WO2013072974A1 - 車両制御装置、車両、および車両制御方法 - Google Patents
車両制御装置、車両、および車両制御方法 Download PDFInfo
- Publication number
- WO2013072974A1 WO2013072974A1 PCT/JP2011/006449 JP2011006449W WO2013072974A1 WO 2013072974 A1 WO2013072974 A1 WO 2013072974A1 JP 2011006449 W JP2011006449 W JP 2011006449W WO 2013072974 A1 WO2013072974 A1 WO 2013072974A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- vehicle
- soc
- idling stop
- capacity
- battery
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 16
- 238000004364 calculation method Methods 0.000 claims abstract description 30
- 238000010248 power generation Methods 0.000 claims description 29
- 238000001514 detection method Methods 0.000 claims description 10
- 230000001172 regenerating effect Effects 0.000 claims description 7
- 230000008569 process Effects 0.000 claims description 5
- 239000000446 fuel Substances 0.000 abstract description 27
- 230000005540 biological transmission Effects 0.000 description 14
- 239000007858 starting material Substances 0.000 description 10
- 238000012986 modification Methods 0.000 description 9
- 230000004048 modification Effects 0.000 description 8
- 230000007423 decrease Effects 0.000 description 7
- 238000004590 computer program Methods 0.000 description 6
- 230000008859 change Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 230000006872 improvement Effects 0.000 description 5
- 230000005611 electricity Effects 0.000 description 4
- 238000007599 discharging Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 230000000994 depressogenic effect Effects 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 101100257262 Caenorhabditis elegans soc-1 gene Proteins 0.000 description 1
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 238000004378 air conditioning Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R16/00—Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
- B60R16/02—Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
- B60R16/03—Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
- B60R16/033—Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for characterised by the use of electrical cells or batteries
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/04—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
- B60W10/06—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/30—Conjoint control of vehicle sub-units of different type or different function including control of auxiliary equipment, e.g. air-conditioning compressors or oil pumps
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/18—Propelling the vehicle
- B60W30/18009—Propelling the vehicle related to particular drive situations
- B60W30/18018—Start-stop drive, e.g. in a traffic jam
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D29/00—Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
- F02D29/02—Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2510/00—Input parameters relating to a particular sub-units
- B60W2510/24—Energy storage means
- B60W2510/242—Energy storage means for electrical energy
- B60W2510/244—Charge state
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2710/00—Output or target parameters relating to a particular sub-units
- B60W2710/24—Energy storage means
- B60W2710/242—Energy storage means for electrical energy
- B60W2710/244—Charge state
Definitions
- the present invention relates to a vehicle control device, a vehicle, and a vehicle control method mounted on a vehicle having an engine and a battery.
- An automobile is equipped with an engine and a battery, and the battery is charged by the power of the engine.
- a charging control for charging a battery a technique for saving fuel consumption by suppressing charging to the battery during normal traveling and charging the battery by regenerative power generation during slow traveling is known. .
- Patent Document 1 discloses an automobile having both a charging control function and an idling stop control function in response to a request for improvement in fuel consumption.
- the present invention has been made to solve at least a part of the conventional problems described above, and aims to further improve the fuel consumption of a vehicle.
- the present invention can take the following forms or application examples in order to solve at least a part of the problems described above.
- a vehicle control device mounted on a vehicle having an engine and a battery that can be charged by a power generation amount of a generator driven by power of the engine, An idling stop control unit for performing idling stop control; An SOC detector for detecting a state of charge (SOC) of the battery; When the vehicle is running, an idling stop capacity for setting an idling stop capacity that is expected to be used in a stop-and-start period from engine stop to restart by the idling stop control with respect to the usable SOC range of the battery.
- SOC state of charge
- a capacity setting section The amount of power generated by the generator so as to avoid that the remaining capacity in the usable SOC range corresponding to the SOC detected by the SOC detection unit during traveling of the vehicle is less than the idling stop capacity.
- a remaining capacity control unit for controlling the vehicle.
- the remaining capacity of the battery in the usable SOC range is lower than the idling stop capacity expected to be used in the stop-and-start period by controlling the power generation amount of the generator when the vehicle is running. It is controlled to avoid. For this reason, it can suppress that an engine is restarted from SOC shortage in the middle of a stop and start period.
- the increase in SOC due to increased power during engine operation has a higher fuel efficiency per unit SOC (for example, 1% SOC) than in the case where the engine is restarted due to insufficient SOC during the stop-and-start period. Can improve fuel efficiency.
- the vehicle control device includes: A parameter that defines a distribution ratio when the SOC range of the battery is distributed to the charge control capacity required by suppressing the power generation of the generator by the charge control unit and the idling stop capacity;
- the vehicle control device is set as the idling stop capacity.
- the usable SOC range of the battery is distributed between the charge control capacity and the idling stop capacity.
- a parameter that defines a distribution ratio between the charge control capacity and the idling stop capacity is set as the idling stop capacity. Therefore, the idling stop capacity can be appropriately determined within the usable SOC range of the battery.
- the vehicle control device includes: A driving environment prediction unit that predicts the driving environment of the vehicle that causes the vehicle to stop; A vehicle control device comprising: a capacity determining unit that determines the idling stop capacity based on the traveling environment.
- a driving environment prediction unit that predicts the driving environment of the vehicle that causes the vehicle to stop
- a vehicle control device comprising: a capacity determining unit that determines the idling stop capacity based on the traveling environment.
- the vehicle control device includes auxiliary equipment that operates using the SOC of the battery
- the idling stop capacity setting unit further includes a host vehicle state calculation unit that calculates a host vehicle state related to an operation state of the auxiliary machinery,
- the capacity determining unit determines the idling stop capacity based on the host vehicle state in addition to the traveling environment.
- the idling stop capacity is calculated in consideration of the host vehicle state related to the operation status of the auxiliary machinery, the idling stop capacity can be estimated with higher accuracy. Therefore, the certainty of fuel consumption improvement can be further increased.
- the vehicle control device includes auxiliary equipment that operates using the SOC of the battery,
- the idling stop capacity setting unit includes: A host vehicle state calculation unit that calculates a host vehicle state related to the operation status of the auxiliary machinery;
- a vehicle control device comprising: a capacity determining unit that determines the idling stop capacity based on the vehicle state.
- the idling stop capacity expected to be used in the stop-and-start period can be estimated with high accuracy from the host vehicle state. Therefore, the certainty of fuel consumption improvement can be improved.
- a vehicle, Engine A battery that can be charged by the amount of power generated by a generator driven by the power of the engine;
- An idling stop control unit for performing idling stop control;
- An SOC detector for detecting a state of charge (SOC) of the battery;
- SOC state of charge
- a capacity setting section The amount of power generated by the generator so as to avoid that the remaining capacity in the usable SOC range corresponding to the SOC detected by the SOC detection unit during traveling of the vehicle is less than the idling stop capacity.
- a remaining capacity control unit for controlling the vehicle.
- a vehicle control method for controlling a vehicle having an engine and a battery that can be charged by a power generation amount of a generator driven by power of the engine (A) performing idling stop control; (B) detecting a state of charge (SOC) of the battery; (C) When the vehicle is running, an idling stop capacity that is expected to be used in a stop-and-start period from engine stop to restart by the idling stop control is set for the usable SOC range of the battery.
- the generator is configured to avoid a remaining capacity in the usable SOC range corresponding to the SOC detected by the SOC detection unit during traveling of the vehicle from being less than the idling stop capacity.
- a vehicle control method comprising: controlling the amount of power generation.
- a control system including the vehicle control device of application example 1, a computer program for causing a computer to realize functions corresponding to the steps of the vehicle control method of application example 7, a recording medium on which the computer program is recorded, and the like can be realized.
- FIG. 1 is an explanatory diagram showing a configuration of an automobile 200 as an embodiment of the present invention.
- the automobile 200 is a vehicle equipped with an idling stop function.
- the automobile 200 includes an engine 10, an automatic transmission 15, a differential gear 20, drive wheels 25, a starter 30, an alternator 35, a battery 40, and an electronic control unit (ECU) 50. ing.
- ECU electronice control unit
- Engine 10 is an internal combustion engine that generates power by burning fuel such as gasoline or light oil.
- the power of the engine 10 is transmitted to the automatic transmission 15 and is also transmitted to the alternator 35 via the drive mechanism 34.
- the output of the engine 10 is changed by an engine control computer (not shown) according to the amount of depression of an accelerator pedal (not shown) operated by the driver.
- the automatic transmission 15 automatically changes the gear ratio (so-called shift change).
- the power (rotation speed / torque) of the engine 10 is shifted by the automatic transmission 15 and transmitted to the left and right drive wheels 25 through the differential gear 20 as a desired rotation speed / torque.
- the power of the engine 10 is transmitted to the drive wheels 25 through the automatic transmission 15 while being changed according to the amount of depression of the accelerator pedal, and the vehicle (automobile 200) is accelerated or decelerated. .
- the drive mechanism 34 that transmits the power of the engine 10 to the alternator 35 adopts a belt drive configuration.
- the alternator 35 generates power using a part of the power of the engine 10.
- the generated electric power is used for charging the battery 40 via an inverter (not shown).
- power generation by the power of the engine 10 using the alternator 35 is referred to as “fuel power generation”.
- the alternator 35 corresponds to the “generator” described in the section “Means for Solving the Problems”.
- the battery 40 is a lead storage battery as a DC power supply having a voltage of 14 V, and supplies power to peripheral devices provided in addition to the engine body.
- peripheral devices provided in addition to the engine main body and operating using the power of the battery 40 are referred to as “auxiliary devices”.
- a collection of auxiliary machines is called “auxiliary machines”.
- the automobile 200 includes a headlight 72, an air conditioner (A / C) 74, and the like as auxiliary machines 70.
- the starter 30 is a cell motor that starts the engine 10 with electric power supplied from the battery 40. Normally, when the driver operates an ignition switch (not shown) when starting the operation of the stopped vehicle, the starter 30 is started and the engine 10 is started. The starter 30 is also used when restarting the engine 10 from the idling stop state, as will be described below.
- the “idling stop state” refers to a stop state by idling stop control.
- the ECU 50 includes a CPU that executes a computer program, a ROM that stores a computer program, a RAM that temporarily stores data, an input / output port connected to various sensors, actuators, and the like.
- Sensors connected to the ECU 50 include a wheel speed sensor 82 that detects the rotational speed of the drive wheel 25, a brake pedal sensor 84 that detects whether or not a brake pedal (not shown) is depressed, and an accelerator pedal (not shown).
- An accelerator opening sensor 86 that detects the amount of depression as an accelerator opening
- a battery current sensor 88 that detects a charging / discharging current of the battery 40
- an alternator current sensor 89 that detects an output current of the alternator 35, and the like are provided.
- the actuator corresponds to the starter 30, the alternator 35, or the like.
- the ECU 50 is supplied with electric power from the battery 40.
- the ECU 50 controls the engine stop and restart (idling stop control) by controlling the starter 30 and the alternator 35 based on signals from the various sensors and the engine control computer (not shown) and the battery. 40 SOCs are controlled.
- This ECU 50 is a vehicle control apparatus directly related to the present invention.
- FIG. 2 is an explanatory diagram functionally showing the configuration of the ECU 50.
- the ECU 50 includes an idling stop control unit 90 and an SOC control unit 100.
- the idling stop control unit 90 and the SOC control unit 100 actually show functions realized by the CPU provided in the ECU 50 executing a computer program stored in the ROM.
- the idling stop control unit 90 acquires the wheel speed Vh detected by the wheel speed sensor 82 and the accelerator opening Tp detected by the accelerator opening sensor 86, and gives an instruction Ss to stop / start the engine 10 to the starter 30. Output. Specifically, the idling stop control unit 90 outputs an engine stop instruction Ss to the starter 30 assuming that the engine stop condition is satisfied when the wheel speed Vh decreases and becomes less than a predetermined speed (for example, 10 km / h). Thereafter, when it is detected that the accelerator pedal is depressed from the accelerator opening Tp, an engine restart instruction Ss is output to the starter 30 assuming that the engine restart condition is satisfied.
- a predetermined speed for example, 10 km / h
- the idling stop control unit 90 stops the engine 10 when the engine stop condition is satisfied, and restarts the engine 10 when the engine restart condition is satisfied after the stop.
- the engine stop condition and the engine restart condition are not limited to those described above.
- the engine stop condition can be that the wheel speed Vh is completely 0 km / h
- the engine restart condition can be that the foot is off the brake pedal.
- the SOC control unit 100 includes a target SOC estimation unit 110, a battery SOC calculation unit 120, and a feedback control unit 130.
- the target SOC estimation unit 110 is a period from engine stop to restart by idling stop control when the vehicle is traveling (for example, when the wheel speed Vh> 0 km / h) (hereinafter referred to as “stop and start period”). 1 is estimated as a target SOC (hereinafter also referred to as “target SOC value”) C1, and a detailed configuration will be described in section C.
- the target SOC estimation unit 110 corresponds to the “idling stop capacity setting unit” described in the section “Means for Solving the Problems”. “SOC” is defined as a value obtained by dividing the amount of electricity remaining in the battery by the amount of electricity stored when the battery is fully charged.
- the battery SOC calculation unit 120 is referred to as the current SOC of the battery 40 (hereinafter referred to as “current SOC value”) based on the charge / discharge current (referred to as “battery current”) Ab of the battery 40 detected by the battery current sensor 88. ) Calculate C2. Specifically, the current SOC value C2 is calculated by integrating the charging / discharging current Ab with the charging current of the battery 40 as a positive value and the discharging current of the battery 40 as a negative value.
- the configurations of the battery current sensor 88 and the battery SOC calculation unit 120 correspond to the “SOC detection unit” described in the section “Means for Solving the Problems”.
- the SOC detection unit need not be limited to the one calculated based on the battery current detected by the battery current sensor 88.
- the SOC detection unit is obtained based on a battery electrolyte specific gravity sensor, a cell voltage sensor, a battery terminal voltage sensor, or the like. Also good.
- the SOC detection unit need not be limited to a configuration that detects the amount of electricity remaining in the battery, and may be configured to detect the storage state using another parameter such as a chargeable amount.
- the feedback control unit 130 obtains a difference value obtained by subtracting the current SOC value C2 from the target SOC value C1 during traveling of the vehicle, and obtains a voltage instruction value Sv that matches the difference value to the value 0 by feedback control.
- the voltage instruction value Sv indicates the amount of power generated by the alternator 35 and is sent to the alternator 35.
- the current SOC value C2 is controlled to the target SOC value C1 by fuel power generation.
- the configuration of the feedback control unit 130 corresponds to the “remaining capacity control unit” described in the section [Means for Solving the Problems].
- the SOC control unit 100 is provided with a function called “battery control” and a function called “charge control” in addition to the above. Battery control will be described.
- the usable SOC range (operating SOC range) of the battery is determined in advance from the request for a long life. For this reason, when the SOC of the battery 40 falls below the lower limit value (for example, 60%) of the SOC range, the power of the engine 10 is increased so that the SOC is within the SOC range, and the upper limit value (for example, 90%) of the SOC range is set.
- the SOC exceeds, “battery control” is performed in which the SOC is consumed to be within the SOC range. Even when the engine is stopped by the idling stop control, if the SOC falls below the lower limit value, the engine is started and the SOC is set within the SOC range by fuel power generation.
- Charge control is a control process in which fuel consumption is reduced by suppressing charging of the battery by fuel power generation during normal traveling, and the battery is charged by regenerative power generation during deceleration traveling. Since charging control is a well-known configuration, it will not be described in detail, but the following processing is generally performed.
- charging control feedback control by the feedback control unit 130 during normal traveling is executed when the target SOC value C1 exceeds the current SOC value C2, and when the target SOC value C1 is equal to or lower than the current SOC value C2 during normal traveling.
- the predetermined power generation cut voltage is set as a voltage instruction value Sv to the alternator 35. With this configuration, charging during normal driving can be suppressed and fuel consumption can be saved.
- “normal traveling” is a state of the automobile 200 that does not correspond to either “stop” in which the vehicle speed is 0 km / h or “decelerated traveling” in which the regenerative power generation is performed.
- the target SOC estimation unit 110 includes a travel environment prediction unit 112, a host vehicle state prediction unit 114, an SOC distribution request level calculation unit 116, and a target SOC calculation unit 118.
- the driving environment prediction unit 112 predicts the driving environment.
- the “running environment” here is a parameter indicating how much the idling stop state will be (from now on), and can be said to be a parameter related to the ratio of the stop-and-start period in a predetermined period in the future. That is, the “traveling environment” is a traveling environment of the vehicle that causes the vehicle to stop by the idling stop control. Specifically, the traveling environment prediction unit 112 calculates a traveling environment index that indicates the traveling environment as an index based on the wheel speed Vh detected by the wheel speed sensor 82.
- a stop time ratio R in a predetermined period (for example, 10 minutes) retroactive from the present is calculated based on the wheel speed Vh, and the driving environment index P1 is calculated from the ratio. That is, the sum of the stopping times at which the wheel speed Vh is 0 in the predetermined period is obtained, the ratio R is calculated by dividing the total by the total time of the predetermined period, and the driving environment index P1 is calculated from the ratio R. .
- a high ratio R means that the stop frequency of the vehicle and the length of the stop period are high, and it can be predicted that the future stop frequency and length of the vehicle will also be high.
- the traveling environment index P1 is determined according to the following. -When the 10-minute stop time ratio R ⁇ 38%, the driving environment index P1 is set to 1. When the stop time ratio R ⁇ 42% is 38% ⁇ 10 minutes, the driving environment index P1 is set to 2. ⁇ When 42% ⁇ 10 minutes stop time ratio R ⁇ 46%, the driving environment index P1 is set to 3. ⁇ When the 10-minute stop time ratio R ⁇ 46%, the driving environment index P1 is set to a value of 4.
- the threshold values of 38%, 42%, and 46% are not limited to these, and can be other numerical values.
- the required driving environment index P1 is not limited to four from 1 to 4, but may be other numbers such as three, five, and six.
- the travel environment index P1 is obtained based on the wheel speed Vh detected by the wheel speed sensor 82, but the present invention is not limited to this.
- the traveling environment index P1 may be set to a higher value as the change rate of the wheel speed Vh increases. Since the degree of urbanization increases as the shift position of the manual transmission is frequently performed, the traveling environment index P1 may be set to a higher value as the shift position of the manual transmission is frequently performed. Since the degree of urbanization increases as the gear ratio of the automatic transmission is frequently switched, the traveling environment index P1 may be set to a higher value as the gear ratio of the automatic transmission is frequently switched.
- Each parameter replaced with the wheel speed Vh and the wheel speed Vh need not be limited to the configuration in which the travel environment index P1 is obtained based on one selected from them, and the travel environment based on two or more parameters.
- the index P1 may be obtained.
- the driving environment index P1 is obtained by multiplying each parameter by an individual weighting index.
- the travel environment can be predicted only by the autonomous system of the automobile 200 by adopting the parameters that replace the wheel speed Vh and the wheel speed Vh described above.
- Information acquired from outside the autonomous system includes road map information of the navigation system. Based on the road map information of the navigation system, it is possible to determine whether the future travel location is an urban area or a suburb and obtain the travel environment index P1.
- the own vehicle state prediction unit 114 predicts the state of the automobile 200 (own vehicle state).
- the “own vehicle state” is a parameter indicating how much SOC the automobile 200 will consume in the future.
- the host vehicle state prediction unit 114 calculates the amount of power consumed by the auxiliary machinery 70 based on the battery current Ab detected by the battery current sensor 88 and the alternator current Aa detected by the alternator current sensor 89. And the electric energy is output as the own vehicle state P2. Since the speed at which the SOC is consumed is high when the amount of power consumed by the auxiliary machinery 70 is large, in the present embodiment, the own vehicle state prediction unit 114 obtains the amount of power consumed by the auxiliary machinery 70 as the own vehicle state P2.
- the own vehicle state P2 was calculated
- the air conditioner information for example, the difference between the target temperature and the in-vehicle temperature
- the engine warm-up status such as the difference between the engine water temperature and the ambient temperature are shown. It can be set as the structure calculated
- required the present operation condition of auxiliary machinery by the sensor signal detected now, and considered the present operation condition as the future own vehicle state, but instead, It is good also as a structure which estimates the future own vehicle state by catching the sign that an operation condition changes from the present operation condition calculated
- the driving environment prediction unit 112 and the own vehicle state prediction unit 114 having the above-described configuration always perform the prediction after the driving of the automobile 200 is started.
- the units 122 to 124 are actually realized by the CPU provided in the ECU 50 executing a computer program stored in the ROM.
- the driving environment index P1 calculated by the driving environment prediction unit 112 and the host vehicle state P2 calculated by the host vehicle state prediction unit 114 are sent to the SOC distribution request level calculation unit 116.
- the SOC distribution request level calculation unit 116 calculates the SOC distribution request level P3 based on the traveling environment index P1 and the host vehicle state P2, and the target SOC calculation unit 118 calculates the target SOC value C1 based on the SOC distribution request level P3. .
- the contents of the SOC distribution request level calculation unit 116 and the target SOC calculation unit 118 will be described in detail below.
- FIG. 3 is a flowchart showing a target SOC estimation routine.
- This target SOC estimation routine is repeatedly executed every predetermined time (for example, 60 sec) when the vehicle is traveling. That is, the target SOC estimation routine is not executed when the engine 10 is stopped by the idling stop control.
- the CPU of the ECU 50 acquires the traveling environment index P1 obtained by the traveling environment prediction unit 112 (FIG. 2) (step S100) and the own vehicle state prediction unit 114 ( The own vehicle state P2 obtained by FIG. 2) is acquired (step S200).
- step S300 the CPU performs a process of calculating the SOC distribution request level based on the driving environment index P1 and the own vehicle state P2 using the SOC distribution request level calculation map MP (step S300).
- the usable SOC range is determined for each type of battery.
- the available SOC range is allocated to idling stop and charge control, and the “SOC allocation request level” is a parameter for designating the allocation level.
- FIG. 4 is an explanatory diagram showing the SOC allocation request level calculation map MP.
- the SOC allocation required level calculation map MP has a running environment index P1 on the horizontal axis, a host vehicle state P2 on the vertical axis, and SOC allocation corresponding to the values on the horizontal axis and the values on the vertical axis. This is map data obtained by mapping the request level P3.
- An SOC allocation request level calculation map MP is created by previously determining the relationship among the driving environment index P1, the host vehicle state P2, and the SOC allocation request level P3 experimentally or by simulation, and is stored in the ROM. is doing.
- step S300 the SOC allocation request level calculation map MP is called from the ROM, and the SOC allocation corresponding to the traveling environment index P1 determined in step S100 and the own vehicle state P2 determined in step S200 is referred to the map MP.
- the request level P3 is acquired.
- four values A, B, C, and D are prepared as the SOC distribution request level P3.
- A, B, C, and D are higher in this order. The higher the traveling environment index P1 and the higher the host vehicle state P2, the higher the SOC allocation request level P3.
- step S400 the CPU performs a process of calculating the target SOC value C1 based on the SOC distribution request level P3 using the target SOC calculation table TB (step S400).
- FIG. 5 is an explanatory diagram showing the target SOC calculation table TB.
- the target SOC calculation table TB has an SOC distribution request level P3 on the horizontal axis, a target SOC value C1 on the vertical axis, and a relationship between the SOC distribution request level P3 and the target SOC value C1 on a straight line L. Show.
- the target SOC calculation table TB is created and stored in the ROM.
- the target SOC calculation table TB is called from the ROM, and the target SOC value C1 corresponding to the SOC distribution request level P3 calculated in step S300 is acquired by referring to the table TB.
- the target SOC value C1 indicated by the straight line L is a value set within the usable SOC range W of the battery 40, and the usable SOC range W is defined as a charge control capacity and an idling stop capacity.
- the distribution rate when allocated to is shown.
- the idling stop capacity area is set on the lower side
- the charge control capacity area is set on the upper side
- the boundary between both areas is the target SOC value. C1.
- a level obtained by adding the idling stop capacity to the lower limit value of the usable SOC range W is set as the target SOC value C1.
- the charge control capacity is a battery capacity required by suppressing the fuel power generation by the charge control described above.
- the idling stop capacity is a capacity that is expected to be used in a future stop-and-start period. In this embodiment, the idling stop capacity is set to the maximum expected size.
- the idling stop capacity increases as the SOC distribution request level P3 becomes higher.
- the target SOC value C1 indicated by the straight line L indicates the SOC that can completely perform the idling stop control in the future and that can minimize the power generation amount for storing the SOC.
- the target SOC value C1 increases linearly as the SOC distribution request level P3 increases as indicated by the straight line L, but the present invention is not limited to this.
- the target SOC value C1 is set to increase linearly as the SOC distribution request level P3 increases when the SOC distribution request level P3 is equal to or less than a predetermined value, and to maintain a constant value when the SOC distribution request level P3 exceeds a predetermined value.
- a predetermined configuration may be adopted. This configuration is effective for a battery having a relatively small usable SOC range.
- it can also be set as the structure shown with a curve instead of the structure which shows the change of the target SOC value C1 with a straight line.
- step S400 after executing step S400, the CPU outputs the target SOC value C1 calculated in step S400 to the feedback control unit 130 (step S500), and then temporarily ends the target SOC estimation routine.
- the feedback control unit 130 (FIG. 2), the current SOC value C2 is controlled to the calculated target SOC value C1.
- the current SOC value C2 indicates the remaining capacity of the battery 40 in the usable SOC range.
- the remaining capacity can be prevented from falling below the idling stop capacity during vehicle travel. That is, in FIG. 5, when the current SOC value is located in the charge control capacity region, that is, when the remaining capacity exceeds the idling stop capacity, charge control is performed and the battery 40 is charged by fuel power generation. It is suppressed.
- the SOC is controlled to the target SOC value C1 indicated by the straight line L by the fuel power generation, so that the idling stop capacity is attempted to fall below. It is avoided.
- FIG. 6 is an explanatory diagram showing a time chart regarding the vehicle speed and the SOC of the battery 40 (current SOC value C2) while the automobile 200 is in operation.
- the vertical axis represents vehicle speed and SOC
- the horizontal axis represents time.
- the vehicle stops at time t2.
- regenerative power generation by deceleration is performed, and the SOC gradually increases as shown by the solid line.
- a period from time t2 (strictly speaking, when the engine stop condition is satisfied) to time t3 when the vehicle speed rises is a stop-and-start period SST, and the engine 10 is stopped.
- the stop-and-start period SST the SOC gradually decreases due to power consumption by auxiliary equipment.
- the solid line when the SOC reaches the lower limit value SL during this stop (time tb), the engine 10 is restarted by battery control. After restarting, as indicated by the solid line, power is generated by the power of the engine 10 and the SOC increases.
- the SOC when the SOC decreases during normal driving and the remaining capacity of the battery 40 in the usable SOC range falls below the idling stop capacity (time ta), the SOC is increased by fuel power generation. As indicated by the two-dot chain line in the figure, the SOC increases during the ta-t2 period. This increase takes into account the maximum battery capacity expected to be used in the future stop-and-start period. Therefore, even if the SOC decreases in the stop-and-start period t2-t3, the SOC reaches the lower limit SL. It wo n’t happen.
- the “future stop-and-start period” is not limited to the illustrated stop-and-start period SST. If there are a plurality of stop-and-start periods in a predetermined period, the entire stop-and-start period is the same. is there.
- the SOC does not reach the lower limit value and the engine 10 is not restarted in the stop-and-start period t2-t3.
- the amount of fuel is required to be three to five times greater than when the power is increased and the SOC is increased during engine operation. That is, the fuel consumption effect per unit SOC (for example, SOC 1%) during engine operation is three to five times better than when the engine is restarted due to insufficient SOC during the stop-and-start period. Therefore, the automobile 200 of the present embodiment can improve fuel efficiency compared to the conventional example.
- the SOC allocation request level P3 is obtained based on the traveling environment index P1 and the own vehicle state P2, but instead, the driver operates the instrument panel (not shown) of the automobile 200.
- a dial may be provided, and the SOC distribution request level P3 may be obtained according to the operation amount of the dial. For example, when entering the city area from the suburbs, the driver switches the dial to the “high” side and sets the SOC allocation request level P3 to be large, so that the allocation ratio for the target SOC, that is, idling stop is set. Can be increased.
- the maximum SOC used in the stop-and-start period can be set with high accuracy from the driving environment. Can do.
- the dial may be capable of indicating two levels of “high” and “low”, or may be capable of indicating in three or more stages.
- the dial can be replaced with other input means such as a switch.
- the SOC distribution request level P3 is not obtained only by the dial operation amount, but the SOC distribution request level P3 obtained from the driving environment index P1 and the own vehicle state P2 in the embodiment is based on the dial operation amount. It can also be set as the structure corrected.
- the SOC distribution request level P3 is once obtained based on the driving environment index P1 and the host vehicle state P2, and the target SOC is calculated based on the SOC distribution request level P3.
- the target SOC may be directly calculated based on the traveling environment index P1 and the host vehicle state P2. That is, a configuration may be adopted in which the distribution ratio for allocating the battery usable SOC range for charge control and idling stop is directly calculated based on the traveling environment index P1 and the host vehicle state P2.
- the target SOC may be directly calculated based on the dial operation amount.
- the SOC allocation request level is calculated based on both the driving environment index P1 and the own vehicle state P. Instead of this, either the driving environment index P1 or the own vehicle state P is calculated. It is good also as a structure calculated based on.
- the battery was a lead acid battery, in this invention, it is not restricted to this.
- the battery can be replaced with another type of battery such as a lithium ion storage battery or a rocking chair type power storage unit.
- the vehicle was a motor vehicle, it may replace with this and may be vehicles other than motor vehicles, such as a train.
- Modification 5 In the above embodiment, a part of the function realized by software may be realized by hardware (for example, an integrated circuit), or a part of the function realized by hardware may be realized by software. .
- SYMBOLS 10 Engine 15 ... Automatic transmission 20 ... Differential gear 25 ... Drive wheel 30 ... Starter 34 ... Drive mechanism 35 ... Alternator 40 ... Battery 50 ... ECU DESCRIPTION OF SYMBOLS 70 ... Auxiliary machines 72 ... Headlight 74 ... Air conditioner 82 ... Wheel speed sensor 84 ... Brake pedal sensor 86 ... Accelerator opening sensor 88 ... Battery current sensor 89 ... Alternator current sensor 90 ... Idling stop control part 100 ... SOC control part DESCRIPTION OF SYMBOLS 110 ... Target SOC estimation part 112 ... Running environment prediction part 114 ... Own vehicle state prediction part 116 ... SOC distribution request
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Transportation (AREA)
- General Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
- Output Control And Ontrol Of Special Type Engine (AREA)
- Control Of Eletrric Generators (AREA)
- Hybrid Electric Vehicles (AREA)
Abstract
Description
エンジンと、前記エンジンの動力によって駆動される発電機の発電量によって充電可能なバッテリと、を有する車両に搭載される車両制御装置であって、
アイドリングストップ制御を行うアイドリングストップ制御部と、
前記バッテリの蓄電状態(SOC)を検出するSOC検出部と、
前記車両の走行時に、前記バッテリの使用可能なSOC範囲に対して、前記アイドリングストップ制御によるエンジン停止から再始動までのストップアンドスタート期間において使用すると予想されるアイドリングストップ用容量を設定するアイドリングストップ用容量設定部と、
前記車両の走行時に、前記SOC検出部によって検出されたSOCに対応する、前記使用可能なSOC範囲における残存容量が、前記アイドリングストップ用容量を下回ることを回避するように、前記発電機の発電量を制御する残存容量制御部と
を備える車両制御装置。
この構成によれば、車両の走行時に、発電機の発電量を制御することで、バッテリの使用可能SOC範囲における残存容量が、ストップアンドスタート期間において使用すると予想されるアイドリングストップ用容量を下回ることを回避するように制御される。このため、ストップアンドスタート期間の途中でSOC不足からエンジンが再始動されることを抑制することができる。エンジンの運転時における動力増大によるSOCの増加は、ストップアンドスタート期間の途中でSOC不足からエンジンを再始動する場合に比べて、単位SOC(例えばSOC1%)当たりの燃費効果が高いことから、車両の燃費を向上させることができる。
適用例1に記載の車両制御装置であって、
前記車両の走行時に、前記発電機の発電を抑制し、前記車両の減速走行中の回生発電による前記バッテリへの充電を許可する充電制御部を備え、
前記アイドリングストップ用容量設定部は、
前記バッテリの使用可能なSOC範囲を、前記充電制御部による前記発電機の発電の抑制によって必要となる充電制御用容量と、前記アイドリングストップ用容量とに配分したときの配分率を規定するパラメータを、前記アイドリングストップ用容量として設定する、車両制御装。
この構成によれば、バッテリの使用可能なSOC範囲は、充電制御用容量とアイドリングストップ用容量とに配分される。その充電制御用容量と前記アイドリングストップ用容量との配分率を規定するパラメータが、前記アイドリングストップ用容量として設定されることになる。したがって、バッテリの使用可能なSOC範囲において適切にアイドリングストップ用容量を定めることができる。
適用例1または適用例2に記載の車両制御装置であって、
前記アイドリングストップ用容量設定部は、
停車を引き起こす車両の走行環境を予測する走行環境予測部と、
前記走行環境に基づいて前記アイドリングストップ用容量を決定する容量決定部と
を備える車両制御装置。
この構成によれば、ストップアンドスタート期間において使用すると予想されるアイドリングストップ用容量を走行環境から高精度に推定することができる。したがって、燃費向上の確実性を高めることができる。
適用例3に記載の車両制御装置であって、
前記車両は、前記バッテリのSOCを用いて動作する補機類を備え、
前記アイドリングストップ用容量設定部は、前記補機類の動作状況に関わる自車両状態を算出する自車両状態算出部をさらに備え、
前記容量決定部は、前記走行環境に加えて前記自車両状態に基づいて前記アイドリングストップ用容量の決定を行う、車両制御装置。
補機類で費やす電力量が大きいときにはSOCを消費する速度は早い。この構成によれば、補機類の動作状況に関わる自車両状態も加味してアイドリングストップ用容量を算出することから、アイドリングストップ用容量をより高精度に推定することができる。したがって、燃費向上の確実性をより高めることができる。
適用例1または適用例2に記載の車両制御装置であって、
前記車両は、前記バッテリのSOCを用いて動作する補機類を備え、
前記アイドリングストップ用容量設定部は、
前記補機類の動作状況に関わる自車両状態を算出する自車両状態算出部と、
前記自車両状態に基づいて前記アイドリングストップ用容量を決定する容量決定部と
を備える車両制御装置。
この構成によれば、ストップアンドスタート期間において使用すると予想されるアイドリングストップ用容量を自車両状態から高精度に推定することができる。したがって、燃費向上の確実性を高めることができる。
車両であって、
エンジンと、
前記エンジンの動力によって駆動される発電機の発電量によって充電可能なバッテリと、
アイドリングストップ制御を行うアイドリングストップ制御部と、
前記バッテリの蓄電状態(SOC)を検出するSOC検出部と、
前記車両の走行時に、前記バッテリの使用可能なSOC範囲に対して、前記アイドリングストップ制御によるエンジン停止から再始動までのストップアンドスタート期間において使用すると予想されるアイドリングストップ用容量を設定するアイドリングストップ用容量設定部と、
前記車両の走行時に、前記SOC検出部によって検出されたSOCに対応する、前記使用可能なSOC範囲における残存容量が、前記アイドリングストップ用容量を下回ることを回避するように、前記発電機の発電量を制御する残存容量制御部と
を備える、車両。
エンジンと、前記エンジンの動力によって駆動される発電機の発電量によって充電可能なバッテリと、を有する車両を制御する車両制御方法であって、
(a)アイドリングストップ制御を行う工程と、
(b)前記バッテリの蓄電状態(SOC)を検出する工程と、
(c)前記車両の走行時に、前記バッテリの使用可能なSOC範囲に対して、前記アイドリングストップ制御によるエンジン停止から再始動までのストップアンドスタート期間において使用すると予想されるアイドリングストップ用容量を設定する工程と、
(d)前記車両の走行時に、前記SOC検出部によって検出されたSOCに対応する、前記使用可能なSOC範囲における残存容量が、前記アイドリングストップ用容量を下回ることを回避するように、前記発電機の発電量を制御する工程と
を備える車両制御方法。
適用例6の車両、および適用例7の車両制御方法によれば、適用例1の車両制御装置と同様に、ストップアンドスタート期間の途中でSOC不足からエンジンが再始動されることを抑制することができ、車両の燃費を向上させることができる。
A.全体構成:
B.ECUの構成:
C.目標SOC推定部の構成:
D.作用、効果:
E.変形例:
図1は、本発明の一実施例としての自動車200の構成を示す説明図である。自動車200は、アイドリングストップ機能を搭載した車両である。自動車200は、エンジン10と、自動変速機15と、ディファレンシャルギア20と、駆動輪25と、スタータ30と、オルタネータ35と、バッテリ40と、電子制御ユニット(ECU:Electrical Control Unit)50とを備えている。
図2は、ECU50の構成を機能的に示す説明図である。図示するように、ECU50は、アイドリングストップ制御部90と、SOC制御部100とを備える。アイドリングストップ制御部90およびSOC制御部100は、実際は、ECU50に備えられたCPUが、ROMに記憶されたコンピュータプログラムを実行することで実現する機能を示す。
目標SOC推定部110は、走行環境予測部112と、自車両状態予測部114と、SOC配分要求レベル算出部116と、目標SOC算出部118とを備える。
・10分間停止時間比率R<38%のとき、走行環境指数P1を値1とする。
・38%≦10分間停止時間比率R<42%のとき、走行環境指数P1を値2とする。
・42%≦10分間停止時間比率R<46%のとき、走行環境指数P1を値3とする。
・10分間停止時間比率R≧46%のとき、走行環境指数P1を値4とする。
図6は、自動車200の運転中における車速とバッテリ40のSOC(現在SOC値C2)についてのタイムチャートを示す説明図である。タイムチャートは、縦軸に車速とSOCをとり、横軸に時間をとったものである。自動車200の運転が開始され、時刻t0において自動車200が発進すると、車速は次第に増し、通常走行に至る。その後、時刻t1において、車両が減速状態に移行する。この時刻t0から時刻t1までのt0-t1期間においては、実線に示すように、SOCは徐々に低下する。この実線は従来例についてのもので、本実施例では2点鎖線のように変化する。これについては後述する。
なお、この発明は上記の実施例や実施形態に限られるものではなく、その要旨を逸脱しない範囲において種々の態様において実施することが可能であり、例えば次のような変形も可能である。
上記実施例では、SOC配分要求レベルP3を走行環境指数P1および自車両状態P2に基づいて求めていたが、これに換えて、自動車200のインストルメントパネル(図示せず)に運転者により操作されるダイヤルを設け、そのダイヤルの操作量に応じてSOC配分要求レベルP3を求める構成としてもよい。運転者は、例えば郊外から市街地に入るような場合に、ダイヤルを「高」側に切り換えてSOC配分要求レベルP3が大きくなるように設定することで、目標SOC、すなわち、アイドリングストップ用の配分率を大きくすることができる。この構成によれば、運転者が、これから進む地域を判っていてSOC配分要求レベルを設定することが可能な場合に、ストップアンドスタート期間において使用する最大SOCを走行環境から高精度に設定することができる。なお、ダイヤルは「高」と「低」の2段階を指示できるものであってもよいし、3以上の多段で指示できるものであってもよい。また、ダイヤルはスイッチ等の他の入力手段に替えることもできる。さらに、ダイヤルの操作量だけでSOC配分要求レベルP3を求めるのではなく、前記実施例で走行環境指数P1と自車両状態P2から求めたSOC配分要求レベルP3を、前記ダイヤルの操作量に基づいて補正する構成とすることもできる。
上記実施例では、走行環境指数P1と自車両状態P2に基づいてSOC配分要求レベルP3を一旦求め、SOC配分要求レベルP3に基づいて目標SOCを算出する構成であったが、これに換えて、走行環境指数P1と自車両状態P2に基づいて、目標SOCを直接、算出する構成としてもよい。すなわち、走行環境指数P1と自車両状態P2に基づいて、バッテリの使用可能SOC範囲を充電制御用とアイドリングストップ用とを配分する配分率を直接算出する構成としてもよい。同様に上記変形例1においても、ダイヤルの操作量に基づいて目標SOCを直接、算出する構成としてもよい。
上記実施例では、SOC配分要求レベルは、走行環境指数P1と自車両状態Pの両方に基づいて算出していたが、これに換えて、走行環境指数P1と自車両状態Pのいずれか一方に基づいて算出する構成としてもよい。
上記実施例では、バッテリは鉛蓄電池としたが、本発明ではこれに限られない。例えば、リチウムイオン蓄電池、ロッキングチェア型蓄電体等の他の種類のバッテリに替えることもできる。また、上記実施例では、車両は自動車であったが、これに換えて、電車等の自動車以外の車両としてもよい。
上記実施例においてソフトウェアで実現されている機能の一部をハードウェア(例えば集積回路)で実現してもよく、あるいは、ハードウェアで実現されている機能の一部をソフトウェアで実現してもよい。
なお、前述した実施例および各変形例における構成要素の中の、独立請求項で記載された要素以外の要素は、付加的な要素であり、適宜省略可能である。例えば、通常走行中はバッテリへの充電を抑えることで燃料消費量を節約し、減速走行中に回生発電によりバッテリへの充電を行なう充電制御についても省略することができる。
15…自動変速機
20…ディファレンシャルギア
25…駆動輪
30…スタータ
34…駆動機構
35…オルタネータ
40…バッテリ
50…ECU
70…補機類
72…ヘッドライト
74…空調装置
82…車輪速センサ
84…ブレーキペダルセンサ
86…アクセル開度センサ
88…バッテリ電流センサ
89…オルタネータ電流センサ
90…アイドリングストップ制御部
100…SOC制御部
110…目標SOC推定部
112…走行環境予測部
114…自車両状態予測部
116…SOC配分要求レベル算出部
118…目標SOC算出部
120…バッテリSOC算出部
130…フィードバック制御部
200…自動車
Claims (7)
- エンジンと、前記エンジンの動力によって駆動される発電機の発電量によって充電可能なバッテリと、を有する車両に搭載される車両制御装置であって、
アイドリングストップ制御を行うアイドリングストップ制御部と、
前記バッテリの蓄電状態(SOC)を検出するSOC検出部と、
前記車両の走行時に、前記バッテリの使用可能なSOC範囲に対して、前記アイドリングストップ制御によるエンジン停止から再始動までのストップアンドスタート期間において使用すると予想されるアイドリングストップ用容量を設定するアイドリングストップ用容量設定部と、
前記車両の走行時に、前記SOC検出部によって検出されたSOCに対応する、前記使用可能なSOC範囲における残存容量が、前記アイドリングストップ用容量を下回ることを回避するように、前記発電機の発電量を制御する残存容量制御部と
を備える車両制御装置。 - 請求項1に記載の車両制御装置であって、
前記車両の走行時に、前記発電機の発電を抑制し、前記車両の減速走行中の回生発電による前記バッテリへの充電を許可する充電制御部を備え、
前記アイドリングストップ用容量設定部は、
前記バッテリの使用可能なSOC範囲を、前記充電制御部による前記発電機の発電の抑制によって必要となる充電制御用容量と、前記アイドリングストップ用容量とに配分したときの配分率を規定するパラメータを、前記アイドリングストップ用容量として設定する、車両制御装置。 - 請求項1または請求項2に記載の車両制御装置であって、
前記アイドリングストップ用容量設定部は、
停車を引き起こす車両の走行環境を予測する走行環境予測部と、
前記走行環境に基づいて前記アイドリングストップ用容量を決定する容量決定部と
を備える車両制御装置。 - 請求項3に記載の車両制御装置であって、
前記車両は、前記バッテリのSOCを用いて動作する補機類を備え、
前記アイドリングストップ用容量設定部は、前記補機類の動作状況に関わる自車両状態を算出する自車両状態算出部をさらに備え、
前記容量決定部は、前記走行環境に加えて前記自車両状態に基づいて前記アイドリングストップ用容量の決定を行う、車両制御装置。 - 請求項1または請求項2に記載の車両制御装置であって、
前記車両は、前記バッテリのSOCを用いて動作する補機類を備え、
前記アイドリングストップ用容量設定部は、
前記補機類の動作状況に関わる自車両状態を算出する自車両状態算出部と、
前記自車両状態に基づいて前記アイドリングストップ用容量を決定する容量決定部と
を備える車両制御装置。 - 車両であって、
エンジンと、
前記エンジンの動力によって駆動される発電機の発電量によって充電可能なバッテリと、
アイドリングストップ制御を行うアイドリングストップ制御部と、
前記バッテリの蓄電状態(SOC)を検出するSOC検出部と、
前記車両の走行時に、前記バッテリの使用可能なSOC範囲に対して、前記アイドリングストップ制御によるエンジン停止から再始動までのストップアンドスタート期間において使用すると予想されるアイドリングストップ用容量を設定するアイドリングストップ用容量設定部と、
前記車両の走行時に、前記SOC検出部によって検出されたSOCに対応する、前記使用可能なSOC範囲における残存容量が、前記アイドリングストップ用容量を下回ることを回避するように、前記発電機の発電量を制御する残存容量制御部と
を備える、車両。 - エンジンと、前記エンジンの動力によって駆動される発電機の発電量によって充電可能なバッテリと、を有する車両を制御する車両制御方法であって、
(a)アイドリングストップ制御を行う工程と、
(b)前記バッテリの蓄電状態(SOC)を検出する工程と、
(c)前記車両の走行時に、前記バッテリの使用可能なSOC範囲に対して、前記アイドリングストップ制御によるエンジン停止から再始動までのストップアンドスタート期間において使用すると予想されるアイドリングストップ用容量を設定する工程と、
(d)前記車両の走行時に、前記SOC検出部によって検出されたSOCに対応する、前記使用可能なSOC範囲における残存容量が、前記アイドリングストップ用容量を下回ることを回避するように、前記発電機の発電量を制御する工程と
を備える車両制御方法。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2014119869/11A RU2573687C2 (ru) | 2011-11-18 | 2011-11-18 | Устройство управления транспортным средством, транспортное средство и способ управления транспортным средством |
CN201180074922.1A CN103946518B (zh) | 2011-11-18 | 2011-11-18 | 车辆控制装置、车辆以及车辆控制方法 |
KR1020147013228A KR101589395B1 (ko) | 2011-11-18 | 2011-11-18 | 차량 제어 장치, 차량 및 차량 제어 방법 |
US14/358,802 US9199590B2 (en) | 2011-11-18 | 2011-11-18 | Vehicle control device, vehicle, and vehicle control method |
JP2013543993A JP5842927B2 (ja) | 2011-11-18 | 2011-11-18 | 車両制御装置、車両、および車両制御方法 |
EP11875693.1A EP2781721B1 (en) | 2011-11-18 | 2011-11-18 | Vehicle control device, vehicle, and vehicle control method |
PCT/JP2011/006449 WO2013072974A1 (ja) | 2011-11-18 | 2011-11-18 | 車両制御装置、車両、および車両制御方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2011/006449 WO2013072974A1 (ja) | 2011-11-18 | 2011-11-18 | 車両制御装置、車両、および車両制御方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013072974A1 true WO2013072974A1 (ja) | 2013-05-23 |
Family
ID=48429090
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/006449 WO2013072974A1 (ja) | 2011-11-18 | 2011-11-18 | 車両制御装置、車両、および車両制御方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US9199590B2 (ja) |
EP (1) | EP2781721B1 (ja) |
JP (1) | JP5842927B2 (ja) |
KR (1) | KR101589395B1 (ja) |
CN (1) | CN103946518B (ja) |
RU (1) | RU2573687C2 (ja) |
WO (1) | WO2013072974A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015067042A (ja) * | 2013-09-27 | 2015-04-13 | 富士重工業株式会社 | 車両用電源装置 |
JP2017005890A (ja) * | 2015-06-11 | 2017-01-05 | トヨタ自動車株式会社 | 車両制御装置 |
CN114355210A (zh) * | 2021-12-03 | 2022-04-15 | 重庆长安汽车股份有限公司 | 一种低温环境中的整车电源系统电平衡试验方法 |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6086092B2 (ja) * | 2014-04-21 | 2017-03-01 | トヨタ自動車株式会社 | ハイブリッド車両 |
JP6011578B2 (ja) * | 2014-05-14 | 2016-10-19 | トヨタ自動車株式会社 | 車両制御装置、車両および車両制御方法 |
JP6191575B2 (ja) * | 2014-08-06 | 2017-09-06 | トヨタ自動車株式会社 | 電源装置 |
DE102014220768A1 (de) * | 2014-10-14 | 2016-04-14 | Bayerische Motoren Werke Aktiengesellschaft | Energieprädiktion zur Reduzierung des Speicherverschleißes |
JP2017166434A (ja) * | 2016-03-17 | 2017-09-21 | 株式会社オートネットワーク技術研究所 | 停止制御回路 |
KR101806738B1 (ko) | 2016-09-21 | 2018-01-10 | 현대자동차주식회사 | 효율 맵 기반 지능형 발전제어 방법 및 차량 |
US10012201B1 (en) * | 2017-04-19 | 2018-07-03 | Ford Global Technologies, Llc | Method for controlling a stop/start vehicle |
KR20190010045A (ko) | 2017-07-20 | 2019-01-30 | 현대자동차주식회사 | 친환경 차량의 충전 제어 장치, 그를 포함한 시스템 및 그 방법 |
JP6874639B2 (ja) * | 2017-10-25 | 2021-05-19 | トヨタ自動車株式会社 | 車両 |
JP7087551B2 (ja) * | 2018-03-28 | 2022-06-21 | 株式会社デンソー | 制御装置 |
JP7010108B2 (ja) * | 2018-03-28 | 2022-01-26 | 株式会社デンソー | 制御装置 |
US20220049665A1 (en) * | 2018-09-10 | 2022-02-17 | Amir Khajepour | Method and system of anti-idling control for vehicles |
CN109353329A (zh) * | 2018-09-28 | 2019-02-19 | 潍柴动力股份有限公司 | 一种混合动力汽车的控制方法及装置 |
US11358491B2 (en) * | 2018-12-10 | 2022-06-14 | Hyundai Motor Company | Vehicle and method for controlling the same |
WO2020192905A1 (en) * | 2019-03-27 | 2020-10-01 | Volvo Truck Corporation | A method for controlling a vehicle |
CN112727655B (zh) * | 2020-12-17 | 2022-08-30 | 东风汽车有限公司 | 汽车启停控制方法、存储介质及电子设备 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005067293A (ja) | 2003-08-21 | 2005-03-17 | Matsushita Electric Ind Co Ltd | 鉛蓄電池の制御方法 |
JP2005291158A (ja) * | 2004-04-02 | 2005-10-20 | Nissan Motor Co Ltd | 内燃機関の発電制御装置 |
JP2011027472A (ja) * | 2009-07-22 | 2011-02-10 | Toyota Central R&D Labs Inc | 経路探索装置、プログラム、発進回数予測装置、燃料消費量算出装置、及び動作スケジュール決定装置 |
JP2011026993A (ja) * | 2009-07-23 | 2011-02-10 | Nippon Soken Inc | 内燃機関の自動停止始動装置 |
JP2011163281A (ja) | 2010-02-12 | 2011-08-25 | Fuji Heavy Ind Ltd | アイドリングストップ車両 |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001268719A (ja) * | 2000-03-23 | 2001-09-28 | Toyota Motor Corp | ハイブリッド車両のバッテリ充電制御装置 |
JP3842015B2 (ja) * | 2000-06-12 | 2006-11-08 | 本田技研工業株式会社 | 燃料電池車両のアイドル制御装置 |
JP4006948B2 (ja) * | 2001-02-14 | 2007-11-14 | スズキ株式会社 | 車両用発電制御装置 |
JP4145498B2 (ja) * | 2001-03-28 | 2008-09-03 | 本田技研工業株式会社 | ハイブリッド車両の制御装置 |
JP3466600B1 (ja) * | 2002-07-16 | 2003-11-10 | 本田技研工業株式会社 | ハイブリッド車両の制御装置 |
JP3880924B2 (ja) | 2002-12-18 | 2007-02-14 | 松下電器産業株式会社 | 電源制御装置及びその制御方法 |
US7689331B2 (en) * | 2004-12-01 | 2010-03-30 | Ise Corporation | Method of controlling engine stop-start operation for heavy-duty hybrid-electric and hybrid-hydraulic vehicles |
