WO2013085000A1 - 電動車両の制御装置 - Google Patents

電動車両の制御装置 Download PDF

Info

Publication number
WO2013085000A1
WO2013085000A1 PCT/JP2012/081676 JP2012081676W WO2013085000A1 WO 2013085000 A1 WO2013085000 A1 WO 2013085000A1 JP 2012081676 W JP2012081676 W JP 2012081676W WO 2013085000 A1 WO2013085000 A1 WO 2013085000A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
torque
motor torque
accelerator operation
torque command
Prior art date
Application number
PCT/JP2012/081676
Other languages
English (en)
French (fr)
Inventor
鈴木 圭介
大澤 俊哉
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to DE112012004458.4T priority Critical patent/DE112012004458T5/de
Priority to CN201280060363.3A priority patent/CN103987569A/zh
Priority to US14/361,837 priority patent/US20140288758A1/en
Publication of WO2013085000A1 publication Critical patent/WO2013085000A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2009Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/26Driver interactions by pedal actuation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/145Structure borne vibrations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to an electric vehicle control apparatus.
  • An object of the present invention is to provide a control device for an electric vehicle capable of realizing both a torque response that matches a driver's acceleration request and a gear backlash reduction effect.
  • the control device for an electric vehicle it is detected that the accelerator operation state is changed from the non-operation state to the operation state, and the electric motor is driven based on the motor torque command value when switching from the braking torque to the drive torque.
  • An increase amount per unit time of the torque of the electric motor is limited corresponding to the detected accelerator operation amount.
  • FIG. 1 is a system configuration diagram of an electric vehicle according to Embodiment 1.
  • FIG. 3 is a control block diagram of motor torque command value calculation in a vehicle controller 111.
  • FIG. It is a calculation map of torque command reference value T * base .
  • 5 is a control block diagram of a torque change amount restriction control unit 202.
  • FIG. FIG. 5 is a control block diagram of a torque change amount restriction control unit 400 for reducing gear backlash vibration. It is a calculation map of a torque change amount limit value.
  • It is a figure which shows the selection condition of the torque variation amount limit value in the time chart of FIG.
  • FIG. 1 is a system configuration diagram of an electric vehicle according to a first embodiment.
  • the electric vehicle according to the first embodiment includes an electric motor (hereinafter referred to as a motor) 100 that generates positive and negative torques.
  • a resolver is connected to the motor 100 as a rotation sensor (motor rotation speed calculation unit) 101, and the motor controller 102 outputs a drive signal to the inverter 103 with reference to information of the rotation sensor 101.
  • the inverter 103 supplies a current corresponding to the drive signal to the motor 100 and controls the motor torque.
  • An output shaft 100a of the motor 100 is connected to a speed reducer (gear transmission mechanism) 104, and transmits torque to the axle 106 via a differential gear (gear transmission mechanism) 105.
  • Electric power for driving the motor 100 is supplied from a high voltage battery (battery) 107.
  • the high voltage battery 107 is monitored by a battery controller 108 for the state of charge and the degree of heat generation.
  • a DC-DC converter 109 is connected to the high voltage battery 107, and the voltage is stepped down by the DC-DC converter 109 to charge the low voltage battery 110.
  • the vehicle controller (control unit) 111 monitors the strokes (operation amounts) of the brake pedal and accelerator pedal (not shown) by a brake stroke sensor 111a and an accelerator stroke sensor (accelerator operation state detection unit, accelerator operation amount detection unit) 111b. Accordingly, a positive or negative torque command is transmitted to the braking control device 113 via the in-vehicle communication line 112 according to the stroke.
  • the braking control device 113 performs driving slip prevention control from each wheel speed information from the wheel speed sensors 114a, 114b, 114c, 114d provided on each wheel FL, FR, RL, RR and motor torque information output from the motor controller 102. Torque control such as (TCS control) and braking slip prevention control (ABS control) is performed.
  • TCS control braking slip prevention control
  • ABS control braking slip prevention control
  • each wheel FL, FR, RL, RR is operated through the hydraulic pipe 115 by operating a pump (not shown) in the braking control device 113 according to the pedaling force of the driver.
  • Brake fluid is sent to each of the brake calipers 116a, 116b, 116c, 116d provided to generate a braking torque.
  • a torque command is given to the motor controller 102 via the in-vehicle communication line 112.
  • FIG. 2 is a control block diagram for calculating a motor torque command value in the vehicle controller 111.
  • a torque command reference value calculation unit (motor torque command reference value calculation unit) 200 calculates a torque command reference value T * base based on the accelerator operation amount and the motor rotation speed.
  • Figure 3 is a calculation map of a torque command reference value T * base, a torque command reference value T * base is, the lower the motor speed (as the vehicle speed is low), as the accelerator operation amount is large, the forward torque (positive Increase the torque.
  • the vehicle speed ( ⁇ motor rotation) is used to simulate the creep torque of an automatic transmission vehicle when the vehicle speed is at or below a predetermined speed Vth1 (for example, 5 km / h).
  • the forward torque (positive torque) is increased as the speed (speed) is lower, and reverse torque (negative torque) is applied to simulate the engine brake torque in the speed region where the vehicle speed exceeds the predetermined speed Vth1.
  • the torque limiting unit (motor torque command reference value correction unit) 201 for power limitation sets the torque command reference value T * base so that the motor output does not exceed the power limit value calculated by the battery controller 108.
  • a corrected torque command reference value T * battlim limited according to the power limit value is calculated.
  • the torque change amount limit control unit (motor torque change amount limit control unit) 202 includes a torque change amount limit control unit 400 for reducing backlash vibration, and torque for preventing sudden collision and gear protection. And a change amount restriction control unit 401.
  • FIG. 5 is a control block diagram of the torque change amount limiting control unit 400 for reducing backlash vibration.
  • the input signal is the corrected torque command reference value T * battlim output from the torque limiting unit 201 for power limitation and the final torque command value T * n-1 (T * n-1 in the previous control cycle) It can be regarded as the actual torque currently being output.
  • “Abs” outputs the absolute value of the input
  • the torque change amount limit control unit 400 for reducing the backlash vibration is the difference between the corrected torque command reference value T * battlim and the final torque command value T * n-1 in the previous control period, that is, The upper limit of the torque increase per unit time is limited by the torque change amount limit value calculated from the map shown in FIG. 6, and this value is added to the final torque command value T * n-1 in the previous control cycle. To a new torque command value T * backlash .
  • T * n-1 when the accelerator operation amount is large, T * n-1 also increases, and thus the torque change amount limit value increases. Further, the higher the accelerator operation speed, the larger the difference between T * battlim and T * n ⁇ 1 , so the torque change amount limit value increases. That is, the map of FIG. 6 has a characteristic that the amount of increase in torque (increase in gradient) increases as the accelerator operation amount increases or the accelerator operation speed increases. Since the difference between T * battlim and T * n-1 is a value that approximates the accelerator operation speed, the torque change amount limit control unit 400 for reducing backlash vibration corresponds to the accelerator operation speed calculation unit. .
  • the torque change limit control unit 401 for suddenness and gear protection protects the powertrain gears from sudden changes in motor torque and prevents the driver from feeling uncomfortable with torque fluctuations. Based on the speed and the shift position, a process of limiting the torque change amount to a predetermined value or less is performed.
  • the vibration suppression control unit 203 calculates a vibration suppression torque command value for suppressing vibrations such as torque ripple accompanying the rotation of the motor based on the motor rotation speed.
  • the damping torque command value is added to the torque command value after the torque change amount restriction by the torque change amount restriction control unit 202, and becomes the final motor torque command value T * .
  • the motor torque command value T * is sent to the motor controller 102 via the in-vehicle communication line 112.
  • the accelerator pedal when the accelerator pedal is operated again and turned to acceleration from the negative torque simulating the engine brake generated when the accelerator pedal is released during traveling of the vehicle, that is, when a positive torque is requested,
  • a large value is selected as the torque change amount limit value according to the map shown in FIG. 6, so that the accelerator pedal is operated gently.
  • the torque increase gradient becomes large. That is, when the driver intends to accelerate rapidly, the delay time with respect to the driver's acceleration request can be shortened instead of reducing the reduction effect of the gear backlash vibration. At this time, gear backlash vibration is generated, but the driver is not feeling uncomfortable because of rapid acceleration.
  • the map input T * base shown in FIG. 6 and the final torque command value T * n ⁇ 1 in the previous control period are set. Since the difference does not increase, the torque change amount limit value decreases.
  • both the torque response and the gear backlash reduction effect are achieved in accordance with the degree of the driver's acceleration request. Therefore, rapid acceleration without giving the driver a sense of incongruity. Torque delay time for demand can be shortened.
  • FIG. 7 is a time chart showing the gear backlash vibration suppressing action when the accelerator pedal is operated quickly and greatly in order to accelerate rapidly from the state where the accelerator pedal is released during traveling.
  • FIG. 8 shows a selection state of a torque change amount limit value for suppressing gear backlash vibration at this time.
  • T * battlim starts to rise because the driver has started depressing the accelerator pedal.
  • the torque change amount limit value is selected according to the map of FIG. 8 according to the difference between T * battlim and T * n-1 .
  • T * n-1 Thereafter, as T * n-1 approaches zero, the difference between T * battlim and T * n-1 increases, but T * n-1 becomes smaller, so the torque change amount limit value decreases.
  • T * n ⁇ 1 since T * n ⁇ 1 has decreased to zero, the smallest change amount limit value is selected.
  • the difference between T * battlim and T * n-1 increases, so the torque variation amount is determined according to the characteristic for selecting the largest limit value in FIG.
  • the difference between T * battlim and T * n-1 is quickly reduced. As described above, when the driver requests rapid acceleration, it is possible to quickly increase the torque by selecting a relatively large torque change amount limit value. That is, since the torque response delay time can be shortened, the driver can hardly notice the torque delay.
  • FIG. 9 is a time chart showing the gear backlash vibration suppressing action when the accelerator pedal is slowly operated in order to accelerate slowly from the state where the accelerator pedal is released during traveling.
  • FIG. 10 shows a selection state of the torque change amount limit value for suppressing gear backlash vibration at this time.
  • T * battlim starts to rise because the driver has started depressing the accelerator pedal.
  • the difference between T * battlim and T * n ⁇ 1 is small, and a value close to the smallest limit value in FIG. 10 is selected as the torque change amount limit value.
  • the control device for an electric vehicle has the following effects.
  • the vehicle controller 111 includes the accelerator stroke sensor 111b.
