WO2015140948A1 - 半導体機能素子付き機能糸 - Google Patents

半導体機能素子付き機能糸 Download PDF

Info

Publication number
WO2015140948A1
WO2015140948A1 PCT/JP2014/057450 JP2014057450W WO2015140948A1 WO 2015140948 A1 WO2015140948 A1 WO 2015140948A1 JP 2014057450 W JP2014057450 W JP 2014057450W WO 2015140948 A1 WO2015140948 A1 WO 2015140948A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive
semiconductor functional
semiconductor
pair
yarn
Prior art date
Application number
PCT/JP2014/057450
Other languages
English (en)
French (fr)
Inventor
中田 仗祐
英稔 中村
敦士 増田
尭宏 辻
典央 笹口
Original Assignee
スフェラーパワー株式会社
福井県
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by スフェラーパワー株式会社, 福井県 filed Critical スフェラーパワー株式会社
Priority to US15/127,364 priority Critical patent/US10217883B2/en
Priority to JP2016508385A priority patent/JP6186580B2/ja
Priority to CN201480076989.2A priority patent/CN106104813B/zh
Priority to PCT/JP2014/057450 priority patent/WO2015140948A1/ja
Priority to KR1020167022742A priority patent/KR101791592B1/ko
Publication of WO2015140948A1 publication Critical patent/WO2015140948A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/035281Shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a functional yarn with semiconductor functional elements, in particular, comprising a plurality of granular semiconductor functional elements and a pair of flexible conductive wires connecting the plurality of semiconductor functional elements in parallel.
  • This type of fiber structure with a semiconductor functional element is, for example, a function yarn with a semiconductor functional element in the form of a string in which a plurality of semiconductor functional elements (solar cell, light emitting diode, bypass diode, etc.) are incorporated, It is configured by weaving or knitting a plurality of conductive wires or insulating wires as wefts or warps.
  • the above-mentioned functional yarn with a semiconductor functional element is a pair of functional yarns with a semiconductor functional element, depending on the tension applied to the wire state before textile processing and the strain and deformation stress on the fiber structure after textile processing.
  • the light receiving function or the light emitting function of the semiconductor functional element cannot be exhibited because the conductive wires contact each other and are electrically short-circuited.
  • Patent Document 1 a plurality of granular semiconductor functional elements having positive and negative electrodes at both ends are sandwiched between a pair of conductive wires and electrically parallel.
  • a functional yarn with a semiconductor functional element having a circular cross section is disclosed in which these semiconductor functional elements and a pair of conductive wires are embedded in an entirely flexible transparent synthetic resin.
  • Japanese Patent No. 5138976 Japanese Patent Laid-Open No. 2007-214599
  • the conductive line direction of the functional yarn with semiconductor functional elements is When the middle part is electrically connected in series or in parallel to another functional yarn with a semiconductor functional element, it is difficult to connect the functional yarns with a semiconductor functional element due to the synthetic resin. Cannot be adjusted easily, and the advantage of the functional yarn with a semiconductor functional element cannot be effectively utilized.
  • the functional yarn with a semiconductor functional element is entirely covered with a synthetic resin, so that the functional yarn with a semiconductor functional element becomes thick, so that flexibility as a wire is reduced. For this reason, for example, after textile processing into a woven fabric using a functional yarn with a semiconductor functional element as a weft and an insulating yarn as a warp, the flexibility and elongation characteristics as a fiber structure are impaired. That is, there is a problem that the function as a normal yarn material becomes difficult as the amount of the synthetic resin covering the functional yarn with a semiconductor functional element increases.
  • the semiconductor functional element of the pair of conductive wires in the functional yarn with the semiconductor functional element is arranged as described above. There is a problem that the conductive wire portion that is not electrically short-circuited.
  • An object of the present invention is to provide a functional yarn with a semiconductor functional element, which has a structure capable of electrically connecting adjacent functional yarns with a semiconductor functional element even in a textile processed state, after textile processing. Is to provide a structure that does not impair flexibility and elongation properties.
  • the functional yarn with a semiconductor functional element of the present invention includes a plurality of granular semiconductor functional elements having positive and negative electrodes at both ends, and a pair of flexible conductive wires that connect the plurality of semiconductor functional elements in parallel.
  • the plurality of semiconductor functional elements having the same conductive direction connecting positive and negative electrodes between the pair of conductive lines arranged in parallel are arranged, and the positive electrode of the plurality of semiconductor functional elements is one conductive line.
  • An element mounting region configured by a plurality of semiconductor functional elements and a conductive line portion in which the plurality of semiconductor functional elements of the pair of conductive lines are arranged, and an element of the pair of conductive lines Only the conductive wire area outside the mounting area
  • a structured conductive line regions, at least one surface of the conductive wire portions of the pair of the conductive lines area is characterized in that coated with the insulating member.
  • the functional yarn with a semiconductor functional element that can easily connect adjacent functional yarns even in a textile processed state can be realized. Since the conductive wire portion of the conductive wire region is insulated, a functional yarn with a semiconductor functional element capable of preventing an electrical short circuit due to contact between a pair of conductive wires can be realized. Since the line width in the conductive direction of the conductive line area is set to be equal to or smaller than the line width in the conductive direction of the element mounting area, the functional yarn with a semiconductor functional element that does not impair flexibility and elongation characteristics even after textile processing Can be realized.
  • the insulating member is formed by contracting a heat-shrinkable tube attached to the conductive wire portion.
  • An insulating member is formed by apply
  • (C) Cover both surfaces of the pair of conductive lines in the conductive line region with insulating members having different colors.
  • the line width in the conductive direction of the conductive line region covered with the insulating member is set to be smaller than the line width in the conductive direction of the element mounting region.
  • FIG. 2 is a partially enlarged plan view of FIG. 1. It is sectional drawing of a functional yarn with a semiconductor functional element. It is a fragmentary perspective view of a functional yarn with a semiconductor functional element. It is a fragmentary perspective view of the function thread
  • the functional yarn 1 with semiconductor functional elements connects a plurality of granular semiconductor functional elements 2 having positive and negative electrodes 2a and 2b at both ends, and the plurality of semiconductor functional elements 2 in parallel.
  • a pair of conductive wires 3a and 3b is provided and is configured in a flexible string shape.
  • the semiconductor functional element 2 is composed of spherical solar cells 2. That is, the spherical solar battery cell 2 is manufactured using a spherical p-type silicon single crystal 2c having a diameter of about 1.0 mm to 2.0 mm (in this embodiment, a diameter of 1.2 mm).
  • a flat surface 2d is formed on a part of the surface of the p-type silicon single crystal 2c, and an n-type diffusion layer 2e is formed by diffusing n-type impurities in most of the spherical surface excluding the flat surface 2d and its vicinity.
  • a spherical pn junction 2f is formed at a position of about 1 ⁇ m from the surface of the n-type diffusion layer 2e.
  • a positive electrode 2a (anode electrode) made of an aluminum-added silver alloy is spot-connected to the p-type surface (one end of the spherical solar battery cell 2) of the flat surface 2b in a spot-like manner so that the center of the p-type silicon single crystal 2c
  • a negative electrode 2b (cathode electrode) made of an antimony-added silver alloy is spot-connected to the n-type surface (the other end of the spherical solar battery cell 2) on the opposite side of the positive electrode 2a.
  • An antireflection film 2g made of a transparent SiO 2 film is formed on the entire surface of the p-type silicon single crystal 2c and the n-type diffusion layer 2e other than the positive and negative electrodes 2a and 2b.
  • the spherical solar battery cell 2 can receive light from all directions except the conductive direction connecting the positive and negative electrodes 2a and 2b. For this reason, even if the incident direction of direct light fluctuates, light can be received, light in all directions including reflected light can be received, and utilization efficiency of light entering the periphery of the spherical solar battery cell 2 Can be maximized.
  • the conductive direction of the spherical solar battery cell 2 is parallel to the plane including the pair of conductive lines 3a and 3b and is orthogonal to the pair of conductive lines 3a and 3b.
  • the pair of conductive wires 3a and 3b are arranged in parallel with a predetermined interval (approximately the same as the diameter of the spherical solar battery cell 2).
  • the outer surfaces of the positive electrodes 2a of the plurality of spherical solar cells 2 are electrically connected to the conductive wires 3a via the conductive bonding material 4, respectively, and the outer surfaces of the negative electrodes 2b of the plurality of spherical solar cells 2 are connected to the conductive wires 3b.
  • a conductive bonding material 4 are electrically connected to each other via a conductive bonding material 4.
  • the material of the conductive wires 3a and 3b is not particularly limited, and may be a general aluminum wire or copper wire as long as it is a conductive wire material.
  • One or a plurality of fine metal wires may be covered in a coil shape on the surface of a bundle or stranded wire of any one or a plurality of types of fibers selected from fibers and liquid crystal polymer fibers.
  • the electroconductive wire which gave metal plating to glass fiber, a silica fiber, a basalt fiber, carbon fiber, a polyester fiber, a polyimide fiber, an aramid fiber, and a liquid crystal polymer fiber may be sufficient.
  • the size of the conductive wires 3a and 3b is about 0.3 mm in diameter, but in order to efficiently receive the light incident on the spherical solar battery cell 2, it is 1/10 to the diameter of the spherical solar battery cell 2. It is desirable to set the size to about 1/1.
  • the conductive wires 3a and 3b have a heat resistance of 150 ° C. or higher because the conductive bonding material 4 is applied to the contact portion with the spherical solar battery cell 2 and is heated and cured to be connected to the spherical solar battery cell 2. It is desirable to have it.
  • the electric resistance is preferably in the range of 0.001 to 20 ⁇ / m.
  • the conductive bonding material 4 is made of, for example, a conductive epoxy resin (a mixture of epoxy resin and silver powder).
  • a conductive epoxy resin is applied to the contact portions of the conductive wires 3a and 3b and the positive and negative electrodes 2a and 2b of the spherical solar battery cell 2, The conductive epoxy resin is heated, dried and cured, and the spherical solar battery cell 2 is fixed to the pair of conductive wires 3a and 3b.
  • the functional yarn 1 with a semiconductor functional element includes a plurality of spherical solar cells 2 and a plurality of spherical solar cells 2 out of a pair of conductive wires 3 a and 3 b.
  • the device mounting region 11 and the conductive wire region 12 are repeatedly formed in series in the length direction of the conductive wires 3a and 3b.
  • the functional yarn 1 with a semiconductor functional element shown in FIG. 1 only a part of the entire device mounting region 11 and the conductive line region 12 are illustrated.
  • a plurality of spherical solar cells 2 having the same conductive direction connecting the positive and negative electrodes 2a, 2b between a pair of conductive lines 3a, 3b arranged in parallel are arranged,
  • the positive electrode 2a of the spherical solar battery cell 2 is electrically connected to one conductive line 3a, and the negative electrodes 2b of the plurality of spherical solar battery cells 2 are electrically connected to the other conductive line 3a.
  • a set interval (for example, an interval approximately equal to the diameter of the spherical solar cells 2) is provided between adjacent spherical solar cells 2.
  • the conductive wire regions 12 are provided at both ends in the conductive wire direction of the functional yarn 1 with a semiconductor functional device, between the device mounting regions 11, and the like. At least one surface of the pair of conductive wire portions 12 a and 12 b in the conductive wire region 12 is covered with an insulating member 13. That is, in this embodiment, both surfaces of the pair of conductive line portions 12 a and 12 b of the conductive line region 12 are covered with the insulating member 13.
  • the insulating members 13 are formed by contracting the heat shrinkable tubes mounted on the conductive wire portions 12a and 12b, respectively.
  • the heat-shrinkable tube is made of a synthetic resin whose main material is polyethylene, and is resistant to organic solvents such as alcohols, acetone, and toluene, and acid and alkaline aqueous solutions. That is, the fiber structure manufactured using the functional yarn 1 with a semiconductor functional element can also perform general resin processing. Moreover, since the specific gravity of the heat-shrinkable tube is as small as 1, the fiber structure manufactured using the functional yarn 1 with a semiconductor functional element can also be reduced in weight.
  • the bending hardness is about 1.152 gf ⁇ cm 2 / cm, and is 2.0 gf ⁇ cm 2 / cm or less. Therefore, it can be easily handled as a normal yarn material when textile processing. Further, the conductive wire region 12 can ensure sufficient flexibility even after textile processing.
  • the insulating member 13 is not necessarily limited to a heat-shrinkable tube, and may be formed by applying a thermosetting resin to the conductive wires 3a and 3b and thermosetting. That is, as the insulating member 13, for example, an insulating varnish (silicone, epoxy, etc.) may be used.
  • the conductive yarn 3a, 3b in the conductive region is obtained by impregnating and coating the functional yarn 1 with a semiconductor functional element into a liquid insulating varnish and heating and curing only the region (conductive wire region 12) where insulation is required with an infrared lamp or the like. Is covered with an insulating member 13.
  • the insulating varnish can be coated with a thin layer. Since the conductive wire region 12 can be easily configured to a size equal to or smaller than that of the element mounting region 11, it can be handled in the same degree as a normal yarn material, and is continuously and automatically woven or knitted. It can be performed. Further, durability against bending and extension deformation is also improved.
  • the insulating member 13 can be appropriately changed as long as it uses a flexible, stretchable, and cautious material.
  • the line width ⁇ ⁇ b> 1 in the conductive direction of the conductive line region 12 covered with the insulating member 13 is set to be smaller than the line width ⁇ ⁇ b> 1 in the conductive direction of the element mounting region 11. That is, the line width ⁇ 1 including the thickness of the insulating member 13 in the conductive line region 12 is set to an average of about 1.74 mm (maximum 1.84 mm), and in the conductive direction including the conductive bonding material 4 in the element mounting region 11.
  • the size of the conductive line region 12 is set to be equal to or smaller than the size of the element mounting region 11.
  • the height ⁇ 2 of the conductive wire region 12 covered with the insulating member 13 is equal to or lower than the height ⁇ 2 of the element mounting region 11 (the diameter of the spherical solar battery cell 2).
  • the conductive line region 12 becomes the element mounting region. No thicker than 11. Therefore, when performing textile processing (weaving processing, knitting processing), the functional yarn 1 with a semiconductor functional element can be used in the same manner as when using a normal yarn material, so that the textile is continuously and automatically performed. Processing can be performed. It is possible to realize the functional yarn 1 with a semiconductor functional element that does not impair the flexibility and elongation characteristics even after the textile processing.
  • the power generation performance (or light emission performance) can be arbitrarily configured by adjusting the series connection and the parallel connection of the functional yarn 1 with a semiconductor functional element in the fiber structure.
  • the functional yarn 1 with a semiconductor functional element light is incident on the functional yarn 1 with a semiconductor functional element regardless of the incident direction of the light, and the plurality of spherical solar cells 2 in which the light is arranged with the same polarity.
  • the light is received by the substantially spherical pn junction 2f formed in the spherical solar battery cell 2, and converted into electric energy by the photovoltaic power generation function (light receiving function) of the spherical solar battery cell 2. .
  • the converted electrical energy is output to the outside through the conductive lines 3a and 3b via the positive and negative electrodes 2a and 2b which are connected to both electrodes of the pn junction 2f and are opposed to each other with the center of the spherical solar battery cell 2 interposed therebetween.
  • the functional yarn 1 with a semiconductor functional element outputs an output voltage of about 0.6 V when receiving light.
  • the magnitude of the output current of the functional yarn 1 with semiconductor functional elements is proportional to the number of spherical solar cells 2.
  • the generated voltage is freely set via the number of elements connected in series, and the generated current is determined via the number of elements connected in parallel. Can be set freely.
  • a plurality of functional yarns 1 with semiconductor functional elements are connected in series and in parallel when the fiber structure is manufactured, even if a portion that is partially shaded is generated, the other portion of the spherical solar cell 2 that is not shaded The influence on the output can be kept to a minimum.
  • the upper and lower surfaces of this fiber structure can receive light with the same efficiency.
  • the functional yarn 1 with a semiconductor functional element can be continuously manufactured in a long thread shape.
  • the number of spherical solar cells 2 (semiconductor functional elements 2) in the element mounting region 11, the size of the spherical solar cells 2, the interval between adjacent spherical solar cells 2 and the like can be appropriately set according to specifications. .
  • the set interval between adjacent spherical solar cells 2 is an interval that is 1/2 times or more and 2 times or less the width of the spherical solar cell 2.
  • the fiber structure manufactured using the functional yarn 1 with a semiconductor functional element is flexible, and adjusts the gap between the spherical solar cells 2, the mesh formed of the conductive wires 3a and 3b, the insulating yarn, and the like.
  • the light transmission performance (light transmittance) can be adjusted.
  • a fiber structure incorporating a large amount of spherical solar cells 2 can be manufactured, and the light receiving performance of the fiber structure can be improved.
  • the spherical solar battery cell 2 is replaced with a light emitting diode as the semiconductor functional element 2, the light emitting performance can be improved.
  • both surfaces of the pair of conductive wire portions 12a and 12b of the functional yarn 1A with a semiconductor functional element are covered with the insulating member 13, but it is not particularly limited to this structure.
  • the surface of at least one of the pair of conductive line portions 12 a and 12 b (conductive line portion 12 b) of the conductive line region 12 may be covered with an insulating member 13. According to this structure, it is possible to prevent the adjacent conductive wires 3a and 3b from being in electrical contact with each other and short-circuiting, and to reduce the cost by reducing the material of the insulating member 13.
  • both surfaces of the pair of conductive wire portions 12a and 12b of the conductive wire region 12 may be covered with insulating members 13 having different colors. According to this structure, by using different colors for the heat-shrinkable tube coated with the conductive wire 3a on the positive electrode side of the insulating region and the heat-shrinkable tube coated with the conductive wire 3b on the negative electrode side, the fiber structure after textile processing The positive electrode and the negative electrode can be easily determined.
  • the positive power supply line is connected to the semiconductor functional element so that the positive power supply line is in contact with the conductive line portions 12a on the positive electrode side of the plurality of functional yarns 1 with semiconductor function elements.
  • the fiber structure is manufactured by weaving so as to be orthogonal to the attached functional yarn 1 and the negative conductive wire portions 12b are not covered, the negative conductive wire portions 12b of the functional yarns with semiconductor functional elements 1 are not covered.
  • the fiber structure is manufactured by weaving the negative power supply line so as to be orthogonal to the functional yarn 1 with a semiconductor functional element so that the negative power supply line is in contact therewith. According to this structure, the power generated by the fiber structure can be taken out at one place.
  • the functional yarn with a semiconductor functional element and the fiber structure made of the functional yarn with a semiconductor functional element are lightweight and have excellent flexibility and elongation characteristics. Therefore, it can be installed on the outer surface of a curved structure or a vehicle body.
  • curtains, blinds, etc. as textile members used for the purpose of shielding sunlight such as roofs and walls of membrane structure buildings to be installed with tension, tents, store-type sunshades, etc.
  • It can be widely used in the interior field, the mobile field such as automobiles, trains and ships, the sports field such as outdoor wear and hats and bags, and the general wear and hats and bags in the clothing field and miscellaneous goods field.
  • it can be stored in a compact shape such as simply folded and used as a means for obtaining a power source when a disaster or the like is required.

Landscapes

  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Woven Fabrics (AREA)
  • Photovoltaic Devices (AREA)

Abstract

半導体機能素子付き機能糸において、テキスタイル加工された状態であっても隣接する半導体機能素子付き機能糸同士を電気的に容易に接続可能な構造を備えたもの等を提供する。半導体機能素子付き機能糸1は、平行状態に配置された1対の導電線3a,3bの間に正負の電極2a,2bを結ぶ導電方向を揃えた複数の半導体機能素子2が配置され、複数の半導体機能素子2の正電極2aが導電線3aに接続されると共に複数の半導体機能素子2の負電極2bが導電線3bに接続され、複数の半導体機能素子2と、1対の導電線3a,3bのうちの複数の半導体機能素子2が配置された導電線部分11a,11bとで構成された素子実装領域11と、1対の導電線3a,3bのうちの素子実装領域11以外の導電線部分12a,12bのみで構成された導電線領域12とを備え、導電線領域12の1対の導電線部分12a,12bの少なくとも一方の表面を絶縁部材13で被覆した。

Description

半導体機能素子付き機能糸
 本発明は半導体機能素子付き機能糸において、特に粒状の複数の半導体機能素子と、これら複数の半導体機能素子を並列接続する可撓性のある1対の導電線とを備えたものに関する。
 従来から、テキスタイル製品において、受光機能又は発光機能等を備えた種々の半導体機能素子付き繊維構造体(テキスタイル構造体)が提案されている。この種の半導体機能素子付き繊維構造体は、例えば、複数の半導体機能素子(太陽電池セル、発光ダイオード、バイパスダイオード等)が組み込まれた紐状の半導体機能素子付き機能糸を経糸又は緯糸とし、複数の導電線や絶縁線を緯糸又は経糸として織り込んだり編み込んだりすることで構成される。
 ところで、上記の半導体機能素子付き機能糸は、テキスタイル加工前の線材状態に対して付加される張力、テキスタイル加工後の繊維構造体に対する歪みや変形応力によって、半導体機能素子付き機能糸の1対の導電線が互いに接触して電気的に短絡してしまうことで、半導体機能素子の受光機能又は発光機能を発揮できなくなるという問題がある。
 そこで、上記の問題を解決する為に、例えば、特許文献1には、両端に正負の電極を有する複数の粒状の半導体機能素子を、1対の導電線の間に挟持して電気的に並列接続し、これら半導体機能素子と1対の導電線を全体的に可撓性のある透明合成樹脂に埋め込んだ断面円形の半導体機能素子付き機能糸が開示されている。
特許5138976号公報(特開2007-214599号公報)
 しかし、特許文献1の半導体機能素子付き機能糸のように複数の半導体機能素子と1対の導電線とを合成樹脂で全体的に被覆する構造では、半導体機能素子付き機能糸の導電線方向の途中部を、別の半導体機能素子付き機能糸に電気的に直列接続又は並列接続する場合、合成樹脂に邪魔されて半導体機能素子付き機能糸同士の接続が困難であるので、発電電流や発電電圧の調整が容易に行えず、半導体機能素子付き機能糸の利点を有効に活用できないという問題がある。
 また、半導体機能素子付き機能糸を合成樹脂で全体的に被覆して構成すると、半導体機能素子付き機能糸が太くなるので、線材としての柔軟性が低下してしまう。このため、例えば、半導体機能素子付き機能糸を緯糸とし、絶縁糸を経糸として織布状にテキスタイル加工した後に、繊維構造体としてのフレキシブル性や伸長特性が損なわれてしまう。つまり、半導体機能素子付き機能糸に対する合成樹脂による被覆量が増大するほど通常の糸材としての機能を発揮し難くなるという問題がある。
 さらに、半導体機能素子付き機能糸を合成樹脂で被覆していない状態でテキスタイル加工を行うと、上述したように、半導体機能素子付き機能糸における1対の導電線のうちの半導体機能素子が配置されていない導電線部分が電気的に短絡してしまうという問題がある。
 本発明の目的は、半導体機能素子付き機能糸において、テキスタイル加工された状態であっても隣接する半導体機能素子付き機能糸同士を電気的に容易に接続可能な構造を備えたもの、テキスタイル加工後においてもフレキシブル性や伸長特性が損なわれない構造を備えたもの、等を提供することである。
 本発明の半導体機能素子付き機能糸は、両端に正負の電極を有する粒状の複数の半導体機能素子と、これら複数の半導体機能素子を並列接続する可撓性のある1対の導電線とを備え、平行状態に配置された前記1対の導電線の間に正負の電極を結ぶ導電方向を揃えた前記複数の半導体機能素子が配置され、前記複数の半導体機能素子の正電極が一方の導電線に導電接合材を介して電気的に接続されると共に前記複数の半導体機能素子の負電極が他方の導電線に導電接合材を介して電気的に接続された紐状の半導体機能素子付き機能糸において、複数の半導体機能素子と、前記1対の導電線のうちの複数の半導体機能素子が配置された導電線部分とで構成された素子実装領域と、前記1対の導電線のうちの素子実装領域以外の導電線部分のみで構成された導電線領域とを備え、前記導電線領域の1対の導電線部分の少なくとも一方の表面を絶縁部材で被覆したことを特徴としている。
 本発明によれば、素子実装領域の導電線部分が絶縁加工されていないので、テキスタイル加工された状態であっても隣接する機能糸同士を電気的に容易に接続可能な半導体機能素子付き機能糸を実現することができる。導電線領域の導電線部分が絶縁加工されているので、1対の導電線同士の接触による電気的な短絡を防止可能な半導体機能素子付き機能糸を実現することができる。導電線領域の導電方向の線幅を、素子実装領域の導電方向の線幅以下になるように設定するので、テキスタイル加工後においてもフレキシブル性や伸長特性が損なわれない半導体機能素子付き機能糸を実現することができる。
 本発明の構成に加えて、次のような種々の構成を採用してもよい。
(a)絶縁部材は、導電線部分に装着された熱収縮チューブを収縮させることで形成される。
(b)絶縁部材は、導電線部分に熱硬化性樹脂を塗布して熱硬化することで形成される。
(c)導電線領域の1対の導電線部分の両方の表面を色が異なる絶縁部材で夫々被覆する。
(d)絶縁部材が被覆された導電線領域の導電方向の線幅は、素子実装領域の導電方向の線幅より小さくなるように設定されている。
実施例に係る半導体機能素子付き機能糸の平面図である。 図1の部分拡大平面図である。 半導体機能素子付き機能糸の断面図である。 半導体機能素子付き機能糸の部分斜視図である。 変更形態に係る半導体機能素子付き機能糸の部分斜視図である。
 以下、本発明を実施するための形態について実施例に基づいて説明する。
 先ず、半導体機能素子付き機能糸1の全体構造について説明する。
 図1~図4に示すように、半導体機能素子付き機能糸1は、両端に正負の電極2a,2bを有する粒状の複数の半導体機能素子2と、これら複数の半導体機能素子2を並列接続する1対の導電線3a,3bとを備えて可撓性のある紐状に構成されている。
 図3に示すように、半導体機能素子2は、球状太陽電池セル2で構成されている。即ち、球状太陽電池セル2は、直径1.0mm~2.0mm(本実施例では、直径1.2mm)程度の球状のp型シリコン単結晶2cを用いて製造される。このp型シリコン単結晶2cの表面の一部に平坦面2dが形成され、この平坦面2dとその近傍部を除く球面の大部分にn型不純物が拡散されてn型拡散層2eが形成され、n型拡散層2eの表面から1μm程度の位置に球面状のpn接合2fが形成されている。
 平坦面2bのp型表面(球状太陽電池セル2の一端)に、アルミ添加の銀合金からなる正電極2a(アノード電極)がスポット状に低抵抗接続され、p型シリコン単結晶2cの中心を挟んで正電極2aの反対側のn型表面(球状太陽電池セル2の他端)に、アンチモン添加の銀合金からなる負電極2b(カソード電極)がスポット状に低抵抗接続されている。この正負の電極2a,2b以外のp型シリコン単結晶2cとn型拡散層2eの全表面に、透明なSiO膜からなる反射防止膜2gが形成されている。
 この球状太陽電池セル2は、正負の電極2a,2bを結ぶ導電方向を除く全方向からの光を受光することができる。このため、直射光の入射方向が変動しても受光することができ、反射光も含めてあらゆる方向の光を受光することができ、球状太陽電池セル2の周辺に入って来る光の利用効率を最大化できる。尚、球状太陽電池セル2の導電方向は、1対の導電線3a,3bを含む平面と並行で且つ1対の導電線3a,3bと直交する方向である。
 1対の導電線3a,3bは、所定の間隔(球状太陽電池セル2の直径と同じ程度)を空けて平行状態に配置されている。複数の球状太陽電池セル2の正電極2aの外面が、導電線3aに導電接合材4を介し夫々電気的に接続され、複数の球状太陽電池セル2の負電極2bの外面が、導電線3bに導電接合材4を介して夫々電気的に接続されている。
 導電線3a,3bの材質は、特に限定する必要はなく、導電性線材であれば一般的なアルミ線や銅線であっても良いし、ガラス繊維、炭素繊維、ポリエステル繊維、アラミド繊維、ポリエチレン繊維、液晶ポリマー繊維のうちから選択される何れか1又は複数種類の繊維の束又は撚線の表面に1又は複数の金属細線をコイル状にカバーリングしたものであっても良い。また、ガラス繊維、シリカ繊維、バサルト繊維、炭素繊維、ポリエステル繊維、ポリイミド繊維、アラミド繊維、液晶ポリマー繊維に金属メッキを施した導電性線材であっても良い。
 尚、導電線3a,3bのサイズは、直径0.3mm程度であるが、球状太陽電池セル2に入射される光を効率良く受光させる為に、球状太陽電池セル2の直径の1/10~1/1程度のサイズに設定することが望ましい。また、導電線3a,3bは、球状太陽電池セル2との接触部に導電接合材4を塗布して加熱硬化して球状太陽電池セル2と接続される為に、150℃以上の耐熱性を備えていることが望ましい。さらに、導電線3a,3bの電気抵抗での消費電力を考慮して、電気抵抗は0.001~20Ω/mの範囲であることが望ましい。
 導電接合材4は、例えば、導電性エポキシ樹脂(エポキシ樹脂に銀粉を混入したもの)からなる。1対の導電線3a,3b間に球状太陽電池セル2を固定する場合、導電性エポキシ樹脂を導電線3a,3bと球状太陽電池セル2の正負の電極2a,2bの接触部に塗布し、導電性エポキシ樹脂を加熱して乾燥させて硬化させて、球状太陽電池セル2を1対の導電線3a,3bに固定する。
 次に、素子実装領域11と導電線領域12について説明する。
 図1,図2,図4に示すように、半導体機能素子付き機能糸1は、複数の球状太陽電池セル2と、1対の導電線3a,3bのうちの複数の球状太陽電池セル2が配置された導電線部分11a,11bとで構成された素子実装領域11と、1対の導電線3a,3bのうちの素子実装領域11以外の導電線部分12a,12bのみで構成された導電線領域12とを備え、これら素子実装領域11と導電線領域12とは、導電線3a,3bの長さ方向に直列的に複数組繰り返し形成されている。尚、図1に示す半導体機能素子付き機能糸1においては、全体のほんの一部の素子実装領域11と導電線領域12を図示しているに過ぎない。
 素子実装領域11においては、平行状態に配置された1対の導電線3a,3bの間に正負の電極2a,2bを結ぶ導電方向を揃えた複数の球状太陽電池セル2が配置され、複数の球状太陽電池セル2の正電極2aが一方の導電線3aに電気的に接続されると共に複数の球状太陽電池セル2の負電極2bが他方の導電線3aに電気的に接続されている。隣接する球状太陽電池セル2同士間は、設定間隔(例えば、球状太陽電池セル2の直径と同程度の間隔)が空けられている。
 導電線領域12は、半導体機能素子付き機能糸1の導電線方向の両端部や素子実装領域11間等に設けられている。導電線領域12の1対の導電線部分12a,12bの少なくとも一方の表面は、絶縁部材13で被覆されている。即ち、本実施例において、導電線領域12の1対の導電線部分12a,12bの両方の表面は、絶縁部材13で被覆されている。
 絶縁部材13は、導電線部分12a,12bに装着された熱収縮チューブを収縮させることで夫々形成されている。熱収縮チューブは、ポリエチレンを主材料とする合成樹脂で構成され、アルコール類、アセトン、トルエン等の有機溶剤や酸及びアルカリ水溶液に耐性があるため、一般的な樹脂加工等で破損しない。つまり、半導体機能素子付き機能糸1を使用して製作する繊維構造体も一般的な樹脂加工を行うことができる。また、熱収縮チューブは、比重が1と小さいため、半導体機能素子付き機能糸1を使用して製作する繊維構造体も軽量にすることができる。
 尚、1対の導電線部分12a,12bを一般的な熱収縮チューブで被覆しても、曲げ硬さは1.152gf・cm/cm程度であり、2.0gf・cm/cm以下であるため、テキスタイル加工する際において通常の糸材として容易に取り扱いすることができる。また、導電線領域12は、テキスタイル加工後においても十分なフレキシブル性を確保することができる。
 尚、絶縁部材13は、熱収縮チューブに限定する必要はなく、導電線3a,3bに熱硬化性樹脂を塗布して熱硬化することで形成しても良い。即ち、絶縁部材13として、例えば絶縁ワニス(シリコーン、エポキシ等)を使用しても良い。半導体機能素子付き機能糸1を、液状の絶縁ワニスに含浸コーティングし、赤外線ランプ等で絶縁が必要とされる領域(導電線領域12)のみ加熱硬化させることで、導電領域の導電線3a,3bを絶縁部材13で被覆する。
 絶縁部材13として絶縁ワニスを使用する場合、絶縁ワニスは、薄層コーティングが可能である。導電線領域12を素子実装領域11と同等以下のサイズに容易に構成することができるので、通常の糸材と同程度の扱いを可能とし、連続的に且つ自動的に製織加工又は製編加工を行うことができる。さらに、屈曲及び伸長変形に対する耐久性も向上する。絶縁部材13は、可撓性、伸縮性、慎重性のある材料を使用するのであれば、適宜変更可能である。
 次に、素子実装領域11と導電線領域12とのサイズ関係について説明する。
 図4に示すように、絶縁部材13が被覆された導電線領域12の導電方向の線幅α1は、素子実装領域11の導電方向の線幅β1より小さくなるように設定される。即ち、導電線領域12の絶縁部材13の厚みを含めた線幅α1は、平均1.74mm程度(最大1.84mm)に設定し、素子実装領域11の導電接合材4を含めた導電方向の線幅β1は、平均1.84mm程度に設定することで、導電線領域12のサイズが、素子実装領域11のサイズと同等以下になるように設定される。
 尚、球状太陽電池セル2の導電方向と直交し且つ1対の導電線3a,3bを含む平面と直交する高さ方向においては、素子実装領域11に球状太陽電池セル2が実装されている構造上、絶縁部材13が被覆された導電線領域12の高さα2は、素子実装領域11の高さβ2(球状太陽電池セル2の直径)と同等もしくは低くなる。
 このように、導電線領域12のサイズ(導電方向の幅)を、素子実装領域11のサイズ(導電方向の幅)と同等以下になるように設定することで、導電線領域12が素子実装領域11より太くなることがない。従って、テキスタイル加工(製織加工、製編加工)を行う場合、半導体機能素子付き機能糸1を通常の糸材を使用する場合と同様に使用することができるので、連続的に且つ自動的にテキスタイル加工を行うことができる。テキスタイル加工後においてもフレキシブル性や伸長特性が損なわれない半導体機能素子付き機能糸1を実現できる。
 次に、本発明の半導体機能素子付き機能糸1の作用及び効果について説明する。
 経糸として汎用繊維を使用し、緯糸として汎用繊維と半導体機能素子付き機能糸1を使用して行うテキスタイル加工の段階では、張力付加やローラー等での押圧、繊維構造体内での屈曲及び伸長変形がおこるが、導電線部分12a,12bが絶縁加工されているので、隣接する導電線3a,3b同士が電気的な接触をして短絡するのを防止することができ、受光機能や発光機能等を確実に維持した状態でテキスタイル加工を行うことができる。
 また、素子実装領域11の導電線3a,3b及び導電接合材4は被覆されていないので、テキスタイル状態であっても隣接する機能糸同士を電気的に容易に接続することができる。従って、繊維構造体における半導体機能素子付き機能糸1の直列接続及び並列接続の調整によって発電性能(又は発光性能)を任意に構成することができる。
 この半導体機能素子付き機能糸1によれば、光の入射方向に関係なく、光が半導体機能素子付き機能糸1に入射し、この光が極性を揃えて配置された複数の球状太陽電池セル2に照射されると、球状太陽電池セル2に形成されたほぼ球面状のpn接合2fで光が受光され、球状太陽電池セル2の光起電力発生機能(受光機能)によって電気エネルギーに変換される。
 この変換された電気エネルギーは、pn接合2fの両極に接続されて球状太陽電池セル2の中心を挟んで対向する正負の電極2a,2bを介して導電線3a,3bを通って外部へ出力される。半導体機能素子付き機能糸1は、光を受光すると約0.6Vの出力電圧を出力する。半導体機能素子付き機能糸1の出力電流の大きさは、球状太陽電池セル2の数に比例する。
 即ち、半導体機能素子付き機能糸1を使用して製作された繊維構造体においては、直列接続される素子数を介して発電電圧を自由に設定し、並列接続される素子数を介して発電電流を自由に設定することができる。繊維構造体を製作した際に複数の半導体機能素子付き機能糸1を直列・並列接続した場合、部分的に日陰となる部分が発生しても、日陰でない他の部分の球状太陽電池セル2の出力への影響を最小限に留めることができる。しかも、この繊維構造体は、その上下両面が同じ効率で受光可能である。
 この半導体機能素子付き機能糸1は、長い糸状に連続的に製造することが可能である。素子実装領域11における球状太陽電池セル2(半導体機能素子2)の数、球状太陽電池セル2の大きさ、隣接する球状太陽電池セル2間の間隔等は、仕様に応じて適宜設定可能である。
 尚、隣接する球状太陽電池セル2間の設定間隔は、球状太陽電池セル2の幅の1/2倍以上且つ2倍以下の間隔であることが望ましい。この設定間隔にすることで、半導体機能素子付き機能糸1の光透過性と可撓性を確保することができ、また、テキスタイル加工時にこの半導体機能素子付き機能糸1と交差する経糸又は緯糸の配設スペースを設けることができる。
 この半導体機能素子付き機能糸1を使用して製作された繊維構造体は、フレキシブルであり、球状太陽電池セル2同士間の隙間や導電線3a,3bや絶縁糸からなる網目等を調整することで光透過性能(光透過率)を調整することができる。多量の球状太陽電池セル2を組み込んだ繊維構造体を製作することができ、繊維構造体の受光性能を向上させることができる。尚、半導体機能素子2として球状太陽電池セル2を発光ダイオードに置き換えた場合は、発光性能を向上させることができる。
 次に、前記実施例を部分的に変更する例について説明する。
[1]前記実施例において、半導体機能素子付き機能糸1Aの1対の導電線部分12a,12bの両方の表面を絶縁部材13で被覆しているが、特にこの構造に限定する必要はなく、図5に示すように、導電線領域12の1対の導電線部分12a,12bの少なくとも一方(導電線部分12b)の表面を絶縁部材13で被覆するようにしても良い。この構造によれば、隣接する導電線3a,3b同士が電気的な接触をして短絡するのを防止すると共に、絶縁部材13の材料を低減することで低コスト化を図れる。
[2]前記実施例において、導電線領域12の1対の導電線部分12a,12bの両方の表面を色が異なる絶縁部材13で夫々被覆しても良い。この構造によれば、絶縁領域の正極側の導電線3aを被覆した熱収縮チューブと負極側の導電線3bを被覆した熱収縮チューブに異なる色を使用することで、テキスタイル加工後の繊維構造体の正極と負極の判断を容易に行うこと可能となる。
[3]前記実施例において、導電線領域12の1対の導電線部分12a,12bのうちの一方の表面だけを絶縁部材13で被覆して絶縁した状態にし、導電線部分12a,12bのうちの絶縁されていない他方から発電した電力を取り出すようにしても良い。
 即ち、正極側の導電線部分12aが被覆されていない場合、複数の半導体機能素子付き機能糸1の正極側の導電線部分12aに正極電源ラインが接触するように、正極電源ラインを半導体機能素子付き機能糸1と直交するように織り込むことで繊維構造体を製作し、負極側の導電線部分12bが被覆されていない場合、複数の半導体機能素子付き機能糸1の負極側の導電線部分12bに負極電源ラインが接触するように、負極電源ラインを半導体機能素子付き機能糸1と直交するように織り込むことで繊維構造体を製作する。この構造によれば、繊維構造体の発電した電力を1か所で取り出すことが可能となる。
[4]その他、当業者であれば、本発明の趣旨を逸脱することなく、前記実施例の種々の変更を付加した形態で実施可能で本発明はそのような変更形態を包含するものである。
 半導体機能素子付き機能糸及び半導体機能素子付き機能糸による繊維構造体は、軽量で可撓性および伸長特性に優れている。そこで、曲面形状の建造物や車体の外面に設置することが可能となる。また、張力を付与して設置する膜構造建造物の屋根や壁、テントや店舗型サンシェード等の太陽光を遮蔽する目的で使用されるテキスタイル部材として、建築分野の他にも、カーテンやブラインド等のインテリア分野、自動車や列車、船舶等の移動体分野、アウトドアウエアや帽子、バック等のスポーツ分野、一般的なウエアや帽子、バックでは衣料分野、雑貨分野等で幅広く利用することができる。さらに、単に折り畳む等のコンパクトな形状で保管して、災害等の必要時に電源を得る手段としても使用することができる。
1       半導体機能素子付き機能糸
2       球状太陽電池セル(半導体機能素子)
3a,3b   1対の導電線
4       導電接合材
11      素子実装領域
11a,11b 1対の導電線部分
12      導電線領域
12a,12b 1対の導電線部分
13      絶縁部材

Claims (5)

  1.  両端に正負の電極を有する粒状の複数の半導体機能素子と、これら複数の半導体機能素子を並列接続する可撓性のある1対の導電線とを備え、平行状態に配置された前記1対の導電線の間に正負の電極を結ぶ導電方向を揃えた前記複数の半導体機能素子が配置され、前記複数の半導体機能素子の正電極が一方の導電線に導電接合材を介して電気的に接続されると共に前記複数の半導体機能素子の負電極が他方の導電線に導電接合材を介して電気的に接続された紐状の半導体機能素子付き機能糸において、
     複数の半導体機能素子と、前記1対の導電線のうちの複数の半導体機能素子が配置された導電線部分とで構成された素子実装領域と、
     前記1対の導電線のうちの素子実装領域以外の導電線部分のみで構成された導電線領域とを備え、
     前記導電線領域の1対の導電線部分の少なくとも一方の表面を絶縁部材で被覆したことを特徴とする半導体機能素子付き機能糸。
  2.  前記絶縁部材は、前記導電線部分に装着された熱収縮チューブを収縮させることで形成されることを特徴とする請求項1に記載の半導体機能素子付き機能糸。
  3.  前記絶縁部材は、前記導電線部分に熱硬化性樹脂を塗布して熱硬化することで形成されることを特徴とする請求項1に記載の半導体機能素子付き機能糸。
  4.  前記導電線領域の1対の導電線部分の両方の表面を色が異なる絶縁部材で夫々被覆したことを特徴とする請求項1に記載の半導体機能素子付き機能糸。
  5.  前記絶縁部材が被覆された前記導電線領域の導電方向の線幅は、前記素子実装領域の導電方向の線幅より小さくなるように設定されたことを特徴とする請求項1~4の何れか1項に記載の半導体機能素子付き機能糸。
PCT/JP2014/057450 2014-03-19 2014-03-19 半導体機能素子付き機能糸 WO2015140948A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/127,364 US10217883B2 (en) 2014-03-19 2014-03-19 Functional yarn equipped with semiconductor functional elements
JP2016508385A JP6186580B2 (ja) 2014-03-19 2014-03-19 半導体機能素子付き機能糸
CN201480076989.2A CN106104813B (zh) 2014-03-19 2014-03-19 附有半导体功能元件的功能丝线
PCT/JP2014/057450 WO2015140948A1 (ja) 2014-03-19 2014-03-19 半導体機能素子付き機能糸
KR1020167022742A KR101791592B1 (ko) 2014-03-19 2014-03-19 반도체 기능 소자가 부착된 기능사

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/057450 WO2015140948A1 (ja) 2014-03-19 2014-03-19 半導体機能素子付き機能糸

Publications (1)

Publication Number Publication Date
WO2015140948A1 true WO2015140948A1 (ja) 2015-09-24

Family

ID=54143955

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/057450 WO2015140948A1 (ja) 2014-03-19 2014-03-19 半導体機能素子付き機能糸

Country Status (5)

Country Link
US (1) US10217883B2 (ja)
JP (1) JP6186580B2 (ja)
KR (1) KR101791592B1 (ja)
CN (1) CN106104813B (ja)
WO (1) WO2015140948A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108598059B (zh) * 2018-03-28 2019-12-27 宁波市鄞州路麦电子有限公司 一种引线框架
CN113782643B (zh) * 2021-09-13 2023-05-23 永臻科技股份有限公司 一种光伏百叶片的排布连接方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09162434A (ja) * 1995-12-05 1997-06-20 Hitachi Ltd 太陽電池およびその製造方法
WO2005041312A1 (ja) * 2003-10-24 2005-05-06 Kyosemi Corporation 受光又は発光モジュールシート及びその製造方法
WO2013076794A1 (ja) * 2011-11-21 2013-05-30 京セミ株式会社 半導体機能素子付き繊維構造体とその製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3792867B2 (ja) * 1997-11-06 2006-07-05 キヤノン株式会社 太陽電池モジュール、太陽電池アレイ及び太陽光発電装置の施工方法
EP1172864A1 (en) * 2000-07-11 2002-01-16 SANYO ELECTRIC Co., Ltd. Solar cell module
US7592276B2 (en) * 2002-05-10 2009-09-22 Sarnoff Corporation Woven electronic textile, yarn and article
CN100380685C (zh) * 2002-06-21 2008-04-09 中田仗祐 光电或发光用器件及其制造方法
JP5138976B2 (ja) 2007-05-23 2013-02-06 京セミ株式会社 受光又は発光用デバイス
WO2012026013A1 (ja) * 2010-08-26 2012-03-01 京セミ株式会社 半導体素子付き織網基材の製造方法、その製造装置及び半導体素子付き織網基材

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09162434A (ja) * 1995-12-05 1997-06-20 Hitachi Ltd 太陽電池およびその製造方法
WO2005041312A1 (ja) * 2003-10-24 2005-05-06 Kyosemi Corporation 受光又は発光モジュールシート及びその製造方法
WO2013076794A1 (ja) * 2011-11-21 2013-05-30 京セミ株式会社 半導体機能素子付き繊維構造体とその製造方法

Also Published As

Publication number Publication date
CN106104813B (zh) 2018-01-02
US10217883B2 (en) 2019-02-26
JP6186580B2 (ja) 2017-08-30
JPWO2015140948A1 (ja) 2017-04-06
US20170133532A1 (en) 2017-05-11
KR101791592B1 (ko) 2017-10-30
KR20160111479A (ko) 2016-09-26
CN106104813A (zh) 2016-11-09

Similar Documents

Publication Publication Date Title
US10827611B2 (en) Flexible wiring board, electronic device, and fiber product
TWI648862B (zh) 光伏面板及其製作方法
WO2015133633A1 (ja) 太陽電池モジュール用封止シートおよび太陽電池モジュール
US8263860B2 (en) Silicon photovoltaic device with carbon nanotube cable electrode
US10770610B2 (en) Photovoltaic module interconnect joints
JP6186580B2 (ja) 半導体機能素子付き機能糸
US10236823B2 (en) Solar battery module
JP5542499B2 (ja) 太陽電池モジュール
WO2017110402A1 (ja) 導電性三軸織物構造体及びこれを利用した電子デバイス付き三軸織物構造
CN105308769B (zh) 光伏纺织品
CN102160176A (zh) 太阳能面板
JPH0536999A (ja) 高分子太陽電池
JP2020522139A (ja) 光起電力セルおよびその製造方法
US20190214518A1 (en) Wiring member for solar cells and solar cell module
JP6582187B2 (ja) 半導体素子付き繊維構造体
KR102286288B1 (ko) 태양 전지 모듈 및 이에 사용되는 후면 시트
JP2017183651A (ja) 太陽電池モジュール
JP2017175784A (ja) 可撓性薄膜太陽電池の固定方法、及び薄膜太陽電池一体型構造体
KR20180099406A (ko) 식물형 발전장치
US10665730B2 (en) Photovoltaic fabric with woven bus architecture
JP2019186258A (ja) 繊維状光発電素子の直列接続構造、及び該直列接続構造で接続された繊維状光発電素子を備える布型太陽電池
GB2439412A (en) Flexible solar panel
JP2017045948A (ja) 繊維状光発電素子の直列接続構造
KR20220006361A (ko) 테셀레이션 구조의 태양전지
KR20180044785A (ko) 태양전지 시트

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14886534

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016508385

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167022742

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15127364

Country of ref document: US

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 21/12/2016)

122 Ep: pct application non-entry in european phase

Ref document number: 14886534

Country of ref document: EP

Kind code of ref document: A1