JP4245624B2 (ja) * | 2006-09-20 | 2009-03-25 | トヨタ自動車株式会社 | ハイブリッド車両の電源制御装置および電源制御方法 |
JP4527138B2 (ja) * | 2007-07-12 | 2010-08-18 | 本田技研工業株式会社 | ハイブリッド車両の制御装置 |
US8078324B2 (en) * | 2007-07-13 | 2011-12-13 | Cummins Inc. | Method for controlling fixed and removable vehicle HVAC devices |
US9725008B2 (en) * | 2008-11-10 | 2017-08-08 | Sumitomo Heavy Industries, Ltd. | Hybrid type construction machine |
US9764726B2 (en) * | 2009-01-02 | 2017-09-19 | Ford Global Technologies, Llc | Methods and systems for assisted direct start control |
JP2010163879A (ja) * | 2009-01-13 | 2010-07-29 | Honda Motor Co Ltd | アイドルストップ制御装置 |
JP5327012B2 (ja) * | 2009-02-24 | 2013-10-30 | 日産自動車株式会社 | アイドルストップ制御装置およびアイドルストップ制御方法 |
US8109092B2 (en) * | 2009-05-28 | 2012-02-07 | Ford Global Technologies, Llc | Methods and systems for engine control |
JP5093251B2 (ja) * | 2010-01-22 | 2012-12-12 | 日産自動車株式会社 | 車両の制御装置 |
US8210828B2 (en) * | 2010-03-30 | 2012-07-03 | Ford Global Technologies, Llc | Methods and systems for assisted direct start control |
JP5693151B2 (ja) * | 2010-11-01 | 2015-04-01 | ジヤトコ株式会社 | 車両の制御装置 |
US9043060B2 (en) * | 2010-12-31 | 2015-05-26 | Cummins Inc. | Methods, systems, and apparatuses for driveline load management |
US8591379B2 (en) * | 2011-06-28 | 2013-11-26 | Ford Global Technologies, Llc | Method and system for engine control |
-
2011
- 2011-11-18 RU RU2014119869/11A patent/RU2573687C2/ru active
- 2011-11-18 WO PCT/JP2011/006449 patent/WO2013072974A1/ja active Application Filing
- 2011-11-18 JP JP2013543993A patent/JP5842927B2/ja active Active
- 2011-11-18 CN CN201180074922.1A patent/CN103946518B/zh active Active
- 2011-11-18 US US14/358,802 patent/US9199590B2/en active Active
- 2011-11-18 EP EP11875693.1A patent/EP2781721B1/en active Active
- 2011-11-18 KR KR1020147013228A patent/KR101589395B1/ko active IP Right Grant
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005067293A (ja) | 2003-08-21 | 2005-03-17 | Matsushita Electric Ind Co Ltd | 鉛蓄電池の制御方法 |
JP2005291158A (ja) * | 2004-04-02 | 2005-10-20 | Nissan Motor Co Ltd | 内燃機関の発電制御装置 |
JP2011027472A (ja) * | 2009-07-22 | 2011-02-10 | Toyota Central R&D Labs Inc | 経路探索装置、プログラム、発進回数予測装置、燃料消費量算出装置、及び動作スケジュール決定装置 |
JP2011026993A (ja) * | 2009-07-23 | 2011-02-10 | Nippon Soken Inc | 内燃機関の自動停止始動装置 |
JP2011163281A (ja) | 2010-02-12 | 2011-08-25 | Fuji Heavy Ind Ltd | アイドリングストップ車両 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015067042A (ja) * | 2013-09-27 | 2015-04-13 | 富士重工業株式会社 | 車両用電源装置 |
JP2017005890A (ja) * | 2015-06-11 | 2017-01-05 | トヨタ自動車株式会社 | 車両制御装置 |
CN114355210A (zh) * | 2021-12-03 | 2022-04-15 | 重庆长安汽车股份有限公司 | 一种低温环境中的整车电源系统电平衡试验方法 |
Also Published As
Publication number | Publication date |
---|---|
US9199590B2 (en) | 2015-12-01 |
CN103946518A (zh) | 2014-07-23 |
EP2781721B1 (en) | 2019-05-29 |
EP2781721A4 (en) | 2017-03-08 |
RU2573687C2 (ru) | 2016-01-27 |
EP2781721A1 (en) | 2014-09-24 |
RU2014119869A (ru) | 2015-12-27 |
JP5842927B2 (ja) | 2016-01-13 |
KR20140077966A (ko) | 2014-06-24 |
CN103946518B (zh) | 2017-02-15 |
KR101589395B1 (ko) | 2016-01-27 |
JPWO2013072974A1 (ja) | 2015-04-02 |
US20140257636A1 (en) | 2014-09-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5842927B2 (ja) | 車両制御装置、車両、および車両制御方法 | |
JP5896081B2 (ja) | 充電制御装置、車両制御装置、車両、充電制御方法、および車両制御方法 | |
JP5783267B2 (ja) | 車両制御装置、車両及び車両制御方法 | |
JP5729484B2 (ja) | 走行環境予測装置および車両制御装置、並びにそれらの方法 | |
JP5811192B2 (ja) | 車両制御装置、車両、および車両制御方法 | |
JP5929288B2 (ja) | 車両制御装置、車両、車両制御方法、走行環境予測装置、及び走行環境予測方法 | |
JP5655831B2 (ja) | 走行環境推定装置およびその方法 | |
JP6369389B2 (ja) | 電源制御装置 | |
JP2016028198A (ja) | 車両制御装置、車両、および車両制御方法 | |
JP5812117B2 (ja) | 車両を制御する方法、車両制御装置 | |
JP6269540B2 (ja) | 車両制御装置 | |
JP2013127225A (ja) | 車両制御装置、車両、および車両制御方法 | |
JP5831400B2 (ja) | 車両制御装置、車両、および車両制御方法 | |
CN114684106A (zh) | 车辆能量管理方法、装置、系统和存储介质与整车控制器 | |
JP2014136535A (ja) | 車両制御装置、車両、および車両制御方法 | |
JP2014097708A (ja) | 走行環境推定装置およびその方法 | |
JP2015043130A (ja) | 走行環境推定装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11875693 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013543993 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20147013228 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14358802 Country of ref document: US Ref document number: 2011875693 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2014119869 Country of ref document: RU Kind code of ref document: A |