threshold value, and the control unit supplies the waste water to the first biological treatment apparatus when the load amount is equal to or less than the first threshold value.
  • the control unit is configured to use the first biological treatment apparatus at a predetermined distribution ratio. And the second biological treatment apparatus.
  • the control unit when the control unit stores the first threshold value and the second threshold value, and the load amount is greater than the first threshold value and less than or equal to the second threshold value, the control unit includes: When the wastewater is supplied to the first biological treatment device and the second biological treatment device at the predetermined distribution ratio, and the load amount is larger than the second threshold, the control unit The wastewater is supplied to the first biological treatment device so that the processing amount of the first biological treatment device becomes a predetermined value, and the remaining wastewater is supplied to the second biological treatment device.
  • wastewater is mainly treated by a treatment apparatus (first biological treatment apparatus) using a membrane separation activated sludge method.
  • a treatment apparatus first biological treatment apparatus
  • a membrane separation activated sludge method when the load concentration in the system becomes extremely low, a part of microorganisms are killed and the activity of the sludge is greatly reduced. If the load concentration increases in this state, the processing may not be able to follow. For this reason, in this invention, when load amount becomes low (1st threshold value or less), the driving
  • the wastewater treatment apparatus of the present invention can carry out stable wastewater treatment.
  • the control unit stores one or a plurality of intermediate threshold values between the first threshold value and the second threshold value, and when the control unit is larger than the intermediate threshold value and the intermediate threshold value
  • the waste water is fed to the first biological treatment apparatus and the second biological treatment apparatus at the distribution ratio different from the following cases.
  • the control unit feeds the waste water so that the amount of the waste water to the second biological treatment apparatus increases every time the intermediate threshold value is exceeded.
  • the waste water discharged from the second biological treatment apparatus is supplied to the first biological treatment apparatus.
  • the second biological treatment apparatus using the biofilm method suspended particles are likely to be generated.
  • the membrane separation activated sludge method microorganisms and treated water are solid-liquid separated by a separation membrane. If the first biological treatment apparatus is disposed downstream of the second biological treatment apparatus, the suspended particles can be separated and removed from the treated water by the separation membrane of the first biological treatment apparatus. For this reason, when performing a desalination process using a reverse osmosis membrane or an electrostatic desalination apparatus on the downstream side, blockage inside the membrane module can be prevented.
  • control unit calculates at least one of a moving average and a regression estimated value of the load concentration, and calculates the load amount using at least one of the moving average and the regression estimated value.
  • the fluctuation amount is corrected when the load concentration fluctuates rapidly in a short time or when there is a load concentration measurement error. For this reason, there is no need to determine the distribution amount of waste water in response to fluctuations in the load concentration or measurement errors in a very short period of time, so that the control is stabilized.
  • the treatment apparatus of the present invention uses both a biological treatment apparatus using a membrane separation activated sludge method and a biological treatment apparatus using a biological membrane method. Using the characteristics of each biological treatment device, the distribution amount of waste water is controlled according to the fluctuation of the COD load. For this reason, it is possible to cope with a case where the water quality fluctuates greatly, and the quality of the treated water can be stabilized.
  • FIG. 1 shows a block diagram of a wastewater treatment apparatus according to this embodiment.
  • the wastewater treatment apparatus 1 includes a pretreatment unit 2, a biological treatment unit 3, and a desalting unit 4 from the upstream side.
  • the pretreatment unit 2 receives raw water from the plant and removes oil, heavy metals, suspended particles, etc. in the raw water.
  • the desalting unit 4 removes ions contained in the waste water.
  • the desalting unit 4 has a reverse osmosis membrane desalting apparatus or an electrostatic desalting apparatus.
  • the reverse osmosis membrane In the reverse osmosis membrane desalination apparatus, the reverse osmosis membrane (RO membrane) allows only water to permeate.
  • the water that passes through the reverse osmosis membrane (treated water) is reused as industrial water.
  • the upstream side of the reverse osmosis membrane is drained water (concentrated water) in which ions are concentrated. Concentrated water is discharged out of the system of the wastewater treatment apparatus 1 by being discharged from the reverse osmosis membrane desalting apparatus.
  • the electrostatic desalting apparatus has a pair of opposed porous electrodes, an anion exchange membrane is installed on the positive electrode side, and a cation exchange membrane is installed on the negative electrode side. Drainage can flow between the electrodes.
  • the anion in the wastewater moves to the positive electrode side, permeates the anion exchange membrane, and is adsorbed on the porous positive electrode.
  • the cation in the wastewater moves to the negative electrode side, permeates the cation exchange membrane, and is adsorbed on the porous negative electrode. Therefore, when flowing between the electrodes, ions in the waste water are removed, and the treated water is recovered. The collected treated water is reused as industrial water.
  • the use of an electrostatic desalting apparatus is advantageous because the water recovery rate can be improved as compared with a reverse osmosis membrane desalting apparatus.
  • FIG. 2 is a schematic diagram of the biological treatment unit 3 of the wastewater treatment apparatus according to the present embodiment.
  • the biological treatment unit 3 includes a treatment apparatus 10 (first biological treatment apparatus, hereinafter referred to as a membrane separation activated sludge treatment apparatus) to which a membrane separation activated sludge method is applied, and a treatment apparatus 20 (second one) to which a biological membrane method is applied.
  • a biological treatment apparatus hereinafter referred to as a biological film treatment apparatus
  • a measurement unit a measurement unit
  • control unit 30 control unit
  • the membrane separation activated sludge treatment apparatus 10 includes a biological reaction tank 11 and a separation membrane 12. Activated sludge is accommodated in the biological reaction tank 11. Microorganisms (activated sludge) are floating in the waste water of the biological reaction tank 11.
  • the separation membrane 12 is a microfiltration membrane and has a pore of about 0.1 ⁇ m. The separation membrane 12 is immersed in the waste water in the biological reaction tank 11. The separation membrane 12 is connected to a pump 13.
  • the biofilm treatment apparatus 20 includes a treatment tank 21 and a fixed bed 22.
  • the fixed floor 22 is accommodated in the processing tank 21.
  • the fixed bed 22 is configured such that a carrier carrying a biofilm on the surface is accommodated in a container. A predetermined amount of waste water is taken into the container of the fixed bed 22 and the biofilm on the surface of the carrier comes into contact with the waste water, whereby the organic matter is decomposed.
  • a watering filter method, a rotating disk method, a contact aeration method, or the like can be employed as the biofilm method.
  • the carrier for supporting the biofilm is not limited to the fixed bed, and a method for supporting the biofilm on the surface of the carrier floating in the wastewater (about 3 to 10 mm in size) may be employed. it can.
  • Valves 34 and 36 are installed on the inlet side of the membrane separation activated sludge treatment apparatus 10 and the biofilm treatment apparatus 20, respectively. Each of the valves 34 and 36 is connected to an output unit of the control unit 30.
  • the membrane separation activated sludge treatment apparatus 10 and the biofilm treatment apparatus 20 are connected with each other by piping.
  • the measuring unit includes a load concentration measuring unit that measures the load concentration in the waste water and a flow rate measuring unit that measures the flow rate of the waste water.
  • the load measured by the load concentration measuring unit is COD (chemical oxygen demand) or BOD (biochemical oxygen supply).
  • the load concentration measuring unit includes a COD meter 31 and a UV meter 32.
  • the BOD can be converted from the COD measured by the COD meter.
  • the load concentration measuring unit is installed near the entrance of the biological treatment unit 3 (upstream side of the membrane separation activated sludge treatment device 10 and the biological membrane treatment device 20).
  • the COD meter 31 and the UV meter 32 are connected to the input unit of the control unit 30.
  • only one of the COD meter 31 and the UV meter 32 may be installed as the load concentration measuring unit.
  • a TOC meter that measures TOC total organic carbon concentration
  • FIG. 2 includes a flow meter 33 installed at the entrance of the membrane separation activated sludge treatment apparatus 10 and a flow meter 35 installed at the entrance of the biofilm treatment apparatus 20 as a flow rate measurement unit.
  • the installation location of the flow meter is not limited to FIG. 2, and the inlet of the membrane separation activated sludge treatment apparatus 10 and the inlet of the biological treatment unit 3 (specifically, in the vicinity of the COD meter 31 and the UV meter 32), or the biological membrane You may install in the entrance of the processing apparatus 20, and the entrance of the biological treatment part 3.
  • the flow meters 33 and 35 are each connected to an input unit of the control unit 30.
  • a neutralizing chemical tank 40 is connected to the piping on the upstream side of the COD meter 31 and the UV meter 32.
  • the neutralization chemical tank 40 contains an acid such as HCl or an alkali such as NaOH. Whether to use acid or alkali depends on the characteristics of the waste water. Depending on the characteristics, two types of chemicals, acid and alkali, may be stored in separate tanks and used separately according to pH fluctuations.
  • a predetermined amount of neutralizing chemical is supplied to the wastewater that has flowed into the biological treatment unit 3 to adjust the pH of the wastewater.
  • a UV meter may be installed on the downstream side of the membrane separation activated sludge treatment apparatus 10, and the load concentration in the treated water treated by the biological treatment unit 3 may be measured.
  • the COD meter 31 measures the COD concentration in the waste water flowing into the biological treatment unit 3 every predetermined time, for example, every hour.
  • the COD meter 31 measures the COD concentration.
  • the COD concentration measured by the COD meter 31 is transmitted to the control unit 30.
  • the UV meter 32 irradiates the wastewater that has flowed into the biological treatment unit 3 with ultraviolet light having a wavelength of 254 nm, and measures the absorbance of the wastewater. The measured absorbance is transmitted to the control unit 30.
  • the control unit 30 acquires the COD concentration measured by the COD meter 31 and the absorbance measured by the UV meter 32.
  • the control unit 30 stores in advance correlation data between the absorbance measured by the UV meter 32 and the COD concentration in the waste water.
  • the control unit 30 collates the acquired absorbance with the correlation data, and estimates the COD concentration in the waste water.
  • the control unit 30 obtains the change over time of the COD concentration in the wastewater flowing into the biological treatment unit 3. To do.
  • the COD meter 31 and the UV meter 32 are used in combination as in the present embodiment, a more detailed change in COD concentration with time can be acquired.
  • the control unit 30 may calculate a moving average or regression estimated value of the COD concentration from the change over time of the acquired COD concentration.
  • the measured value at an arbitrary measurement time point and the average value of the measured values at a plurality of measurement time points immediately before the arbitrary measurement time point are defined as the measured value at the arbitrary measurement time point.
  • the as the regression estimation either primary regression estimation or quadratic regression estimation can be adopted.
  • regression estimation a primary regression equation or a quadratic regression equation is created from measurement values at any measurement time point and measurement values at a plurality of measurement time points immediately before the measurement time point.
  • a measurement value at an arbitrary measurement time is estimated.
  • the method of regression estimation is not limited to these, and polynomial regression estimation such as cubic regression estimation, exponential regression estimation, logarithmic regression estimation, and power regression estimation may be used depending on drainage characteristics.
  • control unit 30 acquires, for example, a moving average of COD concentrations at four measurement points. Or the control part 30 produces the regression formula of the COD density
  • the flow meter 33 measures the flow rate (first flow rate) F 1 of the waste water flowing through the piping on the inlet side of the membrane separation activated sludge treatment apparatus 10 every predetermined time.
  • Flow meter 35 at predetermined time intervals, to measure the biological membrane treatment apparatus inlet side of the flow rate of wastewater flowing through the pipe 20 (second flow rate) F 2.
  • the first flow rate F 1 and the second flow rate F 2 are substantially the same as the measurement interval of the UV meter 32.
  • the measured first flow rate F 1 and second flow rate F 2 are transmitted to the control unit 30.
  • Control unit 30 obtains the first flow rate F 1 and a second flow rate F 2.
  • the control unit 30 calculates the sum F t of the first flow rate F 1 and the second flow rate F 2 as the total flow rate of the wastewater flowing into the biological treatment unit 3.
  • the control unit 30 acquires a change with time in the total flow rate of the waste water. Regarding the flow rate, it is not always necessary to calculate a moving average or a regression estimation value from the acquired temporal change.
