WO2013094097A1 - 車両の操舵制御装置及び操舵制御方法 - Google Patents

車両の操舵制御装置及び操舵制御方法 Download PDF

Info

Publication number
WO2013094097A1
WO2013094097A1 PCT/JP2012/006709 JP2012006709W WO2013094097A1 WO 2013094097 A1 WO2013094097 A1 WO 2013094097A1 JP 2012006709 W JP2012006709 W JP 2012006709W WO 2013094097 A1 WO2013094097 A1 WO 2013094097A1
Authority
WO
WIPO (PCT)
Prior art keywords
turning
angle
steered
rotation angle
motor
Prior art date
Application number
PCT/JP2012/006709
Other languages
English (en)
French (fr)
Inventor
拓 鈴木
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to EP12860676.1A priority Critical patent/EP2796344B1/en
Priority to US14/361,165 priority patent/US9020702B2/en
Priority to JP2013550076A priority patent/JP5751349B2/ja
Priority to CN201280060463.6A priority patent/CN103987614B/zh
Publication of WO2013094097A1 publication Critical patent/WO2013094097A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • B62D5/0469End-of-stroke control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • B62D15/02Steering position indicators ; Steering position determination; Steering aids
    • B62D15/021Determination of steering angle
    • B62D15/0235Determination of steering angle by measuring or deriving directly at the electric power steering motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/0481Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures
    • B62D5/0487Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures detecting motor faults

