WO2013132807A1 - 車両用操舵制御装置及び車両用操舵制御方法 - Google Patents

車両用操舵制御装置及び車両用操舵制御方法 Download PDF

Info

Publication number
WO2013132807A1
WO2013132807A1 PCT/JP2013/001270 JP2013001270W WO2013132807A1 WO 2013132807 A1 WO2013132807 A1 WO 2013132807A1 JP 2013001270 W JP2013001270 W JP 2013001270W WO 2013132807 A1 WO2013132807 A1 WO 2013132807A1
Authority
WO
WIPO (PCT)
Prior art keywords
steering
vehicle speed
steered
vehicle
angle
Prior art date
Application number
PCT/JP2013/001270
Other languages
English (en)
French (fr)
Inventor
拓 鈴木
佑文 蔡
幸允 松下
一弘 五十嵐
木村 健
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to JP2014503468A priority Critical patent/JP5776837B2/ja
Publication of WO2013132807A1 publication Critical patent/WO2013132807A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • B62D5/0463Controlling the motor calculating assisting torque from the motor based on driver input
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • B62D6/002Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits computing target steering angles for front or rear wheels

Definitions

  • the present invention relates to a vehicle steering control device and a vehicle steering control method for steering a steered wheel to an angle corresponding to an operation of the steering wheel in a state where the steering wheel and the steered wheel are mechanically separated.
  • a steering control device that steers to a turning angle.
  • a steering control device is a device that forms a system (SBW system) generally called a steer-by-wire (SBW).
  • SBW system system
  • SBW steer-by-wire
  • Patent Document 1 a target turning angle is set based on a steering angle and a vehicle behavior detected using a yaw rate sensor value, and the steered wheels are controlled.
  • an object of the present invention is to provide a vehicle steering control device and a vehicle steering control method capable of ensuring the response and disturbance suppression performance of the steering servo.
  • the steering actuator is driven and controlled so that the actual turning angle follows the target turning angle calculated based on the steering angle.
  • This steering servo is performed using a controller in which a control gain is set to set the response characteristic of the actual turning angle to the steering actuator command current at a preset reference vehicle speed as a desired target response characteristic.
  • the control gain of the controller is corrected so that the control gain of the controller is higher when the vehicle speed is higher than when the vehicle speed is low.
  • the steering servo gain is changed according to the vehicle, it is possible to appropriately ensure the response and disturbance suppression performance of the steering servo while considering the vehicle characteristics that change according to the vehicle speed. . Therefore, suitable steering control can be performed.
  • FIG. 1 is an overall configuration diagram of a steer-by-wire system to which a vehicle steering control device according to an embodiment is applied. It is a block diagram which shows a turning servo control system. It is a figure which shows the relationship between an actual turning angle and SAT. It is a figure which shows the frequency response of the turning angle with respect to a turning motor command electric current. It is a figure explaining the change method of a control gain. It is a figure which shows an example of a correction gain. It is a figure explaining the operation
  • FIG. 1 is an overall configuration diagram of a steer-by-wire system (SBW system) to which a vehicle steering control device according to this embodiment is applied.
  • SBW system steer-by-wire system
  • reference numeral 1 denotes a vehicle steering control device.
  • the vehicle steering control device 1 includes a steering motor 2, a steering motor control unit 4, a clutch 6, a reaction force motor 8, and a reaction force motor control unit 10.
  • the steered motor 2 is a motor that is driven in accordance with a steered motor command current (steered actuator command current) output by the steered motor control unit 4 and has a steerable motor output shaft 12 that can rotate.
  • the steered motor 2 outputs a steered torque for turning the steered wheels 24 by being driven according to the steered motor command current.
  • the steered wheels 24 are left and right front wheels of the vehicle, and the left front wheel is the steered wheel 24L and the right front wheel is the steered wheel 24R.
  • a steered output gear 12 a formed using a pinion gear is provided on the tip side of the steered motor output shaft 12.
  • the steered output gear 12 a meshes with a rack gear 18 a provided between both end portions of the rack shaft 18 inserted through the steering rack 14.
  • the steered motor 2 is provided with a steered motor angle sensor 16.
  • the steered motor angle sensor 16 detects the rotational angle of the steered motor 2 (the actual steered angle of the steered wheels 24), and sends an information signal including the detected rotational angle via the steered motor control unit 4. Output to the reaction force motor control unit 10.
  • the steering rack 14 is formed in a cylindrical shape, and the rack shaft 18 is inserted as described above.
  • the rack shaft 18 is displaced in the vehicle width direction in accordance with the rotation of the steering motor output shaft 12, that is, the rotation of the steering output gear 12a.
  • Both ends of the rack shaft 18 are connected to the steered wheels 24 via tie rods 20 and knuckle arms 22, respectively. That is, the steered wheel 24 is steered via the tie rod 20 and the knuckle arm 22 by changing the rack shaft 18 in the vehicle width direction according to the rotation of the steered motor output shaft 12, and changes the traveling direction of the vehicle. To do.
  • a tire axial force sensor 26 is provided between the rack shaft 18 and the tie rod 20.
  • the tire axial force sensor 26 detects an axial force acting in the axial direction (vehicle width direction) of the rack shaft 18, and outputs an information signal including the detected axial force to the reaction force motor control unit 10.
  • the steered motor control unit 4 inputs and outputs information signals through the reaction force motor control unit 10 and a communication line 28 such as a CAN (Controller Area Network). In addition, the steered motor control unit 4 receives an information signal output from the vehicle speed sensor 50 via the communication line 28.
  • the turning motor control unit 4 calculates a turning motor command current so that the actual turning angle follows the target turning angle with a predetermined response characteristic by the angle servo system, and uses the turning motor command current as the turning motor command current. Based on this, the steering motor 2 is driven and controlled.
  • the angle servo system can be configured by a method using a robust model matching method, for example. Thereby, the control system excellent in disturbance resistance can be realized.
  • the target turning angle is calculated based on the steering operation amount by the driver and the vehicle behavior predicted in advance. That is, the target turning angle is calculated using feedforward control (FF control) so that the vehicle behavior from the steering operation of the driver to the turning of the steered wheels is uniquely determined.
  • FF control feedforward control
  • the clutch 6 is interposed between the steering wheel 32 (steering wheel) operated by the driver and the steered wheel 24, and is brought into an open state or an engaged state according to a clutch command current output from the reaction force motor control unit 10. Switch. Note that the clutch 6 is in an open state in a normal state.
  • the clutch 6 has a pair of clutch plates 40 that are separated from each other in an open state and mesh with each other in an engaged state.
  • the pair of clutch plates 40 includes a steering wheel side clutch plate 40a arranged on the steered wheel 32 side and a steered wheel side clutch plate 40b arranged on the steered wheel 24 side.
  • the steering wheel side clutch plate 40 a is attached to the steering shaft 42 that rotates together with the steering wheel 32, and rotates together with the steering shaft 42.
  • the steered wheel side clutch plate 40 b is attached to one end of the pinion shaft 44 and rotates together with the pinion shaft 44.
  • the other end of the pinion shaft 44 is disposed in the pinion 46.
  • the pinion 46 incorporates a pinion gear (not shown) that meshes with the rack gear 18a.
  • the pinion gear rotates together with the pinion shaft 44. That is, the pinion gear rotates together with the steered wheel side clutch plate 40 b via the pinion shaft 44.
  • the pinion 46 is provided with a pinion angle sensor 48.
  • the pinion angle sensor 48 detects the rotation angle of the pinion gear, and outputs an information signal including the detected rotation angle to the reaction force motor control unit 10.
  • a steering angle sensor 34, a steering torque sensor 36, a reaction force motor 8, and a reaction force motor angle sensor 38 are disposed between the steering wheel 32 and the clutch 6.
  • the steering angle sensor 34 is provided in a steering column that rotatably supports the steering wheel 32.
  • the steering angle sensor 34 detects the steering angle ⁇ that is the current rotation angle (steering operation amount) of the steering wheel 32.
  • the steering angle sensor 34 outputs an information signal including the detected steering angle ⁇ of the steering wheel 32 to the reaction force motor control unit 10.
  • the steering torque sensor 36 is provided, for example, in a steering column that rotatably supports the steering wheel 32.
  • the steering torque sensor 36 detects steering torque that is torque applied by the driver to the steered wheels 32.
  • the steering torque sensor 36 outputs an information signal including the detected steering torque to the reaction force motor control unit 10.
  • the reaction force motor 8 is a motor that is driven in accordance with a reaction force motor command current output from the reaction force motor control unit 10, and rotates a steering shaft 42 that rotates together with the steering wheel 32 to apply a steering reaction force to the steering wheel 32. Is output.
  • the steering reaction force that the reaction force motor 8 outputs to the steering wheel 32 is a reaction force that acts in a direction opposite to the operation direction in which the driver steers the steering wheel 32.
  • the steering reaction force is calculated by the reaction force motor control unit 10.
  • the reaction force motor angle sensor 38 is provided in the reaction force motor 8.
  • the reaction force motor angle sensor 38 detects the rotation angle of the reaction force motor 8 and outputs an information signal including the detected rotation angle to the reaction force motor control unit 10.
  • the reaction force motor control unit 10 inputs and outputs information signals via the steering motor control unit 4 and the communication line 28.
  • the reaction force motor control unit 10 receives input of information signals output from the vehicle speed sensor 50 and the engine controller 52 via the communication line 28.
  • the reaction force motor control unit 10 calculates the above-described steering reaction force based on the information signal received via the communication line 28 and the information signal received from various sensors, Drive control. That is, the steering reaction force is the tire axial force acting on the steered wheels 24 in a state where the clutch 6 is disengaged and the torque transmission path between the steered wheels 32 and the steered wheels 24 is mechanically separated. And calculation based on the steering state of the steering wheel 32. Thus, an appropriate steering reaction force is transmitted to the driver who steers the steered wheels 32.