  • COD load L is COD absolute amount per unit time, it is defined by the product of the COD concentration and flow rate F t.
  • the COD concentration used for the calculation of the COD load amount may be a value acquired from the above-described change in COD concentration with time, or a moving average of COD concentration or a regression estimation value.
  • the moving average of the COD concentration and the regression estimation value may be combined.
  • the control unit 30 refers to a change with time in the COD concentration, a moving average of the COD concentration, and a regression estimated value of the COD concentration.
  • the regression estimation value is adopted for the calculation of the COD load amount.
  • the COD concentration is fluctuating, the COD load amount is calculated.
  • Use moving average for calculation If a moving average or regression estimation value is used to calculate the COD load, measurement errors of the COD meter and UV meter can be reduced, and stable control can be performed.
  • the control unit 30 stores in advance a threshold value of the COD load L for determining the distribution ratio of the wastewater to the membrane separation activated sludge treatment apparatus 10 and the biofilm treatment apparatus 20.
  • One or more threshold values for the COD load amount can be set according to the properties of the waste water.
  • the threshold value of the COD load amount is a value that can be appropriately changed according to the wastewater treatment status.
  • the control unit 30 stores the design load of the membrane separation activated sludge treatment apparatus 10 and the design load of the biofilm treatment apparatus 20 in consideration of the design maximum COD amount of the biological treatment unit 3.
  • the ratio between the design load of the membrane separation activated sludge treatment device 10 and the design load of the biological membrane treatment device 20 is X : 1-X.
  • Control unit 30 stores the threshold value L 1.
  • Threshold L 1 is determined based on the design load of the membrane separation activated sludge treatment apparatus 10.
  • Threshold L 1 is a COD load by multiplying a percentage of the design load of the membrane separation activated sludge treatment apparatus 10.
  • the threshold value L 1 is within a range of a value obtained by multiplying a constant rate (10% to 50%) to the design load of the membrane separation activated sludge treatment apparatus 10.
  • the threshold L 1 is 20% of the value of the design load.
  • Control unit 30 compares the acquired COD loads L and the threshold value L 1. When the COD load is equal to or less than the threshold (L ⁇ L 1 ), the control unit 30 closes the valve 36 and stops the supply of wastewater to the biofilm treatment apparatus 20. Operation of the biofilm treatment apparatus 20 is stopped. The control unit 30 adjusts the opening degree of the valve 34 and supplies the entire amount of waste water flowing into the biological treatment unit 3 to the membrane separation activated sludge treatment apparatus 10. Thereby, the stable waste water treatment with the membrane separation activated sludge processing apparatus 10 is maintained.
  • the control unit 30 opens the valve 36.
  • the control unit 30 distributes the wastewater that has flowed into the biofilm treatment unit 3 into wastewater that is fed to the membrane separation activated sludge treatment device 10 and wastewater that is fed to the biofilm treatment device 20 at a predetermined ratio.
  • the control unit 30 stores in advance values of the first flow rate F 1 ′ and the second flow rate F 2 ′ when L> L 1 . Note that F 1 ′ and F 2 ′ are values that satisfy the predetermined ratio described above.
  • the control unit 30 compares the first flow rate F 1 ′ stored in advance with the current first flow rate F 1 .
  • the control unit 30 compares the second flow rate F 2 ′ stored in advance with the current second flow rate F 2 .
  • Control unit 30 stores the first threshold value L 1 and the second threshold value L 2.
  • the first threshold value L 1 and the second threshold value L 2 is determined based on the design load of the membrane separation activated sludge treatment apparatus 10.
  • the first threshold L 1 is the same value as the case of providing a single threshold value as described above. That is, the first threshold value L 1 is, for example, membrane separation activated sludge treatment apparatus certain percentage in the design loads 10 within the range of values obtained by multiplying the (from 10% to 50%).
  • the second threshold value L 2 is determined based on the design load of the membrane separation activated sludge treatment apparatus 10.
  • the upper limit of the second threshold value L 2 is the maximum capacity of the membrane separation activated sludge treatment apparatus 10.
  • the second lower limit threshold L 2 is a value in consideration of the processing capacity of the biofilm treatment device 20. Specifically, a second threshold value L 2 is a value within the range 80% 125% or less of the design load of the membrane separation activated sludge treatment apparatus 10.
  • Control unit 30 compares the COD load L obtained, the first threshold value L 1 and the second and the threshold L 2. When the COD load is equal to or less than the first threshold (L ⁇ L 1 ), the control unit 30 closes the valve 36 and stops the operation of the biofilm treatment apparatus 20 as described above. The control unit 30 adjusts the opening degree of the valve 34 and supplies the entire amount of waste water flowing into the biological treatment unit 3 to the membrane separation activated sludge treatment apparatus 10.
  • the control unit 30 When the COD load is greater than the first threshold and less than or equal to the second threshold (L 1 ⁇ L ⁇ L 2 ), the control unit 30 performs membrane separation of wastewater that has flowed into the biofilm treatment unit 3 at a predetermined ratio. Distribute into waste water fed to the activated sludge treatment apparatus 10 and waste water fed to the biofilm treatment apparatus 20.
  • the wastewater distribution ratio (ratio between F 1 ′ and F 2 ′) is the ratio (X: 1 ⁇ X) between the design load of the membrane separation activated sludge treatment apparatus 10 and the design load of the biofilm treatment apparatus 20. .
  • the controller 30 stores in advance the values of the first flow rate F 1 ′ and the second flow rate F 2 ′ when L 1 ⁇ L ⁇ L 2 .
  • F 1 ′ and F 2 ′ are values that satisfy the predetermined ratio described above.
  • the control unit 30 compares the first flow rate F 1 ′ stored in advance with the current first flow rate F 1 .
  • the control unit 30 compares the second flow rate F 2 ′ stored in advance with the current second flow rate F 2 .
  • the control unit 30 uses the flow rate (first flow rate) F 1 ′′ at which the load of the membrane separation activated sludge treatment apparatus 10 becomes a predetermined value, and the membrane the predetermined value of the load in the case .L> L 2 to deliver wastewater to the separation activated sludge treatment apparatus 10, is the same as the upper limit of the load range for L 1 ⁇ L ⁇ L 2 above.
  • the value is within a range of 80% to 125% of the design load of the membrane separation activated sludge treatment apparatus, and the control unit 30 has a flow rate at which the load of the membrane separation activated sludge treatment apparatus 10 is a value within the above range ( First flow rate) F 1 ′′ is determined.
  • the control unit 30 compares the stored first flow rate F 1 ′′ with the current first flow rate F 1.
  • the control unit 30 is configured to treat the COD exceeding the predetermined load of the membrane separation activated sludge treatment apparatus 10 determined as described above with the biofilm treatment apparatus 20 so that the flow rate of the wastewater to be supplied to the biofilm treatment apparatus 20 ( second flow rate) F 2 "to determine. the control unit 30, the second flow rate F 2 which is determined” to compare the current second flow rate F 2.
  • the threshold value L 1 As described above, by setting the threshold value L 1 , it is possible to continue the stable treatment without reducing the treatment capacity of the membrane separation activated sludge treatment apparatus 10 even when the load fluctuation of the waste water is smaller than the threshold value L 1. it can. If the load exceeds the threshold value L 1 due to load fluctuation of wastewater is generated, by distributing the load to the membrane separation activated sludge treatment apparatus 10 and the biological treatment device 20, it is possible to perform processing while following the load fluctuation it can.
  • the threshold value L 2 which limits the amount of processing in the membrane separation activated sludge treatment apparatus 10.
  • the biofilm treatment apparatus 20 when there is a load fluctuation in a high load state, the biofilm treatment apparatus 20 is unsuitable as treated water even though the load fluctuation followability is high. There is a possibility. Therefore, by setting the threshold value L 2 to a value greater than 100% of the design load of the membrane separation activated sludge treatment apparatus 10 can reduce the burden of processing in the biofilm treatment device 20. By thus setting the threshold value L 2, even when the waste water of a high load is flowed into the biological treatment unit 3, it can be carried stable process can supply treated water stable properties.
  • one or more intermediate threshold values may be set between the threshold value L 1 and the threshold value L 2 in order to improve the followability of processing with respect to load fluctuations.
  • Distribution ratio of wastewater supplied to the membrane separation activated sludge treatment apparatus 10 and the biofilm treatment apparatus 20 when the COD load is L ⁇ L N and L> L N with the intermediate threshold L N as a boundary To change.
  • the distribution ratio is determined so that the ratio of the wastewater supplied to the biofilm treatment apparatus 20 is larger when L> LN than when L ⁇ LN . By doing so, it is possible to improve the followability of processing with respect to load fluctuations.
  • the first threshold is 20%
  • the second threshold is 125%
  • the third intermediate threshold is 80%.
  • the distribution ratio is the same as in the case of the two thresholds.
  • the third intermediate threshold is exceeded, the distribution ratio of the exceeding portion is set to 50:50.
  • control is performed so as not to change the distribution of the COD amount to the membrane separation activated sludge treatment apparatus 10 as an upper limit.
  • the membrane separation activated sludge treatment apparatus 10 can maintain a stable treatment up to about 120% of the design load. If the biofilm treatment apparatus 20 is up to about three times the design load, the biofilm treatment apparatus 20 can maintain a stable treatment although it deteriorates slightly.
  • the biofilm treatment apparatus 20 can usually treat 90% or more of COD, but can treat 70% or more if it is up to about three times the design load. In view of economy, it is desirable to increase the ratio of the design load of the membrane separation activated sludge treatment apparatus 10. In the following quantitative evaluation, the evaluation when the distribution ratio to the membrane separation activated sludge treatment apparatus 10 and the biofilm treatment apparatus 20 is determined in consideration of the variable ability to the load will be described.
  • the load of the biofilm treatment apparatus 20 is 150% and there is no third threshold L 3
  • the treated water in the biofilm treatment apparatus 20 flows into the membrane separation activated sludge treatment apparatus 10.
  • the treated water in the biological treatment tank 11 is discharged from the membrane separation activated sludge treatment apparatus 10 (biological treatment unit 3) by the pump 13. At this time, the activated sludge and suspended particles are separated from the treated water by the separation membrane 12.
  • the treated water discharged from the biological treatment unit 3 is conveyed to the desalting unit 4.
  • desalting is performed.
  • FIG. 3 is a graph showing changes in COD concentration and flow rate with time when wastewater is treated using the wastewater treatment apparatus of the present embodiment. That is, it is the result of carrying out the treatment in combination with the membrane separation activated sludge treatment apparatus and the biofilm treatment apparatus in the biological treatment section.
  • Fig.3 (a) has shown the COD density
  • FIG.3 (b) has shown the COD density
  • FIG.3 (c) has shown the COD density
  • the horizontal axis represents the elapsed time of wastewater treatment
  • the first vertical axis represents the COD concentration
  • the second vertical axis represents the flow rate.
  • the measurement interval of the COD concentration and the flow rate was 15 minutes.
  • FIG. 3 shows the moving average of the COD concentration.
  • 25% of the design load of the first threshold value L 1 membrane separation activated sludge treatment apparatus was set second threshold L 2 to 125% of the design load.
  • the distribution ratio F 1 ′′: F 2 ′′ of the waste water when L 1 ⁇ L ⁇ L 2 was set to 80:20.
  • FIG. 4 is a graph showing changes over time in COD concentration and flow rate when wastewater is treated using only a membrane separation activated sludge treatment apparatus.
  • FIG. 4 (a) shows the COD concentration and flow rate in the wastewater flowing into the biological treatment section.
  • FIG.4 (b) has shown the COD density
  • the amount of waste water supplied to the membrane separation activated sludge treatment apparatus coincides with the amount of waste water flowing into the biological treatment unit.
  • FIG. 3 L 1 ⁇ L ⁇ L 2 from the 0th to the 9th, and the wastewater is distributed to the membrane separation activated sludge treatment apparatus and the biofilm treatment apparatus at a predetermined ratio.
  • the COD concentration and the flow rate fluctuate greatly from the 9th to the 10th. This time, and has a L> L 2.
  • the flow rate and COD concentration of the wastewater supplied to the biofilm treatment apparatus greatly fluctuate corresponding to the fluctuations in the COD concentration and flow rate.
  • FIG.3 (c) the processing amount in a membrane separation activated sludge processing apparatus does not change with 9 days ago.
  • the COD concentration treated by the membrane separation activated sludge treatment apparatus varies due to fluctuations in the COD concentration and flow rate.
  • the COD concentration in the treated water is 40 mg / l in FIG. 3, whereas it is as high as 140 mg / l in FIG.
  • the wastewater can be treated stably by using the membrane separation activated sludge treatment device and the biofilm treatment device in combination and distributing the wastewater according to the COD load in the wastewater.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Health & Medical Sciences (AREA)
  • Activated Sludge Processes (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Biological Treatment Of Waste Water (AREA)

