WO2013076794A1 - 半導体機能素子付き繊維構造体とその製造方法 - Google Patents

半導体機能素子付き繊維構造体とその製造方法 Download PDF

Info

Publication number
WO2013076794A1
WO2013076794A1 PCT/JP2011/076810 JP2011076810W WO2013076794A1 WO 2013076794 A1 WO2013076794 A1 WO 2013076794A1 JP 2011076810 W JP2011076810 W JP 2011076810W WO 2013076794 A1 WO2013076794 A1 WO 2013076794A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber structure
semiconductor functional
yarns
yarn
functional
Prior art date
Application number
PCT/JP2011/076810
Other languages
English (en)
French (fr)
Inventor
中田 仗祐
聡一郎 井本
郁夫 稲川
英稔 中村
敦士 増田
哲彦 村上
Original Assignee
京セミ株式会社
福井県
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セミ株式会社, 福井県 filed Critical 京セミ株式会社
Priority to JP2013545672A priority Critical patent/JP5942298B2/ja
Priority to PCT/JP2011/076810 priority patent/WO2013076794A1/ja
Priority to TW101108710A priority patent/TW201322421A/zh
Publication of WO2013076794A1 publication Critical patent/WO2013076794A1/ja

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/20Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
    • D03D15/283Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads synthetic polymer-based, e.g. polyamide or polyester fibres
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D1/00Woven fabrics designed to make specified articles
    • D03D1/0076Photovoltaic fabrics
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/20Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
    • D03D15/242Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads inorganic, e.g. basalt
    • D03D15/25Metal
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/50Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • H01L31/02005Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier
    • H01L31/02008Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/035281Shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/044PV modules or arrays of single PV cells including bypass diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0508Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module the interconnection means having a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/16Physical properties antistatic; conductive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V33/00Structural combinations of lighting devices with other articles, not otherwise provided for
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Definitions