  • the vehicle speed sensor 50 detects the vehicle speed V of the vehicle and outputs an information signal including the detected vehicle speed to the steered motor control unit 4 and the reaction force motor control unit 10. Further, the engine controller 52 (engine ECU) outputs an information signal including an engine (not shown) state (engine drive or engine stop) to the reaction force motor control unit 10.
  • FIG. 2 is a block diagram showing a turning servo control system.
  • the turning motor control unit 4 calculates a target turning angle based on the steering angle ⁇ detected by the steering angle sensor 34 (vehicle behavior controller 61).
  • the steered motor control unit 4 predicts the vehicle behavior in advance and calculates the target steered angle in consideration of the vehicle behavior using FF control.
  • the steered motor control unit 4 calculates a steered motor command current so that the actual steered angle follows the target steered angle, and drives and controls the steered motor 2 based on the steered motor command current. (Angle servo 62). Thereby, the steering motor 2 outputs a steering torque. Then, the rack shaft 18 is displaced in the vehicle width direction (rack gear 63), and the vehicle turns (vehicle 64). At this time, since the self-aligning torque SAT is generated as a reaction force against the turning of the steered wheels 24, the actual turning angle is a value affected by the self-aligning torque SAT.
  • FIG. 3 is a diagram showing the relationship between the actual turning angle and the self-aligning torque SAT.
  • SAT a force for returning the steered wheels 24 in the neutral direction
  • the magnitude of this force (SAT) increases as the turning angle of the steered wheels 24 increases, and increases as the vehicle speed V increases even at the same turning angle.
  • the magnitude of the self-aligning torque SAT is different between when the vehicle is stopped and when the vehicle is traveling even if the steering amount is the same. Therefore, generally, the response characteristic (frequency response) of the actual turning angle with respect to the turning motor command current to the turning motor 2 also changes according to the vehicle speed V.
  • FIG. 4 is a diagram showing the frequency response of the turning angle with respect to the steering motor command current.
  • the solid line A is the frequency response at high speed (high load)
  • the broken line B is the frequency at low speed (low load). It is a response.
  • the high-speed traveling is traveling at a vehicle speed at which the self-aligning torque SAT acts relatively large, and is traveling at an upper limit vehicle speed in a vehicle speed range higher than that in a stopped or extremely low-speed traveling state.
  • the vehicle speed range higher than the stop or extremely low speed traveling state is, for example, a regular vehicle speed range, and differs depending on vehicle specifications and vehicle types (city riding type, sports car type, etc.).
  • the response characteristic of the actual turning angle with respect to the turning motor command current at the vehicle speed at the time of high-speed traveling matches the desired target response characteristic by the servo control described below. Therefore, in the present embodiment, the vehicle speed at which the actual response characteristic is desired to match the target response characteristic is set as the vehicle speed during the high speed traveling.
  • the low-speed traveling is a stop or a very low-speed traveling with almost no self-aligning torque SAT.
  • the gain on the vertical axis corresponds to the ease of movement of the steered wheel with respect to the steered motor command current passed to the steered motor 2, and the steered wheel moves more easily in the upward direction of FIG. High).
  • the vehicle characteristics change according to the vehicle speed V as indicated by an arrow ⁇ there is a frequency region in which the vehicle characteristics change according to the vehicle speed V as indicated by an arrow ⁇ .
  • the controller of the steering servo is designed in accordance with the frequency response at the time of high speed running (at the time of high load) shown by the solid line A in FIG. That is, a steering servo controller is designed with a control gain such that the response characteristic of the turning angle with respect to the steering motor command current shown in the solid line A in FIG. 4 becomes a desired target response characteristic, and the controller is used.
  • the control gain indicated by the solid line C is set as a reference gain.
  • FIG. 2 In consideration of the fact that the followability of the steering is higher when driving at low speed (low load) than when driving at high speed (high load), FIG. As shown by the broken line D, the control gain is made smaller than the reference gain shown by the solid line C. As shown in FIG. 2, this corresponds to correcting the output value of the servo control according to the vehicle speed V (vehicle speed correction 65).
  • FIG. 6 is a diagram illustrating an example of a correction gain for correcting the reference gain.
  • the correction gain is set to 1.
  • G1 for example, 0.5
  • the vehicle speed during high speed driving (high load) is set as the reference vehicle speed, and a controller is designed in accordance with the frequency characteristics at the reference vehicle speed. Then, the gain of the controller is corrected to decrease as the vehicle speed V detected by the vehicle speed sensor 50 is slower than the reference vehicle speed. Thereby, the steering servo according to the dynamic characteristic of the steering accompanying a vehicle speed change is performed.
  • the steering motor 2 corresponds to the steering actuator
  • the steering angle sensor 34 corresponds to the steering angle detection unit
  • the steering motor angle sensor 16 corresponds to the steering angle detection unit
  • the vehicle speed sensor 50 Corresponds to the vehicle speed detector.
  • the turning motor control unit 4 corresponds to a vehicle behavior prediction unit, a target turning angle calculation unit, a turning servo unit, and a gain correction unit.
  • the vehicle behavior controller 61 in FIG. 2 corresponds to the vehicle behavior prediction unit and the target turning angle calculation unit
  • the angle servo 62 corresponds to the steering servo unit
  • the vehicle speed correction 65 corresponds to the gain correction unit.
  • the present SBW system controls the turning of the steered wheels 24 by controlling the driving of the steered motor 2 in accordance with the operation of the steered wheels 32 by the driver, and changes the traveling direction of the vehicle.
  • the clutch 6 interposed between the steered wheel 32 and the steered wheel 24 is opened, and the torque transmission path between the steered wheel 32 and the steered wheel 24 is mechanically separated. Conduct in the state.
  • the steered motor control unit 4 sets the steered motor command current so that the actual steered angle becomes a target steered angle corresponding to the steering angle ⁇ detected by the steering angle sensor 34. Calculate. Then, the steering motor 2 is driven and controlled based on the calculated steering motor command current.
  • the vehicle steering control method implemented in the present SBW system includes the step of detecting the steering angle ⁇ of the steering wheel by the steering angle sensor 34, and the steered wheel by the steered motor control unit 4 based on the detected steering angle ⁇ . Calculating 24 target turning angles.
  • the actual turning angle of the steered wheels 24 is detected by the steered motor angle sensor 16, and the actual steered angle follows the target steered angle by the steered motor control unit 4.
  • the step of driving and controlling the steered motor 2 is provided.
  • the steered motor control unit 4 refers to the correction gain calculation map in FIG. 6 and sets the correction gain to “1” based on the vehicle speed V. Therefore, the steered motor control unit 4 calculates the steered motor command current while setting the steered servo gain to the design value, that is, the reference gain indicated by the solid line C in FIG. . That is, in the step of driving and controlling the steering motor 2, the response characteristic of the turning angle with respect to the steering motor command current at the vehicle speed (reference vehicle speed) during high speed traveling (high load) is set as a desired target response characteristic. Steering servo is performed using a controller that sets a control gain for the purpose. At this time, the gain of the turning servo is kept at the design value during high speed traveling where V ⁇ V2.
  • the steered motor control unit 4 refers to the correction gain calculation map of FIG. (For example, 0.5). That is, the steered motor control unit 4 calculates the steered motor command current by changing the steered servo gain to the control gain indicated by the broken line D in FIG. 5, and drives and controls the steered motor 2.
  • the steering servo is performed in accordance with the vehicle characteristics indicated by the two-dot chain line A ′ in which the frequency response indicated by the solid line A in FIG. 7 is offset upward.
  • the vehicle speed sensor 50 detects the vehicle speed V, and the control gain of the steering servo controller decreases as the detected vehicle speed V is slower than the reference vehicle speed. And a step of correcting.
  • the controller designed according to the frequency characteristic A during high speed running (high load) is set to a controller matched to the frequency characteristic A ′ close to the frequency characteristic B during low speed running (low load). Turn the steering servo again.
  • the vehicle characteristics change according to the vehicle speed. Therefore, if the steering servo is performed using the controller designed for the low-speed traveling (low load) and the frequency characteristics during the high-speed traveling (high load), the frequency corresponding to this arrow ⁇ The steering servo gain is too large in the area. Then, due to this, the actual turning angle overshoots the target turning angle, and vibration is generated, which gives the driver a sense of incongruity.
  • the control gain of the controller designed in accordance with the frequency characteristics during high-speed driving (high load) is reduced and corrected.
  • Steering servo is performed using a controller with control gain set.
  • the control gain of the turning servo is changed according to the vehicle speed in consideration of the change in the vehicle characteristics according to the vehicle speed. Therefore, so-called strong control can be performed during high speed travel (high load), and weak control can be performed during low speed travel (low load).
  • the response of the steering during low-speed driving (low load) is set appropriately, and the vibration described above Can be prevented.
  • FF control is used for vehicle behavior control, and the operation from the steering operation of the driver to the operation of the steered wheels is uniquely determined.
  • the steered wheels operate according to the output result of the FF control by changing the steer servo gain so that the followability of the steer does not change. Like that. Therefore, consistent vehicle behavior can be obtained at all times, and steering control without a driver's uncomfortable feeling can be performed.