Abstract

 水質変動が大きい場合でも安定して排水を処理することができる排水処理装置を提供する。排水処理装置は、膜分離活性汚泥法により排水を処理する第1の生物処理装置(10)と、生物膜法により排水を処理する第2の生物処理装置(20)と、前記第1の生物処理装置(10)及び前記第2の生物処理装置(20)の上流を流通する排水中の負荷濃度と流量とを計測する計測部(31,32)と、前記負荷濃度と前記流量とから負荷量を算出し、前記負荷量に応じて、前記第1の生物処理装置(10)に送給する前記排水の流量と、前記第2の生物処理装置(20)に送給する前記排水の流量との分配比率を決定し、該分配比率に基づいて、前記第1の生物処理装置(10)に送給する前記排水の流量と前記第2の生物処理装置(20)に送給する前記排水の流量とを調整する制御部(30)とを含む。

Description

排水処理装置
 本発明は、工業排水を再利用するために浄化処理するための排水処理装置に関する。
 プラントからの工業排水は、重金属成分及び浮遊粒子などの除去、並びに微生物による有機物の分解除去などの浄化処理が施される。浄化処理された処理水は、一般に環境中に放出されるが、工業用水の確保が困難な場所においては、工業排水を浄化処理した処理水が工業用水に再利用される。
 微生物による有機物の分解除去方法としては、膜分離活性汚泥法(Membrane Bioreactor,MBR)や生物膜法(Biofilm Reactor,BFR)が用いられる。
 膜分離活性汚泥法は、槽内で活性汚泥を用いて排水中の有機物を分解し、ろ過膜を用いて処理水と活性汚泥とを分離する方法である。膜分離活性汚泥法は、活性汚泥濃度を高くすることができ、処理水と活性汚泥とを分離する沈殿槽が不要であるため容積効率が高いという利点がある。一方で、水質、すなわち排水中の有機物濃度が短期間に大きく変動すると、処理能力が有機物濃度の変動に追従することができずに、処理水中の有機物濃度が規制値を超える場合がある。
 生物膜法は、担体表面に活性汚泥を膜状に付着させて排水中の有機物を分解する方法である。膜(生物膜)表面では通常の活性汚泥と同様の処理が行われるが、膜内面では栄養源が不足しているために休眠状態となっている。有機物の濃度が変動した場合、生物膜内部の汚泥が活性化することになる。すなわち、有機物濃度の変動に応じて、活動する汚泥の厚さが変動する。有機物濃度に応じた活性汚泥量が維持されるため、有機物濃度の変動に対応して処理を継続することが可能である。
 排水処理装置では、膜分離活性汚泥法、生物膜法のいずれか一方が適用されるのが一般的である。特許文献1は、生物処理槽を備え、処理する水の流量の時系列変動が大きい場合に対応可能な水処理装置を開示している。特許文献1の水処理装置では、処理前の水を流量調整槽に取り込み、流量調整槽中の水の汚濁負荷量に応じて、生物処理手段に送る水とオゾン処理手段に送る水の流量を制御している。
特開平11-244896号公報(請求項1、段落[0015]から[0017]、[0029]から[0032]、図1)
 特許文献1の水処理装置では、排水を一時的に貯留する流量調整槽を必要とするため、装置の容積効率が悪い。また、オゾン処理は高価である。更に、オゾン漏れを防止するための付帯設備が別途必要になる上、オゾン漏れを監視する等運用が複雑になるのが問題であった。
 本発明は、簡易な装置により、水質変動が大きい場合でも安定して排水を処理することができる排水処理装置を提供することを目的とする。
 上記課題を解決するために、本発明は、膜分離活性汚泥法により排水を処理する第1の生物処理装置と、生物膜法により排水を処理する第2の生物処理装置と、前記第1の生物処理装置及び前記第2の生物処理装置の上流を流通する排水中の負荷濃度と流量とを計測する計測部と、前記負荷濃度と前記流量とから負荷量を算出し、前記負荷量に応じて、前記第1の生物処理装置に送給する前記排水の流量と、前記第2の生物処理装置に送給する前記排水の流量との分配比率を決定し、該分配比率に基づいて、前記第1の生物処理装置に送給する前記排水の流量と前記第2の生物処理装置に送給する前記排水の流量とを調整する制御部とを含む排水処理装置を提供する。
 この場合、前記負荷量が、CODまたはBODとされる。
 上述のように、膜分離活性汚泥法を用いた処理装置は、排水の水質が短時間で変動した場合に処理能力を追従することができない。これに対し、生物膜法を用いた処理装置は、水質の変動に応じて処理能力を変動させることが可能である。本発明の排水処理装置では上記特徴を利用し、膜分離活性汚泥法と生物膜法とを併用して有機物の分解処理を実施する。この時、排水中の負荷濃度と流量とを監視し、負荷濃度と流量とから算出される負荷量に基づいて、各方法を採用した処理装置への排水の分配比率を決定し、分配比率に基づいて各処理装置へ送給する排水の流量を制御する。こうすることで、処理能力を超える負荷量を含む排水が膜分離活性汚泥法を用いた処理装置に流入して、処理後の水中の有機物が規制値を超えることを防止することができる。本発明の排水処理装置は、水質の変動に対応することができ、安定した排水処理を継続させることができる。
 上記発明において、前記制御部が第1の閾値を格納し、前記制御部が、前記負荷量が前記第1の閾値以下である場合に前記第1の生物処理装置に前記排水を送給するとともに、前記第2の生物処理装置への前記排水の送給を停止し、前記負荷量が第1の閾値より大きい場合に、前記制御部が、所定の前記分配比率で前記第1の生物処理装置と前記第2の生物処理装置とに前記排水を送給する。
 上記発明において、前記制御部が前記第1の閾値と第2の閾値とを格納し、前記負荷量が前記第1の閾値より大きく前記第2の閾値以下である場合に、前記制御部が、前記所定の分配比率で前記第1の生物処理装置及び前記第2の生物処理装置に前記排水を送給し、前記負荷量が前記第2の閾値よりも大きい場合に、前記制御部が、前記第1の生物処理装置の処理量が所定の値になるように前記第1の生物処理装置に前記排水を送給するとともに、残りの前記排水を前記第2の生物処理装置に送給する。
 本発明の排水処理装置では、主として膜分離活性汚泥法を用いた処理装置(第1の生物処理装置)で排水を処理する。膜分離活性汚泥法は系内の負荷濃度が極端に低くなると、微生物の一部が死滅して汚泥の活性が大幅に低下する。この状態で負荷濃度が増加した場合には、処理が追従できなくなる可能性がある。このため、本発明では負荷量が低くなった場合(第1の閾値以下)、第2の生物処理装置の運転を停止して、第1の生物処理装置が安定運転できる負荷濃度を確保する。
 一方で、負荷量が大きい場合には、第1の生物処理装置の処理量を超える排水量を、生物膜法を用いた処理装置(第2の生物処理装置)に送給する。あるいは、第1の生物処理装置を所定の負荷範囲で運転し、一部の排水処理を第2の生物処理装置が負担するような分配比率で、各生物処理装置に排水を送給する。
 従って、本発明の排水処理装置は安定した排水処理を実施することができる。
 上記発明において、前記制御部が、前記第1の閾値と前記第2の閾値との間に1つまたは複数の中間閾値を格納し、前記制御部が、前記中間閾値より大きい場合と前記中間閾値以下の場合とで異なる前記分配比率にて、前記第1の生物処理装置と前記第2の生物処理装置に前記排水を送給する。
 この場合、前記制御部が、前記中間閾値を超える毎に、前記第2の生物処理装置への前記排水の分量が増加するように、前記排水を送給することが好ましい。
 こうすることで、負荷変動に対する処理の追従性を高めることができる。
 上記発明において、前記第2の生物処理装置から排出された前記排水が、前記第1の生物処理装置に送給されることが好ましい。
 生物膜法を用いた第2の生物処理装置では、浮遊粒子が発生しやすい。膜分離活性汚泥法では、分離膜により微生物と処理水とが固液分離される。第2の生物処理装置の下流に第1の生物処理装置を配置すれば、第1の生物処理装置の分離膜によって処理水から浮遊粒子を分離除去することができる。このため、下流側で逆浸透膜や静電式脱塩装置を用いて脱塩処理を実施する場合に、膜モジュール内部での閉塞を防止することができる。
 上記発明において、前記制御部が、前記負荷濃度の移動平均及び回帰推定値の少なくとも一方を算出し、前記移動平均及び回帰推定値の少なくとも一方を用いて前記負荷量を算出することが好ましい。