  • the torque change amount restriction control unit 202 increases the amount of increase in torque per unit time when the detected accelerator operation amount is large (when T * n-1 is large) compared to when it is small.
  • the torque delay time is shortened, and when the driver requests gentle acceleration, the torque delay time is lengthened, so that the torque response that matches the driver's acceleration request can be achieved.
  • a high level of coexistence with the gear backlash reduction effect can be realized.
  • Torque variation restriction control unit 202 when the calculated accelerator operating speed is high (when the difference between T * battlim and T * n-1 is large) compared to when low, per unit torque time Increase the amount of increase. Therefore, when the driver requests rapid acceleration, the torque delay time is shortened, and when the driver requests gentle acceleration, the torque delay time is lengthened, so that the torque response that matches the driver's acceleration request can be achieved. A high level of coexistence with the gear backlash reduction effect can be realized.
  • It has a rotation sensor 101 that calculates the rotation speed of the motor 100, and the vehicle controller 111 calculates a torque command reference value T * base based on the detected accelerator operation amount and the calculated motor rotation speed.
  • a torque command reference value calculation unit 200 is provided, and a torque change amount limit control unit 202 limits the torque of the motor 100 by adjusting the calculated torque command reference value T * base . Therefore, the amount of increase in the torque of the motor 100 per unit time can be limited to a desired amount of increase by adjusting the torque command reference value T * base .
  • the vehicle controller 111 includes a torque limiting unit 201 for power limitation that corrects the calculated torque command reference value T * base according to the state of the high-voltage battery 107 for driving the motor, and limits the amount of torque change.
  • the control unit 202 calculates the difference between the torque command reference value T * battlim corrected by the torque limiting unit 201 for power limitation and the final torque command value T * n-1 in the previous control cycle in the previous control cycle.
  • the motor 100 is driven using the torque command value T * backlash added to the final torque command value T * n ⁇ 1 . Therefore, since the motor output is suppressed in a range that does not exceed the power limit value, it is possible to suppress the motor 100, the inverter 103, and the high voltage battery 107 from being overloaded, and to improve durability.
  • T * n-1 is referred to, but this may be a value obtained by measuring the torque applied to the gear by a sensor or a signal obtained by estimating the torque.
  • At least the gear backlash vibration is not recognized by the driver. Any torque change amount that can be suppressed to the level may be used.
  • an example is shown in which the amount of torque change is limited in order to suppress vibration that occurs near zero torque due to gear backlash, but it is applied to the torque region where powertrain or vehicle vibration occurs due to other factors. May be.
  • the motor torque change amount limit control unit decreases the increase amount per unit time of the torque of the electric motor driven based on the motor torque command value as the previously calculated and corrected motor torque command reference value is smaller.
  • the motor torque command reference value calculated and corrected last time is a value indicating the actual motor torque, and it can be determined that the smaller the value is, the more the driver requires gentle acceleration.
  • the motor torque change amount limit control unit reduces the motor torque as the difference between the motor torque command reference value corrected by the motor torque command reference value correction unit and the corrected motor torque command reference value calculated last time is smaller.
  • An apparatus for controlling an electric vehicle wherein an increase amount per unit time of torque of the electric motor driven based on a command value is reduced. The difference is a value indicating the accelerator operation speed. The smaller this value, the lower the accelerator operation speed, and it can be determined that the driver is requesting gentle acceleration. Therefore, by reducing the amount of increase in torque per unit time as the difference is smaller, it is possible to achieve both a high level of torque response and a gear backlash reduction effect that meet the driver's acceleration request.
  • the motor torque change amount limit control unit is previously calculated when the motor torque command reference value calculated and corrected is the previous time and when the motor torque command reference value is corrected by the motor torque command reference value correction unit.
  • the control device for an electric vehicle characterized in that, as the difference from the corrected motor torque command reference value is smaller, the increase amount per unit time of the torque of the electric motor driven based on the motor torque command value is reduced. .
  • the motor torque command reference value calculated and corrected last time is a value indicating the actual motor torque, and it can be determined that the smaller the value is, the more the driver requires gentle acceleration.
  • the difference is a value indicating the accelerator operation speed.
  • a motor rotation speed calculation unit for calculating the rotation speed of the electric motor includes a vibration suppression control unit that calculates a vibration suppression torque command value for suppressing vibration of the electric motor based on the calculated motor rotation speed,
  • the motor torque change amount limiting control unit limits the motor torque based on a command value obtained by adding the calculated damping torque command value to the calculated motor torque command value. Control device. Therefore, it is possible to protect the powertrain gears from sudden changes in motor torque and to suppress the driver from feeling uncomfortable with torque fluctuations.
  • an accelerator operation state detection unit for detecting a driver's accelerator operation state
  • An accelerator operation amount detector for detecting the driver's accelerator operation amount
  • An electric motor for applying braking / driving torque to wheels connected via a speed reduction mechanism and an axle
  • a control unit for calculating a motor torque command value for braking / driving the electric motor based on the accelerator operation amount detected by the accelerator operation amount detection unit; With The control unit detects the increasing gradient of the torque of the electric motor driven based on the motor torque command value when the torque generated by the electric motor switches from torque in the braking direction to torque in the driving direction.
  • An electric vehicle control apparatus comprising: a motor torque change amount limiting control unit configured to make an increase gradient based on the calculated motor torque command value smaller than an accelerator operation amount.
  • the motor torque change restriction control unit increases the amount of increase in torque per unit time when the detected accelerator operation amount is large compared to when it is small. Therefore, when the driver requests rapid acceleration, the torque delay time is shortened, and when the driver requests gentle acceleration, the torque delay time is lengthened, so that the torque response that matches the driver's acceleration request can be achieved. A high level of coexistence with the gear backlash reduction effect can be realized.
  • An accelerator operation speed calculation unit for calculating the accelerator operation speed is provided.
  • the motor torque change limit control unit increases the amount of increase in torque per unit time when the calculated accelerator operation speed is high compared to when the accelerator operation speed is low. Therefore, when the driver requests rapid acceleration, the torque delay time is shortened, and when the driver requests gentle acceleration, the torque delay time is lengthened, so that the torque response that matches the driver's acceleration request can be achieved. A high level of coexistence with the gear backlash reduction effect can be realized.
  • a motor rotation speed calculation unit for calculating the rotation speed of the electric motor includes a motor torque command reference value calculation unit that calculates the motor torque command reference value based on the detected accelerator operation amount and the calculated motor rotation speed.
  • the motor torque change amount restriction control unit restricts the calculated motor torque command reference value to drive the electric motor. Therefore, by limiting the motor torque command reference value, the increase gradient of the torque of the electric motor can be limited to a desired gradient.
  • the control unit includes a motor torque command reference value correction unit that corrects the calculated motor torque command reference value according to a state of the battery for driving the electric motor,
  • the motor torque change amount restriction control unit corrects the difference between the motor torque command reference value corrected by the motor torque command reference value correction unit and the corrected motor torque command reference value calculated last time.
  • a control apparatus for an electric vehicle characterized by adding a motor torque command reference value to calculate a motor torque command value to limit the torque of the electric motor. Therefore, the motor output can be corrected according to the state of the battery.
  • the motor torque change amount limiting control unit reduces the torque increase gradient of the electric motor driven based on the motor torque command value as the previously calculated and corrected motor torque command reference value is smaller.
  • a control device for an electric vehicle Therefore, the motor torque command reference value calculated and corrected last time is a value indicating the actual motor torque, and it can be determined that the smaller the value is, the more the driver requires gentle acceleration. Therefore, the smaller the motor torque command reference value calculated and corrected last time, the lower the torque increase gradient, and the higher the level of compatibility between the torque response that matches the driver's acceleration request and the gear backlash reduction effect. Can be realized.
  • the motor torque change amount limit control unit reduces the motor torque as the difference between the motor torque command reference value corrected by the motor torque command reference value correction unit and the corrected motor torque command reference value calculated last time is smaller.
  • a control device for an electric vehicle characterized by reducing an increasing gradient of torque of the electric motor driven based on a command value. Therefore, the difference is a value indicating the accelerator operation speed. The smaller this value, the lower the accelerator operation speed, and it can be determined that the driver is requesting gentle acceleration. Therefore, by reducing the torque increase gradient as the difference is smaller, it is possible to achieve a high level of both the torque response that matches the driver's acceleration request and the gear backlash reduction effect.
  • the control unit includes a vibration suppression control unit that calculates a vibration suppression torque command value for suppressing vibration of the electric motor based on the calculated motor rotation speed,
  • the motor torque change amount limiting control unit limits a motor torque increase gradient based on a command value obtained by adding the calculated damping torque command value to the calculated motor torque command value.
  • Control device for electric vehicle Therefore, it is possible to protect the powertrain gears from sudden changes in motor torque and to suppress the driver from feeling uncomfortable with torque fluctuations.
  • a method for controlling an electric vehicle that drives an electric motor that gives a driving torque to wheels connected via a deceleration mechanism and an axle based on an accelerator operation state From the information of the accelerator operation related information detecting unit that detects the accelerator operation related information of the driver, when the accelerator operation is not performed, a braking torque is applied to the wheel, and then when the accelerator operation is performed, A method for controlling an electric vehicle, characterized in that a driving torque is applied to the wheels with an increasing gradient smaller than the driving torque. Therefore, gear backlash vibration when passing zero torque can be suppressed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