  • the steered motor control unit 4 calculates a target steered angle of the steered wheels 24 based on the steering angle ⁇ detected by the steering angle sensor 34. Further, the steered motor control unit 4 drives and controls the steered motor 2 so that the actual steered angle detected by the steered motor angle sensor 16 follows the target steered angle. At that time, the steering servo is performed using a controller in which a control gain is set to set the response characteristic of the turning angle with respect to the turning motor command current at a preset reference vehicle speed to a desired target response characteristic.
  • the control gain of the controller is higher when the vehicle speed V is higher than when the vehicle speed V is low. Correct the control gain of the controller.
  • the steering servo gain is changed according to the vehicle, it is possible to appropriately ensure the response and disturbance suppression performance of the steering servo while considering the vehicle characteristics that change according to the vehicle speed. Therefore, suitable steering control can be performed.
  • the reference vehicle speed is set to the upper limit of the vehicle speed range that is higher than that in the stopped or extremely low speed traveling state.
  • the control gain of the controller is corrected to decrease as the vehicle speed V detected by the vehicle speed sensor 50 is slower than the reference vehicle speed.
  • the steered motor control unit 4 performs feedforward control (FF control) based on the steering angle ⁇ detected by the steering angle sensor 34 and the vehicle behavior predicted in advance, and the target steered angle of the steered wheels 24. Is calculated. Thereby, it is possible to prevent a delay in the target turning angle that occurs when the target turning angle is calculated using a sensor detection value such as a yaw rate or a vehicle acceleration as an amount indicating the vehicle behavior. Therefore, the vehicle behavior can be controlled appropriately.
  • FF control feedforward control
  • the controller of the turning servo is designed in accordance with the frequency response at the time of high speed running (high load) in the first embodiment described above, whereas at the time of low speed running ( The steering servo controller is designed in accordance with the frequency response at the time of low load.
  • the SBW system to which the vehicle steering control device according to the second embodiment is applied has the same configuration as that of FIG.
  • a steering servo controller is designed in accordance with the frequency response at the time of low speed running (low load) shown by the broken line B in FIG. That is, a steering servo controller is designed with a control gain such that the response characteristic of the turning angle with respect to the turning motor command current shown in broken line B in FIG. 4 becomes a desired target response characteristic, and the controller is used.
  • the control gain indicated by the broken line D is set as a reference gain.
  • FIG. 2 In consideration of the fact that the followability of the steering is lower when traveling at high speed (high load) than when traveling at low speed (low load), and when traveling at high speed (high load), FIG. As indicated by the solid line C, the control gain is increased with respect to the reference gain indicated by the broken line D. As shown in FIG. 2, this corresponds to correcting the output value of the servo control according to the vehicle speed V (vehicle speed correction 65).
  • FIG. 9 is a diagram illustrating an example of a correction gain for correcting the reference gain.
  • the correction gain is set to 1.
  • G1 for example, 1.5
  • the correction gain is set to increase from 1 toward G1 as the vehicle speed V increases.
  • the vehicle speed during low-speed traveling (low load) is set as the reference vehicle speed, and a controller is designed in accordance with the frequency characteristics at the reference vehicle speed.
  • the gain of the controller is corrected to increase as the vehicle speed V detected by the vehicle speed sensor 50 is faster than the reference vehicle speed.
  • the steering servo according to the dynamic characteristic of the steering accompanying a vehicle speed change is performed.
  • the present SBW system controls the turning of the steered wheels 24 by controlling the driving of the steered motor 2 in accordance with the operation of the steered wheels 32 by the driver, and changes the traveling direction of the vehicle.
  • the clutch 6 interposed between the steered wheel 32 and the steered wheel 24 is opened, and the torque transmission path between the steered wheel 32 and the steered wheel 24 is mechanically separated. Conduct in the state.
  • the steered motor control unit 4 sets the steered motor command current so that the actual steered angle becomes a target steered angle corresponding to the steering angle ⁇ detected by the steering angle sensor 34. Calculate. Then, the steering motor 2 is driven and controlled based on the calculated steering motor command current.
  • the vehicle steering control method implemented in the present SBW system includes the step of detecting the steering angle ⁇ of the steering wheel by the steering angle sensor 34, and the steered wheel by the steered motor control unit 4 based on the detected steering angle ⁇ . Calculating 24 target turning angles.
  • the actual turning angle of the steered wheels 24 is detected by the steered motor angle sensor 16, and the actual steered angle follows the target steered angle by the steered motor control unit 4.
  • the step of driving and controlling the steered motor 2 is provided.
  • the steered motor control unit 4 refers to the correction gain calculation map of FIG. 9 and sets the correction gain to “1” based on the vehicle speed V. Therefore, the steered motor control unit 4 calculates the steered motor command current while setting the steered servo gain to the design value, that is, the reference gain indicated by the broken line D in FIG. . That is, in the step of driving and controlling the steered motor 2, the response characteristic of the steered angle with respect to the steered motor command current at the vehicle speed (reference vehicle speed) during low speed travel (low load) is set as a desired target response characteristic. Steering servo is performed using a controller that sets a control gain for the purpose. At this time, the gain of the turning servo is kept at the design value during low speed traveling where V ⁇ V1.
  • the steered motor control unit 4 refers to the correction gain calculation map of FIG. (For example, 1.5). That is, the steered motor control unit 4 calculates the steered motor command current by changing the steered servo gain to the control gain indicated by the solid line C in FIG. 5, and drives and controls the steered motor 2.
  • the steering servo is performed in accordance with the vehicle characteristics indicated by the two-dot chain line B ′ in which the frequency response indicated by the broken line B in FIG. 10 is offset downward.
  • the vehicle speed sensor 50 detects the vehicle speed V and the control gain of the steering servo controller increases as the detected vehicle speed V is faster than the reference vehicle speed. And a step of correcting.
  • the controller designed according to the frequency characteristic B at the time of low speed traveling (low load) is set to the controller according to the frequency characteristic B ′ close to the frequency characteristic B at the time of high speed traveling (high load). Turn the steering servo again.
  • the vehicle characteristics change according to the vehicle speed. Therefore, if the steering servo is performed using the controller designed for the frequency characteristics during low speed driving (low load) during high speed driving (high load), the frequency corresponding to this arrow ⁇ The steering servo gain is too small in the area. Therefore, the vehicle behavior changes due to the fact that the steering response cannot be ensured during high-speed traveling.
  • the control gain of the controller designed according to the frequency characteristics during low-speed driving (low load) is increased and corrected.
  • Steering servo is performed using a controller with control gain set.
  • the control gain of the turning servo is changed according to the vehicle speed in consideration of the change in the vehicle characteristics according to the vehicle speed. Therefore, so-called strong control can be performed during high speed travel (high load), and weak control can be performed during low speed travel (low load).
  • a controller designed in accordance with the frequency characteristics during low-speed traveling (low load) it is possible to appropriately ensure the steering responsiveness during high-speed traveling (high load).
  • only one controller is designed according to the vehicle characteristics at the reference vehicle speed, and the gain is corrected according to the vehicle speed. Therefore, it is necessary to store a plurality of parameters constituting the controller. Absent. Therefore, as in the first embodiment described above, it is possible to prevent an increase in memory capacity and reduce the cost accordingly. Further, since the reference vehicle speed is the vehicle speed during low-speed traveling, the target responsiveness can be reliably ensured during low-speed traveling. Therefore, it is possible to perform the steering control that matches a vehicle that frequently travels at a low speed, such as a small vehicle or a city riding vehicle.
  • FF control is used for vehicle behavior control, and the operation from the steering operation of the driver to the operation of the steered wheels is uniquely determined.
  • the steered wheels operate according to the output result of the FF control by changing the steer servo gain so that the followability of the steer does not change. Like that. Therefore, consistent vehicle behavior can be obtained at all times, and steering control without a driver's uncomfortable feeling can be performed.
  • Control in which a control gain for setting a response characteristic of a turning angle with respect to a steering motor command current at a reference vehicle speed to a desired target response characteristic is a vehicle speed when the vehicle is stopped or traveling at an extremely low speed. Steering servo is performed using the instrument. The control gain of the controller is corrected to increase as the vehicle speed V detected by the vehicle speed sensor 50 is faster than the reference vehicle speed.
  • the steering servo gain is changed according to the vehicle, it is possible to appropriately ensure the response and disturbance suppression performance of the steering servo while considering the vehicle characteristics that change according to the vehicle speed.
  • the reference vehicle speed is the vehicle speed during low-speed traveling, the target responsiveness can be reliably ensured during low-speed traveling. Therefore, it is possible to perform the steering control that matches a vehicle that frequently travels at a low speed, such as a small vehicle or a city riding vehicle.
  • the vehicle steering control device of the present invention it is possible to appropriately ensure the response and disturbance suppression performance of the turning servo while taking into consideration the vehicle characteristics that change according to the vehicle speed. Can be controlled and useful.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Power Steering Mechanism (AREA)