 移動平均や回帰推定値を用いると、負荷濃度が短時間で急激に変動した場合や負荷濃度の計測誤差があった場合に、その変動量が補正される。このため、負荷濃度のごく短時間の変動や測定誤差に対応させて排水の分配量を決定する必要がなくなるので、制御が安定するという効果を奏する。
 本発明の処理装置は、膜分離活性汚泥法を用いた生物処理装置と生物膜法を用いた生物処理装置とを併用している。各生物処理装置の特性を利用し、COD負荷量の変動に応じて排水の分配量を制御している。このため、水質変動が激しい場合にも対応でき、処理水の水質を安定させることができる。
排水処理装置のブロック図である。 排水処理装置の生物処理部の概略図である。 膜分離活性汚泥処理装置と生物膜処理装置とを用いて排水を処理した場合のCOD濃度及び流量の経時変化を表すグラフである。 膜分離活性汚泥処理装置のみを用いて排水を処理した場合のCOD濃度及び流量の経時変化を表すグラフである。
 図1に、本実施形態に係る排水処理装置のブロック図を示す。排水処理装置1は、上流側から前処理部2、生物処理部3、及び、脱塩部4を備える。
 前処理部2は、プラントからの原水を受け入れ、原水中の油分、重金属類、浮遊粒子などを除去する。
 脱塩部4は、排水中に含まれるイオンを除去する。脱塩部4は、逆浸透膜式脱塩装置、あるいは、静電式脱塩装置を有する。
 逆浸透膜式脱塩装置において、逆浸透膜(RO膜)は水のみを透過させる。逆浸透膜を透過した水(処理水)は、工業用水として再利用される。逆浸透膜の上流側はイオンが濃縮された排水(濃縮水)となっている。濃縮水は、逆浸透膜式脱塩装置から排出されることにより、排水処理装置1の系外に排出される。
 静電式脱塩装置は、一対の対向する多孔質電極を有し、正極側には陰イオン交換膜が設置され、負極側には陽イオン交換膜が設置される。電極の間を排水が流通可能になっている。
 正極がプラス、負極がマイナスになるように電流を流すと、排水中の陰イオンは正極側に移動し、陰イオン交換膜を透過して多孔質の正極に吸着される。一方、排水中の陽イオンは負極側に移動し、陽イオン交換膜を透過して多孔質の負極に吸着される。従って、電極間を流通する際に排水中のイオンが除去され、処理水が回収される。回収された処理水は、工業用水として再利用される。静電式脱塩装置を用いると、逆浸透膜式脱塩装置よりも水の回収率を向上させることができるので有利である。
 所定時間経過した時点で通水を遮断し、各電極に流す電流を反転させて、正極をマイナス、負極をプラスにする。こうすると、多孔質電極中に吸着されていたイオンが放出され、イオン交換膜を透過して排水中に移動する。この後、イオンを含む排水が静電式脱塩装置から排出され、ドレインとして排水処理装置1の系外に排出される。
 図2は、本実施形態に係る排水処理装置の生物処理部3の概略図である。
 生物処理部3は、膜分離活性汚泥法を適用した処理装置10(第1の生物処理装置、以下では膜分離活性汚泥処理装置と称する)と、生物膜法を適用した処理装置20(第2の生物処理装置、以下では生物膜処理装置と称する)と、計測部と、制御部30とを備える。
 膜分離活性汚泥処理装置10は、生物反応槽11と、分離膜12とを備える。生物反応槽11中には活性汚泥が収容されている。生物反応槽11の排水中に微生物(活性汚泥)が浮遊した状態となっている。分離膜12は精密ろ過膜とされ、0.1μm程度の孔を有する。分離膜12は、生物反応槽11中の排水中に浸漬されている。分離膜12はポンプ13に接続される。
 生物膜処理装置20は、処理槽21と、固定床22とを備える。固定床22は処理槽21内に収容されている。固定床22は、表面に生物膜を担持する担体が容器内に収納される構成となっている。所定量の排水が固定床22の容器内に取り込まれ、担体表面の生物膜と排水とが接触することで、有機物の分解が行われる。本実施形態では、生物膜法として散水ろ床法、回転円板法、接触曝気法などが採用可能である。なお、本実施形態では、生物膜を担持する担体としては固定床に限定されず、排水中で浮遊する担体(大きさ3から10mm程度)の表面に生物膜を担持する方法も採用することができる。
 膜分離活性汚泥処理装置10及び生物膜処理装置20の入口側に、それぞれバルブ34,36が設置される。バルブ34、36はそれぞれ制御部30の出力部に接続する。膜分離活性汚泥処理装置10と生物膜処理装置20とは、配管によって連絡している。
 計測部は、排水中の負荷濃度を計測する負荷濃度計測部と、排水の流量を計測する流量計測部とで構成される。
 本実施形態において、負荷濃度計測部で計測される負荷は、COD(化学的酸素要求量)またはBOD(生物化学的酸素供給量)とされる。負荷濃度計測部は、COD計31とUV計32とを備える。なお、COD計で計測されたCODから、BODを換算することが可能である。負荷濃度計測部は、生物処理部3の入口近傍(膜分離活性汚泥処理装置10及び生物膜処理装置20の上流側)に設置される。COD計31及びUV計32は、制御部30の入力部に接続する。なお、本実施形態では負荷濃度計測部としてCOD計31及びUV計32のいずれか一方のみが設置されていても良い。また、COD計やUV計の他に、TOC(全有機炭素濃度)を計測するTOC計を設置しても良い。
 図2の生物処理部3は、流量計測部として、膜分離活性汚泥処理装置10の入口に設置される流量計33と、生物膜処理装置20の入口に設置される流量計35とを備える。但し、流量計の設置場所は図2に限定されず、膜分離活性汚泥処理装置10の入口と生物処理部3の入口(具体的にCOD計31及びUV計32の近傍)、または、生物膜処理装置20の入口と生物処理部3の入口に設置されても良い。流量計33,35はそれぞれ制御部30の入力部に接続する。
 COD計31及びUV計32の上流側の配管に、中和薬品タンク40が接続される。中和薬品タンク40は、HClなどの酸、あるいはNaOHなどのアルカリを収容する。酸とアルカリのいずれを使用するかは排水の特性により変わる。特性によっては酸とアルカリの二種類の薬品を別のタンクに収納し、pH変動に応じて使い分けることもある。生物処理部3に流入した排水に所定量の中和薬品が供給され、排水のpHが調整される。
 図2では、膜分離活性汚泥処理装置10の下流側にUV計が設置され、生物処理部3で処理された処理水中の負荷濃度が計測されても良い。
 本実施形態の生物処理部3で排水を処理する工程を以下で説明する。以下では、負荷濃度としてCOD濃度を計測した場合を例に挙げて説明する。
 前処理部2で排水中の重金属類、油類、浮遊粒子等が除去された排水が、生物処理部3に流入する。
 COD計31は、所定時間毎に、例えば1時間毎に生物処理部3に流入した排水中のCOD濃度を計測する。COD計31は、COD濃度を計測する。COD計31で計測されたCOD濃度は、制御部30に送信される。
 UV計32は、生物処理部3に流入した排水に波長254nmの紫外光を照射し、排水の吸光度を計測する。計測された吸光度は、制御部30に送信される。
 制御部30は、COD計31で計測されたCOD濃度と、UV計32で計測された吸光度とを取得する。制御部30は、UV計32で計測される吸光度と排水中のCOD濃度との相関データを予め格納している。制御部30は取得した吸光度を当該相関データに照合し、排水中のCOD濃度を推定する。制御部30は、COD計31で計測されたCOD濃度と、UV計32で計測された吸光度から推定したCOD濃度とに基づき、生物処理部3に流入した排水中のCOD濃度の経時変化を取得する。本実施形態のようにCOD計31とUV計32とを併用すると、より詳細なCOD濃度の経時変化を取得できる。
 制御部30は、取得したCOD濃度の経時変化から、COD濃度の移動平均や回帰推定値を算出しても良い。
 移動平均では、任意の測定時点での計測値、及び、当該任意の測定時点の直前であって複数の測定時点での計測値の平均値が、当該任意の測定時点での計測値と定義される。
 回帰推定は、一次回帰推定と二次回帰推定のいずれかを採用できる。回帰推定では、任意の測定時点での計測値、及び、当該任意の測定時点の直前であって複数の測定時点での計測値の一次回帰式または二次回帰式が作成され、回帰式から当該任意の測定時点での計測値が推定される。回帰推定の方法はこれらに限定されず、排水の特性によっては三次回帰推定などの多項式回帰推定、指数回帰推定、対数回帰推定、累乗回帰推定を使用しても良い。