 運転者の加速要求に合致したトルクの応答性とギアバックラッシュ低減効果との両立を実現できる電動車両の制御装置を提供する。 車両コントローラ111は、アクセルストロークセンサによりアクセル操作状態が非操作状態から操作状態に変更されたことが検出され、モータが制動トルクから駆動トルクへ切り替える際にモータトルク指令値に基づき駆動されるモータのトルクの単位時間当たりの増加量を検出されたアクセル操作量に対応して制限するトルク変化量制限制御部202を備えた。

Description

電動車両の制御装置
 本発明は、電動車両の制御装置に関する。
 従来の電動車両の制御装置では、モータトルクからドラッグトルクを差し引いた有効トルクがギアバックラッシュメカニズムのゼロトルク区間へ進入する、またはゼロトルク区間から脱出すると判断した場合、制御時間を初期化しながら有効トルクを放物線または指数関数形態のトルクに制限することで、ギアバックラッシュ振動を低減している。上記説明の技術に関係する一例は、特許文献1に記載されている。
特開2010-215213号公報
 上述の従来装置において、運転者の加速要求に合致したトルクの応答性とギアバックラッシュ低減効果との両立を実現して欲しいとのニーズがある。
 本発明の目的は、運転者の加速要求に合致したトルクの応答性とギアバックラッシュ低減効果との両立を実現できる電動車両の制御装置を提供することにある。
 本発明の電動車両の制御装置では、アクセル操作状態が非操作状態から操作状態に変更されたことが検出され、電動モータが制動トルクから駆動トルクへ切り替える際にモータトルク指令値に基づき駆動される電動モータのトルクの単位時間当たりの増加量を検出されたアクセル操作量に対応して制限する。
 よって、本発明の電動車両の制御装置では、運転者の加速要求に合致したトルクの応答性とギアバックラッシュ低減効果との両立を実現できる。
実施例1の電動車両のシステム構成図である。 車両コントローラ111におけるモータトルク指令値算出の制御ブロック図である。 トルク指令基準値T* baseの算出マップである。 トルク変化量制限制御部202の制御ブロック図である。 ギアバックラッシュ振動低減のためのトルク変化量制限制御部400の制御ブロック図である。 トルク変化量制限値の算出マップである。 走行中アクセルペダルを離している状態から、急加速をするために速く大きくアクセルペダルを操作したときのギアバックラッシュ振動抑制作用を示すタイムチャートである。 図7のタイムチャートにおけるトルク変化量制限値の選択状況を示す図である。 走行中アクセルペダルを離している状態から、緩やかに加速をするためにゆっくりとアクセルペダルを操作したときのギアバックラッシュ振動抑制作用を示すタイムチャートである。 図9のタイムチャートにおけるトルク変化量制限値の選択状況を示す図である。
 以下、本発明の電動車両の制御装置を実施するための形態を、図面に示す実施例に基づいていて説明する。
 なお、以下に説明する実施例は、多くのニーズに適応できるように検討されており、運転者の加速要求に応じた加速性能の実現は検討されたニーズの1つである。
 〔実施例1〕
 まず、構成を説明する。
 [全体構成]
 図1は、実施例1の電動車両のシステム構成図である。
 実施例1の電動車両は、正負のトルクを発生させる電動モータ(以下、モータ)100を備える。モータ100には、回転センサ(モータ回転速度算出部)101としてレゾルバが接続され、モータコントローラ102は、回転センサ101の情報を参照してインバータ103に駆動信号を出力する。インバータ103は、駆動信号に応じた電流をモータ100に供給し、モータトルクを制御する。
 モータ100の出力軸100aは減速機(歯車伝達機構)104に接続され、ディファレンシャルギア(歯車伝達機構)105を介して車軸106にトルクを伝達する。モータ100を駆動する電力は高電圧バッテリ(バッテリ)107から供給される。高電圧バッテリ107はバッテリコントローラ108によって充電状態や発熱の程度を監視されている。高電圧バッテリ107にはDC-DCコンバータ109が接続され、DC-DCコンバータ109により電圧を降圧して低電圧バッテリ110を充電する。
 車両コントローラ(コントロールユニット)111は、図外のブレーキペダルおよびアクセルペダルのストローク(操作量)をブレーキストロークセンサ111aおよびアクセルストロークセンサ(アクセル操作状態検出部、アクセル操作量検出部)111bによって監視しており、ストロークに応じて正または負のトルク指令を、車内通信ライン112を経由して制動制御装置113に伝達する。
 制動制御装置113は、各車輪FL,FR,RL,RRに設けた車輪速度センサ114a,114b,114c,114dからの各車輪速情報やモータコントローラ102が出力するモータトルク情報から、駆動スリップ防止制御(TCS制御)や制動スリップ防止制御(ABS制御)等のトルク制御を行う。
 制動制御装置113は、摩擦制動トルクを制御する場合、運転者のペダル踏力に応じて制動制御装置113内のポンプ(不図示)を作動させて油圧配管115を通して各車輪FL,FR,RL,RRに設けた各ブレーキキャリパ116a,116b,116c,116dにブレーキ液を送り制動トルクを発生させる。一方、モータトルクを制御する場合、車内通信ライン112によってモータコントローラ102にトルク指令を与える。
 [ゼロ点通過時のトルク変化量制限]
 実施例1の電動車両では、モータトルクがゼロを通過する際にギア(減速機104、ディファレンシャルギア105)のバックラッシュ振動が生じるのに対し、当該ギアバックラッシュ振動の低減を図るために、モータトルクがゼロを通過して指令される場合のトルク変化量を小さく制限する。
 また、実施例1では、運転者の要求トルクが大きい場合や、トルク要求の増大が速い場合には、運転者の加速要求に合致したトルクの応答性を実現することを狙いとし、ゼロトルクを通過する際のトルク変化量の制限をその大きさや速さに応じて変化させる。これを達成するために、車両コントローラ111は、モータ100を駆動するモータトルク指令値を以下に示す方法で算出する。ここで、ギアバックラッシュ振動が運転者に認識されるレベル、すなわち違和感を与えるレベルで生じるトルク変化量は、車両の諸元によって異なるが、実施例1では、20Nm/sec以上として説明する。
 [モータトルク指令値算出]
 図2は、車両コントローラ111におけるモータトルク指令値算出の制御ブロック図である。
 トルク指令基準値算出部(モータトルク指令基準値算出部)200は、アクセル操作量とモータ回転速度とに基づいて、トルク指令基準値T* baseを算出する。図3は、トルク指令基準値T* baseの算出マップであり、トルク指令基準値T* baseは、モータ回転速度が低いほど(車速が低いほど)、アクセル操作量が大きいほど、前進トルク(正トルク)を大きくする。また、アクセル操作量がゼロの場合、車両速度が所定の速度Vth1(例えば、5km/h)以下である停車および低速領域では、オートマチックトランスミッション車のクリープトルクを模擬するために車両速度(≒モータ回転速度)が低いほど前進トルク(正トルク)を大きくし、車両速度が所定の速度Vth1を超える速度領域では、エンジンブレーキトルクを模擬するために後退トルク(負トルク)を与える。
 電力制限のためのトルク制限部(モータトルク指令基準値補正部)201は、バッテリコントローラ108で算出された電力制限値を超えない範囲のモータ出力となるように、トルク指令基準値T* baseを電力制限値に応じて制限した補正後のトルク指令基準値T* battlimを算出する。
 トルク変化量制限制御部(モータトルク変化量制限制御部)202は、図4に示すように、バックラッシュ振動低減のためのトルク変化量制限制御部400と唐突感防止およびギア保護のためのトルク変化量制限制御部401とを有する。