Definitions

  • the steered wheel is turned to an angle (target steered angle) according to the operation of the steered wheel via the steered motor.
  • the present invention relates to a steering control device for a vehicle that is steered.
  • the steering control device described in Patent Document 1 reduces the drive current supplied to the steered motor when the steered wheel is continuously operated in the steered direction while the steered wheel is in contact with a curb or the like. This prevents the drive current from being continuously supplied to the steering motor.
  • An object of the present invention is to provide a steering control device and a steering control method for a vehicle.
  • one aspect of the present invention is a setting that is a rotation angle of a steering motor corresponding to a set turning angle that is set at an angle smaller than a limit turning angle at which the steered wheels can be steered.
  • the rotation angle is stored.
  • the rotation angle of the turning motor that outputs the turning torque for turning the steered wheels is detected, and the turning angle of the detected turning motor does not exceed the stored setting rotation angle.
  • the restriction on the supply amount of the steering motor drive current is released, and the limit of the turning angle at which the steering can be performed is released with this restriction released.
  • the rotation angle of the steered motor is calculated.
  • the set rotation angle is updated according to the deviation between the calculated rotation angle of the turning motor and the set turning angle.
  • the supply amount of the steering motor drive current to the steering motor is limited so that the detected rotation angle of the steering motor does not exceed the set rotation angle. For this reason, it becomes possible to suppress the contact of a rack end and a steering rack, and to suppress supply of the excessive steering motor drive current to a steering motor.
  • FIG. 1 is a diagram illustrating a schematic configuration of a vehicle including a vehicle steering control device according to a first embodiment of the present invention. It is a block diagram which shows schematic structure of the steering control apparatus of 1st embodiment of this invention. It is a block diagram which shows the detailed structure of the command calculating part of 1st embodiment of this invention. It is a figure which shows the relationship between the rotation angle of a steering motor, and a reduction gain. It is a figure which shows the parameter used for the process which the electric current supply amount restriction
  • FIG. 1 is a diagram showing a schematic configuration of a vehicle including a vehicle steering control device 1 (hereinafter referred to as “steering control device”) according to the present embodiment.
  • FIG. 2 is a block diagram showing a schematic configuration of the steering control device 1 of the present embodiment.
  • the vehicle provided with the steering control device 1 of the present embodiment is a vehicle to which the SBW system is applied.
  • the driving direction of the steered wheel is controlled by driving the steered motor in accordance with the operation of the steered wheel that the driver of the vehicle steers, thereby changing the traveling direction of the vehicle.
  • the drive control of the steered motor is achieved by switching the clutch interposed between the steered wheels and the steered wheels to the open state, which is the normal state, and mechanically separating the torque transmission path between the steered wheels and the steered wheels. Perform in the state.
  • the steering control device 1 of the present embodiment includes a steered motor 2, a steered motor control unit 4, a clutch 6, a reaction force motor 8, and a reaction force motor control unit. 10 is provided.
  • the steered motor 2 is a motor that is driven according to the steered motor drive current output by the steered motor control unit 4 and has a steerable motor output shaft 12 that can rotate.
  • the steered motor 2 outputs a steered torque for turning steered wheels by being driven according to the steered motor drive current.
  • a steered output gear 12 a formed using a pinion gear is provided on the tip side of the steered motor output shaft 12.
  • the steered output gear 12 a meshes with a rack gear 18 a provided between both ends of the rack shaft 18 inserted through the steering rack 14.
  • the steered motor 2 is provided with a steered motor angle sensor 16.
  • the steered motor angle sensor 16 detects the rotation angle (steering angle) of the steered motor 2, and this detected rotational angle (in the following description, may be described as “steering motor rotational angle”).
  • the included information signal is output to the reaction force motor control unit 10 via the steered motor control unit 4.
  • the steering rack 14 is formed in a cylindrical shape, and a rack shaft 18 that is displaced in the vehicle width direction according to the rotation of the steering motor output shaft 12, that is, the rotation of the steering output gear 12a is inserted therethrough.
  • two stopper portions 14 a that cover the outer diameter surface of the rack shaft 18 from the entire circumference are provided inside the steering rack 14.
  • the two stopper portions 14a are respectively provided on the right side and the left side in the vehicle width direction of the steering output gear 12a inside the steering rack 14.
  • illustration of the stopper part 14a provided in the vehicle width direction right side rather than the steering output gear 12a is abbreviate
  • Both ends of the rack shaft 18 are connected to the steered wheels 24 via tie rods 20 and knuckle arms 22, respectively.
  • a tire axial force sensor 26 is provided between the rack shaft 18 and the tie rod 20. The tire axial force sensor 26 detects an axial force that acts in the axial direction (vehicle width direction) of the rack shaft 18, and this detected axial force (may be described as “tire axial force” in the following description). Is output to the reaction force motor control unit 10.
  • the steered wheels 24 are front wheels (left and right front wheels) of the vehicle.
  • the rack shaft 18 is displaced in the vehicle width direction according to the rotation of the steered motor output shaft 12, the steered wheels 24 are steered via the tie rods 20 and the knuckle arms 22. Change the direction of travel of the vehicle.
  • the steered wheels 24 are formed of left and right front wheels. Accordingly, in FIG. 1, the steered wheel 24 formed with the left front wheel is denoted as steered wheel 24L, and the steered wheel 24 formed with the right front wheel is denoted as steered wheel 24R.
  • the steered motor control unit 4 inputs and outputs information signals through the reaction force motor control unit 10 and a communication line 28 such as a CAN (Controller Area Network).
  • the steered motor control unit 4 includes a steered position servo control unit 30.
  • the steered position servo control unit 30 calculates a steered motor drive current for driving the steered motor 2, and outputs the calculated steered motor drive current to the steered motor 2.
  • the steering motor drive current controls the above-described steering torque, calculates an angle (target turning angle) according to the operation of the steered wheels, and turns the steering according to the calculated target turning angle.
  • This is a current for driving and controlling the motor 2.
  • the calculation of the turning motor drive current is performed by calculating a turning motor current command output by the reaction force motor control unit 10 and a command value (hereinafter referred to as a turning motor actual current) energizing the turning motor 2.
  • a turning motor actual current energizing the turning motor 2.
  • it may be described as “steering motor current command It”.
  • the steering motor current command is corrected using the steering motor current command It, and the steering motor drive current is calculated.
  • the steered position servo control unit 30 measures the steered motor current command It, and estimates the temperature Tt of the steered motor 2 based on the measured steered motor current command It. Then, an information signal including the estimated temperature Tt of the steered motor 2 is output to the reaction force motor control unit 10. This is to estimate overheating of the motors (the steered motor 2 and the reaction force motor 8) due to resistance heat generation due to current application.
  • the steered motor current command It is measured, for example, by incorporating a substrate temperature sensor (not shown) in the steered motor 2 and using the incorporated substrate temperature sensor.
  • the steered motor current command It is obtained using the measured actual current value. .
  • the measured actual current value is compared with the current threshold value stored in advance, and when the measured actual current value is larger than the current threshold value, the measured actual current value is converted into the steering motor. Adopted as current command It.
  • the steered motor current command It is estimated based on the rotational speed of the steered motor 2 using the motor NT characteristic that defines the relationship between the rotational speed of the steered motor 2 and torque. Specifically, the measured current value is not adopted as the steering motor current command It, and the current value estimated based on the rotation speed of the steering motor 2 using the motor NT characteristic is used as the steering motor current command. It is adopted as It.
  • the temperature Tt of the steered motor 2 is estimated using the steered motor current command It adopted as described above.
  • the clutch 6 is interposed between the steering wheel 32 (steering wheel) operated by the driver and the steered wheel 24, and is brought into an open state or an engaged state according to a clutch driving current output from the reaction force motor control unit 10. Switch. Note that the clutch 6 is in an open state in a normal state.
  • a steering angle sensor 34, a steering torque sensor 36, a reaction force motor 8, and a reaction force motor angle sensor 38 are disposed between the steering wheel 32 and the clutch 6.
  • the steering angle sensor 34 is provided in a steering column that rotatably supports the steering wheel 32. Further, the steering angle sensor 34 detects a current steering angle that is a current rotation angle (steering operation amount) of the steering wheel 32. Then, the steering angle sensor 34 outputs an information signal including the detected current steering angle of the steering wheel 32 to the reaction force motor control unit 10.
  • the current steering angle may be described as “current steering angle ⁇ ”.
  • the steering angle sensor 34 Similar to the steering angle sensor 34, the steering torque sensor 36 is provided, for example, in a steering column that rotatably supports the steering wheel 32.
  • the steering torque sensor 36 detects a steering torque that is a torque applied by the driver to the steered wheels 32. Then, the steering torque sensor 36 outputs an information signal including the detected steering torque to the reaction force motor control unit 10. In the following description, the steering torque may be described as “torque sensor value Vts”. The reaction force motor 8 and the reaction force motor angle sensor 38 will be described later.
  • the clutch 6 has a pair of clutch plates 40 that are separated from each other in the opened state and mesh with each other in the engaged state.
  • the clutch plate 40 disposed on the steering wheel 32 side is referred to as a “steering wheel side clutch plate 40a”, and the clutch plate disposed on the steered wheel 24 side. 40 is referred to as a “steered wheel side clutch plate 40b”.
  • the steering wheel side clutch plate 40 a is attached to the steering shaft 42 that rotates together with the steering wheel 32, and rotates together with the steering shaft 42.
  • the steered wheel side clutch plate 40 b is attached to one end of the pinion shaft 44 and rotates together with the pinion shaft 44.
  • the other end of the pinion shaft 44 is disposed in the pinion 46.
  • the pinion 46 incorporates a pinion gear (not shown) that meshes with the rack gear 18a.
  • the pinion gear rotates together with the pinion shaft 44. That is, the pinion gear rotates together with the steered wheel side clutch plate 40 b via the pinion shaft 44.
  • the pinion 46 is provided with a pinion angle sensor 48.
  • the pinion angle sensor 48 detects the rotation angle of the pinion gear, and outputs an information signal including the detected rotation angle (may be described as “pinion rotation angle” in the following description) to the reaction force motor control unit 10. Output to.
  • the reaction force motor 8 is a motor that is driven in accordance with a reaction force motor drive current output from the reaction force motor control unit 10, and rotates a steering shaft 42 that rotates together with the steering wheel 32 to apply a steering reaction force to the steering wheel 32.
  • the steering reaction force output from the reaction force motor 8 to the steering wheel 32 switches the clutch 6 to the released state, and mechanically separates the torque transmission path between the steering wheel 32 and the steered wheel 24.
  • the calculation is performed according to the tire axial force acting on the steered wheels 24 and the steering state of the steered wheels 32.
  • an appropriate steering reaction force is transmitted to the driver who steers the steered wheels 32. That is, the steering reaction force output from the reaction force motor 8 to the steered wheels 32 is a reaction force acting in a direction opposite to the operation direction in which the driver steers the steered wheels 32.
  • the reaction force motor angle sensor 38 is a sensor provided in the reaction force motor 8.
  • the reaction force motor angle sensor 38 detects the rotation angle (steering angle) of the reaction force motor 8 and may describe this detected rotation angle (hereinafter referred to as “reaction force motor rotation angle”). ) Is output to the reaction force motor control unit 10.
  • the reaction force motor control unit 10 inputs and outputs information signals via the steering motor control unit 4 and the communication line 28.
  • the reaction force motor control unit 10 receives input of information signals output from the vehicle speed sensor 50 and the engine controller 52 via the communication line 28.
  • the reaction force motor control unit 10 drives and controls the reaction force motor 8 based on information signals received via the communication line 28 and information signals received from various sensors.
  • the vehicle speed sensor 50 is, for example, a known vehicle speed sensor, detects the vehicle speed of the vehicle, and outputs an information signal including the detected vehicle speed to the reaction force motor control unit 10.
  • the engine controller 52 engine ECU outputs an information signal including the state of the engine (not shown) (engine drive or engine stop) to the reaction force motor control unit 10.
  • the reaction force motor control unit 10 includes a command calculation unit 54, a reaction force servo control unit 56, and a clutch control unit 58.
  • the command calculation unit 54 outputs the vehicle speed sensor 50, the steering angle sensor 34, the engine controller 52, the steering torque sensor 36, the reaction force motor angle sensor 38, the pinion angle sensor 48, the tire axial force sensor 26, and the turning motor angle sensor 16. Received information signal input.
  • the reaction force servo control unit 56 outputs a reaction force motor drive current for driving the reaction force motor 8 to the reaction force motor 8. Further, the reaction force servo control unit 56 may describe the value of the current (reaction force motor actual current) that is actually energized to the reaction force motor 8 (in the following description, “reaction force motor current value Ih”). Measure).
  • the calculation of the reaction force motor drive current is performed based on a reaction force motor current command (described later) output from the command calculation unit 54 and a reaction force motor current value Ih. Specifically, the reaction force motor current command is corrected using the reaction force motor current value Ih, and the reaction force motor drive current is calculated. Further, the reaction force servo control unit 56 estimates the temperature Th of the reaction force motor 8 based on the measured reaction force motor current value Ih. The estimation of the temperature Th of the reaction force motor 8 is performed in the same procedure as the estimation of the temperature Tt of the turning motor 2 performed by the turning position servo control unit 30, for example.
  • the clutch control unit 58 calculates, as a clutch drive current, a current necessary for switching the released clutch 6 to the engaged state based on a clutch current command (described later) output from the command calculation unit 54. Then, the calculated clutch drive current is output to the clutch 6.
  • FIG. 3 is a block diagram showing a detailed configuration of the command calculation unit 54.
  • the command calculation unit 54 includes a reaction motor current command calculation unit 54a, a steered motor current command calculation unit 54b, a clutch current command calculation unit 54c, a set rotation angle storage unit 54d, A current supply amount limiting unit 54e and a contact rotation angle calculation unit 54f are provided.
  • the reaction force motor current command calculation unit 54a calculates a reaction force motor current command based on various information signals received by the command calculation unit 54. Then, the reaction force motor current command calculation unit 54 a outputs the calculated reaction force motor current command to the reaction force servo control unit 56. For example, the reaction force motor current command calculation unit 54a calculates the reaction force motor current command based on the information signal output from the vehicle speed sensor 50 and the turning motor angle sensor 16 to the turning motor rotation angle ⁇ t. Multiply by the force motor gain Gh.
  • reaction force motor gain Gh is set in advance using a reaction force motor gain map.
  • the steered motor current command calculating unit 54b calculates a steered motor current command based on various information signals received by the command calculating unit 54. Then, the steered motor current command calculation unit 54 b outputs the calculated steered motor current command to the steered position servo control unit 30.
  • the calculation of the steering motor current command by the steering motor current command calculation unit 54b is based on, for example, information signals output from the vehicle speed sensor 50 and the steering angle sensor 34, and the steering motor gain set in advance to the current steering angle ⁇ . Multiply by Gt.
  • the steering motor gain Gt is set in advance using a steering motor gain map.
  • the clutch current command calculation unit 54c calculates a clutch current command based on various information signals received by the command calculation unit 54. Then, the clutch current command calculation unit 54 c outputs the calculated clutch current command to the clutch control unit 58. The calculation of the clutch current command by the clutch current command calculation unit 54c is performed using, for example, the temperature Tt of the steered motor 2 estimated by the steered motor control unit 4 and the clutch engagement temperature St1.
  • the temperature Tt of the steered motor 2 estimated by the steered motor control unit 4 and the clutch engagement temperature St1 are compared with the clutch 6 switched to the released state, It is determined whether or not the temperature Tt exceeds the clutch engagement temperature St1.
  • the clutch engagement temperature St1 is a temperature that is a preset temperature difference lower than a use limit temperature at which it is difficult to normally use the steered motor 2 (normal state, normal control). It is stored in the command calculation unit 54.
  • said use limit temperature is set using the rating preset to the steering motor 2, "JIS C 4003" etc., for example.
  • the clutch engagement temperature St1 is set to a temperature that is 10 [° C.] lower than the use limit temperature of the steered motor 2. That is, in the present embodiment, as an example, a case where the preset temperature difference is set to “10 [° C.]” will be described.
  • a command signal for switching the clutch 6 in the released state (normal state) to the engaged state is calculated, and the calculated command signal is Use current command.
  • the clutch current command calculation unit 54c also calculates a command signal for switching the engaged clutch 6 to the released state according to the temperature Tt of the steered motor 2.
  • the set rotation angle storage unit 54d stores the set rotation angle in advance.
  • the set rotation angle is a rotation angle of the steered motor 2 corresponding to a set steered angle set at an angle smaller than a limit steered angle at which the steerable wheel 24 can be steered.
  • the limit turning angle is the turning angle of the steered wheels 24 in a state where the stopper portion 14a and the end contact member 18b are in contact with each other, and is set in advance at the time of designing, manufacturing, shipping from the factory, and the like. To do. That is, in a state where the turning angle of the steered wheels 24 has reached the limit steered angle, even if the steered wheels 32 are steered, the steered angle of the steered wheels 24 does not change (increase).
  • the set turning angle is an angle smaller than the limit turning angle, and is set in advance according to the limit turning angle.
  • the limit turning angle is set to 500 [deg]
  • the set turning angle is set to 499 [deg], that is, 1 [deg] smaller than the limit turning angle.
  • the case will be described. Therefore, in this embodiment, the case where the set rotation angle is set to the rotation angle of the steered motor 2 in a state where the steered angle of the steered wheels 24 is 499 [deg] will be described as an example.
  • the set rotation angle storage unit 54d updates the set rotation angle according to the deviation between the contact rotation angle calculated by the contact rotation angle calculation unit 54f and the set turning angle. A description of the process in which the set rotation angle storage unit 54d updates the set rotation angle will be described later.
  • the set rotation angle storage unit 54d detects that the steered wheels 24 are in a limit state where the steered wheels 24 can be steered in a state where the rotation angle of the steered motor 2 detected by the steered motor angle sensor 16 is equal to or less than the set rotation angle. Then, according to the rotation angle of the turning motor 2 at that time, the rotation angle of the turning motor 2 corresponding to the turning angle restricted to an angle smaller than the target turning angle is updated as the set rotation angle.
  • the description of the process in which the set rotation angle storage unit 54d performs the above update will be described later.
  • the limit state is detected when the turning angle of the turning motor 2 is equal to or less than the set turning angle, and the turning motor actual current (q-axis current) becomes an excessive current value that is not necessary for normal turning. This is performed by detecting a state in which the predetermined time has reached a certain time. That is, when a state in which the turning motor actual current has an excessive current value has been reached in a state where the turning angle of the turning motor 2 is equal to or less than the set turning angle, the detected state is detected. Is the limit state.
  • the process of detecting the limit state in this way is performed using the steered motor angle sensor 16, the steered position servo control unit 30, the steering angle sensor 34, the steered motor current command calculation unit 54b, and the set rotation angle storage unit 54d. .
  • the timing at which the set rotation angle storage unit 54d updates the preset rotation angle stored in advance is the preset rotation angle stored in advance by the rotation angle of the steering motor 2 detected by the steering motor angle sensor 16.
  • the timing is less than the set rotation angle to be updated. This is to prevent a sudden change in the steering reaction force that the reaction force motor 8 outputs to the steering wheel 32.
  • the current supply amount limiting unit 54e is configured so that the turning angle of the turning motor 2 detected by the turning motor angle sensor 16 does not exceed the set rotation angle stored in the setting rotation angle storage unit 54d in advance. Limit the amount of drive current supplied.
  • the steering motor drive current is decreased so that the referenced rotation angle does not exceed the set rotation angle.
  • the command signal is output to the steered motor current command calculation unit 54b.
  • generating a command signal for reducing the steering motor drive current so that the rotation angle of the steering motor 2 detected by the steering motor angle sensor 16 does not exceed the set rotation angle for example, Perform the process described.
  • FIG. 4 is a diagram showing the relationship between the rotation angle of the steered motor 2 and the decrease gain.
  • the turning angle of the steered wheels 24 is 499 [based on the state where the steered wheels 24 have a steered angle of 0 [deg], that is, the steered wheels 24 and the steered wheels 32 are in a neutral position. As the value approaches [deg], the decrease gain is increased.
  • the increase degree of the decrease gain is set to an increase degree that can regulate the steering operation of the steered wheels 32 in the direction in which the steered angle increases when the steered angle of the steered wheels 24 reaches 499 [deg]. To do. Further, when generating a command signal for reducing the turning motor drive current so that the turning angle of the turning motor 2 detected by the turning motor angle sensor 16 does not exceed the set turning angle, for example, target turning Performs processing to limit the corner. This is performed using, for example, a circuit (limit circuit) that can raise and lower the limit value (limit value).
  • the current supply amount limiting unit 54e is a command signal that increases the reaction force as the turning angle of the steered wheels 24 approaches 499 [deg] with reference to the state where the steered wheels 24 and the steered wheels 32 are in the neutral position.
  • the generated command signal is output to the reaction force servo control unit 56.
  • the set rotation angle storage unit 54d updates the set rotation angle
  • a command signal for increasing the reaction force is also generated according to the updated set rotation angle.
  • the current supply amount limiting unit 54e determines that a preset permission condition is satisfied, the current supply amount limiting unit 54e cancels the limitation on the supply amount of the turning motor drive current.
  • the permission conditions are stored in advance in the current supply amount limiting unit 54e.
  • the permission condition is a condition in which the cumulative travel distance of the vehicle exceeds a preset travel distance threshold.
  • the cumulative travel distance of the vehicle is used with reference to a distance measured by a distance meter (odometer) that is an existing configuration of a general vehicle, for example.
  • the current supply amount limiting unit 54e determines that the preset permission condition is satisfied when the cumulative travel distance of the vehicle exceeds 10,000 [km], and the steering motor drive current is determined. The restriction on the supply amount of is released.
  • the current supply amount limiting unit 54e sets the permission condition set in advance every time the cumulative travel distance exceeds 10,000 [km] after the cumulative travel distance of the vehicle exceeds 10,000 [km]. It is determined that it has been established. That is, after the cumulative travel distance of the vehicle exceeds 10,000 [km], the current supply amount limiting unit 54e satisfies a preset permission condition when the cumulative travel distance exceeds 20000 [km]. Is determined.
  • the contact rotation angle calculation unit 54f determines that the preset permission condition is satisfied by the current supply amount restriction unit 54e, and releases the restriction on the supply amount of the steering motor drive current. Calculate the rotation angle.
  • the abutting rotation angle corresponds to a state in which the turning angle of the steered wheels 24 is the limit turning angle, that is, a state in which the stopper portion 14a and the end contact member 18b are in contact with each other. This is the rotation angle of the rudder motor 2.
  • the contact rotation angle calculation unit 54f calculates the contact rotation angle
  • the turning of the steered wheels 24 is performed in a state where the current supply amount limiting unit 54e releases the restriction on the supply amount of the steering motor drive current.
  • the rotation angle of the steered motor 2 corresponding to the state in which the angle is the limit steered angle is detected. Then, the detected rotation angle of the steering motor 2 is calculated as the contact rotation angle.
  • the contact rotation angle calculating unit 54f Based on the information signal input to the position servo control unit 30, the actual steering motor current is referred to.
  • the time during which the actual turning motor current (q-axis current) is an excessive current value (eg, 90 [Arms]) that is not necessary for normal turning is a fixed time (eg, 1 [s]). Is detected, the turning motor rotation angle in this state is calculated as the contact rotation angle.
  • the reason why the above processing is performed is that the steering position servo control unit 30 performs servo control on the steering motor 2, and thus the stopper portion 14a and the end contact member 18b are in contact with each other. This is because an excessive command voltage is output. In addition to this, when the stopper portion 14a and the end contact member 18b come into contact with each other and the rotation of the steered motor 2 stops, the steered motor 2 has an excessive current exceeding the amount of current necessary for ordinary steering. This is because it flows.
  • the excessive current value and the fixed time that are not necessary for steering are set in advance according to the structure of the vehicle, for example, and stored in the contact rotation angle calculation unit 54f.
  • the calculation of the contact rotation angle is preferably performed while the vehicle is traveling. The reason for this is that when the vehicle is stopped, the steered wheel 24 may be in contact with a curb or the like, or may be fitted in a side groove or the like (depressed). This is because the angle may not be accurately calculated.
  • the set rotation angle storage unit 54d updates the angle obtained by subtracting the deviation between the limit turning angle and the set turning angle from the contact rotation angle, the following processing is performed.
  • the limit turning angle is set to 500 [deg]
  • the set turning angle is set to 499 [deg]. That is, in this embodiment, the deviation between the limit turning angle and the set turning angle is 1 [deg].
  • an angle obtained by subtracting 1 [deg] from the contact rotation angle is calculated as follows: Processing to update as the set rotation angle is performed.
  • the process in which the set rotation angle storage unit 54d updates the set rotation angle according to the deviation between the contact rotation angle and the set turning angle is performed on the left and right front wheels, that is, the steered wheels 24L and the steered wheels 24R. Do it individually.
  • the limit state that is, the turning angle of the steered wheels 24 is restricted to an angle smaller than the target turning angle.
  • the following state may have occurred. That is, in a state in which the turning angle of the turning motor 2 is equal to or less than the set turning angle, the time during which the turning motor actual current (q-axis current) is an excessive current value that is not necessary for normal turning is constant. When the time has been reached, there is a possibility that the stopper portion 14a and the end contact member 18b are in contact with each other.
  • the excessive current value is, for example, 90 [Arms]
  • the predetermined time is, for example, 1 [s].
  • the set rotation angle storage unit 54d determines that the time during which the turning motor actual current is an excessive current value has reached a certain time in a state where the rotation angle of the turning motor 2 is equal to or less than the set rotation angle.
  • the rotation angle of the turning motor 2 corresponding to the turning angle restricted to an angle smaller than the target turning angle is detected. And the process which updates this detected rotation angle of the steering motor 2 as a setting rotation angle is performed. Further, the process in which the set rotation angle storage unit 54d updates the rotation angle of the steered motor 2 corresponding to the steered angle that is regulated to an angle smaller than the target steered angle as the set rotational angle is the left and right front wheels, It performs separately with respect to the steered wheel 24L and the steered wheel 24R.
  • the process of updating the set rotation angle in accordance with the rotation angle of the steered motor 2 at that time is performed as a vehicle It may be different depending on the situation. In this case, when the vehicle is running, as described above, if the time when the actual current of the steering motor is an excessive current value has reached a certain time, the angle is restricted to an angle smaller than the target turning angle. A process of updating the rotation angle of the steering motor 2 corresponding to the steered angle as the set rotation angle is performed.
  • the time during which the actual current of the steered motor is an excessive current value reaches a certain time while the rotational angle of the steered motor 2 exceeds the set rotational angle. It is determined whether or not. And if it determines with the time when the steering motor real current has become an excessive electric current value having reached the fixed time, of the steering motor 2 corresponding to the steering angle regulated to the angle smaller than the target turning angle.
  • a process of updating the rotation angle as the set rotation angle is performed. This is because, when the vehicle is stopped, the steered wheel 24 may be in contact with a curb or the like, or may be fitted into a side groove (groove) or the like.
  • the state where the vehicle is stopped includes a state where the vehicle has not reached a speed (for example, 5 [km / h]) that can be regarded as traveling.
  • the steering control device 1 of the present embodiment even if the driver performs full steering when the vehicle is traveling or stopped, the contact between the rack end and the steering rack is suppressed, and the steering motor is excessively large. Therefore, it becomes possible to suppress the supply of a driving motor driving current. In addition to this, even when the driver performs full steering when the vehicle is traveling or stopped, an increase in the driving force output by the steering motor 2 can be suppressed and deterioration of the steering motor 2 can be suppressed. It becomes.
  • the current supply amount limiting unit 54e determines that the preset permission condition is satisfied when the cumulative travel distance of the vehicle exceeds the travel distance threshold (10000 [km]), and the steering motor drive current is determined. The restriction on the supply amount of is released.
  • the contact rotation angle calculation unit 54f calculates the contact rotation angle. Then, the set rotation angle storage unit 54d updates the set rotation angle according to the deviation between the contact rotation angle calculated by the contact rotation angle calculation unit 54f and the set turning angle.
  • the set rotation angle storage unit 54d detects a limit state in a state where the rotation angle of the steering motor 2 is equal to or less than the set rotation angle, the turning angle corresponding to the turning angle restricted to an angle smaller than the target turning angle.
  • the rotation angle of the rudder motor 2 is updated as the set rotation angle. For this reason, in the steering control device 1 of the present embodiment, the positional relationship between the rotation angle of the steering motor 2 detected by the steering motor angle sensor 16 and the rack shaft 18 has changed since the vehicle was shipped from the factory. However, the set rotation angle can be updated in accordance with this change.
  • the positional relationship between the rotation angle of the steering motor 2 detected by the steering motor angle sensor 16 and the rack shaft 18 is specifically the positional relationship between the rack end and the steering rack 14, and the steering output This is the relationship between the meshing positions of the gear 12a and the rack gear 18a.
  • the change in the positional relationship between the rotation angle of the steered motor 2 and the rack shaft 18 is caused when the backlash of the meshing between the steered output gear 12a and the rack gear 18a increases beyond an appropriate value, or a retainer for closing backlash. This is caused by a change in the degree of tightening. That is, if the play generated in the meshing between the steering output gear 12a and the rack gear 18a increases from an appropriate value due to an increase in the cumulative travel distance of the vehicle, the positional relationship between the rotation angle of the steering motor 2 and the rack shaft 18 Changes from when the vehicle is shipped from the factory.
  • the steering control device 1 of the present embodiment can update the set rotation angle as described above, so that the turning radius of the vehicle is increased and the driving force output by the steering motor 2 is increased. It is possible to suppress the increase in
  • the steered motor angle sensor 16 corresponds to the steered motor angle detection unit.
  • the steered position servo control unit 30 and the steered motor current command calculation unit 54b correspond to a steered motor drive current supply unit.
  • the steered motor angle sensor 16, the steered position servo control unit 30, the steering angle sensor 34, the steered motor current command calculation unit 54b, and the set rotation angle storage unit 54d are configured to detect the above-described limit state. Corresponds to the state detector.
  • the current supply amount limiting unit 54e does not exceed the set rotation angle stored in advance in the set rotation angle storage unit 54d so that the rotation angle of the steering motor 2 detected by the steering motor angle sensor 16 Limit the amount of steering motor drive current supplied. For this reason, even if the driver performs full steering when the vehicle is traveling or stopped, the contact between the rack end and the steering rack 14 is suppressed, and excessive steering motor drive current is supplied to the steering motor 2. Can be suppressed. As a result, even if the driver performs full steering when the vehicle is traveling or stopped, an increase in the driving force output by the steering motor 2 can be suppressed and deterioration of the steering motor 2 can be suppressed. Become.
  • the contact rotation angle calculation unit 54f sets the turning angle of the steered wheels 24 to the limit turning angle in a state where the current supply amount restriction unit 54e releases the restriction on the supply amount of the steering motor drive current.
  • the contact rotation angle that is the rotation angle of the steered motor 2 corresponding to the state is calculated.
  • the set rotation angle storage unit 54d updates the set rotation angle in accordance with the deviation between the contact rotation angle calculated by the contact rotation angle calculation unit 54f and the set turning angle.
  • the set rotation according to this change can be updated.
  • the permission condition for the current supply amount restriction unit 54e to release the restriction on the supply amount of the steering motor drive current is a condition in which the accumulated travel distance of the vehicle exceeds a preset travel distance threshold. For this reason, even if the cumulative travel distance of the vehicle increases and exceeds the travel distance threshold, and the backlash generated in the meshing between the steering output gear 12a and the rack gear 18a increases beyond the appropriate value, the increase depends on the degree of increase.
  • the set rotation angle can be updated to an appropriate value. As a result, the turning angle of the steered wheels 24 and the positional relationship between the stopper portion 14a and the end contact member 18b can be optimized, and an increase in the turning radius of the vehicle can be suppressed.
  • the set rotation angle storage unit 54d detects a limit state in a state where the rotation angle of the steered motor 2 detected by the steered motor angle sensor 16 is equal to or smaller than the set rotation angle
  • the set rotation angle storage unit 54d is set to an angle smaller than the target steered angle.
  • the rotation angle of the turning motor 2 corresponding to the restricted turning angle is updated as the set rotation angle.
  • the degree of decrease is thus, the set rotation angle can be updated to an appropriate value.
  • the turning angle of the steered wheels 24 and the positional relationship between the stopper portion 14a and the end contact member 18b can be optimized, and an increase in the turning radius of the vehicle can be suppressed. It is possible to suppress an increase in driving force output from the steered motor 2.
  • the set turning angle is set to an angle smaller than the limit turning angle, but the setting turning angle is not limited to this, and the stopper portion 14a and You may change according to the positional relationship with the end contact member 18b at the time of vehicle design, etc.