 本実施形態では、制御部30は例えば測定時点4点のCOD濃度の移動平均を取得する。または、制御部30は例えば測定時点4点のCOD濃度の回帰式を作成し、回帰推定値を取得する。
 流量計33は、所定時間毎に、膜分離活性汚泥処理装置10の入口側の配管を流通する排水の流量(第1の流量)Fを計測する。流量計35は、所定時間毎に、生物膜処理装置20の入口側の配管を流通する排水の流量(第2の流量)Fを計測する。第1の流量F及び第2の流量Fは、UV計32での計測間隔と略同一とされる。計測された第1の流量F及び第2の流量Fは、制御部30に送信される。
 制御部30は、第1の流量Fと第2の流量Fとを取得する。制御部30は、生物処理部3に流入した排水の総流量として第1の流量Fと第2の流量Fとの和Fを算出する。制御部30は、排水の総流量の経時変化を取得する。なお、流量に関しては、必ずしも取得した経時変化から移動平均や回帰推定値を算出する必要はない。
 制御部30は、同一時間に計測されたCOD濃度と総流量Fとから、COD負荷量Lを算出し取得する。COD負荷量Lは単位時間当たりのCOD絶対量であり、COD濃度と流量Fとの積で定義される。
 COD負荷量の算出に用いるCOD濃度は、上述のCOD濃度の経時変化から取得した値としても良いし、COD濃度の移動平均、回帰推定値としても良い。あるいは、COD濃度の移動平均と回帰推定値とを組み合わせても良い。例えば、制御部30は、COD濃度の経時変化と、COD濃度の移動平均と、COD濃度の回帰推定値とを参照する。移動平均及び回帰推定値を取得した測定点でCOD濃度が常に増加または減少している場合はCOD負荷量の算出に回帰推定値を採用し、COD濃度が変動している場合はCOD負荷量の算出に移動平均を採用する。COD負荷量の算出に移動平均や回帰推定値を用いれば、COD計やUV計の測定誤差を小さくすることができ、安定した制御を行うことができる。
 制御部30は、膜分離活性汚泥処理装置10及び生物膜処理装置20への排水の分配比率を決定するためのCOD負荷量Lの閾値を予め格納している。COD負荷量の閾値は、排水の性状に応じて1つまたは複数設定可能である。COD負荷量の閾値は、排水の処理状況に応じて適宜変更可能とされる値である。
 制御部30は、生物処理部3の設計上の最大COD量を考慮した、膜分離活性汚泥処理装置10の設計負荷と生物膜処理装置20の設計負荷とを格納している。
 生物処理部3全体のCOD処理量(生物処理部3の設計負荷)を1としたときに、膜分離活性汚泥処理装置10の設計負荷と生物膜処理装置20の設計負荷との割合は、X:1-Xとされる。上記の割合は、処理コストと各処理装置の性能とを考慮して設定される。すなわち、処理コストを考慮すると、膜分離活性汚泥処理装置は生物膜処理装置に対して有利である。しかし、生物膜処理装置の方が負荷変動が大きい場合の処理能力追従性が高い。これらを考慮して、設計負荷の比率は、膜分離活性汚泥処理装置:生物膜処理装置=90:10から50:50の範囲内に設定することが好ましい。
 以下では、COD負荷量の閾値を1つ設けた場合に排水を処理する方法を説明する。閾値を1つ設ける場合は、水質変動が比較的少なく、膜分離活性汚泥処理装置10の設計負荷を大きく超えるようなCOD負荷量の変動がない場合に有効である。
 制御部30は閾値Lを格納する。閾値Lは、膜分離活性汚泥処理装置10の設計負荷に基づいて決定される。
 閾値Lは、膜分離活性汚泥処理装置10の設計負荷に一定の割合を乗算したCOD負荷量とされる。例えば、閾値Lは、膜分離活性汚泥処理装置10の設計負荷に一定の割合(10%から50%)を乗算した値の範囲内の値とされる。一般的には、閾値Lは設計負荷の20%の値とされる。
 制御部30は、取得したCOD負荷量Lと閾値Lとを比較する。
 COD負荷量が閾値以下である場合(L≦L)、制御部30は、バルブ36を閉鎖し、生物膜処理装置20への排水の送給を停止する。生物膜処理装置20は、運転が停止される。制御部30は、バルブ34の開度を調整し、生物処理部3に流入した排水の全量を膜分離活性汚泥処理装置10に送給する。これにより、膜分離活性汚泥処理装置10での安定した排水処理が保たれる。
 COD負荷量が閾値Lより大きい場合(L>L)、制御部30は、バルブ36を開放する。制御部30は、生物膜処理部3に流入した排水を、所定の比率で膜分離活性汚泥処理装置10に送給される排水と生物膜処理装置20に送給される排水とに分配する。
 L>Lの場合の排水の分配比率(F’とF’との比率)は、膜分離活性汚泥処理装置10の設計負荷と生物膜処理装置20の設計負荷との割合(X:1-X)とされる。例えば、設計負荷の割合X:1-X=80:20である場合、生物処理部3に流入する排水は、F’:F’=80:20の割合で分配される。
 制御部30は、L>Lとなった場合の第1の流量F’と第2の流量F’の値を予め格納している。なお、F’とF’とは、上述の所定の比率を満たす値である。制御部30は、予め格納されている第1の流量F’と現在の第1の流量Fとを比較する。制御部30は、F=F’となるように、バルブ34の開度を調整する。制御部30は、予め格納されている第2の流量F’と現在の第2の流量Fとを比較する。制御部30は、F=F’となるように、バルブ36の開度を調整する。
 以下では、COD負荷量の閾値を2つ設けた場合を例に挙げ、排水を処理する方法を説明する。
 制御部30は第1の閾値Lと第2の閾値Lとを格納する。第1の閾値L及び第2の閾値Lは、膜分離活性汚泥処理装置10の設計負荷に基づいて決定される。
 第1の閾値Lは、上述した閾値を1つ設ける場合と同じ値とされる。すなわち、第1の閾値Lは、例えば膜分離活性汚泥処理装置10の設計負荷に一定の割合(10%から50%)を乗じた値の範囲内とされる。
 第2の閾値Lは、膜分離活性汚泥処理装置10の設計負荷に基づいて決定される。第2の閾値Lの上限値は、膜分離活性汚泥処理装置10の最大処理能力とされる。第2の閾値Lの下限値は、生物膜処理装置20の処理能力を考慮した値とされる。具体的に、第2の閾値Lは、膜分離活性汚泥処理装置10の設計負荷の80%以上125%以下の範囲内の値とされる。
 制御部30は、取得したCOD負荷量Lと、第1の閾値L及び第2の閾値Lとを比較する。
 COD負荷量が第1の閾値以下である場合(L≦L)、上述のように制御部30は、バルブ36を閉鎖して、生物膜処理装置20の運転を停止させる。制御部30は、バルブ34の開度を調整し、生物処理部3に流入した排水の全量を膜分離活性汚泥処理装置10に送給する。
 COD負荷量が第1の閾値より大きく第2の閾値以下である場合(L<L≦L)、制御部30は、生物膜処理部3に流入した排水を、所定の比率で膜分離活性汚泥処理装置10に送給される排水と生物膜処理装置20に送給される排水とに分配する。
 排水の分配比率(F’とF’との比率)は、膜分離活性汚泥処理装置10の設計負荷と生物膜処理装置20の設計負荷との割合(X:1-X)とされる。例えば、設計負荷の割合X:1-X=80:20である場合、生物処理部3に流入する排水は、F’:F’=80:20の割合で分配される。
 制御部30は、L<L≦Lとなった場合の第1の流量F’と第2の流量F’の値を予め格納している。なお、F’とF’とは、上述の所定の比率を満たす値である。制御部30は、予め格納されている第1の流量F’と現在の第1の流量Fとを比較する。制御部30は、F=F’となるように、バルブ34の開度を調整する。制御部30は、予め格納されている第2の流量F’と現在の第2の流量Fとを比較する。制御部30は、F=F’となるように、バルブ36の開度を調整する。
 COD負荷量が第2の閾値を超える場合(L>L)、制御部30は、膜分離活性汚泥処理装置10の負荷が所定値となる流量(第1の流量)F”で、膜分離活性汚泥処理装置10に排水を送給する。L>Lの場合における負荷の所定値とは、上述のL<L≦Lの場合の負荷範囲の上限値と同じとされる。すなわち、膜分離活性汚泥処理装置の設計負荷の80%から125%の範囲内の値とされる。制御部30は、膜分離活性汚泥処理装置10の負荷が上記範囲内の値となる流量(第1の流量)F”を決定する。制御部30は、格納されている第1の流量F”と、現在の第1の流量Fとを比較する。制御部30は、F=F”となるように、バルブ34の開度を調整する。