 図5は、バックラッシュ振動低減のためのトルク変化量制限制御部400の制御ブロック図である。入力信号は電力制限のためのトルク制限部201から出力された補正後のトルク指令基準値T* battlimと前制御周期での最終的なトルク指令値T* n-1(T* n-1は現在出力されている実際のトルクとみなすことができる。)である。図5のブロックのうち、「Abs」は入力の絶対値を出力し、「Sign」は符号信号(正=1、負=-1)を出力する。「Min」は入力のうち小さい値を出力し、「1/Z」は1制御周期前の値を保存する。つまり、バックラッシュ振動低減のためのトルク変化量制限制御部400は、補正後のトルク指令基準値T* battlimと前制御周期での最終的なトルク指令値T* n-1との差分、すなわちトルクの単位時間当たりの増加量の上限を、図6に示すマップから算出するトルク変化量制限値で制限し、その値を前制御周期での最終的なトルク指令値T* n-1に加えて新たなトルク指令値T* backlashとする。
 図6に示すトルク変化量制限値を算出するマップは二次元マップであり、前制御周期での最終的なトルク指令値T* n-1および補正後のトルク指令基準値T* battlimと前制御周期での最終的なトルク指令値T* n-1との差分を入力する。このとき、算出するトルク変化量制限値は、前制御周期での最終的なトルク指令値T* n-1の絶対値|T* n-1|(トルク指令絶対値)が小さいほど小さく、補正後のトルク指令基準値T* battlimと前制御周期での最終的なトルク指令値T* n-1との差分の絶対値|T* battlimとT* n-1|(トルク偏差絶対値)が小さいほど小さく設定する。
 ここで、アクセル操作量が大きい場合はT* n-1も大きくなるため、トルク変化量制限値は大きくなる。また、アクセル操作速度が高いほどT* battlimとT* n-1との差分は大きくなるため、トルク変化量制限値は大きくなる。つまり、図6のマップは、アクセル操作量が大きいほど、またはアクセル操作速度が高いほど、トルクの単位時間当たりの増加量(増加勾配)を大きくする特性を有する。なお、T* battlimとT* n-1との差分はアクセル操作速度に近似した値となるため、バックラッシュ振動低減のためのトルク変化量制限制御部400は、アクセル操作速度算出部に相当する。
 唐突感およびギア保護のためのトルク変化量制限制御部401は、モータトルクの急変からパワートレインのギアを保護するために、また運転者に対しトルク変動に伴う違和感を与えないように、モータ回転速度とシフト位置とに基づき、トルク変化量を所定の値以下に制限する処理を行う。
 図2に戻り、制振制御部203は、モータ回転速度に基づいて、モータの回転に伴うトルクリプル等の振動を抑制するための制振トルク指令値を算出する。制振トルク指令値は、トルク変化量制限制御部202によるトルク変化量制限後のトルク指令値に加算され、最終的なモータトルク指令値T*となる。
 モータトルク指令値T*は、車内通信ライン112を経由してモータコントローラ102へと送られる。
 次に、作用を説明する。
 「ギアバックラッシュ振動抑制作用」
 特許文献1では、ギアバックラッシュ振動の低減を図るために、モータトルクからドラッグトルクを差し引いた有効トルクがギアバックラッシュメカニズムのゼロトルク区間へ進入する、またはゼロトルク区間から脱出すると判断した場合、制御時間を初期化しながら有効トルクを放物線または指数関数形態のトルクに制限している。ところが、この従来技術では、トルクを放物線または指数関数形態のトルクに制限する時間が決められているため、例えば急加速が要求される場合には、急加速が要求されない場合と同じ時間だけトルクが制限される。つまり、運転者の要求する加速の程度にかかわらず、常に同じ時間だけトルクが制限されるため、急加速要求時には運転者の望む加速度が得られないという問題があった。
 これに対し、実施例1では、車両走行中にアクセルペダルを離した場合に生じるエンジンブレーキを模擬した負トルクから、再度アクセルペダルを操作して加速に転じる、すなわち正トルクを要求する場合、運転者が要求するトルクの上昇勾配が大きく、またアクセルペダルの踏み込み量も大きいときには、図6に示したマップに従ってトルク変化量制限値は大きな値が選択されるので、緩やかにアクセルペダルを操作する場合と比較してトルク上昇勾配は大きくなる。
 つまり、運転者に急加速の意図がある場合には、ギアバックラッシュ振動の低減効果を低下させる代わりに運転者の加速要求に対する遅れ時間を短くすることができる。このとき、ギアバックラッシュ振動は生じるが、急加速中であるため運転者に違和感を与えることはない。
 また、実施例1では、運転者が要求するトルクの上昇勾配が小さければ、図6に示したマップ入力のT* baseと前制御周期での最終的なトルク指令値T* n-1との差分が大きくならないため、トルク変化量制限値は小さくなる。これにより、運転者が緩やかな加速を望んでいる場合には小さな変化量でゼロトルクを通過するようになるため、ギアバックラッシュ振動の抑制効果を十分に得られる。
 以上のように、実施例1では、運転者の加速要求の程度に応じてトルクの応答性とギアバックラッシュ低減効果とを両立させるものであるため、運転者に違和感を与えることなく、急加速要求に対するトルク遅れ時間を短くできる。
 以下、具体的な走行シーンを挙げて実施例1のギアバックラッシュ振動抑制制御作用を説明する。
 図7は、走行中アクセルペダルを離している状態から、急加速をするために速く大きくアクセルペダルを操作したときのギアバックラッシュ振動抑制作用を示すタイムチャートである。図8は、このときのギアバックラッシュ振動抑制のためのトルク変化量制限値の選択状況を示したものである。
 時点t1では、運転者がアクセルペダルの踏み込みを開始したため、T* battlimが上昇を開始する。このときT* battlimとT* n-1との差分に応じて、図8のマップに従ってトルク変化量制限値を選択する。その後T* n-1がゼロに近づくにつれて、T* battlimとT* n-1との差が開いていくものの、T* n-1が小さくなるのでトルク変化量制限値は減少していく。
 時点t2では、T* n-1がゼロまで低下したために最も小さな変化量制限値が選択される。選択された変化量制限値に従ってゼロトルクを通過した後は、T* battlimとT* n-1との差が大きくなっているので、図8の最も大きな制限値を選択する特性に従ってトルク変化量を制限することで、速やかにT* battlimとT* n-1との差が減少する。
 以上のように、運転者が急加速を要求する場合には、比較的大きなトルク変化量制限値が選択されることで、速やかにトルクの上昇を達成することが可能となる。つまり、トルクの応答遅れ時間を短くできるので、運転者がトルク遅れに気付きにくくできる。
 図9は、走行中アクセルペダルを離している状態から、緩やかに加速をするためにゆっくりとアクセルペダルを操作したときのギアバックラッシュ振動抑制作用を示すタイムチャートである。図10は、このときのギアバックラッシュ振動抑制のためのトルク変化量制限値の選択状況を示したものである。
 時点t1では、運転者がアクセルペダルの踏み込みを開始したため、T* battlimが上昇を開始する。このときトルク上昇勾配が小さいため、T* battlimとT* n-1との差が小さくなり、図10の最も小さな制限値に近い値をトルク変化量制限値として選択する。その後T* n-1がゼロに近づくにつれて、T* battlimとT* n-1との差が開いていくものの、T* n-1が小さくなるのでトルク変化量制限値は減少していく。
 時点t2では、T* n-1がゼロまで低下したために最も小さな変化量制限値が選択される。選択された変化量制限値に従ってゼロトルクを通過した後は、T* battlimとT* n-1との差に応じて図10のマップに従ってトルク変化量制限値を選択することで、緩やかにT* battlimとT* n-1との差が減少する。
 以上のように、運転者が緩やかな加速を要求する場合には、比較的小さなトルク変化量制限値が選択されることで、緩やかなトルクの上昇を達成することが可能である。つまり、ゼロトルク付近を通過する時間を長くできるので、ギアバックラッシュ振動を生じ難くできる。
 次に、効果を説明する。
 実施例1の電動車両の制御装置にあっては、以下に列挙する効果を奏する。
 (1)運転者のアクセル操作状態およびアクセル操作量を検出するアクセルストロークセンサ111bと、減速機104、ディファレンシャルギア105を介して接続された左右後輪RL,RRに対して制駆動トルクを与えるモータ100と、アクセルストロークセンサ111bによって検出されたアクセル操作量に基づいてモータ100を制駆動するためのモータトルク指令値を算出する車両コントローラ111と、を備え、車両コントローラ111は、アクセルストロークセンサ111bによりアクセル操作状態が非操作状態から操作状態に変更されたことが検出され、モータ100が制動トルクから駆動トルクへ切り替える際にモータトルク指令値T*に基づき駆動されるモータ100のトルクの単位時間当たりの増加量を検出されたアクセル操作量に対応して制限するトルク変化量制限制御部202を備えた。
 よって、運転者の加速要求に合致したトルクの応答性とギアバックラッシュ低減効果との両立を実現できる。
 (2)トルク変化量制限制御部202は、検出されたアクセル操作量が大きいとき(T* n-1が大きいとき)は小さいときに比べ、トルクの単位時間当たりの増加量を大きくする。
 よって、運転者が急加速を要求する場合はトルクの遅れ時間を短く、緩やかな加速を要求する場合はトルクの遅れ時間を長くすることで、運転者の加速要求に合致したトルクの応答性とギアバックラッシュ低減効果との両立を高いレベルで実現できる。
 (3)トルク変化量制限制御部202は、算出されたアクセル操作速度が高いとき(T* battlimとT* n-1との差分が大きいとき)は低いときに比べ、トルクの単位時間当たりの増加量を大きくする。
 よって、運転者が急加速を要求する場合はトルクの遅れ時間を短く、緩やかな加速を要求する場合はトルクの遅れ時間を長くすることで、運転者の加速要求に合致したトルクの応答性とギアバックラッシュ低減効果との両立を高いレベルで実現できる。
 (4)モータ100の回転速度を算出する回転センサ101を有し、車両コントローラ111は、検出されたアクセル操作量と算出されたモータ回転速度とに基づいてトルク指令基準値T* baseを算出するトルク指令基準値算出部200を備え、トルク変化量制限制御部202は、算出されたトルク指令基準値T* baseを調整することでモータ100のトルクを制限する。
 よって、トルク指令基準値T* baseを調整することでモータ100のトルクの単位時間当たりの増加量を所望の増加量に制限できる。
 (5)車両コントローラ111は、算出されたトルク指令基準値T* baseをモータ駆動用の高電圧バッテリ107の状態に応じて補正する電力制限のためのトルク制限部201を備え、トルク変化量制限制御部202は、電力制限のためのトルク制限部201により補正されたトルク指令基準値T* battlimと前制御周期での最終的なトルク指令値T* n-1との差分を前制御周期での最終的なトルク指令値T* n-1に加算したトルク指令値T* backlashを用いてモータ100を駆動する。
 よって、モータ出力が電力制限値を超えない範囲に抑えられるため、モータ100、インバータ103および高電圧バッテリ107が過負荷となるのを抑制でき、耐久性の向上を図ることができる。
 〔他の実施例〕
 以上、本発明を実施するための形態を実施例に基づいて説明したが、本発明の具体的な構成は実施例に示した構成に限定されるものではなく、発明の要旨を逸脱しない範囲の設計変更等があっても本発明に含まれる。
 実施例では、図6に示したマップにおいて、T* battlimとT* n-1との差が大きい場合もT* n-1がゼロのときには最小のトルク変化量制限値が選択される例を示したが、例えば、T* battlimとT* n-1との差が大きいときにはT* n-1がゼロでもトルク変化量制限値を最小値まで減少させない構成としてもよい。
 実施例では、T* n-1を参照しているが、これはギアに掛かるトルクをセンサで計測した値やトルクを推定した信号でもよい。
 T* n-1がゼロに近い値で、かつ、T* battlimとT* n-1との差が小さいときに選択されるトルク変化量制限値は少なくともギアバックラッシュ振動が運転者に認識されないレベルに抑制可能なトルク変化量以下であればよい。
 実施例では、ギアバックラッシュに起因してゼロトルク付近で生じる振動を抑制するためにトルク変化量を制限する例を示したが、他の要因によってパワートレインまたは車両の振動が発生するトルク領域に適用してもよい。
 以下に、実施例から把握される特許請求の範囲に記載した発明以外の技術的思想について説明する。
 (a)請求項5に記載の電動車両の制御装置において、
 前記モータトルク変化量制限制御部は、前回演算され前記補正されたモータトルク指令基準値が小さいほど前記モータトルク指令値に基づき駆動される前記電動モータのトルクの単位時間当たりの増加量を小さくすることを特徴とする電動車両の制御装置。
 前回演算され補正されたモータトルク指令基準値は、実際のモータトルクを示す値であり、この値が小さいほどドライバは緩やかな加速を要求していると判断できる。よって、前回演算され補正されたモータトルク指令基準値が小さいほどトルクの単位時間当たりの増加量を小さくすることで、運転者の加速要求に合致したトルクの応答性とギアバックラッシュ低減効果との両立を高いレベルで実現できる。
 (b)請求項5に記載の電動車両の制御装置において、
 前記モータトルク変化量制限制御部は、前記モータトルク指令基準値補正部により補正されたモータトルク指令基準値と前回演算された前記補正されたモータトルク指令基準値との差分が小さいほど前記モータトルク指令値に基づき駆動される前記電動モータのトルクの単位時間当たりの増加量を小さくすることを特徴とする電動車両の制御装置。
 前記差分は、アクセル操作速度を示す値であり、この値が小さいほどアクセル操作速度が低く、ドライバは緩やかな加速を要求していると判断できる。よって、前記差分が小さいほどトルクの単位時間当たりの増加量を小さくすることで、運転者の加速要求に合致したトルクの応答性とギアバックラッシュ低減効果との両立を高いレベルで実現できる。
 (c)請求項5に記載の電動車両の制御装置において、
 前記モータトルク変化量制限制御部は、前回演算され前記補正されたモータトルク指令基準値が小さい場合、および、前記モータトルク指令基準値補正部により補正されたモータトルク指令基準値と前回演算された前記補正されたモータトルク指令基準値との差分が小さいほど前記モータトルク指令値に基づき駆動される前記電動モータのトルクの単位時間当たりの増加量を小さくすることを特徴とする電動車両の制御装置。
 前回演算され補正されたモータトルク指令基準値は、実際のモータトルクを示す値であり、この値が小さいほどドライバは緩やかな加速を要求していると判断できる。また、前記差分は、アクセル操作速度を示す値であり、この値が小さいほどアクセル操作速度が低く、ドライバは緩やかな加速を要求していると判断できる。よって、前回演算され補正されたモータトルク指令基準値が小さいほどトルクの単位時間当たりの増加量を小さくする、または、前記差分が小さいほどトルクの単位時間当たりの増加量を小さくすることで、運転者の加速要求に合致したトルクの応答性とギアバックラッシュ低減効果との両立を高いレベルで実現できる。
 (d)請求項1に記載の電動車両の制御装置において、
 前記電動モータの回転速度を算出するモータ回転速度算出部を有し、