  • the travel distance threshold is set to 10000 [km]. However, the travel distance threshold is not limited to this, and the vehicle configuration / structure and the main purpose of use ( It may be changed according to a lot of rough terrain driving.
  • the steering control device 1 of the present embodiment is the same as that of the first embodiment described above except for the configuration of the current supply amount limiting unit 54e, description of other configurations may be omitted. If it determines with the preset permission conditions being satisfied similarly to 1st embodiment mentioned above, the electric current supply amount restriction
  • the permission condition is a limit angle that is a time during which the turning angle of the steered wheels 24 is the limit turning angle.
  • the arrival time is a condition that exceeds a preset arrival time threshold.
  • the arrival time threshold value is stored in advance in the current supply amount limiting unit 54e.
  • the permission condition is a condition in which the limit angle arrival time exceeds the arrival time threshold.
  • the frequency of the driver performing full turning to turn the vehicle increases, particularly during parking or low-speed driving.
  • the time during which the turning angle of the steered wheels 24 reaches the limit turning angle that is, the limit angle arrival time increases.
  • the limit angle arrival time is detected and the detected limit angle arrival time exceeds the arrival time threshold value, in order to calculate the contact rotation angle, there is a limit on the supply amount of the steering motor drive current. To release.
  • FIG. 5 is a diagram showing parameters used for processing performed by the current supply amount limiting unit 54e of the present embodiment
  • FIG. 5A shows the relationship between the turning angle of the steered wheels 24 and the elapsed time
  • FIG. 5B is a diagram showing the relationship between the correction coefficient for reducing the arrival time threshold and the vehicle speed
  • FIG. 5C is a diagram for reducing the arrival time threshold.
  • 4 is a diagram illustrating a relationship between a correction coefficient and a steering force applied to a steered wheel 32.
  • the correction coefficient for reducing the arrival time threshold value is increased as the vehicle speed increases. As shown in FIG. 5B, the correction coefficient is set to “0” when the vehicle speed has not reached the speed (5 km / h) that can be regarded as traveling.
  • the correction coefficient for reducing the arrival time threshold value is increased as the steering force applied to the steering wheel 32 by the driver increases.
  • a correction coefficient having a certain magnitude (positive number) is set even when the steering force applied by the driver to the steering wheel 32 is “0”. Therefore, in the present embodiment, a correction coefficient that increases as the vehicle speed of the vehicle increases and a correction coefficient that increases as the steering force applied to the steering wheel 32 by the driver increases are integrated. Decrease the time threshold.
  • the reason why the arrival time threshold value is corrected to decrease as the vehicle speed of the vehicle and the steering force applied to the steering wheel 32 increase will be described.
  • the frequency at which the driver performs full steering decreases as the vehicle speed increases (the speed increases). Therefore, when the limit angle arrival time is long while the vehicle speed is high, compared to when the vehicle is shipped from the factory, etc. There is a high possibility that the turning radius of the vehicle is large.
  • the correction factor is increased as the vehicle speed increases, and the arrival time threshold value is corrected to decrease. Accordingly, the frequency of releasing the restriction on the supply amount of the steering motor drive current is increased in accordance with the increase in the turning radius of the vehicle.
  • the turning radius of the vehicle is larger than when the vehicle is shipped from the factory, the driver wants to turn the vehicle slightly in order to perform full steering, compared with the case of forward traveling. Thus, a large steering force is applied to the steering wheel 32.
  • the degree to which the driver wants to turn the vehicle slightly can be estimated based on the magnitude of the steering force applied by the driver to the steered wheels 32. Therefore, the steering force applied by the driver to the steered wheels 32 is reduced. It can be estimated that the turning radius of the vehicle increases as the value increases. Therefore, as shown in FIG. 5C, the correction coefficient is increased and the arrival time threshold value is corrected to decrease as the steering force applied to the steering wheel 32 by the driver increases. Accordingly, the frequency of releasing the restriction on the supply amount of the steering motor drive current is increased in accordance with the increase in the turning radius of the vehicle.
  • the current supply amount limiting unit 54e determines that a preset permission condition is satisfied, and the current supply amount limiting unit 54e Remove the restriction.
  • the set rotation angle storage unit 54d calculates the contact rotation angle calculated by the contact rotation angle calculation unit 54f and the set turning angle. The set rotation angle is updated according to the deviation.
  • the set rotation angle can be updated according to the limit angle arrival time, which is the time based on the frequency at which the driver performs full steering. As a result, even if the turning radius of the vehicle is increased compared to when the vehicle is shipped from the factory, the set rotation angle can be updated according to the increase.
  • the current supply amount limiting unit 54e corrects the arrival time threshold value to decrease as the vehicle speed of the vehicle and the steering force applied to the steering wheel 32 increase. For this reason, in the steering control device 1 of the present embodiment, the frequency of canceling the restriction on the supply amount of the steering motor drive current is increased by correcting the decrease in the arrival time threshold corresponding to the increase in the turning radius of the vehicle. It becomes possible to make it.
  • the limit condition at which the turning angle of the steered wheels 24 is the limit turning angle is reached as a permission condition for the current supply amount restriction unit 54e to release the restriction on the supply amount of the turning motor drive current. It is assumed that the time exceeds a preset arrival time threshold. Therefore, the set rotation angle is updated according to the limit angle arrival time, which is the time based on the frequency at which the driver performs full steering, and the turning radius of the vehicle is increased compared to when the vehicle is shipped from the factory. However, the set rotation angle can be updated according to the increase.
  • the turning angle of the steered wheels 24 and the positional relationship between the stopper portion 14a and the end contact member 18b are optimized in accordance with the increase in the turning radius of the vehicle compared with the time of vehicle shipment. It becomes possible to suppress an increase in the turning radius of the vehicle.
  • the arrival time threshold which is the time based on the frequency at which the driver performs full steering. For this reason, it is possible to increase the frequency of canceling the restriction on the supply amount of the steering motor drive current by correcting the decrease in the arrival time threshold corresponding to the increase in the turning radius of the vehicle.
  • the turning angle of the steered wheels 24 and the positional relationship between the stopper portion 14a and the end contact member 18b can be optimized, and an increase in the turning radius of the vehicle can be suppressed.
  • the permission condition is a condition in which the limit angle arrival time exceeds the arrival time threshold, but the permission condition is not limited to this. That is, as the permission condition, in addition to the condition that the limit angle arrival time exceeds the arrival time threshold, the cumulative travel distance of the vehicle, which is the permission condition of the first embodiment described above, exceeds a preset travel distance threshold. Conditions may be used.
  • the arrival time threshold value is corrected to decrease as the vehicle speed of the vehicle and the steering force applied to the steering wheel 32 increase.
  • the present invention is not limited to this. That is, the arrival time threshold value may be corrected to decrease as the vehicle speed of the vehicle or the steering force applied to the steering wheel 32 increases. In short, it may be configured such that the arrival time threshold value is corrected to decrease as at least one of the vehicle speed and the steering force applied to the steering wheel 32 increases.
  • FIG. 6 is a block diagram illustrating a detailed configuration of the command calculation unit 54.
  • the command calculation unit 54 includes a reaction force motor current command calculation unit 54a, a steered motor current command calculation unit 54b, and a clutch current command calculation unit 54c.
  • the command calculation unit 54 includes a set rotation angle storage unit 54d, a current supply amount limiting unit 54e, a turning rotation angle detection unit 54g, and a turning trajectory ratio calculation unit 54h.
  • the configuration of the reaction force motor current command calculation unit 54a, the steered motor current command calculation unit 54b, the clutch current command calculation unit 54c, and the set rotation angle storage unit 54d is the same as that of the first embodiment described above. Omitted.
  • the current supply amount limiting unit 54e is configured so that the turning angle of the turning motor 2 detected by the turning motor angle sensor 16 does not exceed the set rotation angle stored in the setting rotation angle storage unit 54d in advance. Limit the amount of drive current supplied.
  • the steering motor drive current is decreased so that the referenced rotation angle does not exceed the set rotation angle.
  • the command signal is output to the steered motor current command calculation unit 54b.
  • the above-described operation is performed. The same processing as in the first embodiment is performed.
  • the current supply amount limiting unit 54e is a command signal that increases the reaction force as the turning angle of the steered wheels 24 approaches 499 [deg] with reference to the state where the steered wheels 24 and the steered wheels 32 are in the neutral position.
  • the generated command signal is output to the reaction force servo control unit 56.
  • the set rotation angle storage unit 54d updates the set rotation angle
  • a command signal for increasing the reaction force is also generated according to the updated set rotation angle.
  • the turning rotation angle detector 54g detects the turning rotation angle.
  • the turning rotation angle is the rotation angle of the steered motor 2 when the turning angle of the steered wheels 24 is turning at the set turning angle when the vehicle is running, for example, the turning motor angle. Detection is performed using the sensor 16. That is, when the turning angle detector 54g detects the turning angle, the steering wheel 24 turns when the turning angle of the steered wheels 24 is turning at the set turning angle. The rotation angle of the motor 2 is detected, and the detected rotation angle of the steered motor 2 is detected as the turning rotation angle.
  • the deviation between the preset trajectory ratio set in advance by the turning angle detector 54g and the turning trajectory ratio calculated by the turning trajectory ratio calculator 54h is a preset deviation threshold value. If it is determined that the rotation angle is exceeded, a case where the turning rotation angle is detected will be described.
  • the set trajectory ratio is a design value of the vehicle, and is set at the time of vehicle design, manufacture, factory shipment, and the like, and is stored in advance in the turning rotation angle detection unit 54g.
  • the turning trajectory ratio calculation unit 54h calculates the turning trajectory ratio when the turning angle of the steered wheels 24 is turning at the set turning angle when the vehicle is running.
  • the trajectory ratio during turning is the trajectory of the inner steered wheel that rotates on the inner side in the vehicle width direction during turning and the outer steered wheel that rotates on the outer side in the vehicle width during turning. The trajectory ratio with a certain outer trajectory.
  • the steered wheel 24 has an inner steered wheel that rotates on the inner side in the vehicle width direction of the vehicle during turning and an outer steered wheel that rotates on the outer side in the vehicle width direction of the vehicle during turning.
  • the turning state is a traveling state in which the turning angle of the steered wheels 24 is set to the right turning direction as shown in FIG.
  • the steered wheel 24R right front wheel
  • the steered wheel 24L left front wheel
  • FIG. 7 is a diagram showing a state of turning of the vehicle.
  • the average turning radius of the vehicle is indicated by a symbol “R”
  • the distance along the vehicle width direction from the center of the vehicle width direction to the center of rotation of the steered wheels 24L is indicated by a symbol “DL”.
  • a distance along the vehicle width direction from the center in the vehicle width direction to the center of rotation of the steered wheels 24R is indicated by a symbol “DR”.
  • the inner locus is indicated by a sign “Tin” and the outer locus is indicated by “Tout”.
  • the trajectory ratio during turning is calculated using the following equation (3).
  • the vehicle speed on the steered wheel 24L side is calculated from the length of the inner locus Tin per unit time, and the vehicle speed on the steered wheel 24R side is calculated from the length of the outer locus Tout per unit time.
  • the trajectory ratio during turning is expressed by the following equation: It becomes the value shown in (4).
  • Vo is the vehicle speed on the steered wheel 24L side (the vehicle width direction outer side of the vehicle)
  • Vi is the vehicle speed on the steered wheel 24R side (the vehicle width direction inner side of the vehicle).
  • No is the rotational speed of the steered wheel 24L
  • Ni is the rotational speed of the steered wheel 24R
  • r is the moving radius of the steered wheel 24.
  • turning rotation angle detection unit 54g determines that the deviation between the set locus ratio and the turning locus ratio exceeds the deviation threshold and detects the turning rotation angle.
  • the turning trajectory ratio calculation unit 54h calculates the turning trajectory ratio
  • the turning rotation angle detection unit 54g calculates a deviation between the turning trajectory ratio calculated by the turning trajectory ratio calculation unit 54h and the set trajectory ratio. When it is determined that the calculated deviation exceeds the deviation threshold, the turning rotation angle is detected.
  • the deviation threshold is set to 3 [%]
  • the deviation threshold (3 [%]) is stored in advance in the turning rotation angle detection unit 54g.
  • the turning trajectory ratio is 1.35. If the average turning radius R becomes, for example, 6 [m] due to deterioration over time, the turning trajectory ratio becomes 1.29.
  • the turning rotation angle detection unit 54g determines that the deviation between the turning trajectory ratio and the set trajectory ratio exceeds the deviation threshold (3 [%]). Then, the turning rotation angle detection unit 54g that determines that the deviation between the turning locus ratio and the set locus ratio exceeds the deviation threshold value detects the turning rotation angle. Further, for example, when a vehicle is maintained at a maintenance factory or the like, the average turning radius R is a value less than 5 [m], and it is determined that the deviation between the turning locus ratio and the set locus ratio exceeds the deviation threshold. Even in this case, the turning angle detector 54g detects the turning angle.
  • FIG. 8 is a diagram showing the relationship between the deviation between the trajectory ratio during turning and the set trajectory ratio and the frequency at which the rotation angle during turning is detected.
  • the set rotation angle storage unit 54d sets the set rotation angle according to the angle obtained by subtracting the deviation between the limit turning angle and the set turning angle from the turning rotation angle detected by the turning rotation angle detection unit 54g. Will be described.
  • the setting rotation angle storage unit 54d determines the limit turning angle and the set turning angle from the turning rotation angle detected by the turning rotation angle detection unit 54g.
  • the angle obtained by subtracting the deviation is updated as the set rotation angle.
  • the set rotation angle storage unit 54d updates, as the set rotation angle, an angle obtained by subtracting the deviation between the limit turning angle and the setting turning angle from the turning rotation angle, the following processing is performed. .
  • the limit turning angle is set to 500 [deg]
  • the set turning angle is set to 499 [deg]. That is, in this embodiment, the deviation between the limit turning angle and the set turning angle is 1 [deg]. Accordingly, when the set rotation angle storage unit 54d updates the angle obtained by subtracting the deviation between the limit turning angle and the set turning angle from the turning rotation angle as the setting turning angle, the setting turning angle storage unit 54d calculates 1 from the turning rotation angle. A process of updating the angle obtained by subtracting [deg] as the set rotation angle is performed.
  • the set turning angle storage unit 54d compares the detected turning angle with the set turning angle. If it is determined that the turning rotation angle detected by the turning rotation angle detection unit 54g is different from the turning rotation angle, the setting rotation angle storage unit 54d determines the limit turning angle and setting turning angle from the turning rotation angle. The angle obtained by subtracting the deviation is updated as the set rotation angle.
  • the set rotation angle storage unit 54d detects that the rotation angle of the steered motor 2 is not more than the set rotation angle and is in a limit state
  • the set rotation angle storage unit 54d sets the set rotation according to the rotation angle of the steered motor 2 at that time. Update the angle. For this reason, in the steering control device 1 of the present embodiment, even if the driver performs full steering when the vehicle is traveling or stopped, the contact between the rack end and the steering rack is suppressed, and the steering motor is excessively large. Therefore, it becomes possible to suppress the supply of a driving motor driving current. In addition to this, even when the driver performs full steering when the vehicle is traveling or stopped, an increase in the driving force output by the steering motor 2 can be suppressed and deterioration of the steering motor 2 can be suppressed. It becomes.
  • the set rotation angle storage unit 54d determines the limit turning angle from the rotation angle during turning.
  • the angle obtained by subtracting the deviation from the set turning angle is updated as the set rotation angle. For this reason, even if the positional relationship between the rotation angle of the steered motor 2 detected by the steered motor angle sensor 16 and the rack shaft 18 has changed since the vehicle was shipped from the factory, the setting is made according to this change.
  • the rotation angle can be updated.
  • the setting is performed using the turning rotation angle when the turning angle of the steered wheels 24 is turning at the set turning angle when the vehicle is running.
  • the rotation angle can be updated. For this reason, as in the first embodiment described above, it is possible to suppress an increase in the turning radius of the vehicle and an increase in the driving force output by the steering motor 2.
  • the rotation angle of the steered motor 2 is detected, and the steered motor drive current is supplied to the steered motor 2. Then, the set rotation angle is stored in advance. Then, the supply amount of the steering motor drive current is limited so that the detected rotation angle does not exceed the set rotation angle.
  • the turning rotation angle is detected, and the angle obtained by subtracting the deviation between the limit turning angle and the set turning angle from the turning turning angle is updated as the set turning angle. Further, in the steering control method of the present embodiment, it is determined whether or not the steering according to the set rotation angle is performed from the preset rotation angle stored in advance and the detected rotation angle during turning. If it is determined that the preset rotation angle stored in advance is different from the detected rotation angle during turning, a process of updating the set rotation angle is performed. Further, in the steering control method of the present embodiment, the trajectory ratio during turning is calculated during turning. In addition to this, if it is determined that the deviation between the set trajectory ratio and the calculated trajectory ratio during turning exceeds the deviation threshold value, processing for detecting the turning rotation angle is performed.
  • the steered motor angle sensor 16 corresponds to the steered motor angle detection unit.
  • the steered position servo control unit 30 and the steered motor current command calculation unit 54b correspond to a steered motor drive current supply unit.
  • the steered motor angle sensor 16, the steered position servo control unit 30, the steering angle sensor 34, the steered motor current command calculation unit 54b, and the set rotation angle storage unit 54d are configured to detect the above-described limit state. Corresponds to the state detector.
  • the turning rotation angle detection unit 54g is the turning angle of the turning motor 2 when the turning angle of the steered wheels 24 is turning at the set turning angle when the vehicle is running. Is detected.
  • the set rotation angle storage unit 54d determines that the preset rotation angle stored in advance and the turning rotation angle detected by the turning rotation angle detection unit 54g are different from each other, the limit turning is determined from the turning rotation angle.
  • the set rotation angle is updated according to the angle obtained by subtracting the deviation between the angle and the set turning angle.
  • the set rotation angle is determined between the rack end and the steering rack 14. It becomes possible to update to an angle at which contact can be suppressed. Therefore, the set rotation angle at which the positional relationship between the rack end and the steering rack 14 has changed due to deterioration over time or the like can be updated to an angle at which contact between the rack end and the steering rack 14 can be suppressed.
  • the turning trajectory ratio calculation unit 54h calculates the turning trajectory ratio when the vehicle is turning.
  • the turning angle detector 54g determines that the deviation between the preset trajectory ratio set in advance and the turning trajectory ratio calculated by the turning trajectory ratio calculator 54h exceeds a preset deviation threshold. Then, the turning rotation angle is detected. For this reason, an opportunity to detect whether or not the set rotation angle stored in advance in the set rotation angle storage unit 54d when the vehicle is turning has changed since the set rotation angle is set, such as when the vehicle is shipped from the factory. Can be provided.
  • the set rotation angle storage unit 54d detects that the rotation angle of the steered motor 2 detected by the steered motor angle sensor 16 is in the limit state with the set rotation angle, the steered motor 2 at that time The set rotation angle is updated according to the rotation angle. For this reason, even if the tightening degree of the retainer becomes stronger than an appropriate value at a repair shop or the like, and the backlash generated in the meshing between the steering output gear 12a and the rack gear 18a is reduced below the appropriate value, the degree of decrease is Thus, the set rotation angle can be updated to an appropriate value.
  • the turning angle of the steered wheels 24 and the positional relationship between the stopper portion 14a and the end contact member 18b can be optimized, and an increase in the turning radius of the vehicle can be suppressed. It is possible to suppress an increase in driving force output from the steered motor 2.
  • the steering control method of the present embodiment detects the turning rotation angle. Further, if it is determined that the preset rotation angle stored in advance and the detected rotation angle during turning are different, the rotation set according to the angle obtained by subtracting the deviation between the limit turning angle and the setting turning angle from the turning rotation angle. Update the angle. Therefore, based on the rotation angle of the steering motor 2 when the turning angle of the steered wheels 24 is turning at the set turning angle when the vehicle is traveling, the set rotation angle is determined between the rack end and the steering rack 14. It becomes possible to update to an angle at which contact can be suppressed. Therefore, the set rotation angle at which the positional relationship between the rack end and the steering rack 14 has changed due to deterioration over time or the like can be updated to an angle at which contact between the rack end and the steering rack 14 can be suppressed.
  • the steering control method of the present embodiment calculates a trajectory ratio during turning when the vehicle is turning. Then, when it is determined that the deviation between the preset trajectory ratio set in advance and the calculated trajectory ratio during turning exceeds a preset deviation threshold, the turning rotational angle is detected. For this reason, it is possible to provide an opportunity to detect whether or not the preset rotation angle stored in advance has changed from the time of setting the preset rotation angle, such as when the vehicle is shipped from the factory, when the vehicle is turning. . As a result, an opportunity to correct the set rotation angle to an appropriate value is provided to reduce the possibility that the rack end and the steering rack 14 come into contact when the driver performs full steering when the vehicle is running or stopped. It becomes possible.
  • the turning angle of the steered wheels 24 and the positional relationship between the stopper portion 14a and the end contact member 18b can be optimized, and an increase in the turning radius of the vehicle can be suppressed.
  • FIG. 9 is a block diagram showing a detailed configuration of the command calculation unit 54.
  • the command calculation unit 54 includes a reaction force motor current command calculation unit 54a, a steered motor current command calculation unit 54b, and a clutch current command calculation unit 54c.
  • the command calculation unit 54 includes a set rotation angle storage unit 54d, a current supply amount limiting unit 54e, a turning rotation angle detection unit 54g, and a turning trajectory ratio calculation unit 54h.
  • the configuration of the reaction force motor current command calculation unit 54a, the turning motor current command calculation unit 54b, the clutch current command calculation unit 54c, the set rotation angle storage unit 54d, and the turning rotation angle detection unit 54g is the same as that of the first embodiment described above. Since it is the same, the description is abbreviate
  • the current supply amount limiting unit 54e is configured so that the turning angle of the turning motor 2 detected by the turning motor angle sensor 16 does not exceed the set rotation angle stored in the setting rotation angle storage unit 54d in advance. Limit the amount of drive current supplied.
  • the steering motor drive current is decreased so that the referenced rotation angle does not exceed the set rotation angle.
  • the command signal is output to the steered motor current command calculation unit 54b.
  • the above-described operation is performed. The same processing as in the first embodiment is performed.
  • the current supply amount limiting unit 54e is a command signal that increases the reaction force as the turning angle of the steered wheels 24 approaches 499 [deg] with reference to the state where the steered wheels 24 and the steered wheels 32 are in the neutral position.
  • the generated command signal is output to the reaction force servo control unit 56.
  • the set rotation angle storage unit 54d updates the set rotation angle
  • a command signal for increasing the reaction force is also generated according to the updated set rotation angle.
  • the turning motor drive current Relax restrictions on supply. Thereby, the supply amount of the steered motor drive current to the steered motor 2 is increased, and the range in which the steered wheels 24 can be steered exceeds the set rotational angle stored in the set rotational angle storage unit 54d in advance. The range corresponds to the angle.
  • the current supply amount restriction unit 54e relaxes the restriction on the supply amount of the steering motor drive current based on the maximum coefficient among the three coefficients described below.
  • the current supply amount limiting unit 54e refers to the three coefficients (integrated travel distance coefficient, limit angle arrival time coefficient, turning trajectory ratio coefficient), and selects the maximum coefficient among the three coefficients (select high). )
  • the cumulative mileage coefficient is a coefficient that increases as the accumulated mileage of the vehicle exceeds the preset mileage threshold and the mileage after the mileage threshold is exceeded is integrated. is there.
  • the cumulative travel distance of the vehicle is used with reference to a distance measured by a distance meter (odometer) that is an existing configuration of a general vehicle, for example.
  • a distance meter an existing configuration of a general vehicle, for example.
  • the cumulative travel distance coefficient is a coefficient that increases as the travel distance after the cumulative travel distance exceeds 10,000 [km] is integrated.
  • FIG. 10 is a diagram showing the relationship between the cumulative travel distance coefficient and the cumulative travel distance of the vehicle.
  • the limit angle arrival time coefficient is a coefficient that increases as the limit angle arrival time, which is the time during which the turning angle of the steered wheels 24 is the limit turning angle, increases.
  • the limit angle arrival time is determined when the time when the actual current of the steering motor (q-axis current) is an excessive current value that is not necessary for normal steering has reached a certain time. Detect based on the time that has been reached.
  • the limit angle arrival time coefficient is set to “0” in a state where the vehicle speed does not reach the speed (5 [km / h]) that can be regarded as traveling.
  • the limit angle arrival time coefficient is a coefficient that increases as the vehicle speed increases in a state where the vehicle speed is 5 [km / h] or more, as shown in FIG.
  • FIG. 11 is a diagram showing the relationship between the limit angle arrival time coefficient and the vehicle speed of the vehicle.
  • the trajectory ratio coefficient during turning is a deviation threshold value that is a deviation threshold ratio that is a deviation between a preset trajectory ratio set in advance and a trajectory ratio calculated during turning by the trajectory ratio calculation unit 54h. Is a coefficient that increases as the deviation increases after the deviation threshold is exceeded.
  • the set trajectory ratio is a design value of the vehicle, and is set at the time of vehicle design, manufacture, factory shipment, and the like, and is stored in advance in the turning rotation angle detection unit 54g. The process for detecting the locus ratio deviation will be described later.
  • the trajectory ratio coefficient during turning is a coefficient that increases as the trajectory ratio deviation increases in a state where the trajectory ratio deviation exceeds 3%.
  • FIG. 12 is a diagram showing the relationship between the trajectory ratio coefficient during turning and the trajectory ratio deviation.
  • the steering motor is based on the selected coefficient.
  • a relaxation degree that relaxes the restriction on the supply amount of the drive current is set.
  • FIG. 13 is a diagram showing the relationship between the vehicle speed and the steerable turning angle. In FIG. 13, the set rotation angle is indicated as “ ⁇ limit”.
  • the steered wheel 24 may be in contact with a curb or the like, or may be fitted in a side groove (groove) or the like. This is because the turning angle may not actually reach the limit.
  • the relaxation degree that relaxes the restriction on the supply amount of the steering motor drive current with the increase degree according to the selected coefficient as the vehicle speed increases, Increase continuously. Accordingly, the steerable turning angle is increased by setting the range in which the steerable wheels 24 can be steered as a range corresponding to an angle exceeding the set rotation angle stored in the set rotation angle storage unit 54d in advance.
  • the turning drive current detection unit 54i detects the supply amount during turning.
  • the supply amount during turning is the supply amount of the steered motor drive current to the steered motor 2 when the steered angle of the steered wheels 24 becomes the set steered angle when the vehicle is running. 54 is detected based on the steering motor current command It that receives the input.
  • the turning trajectory ratio calculation unit 54h calculates the turning trajectory ratio in turning traveling in a state where the turning angle of the steered wheels 24 becomes the set turning angle during traveling of the vehicle.
  • the trajectory ratio during turning is the trajectory of the inner steered wheel that rotates on the inner side in the vehicle width direction during turning and the outer steered wheel that rotates on the outer side in the vehicle width during turning.
  • the trajectory ratio with a certain outer trajectory That is, the steered wheel 24 has an inner steered wheel that rotates on the inner side in the vehicle width direction when turning and an outer steered wheel that rotates on the outer side in the vehicle width direction when turning, as shown in FIG.
  • the process of calculating the trajectory ratio during turning by the trajectory ratio calculation unit 54h during turning is the same as in the above-described third embodiment, and thus the description thereof is omitted.
  • the set rotation angle storage unit 54d updates, as the set rotation angle, an angle obtained by subtracting the deviation between the limit turning angle and the set turning angle from the turning rotation angle detected by the turning rotation angle detection unit 54g. Since the processing to be performed is the same as that of the third embodiment described above, the description thereof is omitted.
  • the set rotation angle storage unit 54d determines the detected turning supply amount and the supply amount of the turning motor driving current limited by the current supply amount limiting unit 54e. Compare. When it is determined that the turning supply amount exceeds the turning motor drive current supply amount limited by the current supply amount limiting unit 54e, the set rotation angle storage unit 54d determines the turning limit from the turning rotation angle. The angle obtained by subtracting the deviation between the angle and the set turning angle is updated as the set rotation angle.
  • the set rotation angle storage unit 54d detects that the steered wheel 24 is in a limit state where the steered wheels 24 can be steered in a state where the rotation angle of the steered motor 2 is equal to or less than the set rotation angle, the steered motor 2 at that time The set rotation angle is updated according to the rotation angle. For this reason, in the steering control device 1 of the present embodiment, even if the driver performs full steering when the vehicle is traveling or stopped, the contact between the rack end and the steering rack is suppressed, and the steering motor is excessively large. Therefore, it becomes possible to suppress the supply of a driving motor driving current. In addition to this, even when the driver performs full steering when the vehicle is traveling or stopped, an increase in the driving force output by the steering motor 2 can be suppressed and deterioration of the steering motor 2 can be suppressed. It becomes.
  • the set rotation angle storage unit 54d calculates an angle obtained by subtracting the deviation between the limit turning angle and the set turning angle from the turning rotation angle. Update as the set rotation angle. For this reason, even if the positional relationship between the rotation angle of the steered motor 2 detected by the steered motor angle sensor 16 and the rack shaft 18 has changed since the vehicle was shipped from the factory, the setting is made according to this change. The rotation angle can be updated.
  • the set rotation angle can be updated based on the steering motor drive current supplied to the steering motor 2 when the vehicle is turning. For this reason, as in the first embodiment described above, it is possible to suppress an increase in the turning radius of the vehicle and an increase in the driving force output by the steering motor 2.
  • the rotation angle of the steered motor 2 is detected, and the steered motor drive current is supplied to the steered motor 2. To do.
  • the set rotation angle is stored in advance, and the supply amount of the steering motor drive current is limited so that the detected rotation angle does not exceed the set rotation angle.
  • the turning rotation angle is detected, the turning supply amount is detected, and whether or not the detected turning supply amount exceeds the limited supply amount of the steering motor drive current. Determine. Further, in the steering control method of the present embodiment, when it is determined that the detected supply amount during turning exceeds the limited supply amount of the steering motor drive current, processing for updating the set rotation angle is performed.
  • the steered motor angle sensor 16 corresponds to the steered motor angle detection unit.
  • the steered position servo control unit 30 and the steered motor current command calculation unit 54b correspond to a steered motor drive current supply unit.
  • the steered motor angle sensor 16, the steered position servo control unit 30, the steering angle sensor 34, the steered motor current command calculation unit 54b, and the set rotation angle storage unit 54d are configured to detect the above-described limit state. Corresponds to the state detector.
  • the turning rotation angle detection unit 54g detects the turning rotation angle
  • the turning drive current detection unit 54i detects the turning supply amount.
  • the set rotation angle storage unit 54d determines that the detected turning supply amount exceeds the supply amount of the turning motor drive current limited by the current supply amount limiting unit 54e, the turning rotation angle is limited from the turning angle.
  • the angle obtained by subtracting the deviation between the turning angle and the set turning angle is updated as the set rotation angle.
  • the set rotation angle can be updated to an angle at which contact between the rack end and the steering rack 14 can be suppressed based on the steering motor drive current supplied to the steering motor 2 when the vehicle is turning. It becomes. Therefore, the set rotation angle at which the positional relationship between the rack end and the steering rack 14 has changed due to deterioration over time or the like can be updated to an angle at which contact between the rack end and the steering rack 14 can be suppressed.
  • the set rotation angle storage unit 54d detects that the steered wheel 24 is in a limit state in which the steered wheels 24 can be steered when the rotation angle of the steered motor 2 detected by the steered motor angle sensor 16 is equal to or less than the set rotation angle. Then, according to the rotation angle of the steering motor 2 at that time, the set rotation angle is updated. For this reason, even if the tightening degree of the retainer becomes stronger than an appropriate value at a repair shop or the like, and the backlash generated in the meshing between the steering output gear 12a and the rack gear 18a is reduced below the appropriate value, the degree of decrease is Thus, the set rotation angle can be updated to an appropriate value.
  • the turning angle of the steered wheels 24 and the positional relationship between the stopper portion 14a and the end contact member 18b can be optimized, and an increase in the turning radius of the vehicle can be suppressed. It is possible to suppress an increase in driving force output from the steered motor 2.
  • the steering control method of the present embodiment detects a turning rotation angle and detects a turning supply amount. Then, if it is determined that the detected turning supply amount exceeds the restricted turning motor drive current supply amount, an angle obtained by subtracting the deviation between the limit turning angle and the set turning angle from the turning rotation angle Is updated as the set rotation angle. For this reason, the set rotation angle can be updated to an angle at which contact between the rack end and the steering rack 14 can be suppressed based on the steering motor drive current supplied to the steering motor 2 when the vehicle is turning. It becomes. Therefore, the set rotation angle at which the positional relationship between the rack end and the steering rack 14 has changed due to deterioration over time or the like can be updated to an angle at which contact between the rack end and the steering rack 14 can be suppressed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Power Steering Mechanism (AREA)