  • the present invention relates to a fiber structure with a semiconductor functional element and a method for manufacturing the same, and more particularly, a fiber structure with a semiconductor functional element that includes a plurality of insulating yarns and a plurality of functional yarns with a semiconductor functional element,
  • the present invention relates to a body and a manufacturing method thereof.
  • a string-like functional yarn having a plurality of semiconductor functional elements (solar cells, light-emitting diodes, bypass diodes, etc.) is used as warp or weft, and a plurality of conductive wires or insulating wires are woven as weft or warp.
  • semiconductor functional elements solar cells, light-emitting diodes, bypass diodes, etc.
  • conductive wires or insulating wires are woven as weft or warp.
  • Various mesh-shaped woven mesh substrates with semiconductor functional elements having a function or a light emitting function have been proposed.
  • Patent Document 1 a plurality of granular semiconductor functional elements having positive and negative electrodes at both ends are sandwiched between a pair of conductive wires and electrically connected in parallel.
  • a functional string with a semiconductor functional element having a circular cross section in which a conductive wire is embedded in a flexible transparent synthetic resin is disclosed.
  • a planar module configured by arranging a plurality of functional cords with semiconductor functional elements in parallel at equal intervals and sealing the whole with a transparent synthetic resin in an embedded state.
  • Patent Document 2 discloses that a plurality of meshes of a mesh-like glass cloth (woven mesh substrate) in which a conductor made of a conductive wire in which silver is coated on a glass fiber is used as a weft and a defective conductor made of glass fiber is used as a warp is pn
  • the solar cell with the junction formed is firmly pushed in, heated at that temperature to form an electrode, and the glass cloth and the solar cell are electrically connected simultaneously, and then laminated with a resin film from both sides of the glass cloth.
  • a flexible solar cell module is disclosed.
  • Patent Document 3 discloses independent positive and negative meshes on a plurality of meshes of a woven mesh substrate woven with a plurality of conductive wires arranged in parallel and an insulating tension wire for fixing these conductive wires.
  • a solar cell module having a structure in which a plurality of spherical solar cells provided with dot-like electrodes are inserted and the positive and negative electrodes of the solar cells are electrically connected to a conductive wire by solder or the like is disclosed.
  • Patent Document 2 a method of preparing a woven mesh base material woven in advance with a conductive wire and an insulating wire and then incorporating a plurality of solar cells is disclosed.
  • Patent Documents 2 and 3 in order to electrically connect the woven mesh substrate and the solar battery cell, after forming a mesh with the conductive wire and the insulating wire, the conductive wire and the sun are connected via a conductive adhesive.
  • the battery cell is electrically connected.
  • a high temperature of 200 ° C. or higher is applied to the contact portion between the conductive wire and the semiconductor functional element. Therefore, the conductive wire requires a highly heat-resistant wire, Further, a wire having high heat resistance is also required for the insulating wire woven together with the conductive wire.
  • Patent Documents 4 and 5 include, as warp yarns, a functional yarn in which a plurality of semiconductor functional elements are mounted in advance A woven structure such as an electric woven fabric or a woven fabric in which a conductive wire or an insulating wire is woven as a weft is disclosed.
  • the plurality of semiconductor functional elements of the functional yarn and the conductive wire are electrically connected through physical contact without using an adhesive.
  • the functional yarn of Patent Document 4 has a three-dimensional structure in which an elongated belt-like substrate is provided, and a plurality of semiconductor functional elements, signal lines, and the like are disposed on the substrate.
  • a gate electrode is formed on the surface of a plastic fiber that is a wire, an insulating film is formed on the gate electrode, and a drain electrode, a source electrode, and an n-type semiconductor are formed on the insulating film, respectively.
  • a gate electrode is formed on the surface of a plastic fiber that is a wire
  • an insulating film is formed on the gate electrode
  • a drain electrode, a source electrode, and an n-type semiconductor are formed on the insulating film, respectively.
  • the functional yarn of Patent Document 4 has a three-dimensional structure in which a plurality of semiconductor functional elements are arranged on a belt-like substrate, and the functional yarn of Patent Document 5 has a structure in which semiconductor functional elements are directly formed on the surface of a wire. Therefore, these functional yarns have an integral structure and a complicated structure, and therefore are extremely inflexible.
  • the functional yarn of Patent Document 4 has a structure in which the semiconductor functional element is arranged on the surface of the belt-like substrate, so that the width of the yarn is widened.
  • the functional yarn of Patent Document 5 has a structure in which the semiconductor functional element is formed on the surface of the wire.
  • the yarn diameter increases, even if the woven mesh base material is woven using these functional yarns, the woven mesh base material has no air permeability.
  • Patent Documents 2 and 3 a mesh-shaped woven mesh base material adapted to the size of the semiconductor functional element is created in advance, and then the semiconductor functional element is mounted on the woven mesh base material.
  • semiconductor functional elements In order to incorporate semiconductor functional elements into the woven mesh substrate while maintaining a constant spacing between the mesh of the woven mesh substrate and the diameter of the semiconductor functional elements, positioning is required. Is difficult. In order to manufacture a woven mesh base material with a semiconductor functional element of a certain size, the manufacturing apparatus becomes large and expensive.
  • An object of the present invention is to provide a manufacturing method of a fiber structure with a semiconductor functional element suitable for mass production at a low cost, to provide a lightweight fiber structure with a semiconductor functional element that is flexible and breathable, Providing a fiber structure with a semiconductor functional element which can be continuously manufactured, and the like.
  • the fiber structure with a semiconductor functional element of claim 1 is a fiber structure composed of a plurality of yarns, and the fiber structure with a semiconductor functional element in which a plurality of semiconductor function elements are incorporated.
  • the positive electrodes of the plurality of semiconductor functional elements are electrically connected to one conductive line, and the negative electrodes of the plurality of semiconductor functional elements are electrically connected to the other conductive line. Yes.
  • a first group warp including a plurality of warps arranged in parallel with each other and a second group warp including a plurality of warps parallel to and alternately with the first group warp are moved by a reed mechanism, A first step of forming a gap between the second group warp yarns, a second step of supplying a weft yarn to the gap between the first and second group warp yarns by a shuttle mechanism, and a weft yarn supplied in the second step A third step of striking the fiber structure with a scissor mechanism, a fourth step of drawing out the fiber structure with a semiconductor functional element to a predetermined length, and a fifth step of repeating the first step to the fourth step a plurality of times. It is characterized by that.
  • a lightweight fiber structure with a semiconductor functional element that is excellent in flexibility and air permeability.
  • a fiber structure with a semiconductor functional element that can be mass-produced at low cost can be realized.
  • a thin fiber structure with a semiconductor functional element suitable for being attached to the surface of an object can be realized.
  • This fiber structure with a semiconductor functional element is an intermediate material product having flexibility, light weight, thinness, flexibility, see-through, and daylighting properties, and can be finished into various products according to applications.
  • the fiber structure with a semiconductor functional element can be mass-produced continuously and inexpensively with a small number of steps.
  • a fiber structure with a semiconductor functional element that is excellent in flexibility and air permeability and is lightweight can be manufactured.
  • a fiber structure with a semiconductor element can be automatically manufactured while effectively utilizing an existing loom.
  • the plurality of yarns includes a first yarn group and a second yarn group intersecting with the first yarn group, the first yarn group includes a plurality of functional yarns with semiconductor functional elements, and the second yarn group includes a plurality of second yarn groups. Insulating yarn.
  • the first yarn group is composed of a plurality of functional yarns with semiconductor functional elements, and the plurality of functional yarns with semiconductor functional elements has a conductive direction connecting positive and negative electrodes of the semiconductor functional elements with the length of the second yarn group. Conductive wires of functional yarns with semiconductor functional elements that are arranged in a state aligned in the direction are electrically connected to each other.
  • the first yarn group includes a plurality of functional yarns with semiconductor functional elements and a plurality of insulating yarns, and the plurality of functional yarns with semiconductor functional elements has a conductive direction connecting positive and negative electrodes of the semiconductor functional elements. It arrange
  • the first yarn group includes one or more functional yarns with a first semiconductor functional element and one or more functional yarns with a second semiconductor functional element, with the first semiconductor functional element.
  • the semiconductor functional element of the functional yarn is a spherical semiconductor functional element having a light receiving function
  • the semiconductor functional element of the functional yarn with the second semiconductor functional element is a semiconductor functional element having a light emitting function.
  • the second yarn group is a first and second insulating yarn adjacent to each other in the lengthwise direction of the first yarn group, and the front and back surfaces of the plurality of functional yarns with semiconductor functional elements of the first yarn group Are provided with first and second insulating yarns woven in a zigzag state.
  • a light-transmitting synthetic resin sheet material is provided on at least one surface of the fiber structure with a semiconductor functional element.
  • a wavelength conversion material that converts the wavelength of received light is added to the synthetic resin material of the sheet material.
  • the pair of conductive wires is a surface of one or a plurality of types of fiber bundles or stranded wires selected from glass fiber, carbon fiber, polyester fiber, aramid fiber, polyethylene fiber, and liquid crystal polymer fiber. And a conductive wire in which one or a plurality of fine metal wires are covered in a coil shape.
  • the pair of conductive wires is formed of a conductive wire in which one or a plurality of fine metal wires are covered in a coil shape on the surface of a core material including a wavelength conversion material that converts the wavelength of received light.
  • the insulating yarn is a single-core glass fiber, or a bundle or stranded wire of any one or a plurality of types of fibers selected from glass fibers, polyester fibers, polyimide fibers, and other synthetic fibers, and natural fibers Consists of.
  • the insulating yarn is made of a wire including a wavelength conversion material that converts the wavelength of received light.
  • the fiber structure with a semiconductor functional element has a multilayer structure in which a fiber structure is provided in at least a lower layer.
  • FIG. 3 is a sectional view taken along line III-IV in FIG. 2. It is a top view of a functional yarn with a semiconductor functional element. It is a partial expanded sectional view of FIG.
  • FIG. 6 is a sectional view taken along line VI-VI in FIG. 4. It is sectional drawing of a spherical solar cell. It is sectional drawing of a spherical bypass diode. It is a partial expansion perspective view of a conductive wire. It is a partial expansion perspective view of an insulating thread.
  • FIG. 2 is an equivalent circuit diagram of FIG. 1.
  • FIG. 14 is a sectional view taken along line XIV-VXIV in FIG. 13. It is a perspective view of the manufacturing apparatus of the fiber structure with a semiconductor function element concerning a partial change form. It is a top view of the fiber structure with a semiconductor function element concerning Example 2. It is the XVII-XVII sectional view taken on the line of FIG. It is the XVIII-XVIII sectional view taken on the line of FIG. It is the elements on larger scale of the 2nd function yarn with a semiconductor functional element.
  • FIG. 20 is an equivalent circuit diagram of FIG. 19. It is a perspective view of the manufacturing apparatus of the fiber structure with a semiconductor functional element. It is a top view of the fiber structure with a semiconductor function element concerning Example 3. It is a top view of the 1st function yarn with a semiconductor functional element. It is a top view of the 2nd function yarn with a semiconductor functional element. It is a top view of the fiber structure with a semiconductor function element concerning Example 4. It is a top view of the fiber structure with a semiconductor functional element concerning Example 5. It is a top view of the fiber structure with a semiconductor functional element concerning Example 6. It is a top view of the fiber structure with a semiconductor functional element concerning a partial change form.
  • a fiber structure 1 with a semiconductor functional element includes a plurality of functional yarns 4 with semiconductor functional elements and a plurality of insulating yarns 6.
  • the plurality of yarns includes a first yarn group 2 and a second yarn group 3 intersecting with the first yarn group 2, and the first yarn group 2 includes a plurality of functional yarns with semiconductor functional elements 4 (hereinafter referred to as a plurality of weft yarns).
  • the second yarn group 3 includes a plurality of insulating yarns 6 to be described later as a plurality of warp yarns.
  • the fiber structure 1 with an element is woven by the plurality of functional yarns 4 of the first yarn group 2 and the plurality of insulating yarns 6 of the second yarn group 3.
  • the fiber structure 1 with an element is a woven mesh substrate with an element that can be continuously woven into a long strip by a manufacturing apparatus 50 and a manufacturing method described later.
  • the element-equipped fiber structure 1 can be manufactured by appropriately setting the length of the functional yarn 4, the type of the semiconductor functional device 5 of the functional yarn 4, the number of incorporation, the arrangement pattern, the size, and the like.
  • All the yarns of the first yarn group 2 are composed of a plurality of functional yarns 4 extending in the lateral direction.
  • the plurality of functional yarns 4 are arranged in a state where the conductive direction connecting the positive and negative electrodes of the semiconductor functional element 5 is aligned with the length direction of the second yarn group 3, and the conductive wires 11 of the adjacent functional yarns 4 are electrically connected to each other. It is connected to the.
  • the plurality of functional yarns 4 are arranged in a parallel state and arranged in close contact without leaving a gap in the vertical direction.
  • All the yarns of the second yarn group 3 are composed of a plurality of insulating yarns 6 woven so as to be orthogonal to the first yarn group 2 and extending in the longitudinal direction.
  • the second yarn group 3 is the first and second insulating yarns 6a and 6b adjacent to each other in the length direction of the first yarn group 2 and alternately on the front and back surfaces of the plurality of functional yarns 4 of the first yarn group 2.
  • the plurality of first and second insulating yarns 6 a and 6 b are arranged and woven between the semiconductor functional elements 5 adjacent to each other in the length direction of the functional yarn 4.
  • the fiber structure 1 with an element is obtained by weaving a plurality of insulating yarns 6 into a plurality of functional yarns 4 so that a plurality of rows and columns of the functional yarn 4 surrounded by a pair of conductive wires 11 and the insulating yarns 6 are viewed in plan view.
  • a rectangular mesh 7 is formed, and the semiconductor functional element 5 is arranged in each mesh 7.
  • the size of the mesh 7 can be changed as appropriate by adjusting the location where the insulating yarn 6 is arranged, and the number of the semiconductor functional elements 5 arranged on the mesh 7 can be changed as appropriate.
  • the functional yarn 4 includes a plurality of granular semiconductor functional elements 5 and a pair of flexible conductive wires 11 (11a, 11a, 11b) that connect the plurality of semiconductor functional elements 5 in parallel. 11b).
  • the plurality of semiconductor functional elements 5 include a plurality of spherical solar cells 13 (see FIG. 7) having positive and negative electrodes 25 and 26 at both ends, and positive and negative electrodes 35, at both ends of a different type from the spherical solar cells 13. And a plurality of spherical bypass diodes 14 (see FIG. 8).
  • an element array set 5 ⁇ / b> A in which one or a plurality of bypass diodes 14 are arranged on one end side of a row of a preset number (for example, 19) of spherical solar cells 13 is provided on the conductive wire 11.
  • a plurality of sets are repeatedly formed in the length direction.
  • a set interval (for example, an interval approximately equal to the diameter of the solar cell 13) is provided between the adjacent spherical solar cells 13 and between the spherical solar cell 13 and the spherical bypass diode 14.
  • a gap 18 is formed between the adjacent semiconductor functional elements 5, and the air permeability is improved by the plurality of gaps 18.
  • the functional yarn 4 shown in FIG. 4 only a part of the entire element array set 5A is shown.
  • the pair of conductive wires 11 are arranged in parallel with a predetermined interval (about 1.2 mm, which is the same as the diameter of the solar battery cell 13). Between the conductive wires 11, a plurality of element array groups 5 ⁇ / b> A are arranged in series in the length direction of the conductive wires 11.
  • the outer surface of the negative electrode 26 of the plurality of spherical solar cells 13 and the outer surface of the positive electrode 35 of the plurality of spherical bypass diodes 14 are electrically connected to the conductive wire 11a via the conductive bonding material 16, respectively.
  • the outer surface of the positive electrode 25 of the battery cell 13 and the outer surface of the negative electrode 36 of the plurality of spherical bypass diodes 14 are electrically connected to the conductive wire 11b via the conductive bonding material 16, respectively.
  • This functional yarn 4 can be continuously produced in the form of a long yarn.
  • the size of the semiconductor functional element 5, the interval between adjacent semiconductor functional elements 5, the number of spherical solar cells 13 and the number of spherical bypass diodes 14 in the element array set 5A, the thickness of the conductive wire 11, and the like depend on the specifications. Can be set as appropriate. It should be noted that the set interval between adjacent semiconductor functional elements 5 is preferably an interval that is not less than 1 ⁇ 2 times and not more than twice the width of the semiconductor functional element 5. With this set interval, the light transmission and flexibility of the functional yarn 4 can be secured, and a space for arranging the warp or weft yarn that intersects with the functional yarn 4 during weaving can be provided.
  • the spherical solar battery cell 13 has a spherical p having a diameter of about 1.0 mm to 2.0 mm (in this embodiment, a diameter of 1.2 mm). It is manufactured using a type silicon single crystal 21. A flat surface 22 is formed on a part of the surface of the p-type silicon single crystal 21, and n-type impurities are diffused in most of the spherical surface except the flat surface 22 and its vicinity to form an n-type diffusion layer 23.
  • a spherical pn junction 24 is formed at a position of about 1 ⁇ m from the surface of the n-type diffusion layer 23.
  • a positive electrode 25 anode electrode
  • a negative electrode 26 cathode electrode
  • An antireflection film 27 made of a transparent SiO 2 film is formed on the entire surface of the p-type silicon single crystal 21 and the n-type diffusion layer 23 other than the positive and negative electrodes 25 and 26.
  • the solar battery cell 13 can receive light from all directions except the axial direction connecting the positive and negative electrodes 25 and 26. For this reason, even if the incident direction of direct light fluctuates, light can be received, light in all directions including reflected light can be received, and the utilization efficiency of light entering the periphery of the solar battery cell 13 can be improved. Can be maximized.
  • the spherical bypass diode 14 (hereinafter referred to as the bypass diode 14) is a spherical n-type silicon having a diameter of about 1.0 mm to 2.0 mm (in this embodiment, a diameter of 1.2 mm).
  • the bypass diode 14 is a spherical n-type silicon having a diameter of about 1.0 mm to 2.0 mm (in this embodiment, a diameter of 1.2 mm).
  • a flat surface 32 is formed on a part of the surface of the n-type silicon single crystal 31, and p-type impurities are diffused into about half of the surface of the n-type silicon single crystal 31 excluding the flat surface 32, resulting in a thickness of about 20 ⁇ m.
  • a p-type diffusion layer 33 is formed.
  • a negative electrode 36 is spot-connected to the n-type surface of the flat surface 32 in a spot-like manner.
  • a metal film 37 that is in low-resistance contact with the p-type diffusion layer 33 is formed on most of the surface of the p-type diffusion layer 33, and is located on the opposite side of the negative electrode 36 across the center of the n-type silicon single crystal 31.
  • the positive electrode 35 is connected to the top surface of the metal coating 37 in a spot-like low resistance manner.
  • the surface of the n-type silicon single crystal 31 other than the metal film 37 and the flat surface 32 is covered with an insulating film 38 made of a silicon oxide film.
  • each bypass diode 14 is connected in reverse parallel to the set number (19) of solar cells 13 in each element array set 5A described above, an excessive reverse voltage is applied to the plurality of solar cells 13. In this case, it is possible to prevent the plurality of solar cells 13 from being overheated and damaged.
  • the size of the solar battery cell 13 and the bypass diode 14 has been described as having a diameter of about 1.2 mm in the above description, the functional yarn 4 is applied to the woven mesh structure. Considering flexibility, it is desirable to set the diameters of the solar battery cell 13 and the bypass diode 14 to a size of 2.0 mm or less.
  • a pair of conductive wires 11 is a thin metal wire having a diameter of 0.05 mm tin-plated on the surface of a core material 41 (for example, a diameter of about 0.3 mm) made of a bundle of a plurality of glass fibers. It is configured by covering 42 (for example, copper fine wires) in a coil shape.
  • the two thin metal wires 42 are wound around the right and left windings so as to intersect each other. Since the conductive wire 11 has a structure in which two fine metal wires 42 are wound in a coil shape, the conductive wire 11 can be bent in any direction and has high durability even if the bending is repeated. Since a plurality of contact portions that are in electrical contact with each other are formed at small intervals due to the intersecting structure of the two fine metal wires 42, a conductive path that is much shorter than the actual length of the fine metal wires 42 is formed. Further, even if one of the two thin metal wires 42 is broken, the conductivity of the conductive wire 11 is ensured and the function of the functional yarn 4 is not impaired.
  • the conductive wire 11 has a diameter of about 0.3 mm. However, in order to efficiently receive the light incident on the functional yarn 4, the size of the solar cell 13 is reduced to 1 /. It is desirable to set the size to about 10 to 1/1.
  • the conductive wire 11 has a heat resistance of 150 ° C. or higher because a conductive bonding material is applied to a contact portion with the solar battery cell 13 and is heated and cured to be connected to the solar battery cell 13. desirable.
  • the electrical resistance is preferably in the range of 0.001 to 20 ⁇ / m.
  • the conductive bonding material 16 is made of, for example, a conductive epoxy resin (a mixture of epoxy resin and silver powder).
  • a conductive epoxy resin a mixture of epoxy resin and silver powder.
  • the conductive epoxy resin is used as the positive and negative electrodes 25 and 26 of the conductive wire 11 and the solar battery cell 13 or the positive and negative electrodes of the bypass diode 14.
  • the conductive epoxy resin is heated, dried and cured, and is applied to the contact portions 35 and 36 to fix the solar battery cell 13 and the bypass diode 14 to the pair of conductive wires 11.
  • this functional yarn 4 regardless of the incident direction of light, when light is incident on the functional yarn 4, and this light is irradiated to a plurality of solar cells 13 arranged with the same polarity, solar cells Light is received by the substantially spherical pn junction 24 formed in 13 and converted into electric energy by the photovoltaic power generation function (light receiving function) of the solar battery cell 13. The electric energy is output to the outside through the conductive wire 11 via the positive and negative electrodes 25 and 26 that are connected to both electrodes of the pn junction 24 and face each other with the center of the solar battery cell 13 interposed therebetween.
  • the functional yarn 4 outputs an output voltage of about 0.6 V when receiving light.
  • the magnitude of the output current of the functional yarn 4 is proportional to the number of solar cells 13.
  • the insulating yarn 6 is composed of a bundled or twisted line (for example, a diameter of about 0.1 mm) of a plurality of polyester fibers.
  • a transparent polyester fiber is used for the insulating yarn 6
  • the incident light passes through the polyester fiber to the side opposite to the incident side, but can simultaneously scatter the incident light, and the entire surface of the solar battery cell 13 is scattered.
  • the probability that the light wraps around can be increased, and thus the light receiving efficiency of the solar battery cell 13 is increased, which contributes to an increase in output.
  • the series-parallel connection structure of the fiber structure 1 with an element is demonstrated.
  • the plurality of solar cells 13 are arranged in a plurality of rows with the functional yarns 4 extending in the row direction (lateral direction) as a unit and are adjacent to each other in the column direction (vertical direction).
  • the conductive wires 11 of the yarn 4 are in contact with each other.
  • the plurality of solar cells 13 in the row direction are electrically connected in parallel via a pair of conductive wires 11, and the plurality of solar cells 13 in the column direction are connected via contact between adjacent conductive wires 11. Are connected in series.
  • FIG. 11 shows an equivalent of the fiber structure 1 with an element having a plurality of solar cells 13 arranged in a matrix of a plurality of rows and a plurality of columns and a plurality of bypass diodes 14 arranged in a plurality of rows and one column or a plurality of columns. It is a circuit diagram.
  • a case where a plurality of solar cells 13 arranged in 6 rows and 5 columns is incorporated in the fiber structure 1 with an element will be described.
  • the voltage of 3.6V is generated because the six solar cells 13 are connected in series in the length direction of the second thread group 3. To do. If the current generated by one solar battery cell 13 is I, since five solar battery cells 13 are connected in parallel, a current of 5I is output from the positive electrode side to the external circuit.
  • the number of solar cells 13 connected in series that is, the number of functional yarns 4 may be increased.
  • the number of solar cells 13 connected in parallel with the functional yarn 4 may be increased.
  • the fiber structure 1 with an element is flexible and includes a gap 18 between the solar cells 13 of the functional yarn 4 or between the solar cells 13 and the bypass diode 14, a pair of conductive wires 11 and the insulating yarn 6.
  • the light transmission performance can be adjusted by adjusting the mesh 7.
  • the fiber structure 1 with an element incorporating a large amount of solar cells 13 can be manufactured, and the light receiving performance of the fiber structure 1 with an element can be improved.
  • the photovoltaic cell 13 is replaced with a light emitting diode, the light emitting performance can be improved.
  • the manufacturing apparatus 50 which manufactures the fiber structure 1 with an element is demonstrated.
  • the manufacturing apparatus 50 moves the material from the upstream side to the downstream side, while using the plurality of insulating yarns 6 as warp yarns and the plurality of functional yarns 4 as weft yarns. Woven mesh substrate with elements) can be produced.
  • the manufacturing apparatus 50 includes a supply side guide roller 51 on the most upstream side, a hook mechanism 53, a shuttle mechanism 54, a hook mechanism 55, a drawer mechanism 56 on the most downstream side, and the like.
  • the first yarn group 2 is constituted by a plurality of wefts
  • the second yarn group 3 is constituted by a plurality of warp yarns.
  • the supply side guide roller 51 As shown in FIG. 12, the supply-side guide roller 51 is rotatably supported by the machine frame of the manufacturing apparatus 50 and is driven to rotate by a roller drive mechanism (not shown).
  • the supply-side guide roller 51 guides the plurality of insulating yarns 6 supplied from a warp supply source (not shown) in an aligned state while changing the direction, toward the heel mechanism 53.
  • the plurality of insulating yarns 6 are arranged on the supply side guide roller 51 with the first and second insulating yarns 6a and 6b as a unit at predetermined intervals in the axial direction.
  • a guide plate 52 is provided between the supply side guide roller 51 and the downstream saddle mechanism 53.
  • the guide plate 52 includes a pair of flat plate portions 52 a and 52 b and an opening 52 c formed between the pair of flat plate portions 52 a and 52 b and extending long in a direction perpendicular to the insulating yarn 6.
  • the guide plate 52 passes the plurality of insulating yarns 6 through the upper side of the flat plate portion 52a, the first group warp 53A passing through the opening 52c and under the flat plate portion 52b, and the lower side of the flat plate portion 52a.
  • the second group warp 53B is divided into two groups which are inserted through the opening 52c and pass through the upper side of the flat plate part 52b.
  • the plurality of first insulating yarns 6a are the first group warp yarns 53A
  • the plurality of second insulating yarns 6b are the second group warp yarns 53B.
  • the scissors mechanism 53 includes a first and second scissors members 53a and 53b, and a reciprocating drive member 53c for relatively reciprocating the first and second scissors members 53a and 53b. It consists of The reed mechanism 53 moves the first group warp yarn 53A and the second group warp yarn 53B up and down so that it is between the first and second group warp yarns 53A, 53B (that is, the first and second insulating yarns 6a, 6b). A gap for allowing the shuttle member 54a to pass therethrough.