 前記コントロールユニットは、前記算出されたモータ回転速度に基づいて前記電動モータの振動を抑制する制振トルク指令値を算出する制振制御部を備え、
 前記モータトルク変化量制限制御部は、前記算出された前記モータトルク指令値に前記算出された制振トルク指令値を加算した指令値に基づいてモータトルクを制限することを特徴とする電動車両の制御装置。
 よって、モータトルクの急変からパワートレインのギアを保護できると共に、運転者にトルク変動に伴う違和感を与えるのを抑制できる。
 (e)運転者のアクセル操作状態を検出するアクセル操作状態検出部と、
 運転者のアクセル操作量を検出するアクセル操作量検出部と、
 減速機構と車軸を介して接続された車輪に対して制駆動トルクを与える電動モータと、
 前記アクセル操作量検出部によって検出されたアクセル操作量に基づいて前記電動モー
タを制駆動するためのモータトルク指令値を算出するコントロールユニットと、
 を備え、
 前記コントロールユニットは、前記電動モータが発生するトルクが制動方向のトルクから駆動方向のトルクへ切り替わるときに、前記モータトルク指令値に基づき駆動される前記電動モータのトルクの増加勾配を、前記検出されたアクセル操作量に基づいて、前記算出されたモータトルク指令値による増加勾配よりも小さくするモータトルク変化量制限制御部を備えたことを特徴とする電動車両の制御装置。
 よって、運転者の加速要求に合致したトルクの応答性とギアバックラッシュ低減効果との両立を実現できる。
 (f)(e)に記載の電動車両の制御装置において、
 前記モータトルク変化量制限制御部は、前記検出されたアクセル操作量が大きいときは小さいときに比べ、前記トルクの単位時間当たりの増加量を大きくすることを特徴とする電動車両の制御装置。
 よって、運転者が急加速を要求する場合はトルクの遅れ時間を短く、緩やかな加速を要求する場合はトルクの遅れ時間を長くすることで、運転者の加速要求に合致したトルクの応答性とギアバックラッシュ低減効果との両立を高いレベルで実現できる。
 (g)に記載の電動車両の制御装置において、
 アクセル操作速度を算出するアクセル操作速度算出部を備え、
 前記モータトルク変化量制限制御部は、前記算出されたアクセル操作速度が高いときは低いときに比べ、前記トルクの単位時間当たりの増加量を大きくすることを特徴とする電動車両の制御装置。
 よって、運転者が急加速を要求する場合はトルクの遅れ時間を短く、緩やかな加速を要求する場合はトルクの遅れ時間を長くすることで、運転者の加速要求に合致したトルクの応答性とギアバックラッシュ低減効果との両立を高いレベルで実現できる。
 (h)(e)に記載の電動車両の制御装置において、
 前記電動モータの回転速度を算出するモータ回転速度算出部を有し、
 前記コントロールユニットは、前記検出されたアクセル操作量と前記算出されたモータ回転速度とに基づいて前記モータトルク指令基準値を算出するモータトルク指令基準値算出部を備え、
 前記モータトルク変化量制限制御部は、算出された前記モータトルク指令基準値を制限して前記電動モータを駆動することを特徴とする電動車両の制御装置。
 よって、モータトルク指令基準値を制限することで電動モータのトルクの増加勾配を所望の勾配に制限できる。
 (i)(h)に記載の電動車両の制御装置において、
 前記コントロールユニットは、前記算出されたモータトルク指令基準値を前記電動モータ駆動用のバッテリの状態に応じて補正するモータトルク指令基準値補正部を備え、
 前記モータトルク変化量制限制御部は、前記モータトルク指令基準値補正部により補正されたモータトルク指令基準値と前回演算された前記補正されたモータトルク指令基準値との差分を前回の補正されたモータトルク指令基準値に加算しモータトルク指令値を算出して前記電動モータのトルクを制限することを特徴とする電動車両の制御装置。
 よって、モータ出力をバッテリの状態に応じて補正できる。
 (j)(i)に記載の電動車両の制御装置において、
 前記モータトルク変化量制限制御部は、前回演算され前記補正されたモータトルク指令基準値が小さいほど前記モータトルク指令値に基づき駆動される前記電動モータのトルクの増加勾配を小さくすることを特徴とする電動車両の制御装置。
 よって、前回演算され補正されたモータトルク指令基準値は、実際のモータトルクを示す値であり、この値が小さいほどドライバは緩やかな加速を要求していると判断できる。よって、前回演算され補正されたモータトルク指令基準値が小さいほどトルクの増加勾配を小さくすることで、運転者の加速要求に合致したトルクの応答性とギアバックラッシュ低減効果との両立を高いレベルで実現できる。
 (k)(j)に記載の電動車両の制御装置において、
 前記モータトルク変化量制限制御部は、前記モータトルク指令基準値補正部により補正されたモータトルク指令基準値と前回演算された前記補正されたモータトルク指令基準値との差分が小さいほど前記モータトルク指令値に基づき駆動される前記電動モータのトルクの増加勾配を小さくすることを特徴とする電動車両の制御装置。
 よって、前記差分は、アクセル操作速度を示す値であり、この値が小さいほどアクセル操作速度が低く、ドライバは緩やかな加速を要求していると判断できる。よって、前記差分が小さいほどトルクの増加勾配を小さくすることで、運転者の加速要求に合致したトルクの応答性とギアバックラッシュ低減効果との両立を高いレベルで実現できる。
 (l)(j)に記載の電動車両の制御装置において、
 前記コントロールユニットは、前記算出されたモータ回転速度に基づいて前記電動モータの振動を抑制する制振トルク指令値を算出する制振制御部を備え、
 前記モータトルク変化量制限制御部は、前記算出された前記モータトルク指令値に前記算出された制振トルク指令値を加算した指令値に基づいてモータトルクの増加勾配を制限することを特徴とする電動車両の制御装置。
 よって、モータトルクの急変からパワートレインのギアを保護できると共に、運転者にトルク変動に伴う違和感を与えるのを抑制できる。
 (m) 減速機構と車軸を介して接続された車輪に対して駆動トルクを与える電動モータをアクセル操作状態に基づいて駆動する電動車両の制御方法であって、
 運転者のアクセル操作関連情報を検出するアクセル操作関連情報検出部の情報から、アクセル操作がなされていない状態のときには前記車輪に制動トルクを与え、その後、アクセル操作がなされた状態へ移行したときは前記駆動トルクよりも小さな増加勾配で前記車輪に駆動トルクを与えることを特徴とする電動車両の制御方法。
 よって、ゼロトルクを通過する際のギアバックラッシュ振動を抑制できる。
 (n) (m)に記載の電動車両の制御装置において、
 前記アクセル操作関連情報のうちアクセル操作量が大きいときは小さいときに比べ、前記トルクの単位時間当たりの増加量を大きくすることを特徴とする電動車両の制御方法。
 よって、運転者が急加速を要求する場合はトルクの遅れ時間を短く、緩やかな加速を要求する場合はトルクの遅れ時間を長くすることで、運転者の加速要求に合致したトルクの応答性とギアバックラッシュ低減効果との両立を高いレベルで実現できる。
 (o) (m)に記載の電動車両の制御装置において、
 前記アクセル操作関連情報のうちアクセル操作速度が高いときは低いときに比べ、前記トルクの単位時間当たりの増加量を大きくすることを特徴とする電動車両の制御方法。
 よって、運転者が急加速を要求する場合はトルクの遅れ時間を短く、緩やかな加速を要求する場合はトルクの遅れ時間を長くすることで、運転者の加速要求に合致したトルクの応答性とギアバックラッシュ低減効果との両立を高いレベルで実現できる。
100 電動モータ
104 減速機(歯車伝達機構)
105 ディファレンシャルギア(歯車伝達機構)
111 車両コントローラ(コントロールユニット)
111b アクセルストロークセンサ(アクセル操作状態検出部、アクセル操作量検出部)
202 トルク変化量制限制御部(モータトルク変化量制限制御部)
RL,RR 左右前輪(車輪)

Claims (20)

  1.  運転者のアクセル操作状態を検出するアクセル操作状態検出部と、
     運転者のアクセル操作量を検出するアクセル操作量検出部と、
     歯車伝達機構を介して接続された車輪に対して制駆動トルクを与える電動モータと、
     前記アクセル操作量検出部によって検出されたアクセル操作量に基づいて前記電動モータを制駆動するためのモータトルク指令値を算出するコントロールユニットと、
     を備え、
     前記コントロールユニットは、前記アクセル操作状態検出部によりアクセル操作状態が非操作状態から操作状態に変更されたことが検出され、前記電動モータが制動トルクから駆動トルクへ切り替える際に前記モータトルク指令値に基づき駆動される前記電動モータのトルクの単位時間当たりの増加量を前記検出されたアクセル操作量に対応して制限するモータトルク変化量制限制御部を備えたことを特徴とする電動車両の制御装置。
  2.  請求項1に記載の電動車両の制御装置において、
     前記モータトルク変化量制限制御部は、前記検出されたアクセル操作量が大きいときは小さいときに比べ、前記トルクの単位時間当たりの増加量を大きくすることを特徴とする電動車両の制御装置。
  3.  請求項1に記載の電動車両の制御装置において、
     アクセル操作速度を算出するアクセル操作速度算出部を備え、
     前記モータトルク変化量制限制御部は、前記算出されたアクセル操作速度が高いときは低いときに比べ、前記トルクの単位時間当たりの増加量を大きくすることを特徴とする電動車両の制御装置。
  4.  請求項1に記載の電動車両の制御装置において、
     前記電動モータの回転速度を算出するモータ回転速度算出部を有し、
     前記コントロールユニットは、前記検出されたアクセル操作量と前記算出されたモータ回転速度とに基づいて前記モータトルク指令基準値を算出するモータトルク指令基準値算出部を備え、
     前記モータトルク変化量制限制御部は、算出された前記モータトルク指令基準値を調整することで前記電動モータのトルクを制限することを特徴とする電動車両の制御装置。
  5.  請求項4に記載の電動車両の制御装置において、
     前記コントロールユニットは、前記算出されたモータトルク指令基準値を前記電動モータ駆動用のバッテリの状態に応じて補正するモータトルク指令基準値補正部を備え、
     前記モータトルク変化量制限制御部は、前記モータトルク指令基準値補正部により補正されたモータトルク指令基準値と前回演算された前記補正されたモータトルク指令基準値との差分を前回の補正されたモータトルク指令基準値に加算したモータトルク指令値を用いて前記電動モータを駆動することを特徴とする電動車両の制御装置。
  6.  請求項5に記載の電動車両の制御装置において、
     前記モータトルク変化量制限制御部は、前回演算され前記補正されたモータトルク指令基準値が小さいほど前記モータトルク指令値に基づき駆動される前記電動モータのトルクの単位時間当たりの増加量を小さくすることを特徴とする電動車両の制御装置。
  7.  請求項5に記載の電動車両の制御装置において、
     前記モータトルク変化量制限制御部は、前記モータトルク指令基準値補正部により補正されたモータトルク指令基準値と前回演算された前記補正されたモータトルク指令基準値との差分が小さいほど前記モータトルク指令値に基づき駆動される前記電動モータのトルクの単位時間当たりの増加量を小さくすることを特徴とする電動車両の制御装置。
  8.  請求項5に記載の電動車両の制御装置において、
     前記モータトルク変化量制限制御部は、前回演算され前記補正されたモータトルク指令基準値が小さい場合、および、前記モータトルク指令基準値補正部により補正されたモータトルク指令基準値と前回演算された前記補正されたモータトルク指令基準値との差分が小さいほど前記モータトルク指令値に基づき駆動される前記電動モータのトルクの単位時間当たりの増加量を小さくすることを特徴とする電動車両の制御装置。
  9.  請求項1に記載の電動車両の制御装置において、
     前記電動モータの回転速度を算出するモータ回転速度算出部を有し、
     前記コントロールユニットは、前記算出されたモータ回転速度に基づいて前記電動モータの振動を抑制する制振トルク指令値を算出する制振制御部を備え、
     前記モータトルク変化量制限制御部は、前記算出された前記モータトルク指令値に前記算出された制振トルク指令値を加算した指令値に基づいてモータトルクを制限することを特徴とする電動車両の制御装置。
  10.  運転者のアクセル操作状態を検出するアクセル操作状態検出部と、
     運転者のアクセル操作量を検出するアクセル操作量検出部と、
     減速機構と車軸を介して接続された車輪に対して制駆動トルクを与える電動モータと、
     前記アクセル操作量検出部によって検出されたアクセル操作量に基づいて前記電動モータを制駆動するためのモータトルク指令値を算出するコントロールユニットと、
     を備え、
     前記コントロールユニットは、前記電動モータが発生するトルクが制動方向のトルクから駆動方向のトルクへ切り替わるときに、前記モータトルク指令値に基づき駆動される前記電動モータのトルクの増加勾配を、前記検出されたアクセル操作量に基づいて、前記算出されたモータトルク指令値による増加勾配よりも小さくするモータトルク変化量制限制御部を備えたことを特徴とする電動車両の制御装置。
  11.  請求項10に記載の電動車両の制御装置において、
     前記モータトルク変化量制限制御部は、前記検出されたアクセル操作量が大きいときは小さいときに比べ、前記トルクの単位時間当たりの増加量を大きくすることを特徴とする電動車両の制御装置。
  12.  請求項11に記載の電動車両の制御装置において、
     アクセル操作速度を算出するアクセル操作速度算出部を備え、
     前記モータトルク変化量制限制御部は、前記算出されたアクセル操作速度が高いときは低いときに比べ、前記トルクの単位時間当たりの増加量を大きくすることを特徴とする電動車両の制御装置。
  13.  請求項10に記載の電動車両の制御装置において、
     前記電動モータの回転速度を算出するモータ回転速度算出部を有し、
     前記コントロールユニットは、前記検出されたアクセル操作量と前記算出されたモータ回転速度とに基づいて前記モータトルク指令基準値を算出するモータトルク指令基準値算出部を備え、
     前記モータトルク変化量制限制御部は、算出された前記モータトルク指令基準値を制限して前記電動モータを駆動することを特徴とする電動車両の制御装置。
  14.  請求項13に記載の電動車両の制御装置において、
     前記コントロールユニットは、前記算出されたモータトルク指令基準値を前記電動モータ駆動用のバッテリの状態に応じて補正するモータトルク指令基準値補正部を備え、
     前記モータトルク変化量制限制御部は、前記モータトルク指令基準値補正部により補正されたモータトルク指令基準値と前回演算された前記補正されたモータトルク指令基準値との差分を前回の補正されたモータトルク指令基準値に加算しモータトルク指令値を算出して前記電動モータのトルクを制限することを特徴とする電動車両の制御装置。
  15.  請求項14に記載の電動車両の制御装置において、
     前記モータトルク変化量制限制御部は、前回演算され前記補正されたモータトルク指令基準値が小さいほど前記モータトルク指令値に基づき駆動される前記電動モータのトルクの増加勾配を小さくすることを特徴とする電動車両の制御装置。
  16.  請求項15に記載の電動車両の制御装置において、
     前記モータトルク変化量制限制御部は、前記モータトルク指令基準値補正部により補正されたモータトルク指令基準値と前回演算された前記補正されたモータトルク指令基準値との差分が小さいほど前記モータトルク指令値に基づき駆動される前記電動モータのトルクの増加勾配を小さくすることを特徴とする電動車両の制御装置。
  17.  請求項15に記載の電動車両の制御装置において、
     前記コントロールユニットは、前記算出されたモータ回転速度に基づいて前記電動モータの振動を抑制する制振トルク指令値を算出する制振制御部を備え、
     前記モータトルク変化量制限制御部は、前記算出された前記モータトルク指令値に前記算出された制振トルク指令値を加算した指令値に基づいてモータトルクの増加勾配を制限することを特徴とする電動車両の制御装置。
  18.  減速機構と車軸を介して接続された車輪に対して駆動トルクを与える電動モータをアクセル操作状態に基づいて駆動する電動車両の制御方法であって、
     運転者のアクセル操作関連情報を検出するアクセル操作関連情報検出部の情報から、アクセル操作がなされていない状態のときには前記車輪に制動トルクを与え、その後、アクセル操作がなされた状態へ移行したときは前記駆動トルクよりも小さな増加勾配で前記車輪に駆動トルクを与えることを特徴とする電動車両の制御方法。
  19.  請求項18に記載の電動車両の制御方法において、
     前記アクセル操作関連情報のうちアクセル操作量が大きいときは小さいときに比べ、前記トルクの単位時間当たりの増加量を大きくすることを特徴とする電動車両の制御方法。
  20.  請求項18に記載の電動車両の制御方法において、
     前記アクセル操作関連情報のうちアクセル操作速度が高いときは低いときに比べ、前記トルクの単位時間当たりの増加量を大きくすることを特徴とする電動車両の制御方法。
PCT/JP2012/081676 2011-12-07 2012-12-06 電動車両の制御装置 WO2013085000A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112012004458.4T DE112012004458T5 (de) 2011-12-07 2012-12-06 Elektrofahrzeug-Steuervorrichtung
CN201280060363.3A CN103987569A (zh) 2011-12-07 2012-12-06 电动车辆的控制装置
US14/361,837 US20140288758A1 (en) 2011-12-07 2012-12-06 Electric vehicle control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011267634A JP2013121231A (ja) 2011-12-07 2011-12-07 電動車両の制御装置
JP2011-267634 2011-12-07

Publications (1)

Publication Number Publication Date
WO2013085000A1 true WO2013085000A1 (ja) 2013-06-13

Family

ID=48574355

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/081676 WO2013085000A1 (ja) 2011-12-07 2012-12-06 電動車両の制御装置

Country Status (5)

Country Link
US (1) US20140288758A1 (ja)
JP (1) JP2013121231A (ja)
CN (1) CN103987569A (ja)
DE (1) DE112012004458T5 (ja)
WO (1) WO2013085000A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3074255A4 (en) * 2013-11-28 2017-11-08 Scania CV AB Method for braking a vehicle with a hybrid powertrain by controlled use of an electric machine
CN115716413A (zh) * 2022-11-28 2023-02-28 成都赛力斯科技有限公司 一种扭矩控制方法、装置、设备及存储介质