Abstract

 転舵輪を転舵させるための転舵トルクを出力する転舵モータ(2)と、転舵モータ(2)の回転角度を検出する転舵モータ角度センサ(16)と、転舵輪の転舵角を操舵輪の操作に応じた角度とするための転舵モータ駆動電流を転舵モータ(2)へ供給する転舵モータ駆動電流供給部と、転舵輪を転舵可能な限界の転舵角より小さい角度で設定した設定転舵角に対応する、転舵モータ(2)の回転角度である設定回転角度を予め記憶する設定回転角記憶部と、転舵モータ角度センサ(16)が検出した回転角度が設定回転角記憶部に予め記憶させている設定回転角度を超えないように転舵モータ駆動電流の供給量を制限する電流供給量制限部を備える。

Description

車両の操舵制御装置及び操舵制御方法
 本発明は、操舵輪と転舵輪との間のトルク伝達経路を機械的に分離した状態で、転舵輪を、操舵輪の操作に応じた角度(目標転舵角)に転舵モータを介して転舵させる、車両の操舵制御装置に関する。
 従来から、操舵輪(ステアリングホイール)と転舵輪との間のトルク伝達経路を機械的に分離した状態で、転舵輪を、操舵輪の操作に応じた角度(目標転舵角)に転舵モータを介して転舵させる操舵制御装置がある。このような操舵制御装置は、一般的に、ステア・バイ・ワイヤ(SBW:Steer By Wire、以降の説明では、「SBW」と記載する場合がある)と呼称するシステム(SBWシステム)を形成する装置であり、例えば、特許文献1に記載されている。
 特許文献1に記載されている操舵制御装置は、転舵輪が縁石等に当接している状態で操舵輪が転舵方向へ操作され続けている場合に、転舵モータへ供給する駆動電流を減少させて、転舵モータに駆動電流が供給され続けることを防止するものである。
特開平10‐217988号公報
 ラックエンド(ラック軸の端部)がステアリングラックに当接するようなフル転舵にあっても、操舵輪が転舵方向へ操作され続けていると転舵モータに駆動電流が供給され続けることが考えられる。しかしながら、特許文献1に記載の操舵制御装置では、フル転舵時への対応については説明がなされていない。
 本発明は、上記のような問題点に着目してなされたもので、ラックエンドとステアリングラックとの接触を抑制して、転舵モータへの過大な駆動電流の供給を抑制することが可能な、車両の操舵制御装置及び操舵制御方法を提供することを課題とする。
 上記課題を解決するために、本発明の一態様は、転舵輪を転舵可能な限界の転舵角より小さい角度で設定した設定転舵角に対応する、転舵モータの回転角度である設定回転角度を記憶する。そして、転舵輪を転舵させるための転舵トルクを出力する転舵モータの回転角度を検出し、この検出した転舵モータの回転角度が記憶している設定回転角度を超えないように、転舵モータへの転舵モータ駆動電流の供給量を制限する。これに加え、予め設定した許可条件が成立していると判定すると、転舵モータ駆動電流の供給量に対する制限を解除し、この制限を解除した状態で、転舵可能な限界の転舵角まで転舵輪が転舵された時、転舵モータの回転角度を算出する。さらに、算出した転舵モータの回転角度と設定転舵角との偏差に応じて、設定回転角度を更新する。
 本発明の一態様によれば、検出した転舵モータの回転角度が設定回転角度を超えないように、転舵モータへの転舵モータ駆動電流の供給量を制限する。このため、ラックエンドとステアリングラックとの接触を抑制して、転舵モータへの過大な転舵モータ駆動電流の供給を抑制することが可能となる。
本発明の第一実施形態の車両の操舵制御装置を備えた車両の概略構成を示す図である。 本発明の第一実施形態の操舵制御装置の概略構成を示すブロック図である。 本発明の第一実施形態の指令演算部の詳細な構成を示すブロック図である。 転舵モータの回転角度と減少ゲインとの関係を示す図である。 本発明の第二実施形態の電流供給量制限部が行う処理に用いるパラメータを示す図である。 本発明の第三実施形態の指令演算部の詳細な構成を示すブロック図である。 車両の旋回走行の状態を示す図である。 旋回時軌跡比と設定軌跡比との偏差と、旋回時回転角度を検出する頻度との関係を示す図である。 本発明の第四実施形態の指令演算部の詳細な構成を示すブロック図である。 積算走行距離係数と車両の積算走行距離との関係を示す図である。 限界角到達時間係数と車両の車速との関係を示す図である。 旋回時軌跡比係数と軌跡比偏差との関係を示す図である。 車速と転舵可能な転舵角との関係を示す図である。
 以下、本発明の実施形態について図面を参照しつつ説明する。
(第一実施形態)
 以下、本発明の第一実施形態(以下、「本実施形態」と記載する)について、図面を参照しつつ説明する。
(構成)
 図1は、本実施形態の車両の操舵制御装置1(以下、「操舵制御装置」と記載する)を備えた車両の概略構成を示す図である。また、図2は、本実施形態の操舵制御装置1の概略構成を示すブロック図である。
 本実施形態の操舵制御装置1を備えた車両は、SBWシステムを適用した車両である。
 ここで、SBWシステムでは、車両の運転者が操舵操作する操舵輪の操作に応じて転舵モータを駆動制御して、転舵輪を転舵する制御を行うことにより、車両の進行方向を変化させる。転舵モータの駆動制御は、操舵輪と転舵輪との間に介装するクラッチを、通常状態である開放状態に切り換えて、操舵輪と転舵輪との間のトルク伝達経路を機械的に分離した状態で行う。
 そして、例えば、断線等、SBWシステムの一部に異常が発生した場合には、開放状態のクラッチを締結状態に切り換えて、トルク伝達経路を機械的に接続することにより、運転者が操舵輪に加える力を用いて、転舵輪の転舵を継続する。
 図1及び図2中に示すように、本実施形態の操舵制御装置1は、転舵モータ2と、転舵モータ制御部4と、クラッチ6と、反力モータ8と、反力モータ制御部10を備える。
 転舵モータ2は、転舵モータ制御部4が出力する転舵モータ駆動電流に応じて駆動するモータであり、回転可能な転舵モータ出力軸12を有する。また、転舵モータ2は、転舵モータ駆動電流に応じて駆動することにより、転舵輪を転舵させるための転舵トルクを出力する。
 転舵モータ出力軸12の先端側には、ピニオンギアを用いて形成した転舵出力歯車12aを設けてある。
 転舵出力歯車12aは、ステアリングラック14に挿通させたラック軸18の両端部間に設けたラックギア18aと噛合する。
 また、転舵モータ2には、転舵モータ角度センサ16を設ける。
 転舵モータ角度センサ16は、転舵モータ2の回転角度(転舵角度)を検出し、この検出した回転角度(以降の説明では、「転舵モータ回転角」と記載する場合がある)を含む情報信号を、転舵モータ制御部4を介して、反力モータ制御部10へ出力する。
 ステアリングラック14は、円筒形状に形成してあり、転舵モータ出力軸12の回転、すなわち、転舵出力歯車12aの回転に応じて車幅方向へ変位するラック軸18を挿通させる。
 また、ステアリングラック14の内部には、ラック軸18の外径面を全周から覆うストッパ部14aを二つ設ける。二つのストッパ部14aは、それぞれ、ステアリングラック14の内部において、転舵出力歯車12aよりも車幅方向右側及び左側に設ける。なお、図1中では、二つのストッパ部14aのうち、転舵出力歯車12aよりも車幅方向右側に設けたストッパ部14aの図示を省略する。
 ラック軸18の、ステアリングラック14に挿通させて内部に配置した部分のうち、ストッパ部14aよりも車幅方向右側及び左側の部分には、それぞれ、ストッパ部14aとラック軸18の軸方向で対向する端当て部材18bを設ける。なお、図1中では、二つの端当て部材18bのうち、ストッパ部14aよりも車幅方向右側に設けた端当て部材18bの図示を省略する。
 ラック軸18の両端は、それぞれ、タイロッド20及びナックルアーム22を介して、転舵輪24に連結する。また、ラック軸18とタイロッド20との間には、タイヤ軸力センサ26を設ける。
 タイヤ軸力センサ26は、ラック軸18の軸方向(車幅方向)に作用する軸力を検出し、この検出した軸力(以降の説明では、「タイヤ軸力」と記載する場合がある)を含む情報信号を、反力モータ制御部10へ出力する。
 転舵輪24は、車両の前輪(左右前輪)であり、転舵モータ出力軸12の回転に応じてラック軸18が車幅方向へ変位すると、タイロッド20及びナックルアーム22を介して転舵し、車両の進行方向を変化させる。なお、本実施形態では、転舵輪24を、左右前輪で形成した場合を説明する。これに伴い、図1中では、左前輪で形成した転舵輪24を、転舵輪24Lと示し、右前輪で形成した転舵輪24を、転舵輪24Rと示す。
 転舵モータ制御部4は、反力モータ制御部10と、CAN(Controller Area Network)等の通信ライン28を介して、情報信号の入出力を行う。
 また、転舵モータ制御部4は、転舵位置サーボ制御部30を有する。
 転舵位置サーボ制御部30は、転舵モータ2を駆動させるための転舵モータ駆動電流を演算し、この演算した転舵モータ駆動電流を、転舵モータ2へ出力する。
 ここで、転舵モータ駆動電流は、上述した転舵トルクを制御して、操舵輪の操作に応じた角度(目標転舵角)を算出し、この算出した目標転舵角に応じて転舵モータ2を駆動制御するための電流である。
 転舵モータ駆動電流の演算は、反力モータ制御部10が出力する転舵モータ電流指令と、実際に転舵モータ2へ通電している電流(転舵モータ実電流)の指令値(以降の説明では、「転舵モータ電流指令It」と記載する場合がある)に基づいて行う。具体的には、転舵モータ電流指令Itを用いて転舵モータ電流指令を補正し、転舵モータ駆動電流を演算する。
 また、転舵位置サーボ制御部30は、転舵モータ電流指令Itを計測し、この計測した転舵モータ電流指令Itに基づいて、転舵モータ2の温度Ttを推定する。そして、推定した転舵モータ2の温度Ttを含む情報信号を、反力モータ制御部10へ出力する。これは、電流の通電による抵抗発熱に起因するモータ類(転舵モータ2、反力モータ8)の過熱を推定するためである。
 なお、転舵モータ電流指令Itは、例えば、転舵モータ2に基板温度センサ(図示せず)を内蔵し、この内蔵した基板温度センサを用いて計測する。
 ここで、転舵モータ電流指令Itに基づいて転舵モータ2の温度Ttを推定する方法としては、例えば、大電流域では、計測した実際の電流値を用いて転舵モータ電流指令Itを求める。具体的には、計測した実際の電流値と予め記憶している電流閾値とを比較し、計測した実際の電流値が電流閾値よりも大きい場合は、計測した実際の電流値を、転舵モータ電流指令Itとして採用する。
 一方、小電流域では、転舵モータ2の回転数とトルクとの関係を定めたモータNT特性を用い、転舵モータ2の回転数に基づいて、転舵モータ電流指令Itを推定する。具体的には、計測した実際の電流値を転舵モータ電流指令Itとして採用せず、モータNT特性を用い、転舵モータ2の回転数に基づいて推定した電流値を、転舵モータ電流指令Itとして採用する。
 そして、上記のように採用した転舵モータ電流指令Itを用いて、転舵モータ2の温度Ttを推定する。
 クラッチ6は、運転者が操作する操舵輪32(ステアリングホイール)と転舵輪24との間に介装し、反力モータ制御部10が出力するクラッチ駆動電流に応じて、開放状態または締結状態に切り換わる。なお、クラッチ6は、通常状態では、開放状態である。
 ここで、クラッチ6の状態を開放状態に切り換えると、操舵輪32と転舵輪24との間のトルク伝達経路を機械的に分離させて、操舵輪32の操舵操作が転舵輪24へ伝達されない状態とする。一方、クラッチ6の状態を締結状態に切り換えると、操舵輪32と転舵輪24との間のトルク伝達経路を機械的に結合させて、操舵輪32の操舵操作が転舵輪24へ伝達される状態とする。
 また、操舵輪32とクラッチ6との間には、操舵角センサ34と、操舵トルクセンサ36と、反力モータ8と、反力モータ角度センサ38を配置する。
 操舵角センサ34は、例えば、操舵輪32を回転可能に支持するステアリングコラムに設ける。
 また、操舵角センサ34は、操舵輪32の現在の回転角度(操舵操作量)である現在操舵角を検出する。そして、操舵角センサ34は、検出した操舵輪32の現在操舵角を含む情報信号を、反力モータ制御部10へ出力する。なお、以降の説明では、現在操舵角を、「現在操舵角θ」と記載する場合がある。
 ここで、近年の車両は、操舵輪32の操舵角を検出可能なセンサを、標準的に備えている場合が多い。このため、本実施形態では、操舵角センサ34として、車両に既存のセンサである、操舵輪32の操舵角を検出可能なセンサを用いた場合について説明する。
 操舵トルクセンサ36は、操舵角センサ34と同様、例えば、操舵輪32を回転可能に支持するステアリングコラムに設ける。
 また、操舵トルクセンサ36は、運転者が操舵輪32に加えているトルクである操舵トルクを検出する。そして、操舵トルクセンサ36は、検出した操舵トルクを含む情報信号を、反力モータ制御部10へ出力する。なお、以降の説明では、操舵トルクを、「トルクセンサ値Vts」と記載する場合がある。
 なお、反力モータ8及び反力モータ角度センサ38に関する説明は、後述する。
 また、クラッチ6は、開放状態で互いに離間し、締結状態で互いに噛合する一対のクラッチ板40を有する。なお、図1中及び以降の説明では、一対のクラッチ板40のうち、操舵輪32側に配置するクラッチ板40を、「操舵輪側クラッチ板40a」とし、転舵輪24側に配置するクラッチ板40を、「転舵輪側クラッチ板40b」とする。
 操舵輪側クラッチ板40aは、操舵輪32と共に回転するステリングシャフト42に取り付けてあり、ステリングシャフト42と共に回転する。
 転舵輪側クラッチ板40bは、ピニオン軸44の一端に取り付けてあり、ピニオン軸44と共に回転する。
 ピニオン軸44の他端は、ピニオン46内に配置してある。ピニオン46には、ラックギア18aと噛合するピニオンギア(図示せず)を内蔵する。
 ピニオンギアは、ピニオン軸44と共に回転する。すなわち、ピニオンギアは、ピニオン軸44を介して、転舵輪側クラッチ板40bと共に回転する。
 また、ピニオン46には、ピニオン角度センサ48を設ける。
 ピニオン角度センサ48は、ピニオンギアの回転角度を検出し、この検出した回転角度(以降の説明では、「ピニオン回転角」と記載する場合がある)を含む情報信号を、反力モータ制御部10へ出力する。
 反力モータ8は、反力モータ制御部10が出力する反力モータ駆動電流に応じて駆動するモータであり、操舵輪32と共に回転するステリングシャフト42を回転させて、操舵輪32へ操舵反力を出力可能である。ここで、反力モータ8が操舵輪32へ出力する操舵反力は、クラッチ6を開放状態に切り換えて、操舵輪32と転舵輪24との間のトルク伝達経路を機械的に分離させている状態で、転舵輪24に作用しているタイヤ軸力や操舵輪32の操舵状態に応じて演算する。これにより、操舵輪32を操舵する運転者へ、適切な操舵反力を伝達する。すなわち、反力モータ8が操舵輪32へ出力する操舵反力は、運転者が操舵輪32を操舵する操作方向とは反対方向へ作用する反力である。
 反力モータ角度センサ38は、反力モータ8に設けるセンサである。
 また、反力モータ角度センサ38は、反力モータ8の回転角度(転舵角度)を検出し、この検出した回転角度(以降の説明では、「反力モータ回転角」と記載する場合がある)を含む情報信号を、反力モータ制御部10へ出力する。
 反力モータ制御部10は、転舵モータ制御部4と、通信ライン28を介して、情報信号の入出力を行う。これに加え、反力モータ制御部10は、通信ライン28を介して、車速センサ50及びエンジンコントローラ52が出力する情報信号の入力を受ける。
 また、反力モータ制御部10は、通信ライン28を介して入力を受けた情報信号や、各種センサから入力を受けた情報信号に基づき、反力モータ8を駆動制御する。
 車速センサ50は、例えば、公知の車速センサであり、車両の車速を検出し、この検出した車速を含む情報信号を、反力モータ制御部10へ出力する。
 エンジンコントローラ52(エンジンECU)は、エンジン(図示せず)の状態(エンジン駆動、または、エンジン停止)を含む情報信号を、反力モータ制御部10へ出力する。
 また、反力モータ制御部10は、指令演算部54と、反力サーボ制御部56と、クラッチ制御部58を有する。
 指令演算部54は、車速センサ50、操舵角センサ34、エンジンコントローラ52、操舵トルクセンサ36、反力モータ角度センサ38、ピニオン角度センサ48、タイヤ軸力センサ26及び転舵モータ角度センサ16が出力した情報信号の入力を受ける。
 なお、指令演算部54の詳細な構成についての説明は、後述する。
 反力サーボ制御部56は、反力モータ8を駆動させるための反力モータ駆動電流を反力モータ8へ出力する。
 また、反力サーボ制御部56は、実際に反力モータ8へ通電している電流(反力モータ実電流)の値(以降の説明では、「反力モータ電流値Ih」と記載する場合がある)を計測する。
 ここで、反力モータ駆動電流の演算は、指令演算部54が出力する反力モータ電流指令(後述)と、反力モータ電流値Ihに基づいて行う。具体的には、反力モータ電流値Ihを用いて反力モータ電流指令を補正し、反力モータ駆動電流を演算する。
 また、反力サーボ制御部56は、計測した反力モータ電流値Ihに基づいて、反力モータ8の温度Thを推定する。なお、反力モータ8の温度Thの推定は、例えば、転舵位置サーボ制御部30が行う転舵モータ2の温度Ttの推定と、同様の手順で行う。
 クラッチ制御部58は、指令演算部54が出力するクラッチ電流指令(後述)に基づいて、開放状態のクラッチ6を締結状態へ切り換えるために必要な電流を、クラッチ駆動電流として演算する。そして、演算したクラッチ駆動電流を、クラッチ6へ出力する。
(指令演算部54の詳細な構成)
 以下、図1及び図2を参照しつつ、図3及び図4を用いて、指令演算部54の詳細な構成について説明する。
 図3は、指令演算部54の詳細な構成を示すブロック図である。
 図3中に示すように、指令演算部54は、反力モータ電流指令演算部54aと、転舵モータ電流指令演算部54bと、クラッチ電流指令演算部54cと、設定回転角記憶部54dと、電流供給量制限部54eと、当接回転角算出部54fを備える。
 反力モータ電流指令演算部54aは、指令演算部54が入力を受けた各種情報信号に基づき、反力モータ電流指令を演算する。そして、反力モータ電流指令演算部54aは、演算した反力モータ電流指令を、反力サーボ制御部56へ出力する。
 反力モータ電流指令演算部54aによる反力モータ電流指令の演算は、例えば、車速センサ50及び転舵モータ角度センサ16が出力した情報信号に基づき、転舵モータ回転角θtに、予め設定した反力モータ用ゲインGhを乗算して行う。
 ここで、反力モータ用ゲインGhは、反力モータゲイン用マップを用いて、予め設定する。なお、反力モータゲイン用マップは、車速に依存するマップであり、予め形成して、指令演算部54に格納する。
 すなわち、反力モータ電流指令を「Ih’」と定義すると、反力モータ電流指令Ih’は、以下の式(1)で演算する。
 Ih’=θt×Gh … (1)
 転舵モータ電流指令演算部54bは、指令演算部54が入力を受けた各種情報信号に基づき、転舵モータ電流指令を演算する。そして、転舵モータ電流指令演算部54bは、この演算した転舵モータ電流指令を、転舵位置サーボ制御部30へ出力する。
 転舵モータ電流指令演算部54bによる転舵モータ電流指令の演算は、例えば、車速センサ50及び操舵角センサ34が出力した情報信号に基づき、現在操舵角θに、予め設定した転舵モータ用ゲインGtを乗算して行う。
 ここで、転舵モータ用ゲインGtは、転舵モータゲイン用マップを用いて、予め設定する。なお、転舵モータゲイン用マップは、車速に依存するマップであり、予め形成して、指令演算部54に格納する。
 すなわち、転舵モータ電流指令を「It’」と定義すると、転舵モータ電流指令It’は、以下の式(2)で演算する。
 It’=θ×Gt … (2)
 クラッチ電流指令演算部54cは、指令演算部54が入力を受けた各種情報信号に基づき、クラッチ電流指令を演算する。そして、クラッチ電流指令演算部54cは、この演算したクラッチ電流指令を、クラッチ制御部58へ出力する。
 クラッチ電流指令演算部54cによるクラッチ電流指令の演算は、例えば、転舵モータ制御部4が推定した転舵モータ2の温度Ttと、クラッチ締結温度St1を用いて行う。
 具体的には、まず、クラッチ6を開放状態に切り換えた状態で、転舵モータ制御部4が推定した転舵モータ2の温度Ttと、クラッチ締結温度St1とを比較し、転舵モータ2の温度Ttがクラッチ締結温度St1を超えているか否かを判定する。
 ここで、クラッチ締結温度St1は、転舵モータ2を正常(通常状態、通常制御)に使用することが困難な使用限界温度よりも、予め設定した温度差分低い温度であり、予め設定して、指令演算部54に記憶させておく。
 なお、上記の使用限界温度は、例えば、転舵モータ2に予め設定されている定格や、「JIS C 4003」等を用いて設定する。
 本実施形態では、一例として、クラッチ締結温度St1を、転舵モータ2の使用限界温度よりも10[℃]低い温度に設定する場合を説明する。すなわち、本実施形態では、一例として、予め設定した温度差を、「10[℃]」に設定する場合を説明する。
 そして、転舵モータ2の温度Ttがクラッチ締結温度St1を超えていると判定すると、開放状態(通常状態)のクラッチ6を締結状態に切り換える指令信号を演算し、この演算した指令信号を、クラッチ電流指令とする。
 なお、クラッチ電流指令演算部54cは、転舵モータ2の温度Ttに応じて、締結状態のクラッチ6を開放状態に切り換える指令信号の演算も行う。
 設定回転角記憶部54dは、設定回転角度を予め記憶する。
 設定回転角度は、転舵輪24を転舵可能な限界の転舵角より小さい角度で設定した設定転舵角に対応する、転舵モータ2の回転角度である。