  • Each of the first and second flange members 53a and 53b includes an elongated plate-like upper frame 53d, a lower frame 53e, and a plurality of healds 53f extending in the vertical direction connecting the upper frame 53d and the lower frame 53e. Yes.
  • a thread hole 53g through which the insulating thread 6 is inserted is formed in the center portion of the hold 53f.
  • the scissors mechanism 53 has the first and second scissors members 53a, 53b in the lateral direction (fiber structure with elements) so that the plurality of healds 53f of the second scissors member 53b are positioned between the plurality of healds 53f of the first scissors member 53a. It is configured to be slightly shifted in the width direction of the body 11.
  • the plurality of first insulating threads 6a of the first group warp 53A are respectively inserted into the plurality of thread holes 53g of the first hook member 53a, and the second group warp threads 53B of the second hook member 53b are inserted into the plurality of thread holes 53g of the second hook member 53b.
  • a plurality of second insulating yarns 6b are inserted.
  • a pair of upper and lower carrier rods may be provided on the upper frame 53d and the lower frame 53e, respectively, and the heald 53f may be supported by this carrier rod.
  • the reciprocating drive member 53c includes a rotation shaft 53h extending in a direction orthogonal to the warp yarn 21, a pair of pulley members 53i fixed to both ends of the rotation shaft 53h, and the first and first pulley members 53i.
  • a pair of belt members 53j connected to the upper ends of the two flange members 53a and 53b, a reciprocating rotation mechanism (not shown) for reciprocatingly rotating the rotating shaft 53h, and the like.
  • the reciprocating drive member 53c includes a rotating shaft that is reciprocally rotated by a reciprocating rotating mechanism similar to the rotating shaft 53h, A pair of pulley members similar to the pair of pulley members 53i fixed to both ends of the rotating shaft, and engages with these pulley members and is connected to the lower ends of the first and second flange members 53a and 53b. It has a pair of belt materials.
  • the shuttle mechanism 54 includes a shuttle member 54a on which the tip of the functional yarn 4 is hooked, a shuttle drive mechanism (not shown) that can reciprocate the shuttle member 54a in the left-right direction, and a shuttle member.
  • a weft supply mechanism (not shown) for supplying the functional yarn 4 to 54a is provided.
  • the functional thread 4 is supplied to the wedge-shaped gap between the first and second group warp threads 53A and 53B formed by the shuttle mechanism 53 by the shuttle member 54a.
  • the shuttle member 54a is moved from the right side to the left side in FIG. 12 with respect to the gap between the first and second group warp yarns 53A and 53B, and the functional yarn 4 is moved to the positive or negative of the semiconductor functional element 5.
  • the electrodes are wired so that the conductive direction of the electrodes is aligned with the length direction of the insulating yarn 6 and perpendicular to the first and second group warp yarns 53A and 53B, and the tip of the functional yarn 4 is connected from the shuttle member 54a.
  • the pair of conductive wires 11 in the gap 18 portion of the functional yarn 4 on the side opposite to the shuttle member 54a is cut off.
  • the scissor mechanism 55 has a vertically-oriented plate-like member 55a that is long in the lateral direction, and a scissor drive mechanism (not shown) that moves the plate-like member 55a back and forth by a predetermined stroke.
  • a plurality of vertically long slits 55b are formed at equal intervals in the shaped member 55a.
  • the scissors mechanism 55 strikes the functional yarn 4 supplied by the shuttle mechanism 54 so as to press it downstream, aligns the functional yarn 4 in an orthogonal state with respect to the insulating yarn 6, and converts the functional yarn 4 to the downstream functional yarn 4. It is to adhere.
  • a set of first and second insulating yarns 6a and 6b are inserted through the plurality of slits 55b.
  • the pull-out mechanism 56 includes a winding roller 56a that winds up the fiber structure 1 with an element, a guide roller 56b that guides the fiber structure 1 with an element toward the winding roller 56a, and the like. , Disposed on the most downstream side of the manufacturing apparatus 50.
  • the take-up roller 56a is supported by a machine frame (not shown) of the manufacturing apparatus 50 so as to be rotationally driven.
  • the take-up roller 56a is operated by a drawing drive mechanism (not shown).
  • the attached fiber structure 1 is taken up by the take-up roller 56a while being intermittently pulled out by one pitch.
  • control unit for controlling the manufacturing apparatus 50 is provided, and the supply side guide roller 51, the hook mechanism 53, the shuttle mechanism 54, the hook mechanism 55, and the drawer mechanism 56 are controlled by this control unit. Is done.
  • This manufacturing method uses a manufacturing apparatus 50 shown in FIG. 12 to provide a functional yarn having a plurality of warp yarns including the first and second insulating yarns 6a and 6b and a plurality of semiconductor functional elements 5 (solar cell 13 and bypass diode 14).
  • 4 is a method for producing a fiber structure 1 with an element (woven mesh substrate with an element) woven with a plurality of wefts including 4.
  • the plurality of first insulating yarns 6a arranged in parallel at regular intervals by the hook mechanism 53.
  • the first group warp 53A includes a first group warp 53A
  • the second group warp 53B includes a plurality of second insulating yarns 6b that are alternately and parallel to the first group warp 53A.
  • the first group warp 53A and the second group warp 53B are moved up and down by the reed mechanism 53 to form a clearance for passing the shuttle between the first and second insulating threads 6a and 6b.
  • the shuttle member 54a of the shuttle mechanism 54 is passed through the gap between the first and second group warp yarns 53A and 53B formed in the first step in a direction perpendicular to the insulating yarn 6 and the first step.
  • the functional yarn 4 is supplied between the first and second insulating yarns 6a and 6b.
  • the functional yarn 4 supplied in the second step is beaten by pressing it downstream by the rod mechanism 55, and the functional yarn 4 is aligned with the insulating yarn 6 in an orthogonal state.
  • the conductive wire 11 of the functional yarn 4 is pressed against the conductive wire 11 of the functional yarn 4 supplied to the downstream side. Since the conductive wires 11 come into contact with each other by the pressing of the scissors mechanism 55, the electrical resistance in the length direction of the conductive wires 11 can be reduced.
  • the fiber structure 1 with one pitch corresponding to the longitudinal width of the functional yarn 4 is pulled out to the downstream side by the pulling mechanism 56, and the above first to fourth steps are repeated a plurality of times.
  • the continuous fiber structure 1 with an element can be manufactured. This repeating process corresponds to the fifth process.
  • the fiber structure 1 with an element is accommodated while being intermittently wound up by one pitch by the drawing mechanism 56.
  • the fiber structure 1 with an element According to the fiber structure 1 with an element, the fiber structure 1 with an element that is excellent in flexibility and air permeability and is lightweight can be realized.
  • the fiber structure 1 with an element which can be mass-produced cheaply is realizable.
  • the thin fiber structure 1 with an element suitable for sticking on the surface of an object is realizable.
  • This element-attached fiber structure 1 is an intermediate material product having flexibility, light weight, thinness, flexibility, see-through, and daylighting, and can be finished into various products depending on the application.
  • the generated voltage can be freely set via the number of elements connected in series.
  • the generated current can be freely set through the number of elements connected in parallel. Even if a part that is partially shaded occurs in the fiber structure 1 with a light receiving element, the influence on the output of the solar battery cell 13 in other parts that are not shaded can be kept to a minimum.
  • the fiber structure 1 with an element can receive light with the same efficiency on both the upper and lower surfaces.
  • the solar battery cell 13 is stably stored in a predetermined position, is strengthened against pulling, bending and twisting, is easy to handle and has practical value. Becomes higher. Since it is not necessary to separately provide a series conductive wire for the serial connection structure of the fiber structure 1 with the element, the number of parts can be reduced, and an unnecessary interval between the functional yarns 4 is not provided.
  • the battery cells 13 can be arranged more densely, and the light receiving efficiency (light emitting efficiency in the case of a light emitting diode) can be increased.
  • the fiber structure 1 with an element can be mass-produced continuously and inexpensively with a small number of steps. It is possible to manufacture the fiber structure 1 with an element which is excellent in flexibility and air permeability and is lightweight. The fiber structure 1 with an element can be automatically manufactured while effectively utilizing an existing loom.
  • the insulating yarn 6 does not require a heat-resistant material, and the range of materials that can be selected is widened, and appropriate yarn materials are used depending on the application and purpose. it can. There exists an advantage which can be comprised as a textile fabric which attached importance to the design nature by the color, the texture, etc. of the insulating yarn 6. If a fiber having high heat resistance such as glass fiber is used for the core material of the insulating yarn 6 and the conductive wire 11, the fiber structure 1 with an element for use requiring high heat resistance can be obtained.
  • the fiber structure with element 1 A includes a plurality of yarns (functional yarns 4) of the first yarn group 2 and the second yarn group 3 intersecting the first yarn group 2.
  • a plurality of semiconductor functional elements 5 are woven with a plurality of yarns (insulating yarns 6), and the entire surface thereof is covered with a thin-film insulating protective film 8 having flexibility and light transmission.
  • the insulating protective film 8 is, for example, for covering the upper and lower surfaces of the element-attached fiber structure 1A with a thickness of about 0.25 ⁇ m, for example, with a coating of a silane coupling agent.
  • the insulating protective film 8 made of the silane coupling agent can be formed by a spray method and has flexibility and light transmittance.
  • the manufacturing apparatus 50A for manufacturing the fiber structure with element 1A includes a supply side guide roller 51, a guide plate 52, a hook mechanism 53, and a shuttle mechanism 54 from the upstream side toward the downstream side.
  • a protective film covering mechanism 57 is provided in addition to the scissors mechanism 55 and the drawer mechanism 56.
  • the protective film coating mechanism 57 has a tunnel-like passage hole and is disposed on the downstream side of the heel mechanism 55. While the fiber structure 1A with an element passes through the passage hole, an insulating protective film 8 (a silane coupling agent) having flexibility and light transmittance is formed on the upper and lower surfaces of the fiber structure 1A with an element by a spray method. Coating). This process corresponds to a coating process.
  • the fiber structure 1 with an element is manufactured and then illustrated.
  • the film is formed by chemical vapor deposition at room temperature using an outer parylene protective film coating mechanism.
  • the durability can be improved while maintaining the air permeability of the fiber structure with element 1.
  • a transparent synthetic resin material (EVA resin, PVB resin, etc.) is sandwiched from both sides in a panel shape with a synthetic resin sheet material, a synthetic resin plate, or a glass plate.
  • EVA resin, PVB resin, etc. is sandwiched from both sides in a panel shape with a synthetic resin sheet material, a synthetic resin plate, or a glass plate.
  • external terminals may be provided at both longitudinal and lateral ends of the fiber structure with elements, and the output may be taken out to an external device via the external terminals.
  • the insulating protective film 8 and the synthetic resin material may include a wavelength conversion material that converts the wavelength of received light.
  • the element-attached fiber structure 1B is woven with a plurality of yarns of the first yarn group 2B and a plurality of yarns of the second yarn group 3B intersecting the first yarn group 2B.
  • the semiconductor functional element 5 is incorporated and sealed in an embedded state in a synthetic resin sheet material 45 (a pair of upper and lower sheets 45A and 45B) having flexibility and light transmission.
  • the first yarn group 2B includes a plurality of first and second functional yarns 4A and 4B and a plurality of insulating yarns 6c as a plurality of wefts
  • the second yarn group 3B includes a plurality of insulating yarns 6 as a plurality of warp yarns. I have.
  • All the yarns of the first yarn group 2B are composed of one or more first functional yarns 4A (first functional yarn 4A with a semiconductor functional element) and one or more second functional yarns 4B (second semiconductor function).
  • a functional yarn array set 4C in which one second functional yarn 4B is disposed on the upper end side of a preset number of first functional yarns 4A is the length of the second yarn group 3B.
  • One set or a plurality of sets are repeatedly formed in the vertical direction.
  • the first functional yarn 4A and the second functional yarn 4B are arranged in a state in which the conductive direction connecting the positive and negative electrodes of the semiconductor functional element 5 is aligned with the length direction of the second yarn group 3B.
  • one insulating yarn 6c is disposed between the adjacent first functional yarns 4A and between the first functional yarn 4A and the second functional yarn 4B. Although a slight gap is provided between the insulating yarn 6c and the first functional yarn 4A and between the insulating yarn 6c and the second functional yarn 4B, they may be arranged in close contact with each other. . In the fiber structure with element 1B, the first functional yarn 4A and the second functional yarn 4B are maintained in an electrically independent state by the insulating yarn 6c.
  • One insulating thread 6c is also disposed at both ends in the length direction of the second thread group 3B. Note that the number of insulating yarns 6 disposed between the functional yarns 4A and 4B and at both ends of the second yarn group 3B is not limited to one, and may be two or more.
  • All the yarns of the second yarn group 3B are composed of a plurality of insulating yarns 6 woven so as to be orthogonal to the first yarn group 2B and extending in the longitudinal direction.
  • the second yarn group 3B includes first and second insulating yarns 6a and 6b that are adjacent to each other in the length direction of the first yarn group 2B, and a plurality of first functional yarns 4A and second second yarns of the first yarn group 2B.
  • first and second insulating yarns 6a and 6b woven in a zigzag state in contact with the front and back surfaces of the functional yarn 4B and the insulating yarn 6c alternately.
  • the plurality of first and second insulating yarns 6a and 6b are woven so as to be disposed between the semiconductor functional elements 5 adjacent to each other in the length direction of the functional yarns 4A and 4B.
  • the plurality of semiconductor functional elements 5 of the first functional yarn 4A include spherical solar cells 13 having a light receiving function and a bypass diode 14, and the semiconductor functional element 5 of the second functional yarn 4B has a light emitting function.
  • the first functional yarn 4A includes the diode 61 and the bypass diode 62, the first functional yarn 4A has the same configuration as that of the functional yarn 4 of the first embodiment. Therefore, the description is omitted below, and only the second functional yarn 4B is described. To do.
  • the second functional yarn 4 ⁇ / b> B includes a plurality of granular semiconductor functional elements 5 and a pair of flexible conductive wires 11 that connect the plurality of semiconductor functional elements 5 in parallel. (11a, 11b).
  • the plurality of semiconductor functional elements 5 include a plurality of light emitting diodes 61 (see FIGS. 21 and 22) having positive and negative electrodes 73 and 74 at both ends, and positive and negative electrodes 78 and 79 at both ends different from the light emitting diode 61.
  • a plurality of bypass diodes 62 having
  • an element array set in which one or a plurality of bypass diodes 62 are arranged on one end side of a row of a preset number (for example, 19) of light emitting diodes 61 is provided on the conductive wire 11.
  • a plurality of sets are repeatedly formed in the length direction.
  • a predetermined interval (for example, a length approximately the same as the width of the light emitting diode 61) is provided between the adjacent light emitting diodes 61 or between the light emitting diode 61 and the bypass diode 62.
  • gaps 18A are respectively formed between a plurality of adjacent semiconductor functional elements 5, and the air permeability is improved by the plurality of gaps 18A.
  • the pair of conductive wires 11 are arranged in parallel with a predetermined interval (a length approximately equal to the width of the ceramic base 72 of the light emitting diode 61).
  • a plurality of element array groups are arranged in series in the length direction of the conductive wire 11 between the conductive wires 11.
  • the outer surfaces of the positive electrodes 73 of the plurality of light emitting diodes 61 and the outer surfaces of the negative electrodes 79 of the plurality of bypass diodes 62 are electrically connected to the conductive wire 11a through the conductive bonding material 16, respectively.
  • the outer surface of the electrode 74 and the outer surface of the positive electrode 78 of the plurality of bypass diodes 62 are electrically connected to the conductive wire 11b through the conductive bonding material 16, respectively.
  • the second functional yarn 4B can be continuously manufactured in the form of a long yarn like the first functional yarn 4A.
  • the size of the semiconductor functional element 5, the interval between adjacent semiconductor functional elements 5, the number of light emitting diodes 61 and the number of bypass diodes 62 in the element array set 5A, the thickness of the conductive wire 11, and the like are appropriately set according to the specifications. And can be manufactured.
  • the light-emitting diode 61 includes an LED chip 65 in which a planar pn junction 68 is formed from an n-type layer 66 and a p-type layer 67.
  • the semiconductor material and characteristics of the mold layer 67 are not particularly limited.
  • a thin-film cathode electrode 69 is connected to the lower end portion of the n-type layer 66 with a low resistance, and an anode electrode 71 is connected to the upper end portion of the p-type layer 67 with a low resistance.
  • a ceramic base 72 having a thickness of about 3.0 mm and a width of about 4.0 mm is provided below the LED chip 65.
  • Positive electrodes 73 are formed on the right end and right side of the upper surface of the ceramic base 72, and negative electrodes 74 are formed on the left and left sides of the upper surface on the opposite side of the positive electrode 73.
  • the cathode electrode 69 of the LED chip 65 is fixedly connected to the negative electrode 74, and the anode electrode 71 is connected to the positive electrode 73 via the lead wire 76.
  • the upper side of the ceramic base 72 is covered with a protective cover 77 having a hemispherical height of about 2.0 mm with a transparent epoxy resin.
  • the light emitting diode 61 radiates light in the hemispherical direction through the protective cover 77.
  • the bypass diode 62 shown in FIG. 19 is formed in the same outer shape as the light-emitting diode 61. However, in the functional aspect, as in the bypass diode 14 of the first functional yarn 4A, it is set in each element array set. By connecting in reverse parallel to the number of light emitting diodes 61, the light emitting diode 61 has a function of bypassing current when an excessive reverse voltage is applied to the plurality of light emitting diodes 61, and the plurality of light emitting diodes 61 are overheated. It can be prevented from being damaged.
  • the synthetic resin sheet material 45 will be described. As shown in FIGS. 17 and 18, the fiber structure with element 1 ⁇ / b> B is formed into a sheet by being pressure-heat-molded with the synthetic resin sheet material 45 sandwiching the upper and lower surfaces of the fiber structure with element 1 ⁇ / b> B. Yes.
  • the synthetic resin sheet material 45 includes a pair of sheet materials 45A and 45B made of synthetic resin. Each of the sheet materials 45A and 45B is formed on a synthetic resin material 45b made of an EVA resin sheet and one surface of the synthetic resin material 45b.
  • a synthetic resin film layer 45a made of a PET (polyethylene terephthalate) resin film is provided, and has optical transparency and flexibility. The film layer 45a can be omitted.
  • a PVB resin sheet, an NY resin sheet, a PET resin sheet, or the like may be adopted, or PVF (polyvinyl fluoride resin) or the like may be adopted instead of the PET resin film.
  • the fiber structure with element 1B is sealed in an embedded state with a synthetic resin material 45b, and the synthetic resin film layer 45a of a transparent PET resin film is provided on both upper and lower surfaces.
  • Some of the light other than the light directly absorbed by the surface of the solar battery cell 13 is the inner surface of the synthetic resin film layer 45a and the surface of the solar battery cell 13, the insulating yarns 6a, 6b, 6c and the conductive wire 11.
  • the output improvement of the whole fiber structure 1B with an element can be anticipated.
  • FIG. 23 is an equivalent circuit diagram of an element-attached fiber structure 1B having a plurality of first functional yarns 4A and one second functional yarn 4B.
  • the first functional yarn 4A and the second functional yarn 4B are provided electrically independently.
  • the first functional yarn 4A generates a photovoltaic power of about 0.6 V
  • the second functional yarn 4B emits light when a voltage is applied in the forward direction and a current flows.
  • the series connection and the parallel connection between the functional yarns 4A and 4B can be performed through the connection terminal inside or outside the fiber structure 1B with the element, and can be appropriately set according to the required output voltage / output current. I can do it.
  • the manufacturing apparatus 50C for manufacturing the element-attached fiber structure 1B includes a supply-side guide roller 51, a guide plate 52, a hook mechanism 53, a shuttle mechanism 54, a hook mechanism 55, and a drawer mechanism 56 from the upstream side toward the downstream side.
  • the heating and pressurizing mechanism 58 is the same as the first embodiment except that the heating and pressurizing mechanism 58 is added to the first embodiment. Description is omitted, and only the heating and pressing mechanism 58 will be described.
  • the shuttle mechanism 54 is configured to supply only the first functional yarn 4A in the first embodiment, but in this embodiment, in addition to the first functional yarn 4A, the second functional yarn 4B and the insulating yarn. 6c can also be supplied.
  • the heating and pressurizing mechanism 58 is a pair of upper and lower roller members 58a and 58b that can transfer the synthetic resin sheet material 45 supplied from the upper and lower sides of the fiber structure with element 1B while pressurizing and heating. And disposed on the downstream side of the saddle mechanism 55.
  • the heating and pressurizing mechanism 58 heats and pressurizes the fiber structure 1B with an element by stacking a flexible and light-transmitting synthetic resin sheet material 45 (a pair of sheet materials 45A and 45B) from the upper and lower surfaces. .
  • a plurality of warp yarns including the first and second insulating yarns 6a and 6b, a plurality of first functional yarns 4A, a second functional yarn 4B, and an insulating yarn 6c are produced by the manufacturing apparatus 50C of FIG.
  • This is a method for producing a fiber structure 1B with an element that is woven with a weft and has both upper and lower surfaces covered with a synthetic resin sheet material 45.
  • the second step is a step of supplying the first functional yarn 4A, the second functional yarn 4B, and the insulating yarn 6c by the shuttle mechanism 54 in a preset order.
  • the shuttle member 54a of the shuttle mechanism 54 is passed through the gap between the first and second group warp yarns 53A, 53B formed in the first step in a direction perpendicular to the insulating yarn 6,
  • One insulating thread 6c located at the lowermost end (the most distal end) of the fiber structure with element 1B is supplied between the first and second insulating threads 6a and 6b.
  • the third and fourth steps are executed in the same manner as in Example 1, and the process returns to the first step again.
  • the first functional yarn 4A is supplied by the shuttle mechanism 54 between the first and second insulating yarns 6a and 6b whose vertical positional relations are switched.
  • the alternate supply of the insulating yarn 6c and the first functional yarn 4A in the second step is repeatedly performed a preset number of times, and then the second functional yarn 4B is supplied, One functional yarn array set 4C of one yarn group 2B is configured.
  • the supply of the plurality of yarns of the functional yarn array set 4C may be repeatedly executed, or at the stage where the insulating yarn 6c is supplied after the second functional yarn 4B is supplied, the element-attached fiber structure 1B. The production of may be terminated.
  • a pair of sheet materials 45A and 45B (for example, transparent synthetic resin) having flexibility and light transmittance on both surfaces of the fiber structure with element 1B by the heating and pressing mechanism 58.
  • the material 45b is affixed with a synthetic resin film layer 45a) and heated and pressed by a pair of roller members 58a and 58b to soften and melt the EVA resin to synthesize the fiber structure with element 1B.
  • the resin material 45b is sealed in an embedded state.
  • the element-attached fiber structure 1B covered with the synthetic resin sheet material 45 composed of the pair of sheet materials 45A and 45B is accommodated while being intermittently wound by the winding roller 56a of the pulling mechanism 56. Note that the process by the heating and pressurizing mechanism 58 corresponds to the superposition process.
  • the fiber structure with element 1B is woven by adding a flexible insulating thread 6c between the functional threads 4A and 4B. Therefore, the tensile strength and torsional strength in the lateral direction of the fiber structure with element 1B can be enhanced, and the functional yarns 4A and 4B can be electrically insulated and separated.
  • the number of the insulating yarns 6c can be increased as necessary, and different materials may be mixed. Further, plain weave or twill weave may be selected as the weaving method.
  • the surface of the synthetic resin sheet material 45 may be sandwiched and bonded with a transparent synthetic resin plate or glass plate to form a panel-like structure. Other configurations, operations, and effects are substantially the same as those of the first embodiment except for those related to the series connection structure of the first embodiment, and thus the description thereof is omitted.
  • the element-attached fiber structure 1B is formed into a sheet by being pressure-heat-molded with a pair of sheet materials 45A and 45B sandwiched between the upper and lower surfaces, and in particular, the pair of sheet materials 45A and 45B It is not necessary to sandwich both upper and lower surfaces with 45B, and a configuration in which one of the sheet materials 45A and 45B is provided on at least one surface of the fiber structure with element 1B may be employed.
  • the entire surface of the fiber structure with element 1B is flexible and light-transmitting as in the partially modified embodiment of Example 1. You may coat
  • the heating and pressurizing mechanism 58 of Example 2 is used to heat and press a pair of sheet materials 45A and 45B of the synthetic resin sheet material 45 on both surfaces of the fiber structure 1 with elements of Example 1 to attach elements.
  • the fiber structure 1 may be sealed in the embedded state in the synthetic resin material 45b.
  • external output terminals for outputting to the outside may be provided at both ends of the plurality of functional yarns 4 in the serial connection direction.
  • the fiber structure with element 1C is woven with a plurality of yarns of the first yarn group 2C and a plurality of yarns of the second yarn group 3C intersecting with the first yarn group 2C, and a plurality of semiconductor functional elements. 5 is incorporated.
  • the first yarn group 2C includes a plurality of functional yarns 4D and 4E as a plurality of weft yarns
  • the second yarn group 3C includes a plurality of insulating yarns 6 as a plurality of warp yarns.
  • All the yarns of the first yarn group 2C are composed of one or a plurality of first functional yarns 4D and one or a plurality of second functional yarns 4E.
  • the first yarn group 2C is similar to the functional yarn array set 4C of the second embodiment in which one second functional yarn 4E is disposed on the upper end side of a preset number of first functional yarns 4D.
  • a plurality of functional yarn arrangement groups are repeatedly formed in the length direction of the second yarn group 3C.
  • the first functional yarn 4D and the second functional yarn 4E are respectively arranged in a state in which the conductive direction connecting the positive and negative electrodes of the semiconductor functional element 5 is aligned with the length direction of the second yarn group 3C.
  • the first functional yarn 4D and the second functional yarn 4E are disposed at a predetermined interval, but may be disposed in close contact with each other.
  • All of the yarns of the second yarn group 3C are composed of a plurality of insulating yarns 6 woven so as to be orthogonal to the first yarn group 2C and extending in the longitudinal direction.
  • the second yarn group 3C is a first and second insulating yarns 6a and 6b adjacent to each other in the lengthwise direction of the first yarn group 2C.
  • the second yarn group 3C includes a plurality of first functional yarns 4D and second second yarns of the first yarn group 2C.
  • First and second insulating yarns 6a and 6b woven in a zigzag state alternately contacting the front and back surfaces of the functional yarn 4E are provided.
  • the plurality of first and second insulating yarns 6a and 6b are arranged and woven between the semiconductor functional elements 5 adjacent to each other in the length direction of the functional yarns 4D and 4E.
  • the first functional yarn 4D has basically the same configuration as the functional yarn 4 of the first embodiment (the first functional yarn 4A of the second embodiment), and a plurality of solar cells. 13 and a bypass diode and a flexible and light-transmissive insulating protective film 80a covering the entire surface of the pair of conductive wires 11 (11a, 11b).
  • the second functional yarn 4E basically has the same configuration as that of the second functional yarn 4B of the second embodiment, and a pair of light-emitting diodes 61, bypass diodes 62, and a pair of conductive layers.
  • a thin and thin insulating protective film 80b having flexibility and light transmission covering the entire surface of the wire 11 (11a, 11b) is provided.
  • the equivalent circuit of the element-attached fiber structure 1C shown in FIGS. 25 to 27 is the same as the equivalent circuit shown in FIG.
  • the insulating protective films 80a and 80b are formed of, for example, a paraxylylene resin film (so-called parylene).