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE538993C2 (sv) * 2014-05-30 2017-03-14 Scania Cv Ab Reglering av ett från en motor begärt moment
CN104210383B (zh) * 2014-09-18 2016-05-25 上海工程技术大学 一种四轮独立驱动电动汽车转矩分配控制方法及系统
CN104354605B (zh) * 2014-11-04 2016-06-08 株洲南车时代电气股份有限公司 一种用于控制电动轮作业车辆行驶速度的系统及方法
JP6146396B2 (ja) * 2014-11-14 2017-06-14 トヨタ自動車株式会社 電動モーターによって駆動する車両、および、その車両の制御方法
AU2015372397B2 (en) * 2014-12-23 2020-04-30 General Magnetic International Inc. Brake system and controller for use with a wellhead direct drive
EP3282115B1 (en) * 2015-04-07 2019-06-12 Nissan Motor Co., Ltd. Air-fuel ratio control device and air-fuel ratio control method
KR101866018B1 (ko) * 2016-04-19 2018-06-08 현대자동차주식회사 전기자동차의 휠 슬립 개선을 위한 모터토크 가변 제어 방법 및 장치
JP6640659B2 (ja) * 2016-06-14 2020-02-05 株式会社日立製作所 電力変換器の制御装置、電力変換システム、圧縮機駆動システム、フライホイール発電システム、及び、電力変換器の制御方法
JP6823415B2 (ja) * 2016-09-29 2021-02-03 株式会社Subaru 車両の制御装置及び車両の制御方法
JP6729281B2 (ja) * 2016-10-18 2020-07-22 三菱自動車工業株式会社 電動車の走行制御装置
CN107351688B (zh) * 2017-07-19 2023-04-18 福州大学 一种大学生电动方程式赛车的行车策略及其电控系统
US10875450B2 (en) * 2018-09-06 2020-12-29 Ford Global Technologies, Llc Electrified vehicle and method for providing driver feedback by producing torque ripple
CN111619364A (zh) * 2019-02-28 2020-09-04 北京新能源汽车股份有限公司 一种电机输出扭矩的控制方法、电机控制器及车辆
JP7215371B2 (ja) * 2019-08-01 2023-01-31 トヨタ自動車株式会社 電動車両システム及び電動車両の制御方法
JP7043472B2 (ja) * 2019-09-30 2022-03-29 ダイハツ工業株式会社 電動車両用制御装置
JP7425629B2 (ja) 2020-03-02 2024-01-31 株式会社Subaru 車両用制御装置
KR20220096746A (ko) * 2020-12-31 2022-07-07 현대자동차주식회사 차량 구동장치의 토크 제어 방법
CN112706624B (zh) * 2021-01-25 2023-02-17 一汽解放汽车有限公司 电机扭矩过零控制方法、系统及电动汽车
KR20230037177A (ko) * 2021-09-09 2023-03-16 현대자동차주식회사 차량의 휠 슬립 제어 방법
JP2023162546A (ja) * 2022-04-27 2023-11-09 日野自動車株式会社 電動車制御装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001225672A (ja) * 1999-08-05 2001-08-21 Toyota Motor Corp 無段変速機を備えた車両の制御装置
JP2002101693A (ja) * 2000-09-25 2002-04-05 Aisin Seiki Co Ltd 電動モータの制御装置
JP2006081323A (ja) * 2004-09-10 2006-03-23 Toyota Motor Corp 電気自動車およびその制御方法
JP2006353033A (ja) * 2005-06-17 2006-12-28 Toyota Motor Corp 駆動装置およびこれを搭載する自動車並びに動力出力装置、駆動装置の制御方法
JP2008125225A (ja) * 2006-11-10 2008-05-29 Toyota Motor Corp モータ駆動装置
JP2009071979A (ja) * 2007-09-13 2009-04-02 Toyota Motor Corp 車両の制御装置、制御方法、その方法を実現させるプログラムおよびそのプログラムを記録した記録媒体

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5463294A (en) * 1994-06-10 1995-10-31 Westinghouse Electric Corp. Control mechanism for electric vehicle
JP3305568B2 (ja) * 1996-05-15 2002-07-22 本田技研工業株式会社 電動車両の制動装置
JP3948138B2 (ja) * 1998-10-20 2007-07-25 トヨタ自動車株式会社 回生制動力の制御装置
WO2002004806A1 (fr) * 2000-07-11 2002-01-17 Aisin Aw Co., Ltd. Systeme d'entrainement
JP4660941B2 (ja) * 2001-02-23 2011-03-30 アイシン精機株式会社 電動モータの制御装置
JP2003327101A (ja) * 2002-05-13 2003-11-19 Honda Motor Co Ltd 電動駐車ブレーキ装置
JP2004175203A (ja) * 2002-11-27 2004-06-24 Advics:Kk 電動パーキングブレーキ装置
JP4200842B2 (ja) * 2003-07-29 2008-12-24 トヨタ自動車株式会社 車両およびその制御方法
US7495403B2 (en) * 2004-03-30 2009-02-24 Continental Automotive Systems Us, Inc. Method, apparatus and article for vibration compensation in electric drivetrains
JP4470928B2 (ja) * 2006-09-15 2010-06-02 トヨタ自動車株式会社 電動パーキングブレーキシステム
JP4265633B2 (ja) * 2006-09-15 2009-05-20 トヨタ自動車株式会社 電動パーキングブレーキシステム
JP4793793B2 (ja) * 2007-03-15 2011-10-12 トヨタ自動車株式会社 電動機駆動装置
KR101090708B1 (ko) * 2009-03-16 2011-12-08 기아자동차주식회사 하이브리드 차량용 구동계에서의 기어 백래시 진동을 저감시키기 위한 방법
KR101405198B1 (ko) * 2012-12-07 2014-06-27 기아자동차 주식회사 하이브리드 차량의 안티 저크 제어 방법 및 시스템
US10411532B2 (en) * 2013-10-27 2019-09-10 Moovee Innovations Inc. Software-defined electric motor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001225672A (ja) * 1999-08-05 2001-08-21 Toyota Motor Corp 無段変速機を備えた車両の制御装置
JP2002101693A (ja) * 2000-09-25 2002-04-05 Aisin Seiki Co Ltd 電動モータの制御装置
JP2006081323A (ja) * 2004-09-10 2006-03-23 Toyota Motor Corp 電気自動車およびその制御方法
JP2006353033A (ja) * 2005-06-17 2006-12-28 Toyota Motor Corp 駆動装置およびこれを搭載する自動車並びに動力出力装置、駆動装置の制御方法
JP2008125225A (ja) * 2006-11-10 2008-05-29 Toyota Motor Corp モータ駆動装置
JP2009071979A (ja) * 2007-09-13 2009-04-02 Toyota Motor Corp 車両の制御装置、制御方法、その方法を実現させるプログラムおよびそのプログラムを記録した記録媒体

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3074255A4 (en) * 2013-11-28 2017-11-08 Scania CV AB Method for braking a vehicle with a hybrid powertrain by controlled use of an electric machine
CN115716413A (zh) * 2022-11-28 2023-02-28 成都赛力斯科技有限公司 一种扭矩控制方法、装置、设备及存储介质
CN115716413B (zh) * 2022-11-28 2024-04-26 重庆赛力斯凤凰智创科技有限公司 一种扭矩控制方法、装置、设备及存储介质

Also Published As

Publication number Publication date
JP2013121231A (ja) 2013-06-17
CN103987569A (zh) 2014-08-13
DE112012004458T5 (de) 2014-07-17
US20140288758A1 (en) 2014-09-25

Similar Documents

Publication Publication Date Title
WO2013085000A1 (ja) 電動車両の制御装置
EP3050765B1 (en) Control device for electric vehicle
US8634987B2 (en) Control apparatus for electric vehicle
JP6201209B2 (ja) 駆動力制御装置及び駆動力制御方法
JP2012200076A (ja) 電動車両の制御装置
JP6361916B2 (ja) 車両制御装置および車両制御方法
WO2019138962A1 (ja) 電動車両の制御装置、電動車両の制御システム及び電動車両の制御方法
JP2015056965A (ja) 電動車両の制御装置及び電動車両の制御方法
JP6898843B2 (ja) 電動車両の制御装置、制御方法および制御システム
JP6219242B2 (ja) 車両用走行制御装置
JP2007131093A (ja) 車両用減速制御装置
JP5686721B2 (ja) 電動車両の制御装置
JP6056430B2 (ja) 車両用制動制御装置
JP5309720B2 (ja) 電動車両の制駆動制御装置及び制駆動制御方法
JP5982808B2 (ja) 制動トルク制御装置及び制動トルク制御方法
JP2017158337A (ja) 電動車両の制御装置、電動車両の制御システムおよび電動車両の制御方法
JP7303736B2 (ja) 車両の制御装置
JP6458324B2 (ja) 車両用の制動制御装置
JP6641784B2 (ja) 電動車両の制御方法、及び、制御装置
JP2010018192A (ja) 電動ブレーキ装置
JP2012131385A (ja) 車両制御装置
WO2022264738A1 (ja) 車両の制御装置
JP2012239329A (ja) 車両の回生トルク制御装置
JP7362434B2 (ja) 制動制御装置
JP6443266B2 (ja) 車両の制御方法および車両用制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12855144

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1120120044584

Country of ref document: DE

Ref document number: 112012004458

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 14361837

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 12855144

Country of ref document: EP

Kind code of ref document: A1