 限界の転舵角とは、ストッパ部14aと端当て部材18bが当接している状態における、転舵輪24の転舵角であり、車両の設計時、製造時、工場出荷時等において、予め設定する。すなわち、転舵輪24の転舵角が、限界の転舵角に達している状態では、操舵輪32を操舵しても、転舵輪24の転舵角は変化(増加)しない。
 設定転舵角は、限界の転舵角より小さい角度であり、限界の転舵角に応じて予め設定する。
 本実施形態では、一例として、限界の転舵角を500[deg]と設定し、設定転舵角を499[deg]、すなわち、限界の転舵角よりも1[deg]小さい角度に設定する場合について説明する。
 したがって、本実施形態では、一例として、設定回転角度を、転舵輪24の転舵角が499[deg]である状態における、転舵モータ2の回転角度に設定する場合を説明する。
 また、設定回転角記憶部54dは、当接回転角算出部54fが算出した当接回転角度と設定転舵角との偏差に応じて、設定回転角度を更新する。なお、設定回転角記憶部54dが設定回転角度を更新する処理の説明は、後述する。
 また、設定回転角記憶部54dは、転舵モータ角度センサ16が検出した転舵モータ2の回転角度が設定回転角度以下である状態で転舵輪24が転舵可能な限界状態であることを検出すると、そのときの転舵モータ2の回転角度に応じ、目標転舵角より小さい角度に規制された転舵角に対応する転舵モータ2の回転角度を、設定回転角度として更新する。なお、設定回転角記憶部54dが、上記の更新を行う処理の説明は、後述する。
 また、限界状態の検出は、転舵モータ2の回転角度が設定回転角度以下である状態で、転舵モータ実電流(q軸電流)が通常の転舵に必要のない過大な電流値となっている時間が、一定時間に達している状態を検出して行う。すなわち、転舵モータ2の回転角度が設定回転角度以下である状態で、転舵モータ実電流が過大な電流値となっている時間が一定時間に達している状態を検出すると、この検出した状態を限界状態とする。このように限界状態を検出する処理は、転舵モータ角度センサ16、転舵位置サーボ制御部30、操舵角センサ34、転舵モータ電流指令演算部54b及び設定回転角記憶部54dを用いて行う。
 なお、設定回転角記憶部54dが、予め記憶している設定回転角度を更新するタイミングは、転舵モータ角度センサ16が検出した転舵モータ2の回転角度が、予め記憶している設定回転角度及び更新する設定回転角度未満であるタイミングとする。これは、反力モータ8が操舵輪32へ出力する操舵反力の急変を防止するためである。
 電流供給量制限部54eは、転舵モータ角度センサ16が検出した転舵モータ2の回転角度が、設定回転角記憶部54dに予め記憶させている設定回転角度を超えないように、転舵モータ駆動電流の供給量を制限する。
 具体的には、転舵モータ角度センサ16が検出した転舵モータ2の回転角度を参照し、この参照している回転角度が設定回転角度を超えないように、転舵モータ駆動電流を減少させる指令信号を、転舵モータ電流指令演算部54bへ出力する。
 ここで、転舵モータ角度センサ16が検出した転舵モータ2の回転角度が設定回転角度を超えないように、転舵モータ駆動電流を減少させる指令信号を生成する際には、例えば、以下に説明する処理を行う。
 このような処理では、例えば、転舵モータ駆動電流を減少させるための減少ゲインを、図4中に示すように、転舵モータ角度センサ16が検出した転舵モータ2の回転角度と設定回転角度に応じて設定する。なお、図4は、転舵モータ2の回転角度と減少ゲインとの関係を示す図である。
 具体的には、転舵輪24の転舵角が0[deg]である状態、すなわち、転舵輪24及び操舵輪32が中立位置である状態を基準として、転舵輪24の転舵角が499[deg]へ近づくほど、上記の減少ゲインを増加させる。
 また、減少ゲインの増加度合いは、転舵輪24の転舵角が499[deg]に達した時点で、転舵角が増加する方向への操舵輪32の操舵操作を規制可能な増加度合いに設定する。
 また、転舵モータ角度センサ16が検出した転舵モータ2の回転角度が設定回転角度を超えないように、転舵モータ駆動電流を減少させる指令信号を生成する際には、例えば、目標転舵角を制限(リミット)する処理を行う。これは、例えば、制限値(リミット値)を上下可能な回路(リミット回路)を用いて行う。
 また、電流供給量制限部54eは、転舵輪24及び操舵輪32が中立位置である状態を基準として、転舵輪24の転舵角が499[deg]へ近づくほど、反力を増加させる指令信号を生成し、この生成した指令信号を、反力サーボ制御部56へ出力する。なお、設定回転角記憶部54dが設定回転角度を更新すると、反力を増加させる指令信号も、更新した設定回転角度に応じて生成する。
 また、電流供給量制限部54eは、予め設定した許可条件が成立していると判定すると、転舵モータ駆動電流の供給量に対する制限を解除する。なお、許可条件は、予め、電流供給量制限部54eに記憶させておく。
 本実施形態では、一例として、許可条件を、車両の積算走行距離が、予め設定した走行距離閾値を超えている条件とする場合を説明する。なお、車両の積算走行距離は、例えば、一般的な車両に既存の構成である距離計(オドメータ)で計測する距離を参照して用いる。
 また、本実施形態では、一例として、走行距離閾値を、10000[km]とする場合を説明する。
 したがって、本実施形態では、電流供給量制限部54eが、車両の積算走行距離が10000[km]を超えていると、予め設定した許可条件が成立していると判定し、転舵モータ駆動電流の供給量に対する制限を解除する。
 また、本実施形態では、電流供給量制限部54eが、車両の積算走行距離が10000[km]を超えた後は、積算走行距離が10000[km]を超える度に、予め設定した許可条件が成立していると判定する。すなわち、車両の積算走行距離が10000[km]を超えた後は、電流供給量制限部54eは、積算走行距離が20000[km]を超えていると、予め設定した許可条件が成立していると判定する。
 当接回転角算出部54fは、電流供給量制限部54eが、予め設定した許可条件が成立していると判定して、転舵モータ駆動電流の供給量に対する制限を解除した状態で、当接回転角度を算出する。
 ここで、上記の当接回転角度は、転舵輪24の転舵角を限界の転舵角とした状態、すなわち、ストッパ部14aと端当て部材18bとを当接させた状態に対応する、転舵モータ2の回転角度である。
 したがって、当接回転角算出部54fが当接回転角度を算出する際には、電流供給量制限部54eが転舵モータ駆動電流の供給量に対する制限を解除した状態で、転舵輪24の転舵角を限界の転舵角とした状態に対応する転舵モータ2の回転角度を検出する。そして、この検出した転舵モータ2の回転角度を、当接回転角度として算出する。
 ここで、転舵輪24の転舵角を限界の転舵角とした状態に対応する、転舵モータ2の回転角度を検出する際には、例えば、当接回転角算出部54fは、転舵位置サーボ制御部30に入力された情報信号に基づき、転舵モータ実電流を参照する。そして、転舵モータ実電流(q軸電流)が通常の転舵に必要のない過大な電流値(例えば、90[Arms])となっている時間が、一定時間(例えば、1[s])に達している状態を検出すると、この状態における転舵モータ回転角を、当接回転角度として算出する。
 上記の処理を行う理由は、本実施形態では、転舵位置サーボ制御部30により、転舵モータ2に対するサーボ制御を行っているため、ストッパ部14aと端当て部材18bとを当接させた状態では、過大な指令電圧を出力されるためである。これに加え、ストッパ部14aと端当て部材18bが当接して、転舵モータ2の回転が止まると、転舵モータ2には、通常の転舵に必要な電流量を超えた過大な電流が流れるためである。
 なお、上述した、転舵に必要のない過大な電流値や一定時間は、例えば、車両の構造等に応じて予め設定し、当接回転角算出部54fへ記憶させておく。
 また、当接回転角度の算出は、車両の走行中に行うことが好適である。その理由は、車両が停車している状態では、転舵輪24が縁石等に当接している可能性や、側溝(溝)等に嵌っている(落ち込んでいる)可能性があり、当接回転角度を正確に算出できない可能性があるためである。
(当接回転角度と設定転舵角との偏差に応じて設定回転角度を更新する処理)
 以下、設定回転角記憶部54dが、当接回転角算出部54fが算出した当接回転角度と設定転舵角との偏差に応じて、設定回転角度を更新する処理について説明する。
 設定回転角記憶部54dは、当接回転角算出部54fが当接回転角度を算出すると、当接回転角算出部54fが算出した当接回転角度から、限界の転舵角と設定転舵角との偏差を減算した角度を、設定回転角度として更新する。
 本実施形態では、設定回転角記憶部54dが、当接回転角度から限界の転舵角と設定転舵角との偏差を減算した角度を設定回転角度として更新する際に、以下の処理を行う。
 本実施形態では、限界の転舵角を500[deg]と設定し、設定転舵角を499[deg]としている。すなわち、本実施形態では、限界の転舵角と設定転舵角との偏差は、1[deg]である。
 したがって、設定回転角記憶部54dが、当接回転角度と設定転舵角との偏差に応じて設定回転角度を更新する際には、当接回転角度から1[deg]を減算した角度を、設定回転角度として更新する処理を行う。
 また、設定回転角記憶部54dが、当接回転角度と設定転舵角との偏差に応じて設定回転角度を更新する処理は、左右前輪、すなわち、転舵輪24Lと転舵輪24Rに対して、個別に行う。
(転舵モータ2の回転角度が設定回転角度以下である状態で限界状態を検出すると、そのときの転舵モータ2の回転角度に応じて、設定回転角度を更新する処理)
 以下、転舵モータ2の回転角度が設定回転角度以下である状態で限界状態を検出すると、そのときの転舵モータ2の回転角度に応じて、設定回転角度を更新する処理について説明する。
 転舵モータ角度センサ16が検出した転舵モータ2の回転角度が設定回転角度以下である状態で、限界状態、すなわち、転舵輪24の転舵角が目標転舵角より小さい角度に規制される状態が検出される場合、以下に示す状態が発生している可能性がある。
 すなわち、転舵モータ2の回転角度が設定回転角度以下である状態で、転舵モータ実電流(q軸電流)が通常の転舵に必要のない過大な電流値となっている時間が、一定時間に達している状態は、ストッパ部14aと端当て部材18bが当接している可能性がある。なお、上記の過大な電流値は、例えば、90[Arms]であり、上記の一定時間は、例えば、1[s]である。
 したがって、設定回転角記憶部54dは、転舵モータ2の回転角度が設定回転角度以下である状態で、転舵モータ実電流が過大な電流値となっている時間が一定時間に達していると、目標転舵角より小さい角度に規制された転舵角に対応する転舵モータ2の回転角度を検出する。そして、この検出した転舵モータ2の回転角度を設定回転角度として更新する処理を行う。
 また、設定回転角記憶部54dが、目標転舵角より小さい角度に規制された転舵角に対応する転舵モータ2の回転角度を、設定回転角度として更新する処理は、左右前輪、すなわち、転舵輪24Lと転舵輪24Rに対して、個別に行う。
 なお、転舵モータ2の回転角度が設定回転角度以下である状態で限界状態を検出すると、そのときの転舵モータ2の回転角度に応じて、設定回転角度を更新する処理は、車両の状態に応じて異ならせてもよい。
 この場合、車両が走行している状態では、上述したように、転舵モータ実電流が過大な電流値となっている時間が一定時間に達していると、目標転舵角より小さい角度に規制された転舵角に対応する転舵モータ2の回転角度を、設定回転角度として更新する処理を行う。
 一方、車両が停車している状態では、転舵モータ2の回転角度が設定回転角度を超えている状態で、転舵モータ実電流が過大な電流値となっている時間が一定時間に達しているか否かを判定する。そして、転舵モータ実電流が過大な電流値となっている時間が一定時間に達していると判定すると、目標転舵角より小さい角度に規制された転舵角に対応する転舵モータ2の回転角度を、設定回転角度として更新する処理を行う。この理由は、車両が停車している状態では、転舵輪24が縁石等に当接している可能性や、側溝(溝)等に嵌っている(落ち込んでいる)可能性があり、転舵輪24の転舵角が、実際には限界に達していない可能性があるためである。
 なお、車両が停車している状態には、走行しているとみなせる速度(例えば、5[km/h])に達していない状態を含む。
(動作)
 次に、図1から図4を参照して、本実施形態の操舵制御装置1が行なう動作の一例について説明する。
 操舵制御装置1を作動させると、電流供給量制限部54eが、運転者がフル転舵を行っても、転舵モータ角度センサ16が検出した転舵モータ2の回転角度が、設定回転角度(499[deg])を超えないように、転舵モータ駆動電流の供給量を制限する。なお、上記のフル転舵とは、運転者が、駐車時等に、転舵輪24の実際の転舵角が限界の転舵角となるように、操舵輪32を操作する状態である。
 このため、本実施形態の操舵制御装置1では、車両の走行時や停車時に運転者がフル転舵を行っても、ラックエンドとステアリングラックとの接触を抑制して、転舵モータへの過大な転舵モータ駆動電流の供給を抑制することが可能となる。これに加え、車両の走行時や停車時に運転者がフル転舵を行っても、転舵モータ2が出力する駆動力の増加を抑制して、転舵モータ2の劣化を抑制することが可能となる。
 また、電流供給量制限部54eは、車両の積算走行距離が走行距離閾値(10000[km])を超えていると、予め設定した許可条件が成立していると判定し、転舵モータ駆動電流の供給量に対する制限を解除する。
 電流供給量制限部54eが転舵モータ駆動電流の供給量に対する制限を解除すると、当接回転角算出部54fが、当接回転角度を算出する。そして、設定回転角記憶部54dが、当接回転角算出部54fが算出した当接回転角度と設定転舵角との偏差に応じて、設定回転角度を更新する。
 また、設定回転角記憶部54dは、転舵モータ2の回転角度が設定回転角度以下である状態で限界状態を検出すると、目標転舵角より小さい角度に規制された転舵角に対応する転舵モータ2の回転角度を、設定回転角度として更新する。
 このため、本実施形態の操舵制御装置1では、転舵モータ角度センサ16が検出した転舵モータ2の回転角度とラック軸18との位置関係が、車両の工場出荷時等から変化していても、この変化分に応じて、設定回転角度を更新することが可能となる。なお、転舵モータ角度センサ16が検出した転舵モータ2の回転角度とラック軸18との位置関係とは、具体的には、ラックエンドとステアリングラック14との位置関係であり、転舵出力歯車12aとラックギア18aとの噛み合わせ位置の関係である。
 転舵モータ2の回転角度とラック軸18との位置関係の変化は、転舵出力歯車12aとラックギア18aとの噛み合わせが有するガタが適正値よりも増加した場合や、ガタを詰めるためのリテーナの締め具合の変化により発生する。
 すなわち、車両の積算走行距離の増加により、転舵出力歯車12aとラックギア18aとの噛み合わせに発生したガタが適正値よりも増加すると、転舵モータ2の回転角度とラック軸18との位置関係は、車両の工場出荷時等から変化する。これにより、転舵モータ角度センサ16が検出した転舵モータ2の回転角度が、転舵角が限界の転舵角となる角度に達していても、ストッパ部14aと端当て部材18bは当接していない状態となり、車両の旋回半径が大きくなるという問題が発生する。
 一方、修理工場等においてリテーナの締め具合を適正値よりも強くした場合等では、上記のガタが詰まり、適正値よりも減少する。このため、転舵モータ角度センサ16が検出した転舵モータ2の回転角度が、転舵角が限界の転舵角となる角度まで達していなくても、ストッパ部14aと端当て部材18bが当接した状態となる。これにより、転舵モータ2へ過大な転舵モータ駆動電流を供給してしまい、発熱等によりモータ寿命が短くなる要因になる。
 これらの問題に対し、本実施形態の操舵制御装置1では、上記のように設定回転角度を更新することが可能となるため、車両の旋回半径の増加や、転舵モータ2が出力する駆動力の増加を抑制することが可能となる。
 以上により、転舵モータ角度センサ16は、転舵モータ角度検出部に対応する。
 また、転舵位置サーボ制御部30と転舵モータ電流指令演算部54bは、転舵モータ駆動電流供給部に対応する。
 また、転舵モータ角度センサ16、転舵位置サーボ制御部30、操舵角センサ34、転舵モータ電流指令演算部54b及び設定回転角記憶部54dは、上述した限界状態を検出する転舵角限界状態検出部に対応する。
(第一実施形態の効果)
(1)電流供給量制限部54eが、転舵モータ角度センサ16が検出した転舵モータ2の回転角度が、設定回転角記憶部54dに予め記憶させている設定回転角度を超えないように、転舵モータ駆動電流の供給量を制限する。
 このため、車両の走行時や停車時に運転者がフル転舵を行っても、ラックエンドとステアリングラック14との接触を抑制して、転舵モータ2への過大な転舵モータ駆動電流の供給を抑制することが可能となる。
 その結果、車両の走行時や停車時に運転者がフル転舵を行っても、転舵モータ2が出力する駆動力の増加を抑制して、転舵モータ2の劣化を抑制することが可能となる。
(2)電流供給量制限部54eが、予め設定した許可条件が成立していると判定すると、転舵モータ駆動電流の供給量に対する制限を解除する。
 このため、予め設定した許可条件が成立していると判定すると、設定回転角記憶部54dに予め記憶させている設定回転角度が、車両の工場出荷時等、設定回転角度の設定時から変化しているか否かを検出する機会を設けることが可能となる。
 その結果、設定回転角度を適正値に補正する機会を設けて、車両の走行時や停車時に運転者がフル転舵を行った際に、ラックエンドとステアリングラック14が接触する可能性を低減させることが可能となる。
(3)当接回転角算出部54fが、電流供給量制限部54eが転舵モータ駆動電流の供給量に対する制限を解除した状態で、転舵輪24の転舵角を限界の転舵角とした状態に対応する転舵モータ2の回転角度である当接回転角度を算出する。これに加え、設定回転角記憶部54dが、当接回転角算出部54fが算出した当接回転角度と設定転舵角との偏差に応じて、設定回転角度を更新する。
 このため、車両の積算走行距離の増加や整備状態等により、ラックエンドとステアリングラック14との位置関係が、車両の工場出荷時等から変化していても、この変化分に応じて、設定回転角度を更新することが可能となる。
 その結果、ラックエンドとステアリングラック14との位置関係の、車両の工場出荷時等からの変化度合いに応じて、設定回転角度を、ラックエンドとステアリングラック14が接触する可能性を低減させることが可能な値に更新することが可能となる。
(4)電流供給量制限部54eが転舵モータ駆動電流の供給量に対する制限を解除する許可条件を、車両の積算走行距離が予め設定した走行距離閾値を超えている条件とする。
 このため、車両の積算走行距離が増加して走行距離閾値を超え、転舵出力歯車12aとラックギア18aとの噛み合わせに発生したガタが適正値よりも増加しても、この増加度合いに応じて、設定回転角度を適正値に更新することが可能となる。
 その結果、転舵輪24の転舵角と、ストッパ部14aと端当て部材18bとの位置関係とを適正化することが可能となり、車両の旋回半径の増加を抑制することが可能となる。
(5)設定回転角記憶部54dが、転舵モータ角度センサ16が検出した転舵モータ2の回転角度が設定回転角度以下である状態で限界状態を検出すると、目標転舵角より小さい角度に規制された転舵角に対応する転舵モータ2の回転角度を、設定回転角度として更新する。
 このため、修理工場等においてリテーナの締め具合が適正値よりも強くなり、転舵出力歯車12aとラックギア18aとの噛み合わせに発生したガタが適正値よりも減少しても、この減少度合いに応じて、設定回転角度を適正値に更新することが可能となる。
 その結果、転舵輪24の転舵角と、ストッパ部14aと端当て部材18bとの位置関係とを適正化することが可能となり、車両の旋回半径の増加を抑制することが可能となるため、転舵モータ2が出力する駆動力の増加を抑制することが可能となる。
(変形例)
(1)本実施形態の操舵制御装置1では、設定転舵角を限界の転舵角よりも小さい角度に設定したが、設定転舵角は、これに限定するものではなく、ストッパ部14aと端当て部材18bとの、車両の設計時等における位置関係に応じて変更してもよい。
(2)本実施形態の操舵制御装置1では、走行距離閾値を10000[km]としたが、走行距離閾値は、これに限定するものではなく、車両の構成・構造や、主な使用目的(不整地走行が多い等)によって変更してもよい。
(第二実施形態)
 以下、本発明の第二実施形態(以下、「本実施形態」と記載する)について、図面を参照しつつ説明する。なお、上述した第一実施形態と同様の構成については、説明を省略する場合がある。
(構成)
 本実施形態の操舵制御装置1は、電流供給量制限部54eの構成を除き、上述した第一実施形態と同様であるため、その他の構成については、説明を省略する場合がある。
 電流供給量制限部54eは、上述した第一実施形態と同様、予め設定した許可条件が成立していると判定すると、転舵モータ駆動電流の供給量に対する制限を解除する。
 本実施形態では、一例として、図5中、特に図5(a)中に示すように、許可条件を、転舵輪24の転舵角が限界の転舵角となっている時間である限界角到達時間が、予め設定した到達時間閾値を超えている条件とする場合を説明する。なお、到達時間閾値は、予め、電流供給量制限部54eに記憶させておく。
 以下、許可条件を、限界角到達時間が到達時間閾値を超えている条件とした理由を説明する。
 車両の工場出荷時等と比較して、車両の旋回半径が大きくなると、運転者は、特に、駐車時や低速走行時等において、車両を旋回させるためにフル転舵を行う頻度が増加する。そして、運転者がフル転舵を行う頻度が増加すると、転舵輪24の転舵角が限界の転舵角に達している時間、すなわち、限界角到達時間が増加する。