  • the insulating protective films 80a and 80b are formed so as to cover the entire surfaces of the plurality of semiconductor functional elements 5 and the conductive wires 11 to a thickness of about 25 ⁇ m, for example.
  • Insulating protective films 80a and 80b are formed of any one synthetic resin film selected from fluororesin, polyimide resin, and polyethylene terephthalate resin instead of the paraxylylene resin film (parylene). Alternatively, it may be formed of a synthetic resin material having light transmittance and flexibility other than these.
  • the manufacturing apparatus and manufacturing method for manufacturing the fiber structure with element 1C and the manufacturing method will be described.
  • the manufacturing apparatus for manufacturing the fiber structure with element 1C of FIG. 25 can be manufactured with the same manufacturing apparatus 50 as in Example 1. It is.
  • the second functional yarn 4E is supplied every time the set number of first functional yarns 4D is supplied as the weft yarn supplied in the second step. Since other steps are the same as those in the first embodiment, the description thereof is omitted.
  • the first functional yarn 4D and the second functional yarn 4E are covered with the thin insulating protective films 80a and 80b, they are electrically separated even if the functional yarns 4D and 4E come into contact with each other. . Therefore, the insulating yarn 6c can be omitted as compared with the second embodiment.
  • the entire surface of the fiber structure with element 1C may be covered with a thin-film insulating protective film 8 having flexibility and light transmittance.
  • the pair of sheet materials 45A and 45B are stacked on both surfaces of the fiber structure 1C with elements and heated and pressed to seal the fiber structure 1C with elements embedded in the synthetic resin material 45b. Also good.
  • Other configurations, operations, and effects are substantially the same as those of the first and second embodiments except for those related to the series connection structure of the first embodiment, and thus description thereof is omitted.
  • the element-attached fiber structure 1D includes a lower-layer mesh-like lower-layer fiber structure 81 and an upper-layer element-attached fiber structure 82 disposed on the upper layer side of the lower-layer fiber structure 81. It has. That is, the element-attached fiber structure 1D has a multilayer structure in which the lower-layer fiber structure 81 and the upper-layer element-attached fiber structure 82 are overlapped. The lower-layer fiber structure 81 and the upper-layer element-attached fiber structure 82 are It is woven in double weaving with a loom. In the predetermined portion 83 of the element-attached fiber structure 1D, the element-attached fiber structure 1D is integrally configured by being organized across the lower layer and the upper layer (providing so-called contact points). .
  • the lower-layer fiber structure 81 and the upper-layer element-attached fiber structure 82 are woven separately, and the upper surface of the lower-layer fiber structure 81 and the lower surface of the upper-layer element-attached fiber structure 82 May be integrally formed by fixing with a transparent adhesive, or a plurality of predetermined portions may be sewn with a plurality of threads in a state where the lower layer fiber structure 81 and the upper layer element-attached fiber structure 82 are overlapped. And may be configured integrally.
  • the element-attached fiber structure 1D merely shows a woven mesh structure conceptually, and may be woven so that the warp yarns and the weft yarns are denser. Furthermore, twill weave or satin weave may be adopted as the weave structure.
  • the lower layer fiber structure 81 is a woven mesh structure woven from warp yarns including a plurality of insulating yarns 6d and weft yarns including a plurality of insulating yarns 6e.
  • a polyester fiber having a high light reflection effect is employed as in the insulating yarn 6 of the first embodiment.
  • the lower fiber structure 81 is not necessarily limited to the woven mesh structure shown in FIG. 28, and other structures such as a knitted structure and a nonwoven fabric may be adopted. Further, the lower fiber structure 81 may be provided with a characteristic that provides a light reflection effect by performing coating, metal deposition (surface insulation treatment), or the like on the surface thereof.
  • the upper layer element-attached fiber structure 82 is woven with a plurality of yarns of the first yarn group 2D and a plurality of yarns of the second yarn group 3D intersecting the first yarn group 2D, and a plurality of semiconductor functional elements 5 are incorporated therein.
  • the first yarn group 2D includes a plurality of functional yarns 4 as a plurality of weft yarns
  • the second yarn group 3D includes a plurality of insulating yarns 6 as a plurality of warp yarns.
  • the plurality of functional yarns 4 of the first yarn group 2D are the same functional yarns 4 as in Example 1, and the conductive direction connecting the positive and negative electrodes of the semiconductor functional element 5 is aligned with the length direction of the second yarn group 3D. In addition, they are arranged in parallel at a predetermined interval.
  • the first yarn group 2D may include a functional yarn array set 4C including the first functional yarns 4A and 4D and the second functional yarns 4B and 4E, as in the second and third embodiments.
  • the plurality of insulating yarns 6 of the second yarn group 3D are woven in a zigzag state in which the front and back surfaces of the plurality of functional yarns 4 are alternately contacted.
  • the plurality of insulating yarns 6 are arranged and woven at equal intervals every two semiconductor functional elements 5 in the length direction of the functional yarn 4.
  • This insulating yarn 6 is the same as that in the first embodiment.
  • it replaces with this fiber structure 82 with an upper layer element, 1 C of fiber structures with an element of Example 1, 1 C of fiber structures with an element of Example 3, and the synthetic resin sheet material 45 of Example 2 are not embedded. You may employ
  • the light that has passed through the periphery of the functional yarn 4 of the fiber structure 82 with the upper layer element is scattered by the lower layer fiber structure 81 and enters the semiconductor function element 5 on the upper layer side from the lower layer. Can be lighted. Therefore, when the solar cell 13 is used as the semiconductor functional element 5 by making a difference in light transmittance and light reflection characteristics between the lower layer fiber structure 81 and the fiber structure 82 with the upper layer element, the fiber structure with the element is used. The power generation efficiency of the body 1D is improved.
  • a method of changing the light transmittance a method using a highly transparent material for the insulating yarn 6 of the fiber structure 82 with the upper layer element, the first yarn group 2D and the first yarn group 2D of the fiber structure 82 with the upper layer element
  • a method of changing the yarn density of the two yarn group 3D For example, the area density of the yarn per unit length is reduced to 1/10 to 4/5, preferably 1/10 to 1/2 by reducing the yarn density of the second yarn group 3D of the fiber structure 82 with the upper layer element.
  • a method of using a thread material having high light reflection characteristics for the upper and lower insulating yarns 6, 6d, 6e constituting the element-equipped fiber structure 1D, or the colors of the insulating yarns 6, 6d, 6e There is a method using white or light color.
  • Insulating yarns 6, 6d, 6e with high light reflection characteristics include thread materials that do not use anti-glare agents such as titanium oxide, thread materials with triangular or complex cross-sections that improve reflection characteristics, and light scattering. There are methods in which materials such as glass beads and nanopolymers that improve the properties are previously kneaded into the yarn material or applied to the surface of the yarn material.
  • the fiber structure with the upper element is provided. Light can be efficiently incident on 82 solar cells 13.
  • the present disclosure As a method of improving the durability of the fiber structure with element 1D, there is a method of covering with a transparent synthetic resin material using a pair of sheet materials 45A, 45B and the like similar to those of the second embodiment.
  • the transparent synthetic resin material include EVA, PVB, NY, and PET described in Example 2, and can be processed by coating, hot melt, or film lamination.
  • the power generation amount of the solar battery cell 13 due to the lens effect of the transparent synthetic resin material on the surface of the fiber structure with element 1D can be improved. It is also possible to improve the power generation amount by 1.5 to 2.0 times.
  • a material for improving the scattering property inside the transparent synthetic resin material and a wavelength conversion material for converting the wavelength of received light there is also a method of adding a wavelength conversion material to the insulating yarns 6, 6d, 6e and the conductive wire 11, but these details are described in the columns [8] to [12] for explaining examples of the partial modification. To describe.
  • the fiber structure with element 1D is configured in a two-layer structure, and the functional yarn 4 is arranged on the upper layer side, but the fiber structure with the element in which the functional yarn 4 is woven into an intermediate layer or upper layer in a multilayer structure of two or more layers.
  • a body may be disposed as long as it is a multilayer fiber structure in which light efficiently enters the functional yarn 4.
  • the element-attached fiber structure 1D can be manufactured by the manufacturing apparatus 50 and the manufacturing method of the first embodiment. Other configurations, operations, and effects are substantially the same as those of the first to third embodiments except for those related to the series connection structure of the first embodiment, and thus description thereof is omitted.
  • the fiber structure with element 1E is woven with a plurality of yarns of the first yarn group 2E and a plurality of yarns of the second yarn group 3E intersecting with the first yarn group 2E, and a plurality of semiconductor functional elements. 5 is incorporated.
  • the first yarn group 2E includes a plurality of functional yarns 4 and a plurality of insulating yarns 6f as a plurality of wefts
  • the second yarn group 3E includes a plurality of insulating yarns 6, a positive-side conductive wire 85, and a negative-electrode side as a plurality of warp yarns.
  • a conductive wire 86 In addition, in this fiber structure with an element 1E, you may weave so that between warps and between wefts may become denser.
  • the plurality of functional yarns 4 of the first yarn group 2E are the same as the functional yarns 4 of the first embodiment, and the conductive direction connecting the positive and negative electrodes of the semiconductor functional element 5 is in a direction orthogonal to the length direction of the second yarn group 3E. They are aligned and arranged in parallel at a predetermined interval. Three insulating yarns 6 are disposed between the adjacent functional yarns 4.
  • the first yarn group 2E may include a functional yarn array set 4C including the first functional yarns 4A and 4D and the second functional yarns 4B and 4E, as in the second and third embodiments.
  • the plurality of insulating yarns 6, the positive electrode side conductive wires 85, and the negative electrode side conductive wires 86 of the second yarn group 3 ⁇ / b> E are first zigzag so as to alternately contact the front and back surfaces of the plurality of yarns of the first yarn group 2 ⁇ / b> E. It is woven into the thread group 2E.
  • the positive electrode side conductive wire 85 is woven so as to be in contact with the positive electrode side of the semiconductor functional element 5 of each functional yarn 4, and the negative electrode side conductive wire 86 is in contact with the negative electrode side of the semiconductor functional element 5 of each functional yarn 4. Is woven into.
  • the semiconductor functional element 5 When the semiconductor functional element 5 is the solar battery cell 13, the power generated by the solar battery cell 13 can be easily output only by directly connecting the positive electrode side conductive wire 85 and the negative electrode side conductive wire 86 to the external device.
  • the semiconductor functional element 5 is the light emitting diode 61
  • the light emitting diode 61 can be easily made to emit light only by directly connecting the positive electrode side conductive line 85 and the negative electrode side conductive line 86 to the external device.
  • the positions where the positive electrode side conductive wire 85 and the negative electrode side conductive wire 86 are disposed are not particularly limited to the positions shown in FIG. 31 as long as they are in contact with the positive and negative electrodes of the semiconductor functional element 5, respectively.
  • the number of the conductive lines 85 and the negative electrode side conductive lines 86 is not necessarily limited to one each, and a plurality of conductive lines may be provided.
  • This element-attached fiber structure 1E can be manufactured by the manufacturing apparatus 50 and the manufacturing method of the first embodiment.
  • the entire surface of the element-attached fiber structure 1E may be covered with a thin-film insulating protective film 8 having flexibility and light transmittance.
  • the pair of sheet materials 45A and 45B are overlapped on both surfaces of the element-equipped fiber structure 1E and heated and pressed to seal the element-equipped fiber structure 1E embedded in the synthetic resin material 45b. Also good.
  • Other configurations, operations, and effects are substantially the same as those of the first to third embodiments except for those related to the series connection structure of the first embodiment, and thus description thereof is omitted.
  • the fiber structures with elements 1, 1A to 1E of Examples 1 to 5 are woven mesh structures with elements woven by a loom or the like, but are not particularly limited to woven mesh structures.
  • a knitted structure knitted from a plurality of yarns may be used, such as the fiber structures with elements 1F and 1G.
  • the fiber structure 1F with an element is demonstrated.
  • the fiber structure with element 1 ⁇ / b> F is a fiber structure with a plurality of yarns and a fiber structure with elements in which a plurality of semiconductor functional elements 5 are incorporated.
  • the plurality of yarns includes a plurality of functional yarns 4 and a plurality of insulating yarns 6g made of polyester fibers.
  • the element-attached fiber structure 1F includes a basic knitted fabric 90 composed of a plurality of chain-like insulated wires 6g (chain yarn) extending in the longitudinal direction, and a plurality of transverse insertion yarns extending in the lateral direction with respect to the basic knitted fabric 90. 91 is inserted and knitted.
  • the functional yarn 4 is used for some or all of the plurality of lateral insertion yarns 91.
  • the element-equipped fiber structure 1G includes a plurality of yarns including a plurality of functional yarns 4 and a plurality of insulating yarns 6h, 6i, 6j made of polyester fibers.
  • the element-attached fiber structure 1G includes a basic knitted fabric 92 made up of a plurality of chain-like insulating yarns 6h (chain yarns) extending in the longitudinal direction and a plurality of insulating yarns 6i and 6j (insert yarns) intersecting with the chain yarns.
  • a plurality of longitudinal insertion yarns 93 configured and extending in the longitudinal direction are inserted into the basic knitted fabric 92 and knitted.
  • the functional yarn 4 is used for some or all of the plurality of vertical insertion yarns 93.
  • the plurality of functional yarns 4 include not only warp and weft yarns of the woven mesh structure such as the fiber structures with elements 1, 1A to 1E, but also various knitted structures in which the ground structure is an electrically insulating material. It can also be used for the transverse insertion yarn 91 and the longitudinal insertion yarn 93 of the body (basic knitted fabric 90, 92).
  • the plurality of functional yarns 4 need not be limited to one type, and may be composed of one or a plurality of types of functional yarns 4B, 4D, and 4E.
  • the first yarn groups 2, 2B to 2E are described as weft yarns, and the second yarn groups 3, 3B to 3E are used as warp yarns.
  • the present invention is not particularly limited to this configuration.
  • the plurality of yarns of the first yarn groups 2, 2B to 2E are warp yarns
  • the plurality of yarns of the second yarn groups 3, 3B to 3E are weft yarns to form the fiber structures with elements 1, 1A to 1E. You may make it do.
  • the functional yarns 4, 4A, 4B, 4D, and 4E are configured to be included only in the plurality of yarns (weft yarns) of the first yarn group 2, 2B to 2E.
  • the functional yarns 4, 4A, 4B, 4D, and 4E may be included in the plurality of yarns (warp yarns) of the second yarn groups 3, 3B to 3E that intersect with the first yarn group 2.
  • the ratio of the first functional thread 4A and the second functional thread 4B is equal to the ratio of one second functional thread 4B to the plurality of first functional threads 4A.
  • a plurality of second functional yarns 4B may be disposed on the upper end side of a preset number of first functional yarns 4A, or the first functional yarn 4A and the second functional yarn 4A
  • the functional yarns 4B may be alternately arranged, and various arrangement patterns can be adopted without being limited to these arrangement patterns.
  • the functional yarn array set 4C is composed of two types of first functional yarn 4A having a light receiving function and second functional yarn 4B having a light emitting function, but these two types of functional yarns 4A and 4B are not necessarily required.
  • the functional yarn array set 4C may be configured with only the first functional yarn 4A, may be configured with only the second functional yarn 4B, or other than the above.
  • three or more types of functional yarns 4 may be used. The same applies to the functional yarn array set having the first functional yarn 4D and the second functional yarn 4E.
  • the element-attached fiber structures 1, 1A to 1E are basically woven in plain weave, but need not be limited to this weave, and weave in other weaves such as twill or satin weave. May be.
  • the fiber structures 1F and 1G with the elements may be knitted with the transverse insertion yarn 91 or the longitudinal insertion yarn 93 provided with the functional yarn 4 to the basic knitted fabric other than the knitting method shown in FIGS. good.
  • the ratio of the solar battery cells 13 to the bypass diodes 14 does not need to be limited to 19: 1, and the number of the solar battery cells 13 is increased to 39. It can be set to various ratios such as: 1.
  • the element array set 5A includes the bypass diodes 14 and 62. However, the element array set 5A is not particularly limited to this configuration.
  • the bypass diodes 14 and 62 are omitted, and all of the plurality of semiconductor functional elements 5 are solar cells. 13 or the light emitting diode 61.
  • a pn junction may be formed by forming a p-type diffusion layer in a spherical n-type silicon crystal.
  • the number of the fine metal wires 42 of the conductive wire 11 need not be limited to two, and may be covered in a coil shape with one or three or more fine metal wires 42.
  • the metal thin wire is tin-plated, it may be silver-plated instead of tin plating, or the metal thin wire may be composed of a single metal.
  • the conductive wire 11 is replaced with glass fiber, and any one or more types selected from a plurality of synthetic fibers and natural fibers such as carbon fiber, polyester fiber, aramid fiber, polyethylene fiber, and liquid crystal polymer fiber. You may be comprised with the conductive wire 11 which covered the 1 or several metal fine wire 42 in the shape of a coil on the surface of the bundle
  • the core material 41 of the conductive wire 11 is composed of general synthetic fibers, natural fibers, bundles of these composite fibers, or stranded wires that can form woven fabrics and fabrics (so-called textiles). Also good.
  • the conductive wire 11 may be constituted by a bundle of metal fibers or a stranded wire.
  • the conductive wire 11 made of metal-plated fiber in which the surface of the core material 41 made of the bundles or strands of various fibers described above is subjected to metal plating and the fine metal wires 42 are omitted may be employed.
  • the insulating yarns 6, 6a to 6j may be any one or more selected from single-core glass fibers, synthetic fibers such as glass fibers and polyimide fibers, and natural fibers instead of polyester fibers. It may consist of bundles or strands of types of fibers.
  • the conductive wire 11 is a conductive material in which a wavelength conversion material is added to the various core materials described above, and one or a plurality of fine metal wires are covered in a coil shape on the surface of the core material including the wavelength conversion material.
  • the insulating yarns 6, 6a to 6j may be made of a wire containing a wavelength conversion material. According to this configuration, when the solar battery cell 13 is used, the wavelength of the incident light can be converted to a wavelength region where the light reception sensitivity of the solar battery cell 13 is high, and the light receiving property of the solar battery cell 13 is improved. Can do.
  • phosphors such as rare earth complexes and organic fluorescent dyes
  • phosphorescent materials such as zinc sulfide and strontium aluminate as wavelength conversion materials.
  • the fluorescent material and the phosphorescent material can be added by kneading or applying to the core material or insulating thread of the conductive wire.
  • a transparent synthetic resin material 45b is provided using a pair of sheet materials 45A and 45B.
  • the diffusion sheet may be attached to at least one side of the fiber structures with elements 1, 1B to 1D.
  • a diffusion sheet having a low light transmittance is used, the efficiency is conversely reduced. Therefore, it is preferable to use a diffusion sheet having a light transmittance of 60% or more.
  • a material for improving the scattering property may be attached to the transparent synthetic resin material 45b of the pair of sheet materials 45A and 45B in order to improve the light receiving property of the solar battery cell 13.
  • the scattering material to be attached include glass beads and nano-polymers, and other materials may be used as long as they can be coated or laminated and can improve the light scattering performance.
  • the wavelength can be converted from 530 nm to 580 nm by doping the synthetic dye material 45b with a fluorescent dye rhodamine (Rh-6G) at a concentration of 10 ⁇ 4 M, and coumarin 6 (C-6) can be converted to 10 ⁇ 4 M.
  • the wavelength can be converted from 470 nm to 510 nm by doping the synthetic resin material 45b at a concentration of 470 nm.
  • the wavelength of ultraviolet light can be converted to visible fluorescence.
  • Any material can be used as long as it is a material that can convert a wavelength region that is not used by the solar battery cell 13 into a wavelength region that is used.
  • the peak of the fluorescence spectrum is A thing of about 600 nm is desirable.
  • the wavelength conversion material described above may be applied to the wavelength conversion material included in the core material of the conductive wire 11 and the wires of the insulating yarns 6, 6a to 6j described in [8].
  • the wavelength conversion material described above can also be applied to a case where a fiber structure with elements is embedded in a transparent synthetic resin material (glass plate or the like) that is not flexible.
  • a luminous material such as zinc sulfide or strontium aluminate may be added to the synthetic resin material 45b of the pair of sheet materials 45A and 45B. In this case, it is possible to supply light to the solar battery cell 13 even when there is no external light.
  • These materials may be added to the synthetic resin material 45b and applied in a coating or laminating process.
  • the above phosphorescent material may be applied to the wavelength conversion material contained in the core material of the conductive wire 11 and the wire material of the insulating yarns 6, 6a to 6j as described in [8].
  • the method of adding the wavelength conversion material described in [8] above to the conductive wire and the insulating yarn, the scattering material, the wavelength conversion material and the phosphorescent material described in [9] to [12] are added to the synthetic resin material.
  • the method can be applied to all conductive wires, insulating yarns, and synthetic resin materials described in Examples 1 to 5.
  • the power generation function is achieved.
  • the fiber structure with an element which it has can be applied to the roof and window of a plant factory which produce a plant systematically.
  • the light that enters the fiber structure with elements applied to the roof or window is converted to a wavelength suitable for photosynthesis by the wavelength conversion material added to the synthetic resin material, the conductive wire or the insulating yarn. Then, the converted light is received by the plurality of solar cells 3, but the light that has not been received passes through the fiber structure with elements and enters the factory, so it is cultivated in the plant factory. It can be used for photosynthesis of plants. For this reason, by adding a wavelength conversion material to a synthetic resin material, a conductive wire or a functional yarn, the power generation efficiency of the solar battery cell 3 can be improved, and the photosynthesis of plants can be promoted to improve the efficiency of plant cultivation. it can. That is, by adding the wavelength conversion material to the insulating yarn, the conductive wire, and the synthetic resin material of the fiber structure with an element, it is possible to make a configuration in which incident light can be effectively used in addition to the power generation of the solar battery cell 3.
  • the conductive epoxy resin is used as the conductive bonding material 16 of the functional yarns 4, 4A, 4B, 4D, and 4E, it is not necessary to be limited to this, solder paste such as tin and silver, In addition to this, various pastes having conductivity may be used.
  • Spherical bodies made of spherical or hemispherical stones, glass, ceramics, synthetic resins that are colored or colored in order to improve the design and physical properties in the functional yarns 4, 4A, 4B, 4D, and 4E
  • hemispherical bodies may be mixed in the plurality of solar cells 13 and the plurality of light emitting diodes 61.
  • the conductive wire 11 and the insulating yarns 6, 6a to 6j may be colored to improve the design.
  • one of the positive and negative electrodes (positive and negative electrodes 25 and 26 in the case of the solar battery cell 13 and positive and negative electrodes 35 and 36 in the case of the bypass diode 14) has magnetism.
  • a solar cell 13 and a bypass diode 14 that are configured as electrodes and the other electrode is configured as a non-magnetic electrode, that is, one electrode can be attracted by magnetic force may be employed.
  • the positive electrode 25 of the solar battery cell 13 has magnetism
  • the negative electrode 36 of the bypass diode 14 has magnetism.
  • the bypass electrode 14 is bypassed.
  • the positive electrode 35 of the diode 14 has magnetism.
  • an aluminum-added or antimony-added silver alloy (nonmagnetic conductive material) is used.
  • a powdery magnetic material such as Ni is preliminarily contained so that one of the positive and negative electrodes has magnetism (the other electrode is made of a nonmagnetic conductive material). Since the magnetic electrode can adsorb magnetic force, it is not particularly necessary to perform the magnetization process so that the direction of the magnetic field is aligned with a predetermined direction. However, in order to increase the attracting force when attracted by a magnetic force, it is desirable to perform the magnetization process so that the magnetic field direction of the magnetized electrode is aligned with the direction connecting the positive and negative electrodes.
  • the light-emitting diode 61 and the bypass diode 62 have one of the positive and negative electrodes 73 and 74 or the positive and negative electrodes 78 and 79 made of magnetism.
  • the other electrode may be non-magnetic.
  • the positive electrode 73 of the light emitting diode 61 has magnetism
  • the negative electrode 79 of the bypass diode 62 has magnetism
  • the bypass diode 62 when the positive electrode 73 of the light emitting diode 61 has magnetism, the negative electrode 79 of the bypass diode 62 has magnetism, and conversely, when the negative electrode 74 of the light emitting diode 61 has magnetism, the bypass diode 62.
  • the positive electrode 78 has magnetism.
  • a gusset portion woven without incorporating the semiconductor functional element 5 may be formed on the outer peripheral portion thereof.
  • the gusset portion is a woven fabric portion having a predetermined width formed in a woven fabric shape with a plurality of weft yarns and a plurality of warp yarns arranged more densely than the mesh-like mesh 7 at both ends in the longitudinal direction of the warp yarn, It is formed from a plurality of warp yarns arranged more densely than the mesh-like mesh 7 at both end portions in the lengthwise direction of the weft yarn and a woven fabric portion having a predetermined width formed in a woven fabric shape from a plurality of weft yarns.
  • this gusset portion has a high weaving density of warp and weft, the tensile strength and bending strength are improved, and the durability of the fiber structure 1 with an element is also increased.
  • the fiber structure 1 with an element is manufactured in a long strip shape, by providing two sets of continuous woven fabric portions at a predetermined location, cutting with a gusset portion when cutting to the required length
  • the semiconductor functional element 5 can be protected by the gusset portion also in handling the fiber structure 1 with an element after cutting.
  • the solar cell 13 the light emitting diode 61, and the bypass diodes 14 and 62 are adopted as the semiconductor functional element 5, it is not particularly limited to these elements, and the solar cell 13 can be driven as a power source.
  • Various semiconductor functional elements 5 such as various semiconductor sensor devices (light, ultraviolet rays, radiation, temperature, pressure, magnetism, etc.) and heat resistors that generate heat when energized can be used to manufacture the functional yarn 4.
  • a garment having a heat function is realized by adapting the fiber structure with a thermal resistor to clothing or the like. be able to.
  • the fiber structure 1 with an element according to the present invention is thin, lightweight, flexible, and breathable, and can be incorporated into a window glass or a wall surface of a building to realize a solar cell panel or a lighting panel having excellent design properties. It is also possible to improve the design by mounting on the body of the vehicle.
  • architectural fields such as tents, store-type sunshades, and dome-shaped buildings
  • interior fields such as curtains and blinds
  • mobile fields such as cars, trains, and ships
  • Sports field such as general, wearable field such as back and hats, clothing, etc.
  • roofs that also serve as sunlight such as sunrooms that utilize light permeability
  • outdoor advertising billboards and banners see-through displays
  • partitioning in event venues and factories etc. Taking advantage of its characteristics, it can be used in various fields.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Inorganic Chemistry (AREA)
  • Sustainable Energy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Woven Fabrics (AREA)
  • Led Device Packages (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 半導体機能素子付き繊維構造体(1)は、複数の糸で構成された繊維構造体であって複数の半導体機能素子(5)が組み込まれ、複数の糸は、複数の絶縁糸(6)と複数の半導体機能素子付き機能糸(4)とを有し、半導体機能素子付き機能糸(4)は、両端に正負の電極を有する粒状の複数の半導体機能素子(5)と、これら複数の半導体機能素子(5)を並列接続する可撓性のある1対の導電線(11)とを備え、平行状態に配置された1対の導電線(11)の間に複数の半導体機能素子(5)が導電線(11)の長さ方向に設定間隔おきに配置され、複数の半導体機能素子(5)の正電極が一方の導電線に電気的に接続されると共に複数の半導体機能素子(5)の負電極が他方の導電線に電気的に接続されている。

Description

半導体機能素子付き繊維構造体とその製造方法
 本発明は半導体機能素子付き繊維構造体とその製造方法に関し、特に複数の絶縁糸と複数の半導体機能素子付き機能糸とから構成され且つ複数の半導体機能素子が組み込まれた半導体機能素子付き繊維構造体及びその製造方法に関する。
 従来から、複数の半導体機能素子(太陽電池セル、発光ダイオード、バイパスダイオード等)を有する紐状の機能糸を縦糸又は横糸とし、複数の導電性線材や絶縁性線材を横糸又は縦糸として織り込んだ受光機能又は発光機能等を備えた種々のメッシュ状の半導体機能素子付き織網基材が提案されている。
 特許文献1には、両端に正負の電極を有する複数の粒状の半導体機能素子を、1対の導電性線材の間に挟持して電気的に並列接続し、これら半導体機能素子と1対の導電性線材を可撓性のある透明合成樹脂に埋め込んだ断面円形の半導体機能素子付き機能紐が開示されている。複数の半導体機能素子付き機能紐を夫々平行に等間隔に配設し、全体を透明合成樹脂で埋設状に封止することで構成した平面型のモジュールも開示されている。
 ところで、特許文献1の平面型のモジュールの場合、導電性線材の長さ方向と垂直な方向(機能紐の軸心と直交する方向)に過度な張力がかかると、導電性線材と半導体機能素子との接続部分が破損する虞がある。このため、平面型のモジュールに対して、導電性線材の長さ方向と垂直な方向に延びる複数の非導電性線材を織り込むことが望ましい。
 特許文献2には、銀をガラスファイバーにコーティングした導線からなる導体を横糸とし、ガラスファイバーからなる不良導体を縦糸として平織りした網目様のガラス布(織網基材)の複数の網目に、pn接合を形成した太陽電池セルを強固に押し込み、その状態で高温加熱して電極形成と共にガラス布と太陽電池セルの電気的接続を同時に行い、その後、ガラス布の両面から樹脂フィルムでラミネーションした構造のフレキシブルな太陽電池モジュールが開示されている。
 特許文献3には、平行に配置された複数の導電性線材と、これら導電性線材を固定する為の絶縁性張力線材とで製織された織網基材の複数の網目に、独立した正負のドット状電極を備えた複数の球状太陽電池セルを挿入し、太陽電池セルの正負の電極を導電性線材に半田等で電気的に接続した構造の太陽電池モジュールが開示されている。ここでも、特許文献2と同様に、予め導電性線材と絶縁性線材とで製織された織網基材を準備し、その後に、複数の太陽電池セルを組み込む方法が開示されている。
 特許文献2,3において、織網基材と太陽電池セルとを電気的に接続する為に、導電性線材と絶縁性線材とで網目形成後に、導電性接着剤を介して導電性線材と太陽電池セルとを電気的に接続している。この場合、上記の導電性接着剤を溶融するために、導電性線材と半導体機能素子との接触部分に200℃以上の高温を加えるので、導電性線材には耐熱性の高い線材が必要となり、また、この導電性線材と共に織り込まれる絶縁性線材にも耐熱性が高い線材が必要となる。従って、絶縁性線材に対して、通常の織物に使用する糸材を選択することができず、しかも、太陽電池セルの配置場所も制約を受ける為に、意匠性を発揮した織物や織網基材が製造できない問題がある。
 製織時に導電性線材に高温を加える必要のない太陽電池モジュール(半導体機能素子付き織網基材)として、特許文献4,5には、複数の半導体機能素子を予め実装した機能糸を縦糸として、導電性線材又は絶縁性線材を横糸として織り込まれた電気的な織布又は織物等の織物構造体が開示されている。この特許文献4,5において、機能糸の複数の半導体機能素子と導電性線材との間は、接着剤を使用せずに物理的な接触を介して電気的に接続されている。
 尚、特許文献4の機能糸は、細長い帯状の基板を有し、その基板上に複数の半導体機能素子や信号線等が配設された立体的な構造を有する。特許文献5の機能糸は、線材であるプラスチックファイバの表面にゲート電極を形成し、このゲート電極上に絶縁膜を形成し、この絶縁膜上にドレイン電極、ソース電極とn型半導体を夫々形成した構造を有する。
WO2004/001858号公報 特開平9-16243号公報 WO2005/041312号公報 特表2005-524783号公報 特開2003-161844号公報
 ところで、上記の特許文献4,5のように複数の半導体機能素子を予め実装した機能糸を使用した種々の半導体機能素子付き織網基材が提案されているが、織網基材(所謂、繊維構造体、テキスタイル)のフレキシブル性や伸長特性を十分に考慮しておらず、半導体機能素子付き織網基材の製織時や加工時における半導体機能素子の破損対策が不十分である虞がある。
 特許文献4の機能糸は、帯状の基板上に複数の半導体機能素子を配置した3次元的な立体構造であり、特許文献5の機能糸は、線材の表面に半導体機能素子を直接作り込む構造であるので、これら機能糸は一体的な構造且つ複雑な構造となってしまい、依って、著しく柔軟性に欠けてしまう。
 従って、製織時に上記の機能糸が絶縁性線材や導電性線材と交錯して屈曲構造を形成すると、この屈曲構造による屈曲、捩れ、伸縮が機能糸の複数の半導体機能素子に直接伝達されてしまうので、これら半導体機能素子が破損する虞がある。つまり、特許文献4,5の機能糸を織網基材や生地に適用しても、通常の糸材としての機能を発揮しにくいという問題がある。加えて、これら機能糸から織網基材を製織すると、高コストとなってしまう。
 また、特許文献4の機能糸は、帯状基板の表面に半導体機能素子を配置する構造上、糸の幅が広くなり、特許文献5の機能糸は、線材の表面に半導体機能素子を作り込む構造上、糸の直径が太くなるので、これら機能糸を用いて織網基材を製織しても、通気性のない織網基材になってしまう。
 さらに、特許文献2,3では、予め半導体機能素子のサイズに適応したメッシュ状の織網基材を作成して、その後に、織網基材に半導体機能素子を実装していくので、上述のように耐熱性の高い絶縁性線材が必要となる上、織網基材の網目と半導体機能素子の直径との間隔を一定に維持したまま、織網基材に半導体機能素子を組み込むため、位置決めが困難である。ある程度の大きさの半導体機能素子付き織網基材を製造する為には、製造装置も大型となり、高コストとなる。
 本発明の目的は、低コストで量産に適した半導体機能素子付き繊維構造体の製造方法を提供すること、可撓性と通気性のある軽量な半導体機能素子付き繊維構造体を提供すること、連続的に製造可能な半導体機能素子付き繊維構造体を提供すること、等である。
 請求項1の半導体機能素子付き繊維構造体は、複数の糸で構成された繊維構造体であって複数の半導体機能素子が組み込まれた半導体機能素子付き繊維構造体において、前記複数の糸は、複数の絶縁糸と複数の半導体機能素子付き機能糸とを有し、前記半導体機能素子付き機能糸は、両端に正負の電極を有する粒状の複数の半導体機能素子と、これら複数の半導体機能素子を並列接続する可撓性のある1対の導電線とを備え、平行状態に配置された前記1対の導電線の間に前記複数の半導体機能素子が導電線の長さ方向に設定間隔おきに配置され、前記複数の半導体機能素子の正電極が一方の導電線に電気的に接続されると共に前記複数の半導体機能素子の負電極が他方の導電線に電気的に接続されたことを特徴としている。
 請求項15の絶縁糸を含む複数の縦糸と、複数の半導体機能素子を有する半導体機能素子付き機能糸を含む複数の横糸とで織られた半導体機能素子付き繊維構造体の製造方法において、定間隔おきに平行に配置した複数の縦糸を含む第1群縦糸と、この第1群縦糸と平行且つ交互に位置する複数の縦糸を含む第2群縦糸とを綜絖機構により移動させて、第1,第2群縦糸の間に隙間を形成する第1工程と、前記第1,第2群縦糸の間の隙間にシャトル機構により横糸を供給する第2工程と、前記第2工程で供給された横糸を筬機構により筬打ちする第3工程と、前記半導体機能素子付き繊維構造体を所定の長さ引き出す第4工程と、前記第1工程から第4工程を複数回繰り返す第5工程と、を備えたことを特徴としている。
 請求項1の発明によれば、可撓性と通気性に優れ且つ軽量な半導体機能素子付き繊維構造体を実現することができる。安価に量産可能な半導体機能素子付き繊維構造体を実現することができる。物体の表面に貼り付けるのに適した薄い半導体機能素子付き繊維構造体を実現することができる。この半導体機能素子付き繊維構造体は、可撓性、軽量、薄型、フレキシブル、シースルー、採光性がある中間材的製品であり、用途に応じて種々の製品に仕上げることが出来る。
 請求項15の発明によれば、少ない工程数で能率的に安定的に半導体機能素子付き繊維構造体を連続的に安価に量産することができる。可撓性と通気性に優れ且つ軽量な半導体機能素子付き繊維構造体を製造することができる。既存の織機を有効活用しながら、半導体素子付き繊維構造体を自動的に製造することができる。
 請求項1の構成に加えて、次のような種々の構成を採用してもよい。
(a)前記複数の糸は、第1糸群とこの第1糸群と交差する第2糸群とを備え、前記第1糸群は複数の半導体機能素子付き機能糸を備えると共に、前記第2糸群は複数の絶縁糸を備えている。
(b)前記第1糸群が複数の半導体機能素子付き機能糸で構成され、前記複数の半導体機能素子付き機能糸は、前記半導体機能素子の正負の電極を結ぶ導電方向を第2糸群の長さ方向に揃えた状態に配設されると共に隣接する半導体機能素子付き機能糸の導電線同士が電気的に接続されている。
(c)前記第1糸群が複数の半導体機能素子付き機能糸と複数の絶縁糸とから構成され、前記複数の半導体機能素子付き機能糸は、前記半導体機能素子の正負の電極を結ぶ導電方向を前記第2糸群の長さ方向に揃えた状態に配設され、隣接する半導体機能素子付き機能糸の間に1又は複数の前記絶縁糸を配設する。
(d)前記第1糸群は、1又は複数の第1の半導体機能素子付き機能糸と、1又は複数の第2の半導体機能素子付き機能糸とから構成され、前記第1の半導体機能素子付き機能糸の半導体機能素子が、受光機能を有する球状の半導体機能素子であり、前記第2の半導体機能素子付き機能糸の半導体機能素子が、発光機能を有する半導体機能素子である。
(e)前記第2糸群は、前記第1糸群の長さ方向に接触状に隣接する第1,第2絶縁糸であって前記第1糸群の複数の半導体機能素子付き機能糸の表面と裏面とに交互に接触するジグザグ状態に織られた第1,第2絶縁糸を備えている。
(f)前記半導体機能素子付き繊維構造体の少なくとも片面に、光透過性のある合成樹脂製のシート材を設けている。
(g)前記シート材の合成樹脂材に、受光した光の波長を変換する波長変換材料を添加する。
(h)前記半導体機能素子付き機能糸の全表面を可撓性と光透過性のある薄膜状の絶縁性保護膜で被覆され、この絶縁性保護膜は、パラキシリレン樹脂、フッ素樹脂、ポリイミド樹脂、ポリエチレンテレフタレート樹脂のうちから選択される何れか1つの合成樹脂製の被膜からなる。
(i)前記1対の導電線は、ガラス繊維、炭素繊維、ポリエステル繊維、アラミド繊維、ポリエチレン繊維、液晶ポリマー繊維のうちから選択される何れか1又は複数種類の繊維の束又は撚線の表面に1又は複数の金属細線をコイル状にカバーリングした導電線で構成される。
(j)前記1対の導電線は、受光した光の波長を変換する波長変換材料を含む芯材の表面に1又は複数の金属細線をコイル状にカバーリングした導電線で構成される。
(k)前記絶縁糸は、単芯のガラスファイバー、又は、ガラス繊維、ポリエステル繊維、ポリイミド繊維等の合成繊維、天然繊維のうちから選択される何れか1又は複数種類の繊維の束又は撚線からなる。
(l)前記絶縁糸は、受光した光の波長を変換する波長変換材料を含む線材からなる。
(m)前記半導体機能素子付き繊維構造体は、少なくとも下層に繊維構造体を設けた多層構造に構成されている。
 請求項15の構成に加えて、次のような種々の構成を採用してもよい。
(n)前記第4工程の後、前記第5工程の前に、前記半導体機能素子付き繊維構造体の両面を可撓性と光透過性のある絶縁性保護膜で被覆する被覆工程を備える。
(o)前記第4工程の後、前記第5工程の前に、前記半導体機能素子付き繊維構造体の両面に可撓性と光透過性のある合成樹脂シート材を重ねて加熱加圧する重ね合わせ工程を備える。
本発明の実施例1に係る半導体機能素子付き繊維構造体の平面図である。 半導体機能素子付き繊維構造体の要部拡大平面図である。 図2のIII- III線断面図である。 半導体機能素子付き機能糸の平面図である。 図4の部分拡大断面図である。 図4のVI-VI線断面図である。 球状太陽電池セルの断面図である。 球状バイパスダイオードの断面図である。 導電線の部分拡大斜視図である。 絶縁糸の部分拡大斜視図である。 図1の等価回路図である。 半導体機能素子付き繊維構造体の製造装置の斜視図である。 部分的変更形態にかかる半導体機能素子付き繊維構造体の要部拡大平面図である。 図13のXIV- XIV線断面図である。 部分的変更形態にかかる半導体機能素子付き繊維構造体の製造装置の斜視図である。 実施例2に係る半導体機能素子付き繊維構造体の平面図である。 図16のXVII-XVII線断面図である 図16のXVIII-XVIII線断面図である 第2の半導体機能素子付き機能糸の部分拡大平面図である。 図19のXX-XX線断面図である。 発光ダイオードの平面図である。 発光ダイオードの断面図である。 図19の等価回路図である。 半導体機能素子付き繊維構造体の製造装置の斜視図である。 実施例3に係る半導体機能素子付き繊維構造体の平面図である。 第1の半導体機能素子付き機能糸の平面図である。 第2の半導体機能素子付き機能糸の平面図である。 実施例4に係る半導体機能素子付き繊維構造体の平面図である。 実施例5に係る半導体機能素子付き繊維構造体の平面図である。 実施例6に係る半導体機能素子付き繊維構造体の平面図である。 部分的変更形態にかかる半導体機能素子付き繊維構造体の平面図である。
 以下、本発明を実施するための形態について実施例に基づいて説明する。
 図1~図3に示すように、半導体機能素子付き繊維構造体1(以下、素子付き繊維構造体1という)は、複数の半導体機能素子付き機能糸4と複数の絶縁糸6とを有する複数の糸で構成された繊維構造体(テキスタイル)であって、複数の半導体機能素子5が組み込まれた可撓性のあるメッシュ状の繊維構造体である。複数の糸は、第1糸群2とこの第1糸群2と交差する第2糸群3とを備え、第1糸群2は、複数の横糸として後述する複数の半導体機能素子付き機能糸4(以下、機能糸4という)を備えると共に、第2糸群3は、複数の縦糸として後述する複数の絶縁糸6を備えている。これら第1糸群2の複数の機能糸4と第2糸群3の複数の絶縁糸6とで素子付き繊維構造体1が製織される。尚、図1の上下左右を上下左右として説明する。
 素子付き繊維構造体1は、後述する製造装置50及び製造方法により、長い帯状に連続的に製織することが可能な素子付き織網基材である。素子付き繊維構造体1は、機能糸4の長さや、機能糸4の半導体機能素子5の種類、組み込み数、配置パターンやサイズ等、仕様に応じて適宜設定して製造可能である。
 第1糸群2の全ての糸は、横方向に延びる複数の機能糸4で構成されている。複数の機能糸4は、半導体機能素子5の正負の電極を結ぶ導電方向を第2糸群3の長さ方向に揃えた状態に配設され、隣接する機能糸4の導電線11同士が電気的に接続されている。つまり、複数の機能糸4は、平行状態に配設されると共に縦方向に隙間を空けずに密に接触状に配設されている。
 第2糸群3の全ての糸は、第1糸群2に直交するように織り込まれ且つ縦方向に延びる複数の絶縁糸6で構成されている。第2糸群3は、第1糸群2の長さ方向に接触状に隣接する第1,第2絶縁糸6a,6bであって第1糸群2の複数の機能糸4の表面と裏面とに交互に接触するジグザグ状態に織られた第1,第2絶縁糸6a,6bを備えている。複数の第1,第2絶縁糸6a,6bは、機能糸4の長さ方向に隣接する半導体機能素子5の間に夫々配設され織り込まれている。
 素子付き繊維構造体1は、複数の機能糸4に複数の絶縁糸6を織り込むことで、機能糸4の1対の導電線11と絶縁糸6とで囲まれた複数行複数列の平面視長方形状の網目7が形成され、各網目7に半導体機能素子5が配置された構成となる。尚、絶縁糸6の配置箇所を調整することで、網目7のサイズを適宜変更することができ、網目7に配置される半導体機能素子5の数も適宜変更することができる。
 次に、機能糸4について説明する。
 図1~図9に示すように、機能糸4は、粒状の複数の半導体機能素子5と、これら複数の半導体機能素子5を並列接続する可撓性のある1対の導電線11(11a,11b)とを備えている。複数の半導体機能素子5は、両端に正負の電極25,26を有する複数の球状太陽電池セル13(図7参照)と、この球状太陽電池セル13とは異なる種類の両端に正負の電極35,36を有する複数の球状バイパスダイオード14(図8参照)とを含むものである。
 機能糸4には、予め設定された設定数(例えば、19個)の球状太陽電池セル13の列の一端側に1つ又は複数のバイパスダイオード14を配置した素子配列組5Aが、導電線11の長さ方向に複数組繰り返し形成されている。隣接する球状太陽電池セル13同士間と、球状太陽電池セル13と球状バイパスダイオード14との間は、設定間隔(例えば、太陽電池セル13の直径と同程度の間隔)が空けられている。機能糸4には、隣接する半導体機能素子5同士間に隙間18が形成され、これら複数の隙間18により通気性が向上する。尚、図4に示す機能糸4においては、全体のほんの一部の素子配列組5Aを図示しているに過ぎない。
 図4~図6に示すように、1対の導電線11は、所定の間隔(太陽電池セル13の直径と同じ1.2mm程度)をあけて平行状態に配置されている。この導電線11の間に、複数の素子配列組5Aが導電線11の長さ方向に直列的に配置されている。複数の球状太陽電池セル13の負電極26の外面と複数の球状バイパスダイオード14の正電極35の外面が、導電線11aに導電接合材16を介して夫々電気的に接続され、複数の球状太陽電池セル13の正電極25の外面と複数の球状バイパスダイオード14の負電極36の外面が、導電線11bに導電接合材16を介し夫々電気的に接続されている。
 この機能糸4は、長い糸状に連続的に製造することが可能である。半導体機能素子5の大きさ、隣接する半導体機能素子5間の間隔、素子配列組5Aにおける球状太陽電池セル13の数と球状バイパスダイオード14の数、導電線11の太さ等は、仕様に応じて適宜設定可能である。尚、隣接する半導体機能素子5間の設定間隔は、半導体機能素子5の幅の1/2倍以上且つ2倍以下の間隔であることが望ましい。この設定間隔にすることで、機能糸4の光透過性と可撓性を確保することができ、また、製織時にこの機能糸4と交差する縦糸又は横糸の配設スペースを設けることができる。
 次に、球状太陽電池セル13について説明する。
 図4,図7に示すように、球状太陽電池セル13(以下、太陽電池セル13という)は、直径1.0mm~2.0mm(本実施例では、直径1.2mm)程度の球状のp型シリコン単結晶21を用いて製造される。このp型シリコン単結晶21の表面の一部に平坦面22が形成され、この平坦面22とその近傍部を除く球面の大部分にn型不純物が拡散されてn型拡散層23が形成され、n型拡散層23の表面から1μm程度の位置に球面状のpn接合24が形成されている。平坦面22のp型表面(太陽電池セル13の一端)に、アルミ添加の銀合金からなる正電極25(アノード電極)がスポット状に低抵抗接続され、p型シリコン単結晶21の中心を挟んで正電極25の反対側のn型表面(太陽電池セル13の他端)に、アンチモン添加の銀合金からなる負電極26(カソード電極)がスポット状に低抵抗接続されている。この正負の電極25,26以外のp型シリコン単結晶21とn型拡散層23の全表面に、透明なSiO膜からなる反射防止膜27が形成されている。
 この太陽電池セル13は、正負の電極25,26を結ぶ軸線方向を除く全方向からの光を受光することができる。このため、直射光の入射方向が変動しても受光することができ、反射光も含めてあらゆる方向の光を受光することができ、太陽電池セル13の周辺に入って来る光の利用効率を最大化できる。
 次に、球状バイパスダイオード14について説明する。
 図5,図8に示すように、球状バイパスダイオード14(以下、バイパスダイオード14という)は、直径1.0mm~2.0mm(本実施例では、直径1.2mm)程度の球状のn型シリコン単結晶31を用いて製造される。このn型シリコン単結晶31の表面の一部に平坦面32が形成され、この平坦面32を除くn型シリコン単結晶31の表面の約半分にp型不純物が拡散されて、20μm程度の厚さのp型拡散層33が形成されている。平坦面32のn型表面に、負電極36がスポット状に低抵抗接続されている。p型拡散層33の表面の大部分にこのp型拡散層33と低抵抗接触する金属被膜37が形成されて、n型シリコン単結晶31の中心を挟んで負電極36と反対側に位置するように、金属被膜37の頂面に正電極35がスポット状に低抵抗接続されている。金属被膜37と平坦面32以外のn型シリコン単結晶31の表面が、シリコン酸化膜からなる絶縁膜38で被覆されている。
 このバイパスダイオード14は、上述した各素子配列組5Aにおいて、設定数(19個)の太陽電池セル13に対して逆並列接続されるため、複数の太陽電池セル13に過度な逆電圧が印加された場合に電流をバイパスする機能を有し、複数の太陽電池セル13が過熱されて破損するのを防止することができる。
 尚、太陽電池セル13とバイパスダイオード14のサイズは、上記では直径1.2mm程度であると説明しているが、上記の機能糸4は織網構造体に適用するため、織網構造体のフレキシブル性を考慮すると、太陽電池セル13とバイパスダイオード14の直径は2.0mm以下のサイズに設定することが望ましい。
 次に、1対の導電線11について説明する。
 図9に示すように、1対の導電線11は、複数本のガラス繊維の束からなる芯材41(例えば、直径0.3mm程度)の表面に、錫メッキした直径0.05mmの金属細線42(例えば、銅の細線)を2本コイル状にカバーリングすることで構成されている。
 2本の金属細線42は、互いに交差するよう右巻きと左巻きに巻き付けられている。導電線11は、2本の金属細線42をコイル状に巻き付けた構造であるので、どの方向にも折曲可能で且つ折曲を繰り返しても高い耐久性を有する。2本の金属細線42の交差構造により、互いに電気的に接触する複数の接触箇所が小間隔で形成されるため、金属細線42の実際の長さよりも格段に短い導電経路を形成する。さらに、2本の金属細線42のうち一方の金属細線42が断線しても、導電線11の導電性が確保され、機能糸4の機能が損なわれることはない。
 尚、導電線11のサイズは、上記では直径0.3mm程度であると説明しているが、機能糸4に入射される光を効率良く受光させる為に、太陽電池セル13の直径の1/10~1/1程度のサイズに設定することが望ましい。また、導電線11は、太陽電池セル13との接触部に導電接合材を塗布して加熱硬化して太陽電池セル13と接続される為に、150℃以上の耐熱性を備えていることが望ましい。さらに、導電線11の電気抵抗での消費電力を考慮して、電気抵抗は0.001~20Ω/mの範囲であることが望ましい。
 次に、導電接合材16について説明する。
 図5,図6に示すように、導電接合材16は、例えば、導電性エポキシ樹脂(エポキシ樹脂に銀粉を混入したもの)からなる。1対の導電線11間に太陽電池セル13とバイパスダイオード14とを固定する場合、導電性エポキシ樹脂を導電線11と太陽電池セル13の正負の電極25,26又はバイパスダイオード14の正負の電極35,36との接触部に塗布し、導電性エポキシ樹脂を加熱して乾燥させて硬化させて、太陽電池セル13とバイパスダイオード14とを1対の導電線11に固定する。
 この機能糸4によれば、光の入射方向に関係なく、光が機能糸4に入射し、この光が極性を揃えて配置された複数の太陽電池セル13に照射されると、太陽電池セル13に形成されたほぼ球面状のpn接合24で光が受光され、太陽電池セル13の光起電力発生機能(受光機能)によって電気エネルギに変換される。その電気エネルギは、pn接合24の両極に接続されて太陽電池セル13の中心を挟んで対向する正負の電極25,26を介して導電線11を通って外部へ出力される。機能糸4は、光を受光すると約0.6Vの出力電圧を出力する。機能糸4の出力電流の大きさは、太陽電池セル13の数に比例する。
 次に、絶縁糸6について説明する。
 図10に示すように、絶縁糸6は、複数本のポリエステル繊維の束ねた線又は縒り線(例えば、直径0.1mm程度)で構成されている。絶縁糸6に透明なポリエステル繊維を採用する場合、入射光はポリエステル繊維を通って入射側とは反対側に透過するが、同時に入射光を散乱させることができ、太陽電池セル13の表面全体に光が回り込む確率を高めることができ、依って、太陽電池セル13の受光効率が増して出力増加に寄与する。
 ここで、素子付き繊維構造体1の直並列接続構造について説明する。
 図1~図3に示すように、複数の太陽電池セル13は、行方向(横方向)に延びる機能糸4を単位として複数行に配列されると共に、列方向(縦方向)に隣接する機能糸4の導電線11同士が接触している。行方向の複数の太陽電池セル13は、1対の導電線11を介して電気的に並列接続されると共に、列方向の複数の太陽電池セル13は、隣接する導電線11同士の接触を介して直列接続されている。
 次に、素子付き繊維構造体1の等価回路図について説明する。
 図11は、複数行複数列のマトリックス状に配設された複数の太陽電池セル13と複数行1列又は複数列に配設された複数のバイパスダイオード14を有する素子付き繊維構造体1の等価回路図である。ここでは、素子付き繊維構造体1に、例えば、6行5列に配設された複数の太陽電池セル13が組み込まれた場合を例にして説明する。
 1個の太陽電池セル13の開放電圧が例えば0.6Vである場合、第2糸群3の長さ方向に6個の太陽電池セル13が直列接続されているので、3.6Vの電圧が発生する。1つの太陽電池セル13により発生する電流をIとすると、5個の太陽電池セル13が並列接続されているので、正電極側から5Iの電流が外部回路へ出力される。素子付き繊維構造体1の出力電圧を上げるには、直列接続される太陽電池セル13の数を、つまり、機能糸4の数を増やせばよい。素子付き繊維構造体1からの出力電流を上げるには、機能糸4の並列接続される太陽電池セル13の数を増やせばよい。
 この素子付き繊維構造体1は、フレキシブルであり、機能糸4の太陽電池セル13同士間や太陽電池セル13とバイパスダイオード14間の隙間18や1対の導電線11と絶縁糸6とからなる網目7を調整することで光透過性能(光透過率)を調整することができる。多量の太陽電池セル13を組み込んだ素子付き繊維構造体1を製作することができ、素子付き繊維構造体1の受光性能を向上させることができる。尚、太陽電池セル13を発光ダイオードに置き換えた場合は、発光性能を向上させることができる。
 次に、素子付き繊維構造体1を製造する製造装置50について説明する。
 図12に示すように、製造装置50は、上流側から下流側に向って材料を移動させながら、複数の絶縁糸6を縦糸とし、複数の機能糸4を横糸として素子付き繊維構造体1(素子付き織網基材)を製造することができる。製造装置50は、最上流側の供給側案内ローラ51と、綜絖機構53と、シャトル機構54と、筬機構55と、最下流側の引き出し機構56等を備えている。尚、複数の横糸により第1糸群2が構成され、複数の縦糸により第2糸群3が構成される。
 次に、供給側案内ローラ51について説明する。
 図12に示すように、供給側案内ローラ51は、製造装置50の機枠に回転可能に支持され、ローラ駆動機構(図示略)により回転駆動される。この供給側案内ローラ51は、縦糸供給源(図示略)から供給される複数の絶縁糸6を、方向変換しつつ整列状態にして綜絖機構53の方に案内するものである。複数の絶縁糸6は、第1,第2絶縁糸6a,6bを単位として供給側案内ローラ51にその軸方向に所定の間隔を空けて配置されている。
 この供給側案内ローラ51と下流側の綜絖機構53との間には、案内板52が設けられている。この案内板52は、1対の平板部52a,52bと、この1対の平板部52a,52b間に形成され且つ絶縁糸6と直交する方向に長く伸びる開口部52cとを有する。この案内板52は、複数の絶縁糸6を、平板部52aの上側を通り開口部52cを挿通して平板部52bの下側を通る第1群縦糸53Aと、平板部52aの下側を通り開口部52cを挿通して平板部52bの上側を通る第2群縦糸53Bとからなる2つのグループに分けている。尚、本実施例では、複数の絶縁糸6について、複数の第1絶縁糸6aを第1群縦糸53Aとし、複数の第2絶縁糸6bを第2群縦糸53Bとしている。
 次に、綜絖機構53について説明する。
 図12に示すように、綜絖機構53は、第1,第2綜絖部材53a,53bと、これら第1,第2綜絖部材53a,53bを相対的に上下往復移動させるための往復駆動部材53cとで構成されている。この綜絖機構53は、第1群縦糸53Aと第2群縦糸53Bとを上下に移動させて、第1,第2群縦糸53A,53Bの間(つまり、第1,第2絶縁糸6a,6bの間)にシャトル部材54aを通過させるための隙間を形成するものである。
 第1,第2綜絖部材53a,53bの各々は、細長い板状の上枠53dと、下枠53eと、これら上枠53dと下枠53eを結ぶ上下方向に延びる複数のヘルド53fとを備えている。ヘルド53fの中央部には、絶縁糸6を挿通するための糸穴53gが形成されている。綜絖機構53は、第1綜絖部材53aの複数のヘルド53f間に第2綜絖部材53bの複数のヘルド53fが位置するように第1,第2綜絖部材53a,53bが横方向(素子付き繊維構造体11の幅方向)に僅かにズレた状態に構成されている。第1綜絖部材53aの複数の糸穴53gに、第1群縦糸53Aの複数の第1絶縁糸6aが夫々挿通され、第2綜絖部材53bの複数の糸穴53gに、第2群縦糸53Bの複数の第2絶縁糸6bが挿通されている。尚、この綜絖機構53において、上枠53dと下枠53eとに上下1対のキャリアロッドを夫々設け、このキャリアロッドによりヘルド53fを支持するように構成しても良い。
 往復駆動部材53cは、縦糸21と直交する方向に延びる回転軸53hと、回転軸53hの両端部に固着された1対のプーリ部材53iと、これらプーリ部材53iに係合し且つ第1、第2綜絖部材53a,53bの上端部に連結する1対のベルト材53jと、回転軸53hを往復回転させる往復回転機構(図示略)等で構成されている。往復駆動部材53cの往復駆動により、第1綜絖部材53aと第1群縦糸53Aが上方に移動する時には、第2綜絖部材53bと第2群縦糸53Bは相対的に下方に移動し、第1綜絖部材53aと第1群縦糸53Aが下方に移動する時には、第2綜絖部材53bと第2群縦糸53Bは相対的に上方に移動することで、第1,第2群縦糸53A,53Bの間にシャトル部材54a通過用の隙間を形成する。
 尚、図12では省略するが、第1、第2綜絖部材53a,53bの下側において、往復駆動部材53cは、前記回転軸53hと同様な往復回転機構により往復回転される回転軸と、この回転軸の両端部に固着された前記1対のプーリ部材53iと同様な1対のプーリ部材と、これらプーリ部材に係合し且つ第1、第2綜絖部材53a,53bの下端部に連結する1対のベルト材等を有している。
 次に、シャトル機構54について説明する。
 図12に示すように、シャトル機構54は、機能糸4の先端部が引っ掛けられたシャトル部材54aと、このシャトル部材54aを左右方向へ往復駆動可能なシャトル駆動機構(図示略)と、シャトル部材54aに機能糸4を供給する横糸供給機構(図示略)等を備えている。
 シャトル部材54aにより、綜絖機構53により形成された第1,第2群縦糸53A,53Bの間の楔形の隙間に機能糸4を供給する。具体的に、第1,第2群縦糸53A,53Bの間の隙間に対して、図12の右側から左側に向けてシャトル部材54aを移動させて、機能糸4を、半導体機能素子5の正負の電極の導電方向を絶縁糸6の長さ方向に揃えた状態に且つ第1,第2群縦糸53A,53Bと直交状態になるように配線し、シャトル部材54aから機能糸4の先端部を取り外し、シャトル部材54aと反対側の機能糸4の隙間18部分の1対の導電線11を切断する。
 次に、筬機構55について説明する。
 図12に示すように、筬機構55は、横方向に長い鉛直向きの板状部材55aと、この板状部材55aを所定ストロークだけ前後移動させる筬駆動機構(図示略)を有し、この板状部材55aには、複数の縦長のスリット55bが等間隔に形成されている。筬機構55は、シャトル機構54で供給された機能糸4を下流側へ押圧するように筬打ちし、機能糸4を絶縁糸6に対して直交状態に整列させると共に下流側の機能糸4に密着させるものである。複数のスリット55bには、1組の第1,第2絶縁糸6a,6bが夫々挿通している。
 次に、引き出し機構56について説明する。
 図12に示すように、引き出し機構56は、素子付き繊維構造体1を巻き取る巻取りローラ56aと、巻取りローラ56aの方向へ素子付き繊維構造体1を案内する案内ローラ56b等を有し、製造装置50の最下流側に配設されている。巻取りローラ56aは、製造装置50の図示外の機枠に回転駆動可能に支持され、綜絖機構53やシャトル機構54等の他の機構と連動して、引出し駆動機構(図示略)により、素子付き繊維構造体1を間欠的に1ピッチずつ引き出しながら巻取りローラ56aで巻き取る。
 尚、図示は省略するが、前記の製造装置50を制御する制御ユニットが設けられ、この制御ユニットにより、供給側案内ローラ51、綜絖機構53、シャトル機構54、筬機構55、引き出し機構56が制御される。
 次に、素子付き繊維構造体1の製造方法について説明する。
 この製造方法は、図12の製造装置50により、第1,第2絶縁糸6a,6bを含む複数の縦糸と、複数の半導体機能素子5(太陽電池セル13とバイパスダイオード14)を有する機能糸4を含む複数の横糸とで織られた素子付き繊維構造体1(素子付き織網基材)を製造するための方法である。
 先ず、第1工程において、複数の絶縁糸6が、供給側案内ローラ51と案内板52を通過してから、綜絖機構53により、定間隔おきに平行に配置した複数の第1絶縁糸6aを含む第1群縦糸53Aと、この第1群縦糸53Aと平行且つ交互に位置する複数の第2絶縁糸6bを含む第2群縦糸53Bとに分けられる。そして、第1群縦糸53Aと第2群縦糸53Bを綜絖機構53により上下に移動させて、第1,第2絶縁糸6a,6bの間にシャトル通過用の隙間を形成する。
 次に、第2工程において、第1工程で形成された第1,第2群縦糸53A,53Bの間の隙間に、シャトル機構54のシャトル部材54aを絶縁糸6と直交する方向に通して第1,第2絶縁糸6a,6bの間に機能糸4を供給する。
 次に、第3工程において、第2工程で供給された機能糸4を、筬機構55により下流側に押圧する筬打ちを行い、機能糸4を絶縁糸6に対して直交状態に整列させる。このとき、1サイクル前の工程において、下流側に供給された機能糸4の導電線11に対して機能糸4の導電線11を押圧する。この筬機構55の押圧により、導電線11同士が接触するため導電線11の長さ方向の電気抵抗を小さくすることができる。
 次に、第4工程において、引き出し機構56により機能糸4の縦方向幅に相当する1ピッチ分素子付き繊維構造体1を下流側へ引き出し、以上の第1工程から第4工程を複数回繰り返し実行することで、連続した素子付き繊維構造体1を製作することができる。この繰り返し工程が、第5工程に相当する。
 そして、最終的に引き出し機構56により、素子付き繊維構造体1を間欠的に1ピッチずつ巻き取りながら収容する。
 次に、素子付き繊維構造体1とその製造方法の効果について説明する。
 この素子付き繊維構造体1によれば、可撓性と通気性に優れ且つ軽量な素子付き繊維構造体1を実現することができる。安価に量産可能な素子付き繊維構造体1を実現することができる。物体の表面に貼り付けるのに適した薄い素子付き繊維構造体1を実現することができる。この素子付き繊維構造体1は、可撓性、軽量、薄型、フレキシブル、シースルー、採光性がある中間材的製品であり、用途に応じて種々の製品に仕上げることが出来る。
 複数の太陽電池セル13が縦方向に直列接続され且つ横方向に並列接続されているため、受光用の素子付き繊維構造体1の場合、直列接続される素子数を介して発電電圧を自由に設定し、並列接続される素子数を介して発電電流を自由に設定することができる。受光用の素子付き繊維構造体1に部分的に日陰となる部分が発生しても、日陰でない他の部分の太陽電池セル13の出力への影響を最小限に留めることができる。しかも、この素子付き繊維構造体1は、その上下両面が同じ効率で受光可能である。
 機能糸4と直交する方向に絶縁糸6を加えることにより、太陽電池セル13が所定の位置に安定的に収まり、且つ、引っ張りや曲げ、捩れに対して強化され、取り扱いも容易となり実用的価値が高くなる。この素子付き繊維構造体1の直列接続構造に対して、別途直列用導電線を設ける必要がないので、部品点数を減らすことができ、機能糸4の間に不要な間隔を設けないので、太陽電池セル13をより密に配置することができ、受光効率(発光ダイオードの場合は発光効率)を高めることができる。
 この素子付き繊維構造体1の製造方法によれば、少ない工程数で能率的に安定的に素子付き繊維構造体1を連続的に安価に量産することができる。可撓性と通気性に優れ且つ軽量な素子付き繊維構造体1を製造することができる。既存の織機を有効活用しながら、素子付き繊維構造体1を自動的に製造することができる。
 素子付き繊維構造体1の平織が常温環境で行えるので、絶縁糸6に耐熱性のものを必要とせず、材質的に選択できる範囲が広くなり、用途や目的に応じて適切な糸材が利用できる。絶縁糸6の色や風合い等で意匠性を重視した織物として構成できる利点がある。絶縁糸6と導電線11の芯材にガラス繊維等の耐熱温度が高い繊維を用いれば高耐熱性が必要な用途の素子付き繊維構造体1が得られる。
 次に、素子付き繊維構造体1の部分的変更形態について説明する。
 図13,図14に示すように、この変更形態にかかる素子付き繊維構造体1Aは、第1糸群2の複数の糸(機能糸4)とこの第1糸群2と交差する第2糸群3の複数の糸(絶縁糸6)とで織られ且つ複数の半導体機能素子5が組み込まれ、その全表面を可撓性と光透過性のある薄膜状の絶縁性保護膜8で被覆されている。
 この絶縁性保護膜8は、例えば、シランカップリング剤の被膜で素子付き繊維構造体1Aの上下両面を例えば、厚さ0.25μm程度に被覆するものである。このシランカップリング剤からなる絶縁性保護膜8は、スプレイ法によって成膜可能であり、可撓性と光透過性を有する。
 図15に示すように、素子付き繊維構造体1Aを製造する製造装置50Aは、上流側から下流側に向けて、供給側案内ローラ51と、案内板52と、綜絖機構53と、シャトル機構54と、筬機構55と引き出し機構56に加えて保護膜被覆機構57を備えている。この保護膜被覆機構57は、トンネル状の通過孔を有し、筬機構55の下流側に配設されている。この通過孔を素子付き繊維構造体1Aが通過する間に、スプレイ法によって、素子付き繊維構造体1Aの上下両面を可撓性と光透過性のある絶縁性保護膜8(シランカップリング剤の被膜)で被覆する。尚、この工程が、被覆工程に相当するものである。
 尚、パラキシレン系ポリマーであるパリレン(商品名、ユニオンカーバイト・ケミカルズ・アンド・プラスチック社製)からなる絶縁性保護膜8を被覆する場合は、素子付き繊維構造体1を製作した後に、図示外のパリレン用保護膜被覆機構により常温で化学蒸着法によって成膜する。
 素子付き繊維構造体1Aを絶縁性保護膜8で被覆する構成によれば、素子付き繊維構造体1の通気性を維持したまま、耐久性を向上させることができる。尚、絶縁性保護膜8に代えて、透明な合成樹脂材(EVA樹脂、PVB樹脂等)を介して、両側から合成樹脂シート材、合成樹脂板、或いは、ガラス板でパネル状に挟んで構成した素子付き繊維構造体も製造可能である。この場合、素子付き繊維構造体の縦方向や横方向の両端部に外部端子を設けて、この外部端子を介して外部装置に出力を取り出すようにしても良い。尚、絶縁性保護膜8や前記合成樹脂材が、受光した光の波長を変換する波長変換材料を有するようにしても良い。
 本実施例では、実施例1の素子付き繊維構造体1を部分的に変更した素子付き繊維構造体1Bについて説明するが、実施例1と同様の構成要素には同様の参照符号を付して説明を省略し、異なる構成要素についてのみ説明する。
 図16~図18に示すように、素子付き繊維構造体1Bは、第1糸群2Bの複数の糸とこの第1糸群2Bと交差する第2糸群3Bの複数の糸とで織られ且つ複数の半導体機能素子5が組み込まれ、可撓性と光透過性のある合成樹脂シート材45(上下1対のシート材45A,45B)に埋設状態に封止されたものである。第1糸群2Bは、複数の横糸として複数の第1,第2の機能糸4A,4Bと複数の絶縁糸6cとを備えると共に、第2糸群3Bは、複数の縦糸として複数の絶縁糸6を備えている。
 第1糸群2Bの全ての糸は、1又は複数の第1の機能糸4A(第1の半導体機能素子付き機能糸4A)と、1又は複数の第2の機能糸4B(第2の半導体機能素子付き機能糸4B)と、これら機能糸4A,4B間に配設される複数の絶縁糸6cとから構成されている。第1糸群2Bには、予め設定された設定数の第1の機能糸4Aの上端側に1つの第2の機能糸4Bが配設された機能糸配列組4Cが、第2糸群3Bの長さ方向に1組又は複数組繰り返し形成されている。第1の機能糸4Aと第2の機能糸4Bは、半導体機能素子5の正負の電極を結ぶ導電方向を第2糸群3Bの長さ方向に揃えた状態に夫々配設されている。
 第1糸群2Bにおいて、隣接する第1の機能糸4A間及び第1の機能糸4Aと第2の機能糸4B間に、1つの絶縁糸6cが夫々配設されている。絶縁糸6cと第1の機能糸4Aの間及び絶縁糸6cと第2の機能糸4Bとの間には、僅かな隙間があけられているが、密に接触状に配設されても良い。素子付き繊維構造体1Bは、絶縁糸6cによって第1の機能糸4Aと第2の機能糸4Bが電気的に独立した状態に維持される。第2糸群3Bの長さ方向の両端部にも、1つの絶縁糸6cが夫々配設されている。尚、機能糸4A,4B間や第2糸群3Bの両端部に配設される絶縁糸6の数は、1つに限らず2以上の複数であっても良い。
 第2糸群3Bの全ての糸は、第1糸群2Bに直交するように織り込まれ縦方向に延びる複数の絶縁糸6で構成されている。第2糸群3Bは、第1糸群2Bの長さ方向に接触状に隣接する第1,第2絶縁糸6a,6bであって第1糸群2Bの複数の第1の機能糸4Aと第2の機能糸4Bと絶縁糸6cの表面と裏面とに交互に接触するジグザグ状態に織られた第1,第2絶縁糸6a,6bを備えている。複数の第1,第2絶縁糸6a,6bは、機能糸4A,4Bの長さ方向に隣接する半導体機能素子5の間に夫々配設されるように織り込まれている。
 次に、第1の機能糸4Aと第2の機能糸4Bについて説明する。
 第1の機能糸4Aの複数の半導体機能素子5が、受光機能を有する球状の太陽電池セル13とバイパスダイオード14を含み、第2の機能糸4Bの半導体機能素子5が、発光機能を有する発光ダイオード61とバイパスダイオード62を含むが、第1の機能糸4Aは、実施例1の機能糸4と同様の構成であるので、以下では説明を省略して、第2の機能糸4Bについてのみ説明する。
 図19,図20に示すように、第2の機能糸4Bは、粒状の複数の半導体機能素子5と、これら複数の半導体機能素子5を並列接続する可撓性のある1対の導電線11(11a、11b)とを備えている。複数の半導体機能素子5は、両端に正負の電極73,74を有する複数の発光ダイオード61(図21,図22参照)と、この発光ダイオード61とは異なる種類の両端に正負の電極78,79を有する複数のバイパスダイオード62とを含むものである。
 第2の機能糸4Bには、予め設定された設定数(例えば、19個)の発光ダイオード61の列の一端側に1つ又は複数のバイパスダイオード62を配置した素子配列組が、導電線11の長さ方向に複数組繰り返し形成されている。隣接する発光ダイオード61同士間や発光ダイオード61とバイパスダイオード62との間は、所定の間隔(例えば、発光ダイオード61の幅と同程度の長さ)が空けられている。第2の機能糸4Bには、複数の隣接する半導体機能素子5同士間に隙間18Aが夫々形成され、これら複数の隙間18Aにより通気性が向上する。尚、図19に示す第2の機能糸4Bにおいては、全体のほんの一部を図示しているに過ぎない。
 図19,図20に示すように、1対の導電線11は、所定の間隔(発光ダイオード61のセラミックベース72の幅と同程度の長さ)をあけて平行状態に配置されている。この導電線11の間に、複数の素子配列組が導電線11の長さ方向に直列的に配置されている。複数の発光ダイオード61の正電極73の外面と複数のバイパスダイオード62の負電極79の外面が、導電線11aに導電接合材16を介して夫々電気的に接続され、複数の発光ダイオード61の負電極74の外面と複数のバイパスダイオード62の正電極78の外面が、導電線11bに導電接合材16を介して夫々電気的に接続されている。
 この第2の機能糸4Bは、第1の機能糸4Aと同様に長い糸状に連続的に製造することが可能である。半導体機能素子5の大きさ、隣接する半導体機能素子5間の間隔、素子配列組5Aにおける発光ダイオード61の数とバイパスダイオード62の数、導電線11の太さ等は、仕様に応じて適宜設定して製造可能である。
 次に、発光ダイオード61について説明する。
 図21,図22に示すように、発光ダイオード61は、n型層66とp型層67とから平面状のpn接合68が形成されたLEDチップ65を有するが、これらn型層66とp型層67の半導体材料と特性は特に限定しない。このn型層66の下端部には、薄膜状のカソード電極69が低抵抗接続され、p型層67の上端部にアノード電極71がスポット状に低抵抗接続されている。LEDチップ65の下側には、厚さ3.0mm、幅4.0mm程度のセラミックベース72が設けられている。セラミックベース72の上面右端部と右側部には正電極73が形成され、この正電極73の反対側の上面左部と左側部には負電極74が形成されている。LEDチップ65のカソード電極69は負電極74に固着され接続され、アノード電極71はリード線76を介して正電極73に接続されている。セラミックベース72の上側は透明なエポキシ樹脂により半球状の高さ2.0mm程度の保護カバー77で覆われている。この発光ダイオード61は、保護カバー77を通って半球方向に光を放射する。
 図19に示すバイパスダイオード62は、発光ダイオード61と同様の外形に形成されているが、その機能面においては、第1の機能糸4Aのバイパスダイオード14と同様に、各素子配列組において、設定数の発光ダイオード61に対して逆並列接続されることにより、複数の発光ダイオード61に過度な逆電圧が印加された場合に電流をバイパスする機能を有し、複数の発光ダイオード61が過熱されて破損するのを防止することができる。
 次に、合成樹脂シート材45について説明する。
 図17,図18に示すように、素子付き繊維構造体1Bは、合成樹脂シート材45により素子付き繊維構造体1Bの上下両面を挟んで加圧加熱成形されることによりシート状に成形されている。
 合成樹脂シート材45は、合成樹脂製の1対のシート材45A,45Bを備え、各シート材45A,45Bは、EVA樹脂シートからなる合成樹脂材45bと、この合成樹脂材45bの片面に形成されたPET(ポリエチレンテレフタレート)樹脂フィルムの合成樹脂フィルム層45aを備え、光透過性と可撓性を有する。尚、このフィルム層45aは省略可能である。また、EVA樹脂シートに代えて、PVB樹脂シート、NY樹脂シートやPET樹脂シート等を採用しても良いし、PET樹脂フィルムに代えてPVF(ポリフッ化ビニル樹脂)等を採用しても良い。
 この素子付き繊維構造体1Bにおいては、素子付き繊維構造体1Bを合成樹脂材45bで埋設状態に封止し、上下両面に透明なPET樹脂フィルムの合成樹脂フィルム層45aを設けたため、入射光のうちの太陽電池セル13の表面で直接吸収される光以外のうちある部分の光は、合成樹脂フィルム層45aの内面と、太陽電池セル13、絶縁糸6a,6b,6cや導電線11の表面との間で多重反射を繰り返しながら最終的に太陽電池セル13の表面で吸収される。このため、素子付き繊維構造体1B全体の出力向上が期待できる。
 次に、素子付き繊維構造体1Bの等価回路図について説明する。
 図23は、複数の第1の機能糸4Aと1つの第2の機能糸4Bを有する素子付き繊維構造体1Bの等価回路図である。第1の機能糸4Aと第2の機能糸4Bとは電気的に独立して夫々設けられている。第1の機能糸4Aは、約0.6Vの光起電力を発生し、第2の機能糸4Bは、順方向に電圧を印加し、電流が流れた場合に発光する。機能糸4A,4B同士の直列接続や並列接続は、素子付き繊維構造体1Bの内部又は外部で接続端子を介して行うことができ、必要な出力電圧・出力電流に応じて適宜設定することが出来る。
 次に、素子付き繊維構造体1Bを製造する製造装置50Cについて説明する。
 図24に示すように、製造装置50Cは、上流側から下流側に向けて、供給側案内ローラ51と、案内板52と、綜絖機構53と、シャトル機構54と、筬機構55と引き出し機構56と、加熱加圧機構58とを備えているが、実施例1に加熱加圧機構58を追加した以外は、実施例1と同様なので実施例1と同様の構成要素に同じ符号を付して説明を省略し、加熱加圧機構58のみについて説明する。尚、シャトル機構54は、実施例1では、第1の機能糸4Aのみ供給する構成なっているが、本実施例では、第1の機能糸4Aに加えて第2の機能糸4Bと絶縁糸6cも供給可能である。
 図24に示すように、加熱加圧機構58は、素子付き繊維構造体1Bの上下両側から供給される合成樹脂シート材45を加圧加熱しながら移送可能な上下1対のローラ部材58a,58bを有し、筬機構55の下流側に配設されている。加熱加圧機構58は、素子付き繊維構造体1Bを可撓性と光透過性のある合成樹脂シート材45(1対のシート材45A,45B)を上下両面から重ねて加熱加圧するものである。
 次に、素子付き繊維構造体1Bを製造する製造方法について説明する。
 この製造方法は、図24の製造装置50Cにより、第1,第2絶縁糸6a,6bを含む複数の縦糸と、第1の機能糸4Aと第2の機能糸4Bと絶縁糸6cを含む複数の横糸とで織られ、且つ上下両面が合成樹脂シート材45で覆われた素子付き繊維構造体1Bを製造するための方法である。
 先ず、第1工程から第5工程において、第2工程以外は実施例1と同様であるので、説明は省略して、以下の説明では、第2工程についてのみ説明する。尚、第2工程は、シャトル機構54により第1の機能糸4A、第2の機能糸4B、絶縁糸6cを予め設定された順番で供給する工程である。
 第2工程において、第1工程で形成された第1,第2群縦糸53A,53Bの間の隙間に、シャトル機構54のシャトル部材54aを絶縁糸6と直交する方向に通して、先ずは、第1,第2絶縁糸6a,6bの間に素子付き繊維構造体1Bの最下端(最先端)に位置する1つの絶縁糸6cを供給する。その後、実施例1と同様に第3,第4工程が実行され、再び第1工程に戻る。
 次の1サイクル後の第2工程では、上下位置関係が入れ替わった第1,第2絶縁糸6a,6bの間に、シャトル機構54により第1の機能糸4Aを供給する。この第2工程における絶縁糸6cと第1の機能糸4Aとの交互の供給は、予め設定された設定数回繰り返し実行され、その後に、第2の機能糸4Bが供給されることで、第1糸群2Bの1組の機能糸配列組4Cが構成される。この機能糸配列組4Cの複数の糸の供給は、繰り返し実行しても良いし、第2の機能糸4Bが供給された後の絶縁糸6cが供給された段階で、素子付き繊維構造体1Bの製造を終了しても良い。
 第1工程から第4工程の後に、加熱加圧機構58により、素子付き繊維構造体1Bの両面に可撓性と光透過性のある1対のシート材45A,45B(例えば、透明な合成樹脂材45bの表面に合成樹脂フィルム層45aを貼り付けたもの)を重ねて、1対のローラ部材58a,58bで加熱加圧することにより、EVA樹脂を軟化溶融させて素子付き繊維構造体1Bを合成樹脂材45bの中に埋設状態に封止する。
 最後に、1対のシート材45A,45Bからなる合成樹脂シート材45で覆われた素子付き繊維構造体1Bを引き出し機構56の巻取りローラ56aで間欠的に巻き取りながら収容する。尚、上記の加熱加圧機構58による工程が、重ね合わせ工程に相当するものである。
 素子付き繊維構造体1Bは、各機能糸4A,4Bの中間にフレキシブルな絶縁糸6cを加えて製織されている。このため、素子付き繊維構造体1Bの横方向の引っ張り強度や捩れ強度を強化すると共に、各機能糸4A,4B間を電気的に絶縁分離することができる。この絶縁糸6cの数は、必要に応じて増やすことが出来、また、互いに異なる材質を混ぜても良い。さらに、織り方として平織りや綾織を選択しても良い。合成樹脂シート材45の表面を、透明な合成樹脂製プレート又はガラス製プレートで挟み接着することでパネル状の構造にしても良い。その他の構成、作用及び効果は、実施例1の直列接続構造に関するものを除いて、実施例1とほぼ同様であるので説明は省略する。
 尚、前記素子付き繊維構造体1Bは、1対のシート材45A,45Bで上下両面を挟んで加圧加熱成形されることによりシート状に成形されているが、特に1対のシート材45A,45Bで上下両面を挟む必要はなく、素子付き繊維構造体1Bの少なくとも片面に、シート材45A,45Bの一方を設けただけの構成であっても良い。
 また、素子付き繊維構造体1Bにおいては、合成樹脂シート材45に代えて、実施例1の部分的変更形態と同様に、素子付き繊維構造体1Bの全表面を可撓性と光透過性のある薄膜状の絶縁性保護膜で被覆しても良い。さらに、合成樹脂シート材45を省略して、合成樹脂シート材45に埋設されていない素子付き繊維構造体1Bを採用しても良い。
 さらに、実施例2の加熱加圧機構58によって、実施例1の素子付き繊維構造体1の両面に合成樹脂シート材45の1対のシート材45A,45Bを重ねて加熱加圧して、素子付き繊維構造体1を合成樹脂材45bの中に埋設状態に封止しても良い。この場合、複数の機能糸4の直列接続方向の両端部に、外部に出力する為の外部出力端子を設けても良い。
 本実施例では、実施例1の素子付き繊維構造体1を部分的に変更した素子付き繊維構造体1Cについて説明するが、実施例1と同様の構成要素には同様の参照符号を付して説明を省略し、異なる構成要素についてのみ説明する。
 図25に示すように、素子付き繊維構造体1Cは、第1糸群2Cの複数の糸とこの第1糸群2Cと交差する第2糸群3Cの複数の糸とで織られ且つ複数の半導体機能素子5が組み込まれている。第1糸群2Cは、複数の横糸として複数の機能糸4D,4Eを備えると共に、第2糸群3Cは、複数の縦糸として複数の絶縁糸6を備えている。
 第1糸群2Cの糸の全ては、1又は複数の第1の機能糸4Dと、1又は複数の第2の機能糸4Eとから構成されている。この第1糸群2Cには、予め設定された設定数の第1の機能糸4Dの上端側に1つの第2の機能糸4Eが配設された実施例2の機能糸配列組4Cと同様な機能糸配列組が、第2糸群3Cの長さ方向に複数繰り返し形成されている。第1の機能糸4Dと第2の機能糸4Eは、半導体機能素子5の正負の電極を結ぶ導電方向を第2糸群3Cの長さ方向に揃えた状態に夫々配設されている。第1の機能糸4Dと第2の機能糸4Eとは所定の間隔をあけて配設されているが、密に接触状に配設されても良い。
 第2糸群3Cの糸の全ては、第1糸群2Cに直交するように織り込まれ縦方向に延びる複数の絶縁糸6で構成されている。第2糸群3Cは、第1糸群2Cの長さ方向に接触状に隣接する第1,第2絶縁糸6a,6bであって第1糸群2Cの複数の第1の機能糸4Dと第2の機能糸4Eの表面と裏面とに交互に接触するジグザグ状態に織られた第1,第2絶縁糸6a,6bを備えている。複数の第1,第2絶縁糸6a,6bは、機能糸4D,4Eの長さ方向に隣接する半導体機能素子5の間に夫々配設され織り込まれている。
 次に、第1の機能糸4Dと第2の機能糸4Eについて説明する。
 図26に示すように、第1の機能糸4Dは、基本的に実施例1の機能糸4(実施例2の第1の機能糸4A)と同様の構成を有すると共に、複数の太陽電池セル13とバイパスダイオードと1対の導電線11(11a,11b)の全表面を被覆した可撓性と光透過性のある薄膜状の絶縁性保護膜80aを備えている。
 図27に示すように、第2の機能糸4Eは、基本的に実施例2の第2の機能糸4Bと同様の構成を有すると共に、複数の発光ダイオード61とバイパスダイオード62と1対の導電線11(11a,11b)の全表面を被覆した可撓性と光透過性のある薄膜状の絶縁性保護膜80bを備えている。尚、図25~図27の素子付き繊維構造体1Cの等価回路は、実施例2の図23の等価回路と同様であるので説明は省略する。
 絶縁性保護膜80a,80bは、例えば、パラキシリレン樹脂の被膜(所謂、パリレン)から形成されている。絶縁性保護膜80a,80bは、複数の半導体機能素子5と導電線11の全表面を、例えば厚さ25μm程度に被覆するように形成されている。
 尚、絶縁性保護膜80a,80bにおいて、パラキシリレン樹脂の被膜(パリレン)に代えて、フッ素樹脂、ポリイミド樹脂、ポリエチレンテレフタレート樹脂のうちから選択される何れか1つの合成樹脂製の被膜から形成しても良いし、これら以外の光透過性と可撓性を有する合成樹脂材で形成しても良い。
 次に、素子付き繊維構造体1Cを製造する製造装置と製造方法について説明するが、図25の素子付き繊維構造体1Cを製造する製造装置は、実施例1と同様の製造装置50で製造可能である。また、素子付き繊維構造体1Cの製造方法は、第2工程にて供給する横糸を、予め設定された設定数の第1の機能糸4Dを供給する毎に第2の機能糸4Eを供給するように設定すれば良く、これ以外の工程は、実施例1と同様であるので説明は省略する。
 第1の機能糸4Dと第2の機能糸4Eが、薄膜状の絶縁性保護膜80a,80bで被覆されているので、機能糸4D,4E同士が接触しても電気的に分離されている。従って、実施例2と比較して絶縁糸6cを省略することができる。
 また、実施例1の部分変更形態と同様に、素子付き繊維構造体1Cの全表面を可撓性と光透過性のある薄膜状の絶縁性保護膜8で被覆しても良いし、実施例2と同様に素子付き繊維構造体1Cの両面に1対のシート材45A,45Bを重ねて加熱加圧して、素子付き繊維構造体1Cを合成樹脂材45bの中に埋設状態に封止しても良い。その他の構成、作用及び効果は、実施例1の直列接続構造に関するものを除いて、実施例1,2とほぼ同様であるので説明は省略する。
 本実施例では、実施例1の素子付き繊維構造体1を部分的に変更した素子付き繊維構造体1Dについて説明するが、実施例1と同様の構成要素には同様の参照符号を付して説明を省略し、異なる構成要素についてのみ説明する。
 図28に示すように、素子付き繊維構造体1Dは、下層側のメッシュ状の下層繊維構造体81と、この下層繊維構造体81の上層側に配設された上層素子付き繊維構造体82とを備えている。つまり、素子付き繊維構造体1Dは、下層繊維構造体81と上層素子付き繊維構造体82とを重ね合わせた多層構造のものであり、下層繊維構造体81と上層素子付き繊維構造体82とは織機により2重織で製織されている。素子付き繊維構造体1Dの所定の部分83において、下層と上層とに跨がって組織される(所謂、接桔点を設ける)ことで、素子付き繊維構造体1Dは一体的に構成される。
 尚、素子付き繊維構造体1Dにおいては、下層繊維構造体81と上層素子付き繊維構造体82とを別々に製織して、下層繊維構造体81の上面と上層素子付き繊維構造体82の下面とを透明な接着剤により固着して一体的に構成しても良いし、下層繊維構造体81と上層素子付き繊維構造体82とを重ね合わせた状態で複数の糸により所定の複数の部分を縫製して一体的に構成しても良い。また、素子付き繊維構造体1Dは、織網構造体を概念的に示しているに過ぎず、縦糸間や横糸間がより密になるように製織しても良い。さらに、織組織として、平織以外にも綾織や朱子織等を採用しても良い。
 下層繊維構造体81は、複数の絶縁糸6dを含む縦糸と複数の絶縁糸6eを含む横糸とから製織された織網構造体である。この絶縁糸6d,6eには、実施例1の絶縁糸6と同様に、光反射効果の高いポリエステル繊維が採用されている。尚、下層繊維構造体81は、図28に示す織網構造体に限定する必要はなく、編物構造体や不織布等の他の構造体を採用しても良い。また、下層繊維構造体81は、その表面にコーティングや金属蒸着(表面絶縁処理)等を施すことで、光反射効果が得られる特性を付与しても良い。
 上層素子付き繊維構造体82は、第1糸群2Dの複数の糸とこの第1糸群2Dと交差する第2糸群3Dの複数の糸とで織られ且つ複数の半導体機能素子5が組み込まれている。第1糸群2Dは、複数の横糸として複数の機能糸4を備えると共に、第2糸群3Dは、複数の縦糸として複数の絶縁糸6を備えている。
 第1糸群2Dの複数の機能糸4は、実施例1と同様の機能糸4であり、半導体機能素子5の正負の電極を結ぶ導電方向を第2糸群3Dの長さ方向に揃えた状態に且つ所定の間隔をあけて平行に配設されている。尚、第1糸群2Dは、実施例2,3と同様に、第1の機能糸4A,4Dと第2の機能糸4B,4E等からなる機能糸配列組4Cを備えるようにしても良い。
 第2糸群3Dの複数の絶縁糸6は、複数の機能糸4の表面と裏面とに交互に接触するジグザグ状態に織られている。複数の絶縁糸6は、機能糸4の長さ方向の2つの半導体機能素子5おきに等間隔に配設されて織り込まれている。この絶縁糸6は、実施例1と同様のものである。尚、この上層素子付き繊維構造体82に代えて、実施例1の素子付き繊維構造体1や実施例3の素子付き繊維構造体1C、実施例2の合成樹脂シート材45で埋設されていない素子付き繊維構造体1Bを採用しても良い。
 この2層構造によれば、上層素子付き繊維構造体82の機能糸4の周辺を通過した光は、下層繊維構造体81により散乱されて、上層側の半導体機能素子5に下層より光を入光させることができる。従って、下層繊維構造体81と上層素子付き繊維構造体82との光透過性や光反射特性に差を付けることによって、半導体機能素子5として太陽電池セル13を使用する場合は、素子付き繊維構造体1Dの発電効率が向上する。
 尚、光透過性を変更する方法としては、上層素子付き繊維構造体82の絶縁糸6に対して透明性の高い素材を使用する方法、上層素子付き繊維構造体82の第1糸群2D及び第2糸群3Dの糸密度を変更する方法等がある。例えば、上層素子付き繊維構造体82の第2糸群3Dの糸密度を減らして単位長さ当りの糸の占める面積割合が1/10~4/5、好ましくは、1/10~1/2に設定することで機能糸4の太陽電池セル13に効率的に光を入光することが可能となる。
 また、機能糸4の太陽電池セル13への入光を向上させるために、絶縁糸6の反射特性を利用する方法があり、この反射効果により太陽電池セル13の発電量を1.1~1.7倍に向上することができる。具体的には、素子付き繊維構造体1Dを構成する上層、下層の絶縁糸6,6d,6eに光の反射特性の高い糸材を使用する方法、或いは、絶縁糸6,6d,6eの色に白や淡色系を使用する方法がある。光の反射特性の高い絶縁糸6,6d,6eとしては、酸化チタン等の光沢防止剤を使用しない糸材や、反射特性を向上させる三角や複雑形状の断面の糸材、更には、光散乱性を向上させるガラスビーズ、ナノ高分子等の材料をあらかじめ糸材に練り込むもしくは糸材の表面に塗布する方法がある。
 さらに、下層繊維構造体81の光透過性を30%以下となるように製織することで、下層繊維構造体81による光の反射効率を増加させることが可能となるので、上層素子付き繊維構造体82の太陽電池セル13に効率的に光を入光することができる。
 この素子付き繊維構造体1Dの耐久性を向上させる方法として、実施例2と同様な1対のシート材45A,45B等を使用して透明な合成樹脂材で被覆する方法がある。透明な合成樹脂材としては、実施例2でも説明したEVA,PVB、NY,PET等があり、コーティングやホットメルト、フィルムラミネートにより加工することができる。また、透明な合成樹脂材の塗布条件により、素子付き繊維構造体1Dの表面での透明な合成樹脂材のレンズ効果による太陽電池セル13の発電量を向上させることができ、反射効果と合わせて1.5~2.0倍の発電量に向上させることも可能である。
 さらに、素子付き繊維構造体1Dの太陽電池セル13の受光性を向上させるために、上記の透明な合成樹脂材の内部に散乱性を向上させる材料や受光した光の波長を変換する波長変換材料を添加する方法、絶縁糸6,6d,6eや導電線11に波長変換材料を添加する方法もあるが、これらの詳細は部分的変更形態の例を説明する欄[8]~[12]にて記載する。
 素子付き繊維構造体1Dを2層構造に構成し、上層側に機能糸4を配置しているが、2層以上の多層構造内の中間層又は上層に機能糸4を織り込んだ素子付き繊維構造体を配置しても良く、機能糸4に効率的に光が入光する多層の繊維構造体であればよい。素子付き繊維構造体1Dは実施例1の製造装置50及び製造方法で製造可能である。その他の構成、作用及び効果は、実施例1の直列接続構造に関するものを除いて、実施例1~3とほぼ同様であるので説明は省略する。
 本実施例では、実施例1の素子付き繊維構造体1を部分的に変更した素子付き繊維構造体1Eについて説明するが、実施例1と同様の構成要素には同様の参照符号を付して説明を省略し、異なる構成要素についてのみ説明する。
 図29に示すように、素子付き繊維構造体1Eは、第1糸群2Eの複数の糸とこの第1糸群2Eと交差する第2糸群3Eの複数の糸とで織られ且つ複数の半導体機能素子5が組み込まれている。第1糸群2Eは、複数の横糸として複数の機能糸4と複数の絶縁糸6fとを備えると共に、第2糸群3Eは、複数の縦糸として複数の絶縁糸6と正極側導電線85と負極側導電線86とを備えている。尚、この素子付き繊維構造体1Eにおいて、縦糸間や横糸間をより密になるように製織しても良い。
 第1糸群2Eの複数の機能糸4は、実施例1の機能糸4と同様であり、半導体機能素子5の正負の電極を結ぶ導電方向を第2糸群3Eの長さ方向と直交する方向に揃えた状態に且つ所定の間隔をあけて平行に配設されている。隣接する機能糸4同士の間には、3つの絶縁糸6が配設されている。尚、第1糸群2Eは、実施例2,3と同様に、第1の機能糸4A,4Dと第2の機能糸4B,4E等からなる機能糸配列組4Cを備えるようにしても良い。
 第2糸群3Eの複数の絶縁糸6と正極側導電線85と負極側導電線86は、第1糸群2Eの複数の糸の表面と裏面とに交互に接触するジグザグ状態になるように第1糸群2Eに織り込まれている。正極側導電線85は、各機能糸4の半導体機能素子5の正極側に接触するように織り込まれ、負極側導電線86は、各機能糸4の半導体機能素子5の負極側に接触するように織り込まれている。
 半導体機能素子5が太陽電池セル13の場合は、正極側導電線85と負極側導電線86を外部装置に直接接続するだけ、太陽電池セル13で発電した電力を容易に出力することができる。半導体機能素子5が発光ダイオード61の場合は、正極側導電線85と負極側導電線86を外部装置に直接接続するだけで、発光ダイオード61を容易に発光させることができる。
 また、正極側導電線85と負極側導電線86の配設箇所は、半導体機能素子5の正負の電極に夫々接触するのであれば、特に図31に示す位置に限定する必要はなく、正極側導電線85と負極側導電線86の数は、1本ずつに限定する必要はなく複数本設けるようにしても良い。この素子付き繊維構造体1Eは実施例1の製造装置50及び製造方法で製造可能である。
 さらに、実施例1の部分変更形態と同様に、素子付き繊維構造体1Eの全表面を可撓性と光透過性のある薄膜状の絶縁性保護膜8で被覆しても良いし、実施例2と同様に素子付き繊維構造体1Eの両面に1対のシート材45A,45Bを重ねて加熱加圧して、素子付き繊維構造体1Eを合成樹脂材45bの中に埋設状態に封止しても良い。その他の構成、作用及び効果は、実施例1の直列接続構造に関するものを除いて、実施例1~3とほぼ同様であるので説明は省略する。
 前記実施例1~5の素子付き繊維構造体1,1A~1Eは、織機等により製織された素子付き織網構造体であるが、特に織網構造体に限定する必要はなく、本実施例の素子付き繊維構造体1F,1Gのように、複数の糸から編まれた編物構造体であっても良い。
 先ず、素子付き繊維構造体1Fについて説明する。
 図30に示すように、素子付き繊維構造体1Fは、複数の糸で構成された繊維構造体であって複数の半導体機能素子5が組み込まれた素子付き繊維構造体である。この複数の糸は、複数の機能糸4とポリエステル繊維からなる複数の絶縁糸6gとを備えている。素子付き繊維構造体1Fは、縦方向に延びる鎖状の複数の絶縁線6g(鎖糸)から基本編地90を構成し、この基本編地90に対して横方向に延びる複数の横挿入糸91が挿入され編まれている。これら複数の横挿入糸91の一部又は全部に機能糸4が使用されている。
 上記の素子付き繊維構造体1Fの部分的変更形態について説明する。
 図31に示すように、素子付き繊維構造体1Gは、複数の機能糸4とポリエステル繊維からなる複数の絶縁糸6h,6i,6jとを備えた複数の糸から構成されている。素子付き繊維構造体1Gは、縦方向に延びる鎖状の複数の絶縁糸6h(鎖糸)と、この鎖糸と交錯する複数の絶縁糸6i,6j(挿入糸)とから基本編地92を構成し、この基本編地92に対して縦方向に延びる複数の縦挿入糸93が挿入され編まれている。この複数の縦挿入糸93の一部又は全部に機能糸4が使用されている。
 このように、複数の機能糸4は、素子付き繊維構造体1,1A~1Eのような織網構造体の縦糸や横糸だけでなく、地組織が電気絶縁性の素材である種々の編物構造体(基本編地90,92)の横挿入糸91や縦挿入糸93にも採用することができる。また、複数の機能糸4は、1種類に限定する必要はなく、機能糸4B,4D,4Eの何れか1つ又は複数種類から構成しても良い。
 次に、前記実施例1~6を部分的に変更する例について説明する。
[1]前記第1糸群2,2B~2Eの複数の糸を横糸とし、第2糸群3,3B~3Eの複数の糸を縦糸として説明しているが、特にこの構成に限定する必要はなく、上記とは逆に、第1糸群2,2B~2Eの複数の糸を縦糸とし、第2糸群3,3B~3Eの複数の糸を横糸として素子付き繊維構造体1,1A~1Eを構成するようにしても良い。
 また、機能糸4,4A,4B,4D,4Eは、第1糸群2,2B~2Eの複数の糸(横糸)にのみ含まれるように構成されているが、特にこの構成に限定する必要はなく、第1糸群2と交差する第2糸群3,3B~3Eの複数の糸(縦糸)に機能糸4,4A,4B,4D,4Eが含まれるように構成しても良い。
[2]前記機能糸配列組4Cにおいて、第1の機能糸4Aと第2の機能糸4Bの割合は、複数の第1の機能糸4Aに対して1つの第2の機能糸4Bの割合に限定する必要はなく、予め設定された設定数の第1の機能糸4Aの上端側に複数の第2の機能糸4Bを配設しても良いし、第1の機能糸4Aと第2の機能糸4Bとを交互に配設しても良いし、これらの配置パターンに限定せずに、種々の配置パターンを採用することができる。
 また、機能糸配列組4Cは、受光機能を有する第1の機能糸4Aと発光機能を有する第2の機能糸4Bの2種類から構成されているが、必ずしもこの2種類の機能糸4A,4Bに限定する必要はなく、機能糸配列組4Cを、第1の機能糸4Aのみで構成するようにしても良いし、第2の機能糸4Bのみで構成するようにしても良いし、上記以外の半導体機能素子を備えた第3の機能糸を加えて3種類以上の機能糸4で構成するようにしても良い。尚、第1の機能糸4Dと第2の機能糸4Eとを有する機能糸配列組の場合も同様である。
[3]前記素子付き繊維構造体1,1A~1Eは、基本的に平織で製織されているが、特にこの織り方に限定する必要はなく、綾織や朱子織等他の織り方で製織しても良い。前記素子付き繊維構造体1F,1Gも同様に、図30と図31に示す編み方以外で編んだ基本編地に対して機能糸4を備えた横挿入糸91や縦挿入糸93を編み込んでも良い。
[4]前記機能糸4,4A,4Dの素子配列組5Aにおいて、太陽電池セル13とバイパスダイオード14との比率は19:1に限定する必要はなく、太陽電池セル13の数を増やして39:1等の種々の比率に設定することができる。前記機能糸4B,4Eの発光ダイオード61とバイパスダイオード62とからなる素子配列組5Aにおいても同様である。素子配列組5Aはバイパスダイオード14,62を含む構成であるが、特にこの構成に限定する必要はなく、バイパスダイオード14,62を省略して、複数の半導体機能素子5の全てを、太陽電池セル13又は発光ダイオード61で構成しても良い。
[5]前記半導体機能素子5としての太陽電池セル13において、球状のn型シリコン結晶にp型の拡散層を形成することでpn接合を形成しても良い。
[6]前記導電線11の金属細線42の本数は、2本に限定する必要はなく、1本又は3本以上の複数の金属細線42でコイル状にカバーリングしても良い。金属細線は錫メッキされているが、錫メッキに代えて銀メッキにしても良いし、金属細線を金属単体で構成しても良い。
 また、導電線11は、ガラス繊維に代えて、炭素繊維、ポリエステル繊維、アラミド繊維、ポリエチレン繊維、液晶ポリマー繊維等の複数の合成繊維や天然繊維のうちから選択される何れか1又は複数種類の繊維の束又は撚線の表面に1又は複数の金属細線42をコイル状にカバーリングした導電線11で構成されても良い。上記の繊維以外にも、導電線11の芯材41には、織物や生地(所謂テキスタイル)を構成可能な一般的な合成繊維、天然繊維、これらの複合繊維の束又は撚線から構成しても良い。
 さらに、導電線11は、金属製繊維の束又は撚線で構成しても良い。上記の種々の繊維の束又は撚線からなる芯材41の表面に金属メッキを施して、金属細線42を省略した金属メッキ繊維から構成される導電線11を採用しても良い。
[7]前記絶縁糸6,6a~6jは、ポリエステル繊維に代えて、単芯のガラスファイバー、又は、ガラス繊維、ポリイミド繊維等の合成繊維、天然繊維のうちから選択される何れか1又は複数種類の繊維の束又は撚線からから構成されても良い。
[8]前記導電線11は、上述した種々の芯材に対して波長変換材料を添加し、この波長変換材料を含む芯材の表面に1又は複数の金属細線をコイル状にカバーリングした導電線で構成されても良いし、絶縁糸6,6a~6jは、波長変換材料を含む線材からなるように構成されても良い。この構成によると、太陽電池セル13を使用している場合、太陽電池セル13の受光感度の高い波長領域に入射光の波長を変換することができ、太陽電池セル13の受光性を向上させることができる。
 この場合、波長変換材料として、希土類錯体,有機蛍光色素等の蛍光体や、硫化亜鉛やアルミン酸ストロンチウム等の蓄光材料を採用することで、蛍光や太陽光が無い状態で発光する多彩な機能を加えることができる。蛍光材料や蓄光材料は、導電線の芯材や絶縁糸に練り込んだり、塗布したりして添加することができる。
[9]前記素子付き繊維構造体1,1B~1Dにおいて、1対のシート材45A,45Bを使用して透明な合成樹脂材45bを設けると説明しているが、これらシート材45A,45Bに代えて拡散シートを、素子付き繊維構造体1,1B~1Dの少なくとも片面に張り合わせてもよい。光透過率が低い拡散シートを使用した場合、逆に効率が低下するため、光透過率が60%以上の拡散シートを使用することが好ましい。
[10]前記1対のシート材45A,45Bの透明な合成樹脂材45bに、太陽電池セル13の受光性を向上させるために、散乱性を向上させる材料を添付しても良い。添付する散乱材料としては、ガラスビーズ、ナノ高分子があり、コーティングやラミネート加工が可能で光散乱性能を向上できる材料であればこれ以外であっても良い。
[11]前記1対のシート材45A,45Bの透明な合成樹脂材45bに、太陽電池セル13の受光性を向上させるために、吸収した光の波長を変換する波長変換材料を添加しても良い。例えば、蛍光色素ローダミン(Rh-6G)を10-4Mの濃度で合成樹脂材45bにドープすることで、530nmから580nmへ波長変換可能であり、クマリン6(C-6)を10-4Mの濃度で合成樹脂材45bにドープすることで、470nmから510nmへ波長変換可能である。ポリエチレングリコールとEu2+の錯体を使用すれば、紫外線を可視域の蛍光に波長変換できる。太陽電池セル13が使用しない波長領域を、使用する波長領域に変換できる材料であれば、これら以外であってもよいが、太陽電池セル3の光電変換の効率を考慮すると、蛍光スペクトルのピークが600nm程度のものが望ましい。尚、[8]に記載の導電線11の芯材や絶縁糸6,6a~6jの線材に含まれる波長変換材料に、上述の波長変換材料を適用しても良い。
 尚、上述の波長変換材料は、可撓性のない透明な合成樹脂材(ガラス製のプレート等)に素子付き繊維構造体が埋設状に設けられている場合にも適用可能である。
[12]前記1対のシート材45A,45Bの合成樹脂材45bに、硫化亜鉛やアルミン酸ストロンチウム等の蓄光材料を添加しても良い。この場合、外部光が無くなった場合でも、太陽電池セル13に光を供給することが可能である。これらの材料は合成樹脂材45bに添加してコーティングやラミネート加工工程で塗布して使用しても良い。[8]に記載の導電線11の芯材や絶縁糸6,6a~6jの線材に含まれる波長変換材料に、上述の蓄光材料を適用しても良い。
 尚、上記の[8]で説明した波長変換材料を導電線や絶縁糸に添加する方法、[9]~[12]で説明した散乱材料、波長変換材料や蓄光材料を合成樹脂材に添加する方法は、実施例1~5に記載している全ての導電線と絶縁糸と合成樹脂材に適用可能である。
 上述の波長変換材料を利用する応用例としては、例えば、受光した光を植物の光合成に適した波長(例えば、450nmや650nm程度)に変換可能な波長変換材料を採用することで、発電機能を有する素子付き繊維構造体を、植物を計画的に生産する植物工場の屋根や窓に適用することができる。
 この構成によると、屋根や窓に適用された素子付き繊維構造体に入った光は、合成樹脂材、導電線や絶縁糸に添加された波長変換材料で光合成に適した波長に変換される。すると、この変換された光は、複数の太陽電池セル3に受光されるが、受光されなかった光は、素子付き繊維構造体を透過して工場内に入るので、植物工場内で栽培されている植物の光合成に利用することができる。このため、波長変換材料を合成樹脂材、導電線や機能糸に添加することで、太陽電池セル3の発電効率を向上させると共に、植物の光合成を促進して植物栽培の効率を向上させることができる。つまり、素子付き繊維構造体の絶縁糸、導電線や合成樹脂材に波長変換材料を添加することで、入射光を太陽電池セル3の発電以外にも有効活用可能な構成にすることができる。
[13]前記機能糸4,4A,4B,4D,4Eの導電接合材16として、導電性エポキシ樹脂を使用しているが、これに限定する必要はなく、錫や銀等の半田ペーストや、これ以外でも種々のペースト状で導電性を有するものを採用しても良い。
[14]前記機能糸4,4A,4B,4D,4Eにおいて、意匠性、物理的特性改善のため固有色又は着色した球状の又は半球状の石、ガラス、セラミック、合成樹脂で製造した球状体又は半球状体を複数の太陽電池セル13や複数の発光ダイオード61に混在させるようにしても良い。前記導電線11や前記絶縁糸6,6a~6jに色彩を与えて意匠性を向上させても良い。
[15]前記半導体機能素子5において、正負の電極(太陽電池セル13の場合は正負の電極25,26、バイパスダイオード14の場合は正負の電極35,36)のうち一方の電極が磁性を有する電極に構成され、他方の電極が非磁性の電極に構成された、つまり、一方の電極を磁力により吸着可能にした太陽電池セル13、バイパスダイオード14を採用しても良い。例えば、太陽電池セル13の正電極25が磁性を有する場合は、バイパスダイオード14の負電極36が磁性を有し、この逆に、太陽電池セル13の負電極26が磁性を有する場合は、バイパスダイオード14の正電極35が磁性を有する。
 つまり、半導体機能素子5の製造段階で正負の電極を形成するときに、アルミ添加又はアンチモン添加の銀合金(非磁性導電材)が使用されるが、この銀合金に対して、Fe,Co,Ni等の粉末状の磁性材料を予め含有させて、正負のうちの一方の電極が磁性を有するように形成する(他方の電極は非磁性導電材から構成される)。前記磁性を有する電極は磁力が吸着可能であるので、特に磁界の方向が所定の方向に揃うように磁化処理しなくても良い。但し、磁力で吸着する際の吸着力を強める為に、磁性を有する電極の磁界の方向が、正負の電極を結ぶ方向に揃うように磁化処理することが望ましい。
 尚、球状の太陽電池セル13とバイパスダイオード14について説明したが、発光ダイオード61とバイパスダイオード62についても同様に、正負の電極73,74又は正負の電極78,79のうち一方の電極が磁性を有し、他方の電極が非磁性であっても良い。例えば、発光ダイオード61の正電極73が磁性を有する場合は、バイパスダイオード62の負電極79が磁性を有し、この逆に、発光ダイオード61の負電極74が磁性を有する場合は、バイパスダイオード62の正電極78が磁性を有する。非磁性導電材として銀合金を使用するとしているが、特にこの材料に限定する必要はなく、公知の導電性を有するものが適用可能であり、磁性材料も上記のもの以外にも公知のものが適用可能である。
[16]前記素子付き繊維構造体1において、その外周部分に半導体機能素子5を組み込むことなく織り込んだマチ部分を形成しても良い。この場合、マチ部分は、縦糸の長さ方向の両端側部分にメッシュ状の網目7より密に配置した複数の横糸と複数の縦糸とで織布状に形成した所定幅の織布部と、横糸の長さ方向の両端側部分にメッシュ状の網目7より密に配置した複数の縦糸と複数の横糸とで織布状に形成された所定幅の織布部とから形成される。
 このマチ部分は、縦糸と横糸の織り込み密度が高くなるため、引っ張り強度や曲げ強度が向上し、素子付き繊維構造体1の耐久性も高くなる。また、素子付き繊維構造体1を長い帯状に製造した場合、所定の箇所に2組の連続する織布部を設けることで、必要な長さに裁断する際にマチ部分を設けた形で裁断することができ、裁断後における素子付き繊維構造体1の取り扱いにおいても、マチ部分によって半導体機能素子5を保護することができる。
[17]前記半導体機能素子5に、太陽電池セル13、発光ダイオード61、バイパスダイオード14,62を採用しているが、特にこれら素子に限定する必要はなく、太陽電池セル13を電源として駆動可能な各種半導体センサデバイス(光、紫外線、放射線、温度、圧力、磁気等)、通電により発熱する熱抵抗器等の各種半導体機能素子5を採用して機能糸4を製造可能である。例えば、半導体機能素子5として熱抵抗器を採用して素子付き繊維構造体1を製造した場合、この熱抵抗器付き繊維構造体を衣服等に適応することでヒート機能を備えた衣服を実現することができる。
[18]その他、当業者であれば、本発明の趣旨を逸脱することなく、前記実施例の種々の変更を付加した形態で実施可能で本発明はそのような変更形態を包含するものである。
 本発明に係る素子付き繊維構造体1は、薄型で軽量、可撓性、通気性があり、窓ガラスや建物の壁面に組み込んで意匠性に優れる太陽電池パネルや照明パネル等を実現可能であり、車両のボディに装着して意匠性を向上させることも可能である。また、テントや店舗型サンシェード、ドーム型建造物等の太陽光を遮蔽するテキスタイル部材として建築分野の他、カーテンやブラインド等のインテリア分野、自動車や列車・船舶等の移動体分野、アウトドア衣料やバック等のスポーツ分野、一般でのバックや帽子、衣類等のウェアラブル分野等、さらに、光透過性を活かしたサンルーム等の採光を兼ねた屋根等の部材、通気性と透過性を活かした建築工事用シート(建築現場のネット)、屋外での広告看板や垂れ幕、シースルーディスプレイ、イベント会場や工場内の間仕切り等、大きいサイズの素子付き繊維構造体1の平面加工が可能なこと、軽量・フレキシブルの特性であることを活かして、様々な分野での用途に利用することができる。
1,1A~1G 半導体機能素子付き繊維構造体
2,2B~2E 第1糸群
3,3B~3E 第2糸群
4 半導体機能素子付き機能糸
4A,4D 第1の半導体機能素子付き機能糸
4B,4E 第2の半導体機能素子付き機能糸
5 半導体機能素子
5A 素子配列組
6,6c~6i 絶縁糸
6a,6b 第1,第2絶縁糸
8,80a,80b 絶縁性保護膜
11,11a,11b 導電線
13 球状太陽電池セル
14 球状バイパスダイオード
25,26 正負の電極
35,36 正負の電極
41 芯材
42 金属細線
45 合成樹脂シート材
50,50A,50B 製造装置
61 発光ダイオード
62 バイパスダイオード
81 下層繊維構造体
82 上層素子付き繊維構造体

Claims (17)

  1.  複数の糸で構成された繊維構造体であって複数の半導体機能素子が組み込まれた半導体機能素子付き繊維構造体において、
     前記複数の糸は、複数の絶縁糸と複数の半導体機能素子付き機能糸とを有し、
     前記半導体機能素子付き機能糸は、
     両端に正負の電極を有する粒状の複数の半導体機能素子と、これら複数の半導体機能素子を並列接続する可撓性のある1対の導電線とを備え、
     平行状態に配置された前記1対の導電線の間に前記複数の半導体機能素子が導電線の長さ方向に設定間隔おきに配置され、前記複数の半導体機能素子の正電極が一方の導電線に電気的に接続されると共に前記複数の半導体機能素子の負電極が他方の導電線に電気的に接続されたことを特徴とする半導体機能素子付き繊維構造体。
  2.  前記複数の糸は、第1糸群とこの第1糸群と交差する第2糸群とを備え、
     前記第1糸群は複数の半導体機能素子付き機能糸を備えると共に、前記第2糸群は複数の絶縁糸を備えたことを特徴とする請求項1に記載の半導体機能素子付き繊維構造体。
  3.  前記第1糸群が複数の半導体機能素子付き機能糸で構成され、
     前記複数の半導体機能素子付き機能糸は、前記半導体機能素子の正負の電極を結ぶ導電方向を第2糸群の長さ方向に揃えた状態に配設されると共に隣接する半導体機能素子付き機能糸の導電線同士が電気的に接続されたことを特徴とする請求項2に記載の半導体機能素子付き繊維構造体。
  4.  前記第1糸群が複数の半導体機能素子付き機能糸と複数の絶縁糸とから構成され、
     前記複数の半導体機能素子付き機能糸は、前記半導体機能素子の正負の電極を結ぶ導電方向を前記第2糸群の長さ方向に揃えた状態に配設され、
     隣接する半導体機能素子付き機能糸の間に1又は複数の前記絶縁糸を配設したことを特徴とする請求項2に記載の半導体機能素子付き繊維構造体。
  5.  前記第1糸群は、1又は複数の第1の半導体機能素子付き機能糸と、1又は複数の第2の半導体機能素子付き機能糸とから構成され、
     前記第1の半導体機能素子付き機能糸の半導体機能素子が、受光機能を有する球状の半導体機能素子であり、
     前記第2の半導体機能素子付き機能糸の半導体機能素子が、発光機能を有する半導体機能素子であることを特徴とする請求項2に記載の半導体機能素子付き繊維構造体。
  6.  前記第2糸群は、前記第1糸群の長さ方向に接触状に隣接する第1,第2絶縁糸であって前記第1糸群の複数の半導体機能素子付き機能糸の表面と裏面とに交互に接触するジグザグ状態に織られた第1,第2絶縁糸を備えたことを特徴とする請求項2~5の何れか1項に記載の半導体機能素子付き繊維構造体。
  7.  前記半導体機能素子付き繊維構造体の少なくとも片面に、光透過性のある合成樹脂製のシート材を設けたことを特徴とする請求項1に記載の半導体機能素子付き繊維構造体。
  8.  前記シート材の合成樹脂材に、受光した光の波長を変換する波長変換材料を添加したことを特徴とする請求項7に記載の半導体機能素子付き繊維構造体。
  9.  前記半導体機能素子付き機能糸の全表面を可撓性と光透過性のある薄膜状の絶縁性保護膜で被覆され、この絶縁性保護膜は、パラキシリレン樹脂、フッ素樹脂、ポリイミド樹脂、ポリエチレンテレフタレート樹脂のうちから選択される何れか1つの合成樹脂製の被膜からなることを特徴とする請求項1に記載の半導体機能素子付き繊維構造体。
  10.  前記1対の導電線は、ガラス繊維、炭素繊維、ポリエステル繊維、アラミド繊維、ポリエチレン繊維、液晶ポリマー繊維のうちから選択される何れか1又は複数種類の繊維の束又は撚線の表面に1又は複数の金属細線をコイル状にカバーリングした導電線で構成されたことを特徴とする請求項1に記載の半導体機能素子付き繊維構造体。
  11.  前記1対の導電線は、受光した光の波長を変換する波長変換材料を含む芯材の表面に1又は複数の金属細線をコイル状にカバーリングした導電線で構成されたことを特徴とする請求項1に記載の半導体機能素子付き繊維構造体。
  12.  前記絶縁糸として、単芯のガラスファイバー、又は、ガラス繊維、ポリエステル繊維、ポリイミド繊維等の合成繊維、天然繊維のうちから選択される何れか1つの線材からなることを特徴とする請求項1に記載の半導体機能素子付き繊維構造体。
  13.  前記絶縁糸は、受光した光の波長を変換する波長変換材料を含む線材からなることを特徴とする請求項1に記載の半導体機能素子付き繊維構造体。
  14.  前記半導体機能素子付き繊維構造体は、少なくとも下層に繊維構造体を設けた多層構造に構成されていることを特徴とする請求項1に記載の半導体機能素子付き繊維構造体
  15.  絶縁糸を含む複数の縦糸と、複数の半導体機能素子を有する半導体機能素子付き機能糸を含む複数の横糸とで織られた半導体機能素子付き繊維構造体の製造方法において、
     定間隔おきに平行に配置した複数の縦糸を含む第1群縦糸と、この第1群縦糸と平行且つ交互に位置する複数の縦糸を含む第2群縦糸とを綜絖機構により移動させて、第1,第2群縦糸の間に隙間を形成する第1工程と、
     前記第1,第2群縦糸の間の隙間にシャトル機構により横糸を供給する第2工程と、
     前記第2工程で供給された横糸を筬機構により筬打ちする第3工程と、
     前記半導体機能素子付き繊維構造体を所定の長さ引き出す第4工程と、
     前記第1工程から第4工程を複数回繰り返す第5工程と、
     を備えたことを特徴とする半導体機能素子付き繊維構造体の製造方法。
  16.  前記第4工程の後、前記第5工程の前に、前記半導体機能素子付き繊維構造体の両面を可撓性と光透過性のある絶縁性保護膜で被覆する被覆工程を備えたことを特徴とする請求項15に記載の半導体機能素子付き繊維構造体の製造方法。
  17.  前記第4工程の後、前記第5工程の前に、前記半導体機能素子付き繊維構造体の両面に可撓性と光透過性のある合成樹脂シート材を重ねて加熱加圧する重ね合わせ工程を備えたことを特徴とする請求項15に記載の半導体機能素子付き繊維構造体の製造方法。
PCT/JP2011/076810 2011-11-21 2011-11-21 半導体機能素子付き繊維構造体とその製造方法 WO2013076794A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013545672A JP5942298B2 (ja) 2011-11-21 2011-11-21 半導体機能素子付き繊維構造体
PCT/JP2011/076810 WO2013076794A1 (ja) 2011-11-21 2011-11-21 半導体機能素子付き繊維構造体とその製造方法
TW101108710A TW201322421A (zh) 2011-11-21 2012-03-14 附有半導體功能元件之纖維結構體及其製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/076810 WO2013076794A1 (ja) 2011-11-21 2011-11-21 半導体機能素子付き繊維構造体とその製造方法

Publications (1)

Publication Number Publication Date
WO2013076794A1 true WO2013076794A1 (ja) 2013-05-30

Family

ID=48469276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/076810 WO2013076794A1 (ja) 2011-11-21 2011-11-21 半導体機能素子付き繊維構造体とその製造方法

Country Status (3)

Country Link
JP (1) JP5942298B2 (ja)
TW (1) TW201322421A (ja)
WO (1) WO2013076794A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015140948A1 (ja) * 2014-03-19 2015-09-24 スフェラーパワー株式会社 半導体機能素子付き機能糸
JP2016123549A (ja) * 2014-12-26 2016-07-11 日本毛織株式会社 液体検知布
JP2016171178A (ja) * 2015-03-12 2016-09-23 松文産業株式会社 半導体素子付き繊維構造体
KR101731540B1 (ko) * 2015-12-28 2017-05-02 (재)한국나노기술원 섬유를 포함하는 태양전지 제조방법
JP6401369B1 (ja) * 2017-10-23 2018-10-10 櫻護謨株式会社 電源を備えた送水ホース及び媒介ユニット
WO2018231645A3 (en) * 2017-06-13 2019-01-17 Honeywell International Inc. UNIDIRECTIONAL LIGHT BREATHABLE LAMINATES
US10443160B2 (en) 2013-03-15 2019-10-15 Honeywell International Inc. Breathable light weight unidirectional laminates
DE102018130368A1 (de) * 2018-11-29 2020-06-04 Osram Opto Semiconductors Gmbh Optoelektronisches halbleiterbauteil, trägerrolle mit solchen optoelektronischen halbleiterbauteilen und textilgewebe
WO2020129240A1 (ja) * 2018-12-21 2020-06-25 住江織物株式会社 光発電部付き織物

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5728149A (en) * 1980-07-28 1982-02-15 Teijin Ltd Polyacrylate structure capable of converting wavelength of light
JPS6068507A (ja) * 1983-09-22 1985-04-19 日清紡績株式会社 導電線とその製造方法
WO2005041312A1 (ja) * 2003-10-24 2005-05-06 Kyosemi Corporation 受光又は発光モジュールシート及びその製造方法
JP2005524783A (ja) * 2002-05-10 2005-08-18 サーノフ・コーポレーション 電子的な織布、糸及び織物
JP2011106035A (ja) * 2009-11-12 2011-06-02 Teijin Fibers Ltd 有機機能性材料及びそれを用いた製品
JP2011210891A (ja) * 2010-03-29 2011-10-20 Hitachi Chem Co Ltd 波長変換型太陽電池封止シート、及び太陽電池モジュール

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006313871A (ja) * 2004-10-29 2006-11-16 Clean Venture 21:Kk 電子部品の位置決め方法、ならびに、電子部品およびその製造方法
CN101946116B (zh) * 2008-02-14 2014-09-24 皇家飞利浦电子股份有限公司 照明系统、电极器件和光源

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5728149A (en) * 1980-07-28 1982-02-15 Teijin Ltd Polyacrylate structure capable of converting wavelength of light
JPS6068507A (ja) * 1983-09-22 1985-04-19 日清紡績株式会社 導電線とその製造方法
JP2005524783A (ja) * 2002-05-10 2005-08-18 サーノフ・コーポレーション 電子的な織布、糸及び織物
WO2005041312A1 (ja) * 2003-10-24 2005-05-06 Kyosemi Corporation 受光又は発光モジュールシート及びその製造方法
JP2011106035A (ja) * 2009-11-12 2011-06-02 Teijin Fibers Ltd 有機機能性材料及びそれを用いた製品
JP2011210891A (ja) * 2010-03-29 2011-10-20 Hitachi Chem Co Ltd 波長変換型太陽電池封止シート、及び太陽電池モジュール

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10443160B2 (en) 2013-03-15 2019-10-15 Honeywell International Inc. Breathable light weight unidirectional laminates
JPWO2015140948A1 (ja) * 2014-03-19 2017-04-06 スフェラーパワー株式会社 半導体機能素子付き機能糸
CN106104813A (zh) * 2014-03-19 2016-11-09 思飞乐电力股份有限公司 附有半导体功能元件的功能丝线
US10217883B2 (en) 2014-03-19 2019-02-26 Sphelar Power Corporation Functional yarn equipped with semiconductor functional elements
WO2015140948A1 (ja) * 2014-03-19 2015-09-24 スフェラーパワー株式会社 半導体機能素子付き機能糸
KR101791592B1 (ko) * 2014-03-19 2017-10-30 스페라 파워 가부시키가이샤 반도체 기능 소자가 부착된 기능사
JP2016123549A (ja) * 2014-12-26 2016-07-11 日本毛織株式会社 液体検知布
JP2016171178A (ja) * 2015-03-12 2016-09-23 松文産業株式会社 半導体素子付き繊維構造体
KR101731540B1 (ko) * 2015-12-28 2017-05-02 (재)한국나노기술원 섬유를 포함하는 태양전지 제조방법
WO2018231645A3 (en) * 2017-06-13 2019-01-17 Honeywell International Inc. UNIDIRECTIONAL LIGHT BREATHABLE LAMINATES
JP2019078310A (ja) * 2017-10-23 2019-05-23 櫻護謨株式会社 電源を備えた送水ホース及び媒介ユニット
JP6401369B1 (ja) * 2017-10-23 2018-10-10 櫻護謨株式会社 電源を備えた送水ホース及び媒介ユニット
WO2019082822A1 (ja) 2017-10-23 2019-05-02 櫻護謨株式会社 電源を備えた送水ホース及び媒介ユニット
DE102018130368A1 (de) * 2018-11-29 2020-06-04 Osram Opto Semiconductors Gmbh Optoelektronisches halbleiterbauteil, trägerrolle mit solchen optoelektronischen halbleiterbauteilen und textilgewebe
WO2020129240A1 (ja) * 2018-12-21 2020-06-25 住江織物株式会社 光発電部付き織物
JPWO2020129240A1 (ja) * 2018-12-21 2021-11-04 住江織物株式会社 光発電部付き織物
JP7232538B2 (ja) 2018-12-21 2023-03-03 住江織物株式会社 光発電部付き織物
US11881535B2 (en) 2018-12-21 2024-01-23 Suminoe Textile Co., Ltd. Woven fabric with photovoltaic unit

Also Published As

Publication number Publication date
JP5942298B2 (ja) 2016-06-29
TW201322421A (zh) 2013-06-01
JPWO2013076794A1 (ja) 2015-04-27

Similar Documents

Publication Publication Date Title
JP5942298B2 (ja) 半導体機能素子付き繊維構造体
AU2011294612B2 (en) Woven mesh substrate with semiconductors, and method and device for manufacturing same
EP3278370B1 (en) Electrically contacting and interconnecting photovoltaic cells
US11473221B2 (en) Textile component and method for producing a textile component
JP2006165149A (ja) 光起電力素子、光起電力素子集合体、光起電力素子モジュール、及び、それらの製造方法
US20090211620A1 (en) Conformal solar power material
JP2007189132A (ja) 光起電力素子
JP6676658B2 (ja) 導電性三軸織物構造体及びこれを利用した電子デバイス付き三軸織物構造
JP5716197B2 (ja) 半導体機能素子付き機能糸とその製造方法
JP5430767B2 (ja) 半導体素子付き織網基材、その製造方法及びその製造装置
Satharasinghe Development of solar energy harvesting textiles
KR20160032616A (ko) 태양 전지 모듈 및 이에 사용되는 후면 시트
CN114038321B (zh) 显示器
JP2006165148A (ja) 光起電力素子、光起電力素子集合体、光起電力素子モジュール、及び、それらの製造方法
JP6582187B2 (ja) 半導体素子付き繊維構造体
KR20180080951A (ko) 고효율 태양전지
CN106273748A (zh) 提升导旋光性抗腐蚀织物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11876102

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013545672

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11876102

Country of ref document: EP

Kind code of ref document: A1