Abstract

 転舵サーボの応答性及び外乱抑制性能を確保することができる車両用操舵制御装置及び車両用操舵制御方法を提供する。実転舵角が操舵角θに基づいて演算した目標転舵角に追従するように、転舵モータ(2)を駆動制御する。この転舵サーボは、基準車速(高速走行時の車速、又は低速走行時の車速)における転舵モータ指令電流に対する転舵角の応答特性を、所望の目標応答特性とするための制御ゲインを設定した制御器を用いて行う。このとき、車速Vが速いほど制御器の制御ゲインが大きくなるように、当該制御器の制御ゲインを補正する。

Description

車両用操舵制御装置及び車両用操舵制御方法
 本発明は、ステアリングホイールと転舵輪とを機械的に分離した状態で、転舵輪をステアリングホイールの操作に応じた角度に転舵する車両用操舵制御装置及び車両用操舵制御方法に関するものである。
 従来、操舵輪(ステアリングホイール)と転舵輪との間のトルク伝達経路を機械的に分離した状態で、転舵モータを駆動制御して、転舵輪を、操舵輪の操作に応じた角度(目標転舵角)に転舵する操舵制御装置がある。このような操舵制御装置は、一般的に、ステアバイワイヤ(SBW)と呼称するシステム(SBWシステム)を形成する装置である。
 SBWシステムを形成する操舵制御装置としては、例えば特許文献1に記載の技術がある。この技術は、操舵角と、ヨーレートセンサ値を用いて検知した車両挙動とに基づいて目標転舵角を設定し、転舵輪を制御するものである。
特許第3817923号公報
 上記特許文献1に記載の技術は、車両挙動を考慮した目標転舵角を設定するものであるが、車両挙動を好適に制御するためには、目標転舵角を反映した駆動指令を転舵アクチュエータに出力した際に、当該駆動指令の通りに転舵輪が動作する必要がある。すなわち、転舵サーボの応答性及び外乱抑制性能の確保が重要である。
 そこで、本発明は、転舵サーボの応答性及び外乱抑制性能を確保することができる車両用操舵制御装置及び車両用操舵制御方法を提供することを課題としている。
 上記課題を解決するために、本発明の一態様は、実転舵角が、操舵角に基づいて演算した目標転舵角に追従するように、転舵アクチュエータを駆動制御する。この転舵サーボは、予め設定した基準車速における転舵アクチュエータ指令電流に対する実転舵角の応答特性を、所望の目標応答特性とするための制御ゲインを設定した制御器を用いて行う。このとき、車速が高いときと低いときとで、車速が高いときの方が、車速が低いときと比較して制御器の制御ゲインが高くなるように、制御器の制御ゲインを補正する。
 本発明によれば、転舵サーボゲインを車両に応じて変更するので、車速に応じて変化する車両特性を考慮しつつ、転舵サーボの応答性及び外乱抑制性能を適切に確保することができる。したがって、好適な転舵制御を行うことができる。
本実施形態に係る車両用操舵制御装置を適用したステアバイワイヤシステムの全体構成図である。 転舵サーボ制御系を示すブロック図である。 実転舵角とSATとの関係を示す図である。 転舵モータ指令電流に対する転舵角の周波数応答を示す図である。 制御ゲインの変更方法を説明する図である。 補正ゲインの一例を示す図である。 第1の実施形態における動作を説明する図である。 第2の実施形態の制御ゲインの変更方法を説明する図である。 第2の実施形態の補正ゲインの一例を示す図である。 第2の実施形態における動作を説明する図である。
 以下、本発明の実施の形態を図面に基づいて説明する。
(第1の実施の形態)
(構成)
 図1は、本実施形態に係る車両用操舵制御装置を適用したステアバイワイヤシステム(SBWシステム)の全体構成図である。
 図中、符号1は車両用操舵制御装置である。この車両用操舵制御装置1は、転舵モータ2と、転舵モータ制御部4と、クラッチ6と、反力モータ8と、反力モータ制御部10とを備える。
 転舵モータ2は、転舵モータ制御部4が出力する転舵モータ指令電流(転舵アクチュエータ指令電流)に応じて駆動するモータであり、回転可能な転舵モータ出力軸12を有する。この転舵モータ2は、転舵モータ指令電流に応じて駆動することにより、転舵輪24を転舵させるための転舵トルクを出力する。ここで、転舵輪24は車両の左右前輪であり、左前輪を転舵輪24L、右前輪を転舵輪24Rとする。
 転舵モータ出力軸12の先端側には、ピニオンギアを用いて形成した転舵出力歯車12aを設ける。転舵出力歯車12aは、ステアリングラック14に挿通したラック軸18の両端部間に設けたラックギア18aと噛合する。
 また、転舵モータ2には、転舵モータ角度センサ16を設ける。転舵モータ角度センサ16は、転舵モータ2の回転角度(転舵輪24の実転舵角)を検出し、この検出した回転角度を含む情報信号を、転舵モータ制御部4を介して、反力モータ制御部10へ出力する。
 ステアリングラック14は、円筒形状に形成してあり、上述したようにラック軸18を挿通している。このラック軸18は、転舵モータ出力軸12の回転、すなわち、転舵出力歯車12aの回転に応じて車幅方向へ変位する。
 ラック軸18の両端は、それぞれ、タイロッド20及びナックルアーム22を介して、転舵輪24に連結する。すなわち、転舵輪24は、転舵モータ出力軸12の回転に応じてラック軸18が車幅方向へ変位することで、タイロッド20及びナックルアーム22を介して転舵し、車両の進行方向を変化する。
 また、ラック軸18とタイロッド20との間には、タイヤ軸力センサ26を設ける。タイヤ軸力センサ26は、ラック軸18の軸方向(車幅方向)に作用する軸力を検出し、この検出した軸力を含む情報信号を、反力モータ制御部10へ出力する。
 転舵モータ制御部4は、反力モータ制御部10と、CAN(Controller Area Network)等の通信ライン28を介して、情報信号を入出力する。これに加え、転舵モータ制御部4は、通信ライン28を介して、車速センサ50が出力する情報信号の入力を受ける。
 そして、転舵モータ制御部4は、角度サーボ系により、実転舵角が所定の応答特性で目標転舵角に追従するように転舵モータ指令電流を演算し、その転舵モータ指令電流に基づいて転舵モータ2を駆動制御する。角度サーボ系は、例えばロバストモデルマッチング手法を用いた方法で構成することができる。これにより、耐外乱性に優れた制御系を実現できる。
 ここで、上記目標転舵角は、運転者による操舵操作量と予め予測した車両挙動とに基づいて算出する。すなわち、運転者のステアリング操作から転舵輪の転舵までの車両挙動が一意に決まるように、フィードフォワード制御(FF制御)を用いて目標転舵角を算出する。
 クラッチ6は、運転者が操作する操舵輪32(ステアリングホイール)と転舵輪24との間に介装し、反力モータ制御部10が出力するクラッチ指令電流に応じて、開放状態または締結状態に切り換わる。なお、クラッチ6は、通常状態では、開放状態である。
 クラッチ6の開放状態では、操舵輪32と転舵輪24との間のトルク伝達経路が機械的に分離するため、操舵輪32の操舵操作が転舵輪24へ伝達しない状態となる。一方、クラッチ6の締結状態では、操舵輪32と転舵輪24との間のトルク伝達経路が機械的に結合するため、操舵輪32の操舵操作が転舵輪24へ伝達する状態となる。
 このクラッチ6は、開放状態で互いに離間し、締結状態で互いに噛合する一対のクラッチ板40を有する。一対のクラッチ板40は、操舵輪32側に配置する操舵輪側クラッチ板40aと、転舵輪24側に配置する転舵輪側クラッチ板40bとから構成する。
 操舵輪側クラッチ板40aは、操舵輪32と共に回転するステリングシャフト42に取り付けてあり、ステリングシャフト42と共に回転する。転舵輪側クラッチ板40bは、ピニオン軸44の一端に取り付けてあり、ピニオン軸44と共に回転する。
 ここで、ピニオン軸44の他端は、ピニオン46内に配置している。ピニオン46には、ラックギア18aと噛合するピニオンギア(図示せず)を内蔵する。ピニオンギアは、ピニオン軸44と共に回転する。すなわち、ピニオンギアは、ピニオン軸44を介して、転舵輪側クラッチ板40bと共に回転する。
 また、ピニオン46には、ピニオン角度センサ48を設ける。ピニオン角度センサ48は、ピニオンギアの回転角度を検出し、この検出した回転角度を含む情報信号を、反力モータ制御部10へ出力する。
 また、操舵輪32とクラッチ6との間には、操舵角センサ34と、操舵トルクセンサ36と、反力モータ8と、反力モータ角度センサ38とを配置する。