 このため、限界角到達時間を検出し、この検出した限界角到達時間が到達時間閾値を超えている場合に、当接回転角度を算出するために、転舵モータ駆動電流の供給量に対する制限を解除する。
 また、本実施形態では、一例として、図5中、特に図5(b)及び(c)中に示すように、車両の車速及び操舵輪32に加わる操舵力が増加するほど、到達時間閾値を減少補正する場合を説明する。
 なお、図5は、本実施形態の電流供給量制限部54eが行う処理に用いるパラメータを示す図であり、図5(a)は、転舵輪24の転舵角と、経過時間との関係を示す図である。また、図5(b)は、到達時間閾値を減少補正するための補正係数と、車両の車速との関係を示す図であり、図5(c)は、到達時間閾値を減少補正するための補正係数と、操舵輪32に加わる操舵力との関係を示す図である。
 したがって、本実施形態では、電流供給量制限部54eが、限界角到達時間が予め設定した到達時間閾値を超えていると、予め設定した許可条件が成立していると判定し、転舵モータ駆動電流の供給量に対する制限を解除する。
 また、本実施形態では、図5(b)中に示すように、車両の車速が増加するほど、到達時間閾値を減少補正するための補正係数を増加させる。なお、図5(b)中に示すように、車両の車速が、走行しているとみなせる速度(5[km/h])に達していない状態では、補正係数は「0」とする。
 さらに、本実施形態では、図5(c)中に示すように、運転者が操舵輪32に加える操舵力が増加するほど、到達時間閾値を減少補正するための補正係数を増加させる。なお、図5(c)中に示すように、運転者が操舵輪32に加える操舵力が「0」の場合であっても、ある程度の大きさ(正数)の補正係数を設定する。
 したがって、本実施形態では、車両の車速が増加するほど増加する補正係数と、運転者が操舵輪32に加える操舵力が増加するほど増加する補正係数を積算し、この積算値を用いて、到達時間閾値を減少補正する。
 以下、車両の車速及び操舵輪32に加わる操舵力が増加するほど、到達時間閾値を減少補正する理由を説明する。
 運転者がフル転舵を行う頻度は、車速が高くなる(高速となる)ほど低くなるため、車速が高い状態で限界角到達時間が長い場合には、車両の工場出荷時等と比較して車両の旋回半径が大きくなっている可能性が高い。
 このため、図5(b)中に示すように、走行しているとみなせる速度に達している状態では、車速が増加するほど補正係数を増加させて、到達時間閾値を減少補正する。これにより、車両の旋回半径の増加に対応させて、転舵モータ駆動電流の供給量に対する制限を解除する頻度を増加させる。
 また、車両の工場出荷時等と比較して車両の旋回半径が大きくなっている場合、運転者は、車両を小回りさせたい状況では、フル転舵を行うために、前進走行の場合と比較して、大きい操舵力を操舵輪32に加えることとなる。
 この場合、運転者が車両を小回りさせたい度合いは、運転者が操舵輪32に加える操舵力の大きさに基づいて推定することが可能であるため、運転者が操舵輪32に加える操舵力が大きいほど、車両の旋回半径が大きくなっていると推定することが可能である。
 このため、図5(c)中に示すように、運転者が操舵輪32に加える操舵力が大きいほど、補正係数を増加させて、到達時間閾値を減少補正する。これにより、車両の旋回半径の増加に対応させて、転舵モータ駆動電流の供給量に対する制限を解除する頻度を増加させる。
(動作)
 次に、図1から図5を参照して、本実施形態の操舵制御装置1が行なう動作の一例について説明する。なお、上述した第一実施形態と同様の動作については、説明を省略する場合がある。
 操舵制御装置1を作動させると、電流供給量制限部54eが、運転者がフル転舵を行っても、転舵モータ角度センサ16が検出した転舵モータ2の回転角度が、設定回転角度を超えないように、転舵モータ駆動電流の供給量を制限する。
 また、電流供給量制限部54eは、限界角到達時間が予め設定した到達時間閾値を超えていると、予め設定した許可条件が成立していると判定し、転舵モータ駆動電流の供給量に対する制限を解除する。
 電流供給量制限部54eが転舵モータ駆動電流の供給量に対する制限を解除すると、設定回転角記憶部54dが、当接回転角算出部54fが算出した当接回転角度と設定転舵角との偏差に応じて、設定回転角度を更新する。
 このため、本実施形態の操舵制御装置1では、運転者がフル転舵を行う頻度に基づく時間である限界角到達時間に応じて、設定回転角度を更新することが可能となる。これにより、車両の工場出荷時等と比較して、車両の旋回半径が増加していても、この増加分に応じて、設定回転角度を更新することが可能となる。
 また、電流供給量制限部54eは、車両の車速及び操舵輪32に加わる操舵力が増加するほど、到達時間閾値を減少補正する。
 このため、本実施形態の操舵制御装置1では、車両の旋回半径の増加に対応させて、到達時間閾値を減少補正することにより、転舵モータ駆動電流の供給量に対する制限を解除する頻度を増加させることが可能となる。
(第二実施形態の効果)
(1)電流供給量制限部54eが転舵モータ駆動電流の供給量に対する制限を解除する許可条件を、転舵輪24の転舵角が限界の転舵角となっている時間である限界角到達時間が、予め設定した到達時間閾値を超えている条件とする。
 このため、運転者がフル転舵を行う頻度に基づく時間である限界角到達時間に応じて、設定回転角度を更新し、車両の工場出荷時等と比較して車両の旋回半径が増加していても、この増加分に応じて、設定回転角度を更新することが可能となる。
 その結果、車両の工場出荷時等と比較した車両の旋回半径の増加分に応じて、転舵輪24の転舵角と、ストッパ部14aと端当て部材18bとの位置関係とを適正化することが可能となり、車両の旋回半径の増加を抑制することが可能となる。
(2)車両の車速及び操舵輪32に加わる操舵力が増加するほど、運転者がフル転舵を行う頻度に基づく時間である到達時間閾値を減少補正する。
 このため、車両の旋回半径の増加に対応させて、到達時間閾値を減少補正することにより、転舵モータ駆動電流の供給量に対する制限を解除する頻度を増加させることが可能となる。
 その結果、転舵輪24の転舵角と、ストッパ部14aと端当て部材18bとの位置関係とを適正化することが可能となり、車両の旋回半径の増加を抑制することが可能となる。
(変形例)
(1)本実施形態の操舵制御装置1では、許可条件を、限界角到達時間が到達時間閾値を超えている条件としたが、許可条件は、これに限定するものではない。すなわち、許可条件として、限界角到達時間が到達時間閾値を超えている条件に加え、上述した第一実施形態の許可条件である、車両の積算走行距離が予め設定した走行距離閾値を超えている条件を用いてもよい。
(2)本実施形態の操舵制御装置1では、車両の車速及び操舵輪32に加わる操舵力が増加するほど、到達時間閾値を減少補正したが、これに限定するものではない。すなわち、車両の車速または操舵輪32に加わる操舵力が増加するほど、到達時間閾値を減少補正する構成としてもよい。要は、車両の車速及び操舵輪32に加わる操舵力のうち少なくとも一方が増加するほど、到達時間閾値を減少補正する構成とすればよい。
(第三実施形態)
 以下、本発明の第三実施形態(以下、「本実施形態」と記載する)について、図面を参照しつつ説明する。なお、上述した第一実施形態と同様の構成については、説明を省略する場合がある。
(構成)
 本実施形態の操舵制御装置1は、指令演算部54の構成を除き、上述した第一実施形態と同様であるため、その他の構成については、説明を省略する場合がある。
 以下、図1から図5を参照しつつ、図6から図8を用いて、指令演算部54の詳細な構成について説明する。
 図6は、指令演算部54の詳細な構成を示すブロック図である。
 図6中に示すように、指令演算部54は、反力モータ電流指令演算部54aと、転舵モータ電流指令演算部54bと、クラッチ電流指令演算部54cを備える。これに加え、指令演算部54は、設定回転角記憶部54dと、電流供給量制限部54eと、旋回時回転角検出部54gと、旋回時軌跡比算出部54hを備える。
 反力モータ電流指令演算部54a、転舵モータ電流指令演算部54b、クラッチ電流指令演算部54c、設定回転角記憶部54dの構成は、上述した第一実施形態と同様であるため、その説明を省略する。
 電流供給量制限部54eは、転舵モータ角度センサ16が検出した転舵モータ2の回転角度が、設定回転角記憶部54dに予め記憶させている設定回転角度を超えないように、転舵モータ駆動電流の供給量を制限する。
 具体的には、転舵モータ角度センサ16が検出した転舵モータ2の回転角度を参照し、この参照している回転角度が設定回転角度を超えないように、転舵モータ駆動電流を減少させる指令信号を、転舵モータ電流指令演算部54bへ出力する。
 ここで、転舵モータ角度センサ16が検出した転舵モータ2の回転角度が設定回転角度を超えないように、転舵モータ駆動電流を減少させる指令信号を生成する際には、例えば、上述した第一実施形態と同様の処理を行う。
 また、電流供給量制限部54eは、転舵輪24及び操舵輪32が中立位置である状態を基準として、転舵輪24の転舵角が499[deg]へ近づくほど、反力を増加させる指令信号を生成し、この生成した指令信号を、反力サーボ制御部56へ出力する。なお、設定回転角記憶部54dが設定回転角度を更新すると、反力を増加させる指令信号も、更新した設定回転角度に応じて生成する。
 旋回時回転角検出部54gは、旋回時回転角度を検出する。
 ここで、旋回時回転角度は、車両の走行時に転舵輪24の転舵角が設定転舵角で旋回走行しているときの、転舵モータ2の回転角度であり、例えば、転舵モータ角度センサ16を用いて検出する。
 すなわち、旋回時回転角検出部54gが、旋回時回転角度を検出する際には、車両の走行時に、転舵輪24の転舵角が設定転舵角で旋回走行しているときに、転舵モータ2の回転角度を検出し、この検出した転舵モータ2の回転角度を、旋回時回転角度として検出する。
 本実施形態では、一例として、旋回時回転角検出部54gが、予め設定した設定軌跡比と、旋回時軌跡比算出部54hが算出した旋回時軌跡比との偏差が、予め設定した偏差閾値を超えていると判定すると、旋回時回転角度を検出する場合について説明する。
 設定軌跡比は、車両の設計値であり、車両の設計時、製造時、工場出荷時等において設定し、予め、旋回時回転角検出部54gに記憶させておく。
 なお、旋回時回転角検出部54gが、設定軌跡比と旋回時軌跡比との偏差が偏差閾値を超えていると判定して、旋回時回転角度を検出する処理の説明は、後述する。
 旋回時軌跡比算出部54hは、車両の走行時に、転舵輪24の転舵角が設定転舵角で旋回走行しているときに、旋回時軌跡比を算出する。
 ここで、旋回時軌跡比は、旋回走行時に車両の車幅方向内側で回転する内側転舵輪の軌跡である内側軌跡と、旋回走行時に車両の車幅方向外側で回転する外側転舵輪の軌跡である外側軌跡との軌跡比である。
 すなわち、転舵輪24は、旋回走行時に車両の車幅方向内側で回転する内側転舵輪と、旋回走行時に車両の車幅方向外側で回転する外側転舵輪を有する。
 本実施形態では、一例として、旋回走行の状態を、図7中に示すように、転舵輪24の転舵角を右折方向への設定回転角度とした走行状態とする場合を説明する。このため、本実施形態では、転舵輪24R(右前輪)が内側転舵輪を形成し、転舵輪24L(左前輪)が外側転舵輪を形成する場合を説明する。
 なお、図7は、車両の旋回走行の状態を示す図である。また、図7中では、車両の平均旋回半径を符号「R」で示し、車両の車幅方向中心から転舵輪24Lの回転中心までの車幅方向に沿った距離を符号「DL」、車両の車幅方向中心から転舵輪24Rの回転中心までの車幅方向に沿った距離を符号「DR」で示す。さらに、図7中では、内側軌跡を符号「Tin」で示し、外側軌跡を「Tout」で示す。
 以下、旋回時軌跡比算出部54hが、旋回走行時において旋回時軌跡比を算出する処理について説明する。
 本実施形態では、旋回時軌跡比を、以下の式(3)を用いて算出する。
 旋回時軌跡比
  =(π×転舵輪24Lの旋回半径)/(π×転舵輪24Rの旋回半径)
  =転舵輪24L側における車速/転舵輪24R側における車速
  =転舵輪24Lの回転速度/転舵輪24Rの回転速度
   … (3)
 なお、転舵輪24L側における車速は、単位時間当たりの内側軌跡Tinの長さから算出し、転舵輪24R側における車速は、単位時間当たりの外側軌跡Toutの長さから算出する。
 この場合、例えば、距離DL及び距離DRを0.75[m]とし、平均旋回半径Rを5[m]とし、これらを上式(3)に代入すると、旋回時軌跡比は、以下の式(4)に示す値となる。
 旋回時軌跡比
  ={π×(5+0.75)}/{π×(5-0.75)}
  =Vo/Vi
  =(No×r)/(Ni×r)
  =1.35
   … (4)
 なお、上記のVoは、転舵輪24L側(車両の車幅方向外側)における車速であり、Viは、転舵輪24R側(車両の車幅方向内側)における車速である。また、上記のNoは、転舵輪24Lの回転速度であり、Niは、転舵輪24Rの回転速度であり、rは、転舵輪24の動半径である。
(旋回時回転角検出部54gが旋回時回転角度を検出する処理)
 以下、旋回時回転角検出部54gが、設定軌跡比と旋回時軌跡比との偏差が偏差閾値を超えていると判定して、旋回時回転角度を検出する処理について説明する。
 旋回時軌跡比算出部54hが旋回時軌跡比を算出すると、旋回時回転角検出部54gは、旋回時軌跡比算出部54hが算出した旋回時軌跡比と設定軌跡比との偏差を算出する。そして、この算出した偏差が偏差閾値を超えていると判定すると、旋回時回転角度を検出する。
 本実施形態では、一例として、偏差閾値を3[%]とする場合を説明する。なお、偏差閾値(3[%])は、予め、旋回時回転角検出部54gに記憶させておく。
 上式(4)に示すように、距離DL及び距離DRが0.75[m]であり、平均旋回半径Rが5[m]である状態では、旋回時軌跡比は1.35となる。そして、経時劣化等により、平均旋回半径Rが、例えば、6[m]となると、旋回時軌跡比は1.29となる。
 車両の工場出荷時等において平均旋回半径Rが5[m]であり、上記の1.35を設定軌跡比として予め設定している場合、平均旋回半径Rが6[m]に増加すると、旋回時軌跡比と設定軌跡比との偏差は、4[%]を超える(1.35/1.29)。
 したがって、平均旋回半径Rが5[m]である状態の旋回時軌跡比を設定軌跡比として設定している場合、平均旋回半径Rが6[m]に増加すると、旋回時回転角検出部54gは、旋回時軌跡比と設定軌跡比との偏差が偏差閾値(3[%])を超えていると判定する。そして、旋回時軌跡比と設定軌跡比との偏差が偏差閾値を超えていると判定した旋回時回転角検出部54gは、旋回時回転角度を検出する。
 また、例えば、整備工場等で車両を整備した場合等に、平均旋回半径Rが5[m]未満の値となり、旋回時軌跡比と設定軌跡比との偏差が偏差閾値を超えていると判定した場合にも、旋回時回転角検出部54gは、旋回時回転角度を検出する。
 なお、本実施形態では、一例として、図8中に示すように、旋回時軌跡比と設定軌跡比との偏差が偏差閾値(3[%])を超えている場合、旋回時軌跡比と設定軌跡比との偏差が増加するほど、旋回時回転角度を検出する頻度を増加させる。なお、図8は、旋回時軌跡比と設定軌跡比との偏差と、旋回時回転角度を検出する頻度との関係を示す図である。
 そして、旋回時回転角度を検出する際には、転舵輪24の転舵角を設定回転角度とした旋回走行時における転舵モータ2の回転角度を検出し、この検出した転舵モータ2の回転角度を、旋回時回転角度として検出する。
(設定回転角度を更新する処理)
 以下、設定回転角記憶部54dが、旋回時回転角検出部54gが検出した旋回時回転角度から、限界の転舵角と設定転舵角との偏差を減算した角度に応じて、設定回転角度を更新する処理について説明する。
 設定回転角記憶部54dは、旋回時回転角検出部54gが旋回時回転角度を検出すると、旋回時回転角検出部54gが検出した旋回時回転角度から限界の転舵角と設定転舵角との偏差を減算した角度を、設定回転角度として更新する。
 本実施形態では、設定回転角記憶部54dが、旋回時回転角度から限界の転舵角と設定転舵角との偏差を減算した角度を設定回転角度として更新する際に、以下の処理を行う。
 本実施形態では、限界の転舵角を500[deg]と設定し、設定転舵角を499[deg]としている。すなわち、本実施形態では、限界の転舵角と設定転舵角との偏差は、1[deg]である。
 したがって、設定回転角記憶部54dが、旋回時回転角度から限界の転舵角と設定転舵角との偏差を減算した角度を、設定回転角度として更新する際には、旋回時回転角度から1[deg]を減算した角度を、設定回転角度として更新する処理を行う。
(動作)
 次に、図1から図8を参照して、本実施形態の操舵制御装置1が行なう動作の一例について説明する。
 操舵制御装置1を作動させると、電流供給量制限部54eが、運転者がフル転舵を行っても、転舵モータ角度センサ16が検出した転舵モータ2の回転角度が、設定回転角度(499[deg])を超えないように、転舵モータ駆動電流の供給量を制限する。
 そして、車両の旋回走行時には、旋回時軌跡比算出部54hが旋回時軌跡比を算出する。さらに、旋回時回転角検出部54gが、旋回時軌跡比算出部54hが算出した旋回時軌跡比と設定軌跡比との偏差が偏差閾値を超えていると判定すると、旋回時回転角度を検出する。
 旋回時回転角検出部54gが旋回時回転角度を検出すると、設定回転角記憶部54dは、検出した旋回時回転角度と設定回転角度とを比較する。そして、設定回転角度と旋回時回転角検出部54gが検出した旋回時回転角度が異なると判定すると、設定回転角記憶部54dは、旋回時回転角度から限界の転舵角と設定転舵角との偏差を減算した角度を、設定回転角度として更新する。
 また、設定回転角記憶部54dは、転舵モータ2の回転角度が設定回転角度以下の状態で限界状態であることを検出すると、そのときの転舵モータ2の回転角度に応じて、設定回転角度を更新する。
 このため、本実施形態の操舵制御装置1では、車両の走行時や停車時に運転者がフル転舵を行っても、ラックエンドとステアリングラックとの接触を抑制して、転舵モータへの過大な転舵モータ駆動電流の供給を抑制することが可能となる。これに加え、車両の走行時や停車時に運転者がフル転舵を行っても、転舵モータ2が出力する駆動力の増加を抑制して、転舵モータ2の劣化を抑制することが可能となる。
 さらに、本実施形態の操舵制御装置1では、車両の旋回走行時において設定回転角度と旋回時回転角度が異なると判定すると、設定回転角記憶部54dが、旋回時回転角度から限界の転舵角と設定転舵角との偏差を減算した角度を、設定回転角度として更新する。このため、転舵モータ角度センサ16が検出した転舵モータ2の回転角度とラック軸18との位置関係が、車両の工場出荷時等から変化していても、この変化分に応じて、設定回転角度を更新することが可能となる。
 すなわち、本実施形態の操舵制御装置1では、上記のように、車両の走行時に転舵輪24の転舵角が設定転舵角で旋回走行しているときの旋回時回転角度を用いて、設定回転角度を更新することが可能となる。このため、上述した第一実施形態と同様、車両の旋回半径の増加や、転舵モータ2が出力する駆動力の増加を抑制することが可能となる。
 なお、上述したように、本実施形態の操舵制御装置1の動作で実施する車両の操舵制御方法では、転舵モータ2の回転角度を検出し、転舵モータ駆動電流を転舵モータ2へ供給し、設定回転角度を予め記憶する。そして、検出した回転角度が設定回転角度を超えないように、転舵モータ駆動電流の供給量を制限する。
 さらに、本実施形態の操舵制御方法では、旋回時回転角度を検出し、旋回時回転角度から限界の転舵角と設定転舵角との偏差を減算した角度を、設定回転角度として更新する。また、本実施形態の操舵制御方法では、予め記憶している設定回転角度と検出した旋回時回転角度とから、設定回転角度に応じた転舵がされているか否かを判断する。ここで、予め記憶している設定回転角度と検出した旋回時回転角度が異なると判定すると、設定回転角度を更新する処理を行う。
 また、本実施形態の操舵制御方法では、旋回走行時において旋回時軌跡比を算出する。これに加え、設定軌跡比と算出した旋回時軌跡比との偏差が、偏差閾値を超えていると判定すると、旋回時回転角度を検出する処理を行う。
 以上により、転舵モータ角度センサ16は、転舵モータ角度検出部に対応する。
 また、転舵位置サーボ制御部30と転舵モータ電流指令演算部54bは、転舵モータ駆動電流供給部に対応する。
 また、転舵モータ角度センサ16、転舵位置サーボ制御部30、操舵角センサ34、転舵モータ電流指令演算部54b及び設定回転角記憶部54dは、上述した限界状態を検出する転舵角限界状態検出部に対応する。
(第三実施形態の効果)
(1)旋回時回転角検出部54gが、車両の走行時に転舵輪24の転舵角が設定転舵角で旋回走行しているときの転舵モータ2の回転角度である、旋回時回転角度を検出する。これに加え、設定回転角記憶部54dが、予め記憶している設定回転角度と旋回時回転角検出部54gが検出した旋回時回転角度が異なると判定すると、旋回時回転角度から限界の転舵角と設定転舵角との偏差を減算した角度に応じて、設定回転角度を更新する。
 このため、車両の走行時に転舵輪24の転舵角が設定転舵角で旋回走行しているときの転舵モータ2の回転角度に基づき、設定回転角度を、ラックエンドとステアリングラック14との接触を抑制可能な角度に更新することが可能となる。したがって、経時劣化等により、ラックエンドとステアリングラック14との位置関係が変化した設定回転角度を、ラックエンドとステアリングラック14との接触を抑制可能な角度に更新することが可能となる。
 その結果、車両の走行時や停車時に運転者がフル転舵を行っても、ラックエンドとステアリングラック14との接触を抑制して、転舵モータ2への過大な転舵モータ駆動電流の供給を抑制することが可能となる。