 制御部30は、上述のように決定された膜分離活性汚泥処理装置10の所定負荷を超えるCODを生物膜処理装置20で処理させるために、生物膜処理装置20に送給する排水の流量(第2の流量)F”を決定する。制御部30は、決定された第2の流量F”を現在の第2の流量Fと比較する。制御部30は、F=F”となるように、バルブ36の開度を調整する。
 上記の通り、閾値Lを設定することで、排水の負荷変動が閾値Lよりも小さい場合でも、膜分離活性汚泥処理装置10の処理能力を低下させずに安定した処理を継続させることができる。排水の負荷変動により閾値Lを超える負荷が発生した場合、膜分離活性汚泥処理装置10と生物処理装置20とに負荷を分配することで、負荷変動に対して追従しながら処理を行うことができる。
 閾値Lを設定して、膜分離活性汚泥処理装置10での処理量を制限している。こうすることで、生物処理部3に流入する排水の負荷が膜分離活性汚泥処理装置10の設計負荷を超えるような場合であっても、最大でも膜分離活性汚泥処理装置10に処理能力を大幅に超過する排水が流入しないようになっている。また、膜分離活性汚泥処理装置10は、高負荷状態が続くと微生物の活性が高まり、より高い負荷での運転が可能となる。また、生物膜処理装置20は、負荷変動に強いとされるが、高負荷状態での負荷変動がある場合には、いかに負荷変動追従性が高いとはいえ、処理水として不適なものとなる可能性もある。そこで、閾値Lを膜分離活性汚泥処理装置10の設計負荷の100%より大きい値に設定すれば、生物膜処理装置20での処理の負担を軽減できる。このように閾値Lを設定したことで、高負荷の排水が生物処理部3へ流入した際においても、安定した処理が実施でき、安定した性状の処理水を供給できる。
 本実施形態では、負荷変動に対する処理の追従性を高めるために、閾値Lと閾値Lの間に、1または複数の中間閾値(L)を設定しても良い。中間閾値Lを境界として、COD負荷量がL≦Lの場合とL>Lの場合とで、膜分離活性汚泥処理装置10と生物膜処理装置20とに送給する排水の分配比率を変化させる。この場合、L≦Lの場合よりもL>Lの方が、生物膜処理装置20に送給する排水の比率が大きくなるように、分配比率を決定する。こうすることで、負荷変動に対する処理の追従性を高めることができる。
 以下で具体例を示しながら定量的に説明する。
 第1の閾値を20%、第2の閾値を125%とし、第3の中間閾値を80%とする。第1の閾値20%、第3の中間閾値80%までは二つの閾値の場合と同様の分配比率とし、第3の中間閾値を超えると、越えた部分の分配比率を50:50とし、第2の閾値を超えると、膜分離活性汚泥処理装置10へのCOD量の分配を上限として変化させない制御を行う。
 膜分離活性汚泥処理装置10は設計負荷の120%程度までであれば安定した処理が保たれる。生物膜処理装置20は設計負荷の3倍程度までであれば若干悪化するものの安定した処理が保たれる。生物膜処理装置20では通常CODを90%以上処理できるが、設計負荷の3倍程度までであれば70%以上を処理することができる。経済性を考慮すると膜分離活性汚泥処理装置10の設計負荷の割合を増やすことが望ましい。以下の定量評価では、この負荷への変動能力を考慮して、膜分離活性汚泥処理装置10と生物膜処理装置20への分配比率を決定した場合の評価を記載する。
 負荷100%のとき、第3の中間閾値がなければ、生物膜処理装置20の処理水COD量は100%×0.2×(1-0.7)=6%となる。このとき、膜分離活性汚泥処理装置10の負荷は100%×0.8+6%=86%となる。一方、第3の閾値があれば、生物膜処理装置20の処理水COD量は{80%×0.2+(100%-80%)×0.5}×(1-0.7)=7.8%となる。このとき、生物膜処理装置20の負荷は80%×0.8+(100%-80%)×0.5+7.8%=81.8%と低くなり、より安定した排水処理が保たれる。
 負荷150%のとき、第3の閾値Lがなければ、生物膜処理装置20の処理水COD量は(150%-100%)×0.3=15%となる。よって、生物膜処理装置20の負荷は100%+15%=115%となる。一方、第3の閾値Lがあれば、生物膜処理装置20の処理水COD量は{80%×0.2+(125%-80%)×0.5+(150%-125%)}×(1-0.7)=19%となる。このとき、生物膜処理装置20の負荷は80%×0.8+(125%-80%)×0.5+19%=105.5%と低くなり、より安定した排水処理が保たれる。
 生物膜処理装置20で処理を実施した場合、生物膜処理装置20での処理水は、膜分離活性汚泥処理装置10に流入する。ポンプ13により、生物処理槽11中の処理水が膜分離活性汚泥処理装置10(生物処理部3)から排出される。この時、分離膜12により、活性汚泥及び浮遊粒子と処理水とが固液分離される。
 生物処理部3から排出された処理水は、脱塩部4に搬送される。脱塩部4において、脱塩処理が実施される。
 図3は、本実施形態の排水処理装置を用いて排水を処理した場合のCOD濃度及び流量の経時変化を表すグラフである。すなわち、生物処理部で膜分離活性汚泥処理装置と生物膜処理装置とを併用して処理を実施した結果である。図3(a)は、生物処理部に流入した排水中のCOD濃度及び流量を示している。図3(b)は、生物膜処理装置の処理水中のCOD濃度と、生物膜処理装置に送給された排水の流量とを示している。図3(c)は、膜分離活性汚泥処理装置の処理水中のCOD濃度と、膜分離活性処理装置に送給された排水の流量とを示している。図3において、横軸は排水処理の経過時間、第1の縦軸はCOD濃度、第2の縦軸は流量である。
 図3の取得に当たり、COD濃度及び流量の計測間隔は、15分とした。図3ではCOD濃度の移動平均を示している。また、第1の閾値Lを膜分離活性汚泥処理装置の設計負荷の25%、第2の閾値Lを設計負荷の125%に設定した。L<L≦Lである場合の排水の分配比率F”:F”は、80:20に設定した。
 図4は、膜分離活性汚泥処理装置のみを用いて排水を処理した場合のCOD濃度及び流量の経時変化を表すグラフである。図4(a)は生物処理部に流入した排水中のCOD濃度及び流量を示している。図4(b)は膜分離活性汚泥処理装置で処理されたCOD濃度を示している。なお、図4の場合、膜分離活性汚泥処理装置に送給された排水量は、生物処理部に流入した排水量と一致している。
 図3において、0日から9日の間はL<L≦Lであり、所定比率で膜分離活性汚泥処理装置及び生物膜処理装置への排水の分配が実施されている。図3(a)に示すように、9日から10日にかけてCOD濃度及び流量が大きく変動している。この時、L>Lとなっている。図3(b)に示すように、COD濃度及び流量の変動に対応して、生物膜処理装置に送給される排水の流量及びCOD濃度が大きく変動している。一方、図3(c)に示すように、膜分離活性汚泥処理装置での処理量は9日以前と変動はない。
 また、図3では、11日から12日にかけて、COD濃度に大きな変動はないが流量が変動した。この時、L<L≦Lであったために、所定の比率で排水が分配された。
 一方、図4に示すように、膜分離活性汚泥処理装置のみを使用した場合は、COD濃度及び流量の変動により、膜分離活性汚泥処理装置で処理されるCOD濃度が変動する。特に、9日から10日にかけてCOD濃度及び流量が大きく変動した場合、図3では処理水中のCOD濃度が40mg/lであるのに対し、図4では140mg/lと高くなっている。
 以上の結果から、膜分離活性汚泥処理装置と生物膜処理装置とを併用し、排水中のCOD負荷量に応じて排水を分配することにより、安定して排水を処理できることが理解できる。
 1 排水処理装置
 2 前処理部
 3 生物処理部
 4 脱塩部
 10 膜分離活性汚泥処理装置(第1の生物処理装置)
 11 生物反応槽
 12 分離膜
 13 ポンプ
 20 生物膜処理装置(第2の生物処理装置)
 21 処理槽
 22 固定床
 30 制御部
 31 COD計
 32 UV計
 33,35 流量計
 34,36 バルブ
 40 中和薬品タンク

Claims (8)

  1.  膜分離活性汚泥法により排水を処理する第1の生物処理装置と、
     生物膜法により排水を処理する第2の生物処理装置と、
     前記第1の生物処理装置及び前記第2の生物処理装置の上流を流通する排水中の負荷濃度と流量とを計測する計測部と、
     前記負荷濃度と前記流量とから負荷量を算出し、前記負荷量に応じて、前記第1の生物処理装置に送給する前記排水の流量と、前記第2の生物処理装置に送給する前記排水の流量との分配比率を決定し、該分配比率に基づいて、前記第1の生物処理装置に送給する前記排水の流量と前記第2の生物処理装置に送給する前記排水の流量とを調整する制御部とを含む排水処理装置。
  2.  前記制御部が第1の閾値を格納し、
     前記制御部が、前記負荷量が前記第1の閾値以下である場合に前記第1の生物処理装置に前記排水を送給するとともに、前記第2の生物処理装置への前記排水の送給を停止し、
     前記負荷量が第1の閾値より大きい場合に、前記制御部が、所定の前記分配比率で前記第1の生物処理装置と前記第2の生物処理装置とに前記排水を送給する請求項1に記載の排水処理装置。
  3.  前記制御部が前記第1の閾値と第2の閾値とを格納し、
     前記負荷量が前記第1の閾値より大きく前記第2の閾値以下である場合に、前記制御部が、前記所定の分配比率で前記第1の生物処理装置及び前記第2の生物処理装置に前記排水を送給し、
     前記負荷量が前記第2の閾値よりも大きい場合に、前記制御部が、前記第1の生物処理装置の処理量が所定の値になるように前記第1の生物処理装置に前記排水を送給するとともに、残りの前記排水を前記第2の生物処理装置に送給する請求項1または請求項2に記載の排水処理装置。
  4.  前記制御部が、前記第1の閾値と前記第2の閾値との間に1つまたは複数の中間閾値を格納し、
     前記制御部が、前記中間閾値より大きい場合と前記中間閾値以下の場合とで異なる前記分配比率にて、前記第1の生物処理装置と前記第2の生物処理装置とに前記排水を送給する請求項3に記載の排水処理装置。
  5.  前記制御部が、前記中間閾値を超える毎に、前記第2の生物処理装置への前記排水の分量が増加するように、前記排水を送給する請求項4に記載の排水処理装置。
  6.  前記第2の生物処理装置から排出された前記排水が、前記第1の生物処理装置に送給される請求項1乃至請求項5のいずれかに記載の排水処理装置。
  7.  前記制御部が、前記負荷濃度の移動平均及び回帰推定値の少なくとも一方を算出し、前記移動平均及び回帰推定値の少なくとも一方を用いて前記負荷量を算出する請求項1乃至請求項6のいずれかに記載の排水処理装置。
  8.  前記負荷量が、CODまたはBODとされる請求項1乃至請求項7のいずれかに記載の排水処理装置。
PCT/JP2012/059742 2011-12-28 2012-04-10 排水処理装置 WO2013099306A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
SG11201402216WA SG11201402216WA (en) 2011-12-28 2012-04-10 Wastewater treatment device
US14/358,169 US9938172B2 (en) 2011-12-28 2012-04-10 Wastewater treatment device
CN201280056106.2A CN103974911B (zh) 2011-12-28 2012-04-10 废水处理装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-290161 2011-12-28
JP2011290161A JP5922406B2 (ja) 2011-12-28 2011-12-28 排水処理装置

Publications (1)

Publication Number Publication Date
WO2013099306A1 true WO2013099306A1 (ja) 2013-07-04

Family

ID=48696832

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/059742 WO2013099306A1 (ja) 2011-12-28 2012-04-10 排水処理装置

Country Status (5)

Country Link
US (1) US9938172B2 (ja)
JP (1) JP5922406B2 (ja)
CN (1) CN103974911B (ja)
SG (1) SG11201402216WA (ja)
WO (1) WO2013099306A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013188650A (ja) * 2012-03-12 2013-09-26 Toshiba Corp 水処理システム及び水処理方法
EP3088365A4 (en) * 2013-12-24 2016-11-23 Mitsubishi Heavy Ind Ltd SEA WATER TREATMENT DEVICE

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5575316B1 (ja) * 2013-08-23 2014-08-20 株式会社神鋼環境ソリューション 廃水処理方法および廃水処理装置
JP6292399B2 (ja) * 2014-05-30 2018-03-14 三浦工業株式会社 アルデヒド類含有排水の処理方法
JP6533462B2 (ja) * 2015-12-25 2019-06-19 株式会社クボタ 有機性排水処理設備の運転方法及び有機性排水処理システム
JP6877255B2 (ja) * 2017-06-14 2021-05-26 三菱電機株式会社 廃水処理システム及び廃水処理方法
JP2019048254A (ja) * 2017-09-08 2019-03-28 オルガノ株式会社 有機性排水の処理方法及び処理装置
JP7199685B2 (ja) * 2018-05-22 2023-01-06 壽環境機材株式会社 廃水処理装置及び廃水処理方法
KR102123361B1 (ko) * 2018-12-27 2020-06-26 주식회사 성심건업 이송관이 구비된 개인하수처리시스템
KR102123362B1 (ko) * 2018-12-27 2020-06-26 주식회사 성심건업 저장탱크가 구비된 개인하수처리시스템
JP7255341B2 (ja) * 2019-04-24 2023-04-11 王子ホールディングス株式会社 水処理装置および水処理方法
JP7255342B2 (ja) * 2019-04-24 2023-04-11 王子ホールディングス株式会社 水処理装置および水処理方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62204897A (ja) * 1986-03-05 1987-09-09 Kawasaki Steel Corp 変動するcod含有廃水の生物学的処理方法
JPH07116639A (ja) * 1993-10-20 1995-05-09 Nippon Steel Corp 埋め立て浸出水の処理方法
JPH09206793A (ja) * 1996-02-05 1997-08-12 Kubota Corp 汚水処理方法および汚水処理装置
JP2001276867A (ja) * 2000-04-04 2001-10-09 Kajima Aqua Tec Kk 嫌気・好気活性汚泥処理方法及び装置
JP2001334282A (ja) * 2000-05-29 2001-12-04 Shinko Pantec Co Ltd 廃水処理装置及び廃水処理方法
JP2002219481A (ja) * 1996-07-23 2002-08-06 Mitsubishi Chemicals Corp 曝気槽の溶存酸素濃度の制御装置
JP2004148145A (ja) * 2002-10-29 2004-05-27 Suiwa Kogiken:Kk 排水の処理方法
JP2005211788A (ja) * 2004-01-29 2005-08-11 Daiki Co Ltd 有機性排水処理装置
WO2007029509A1 (ja) * 2005-09-09 2007-03-15 Net Co., Ltd. 有機性汚水の生物処理方法及び装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4568464A (en) * 1979-11-19 1986-02-04 Celanese Corporation Anaerobic filter
JPH05317884A (ja) 1992-05-26 1993-12-03 Meidensha Corp 嫌気−好気活性汚泥処理装置
US5514278A (en) * 1993-04-12 1996-05-07 Khudenko; Boris M. Counterflow microbiological processes
JPH11244896A (ja) 1998-03-05 1999-09-14 Mitsubishi Electric Corp 水処理装置
JP4284700B2 (ja) * 2004-03-25 2009-06-24 株式会社日立プラントテクノロジー 窒素除去方法及び装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62204897A (ja) * 1986-03-05 1987-09-09 Kawasaki Steel Corp 変動するcod含有廃水の生物学的処理方法
JPH07116639A (ja) * 1993-10-20 1995-05-09 Nippon Steel Corp 埋め立て浸出水の処理方法
JPH09206793A (ja) * 1996-02-05 1997-08-12 Kubota Corp 汚水処理方法および汚水処理装置
JP2002219481A (ja) * 1996-07-23 2002-08-06 Mitsubishi Chemicals Corp 曝気槽の溶存酸素濃度の制御装置
JP2001276867A (ja) * 2000-04-04 2001-10-09 Kajima Aqua Tec Kk 嫌気・好気活性汚泥処理方法及び装置
JP2001334282A (ja) * 2000-05-29 2001-12-04 Shinko Pantec Co Ltd 廃水処理装置及び廃水処理方法
JP2004148145A (ja) * 2002-10-29 2004-05-27 Suiwa Kogiken:Kk 排水の処理方法
JP2005211788A (ja) * 2004-01-29 2005-08-11 Daiki Co Ltd 有機性排水処理装置
WO2007029509A1 (ja) * 2005-09-09 2007-03-15 Net Co., Ltd. 有機性汚水の生物処理方法及び装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013188650A (ja) * 2012-03-12 2013-09-26 Toshiba Corp 水処理システム及び水処理方法
EP3088365A4 (en) * 2013-12-24 2016-11-23 Mitsubishi Heavy Ind Ltd SEA WATER TREATMENT DEVICE
AU2014371809B2 (en) * 2013-12-24 2018-07-26 Mitsubishi Heavy Industries Engineering, Ltd. Seawater pre-treatment apparatus
US10207942B2 (en) 2013-12-24 2019-02-19 Mitsubishi Heavy Industries Engineering, Ltd. Seawater pretreatment device

Also Published As

Publication number Publication date
JP2013138976A (ja) 2013-07-18
SG11201402216WA (en) 2014-11-27
CN103974911B (zh) 2016-01-13
US20140319031A1 (en) 2014-10-30
CN103974911A (zh) 2014-08-06
US9938172B2 (en) 2018-04-10
JP5922406B2 (ja) 2016-05-24

Similar Documents

Publication Publication Date Title
JP5922406B2 (ja) 排水処理装置
US9580341B1 (en) Biological two-stage contaminated water treatment system and process
CN101723526B (zh) 一种合成橡胶生产废水的膜处理方法
KR101641083B1 (ko) UF(Ultrafiltration)와 RO(Reverse Osmosis) 멤브레인을 이용한 하·폐수방류수 재이용 고순도 공업용수 공급 시스템
KR101804555B1 (ko) 고농도 유기오염물질 제거를 위한 하수 폐수 고도 처리 시스템 및 이를 이용한 하수 폐수 고도 처리방법.
EP2711343B1 (en) Biological two-stage contaminated water treatment system
JP5909281B2 (ja) 水処理装置
JP5955389B2 (ja) 脱塩処理装置及び脱塩処理装置の運転方法
JP6162221B2 (ja) 水再生システム及び脱塩処理装置、並びに、水再生方法
JP2013111559A (ja) 膜を用いて海水中の塩分を脱塩もしくは濃縮する装置に供給する前処理装置
WO2015026269A1 (ru) Установка для биологической очистки сточных вод
JP5782931B2 (ja) 水処理方法及び水処理装置
JP2015157262A (ja) 水処理装置、水処理方法及び超純水製造システム
JP5962135B2 (ja) 超純水製造装置
KR20150077086A (ko) 수질측정 수단을 구비한 수처리장치
JP5612005B2 (ja) 水処理システム及び水処理方法
JP2012196588A (ja) 水処理方法及び超純水製造方法
JP2015221424A (ja) 有機性排水の処理方法及び処理装置
KR20150064574A (ko) 에너지 절감형 하폐수 처리 시스템 및 그 제어방법
JP2016117016A (ja) 回収ろ過ユニット
CN109231732A (zh) 一种三膜中水回用处理系统
KR102129684B1 (ko) 폐수 처리 시스템
KR101212710B1 (ko) 폐수 방류수 재이용 막여과 및 농축수 처리방법
US10894725B1 (en) Control process for wastewater treatment system
US20240092666A1 (en) Method and system for wastewater treatment by membrane filtration and electrochemical oxidation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12863771

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14358169

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 12863771

Country of ref document: EP

Kind code of ref document: A1