 操舵角センサ34は、例えば、操舵輪32を回転可能に支持するステアリングコラムに設ける。そして、操舵角センサ34は、操舵輪32の現在の回転角度(操舵操作量)である操舵角θを検出する。操舵角センサ34は、検出した操舵輪32の操舵角θを含む情報信号を、反力モータ制御部10へ出力する。
 操舵トルクセンサ36は、操舵角センサ34と同様、例えば、操舵輪32を回転可能に支持するステアリングコラムに設ける。そして、操舵トルクセンサ36は、運転者が操舵輪32に加えているトルクである操舵トルクを検出する。操舵トルクセンサ36は、検出した操舵トルクを含む情報信号を、反力モータ制御部10へ出力する。
 反力モータ8は、反力モータ制御部10が出力する反力モータ指令電流に応じて駆動するモータであり、操舵輪32と共に回転するステリングシャフト42を回転させて、操舵輪32へ操舵反力を出力する。ここで、反力モータ8が操舵輪32へ出力する操舵反力は、運転者が操舵輪32を操舵する操作方向とは反対方向へ作用する反力である。この操舵反力は、反力モータ制御部10で演算する。
 反力モータ角度センサ38は、反力モータ8に設ける。反力モータ角度センサ38は、反力モータ8の回転角度を検出し、この検出した回転角度を含む情報信号を、反力モータ制御部10へ出力する。
 反力モータ制御部10は、転舵モータ制御部4と、通信ライン28を介して、情報信号を入出力する。これに加え、反力モータ制御部10は、通信ライン28を介して、車速センサ50及びエンジンコントローラ52が出力する情報信号の入力を受ける。
 そして、反力モータ制御部10は、通信ライン28を介して入力を受けた情報信号や、各種センサから入力を受けた情報信号に基づき、上述した操舵反力を演算し、反力モータ8を駆動制御する。すなわち、操舵反力は、クラッチ6を開放状態として、操舵輪32と転舵輪24との間のトルク伝達経路を機械的に分離している状態で、転舵輪24に作用しているタイヤ軸力や操舵輪32の操舵状態に基づいて演算する。これにより、操舵輪32を操舵する運転者へ、適切な操舵反力を伝達するようにする。
 車速センサ50は、車両の車速Vを検出し、この検出した車速を含む情報信号を、転舵モータ制御部4及び反力モータ制御部10へ出力する。また、エンジンコントローラ52(エンジンECU)は、エンジン(図示せず)の状態(エンジン駆動、または、エンジン停止)を含む情報信号を、反力モータ制御部10へ出力する。
 以下、本実施形態における転舵角のサーボ制御について説明する。
 図2は、転舵サーボ制御系を示すブロック図である。
 先ず、転舵モータ制御部4は、操舵角センサ34で検出した操舵角θに基づき、目標転舵角を演算する(車両挙動コントローラ61)。このとき、転舵モータ制御部4は、予め車両挙動を予測し、FF制御を用いて車両挙動を考慮した目標転舵角を演算するものとする。
 次に、転舵モータ制御部4は、実転舵角が目標転舵角に追従するように転舵モータ指令電流を演算し、その転舵モータ指令電流に基づいて転舵モータ2を駆動制御する(角度サーボ62)。これにより、転舵モータ2は転舵トルクを出力する。すると、ラック軸18が車幅方向へ変位し(ラックギア63)、車両が旋回する(車両64)。このとき、転舵輪24の転舵に対する反力としてセルフアライニングトルクSATが発生するため、実転舵角は、このセルフアライニングトルクSATの影響を受けた値となる。
 図3は、実転舵角とセルフアライニングトルクSATとの関係を示す図である。
 通常、走行中に転舵輪24が転舵すると、路面からの反力で転舵輪24が中立方向に戻る力(SAT)が発生する。この力(SAT)の大きさは、転舵輪24の転舵角が大きいほど大きく、また、同じ転舵角でも車速Vが速いほど大きい。
 このように、停車中と走行中とでは、同じ転舵量であってもセルフアライニングトルクSATの大きさは異なる。したがって、一般に、転舵モータ2への転舵モータ指令電流に対する実転舵角の応答特性(周波数応答)も、車速Vに応じて変化する。
 図4は、転舵モータ指令電流に対する転舵角の周波数応答を示す図であり、実線Aは高速走行時(高負荷時)の周波数応答、破線Bは低速走行時(低負荷時)の周波数応答である。
 ここで、高速走行とは、セルフアライニングトルクSATが比較的大きく作用する車速での走行であり、停車もしくは極低速走行状態よりも高い車速域の上限車速での走行とする。停車もしくは極低速走行状態よりも高い車速域とは、例えば常用車速域であり、車両諸元や車両タイプ(街乗りタイプ、スポーツカータイプ等)によって異なる。
 本実施形態では、以下に説明するサーボ制御によって、上記高速走行時の車速での転舵モータ指令電流に対する実転舵角の応答特性が所望の目標応答特性に一致することになる。したがって、本実施形態では、実際の応答特性を目標応答特性に一致させたいとする車速を、上記高速走行時の車速として設定する。
 また、低速走行とは、セルフアライニングトルクSATが殆ど無い停車又は極低速での走行とする。
 図4において、縦軸のゲインは、転舵モータ2へ流した転舵モータ指令電流に対する転舵輪の動きやすさに相当し、図4の上方向にいくほど転舵輪が動きやすい(応答性が高い)ことを示している。図中、矢印αに示すように、車両特性が車速Vに応じて変化する周波数領域が存在し、この周波数領域では車速Vが速いほど応答性が低くなる。つまり、高速走行時は、セルフアライニングトルクSATの影響により、低速走行時と比較して転舵の追従性が悪い。
 そこで、本実施形態では、このような車速Vに応じて変化する車両特性を考慮し、転舵サーボゲインを車速Vに応じて変更する。これにより、車両の走行状態によらずに、常に転舵の追従性が同じになるようにする。
 具体的には、図5の実線Cに示すように、図4の実線Aに示す高速走行時(高負荷時)の周波数応答に合わせて転舵サーボの制御器を設計する。すなわち、図4の実線Aに示す転舵モータ指令電流に対する転舵角の応答特性が、所望の目標応答特性となるような制御ゲインで転舵サーボの制御器を設計し、当該制御器を用いて転舵モータ指令電流を演算するようにする。この実線Cに示す制御ゲインを基準ゲインとして設定する。
 そして、低速走行時(低負荷時)は、高速走行時(高負荷時)と比較して転舵の追従性が高いことを考慮し、低速走行時(低負荷時)には、図5の破線Dに示すように、制御ゲインを実線Cで示す基準ゲインに対して小さくする。これは、図2に示すように、サーボ制御の出力値を車速Vに応じて補正することに相当する(車速補正65)。
 図6は、基準ゲインを補正するための補正ゲインの一例を示す図である。
 この図6に示すように、V≧V2(例えばV2=30km/h)である場合には、補正ゲインを1に設定する。また、V≦V1(例えばV1=20km/h)である場合には、補正ゲインを1よりも小さい所定値G1(例えば0.5)に設定する。そして、V1<V<V2である場合には、車速Vが小さくなるにつれて補正ゲインが1からG1へ向けて小さくなるように設定する。
 このように、高速走行時(高負荷時)の車速を基準車速とし、当該基準車速での周波数特性に合わせた制御器を設計する。そして、車速センサ50で検出した車速Vが上記基準車速よりも遅いほど、制御器のゲインを減少補正する。これにより、車速変化に伴う転舵の動特性に応じた転舵サーボを行う。
 なお、図1において、転舵モータ2が転舵アクチュエータに対応し、操舵角センサ34が操舵角検出部に対応し、転舵モータ角度センサ16が転舵角検出部に対応し、車速センサ50が車速検出部に対応している。
 また、転舵モータ制御部4が車両挙動予測部、目標転舵角演算部、転舵サーボ部及びゲイン補正部に対応している。特に図2における車両挙動コントローラ61が車両挙動予測部及び目標転舵角演算部に対応し、角度サーボ62が転舵サーボ部に対応し、車速補正65がゲイン補正部に対応している。
(動作)
 次に、第1の実施形態の動作について説明する。
 本SBWシステムは、運転者による操舵輪32の操作に応じて転舵モータ2を駆動制御することで、転舵輪24を転舵する制御を行い、車両の進行方向を変化する。転舵モータ2の駆動制御は、操舵輪32と転舵輪24との間に介装するクラッチ6を開放状態とし、操舵輪32と転舵輪24との間のトルク伝達経路を機械的に分離した状態で実施する。
 先ず、V≧V2となる高速走行時(高負荷時)の転舵制御について説明する。運転者がステアリングホイールを操作すると、転舵モータ制御部4は、実転舵角が、操舵角センサ34で検出した操舵角θに応じた目標転舵角となるように転舵モータ指令電流を演算する。そして、演算した転舵モータ指令電流に基づいて転舵モータ2を駆動制御する。
 すなわち、本SBWシステムで実施する車両用操舵制御方法は、操舵角センサ34でステアリングホイールの操舵角θを検出するステップと、検出した操舵角θに基づいて、転舵モータ制御部4で転舵輪24の目標転舵角を演算するステップとを備える。また、当該車両用操舵制御方法は、転舵モータ角度センサ16で転舵輪24の実転舵角を検出するステップと、転舵モータ制御部4で、実転舵角が目標転舵角に追従するように、転舵モータ2を駆動制御するステップとを備える。
 このとき、転舵モータ制御部4は、図6の補正ゲイン算出マップを参照し、車速Vに基づいて補正ゲインを“1”に設定する。そのため、転舵モータ制御部4は、転舵サーボのゲインを設計値、即ち図5の実線Cに示す基準ゲインに設定したまま転舵モータ指令電流を演算し、転舵モータ2を駆動制御する。
 すなわち、上記転舵モータ2を駆動制御するステップでは、高速走行時(高負荷時)の車速(基準車速)における転舵モータ指令電流に対する転舵角の応答特性を、所望の目標応答特性とするための制御ゲインを設定した制御器を用いて転舵サーボを行う。このとき、V≧V2となる高速走行時には、転舵サーボのゲインを設計値のままとする。
 そのため、高速走行時(高負荷時)には、図7の実線Aに示す実際の車両特性に合った転舵サーボを行うことができる。したがって、高速走行時に、比較的大きなセルフアライニングトルクSATが発生することでタイヤが転舵し難い状況となっても、転舵応答性が低下するのを防止し、転舵の追従性を確保することができる。すなわち、SBWシステムで求められる、きびきびとした走行を実現することができる。
 一方、V≦V1となる低速走行時(低負荷時)には、転舵モータ制御部4は、図6の補正ゲイン算出マップを参照し、車速Vに基づいて補正ゲインを1よりも小さいG1(例えば0.5)に設定する。すなわち、転舵モータ制御部4は、転舵サーボのゲインを、図5の破線Dに示す制御ゲインに変更して転舵モータ指令電流を演算し、転舵モータ2を駆動制御する。これにより、図7の実線Aに示す周波数応答を上方向にオフセットした二点鎖線A´に示す車両特性に合わせた転舵サーボを行うことになる。
 すなわち、本SBWシステムで実施する車両用操舵制御方法は、車速センサ50で車速Vを検出するステップと、検出した車速Vが基準車速よりも遅いほど、転舵サーボの制御器の制御ゲインを減少補正するステップとを備える。
 このように、高速走行時(高負荷時)の周波数特性Aに合わせて設計した制御器を、低速走行時(低負荷時)の周波数特性Bに近い周波数特性A´に合わせた制御器に設定し直して転舵サーボを行う。
 上述した図4に示すように、車両特性は車速に応じて変化する。そのため、仮に、低速走行時(低負荷時)に、高速走行時(高負荷時)の周波数特性に合わせて設計した制御器をそのまま用いて転舵サーボを行うと、この矢印αに対応する周波数領域で転舵サーボのゲインが大きすぎてしまう。すると、これに起因して、目標転舵角に対して実転舵角がオーバーシュートし、振動が発生して運転者に違和感を与えてしまう。
 これに対して、本実施形態では、低速走行時(低負荷時)には、高速走行時(高負荷時)の周波数特性に合わせて設計した制御器の制御ゲインを減少補正し、補正後の制御ゲインを設定した制御器を用いて転舵サーボを行う。このように、車速に応じて車両特性が変化することを考慮し、車速に応じて転舵サーボの制御ゲインを変更する。
 したがって、高速走行時(高負荷時)には所謂強い制御、低速走行時(低負荷時)には弱い制御を行うことができる。このように、高速走行時(高負荷時)の周波数特性に合わせて設計した制御器を用いても、低速走行時(低負荷時)の転舵の応答性を適切に設定し、上述した振動の発生を防止することができる。
 ただし、本実施形態では、低速走行時(低負荷時)に、図7の二点鎖線A´に示す車両特性に合わせた転舵サーボを行うため、図4の矢印αに示す周波数領域よりも高周波の領域では、逆に転舵サーボのゲインが小さくなる。そのため、この高周波領域では、目標とする応答性が得られない。しかしながら、低速走行時の高周波領域での応答性は車両挙動をコントロールする上で常用域では必要としないため、問題とはならない。
 ところで、車速に応じて変化する車両特性に合わせて転舵サーボを行うためには、車速毎に複数の制御器を設計しておき、車速に応じて制御器を切り替えて用いる方法もある。しかしながら、この場合、制御器を構成するパラメータを複数記憶しておく必要があり、メモリ容量が増大する。
 これに対して、本実施形態は、基準車速での車両特性に合わせた制御器を1つだけ設計し、車速に応じてゲインを補正する構成であるため、制御器を構成するパラメータを複数記憶しておく必要がない。したがって、メモリ容量の増大を防ぎ、その分のコストを削減することができる。また、基準車速を高速走行時の車速とするので、高速走行時には確実に目標とする応答性を確保することができる。
 以上のように、車両挙動のコントロールにはFF制御を用い、運転者のステアリング操作から転舵輪の動作までを一意に決める。このとき、車速に応じてセルフアライニングトルクSATが変化しても、転舵の追従性が変化しないように転舵サーボゲインを変更することで、FF制御の出力結果通りに転舵輪が動作するようにする。したがって、常に一貫した車両挙動とすることができ、運転者の違和感のない転舵制御を行うことができる。
(効果)
 第1の実施形態では、以下の効果が得られる。
 (1)転舵モータ制御部4は、操舵角センサ34で検出した操舵角θに基づいて、転舵輪24の目標転舵角を演算する。また、転舵モータ制御部4は、転舵モータ角度センサ16で検出した実転舵角が目標転舵角に追従するように、転舵モータ2を駆動制御する。その際、予め設定した基準車速での転舵モータ指令電流に対する転舵角の応答特性を、所望の目標応答特性とするための制御ゲインを設定した制御器を用いて転舵サーボを行う。そして、車速センサ50で検出した車速Vが高いときと低いときとで、車速Vが高いときの方が、車速Vが低いときと比較して上記制御器の制御ゲインが高くなるように、当該制御器の制御ゲインを補正する。
 このように、転舵サーボゲインを車両に応じて変更するので、車速に応じて変化する車両特性を考慮しつつ、転舵サーボの応答性及び外乱抑制性能を適切に確保することができる。したがって、好適な転舵制御を行うことができる。
 (2)基準車速を、停車もしくは極低速走行状態よりも高い車速域の上限とする。そして、車速センサ50で検出した車速Vが上記基準車速よりも遅いほど、上記制御器の制御ゲインを減少補正する。
 このように、基準車速を高速走行時の車速とするので、高速走行時には確実に目標とする応答性を確保することができる。
 (3)転舵モータ制御部4は、操舵角センサ34で検出した操舵角θと予め予測した車両挙動とに基づいて、フィードフォワード制御(FF制御)を行って転舵輪24の目標転舵角を演算する。
 これにより、車両挙動を示す量としてヨーレートや車両加速度等のセンサ検出値を用いて目標転舵角を演算する場合に発生する目標転舵角の遅れを防止することができる。したがって、車両挙動を適切にコントロールすることができる。
(第2の実施形態)
 次に、本発明の第2の実施形態について説明する。
 この第2の実施形態は、上述した第1の実施形態において、高速走行時(高負荷時)の周波数応答に合わせて転舵サーボの制御器を設計しているのに対し、低速走行時(低負荷時)の周波数応答に合わせて転舵サーボの制御器を設計するようにしたものである。
(構成)
 第2の実施形態に係る車両用操舵制御装置を適用したSBWシステムは、図1と同様の構成を有する。
 本実施形態では、図8の破線Dに示すように、図4の破線Bに示す低速走行時(低負荷時)の周波数応答に合わせて転舵サーボの制御器を設計する。すなわち、図4の破線Bに示す転舵モータ指令電流に対する転舵角の応答特性が、所望の目標応答特性となるような制御ゲインで転舵サーボの制御器を設計し、当該制御器を用いて転舵モータ指令電流を演算するようにする。この破線Dに示す制御ゲインを基準ゲインとして設定する。
 そして、高速走行時(高負荷時)は、低速走行時(低負荷時)と比較して転舵の追従性が低いことを考慮し、高速走行時(高負荷時)には、図5の実線Cに示すように、制御ゲインを破線Dで示す基準ゲインに対して大きくする。これは、図2に示すように、サーボ制御の出力値を車速Vに応じて補正することに相当する(車速補正65)。
 図9は、基準ゲインを補正するための補正ゲインの一例を示す図である。
 この図9に示すように、V≦V1(例えばV1=20km/h)である場合には、補正ゲインを1に設定する。また、V≧V2(例えばV2=30km/h)である場合には、補正ゲインを1よりも大きい所定値G1(例えば1.5)に設定する。そして、V1<V<V2である場合には、車速Vが大きくなるにつれて補正ゲインが1からG1へ向けて大きくなるように設定する。
 このように、低速走行時(低負荷時)の車速を基準車速とし、当該基準車速での周波数特性に合わせた制御器を設計する。そして、車速センサ50で検出した車速Vが上記基準車速よりも速いほど、制御器のゲインを増加補正する。これにより、車速変化に伴う転舵の動特性に応じた転舵サーボを行う。
(動作)
 次に、第2の実施形態の動作について説明する。
 本SBWシステムは、運転者による操舵輪32の操作に応じて転舵モータ2を駆動制御することで、転舵輪24を転舵する制御を行い、車両の進行方向を変化する。転舵モータ2の駆動制御は、操舵輪32と転舵輪24との間に介装するクラッチ6を開放状態とし、操舵輪32と転舵輪24との間のトルク伝達経路を機械的に分離した状態で実施する。
 先ず、V≦V1となる低速走行時(低負荷時)の転舵制御について説明する。運転者がステアリングホイールを操作すると、転舵モータ制御部4は、実転舵角が、操舵角センサ34で検出した操舵角θに応じた目標転舵角となるように転舵モータ指令電流を演算する。そして、演算した転舵モータ指令電流に基づいて転舵モータ2を駆動制御する。
 すなわち、本SBWシステムで実施する車両用操舵制御方法は、操舵角センサ34でステアリングホイールの操舵角θを検出するステップと、検出した操舵角θに基づいて、転舵モータ制御部4で転舵輪24の目標転舵角を演算するステップとを備える。また、当該車両用操舵制御方法は、転舵モータ角度センサ16で転舵輪24の実転舵角を検出するステップと、転舵モータ制御部4で、実転舵角が目標転舵角に追従するように、転舵モータ2を駆動制御するステップとを備える。
 このとき、転舵モータ制御部4は、図9の補正ゲイン算出マップを参照し、車速Vに基づいて補正ゲインを“1”に設定する。そのため、転舵モータ制御部4は、転舵サーボのゲインを設計値、即ち図5の破線Dに示す基準ゲインに設定したまま転舵モータ指令電流を演算し、転舵モータ2を駆動制御する。
 すなわち、上記転舵モータ2を駆動制御するステップでは、低速走行時(低負荷時)の車速(基準車速)における転舵モータ指令電流に対する転舵角の応答特性を、所望の目標応答特性とするための制御ゲインを設定した制御器を用いて転舵サーボを行う。このとき、V≦V1となる低速走行時には、転舵サーボのゲインを設計値のままとする。
 そのため、低速走行時(低負荷時)には、図10の破線Bに示す実際の車両特性に合った転舵サーボを行うことができる。したがって、低速走行時に、セルフアライニングトルクSATが殆ど発生しておらずタイヤが転舵し易い状況である場合には、転舵応答性が高くなりすぎるのを防止し、振動の発生を防止することができる。すなわち、安定した走行を実現することができる。
 一方、V≧V2となる高速走行時(高負荷時)には、転舵モータ制御部4は、図9の補正ゲイン算出マップを参照し、車速Vに基づいて補正ゲインを1よりも大きいG1(例えば1.5)に設定する。すなわち、転舵モータ制御部4は、転舵サーボのゲインを、図5の実線Cに示す制御ゲインに変更して転舵モータ指令電流を演算し、転舵モータ2を駆動制御する。これにより、図10の破線Bに示す周波数応答を下方向にオフセットした二点鎖線B´に示す車両特性に合わせた転舵サーボを行うことになる。
 すなわち、本SBWシステムで実施する車両用操舵制御方法は、車速センサ50で車速Vを検出するステップと、検出した車速Vが基準車速よりも速いほど、転舵サーボの制御器の制御ゲインを増加補正するステップとを備える。
 このように、低速走行時(低負荷時)の周波数特性Bに合わせて設計した制御器を、高速走行時(高負荷時)の周波数特性Bに近い周波数特性B´に合わせた制御器に設定し直して転舵サーボを行う。
 上述した図4に示すように、車両特性は車速に応じて変化する。そのため、仮に、高速走行時(高負荷時)に、低速走行時(低負荷時)の周波数特性に合わせて設計した制御器をそのまま用いて転舵サーボを行うと、この矢印αに対応する周波数領域で転舵サーボのゲインが小さすぎてしまう。そのため、高速走行時に転舵応答性を確保できないことに起因して、車両挙動が変化してしまう。
 これに対して、本実施形態では、高速走行時(高負荷時)には、低速走行時(低負荷時)の周波数特性に合わせて設計した制御器の制御ゲインを増加補正し、補正後の制御ゲインを設定した制御器を用いて転舵サーボを行う。このように、車速に応じて車両特性が変化することを考慮し、車速に応じて転舵サーボの制御ゲインを変更する。
 したがって、高速走行時(高負荷時)には所謂強い制御、低速走行時(低負荷時)には弱い制御を行うことができる。このように、低速走行時(低負荷時)の周波数特性に合わせて設計した制御器を用いても、高速走行時(高負荷時)の転舵の応答性を適切に確保することができる。
 本実施形態は、基準車速での車両特性に合わせた制御器を1つだけ設計し、車速に応じてゲインを補正する構成であるため、制御器を構成するパラメータを複数記憶しておく必要がない。したがって、上述した第1の実施形態と同様に、メモリ容量の増大を防ぎ、その分のコストを削減することができる。
 また、基準車速を低速走行時の車速とするので、低速走行時には確実に目標とする応答性を確保することができる。したがって、小型車両や街乗り車両など、頻繁に低速走行する車両に合致した転舵制御を行うことができる。
 以上のように、車両挙動のコントロールにはFF制御を用い、運転者のステアリング操作から転舵輪の動作までを一意に決める。このとき、車速に応じてセルフアライニングトルクSATが変化しても、転舵の追従性が変化しないように転舵サーボゲインを変更することで、FF制御の出力結果通りに転舵輪が動作するようにする。したがって、常に一貫した車両挙動とすることができ、運転者の違和感のない転舵制御を行うことができる。
(効果)
 第2の実施形態では、以下の効果が得られる。
 (1)停車もしくは極低速走行状態での車速を基準車速とし、基準車速での転舵モータ指令電流に対する転舵角の応答特性を、所望の目標応答特性とするための制御ゲインを設定した制御器を用いて転舵サーボを行う。そして、車速センサ50で検出した車速Vが上記基準車速よりも速いほど、上記制御器の制御ゲインを増加補正する。
 このように、転舵サーボゲインを車両に応じて変更するので、車速に応じて変化する車両特性を考慮しつつ、転舵サーボの応答性及び外乱抑制性能を適切に確保することができる。また、基準車速を低速走行時の車速とするので、低速走行時には確実に目標とする応答性を確保することができる。したがって、小型車両や街乗り車両など、頻繁に低速走行する車両に合致した転舵制御を行うことができる。
産業上の利用の可能性
 本発明に係る車両用操舵制御装置によれば、車速に応じて変化する車両特性を考慮しつつ、転舵サーボの応答性及び外乱抑制性能を適切に確保することができるため、好適な転舵制御を行うことができ、有用である。
 1…操舵制御装置、2…転舵モータ、4…転舵モータ制御部、6…クラッチ、8…反力モータ、10…反力モータ制御部、12…転舵モータ出力軸、12a…転舵出力歯車、14…ステアリングラック、16…転舵モータ角度センサ、18…ラック軸、18a…ラックギア、20…タイロッド、22…ナックルアーム、24…転舵輪、26…タイヤ軸力センサ、28…通信ライン、32…操舵輪、34…操舵角センサ、36…操舵トルクセンサ、38…反力モータ角度センサ、40…クラッチ板、42…ステリングシャフト、44…ピニオン軸、46…ピニオン、48…ピニオン角度センサ、50…車速センサ、52…エンジンコントローラ

Claims (5)

  1.  転舵輪と機械的に分離したステアリングホイールと、
     前記ステアリングホイールの操舵状態に基づいて前記転舵輪を転舵する転舵アクチュエータと、
     前記ステアリングホイールの操舵角を検出する操舵角検出部と、
     少なくとも前記操舵角検出部で検出した操舵角に基づいて、前記転舵輪の目標転舵角を演算する目標転舵角演算部と、
     前記転舵輪の実転舵角を検出する転舵角検出部と、
     車速を検出する車速検出部と、
     予め設定した基準車速での転舵アクチュエータ指令電流に対する実転舵角の応答特性を、所望の目標応答特性とするための制御ゲインを設定した制御器を用いて、前記転舵角検出部で検出した実転舵角が前記目標転舵角演算部で演算した目標転舵角に追従するように前記転舵アクチュエータを駆動制御する転舵サーボ部と、
     前記車速検出部で検出した車速が高いときと低いときとで、前記車速が高いときの方が、前記車速が低いときと比較して前記制御器の制御ゲインが高くなるように、当該制御器の制御ゲインを補正するゲイン補正部と、を備えることを特徴とする車両用操舵制御装置。
  2.  前記基準車速は、停車もしくは極低速走行状態よりも高い車速域の上限であり、
     前記ゲイン補正部は、前記車速検出部で検出した車速が前記基準車速よりも遅いほど、前記制御器の制御ゲインを減少補正することを特徴とする請求項1に記載の車両用操舵制御装置。
  3.  前記基準車速は、停車もしくは極低速走行状態での車速であり、
     前記ゲイン補正部は、前記車速検出部で検出した車速が前記基準車速よりも速いほど、前記制御器の制御ゲインを増加補正することを特徴とする請求項1に記載の車両用操舵制御装置。
  4.  前記目標転舵角演算部は、車両挙動を予測する車両挙動予測部を有し、
     前記操舵角検出部で検出した操舵角と前記車両挙動予測部で予測した車両挙動とに基づいて、フィードフォワード制御を行って前記転舵輪の目標転舵角を演算することを特徴とする請求項1~3の何れか1項に記載の車両用操舵制御装置。
  5.  転舵輪と機械的に分離したステアリングホイールの操舵状態に基づいて、転舵アクチュエータによって前記転舵輪を転舵するに際し、
     前記ステアリングホイールの操舵角を検出し、少なくとも検出した操舵角に基づいて前記転舵輪の目標転舵角を演算し、前記転舵輪の実転舵角を検出し、車速を検出し、
     予め設定した基準車速での転舵アクチュエータ指令電流に対する実転舵角の応答特性を、所望の目標応答特性とするための制御ゲインを設定した制御器に対し、前記車速が高いときと低いときとで、前記車速が高いときの方が、前記車速が低いときと比較して前記制御器の制御ゲインが高くなるように、前記制御器の制御ゲインを補正し、
     補正後の制御ゲインを設定した制御器を用いて、前記実転舵角が前記目標転舵角に追従するように、前記転舵アクチュエータを駆動制御することを特徴とする車両用操舵制御方法。
PCT/JP2013/001270 2012-03-05 2013-03-01 車両用操舵制御装置及び車両用操舵制御方法 WO2013132807A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014503468A JP5776837B2 (ja) 2012-03-05 2013-03-01 車両用操舵制御装置及び車両用操舵制御方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-048585 2012-03-05
JP2012048585 2012-03-05
JP2012-053692 2012-03-09
JP2012053692 2012-03-09

Publications (1)

Publication Number Publication Date
WO2013132807A1 true WO2013132807A1 (ja) 2013-09-12

Family

ID=49116303

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/001270 WO2013132807A1 (ja) 2012-03-05 2013-03-01 車両用操舵制御装置及び車両用操舵制御方法

Country Status (2)

Country Link
JP (1) JP5776837B2 (ja)
WO (1) WO2013132807A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021127077A (ja) * 2020-02-17 2021-09-02 株式会社Subaru 車両のレーンキープ制御装置
WO2022074826A1 (ja) * 2020-10-09 2022-04-14 日産自動車株式会社 転舵方法及び転舵装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019133025A1 (de) * 2019-12-04 2021-06-10 Zf Automotive Germany Gmbh Verfahren zur Positionsregelung für ein Lenksystem

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06199155A (ja) * 1992-12-28 1994-07-19 Mazda Motor Corp 自動車用制御装置の制御ゲイン変更装置
JP2000085604A (ja) * 1998-09-11 2000-03-28 Toyota Motor Corp 操舵制御装置
JP2003118617A (ja) * 2001-10-16 2003-04-23 Koyo Seiko Co Ltd 車両の操舵装置
JP2006218888A (ja) * 2005-02-08 2006-08-24 Jtekt Corp 車両用操舵装置
JP2011037394A (ja) * 2009-08-14 2011-02-24 Nissan Motor Co Ltd 操舵制御装置及びその方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06199155A (ja) * 1992-12-28 1994-07-19 Mazda Motor Corp 自動車用制御装置の制御ゲイン変更装置
JP2000085604A (ja) * 1998-09-11 2000-03-28 Toyota Motor Corp 操舵制御装置
JP2003118617A (ja) * 2001-10-16 2003-04-23 Koyo Seiko Co Ltd 車両の操舵装置
JP2006218888A (ja) * 2005-02-08 2006-08-24 Jtekt Corp 車両用操舵装置
JP2011037394A (ja) * 2009-08-14 2011-02-24 Nissan Motor Co Ltd 操舵制御装置及びその方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021127077A (ja) * 2020-02-17 2021-09-02 株式会社Subaru 車両のレーンキープ制御装置
JP7412209B2 (ja) 2020-02-17 2024-01-12 株式会社Subaru 車両のレーンキープ制御装置
WO2022074826A1 (ja) * 2020-10-09 2022-04-14 日産自動車株式会社 転舵方法及び転舵装置
JP7452688B2 (ja) 2020-10-09 2024-03-19 日産自動車株式会社 転舵方法及び転舵装置

Also Published As

Publication number Publication date
JPWO2013132807A1 (ja) 2015-07-30
JP5776837B2 (ja) 2015-09-09

Similar Documents

Publication Publication Date Title
US7885742B2 (en) Steering device of vehicle
EP1577194B1 (en) Steering apparatus for vehicle and method for controlling the same
US8788147B2 (en) Method for determining a toothed rack force for a steering device in a vehicle
JP6028575B2 (ja) 車両用操舵制御装置及び車両用操舵制御方法
JP5139688B2 (ja) 車両用操舵装置
JP4380697B2 (ja) 車両用操舵制御装置
JP4579056B2 (ja) 車両用操舵装置
JP4997478B2 (ja) 車両用操舵装置
JP2005343315A (ja) 車両用操舵装置
JP6523720B2 (ja) 後輪転舵制御装置
JP2018047827A (ja) 操舵制御装置
JP4517810B2 (ja) 車両用操舵制御装置
JP5776837B2 (ja) 車両用操舵制御装置及び車両用操舵制御方法
JP5412822B2 (ja) 車両用操舵制御装置
JP2000025630A (ja) 車両用操舵装置
JP2010052525A (ja) 車両用電動パワーステアリング装置
JP2006282067A (ja) 車両用操舵制御装置
JP5347499B2 (ja) 車両制御装置及び車両制御方法
JP2008201205A (ja) 車両用操舵装置
JP4687233B2 (ja) 車両用操舵制御装置及び車両用操舵制御方法
JP5966684B2 (ja) 車両の操舵制御装置
JP2000033879A (ja) 車両用操舵装置
JP5478470B2 (ja) 電動パワーステアリング装置
JP6634872B2 (ja) 車両用制御装置
JP2019107967A (ja) 車両のステアリング制御方法及び制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13758596

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014503468

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13758596

Country of ref document: EP

Kind code of ref document: A1