 また、車両の走行時や停車時に運転者がフル転舵を行っても、転舵モータ2が出力する駆動力の増加を抑制して、転舵モータ2の劣化を抑制することが可能となる。
(2)旋回時軌跡比算出部54hが、車両の旋回走行時において旋回時軌跡比を算出する。これに加え、旋回時回転角検出部54gが、予め設定した設定軌跡比と旋回時軌跡比算出部54hが算出した旋回時軌跡比との偏差が、予め設定した偏差閾値を超えていると判定すると、旋回時回転角度を検出する。
 このため、車両の旋回走行時に、設定回転角記憶部54dに予め記憶させている設定回転角度が、車両の工場出荷時等、設定回転角度の設定時から変化しているか否かを検出する機会を設けることが可能となる。
 その結果、設定回転角度を適正値に補正する機会を設けて、車両の走行時や停車時に運転者がフル転舵を行った際に、ラックエンドとステアリングラック14が接触する可能性を低減させることが可能となる。
 また、車両の積算走行距離の増加や整備状態等により、ラックエンドとステアリングラック14との位置関係が、車両の工場出荷時等から変化していても、この変化分に応じて、設定回転角度を更新することが可能となる。
 これにより、ラックエンドとステアリングラック14との位置関係の、車両の工場出荷時等からの変化度合いに応じて、設定回転角度を、ラックエンドとステアリングラック14が接触する可能性を低減させることが可能な値に更新することが可能となる。
 また、転舵輪24の転舵角と、ストッパ部14aと端当て部材18bとの位置関係とを適正化することが可能となり、車両の旋回半径の増加を抑制することが可能となる。
(3)設定回転角記憶部54dが、転舵モータ角度センサ16が検出した転舵モータ2の回転角度が設定回転角度の状態で限界状態であることを検出すると、そのときの転舵モータ2の回転角度に応じて、設定回転角度を更新する。
 このため、修理工場等においてリテーナの締め具合が適正値よりも強くなり、転舵出力歯車12aとラックギア18aとの噛み合わせに発生したガタが適正値よりも減少しても、この減少度合いに応じて、設定回転角度を適正値に更新することが可能となる。
 その結果、転舵輪24の転舵角と、ストッパ部14aと端当て部材18bとの位置関係とを適正化することが可能となり、車両の旋回半径の増加を抑制することが可能となるため、転舵モータ2が出力する駆動力の増加を抑制することが可能となる。
(4)本実施形態の操舵制御方法は、旋回時回転角度を検出する。さらに、予め記憶している設定回転角度と検出した旋回時回転角度が異なると判定すると、旋回時回転角度から限界の転舵角と設定転舵角との偏差を減算した角度に応じて設定回転角度を更新する。
 このため、車両の走行時に転舵輪24の転舵角が設定転舵角で旋回走行しているときの転舵モータ2の回転角度に基づき、設定回転角度を、ラックエンドとステアリングラック14との接触を抑制可能な角度に更新することが可能となる。したがって、経時劣化等により、ラックエンドとステアリングラック14との位置関係が変化した設定回転角度を、ラックエンドとステアリングラック14との接触を抑制可能な角度に更新することが可能となる。
 その結果、車両の走行時や停車時に運転者がフル転舵を行っても、ラックエンドとステアリングラック14との接触を抑制して、転舵モータ2への過大な転舵モータ駆動電流の供給を抑制することが可能となる。また、車両の走行時や停車時に運転者がフル転舵を行っても、転舵モータ2が出力する駆動力の増加を抑制して、転舵モータ2の劣化を抑制することが可能となる。
(5)本実施形態の操舵制御方法は、車両の旋回走行時において旋回時軌跡比を算出する。そして、予め設定した設定軌跡比と算出した旋回時軌跡比との偏差が、予め設定した偏差閾値を超えていると判定すると、旋回時回転角度を検出する。
 このため、車両の旋回走行時に、予め記憶している設定回転角度が、車両の工場出荷時等、設定回転角度の設定時から変化しているか否かを検出する機会を設けることが可能となる。
 その結果、設定回転角度を適正値に補正する機会を設けて、車両の走行時や停車時に運転者がフル転舵を行った際に、ラックエンドとステアリングラック14が接触する可能性を低減させることが可能となる。
 また、車両の積算走行距離の増加や整備状態等により、ラックエンドとステアリングラック14との位置関係が、車両の工場出荷時等から変化していても、この変化分に応じて、設定回転角度を更新することが可能となる。これにより、ラックエンドとステアリングラック14との位置関係の、車両の工場出荷時等からの変化度合いに応じて、設定回転角度を、ラックエンドとステアリングラック14が接触する可能性を低減させることが可能な値に更新することが可能となる。また、転舵輪24の転舵角と、ストッパ部14aと端当て部材18bとの位置関係とを適正化することが可能となり、車両の旋回半径の増加を抑制することが可能となる。
(第四実施形態)
 以下、本発明の第四実施形態(以下、「本実施形態」と記載する)について、図面を参照しつつ説明する。なお、上述した第一実施形態と同様の構成については、説明を省略する場合がある。
(構成)
 本実施形態の操舵制御装置1は、指令演算部54の構成を除き、上述した第一実施形態と同様であるため、その他の構成については、説明を省略する場合がある。
 以下、図1から図8を参照しつつ、図9から図13を用いて、指令演算部54の詳細な構成について説明する。
 図9は、指令演算部54の詳細な構成を示すブロック図である。
 図9中に示すように、指令演算部54は、反力モータ電流指令演算部54aと、転舵モータ電流指令演算部54bと、クラッチ電流指令演算部54cを備える。これに加え、指令演算部54は、設定回転角記憶部54dと、電流供給量制限部54eと、旋回時回転角検出部54gと、旋回時軌跡比算出部54hを備える。
 反力モータ電流指令演算部54a、転舵モータ電流指令演算部54b、クラッチ電流指令演算部54c、設定回転角記憶部54d、旋回時回転角検出部54gの構成は、上述した第一実施形態と同様であるため、その説明を省略する。
 電流供給量制限部54eは、転舵モータ角度センサ16が検出した転舵モータ2の回転角度が、設定回転角記憶部54dに予め記憶させている設定回転角度を超えないように、転舵モータ駆動電流の供給量を制限する。
 具体的には、転舵モータ角度センサ16が検出した転舵モータ2の回転角度を参照し、この参照している回転角度が設定回転角度を超えないように、転舵モータ駆動電流を減少させる指令信号を、転舵モータ電流指令演算部54bへ出力する。
 ここで、転舵モータ角度センサ16が検出した転舵モータ2の回転角度が設定回転角度を超えないように、転舵モータ駆動電流を減少させる指令信号を生成する際には、例えば、上述した第一実施形態と同様の処理を行う。
 また、電流供給量制限部54eは、転舵輪24及び操舵輪32が中立位置である状態を基準として、転舵輪24の転舵角が499[deg]へ近づくほど、反力を増加させる指令信号を生成し、この生成した指令信号を、反力サーボ制御部56へ出力する。なお、設定回転角記憶部54dが設定回転角度を更新すると、反力を増加させる指令信号も、更新した設定回転角度に応じて生成する。
 また、電流供給量制限部54eは、旋回時駆動電流検出部54iが検出した旋回時供給量が制限している転舵モータ駆動電流の供給量を超えていると判定すると、転舵モータ駆動電流の供給量に対する制限を緩和する。これにより、転舵モータ2への転舵モータ駆動電流の供給量を増加させて、転舵輪24を転舵可能な範囲を、予め設定回転角記憶部54dに記憶させている設定回転角度を超える角度に対応する範囲とする。
 また、本実施形態では、一例として、電流供給量制限部54eが、以下に記載する三つの係数のうち最大値の係数に基づいて、転舵モータ駆動電流の供給量に対する制限を緩和する緩和度合いを設定する場合について説明する。この場合、電流供給量制限部54eは、三つの係数(積算走行距離係数、限界角到達時間係数、旋回時軌跡比係数)を参照し、三つの係数のうち最大値の係数を選択(セレクトハイ)する。
・積算走行距離係数
 積算走行距離係数は、車両の積算走行距離が、予め設定した走行距離閾値を超えており、さらに、走行距離閾値を超えてからの走行距離が積算されるほど増加する係数である。なお、車両の積算走行距離は、例えば、一般的な車両に既存の構成である距離計(オドメータ)で計測する距離を参照して用いる。
 本実施形態では、一例として、走行距離閾値を、10000[km]とする場合を説明する。したがって、積算走行距離係数は、図10中に示すように、積算走行距離が10000[km]を超えてからの走行距離が積算されるほど増加する係数となる。なお、図10は、積算走行距離係数と車両の積算走行距離との関係を示す図である。
・限界角到達時間係数
 限界角到達時間係数は、転舵輪24の転舵角が限界の転舵角となっている時間である限界角到達時間が長いほど増加する係数である。なお、限界角到達時間は、転舵モータ実電流(q軸電流)が通常の転舵に必要のない過大な電流値となっている時間が、一定時間に達している場合に、この一定時間に達している時間に基づいて検出する。
 本実施形態では、一例として、車両の車速が、走行しているとみなせる速度(5[km/h])に達していない状態では、限界角到達時間係数は「0」とする。したがって、限界角到達時間係数は、図11中に示すように、車速が5[km/h]以上である状態で、車速の増加に伴って増加する係数となる。なお、図11は、限界角到達時間係数と車両の車速との関係を示す図である。
・旋回時軌跡比係数
 旋回時軌跡比係数は、予め設定した設定軌跡比と、旋回時軌跡比算出部54hが算出した旋回時軌跡比との偏差である軌跡比偏差が、予め設定した偏差閾値を超えており、さらに、偏差閾値を超えてからの偏差の増加に伴って増加する係数である。設定軌跡比は、車両の設計値であり、車両の設計時、製造時、工場出荷時等において設定し、予め、旋回時回転角検出部54gに記憶させておく。なお、軌跡比偏差を検出する処理の説明は、後述する。
 本実施形態では、一例として、偏差閾値を3[%]とする場合を説明する。偏差閾値(3[%])は、予め、旋回時回転角検出部54gに記憶させておく。したがって、旋回時軌跡比係数は、図12中に示すように、軌跡比偏差が3[%]を超えている状態で、軌跡比偏差の増加に伴って増加する係数となる。なお、図12は、旋回時軌跡比係数と軌跡比偏差との関係を示す図である。
 そして、電流供給量制限部54eは、上述した積算走行距離係数、限界角到達時間係数、旋回時軌跡比係数のうち、最大値の係数を選択すると、この選択した係数に基づいて、転舵モータ駆動電流の供給量に対する制限を緩和する緩和度合いを設定する。
 電流供給量制限部54eが緩和度合いを設定する際には、図13中に示すように、車両の車速が、走行しているとみなせる速度に達していない状態では、転舵モータ2の回転角度が設定回転角度を超えないように、転舵モータ駆動電流の供給量を制限する。また、電流供給量制限部54eが緩和度合いを設定する処理においても、限界角到達時間係数と同様、走行しているとみなせる速度を、5[km/h]と設定する。なお、図13は、車速と転舵可能な転舵角との関係を示す図である。また、図13中では、設定回転角度を「θlimit」と示している。
 これは、車両が停車している状態では、転舵輪24が縁石等に当接している可能性や、側溝(溝)等に嵌っている(落ち込んでいる)可能性があり、転舵輪24の転舵角が、実際には限界に達していない可能性があるためである。
 一方、車速が走行しているとみなせる速度以上であれば、車速の増加に伴って、選択した係数に応じた増加度合いで、転舵モータ駆動電流の供給量に対する制限を緩和する緩和度合いを、連続的に増加させる。これにより、転舵輪24を転舵可能な範囲を、予め設定回転角記憶部54dに記憶させている設定回転角度を超える角度に対応する範囲として、転舵可能な転舵角を増加させる。
 なお、図13中に示すように、車速の増加に伴って緩和度合いを連続的に増加させる理由は、緩和度合いを断続的に変化させると、緩和度合いが急変して、転舵輪24の転舵角が急変する可能性があるためである。
 旋回時駆動電流検出部54iは、旋回時供給量を検出する。
 旋回時供給量は、車両の走行時に転舵輪24の転舵角が設定転舵角となった状態における、転舵モータ2への転舵モータ駆動電流の供給量であり、例えば、指令演算部54が入力を受ける転舵モータ電流指令Itに基づいて検出する。
 旋回時軌跡比算出部54hは、車両の走行時に転舵輪24の転舵角が設定転舵角となった状態である旋回走行時において、旋回時軌跡比を算出する。
 ここで、旋回時軌跡比は、旋回走行時に車両の車幅方向内側で回転する内側転舵輪の軌跡である内側軌跡と、旋回走行時に車両の車幅方向外側で回転する外側転舵輪の軌跡である外側軌跡との軌跡比である。
 すなわち、転舵輪24は、旋回走行時に車両の車幅方向内側で回転する内側転舵輪と、旋回走行時に車両の車幅方向外側で回転する外側転舵輪を有する(図5参照)。
 なお、旋回時軌跡比算出部54hが、旋回走行時において旋回時軌跡比を算出する処理については、上述した第三実施形態と同様であるため、その説明を省略する。
 また、設定回転角記憶部54dが、旋回時回転角検出部54gが検出した旋回時回転角度から、限界の転舵角と設定転舵角との偏差を減算した角度を、設定回転角度として更新する処理については、上述した第三実施形態と同様であるため、その説明を省略する。
(動作)
 次に、図1から図13を参照して、本実施形態の操舵制御装置1が行なう動作の一例について説明する。
 操舵制御装置1を作動させると、電流供給量制限部54eが、運転者がフル転舵を行っても、転舵モータ角度センサ16が検出した転舵モータ2の回転角度が、設定回転角度(499[deg])を超えないように、転舵モータ駆動電流の供給量を制限する。
 そして、車両の旋回走行時には、旋回時軌跡比算出部54hが旋回時軌跡比を算出し、旋回時回転角検出部54gが、旋回時回転角度を検出する。これに加え、車両の旋回走行時には、旋回時駆動電流検出部54iが、旋回時供給量を検出する。
 旋回時駆動電流検出部54iが旋回時供給量を検出すると、設定回転角記憶部54dは、検出した旋回時供給量と電流供給量制限部54eの制限する転舵モータ駆動電流の供給量とを比較する。そして、旋回時供給量が、電流供給量制限部54eの制限する転舵モータ駆動電流の供給量を超えていると判定すると、設定回転角記憶部54dは、旋回時回転角度から限界の転舵角と設定転舵角との偏差を減算した角度を、設定回転角度として更新する。
 また、設定回転角記憶部54dは、転舵モータ2の回転角度が設定回転角度以下の状態で、転舵輪24が転舵可能な限界状態であることを検出すると、そのときの転舵モータ2の回転角度に応じて、設定回転角度を更新する。
 このため、本実施形態の操舵制御装置1では、車両の走行時や停車時に運転者がフル転舵を行っても、ラックエンドとステアリングラックとの接触を抑制して、転舵モータへの過大な転舵モータ駆動電流の供給を抑制することが可能となる。これに加え、車両の走行時や停車時に運転者がフル転舵を行っても、転舵モータ2が出力する駆動力の増加を抑制して、転舵モータ2の劣化を抑制することが可能となる。
 さらに、本実施形態の操舵制御装置1では、車両の旋回走行時において、設定回転角記憶部54dが、旋回時回転角度から限界の転舵角と設定転舵角との偏差を減算した角度を、設定回転角度として更新する。このため、転舵モータ角度センサ16が検出した転舵モータ2の回転角度とラック軸18との位置関係が、車両の工場出荷時等から変化していても、この変化分に応じて、設定回転角度を更新することが可能となる。
 すなわち、本実施形態の操舵制御装置1では、上記のように、車両の旋回走行時に転舵モータ2へ供給される転舵モータ駆動電流に基づき、設定回転角度を更新することが可能となる。このため、上述した第一実施形態と同様、車両の旋回半径の増加や、転舵モータ2が出力する駆動力の増加を抑制することが可能となる。
 なお、上述したように、本実施形態の操舵制御装置1の動作で実施する車両の操舵制御方法では、転舵モータ2の回転角度を検出し、転舵モータ駆動電流を転舵モータ2へ供給する。これに加え、操舵制御方法では、設定回転角度を予め記憶し、検出した回転角度が設定回転角度を超えないように、転舵モータ駆動電流の供給量を制限する。
 さらに、本実施形態の操舵制御方法では、旋回時回転角度を検出し、旋回時供給量を検出し、検出した旋回時供給量が制限した転舵モータ駆動電流の供給量を超えているか否かを判定する。
 また、本実施形態の操舵制御方法では、検出した旋回時供給量が制限した転舵モータ駆動電流の供給量を超えていると判定すると、設定回転角度を更新する処理を行う。
 以上により、転舵モータ角度センサ16は、転舵モータ角度検出部に対応する。
 また、転舵位置サーボ制御部30と転舵モータ電流指令演算部54bは、転舵モータ駆動電流供給部に対応する。
 また、転舵モータ角度センサ16、転舵位置サーボ制御部30、操舵角センサ34、転舵モータ電流指令演算部54b及び設定回転角記憶部54dは、上述した限界状態を検出する転舵角限界状態検出部に対応する。
(第四実施形態の効果)
(1)旋回時回転角検出部54gが旋回時回転角度を検出し、旋回時駆動電流検出部54iが旋回時供給量を検出する。これに加え、設定回転角記憶部54dが、検出した旋回時供給量が電流供給量制限部54eの制限する転舵モータ駆動電流の供給量を超えていると判定すると、旋回時回転角度から限界の転舵角と設定転舵角との偏差を減算した角度を、設定回転角度として更新する。
 このため、車両の旋回走行時における転舵モータ2へ供給される転舵モータ駆動電流に基づき、設定回転角度を、ラックエンドとステアリングラック14との接触を抑制可能な角度に更新することが可能となる。したがって、経時劣化等により、ラックエンドとステアリングラック14との位置関係が変化した設定回転角度を、ラックエンドとステアリングラック14との接触を抑制可能な角度に更新することが可能となる。
 その結果、車両の走行時や停車時に運転者がフル転舵を行っても、ラックエンドとステアリングラック14との接触を抑制して、転舵モータ2への過大な転舵モータ駆動電流の供給を抑制することが可能となる。
 また、車両の走行時や停車時に運転者がフル転舵を行っても、転舵モータ2が出力する駆動力の増加を抑制して、転舵モータ2の劣化を抑制することが可能となる。
(2)設定回転角記憶部54dが、転舵モータ角度センサ16が検出した転舵モータ2の回転角度が設定回転角度以下の状態で転舵輪24が転舵可能な限界状態であることを検出すると、そのときの転舵モータ2の回転角度に応じて、前記設定回転角度を更新する。
 このため、修理工場等においてリテーナの締め具合が適正値よりも強くなり、転舵出力歯車12aとラックギア18aとの噛み合わせに発生したガタが適正値よりも減少しても、この減少度合いに応じて、設定回転角度を適正値に更新することが可能となる。
 その結果、転舵輪24の転舵角と、ストッパ部14aと端当て部材18bとの位置関係とを適正化することが可能となり、車両の旋回半径の増加を抑制することが可能となるため、転舵モータ2が出力する駆動力の増加を抑制することが可能となる。
(3)本実施形態の操舵制御方法は、旋回時回転角度を検出し、旋回時供給量を検出する。そして、検出した旋回時供給量が、制限した転舵モータ駆動電流の供給量を超えていると判定すると、旋回時回転角度から限界の転舵角と設定転舵角との偏差を減算した角度を設定回転角度として更新する。
 このため、車両の旋回走行時における転舵モータ2へ供給される転舵モータ駆動電流に基づき、設定回転角度を、ラックエンドとステアリングラック14との接触を抑制可能な角度に更新することが可能となる。したがって、経時劣化等により、ラックエンドとステアリングラック14との位置関係が変化した設定回転角度を、ラックエンドとステアリングラック14との接触を抑制可能な角度に更新することが可能となる。
 その結果、車両の走行時や停車時に運転者がフル転舵を行っても、ラックエンドとステアリングラック14との接触を抑制して、転舵モータ2への過大な転舵モータ駆動電流の供給を抑制することが可能となる。また、車両の走行時や停車時に運転者がフル転舵を行っても、転舵モータ2が出力する駆動力の増加を抑制して、転舵モータ2の劣化を抑制することが可能となる。
 以上、本願が優先権を主張する日本国特許出願2011-280818(2011年12月22日出願)、日本国特許出願2011-280819(2011年12月22日出願)、日本国特許出願2011-280820(2011年12月22日出願)の全内容は、参照により本開示の一部をなす。
 ここでは、限られた数の実施形態を参照しながら説明したが、権利範囲はそれらに限定されるものではなく、上記の開示に基づく各実施形態の改変は当業者にとって自明なことである。
 1  操舵制御装置
 2  転舵モータ
 4  転舵モータ制御部
 6  クラッチ
 8  反力モータ
 10 反力モータ制御部
 12 転舵モータ出力軸
 12a 転舵出力歯車
 14 ステアリングラック
 14a ストッパ部
 16 転舵モータ角度センサ
 18 ラック軸
 18a ラックギア
 18b 端当て部材
 20 タイロッド
 22 ナックルアーム
 24 転舵輪
 26 タイヤ軸力センサ
 28 通信ライン
 30 転舵位置サーボ制御部
 32 操舵輪
 34 操舵角センサ
 36 操舵トルクセンサ
 38 反力モータ角度センサ
 40 クラッチ板
 42 ステリングシャフト
 44 ピニオン軸
 46 ピニオン
 48 ピニオン角度センサ
 50 車速センサ
 52 エンジンコントローラ
 54 指令演算部
 54a 反力モータ電流指令演算部
 54b 転舵モータ電流指令演算部
 54c クラッチ電流指令演算部
 54d 設定回転角記憶部
 54e 電流供給量制限部
 54f 当接回転角算出部
 54g 旋回時回転角検出部
 54h 旋回時軌跡比算出部
 54i 旋回時駆動電流検出部
 56 反力サーボ制御部
 58 クラッチ制御部

Claims (17)

  1.  転舵輪を転舵させるための転舵トルクを出力する転舵モータと、
     前記転舵モータの回転角度を検出する転舵モータ角度検出部と、
     前記転舵輪の転舵角を操舵輪の操作に応じた角度とするための転舵モータ駆動電流を前記転舵モータへ供給する転舵モータ駆動電流供給部と、
     前記転舵輪を転舵可能な限界の転舵角より小さい角度で設定した設定転舵角に対応する、前記転舵モータの回転角度である設定回転角度を予め記憶する設定回転角記憶部と、
     前記転舵モータ角度検出部が検出した回転角度が前記設定回転角記憶部に予め記憶させている前記設定回転角度を超えないように前記転舵モータ駆動電流の供給量を制限する電流供給量制限部と、を備え、
     前記電流供給量制限部は、予め設定した許可条件が成立していると判定すると、前記転舵モータ駆動電流の供給量に対する制限を解除し、
     前記電流供給量制限部が前記転舵モータ駆動電流の供給量に対する制限を解除した状態で、転舵可能な限界の転舵角まで前記転舵輪が転舵された時、前記転舵モータの回転角度を算出し、
     算出した前記転舵モータの回転角度と前記設定転舵角との偏差に応じて、前記設定回転角度を更新することを特徴とする車両の操舵制御装置。
  2.  前記許可条件を、前記車両の積算走行距離が予め設定した走行距離閾値を超えている条件とすることを特徴とする請求項1に記載した車両の操舵制御装置。
  3.  前記許可条件を、前記転舵角が前記限界の転舵角となっている時間である限界角到達時間が予め設定した到達時間閾値を超えている条件とすることを特徴とする請求項1または請求項2に記載した車両の操舵制御装置。
  4.  前記車両の車速及び前記操舵輪に加わる操舵力のうち少なくとも一方が増加するほど、前記到達時間閾値を減少補正することを特徴とする請求項3に記載した車両の操舵制御装置。
  5.  前記設定回転角記憶部は、前記転舵モータ角度検出部が検出した回転角度が前記設定回転角度以下の状態で転舵輪が転舵可能な限界状態であることを検出すると、そのときの転舵モータの回転角度に応じて、前記設定回転角度を更新することを特徴とする請求項1から請求項4のうちいずれか1項に記載した車両の操舵制御装置。
  6.  転舵輪を転舵させるための転舵トルクを出力する転舵モータと、
     前記転舵モータの回転角度を検出する転舵モータ角度検出部と、
     前記転舵輪の転舵角を操舵輪の操作に応じた角度とするための転舵モータ駆動電流を前記転舵モータへ供給する転舵モータ駆動電流供給部と、
     前記転舵輪を転舵可能な限界の転舵角より小さい角度で設定した設定転舵角に対応する、前記転舵モータの回転角度である設定回転角度を予め記憶する設定回転角記憶部と、
     前記転舵モータ角度検出部が検出した回転角度が前記設定回転角記憶部に記憶させている前記設定回転角度を超えないように前記転舵モータ駆動電流の供給量を制限する電流供給量制限部と、
     走行時に前記転舵角が前記設定転舵角で旋回走行しているときに、前記転舵モータの回転角度である旋回時回転角度を検出する旋回時回転角検出部と、を備え、
     前記設定回転角記憶部は、予め記憶している設定回転角度と前記旋回時回転角検出部が検出した旋回時回転角度とから、前記設定回転角度に応じた転舵がされているか否かを判断することを特徴とする車両の操舵制御装置。
  7.  前記旋回時回転角検出部が検出した旋回時回転角度から前記限界の転舵角と前記設定転舵角との偏差を減算した角度に応じて前記設定回転角度を更新することを特徴とする請求項6に記載した車両の操舵制御装置。
  8.  前記転舵輪は、車両の旋回走行時に前記車両の車幅方向内側で回転する内側転舵輪と、前記旋回走行時に前記車両の車幅方向外側で回転する外側転舵輪と、を有し、
     前記旋回走行時において、前記内側転舵輪の軌跡である内側軌跡と前記外側転舵輪の軌跡である外側軌跡との軌跡比である旋回時軌跡比を算出する旋回時軌跡比算出部を備え、
     前記旋回時回転角検出部は、予め設定した設定軌跡比と前記旋回時軌跡比算出部が算出した旋回時軌跡比との偏差が、予め設定した偏差閾値を超えていると判定すると、前記旋回時回転角度を検出することを特徴とする請求項6または請求項7に記載した車両の操舵制御装置。
  9.  前記設定回転角記憶部は、前記転舵モータ角度検出部が検出した回転角度が前記設定回転角度以下の状態で転舵輪が転舵可能な限界状態であることを検出すると、そのときの転舵モータの回転角度に応じて、前記設定回転角度を更新することを特徴とする請求項6から請求項8のうちいずれか1項に記載した車両の操舵制御装置。
  10.  転舵輪を転舵させるための転舵トルクを出力する転舵モータと、
     前記転舵モータの回転角度を検出する転舵モータ角度検出部と、
     前記転舵輪の転舵角を操舵輪の操作に応じた角度とするための転舵モータ駆動電流を前記転舵モータへ供給する転舵モータ駆動電流供給部と、
     前記転舵輪を転舵可能な限界の転舵角より小さい角度で設定した設定転舵角に対応する、前記転舵モータの回転角度である設定回転角度を予め記憶する設定回転角記憶部と、
     前記転舵モータ角度検出部が検出した回転角度が前記設定回転角記憶部に記憶させている前記設定回転角度を超えないように前記転舵モータ駆動電流の供給量を制限する電流供給量制限部と、
     走行時に前記転舵角が前記設定転舵角となった状態の前記転舵モータの回転角度である旋回時回転角度を検出する旋回時回転角検出部と、
     前記走行時に前記転舵角が前記設定転舵角となった状態における前記転舵モータへの前記転舵モータ駆動電流の供給量である旋回時供給量を検出する旋回時駆動電流検出部と、を備え、
     前記設定回転角記憶部は、前記旋回時駆動電流検出部が検出した旋回時供給量が前記電流供給量制限部の制限する転舵モータ駆動電流の供給量を超えているか否かを判定する判定手段を有することを特徴とする車両の操舵制御装置。
  11.  前記旋回時回転角検出部が検出した旋回時回転角度から前記限界の転舵角と前記設定転舵角との偏差を減算した角度を前記設定回転角度として更新することを特徴とする請求項10に記載した車両の操舵制御装置。
  12.  前記設定回転角記憶部は、前記転舵モータ角度検出部が検出した回転角度が前記設定回転角度以下の状態で転舵輪が転舵可能な限界状態であることを検出すると、そのときの転舵モータの回転角度に応じて、前記設定回転角度を更新することを特徴とする請求項10または請求項11に記載した車両の操舵制御装置。
  13.  転舵輪を転舵させるための転舵トルクを出力する転舵モータの回転角度を検出し、
     前記転舵輪の転舵角を操舵輪の操作に応じた角度とするための転舵モータ駆動電流を前記転舵モータへ供給し、
     前記転舵輪を転舵可能な限界の転舵角より小さい角度で設定した設定転舵角に対応する、前記転舵モータの回転角度である設定回転角度を予め記憶し、
     前記検出した回転角度が前記記憶した前記設定回転角度を超えないように前記転舵モータ駆動電流の供給量を制限し、
     走行時に前記転舵角が前記設定転舵角で旋回走行しているときに、前記転舵モータの回転角度である旋回時回転角度を検出し、
     前記予め記憶している設定回転角度と前記検出した旋回時回転角度とから、前記設定回転角度に応じた転舵がされているか否かを判断することを特徴とする車両の操舵制御方法。
  14.  前記旋回時回転角度から前記限界の転舵角と前記設定転舵角との偏差を減算した角度に応じて前記設定回転角度を更新することを特徴とする請求項13に記載した車両の操舵制御方法。
  15.  前記転舵輪は、車両の旋回走行時に前記車両の車幅方向内側で回転する内側転舵輪と、前記旋回走行時に前記車両の車幅方向外側で回転する外側転舵輪と、を有し、
     前記旋回走行時において、前記内側転舵輪の軌跡である内側軌跡と前記外側転舵輪の軌跡である外側軌跡との軌跡比である旋回時軌跡比を算出し、
     予め設定した設定軌跡比と前記算出した旋回時軌跡比との偏差が、予め設定した偏差閾値を超えていると判定すると、前記旋回時回転角度を検出することを特徴とする請求項13または請求項14に記載した車両の操舵制御方法。
  16.  転舵輪を転舵させるための転舵トルクを出力する転舵モータの回転角度を検出し、
     前記転舵輪の転舵角を操舵輪の操作に応じた角度とするための転舵モータ駆動電流を前記転舵モータへ供給し、
     前記転舵輪を転舵可能な限界の転舵角より小さい角度で設定した設定転舵角に対応する、前記転舵モータの回転角度である設定回転角度を予め記憶し、
     前記検出した回転角度が前記記憶した前記設定回転角度を超えないように前記転舵モータ駆動電流の供給量を制限し、
     走行時に前記転舵角が前記設定転舵角となった状態の前記転舵モータの回転角度である旋回時回転角度を検出し、
     前記走行時に前記転舵角が前記設定転舵角となった状態における前記転舵モータへの前記転舵モータ駆動電流の供給量である旋回時供給量を検出し、
     前記検出した旋回時供給量が前記制限する転舵モータ駆動電流の供給量を超えているか否かを判定することを特徴とする車両の操舵制御方法。
  17.  前記検出した旋回時回転角度から前記限界の転舵角と前記設定転舵角との偏差を減算した角度を前記設定回転角度として更新することを特徴とする請求項16に記載した車両の操舵制御方法。
PCT/JP2012/006709 2011-12-22 2012-10-19 車両の操舵制御装置及び操舵制御方法 WO2013094097A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP12860676.1A EP2796344B1 (en) 2011-12-22 2012-10-19 Vehicle steering control device and steering control method
US14/361,165 US9020702B2 (en) 2011-12-22 2012-10-19 Steering control apparatus of vehicle and steering control method of the same
JP2013550076A JP5751349B2 (ja) 2011-12-22 2012-10-19 車両の操舵制御装置及び操舵制御方法
CN201280060463.6A CN103987614B (zh) 2011-12-22 2012-10-19 车辆的转向控制装置和转向控制方法

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2011280818 2011-12-22
JP2011-280818 2011-12-22
JP2011-280819 2011-12-22
JP2011280819 2011-12-22
JP2011-280820 2011-12-22
JP2011280820 2011-12-22

Publications (1)

Publication Number Publication Date
WO2013094097A1 true WO2013094097A1 (ja) 2013-06-27

Family

ID=48668018

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/006709 WO2013094097A1 (ja) 2011-12-22 2012-10-19 車両の操舵制御装置及び操舵制御方法

Country Status (5)

Country Link
US (1) US9020702B2 (ja)
EP (1) EP2796344B1 (ja)
JP (1) JP5751349B2 (ja)
CN (1) CN103987614B (ja)
WO (1) WO2013094097A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104512456A (zh) * 2013-09-27 2015-04-15 北汽福田汽车股份有限公司 汽车、助力转向器及助力转向器的控制方法
JP2015174653A (ja) * 2014-03-14 2015-10-05 三菱電機株式会社 ステアバイワイヤシステムを備えた車両の半自動運転の方法および車両の動作を制御するステアバイワイヤシステム
KR20160109286A (ko) * 2015-03-10 2016-09-21 주식회사 만도 후륜 조향 장치의 모터 잠김 판단 및 복구 방법
KR20190135845A (ko) * 2018-05-29 2019-12-09 주식회사 만도 스티어 바이 와이어 시스템의 조향 제어 장치 및 방법
JP6881701B1 (ja) * 2019-11-26 2021-06-02 日本精工株式会社 転舵制御装置
JP6881702B1 (ja) * 2019-11-26 2021-06-02 日本精工株式会社 転舵制御装置
WO2021106437A1 (ja) * 2019-11-26 2021-06-03 日本精工株式会社 転舵制御装置
WO2021106438A1 (ja) * 2019-11-26 2021-06-03 日本精工株式会社 転舵制御装置

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105579324B (zh) * 2013-07-26 2017-08-04 日产自动车株式会社 车辆用操舵控制装置及车辆用操舵控制方法
US9283985B2 (en) * 2014-01-13 2016-03-15 Honda Motor Co., Ltd. Vehicle steering system
JP2017024683A (ja) * 2015-07-28 2017-02-02 株式会社ジェイテクト 車両用操舵装置
DE102016106814A1 (de) * 2016-04-13 2017-10-19 Infineon Technologies Ag Vorrichtung und Verfahren zum Überwachen eines Signalpfads und Signalverarbeitungssystem
JP6764561B2 (ja) * 2016-06-07 2020-10-07 株式会社ジェイテクト 車両用操舵装置
CN106184352A (zh) * 2016-07-13 2016-12-07 吉林大学 一种可实现多种转向模式切换的转向系统
CN107661634B (zh) * 2016-07-27 2019-11-01 北京小米移动软件有限公司 控制车辆转向的方法、装置及车辆
JP6701032B2 (ja) * 2016-08-26 2020-05-27 株式会社ジェイテクト 操舵制御装置
US10981596B2 (en) * 2017-05-30 2021-04-20 Jtekt Corporation Steering controller
CN107856740B (zh) * 2017-10-23 2020-09-18 中国第一汽车股份有限公司 一种方向盘转向角度的计算方法和系统
CN111098915A (zh) * 2018-10-26 2020-05-05 上汽通用汽车有限公司 转向机构行程限位保护控制方法、计算机可读存储介质以及转向机构行程限位保护控制系统
JP2020083059A (ja) * 2018-11-26 2020-06-04 トヨタ自動車株式会社 車両の制御装置
JP7180370B2 (ja) * 2018-12-26 2022-11-30 株式会社デンソー モータ制御装置およびこれを備えるモータ制御システム
JP7323301B2 (ja) * 2019-02-27 2023-08-08 株式会社ジェイテクト 操舵制御装置
CN110058595B (zh) * 2019-05-08 2022-01-18 福建盛海智能科技有限公司 一种无人车线控转向的控制方法及终端
KR20210064634A (ko) * 2019-11-26 2021-06-03 현대자동차주식회사 인휠모터 차량의 스티어링 부하 축소를 위한 제어 방법
CN113377096A (zh) * 2020-03-10 2021-09-10 北京京东乾石科技有限公司 一种车辆的控制方法、装置、设备及存储介质
CN112046601B (zh) * 2020-07-29 2022-03-11 东风汽车集团有限公司 转向角极限位置的标定方法、转向控制器及汽车
KR20220055947A (ko) * 2020-10-27 2022-05-04 현대자동차주식회사 4륜 독립조향 차량의 제자리 회전모드 제어방법 및 시스템

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10217988A (ja) 1997-02-07 1998-08-18 Toyota Motor Corp 操舵制御装置
JP2008285041A (ja) * 2007-05-18 2008-11-27 Mitsuba Corp 車両用制御装置
JP2008285030A (ja) * 2007-05-18 2008-11-27 Mitsuba Corp 車両用制御装置
JP2009190557A (ja) * 2008-02-14 2009-08-27 Mitsuba Corp 車両用制御装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2832684B1 (fr) * 2001-11-23 2004-02-27 Renault Ensemble de direction assistee electrique, et procede de commande de cet ensemble
JP3780985B2 (ja) * 2002-07-26 2006-05-31 トヨタ自動車株式会社 車輌用操舵制御装置
JP4725132B2 (ja) * 2005-03-01 2011-07-13 日産自動車株式会社 操舵制御装置
JP2007269295A (ja) * 2006-03-31 2007-10-18 Toyota Central Res & Dev Lab Inc 車両運動制御装置及び制御方法
EP2058210B1 (en) * 2007-11-06 2012-08-29 Honda Motor Co., Ltd. Electric power steering device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10217988A (ja) 1997-02-07 1998-08-18 Toyota Motor Corp 操舵制御装置
JP2008285041A (ja) * 2007-05-18 2008-11-27 Mitsuba Corp 車両用制御装置
JP2008285030A (ja) * 2007-05-18 2008-11-27 Mitsuba Corp 車両用制御装置
JP2009190557A (ja) * 2008-02-14 2009-08-27 Mitsuba Corp 車両用制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2796344A4

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104512456A (zh) * 2013-09-27 2015-04-15 北汽福田汽车股份有限公司 汽车、助力转向器及助力转向器的控制方法
JP2015174653A (ja) * 2014-03-14 2015-10-05 三菱電機株式会社 ステアバイワイヤシステムを備えた車両の半自動運転の方法および車両の動作を制御するステアバイワイヤシステム
KR20160109286A (ko) * 2015-03-10 2016-09-21 주식회사 만도 후륜 조향 장치의 모터 잠김 판단 및 복구 방법
KR102206371B1 (ko) 2015-03-10 2021-01-22 주식회사 만도 후륜 조향 장치의 모터 잠김 판단 및 복구 방법
KR20190135845A (ko) * 2018-05-29 2019-12-09 주식회사 만도 스티어 바이 와이어 시스템의 조향 제어 장치 및 방법
KR102572957B1 (ko) * 2018-05-29 2023-09-01 에이치엘만도 주식회사 스티어 바이 와이어 시스템의 조향 제어 장치 및 방법
JP6881702B1 (ja) * 2019-11-26 2021-06-02 日本精工株式会社 転舵制御装置
WO2021106437A1 (ja) * 2019-11-26 2021-06-03 日本精工株式会社 転舵制御装置
WO2021106438A1 (ja) * 2019-11-26 2021-06-03 日本精工株式会社 転舵制御装置
CN113195339A (zh) * 2019-11-26 2021-07-30 日本精工株式会社 转向控制装置
EP3858719A4 (en) * 2019-11-26 2021-12-22 NSK Ltd. TURN CONTROL DEVICE
US11260902B2 (en) 2019-11-26 2022-03-01 Nsk Ltd. Turning control device
US11352053B2 (en) 2019-11-26 2022-06-07 Nsk Ltd. Turning control device
CN113195339B (zh) * 2019-11-26 2022-11-22 日本精工株式会社 转向控制装置
JP6881701B1 (ja) * 2019-11-26 2021-06-02 日本精工株式会社 転舵制御装置

Also Published As

Publication number Publication date
US20140343791A1 (en) 2014-11-20
EP2796344B1 (en) 2016-06-15
US9020702B2 (en) 2015-04-28
JP5751349B2 (ja) 2015-07-22
CN103987614A (zh) 2014-08-13
JPWO2013094097A1 (ja) 2015-04-27
CN103987614B (zh) 2016-04-13
EP2796344A1 (en) 2014-10-29
EP2796344A4 (en) 2015-06-17

Similar Documents

Publication Publication Date Title
JP5751349B2 (ja) 車両の操舵制御装置及び操舵制御方法
JP5327331B2 (ja) 車両の電動パワーステアリング装置
US7753162B2 (en) Vehicle steering apparatus and vehicle steering method
US10703405B2 (en) Steering control device
CN109689479B (zh) 车辆控制装置、车辆控制方法及电动助力转向装置
JP4984504B2 (ja) 車両用操舵制御装置
JP4420036B2 (ja) 車両用操舵制御装置
US20050103561A1 (en) Electric power steering apparatus control apparatus
JP5727014B2 (ja) ラックにかかる力を推定する手段による補助トルクの安定
WO2018055805A1 (ja) パワーステアリング装置の制御装置
JP5983017B2 (ja) 車両の操舵制御装置
JP6142659B2 (ja) 車両用操舵制御装置及び車両用操舵制御方法
JP5862113B2 (ja) 車両の操舵制御装置及び操舵制御方法
JP2006256453A (ja) 操舵制御装置
JP6142658B2 (ja) 車両用操舵制御装置及び車両用操舵制御方法
KR20170069717A (ko) 전동식 조향 시스템의 제어 방법
JP4506475B2 (ja) 車両用操舵制御装置
JP6160221B2 (ja) 車両用操舵制御装置及び車両用操舵制御方法
WO2013132807A1 (ja) 車両用操舵制御装置及び車両用操舵制御方法
JP2003137125A (ja) 舵角比可変装置
JP5644450B2 (ja) 産業車両のステアリング装置
JP6142660B2 (ja) 車両用操舵制御装置及び車両用操舵制御方法
JP6028576B2 (ja) 車両用操舵制御装置及び車両用操舵制御方法
JP2014008899A (ja) 車両の操舵制御装置
JP5822027B2 (ja) 車両用操舵制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12860676

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013550076

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012860676

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14361165

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE