JP5811192B2 - 車両制御装置、車両、および車両制御方法 - Google Patents

車両制御装置、車両、および車両制御方法 Download PDF

Info

Publication number
JP5811192B2
JP5811192B2 JP2013553082A JP2013553082A JP5811192B2 JP 5811192 B2 JP5811192 B2 JP 5811192B2 JP 2013553082 A JP2013553082 A JP 2013553082A JP 2013553082 A JP2013553082 A JP 2013553082A JP 5811192 B2 JP5811192 B2 JP 5811192B2
Authority
JP
Japan
Prior art keywords
current value
soc
vehicle
unit
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013553082A
Other languages
English (en)
Other versions
JPWO2013105132A1 (ja
Inventor
亨裕 宮下
亨裕 宮下
伊藤 耕巳
耕巳 伊藤
伸和 植木
伸和 植木
康平 栃木
康平 栃木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Publication of JPWO2013105132A1 publication Critical patent/JPWO2013105132A1/ja
Application granted granted Critical
Publication of JP5811192B2 publication Critical patent/JP5811192B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/188Controlling power parameters of the driveline, e.g. determining the required power
    • B60W30/1886Controlling power supply to auxiliary devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2045Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for optimising the use of energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/18Controlling the braking effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/30Conjoint control of vehicle sub-units of different type or different function including control of auxiliary equipment, e.g. air-conditioning compressors or oil pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/0097Predicting future conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/46Drive Train control parameters related to wheels
    • B60L2240/461Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/80Time limits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/26Transition between different drive modes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/44Control modes by parameter estimation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/50Control modes by future state prediction
    • B60L2260/54Energy consumption estimation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/30Auxiliary equipments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/28Wheel speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/12Brake pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/20Direction indicator values
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/45External transmission of data to or from the vehicle
    • B60W2556/50External transmission of data to or from the vehicle of positioning data, e.g. GPS [Global Positioning System] data
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • Automation & Control Theory (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Control Of Charge By Means Of Generators (AREA)

Description

本発明は、エンジンとバッテリを有する車両に搭載される車両制御装置、車両、および車両制御方法に関するものである。
自動車には、エンジンとバッテリが搭載されており、エンジンの動力によってバッテリは充電される。従来、バッテリへの充電を行う充電制御として、通常走行中はバッテリへの充電を抑えることで燃料消費量を節約し、減速走行中に回生発電によりバッテリへの充電を行なう技術が知られている。
また、燃料消費量を節約するものとして、アイドリングストップ(アイドル・リダクションともいう)制御が知られている。下記の特許文献1には、燃費向上の要請から、充電制御の機能とアイドリングストップ制御の機能との両方を備える自動車が開示されている。
しかしながら、前記技術では、アイドリングストップ制御によるエンジンの停止中に、バッテリに蓄積された電気量が補機類によって消費されると、SOC(State of Charge )不足からエンジンが再始動されることがあった。「SOC」とは、バッテリにどの程度の電力が残存しているかを示す指標である。特に、前記技術では、充電制御の機能によって余剰のSOCが少なくなっていることから、SOC不足からの再始動が起こり易かった。このため、燃費向上を十分に果たすことができず、改善の余地があった。
特開2005−67293号公報 特開2011−163281号公報 特開2004−176624号公報
本発明は、上述した従来の課題の少なくとも一部を解決するためになされたものであり、車両の燃費をより向上させることを目的とする。
本発明は、上述の課題の少なくとも一部を解決するために、以下の形態または適用例を取ることが可能である。
[適用例1]
エンジンと、前記エンジンの動力によって駆動される発電機の発電量によって充電可能なバッテリと、前記バッテリの電力を用いて動作する補機類とを有する車両に搭載される車両制御装置であって、
アイドリングストップ制御を行うアイドリングストップ制御部と、
前記バッテリの蓄電状態(SOC)を検出するSOC検出部と、
前記補機類に流れる電流の電流値を取得する電流値取得部と、
前記電流値を補正する電流補正部と、
前記車両の走行時に、前記バッテリの使用可能なSOC範囲に対して、前記アイドリングストップ制御によるエンジン停止から再始動までのストップアンドスタート期間において使用すると予想されるアイドリングストップ用容量を、前記電流補正部によって補正された電流値に基づいて設定するアイドリングストップ用容量設定部と、
前記車両の走行時に、前記SOC検出部によって検出されたSOCに対応する、前記使用可能なSOC範囲における残存容量が、前記アイドリングストップ用容量を下回ることを回避するように、前記発電機の発電量を制御する残存容量制御部と
を備え、
前記電流補正部は、
前記電流値取得部によって取得した電流値になまし処理を施すなまし処理部と、
前記補機類に属し前記電流値を一時的に急変し得る所定の補機が動作状態にあるか否かを判定する所定補機動作判定部と、
前記所定の補機が動作状態にあると判定されたときに、前記なまし処理において前記電流値取得部により取得された最新の電流値の影響を抑制する電流変化抑制部と
を備える、車両制御装置。
適用例1に記載の車両制御装置によれば、車両の走行時に、発電機の発電量を制御することで、バッテリの使用可能SOC範囲における残存容量が、ストップアンドスタート期間において使用すると予想されるアイドリングストップ用容量を下回ることを回避するように制御される。このため、ストップアンドスタート期間の途中でSOC不足からエンジンが再始動されることを抑制することができる。エンジンの運転時における動力増大によるSOCの増加は、ストップアンドスタート期間の途中でSOC不足からエンジンを再始動する場合に比べて、単位SOC(例えばSOC1%)当たりの燃費効果が高いことから、車両の燃費を向上させることができる。さらに、適用例1に記載の車両制御装置によれば、前記所定の補機が動作して、補機類に流れる電流値が一時的に変動した場合に、なまし処理において最新の電流値の影響が抑制されることから、その一時的な電流値の変動によって発電機の発電量の制御が誤作動することを防止することができる。
[適用例2]
適用例1に記載の車両制御装置であって、
前記車両の走行時に、前記発電機の発電を抑制し、前記車両の減速走行中の回生発電による前記バッテリへの充電を許可する充電制御部を備え、
前記アイドリングストップ用容量設定部は、
前記バッテリの使用可能なSOC範囲を、前記充電制御部による前記発電機の発電の抑制によって必要となる充電制御用容量と、前記アイドリングストップ用容量とに配分したときの配分率を規定するパラメータを、前記アイドリングストップ用容量として設定する、車両制御装。
この構成によれば、バッテリの使用可能なSOC範囲は、充電制御用容量とアイドリングストップ用容量とに配分される。その充電制御用容量と前記アイドリングストップ用容量との配分率を規定するパラメータが、前記アイドリングストップ用容量として設定されることになる。したがって、バッテリの使用可能なSOC範囲において適切にアイドリングストップ用容量を定めることができる。特に、補機類に流れる電流値が一時的に変動した場合に、その変動する電流値に基づいて前記配分率を決定することによって充電制御とアイドリングストップ制御との間でハンチングが生じることを防止することができる。
[適用例3]
適用例1または適用例2に記載の車両制御装置であって、
前記電流変化抑制部は、前記なまし処理部に、前記なまし処理部の前回の出力結果に対するなまし処理を実行させることにより、前記最新の電流値の影響を抑制する、車両制御装置。
この構成によれば、前回のなまし処理の処理結果を今回のなまし処理の処理結果として保持することになり、最新の電流値の影響を抑制することが容易にできる。
[適用例4]
適用例1ないし適用例3のいずれかに記載の車両制御装置であって、
前記所定の補機は、点灯と消灯を繰り返しうる点滅補機である、車両制御装置。
点滅補機は、電流値取得部により取得される電流値を上下に繰り返し変動させる。適用例4に記載の車両制御装置によれば、電流値の繰り返しの変動によって発電機の発電量の制御が誤作動することを防止することができる。
[適用例5]
適用例4に記載の車両制御装置であって、
前記点滅補機は、ブレーキペダルの踏み込み時に点灯するストップランプであり、
前記所定補機動作判定部は、前記ブレーキペダルの踏み込みの有無を検出するブレーキスイッチがオン状態にあるか否かを判定する、車両制御装置。
この構成によれば、ストップランプの点滅によって発電機の発電量の制御が誤作動することを防止することができる。
[適用例6]
適用例4に記載の車両制御装置であって、
前記点滅補機は、方向指示器であり、
前記所定補機動作判定部は、前記方向指示器の作動を指示する方向指示器スイッチがオン状態にあるか否かを判定する、車両制御装置。
この構成によれば、方向指示器の点滅によって発電機の発電量の制御が誤作動することを防止することができる。
[適用例7]
適用例1ないし適用例3のいずれかに記載の車両制御装置であって、
前記所定の補機は、瞬間的に大電流を流しうる瞬時大電流補機であり、
前記所定補機動作判定部は、前記電流値取得部によって取得した電流値が所定値より大きいか否かを判定する、車両制御装置。
この構成によれば、瞬間的に大電流を流しうる瞬時大電流補機の駆動によって発電機の発電量の制御が誤作動することを防止することができる。
[適用例8]
車両であって、
エンジンと、
前記エンジンの動力によって駆動される発電機の発電量によって充電可能なバッテリと、
前記バッテリの電力を用いて動作する補機類と、
アイドリングストップ制御を行うアイドリングストップ制御部と、
前記バッテリの蓄電状態(SOC)を検出するSOC検出部と、
前記補機類に流れる電流の電流値を取得する電流値取得部と、
前記電流値を補正する電流補正部と、
前記車両の走行時に、前記バッテリの使用可能なSOC範囲に対して、前記アイドリングストップ制御によるエンジン停止から再始動までのストップアンドスタート期間において使用すると予想されるアイドリングストップ用容量を、前記電流補正部によって補正された電流値に基づいて設定するアイドリングストップ用容量設定部と、
前記車両の走行時に、前記SOC検出部によって検出されたSOCに対応する、前記使用可能なSOC範囲における残存容量が、前記アイドリングストップ用容量を下回ることを回避するように、前記発電機の発電量を制御する残存容量制御部と
を備え、
前記電流補正部は、
前記電流値取得部によって取得した電流値になまし処理を施すなまし処理部と、
前記補機類に属し前記電流値を一時的に急変し得る所定の補機が動作状態にあるか否かを判定する所定補機動作判定部と、
前記所定の補機が動作状態にあると判定されたときに、前記なまし処理において前記電流値取得部により取得された最新の電流値の影響を抑制する電流変化抑制部と
を備える、車両。
[適用例9]
エンジンと、前記エンジンの動力によって駆動される発電機の発電量によって充電可能なバッテリと、前記バッテリの電力を用いて動作する補機類とを有する車両を制御する車両制御方法であって、
(a)アイドリングストップ制御を行う工程と、
(b)前記バッテリの蓄電状態(SOC)を検出する工程と、
(d)前記補機類に流れる電流の電流値を取得する工程と、
(e)前記電流値を補正する工程と、
(f)前記車両の走行時に、前記バッテリの使用可能なSOC範囲に対して、前記アイドリングストップ制御によるエンジン停止から再始動までのストップアンドスタート期間において使用すると予想されるアイドリングストップ用容量を、前記工程(e)によって補正された電流値に基づいて設定する工程と、
(g)前記車両の走行時に、前記SOC検出部によって検出されたSOCに対応する、前記使用可能なSOC範囲における残存容量が、前記アイドリングストップ用容量を下回ることを回避するように、前記発電機の発電量を制御する工程と
を備え、
前記工程(e)は、
前記工程(d)によって取得した電流値になまし処理を施す工程と、
前記補機類に属し前記電流値を一時的に急変し得る所定の補機が動作状態にあるか否かを判定する工程と、
前記所定の補機が動作状態にあると判定されたときに、前記なまし処理において前記工程(d)により取得された最新の電流値の影響を抑制する工程と
を備える車両制御方法。
適用例8の車両、および適用例9の車両制御方法によれば、適用例1の車両制御装置と同様に、ストップアンドスタート期間の途中でSOC不足からエンジンが再始動されることを抑制することができ、車両の燃費を向上させることができる。さらに、所定の補機による一時的な電流値の変動によって発電機の発電量の制御が誤作動することを防止することができる。
なお、本発明は、種々の態様で実現することが可能である。例えば、前記車両制御装置を備える制御システム、前記車両制御方法の各工程に対応する機能をコンピュータに実現させるためのコンピュータプログラム、そのコンピュータプログラムを記録した記録媒体等の形態で実現することができる。
本発明の一実施例としての自動車200の構成を示す説明図である。 ECU50の構成を機能的に示す説明図である。 目標SOC推定ルーチンを示すフローチャートである。 SOC配分要求レベル算出用マップMPを示す説明図である。 目標SOC算出用テーブルTBを示す説明図である。 自動車の運転中における車速とSOCについてのタイムチャートを示す説明図である。 自車両状態予測部114の機能を示すブロック図である。 第1自車両状態予測処理ルーチンを示すフローチャートである。 ブレーキスイッチ信号SW1がオフ状態で、かつ方向指示器スイッチ信号SW2がオフ状態であるときの各種電流値のタイムチャートを示す説明図である。 ブレーキスイッチ信号SW1がオン状態に切り替わるときの各種電流値のタイムチャートを示す説明図である。 方向指示器スイッチ信号SW2がオン状態に切り替わるときの各種電流値のタイムチャートを示す説明図である。 第2自車両状態予測処理ルーチンを示すフローチャートである。 第2自車両状態予測処理ルーチンの動作を示すタイムチャートについての説明図である。 実施例の自車両状態予測部114の変形例を示すブロック図である。
次に、本発明の実施の形態を実施例に基づいて以下の順序で説明する。
A.全体構成:
B.ECUの構成:
C.目標SOC推定部の構成:
D.自車両状態予測部の構成:
E.作用、効果:
F.変形例:
A.全体構成:
図1は、本発明の一実施例としての自動車200の構成を示す説明図である。自動車200は、アイドリングストップ機能を搭載した車両である。自動車200は、エンジン10と、自動変速機15と、ディファレンシャルギア20と、駆動輪25と、スタータ30と、オルタネータ35と、バッテリ40と、電子制御ユニット(ECU:Electrical Control Unit)50とを備えている。
エンジン10は、ガソリンや軽油などの燃料を燃焼させることによって動力を発生させる内燃機関である。エンジン10の動力は、自動変速機15に伝達されるとともに、駆動機構34を介してオルタネータ35に伝達される。エンジン10の出力は、運転者により操作されるアクセルペダル(図示せず)の踏み込み量に応じて、エンジンコントロールコンピュータ(図示せず)により変更される。
自動変速機15は、変速比の変更(いわゆるシフトチェンジ)を自動的に実行する。エンジン10の動力(回転数・トルク)は、自動変速機15によって変速され、所望の回転数・トルクとして、ディファレンシャルギア20を介して、左右の駆動輪25に伝達される。こうして、エンジン10の動力は、アクセルペダルの踏み込み量に応じて変更されつつ、自動変速機15を介して駆動輪25に伝達されて、車両(自動車200)の加速・減速が行なわれることになる。
オルタネータ35にエンジン10の動力を伝達する駆動機構34は、本実施例では、ベルトドライブの構成を採用している。オルタネータ35は、エンジン10の動力の一部を用いて発電を行なう。発電された電力は、インバータ(図示せず)を介してバッテリ40の充電に用いられる。本明細書では、オルタネータ35を用いたエンジン10の動力による発電を「燃料発電」と呼ぶ。オルタネータ35は、[課題を解決するための手段]の欄に記載した「発電機」に相当する。
バッテリ40は、電圧14Vの直流電源としての鉛蓄電池であり、エンジン本体以外に設けられた周辺機器に電力を供給する。本明細書では、エンジン本体以外に設けられた周辺機器であって、バッテリ40の電力を用いて動作する機器を、「補機」と呼ぶ。また、補機の集まりを、「補機類」と呼ぶ。自動車200は、補機類70として、ヘッドライト72、空調装置(A/C)74、ストップランプ76、方向指示器78等を備える。前述したスタータ30も補機類70に含まれる。
スタータ30は、バッテリ40から供給される電力によってエンジン10を始動させるセルモータである。通常は、停止している自動車の運転を開始する際に、運転者がイグニッションスイッチ(図示せず)を操作すると、スタータ30が起動し、エンジン10が始動する。このスタータ30は、以下で説明するように、アイドリングストップ状態からエンジン10を再始動させる場合にも利用される。本明細書では、「アイドリングストップ状態」とは、アイドリングストップ制御による停止状態をいう。
ECU50は、コンピュータプログラムを実行するCPU、コンピュータプログラム等を記憶するROM、一時的にデータを記憶するRAM、各種センサ、スイッチ、アクチュエータ、ライト等に接続される入出力ポート等を備える。ECU50に接続されるセンサやスイッチとしては、駆動輪25の回転速度を検出する車輪速センサ82、ブレーキペダル(図示せず)の踏み込みの有無を検出するブレーキスイッチ84、アクセルペダル(図示せず)の踏み込み量をアクセル開度として検出するアクセル開度センサ86、バッテリ40の充放電電流を検出するバッテリ電流センサ88、およびオルタネータ35の出力電流を検出するオルタネータ電流センサ89、方向指示器の作動を指示する方向指示器スイッチ87等が設けられている。アクチュエータとしては、スタータ30やオルタネータ35等が該当する。ECU50は、バッテリ40から電力の供給を受けている。
ECU50は、前記各種のセンサやスイッチ、エンジンコントロールコンピュータ(図示せず)からの信号をもとに、スタータ30やオルタネータ35を制御することによって、エンジン停止と再始動を制御(アイドリングストップ制御)するとともにバッテリ40のSOCを制御する。このECU50が本発明に直接関わる車両制御装置である。また、ECU50は、ブレーキスイッチ84がオン状態となったときに、ストップランプ76を点灯させ、方向指示器スイッチ87がオン状態となったときに、方向指示器78のランプを点滅させるといった制御も行う。
B.ECUの構成:
図2は、ECU50の構成を機能的に示す説明図である。図示するように、ECU50は、アイドリングストップ制御部90と、SOC制御部100とを備える。アイドリングストップ制御部90およびSOC制御部100は、実際は、ECU50に備えられたCPUが、ROMに記憶されたコンピュータプログラムを実行することで実現する機能を示す。
アイドリングストップ制御部90は、車輪速センサ82で検出された車輪速Vhとアクセル開度センサ86で検出されたアクセル開度Tpとを取得し、エンジン10を停止/始動させる指示Ssを出力する。停止/再始動指示Ssは、スタータ30に出力されるエンジン再始動の指示と、エンジン10の燃料供給系(図示せず)に出力される燃料カットの指示とを含む。詳しくは、アイドリングストップ制御部90は、車輪速Vhが低下して所定速度(例えば10km/h)未満となったときに、エンジン停止条件が成立したとして燃料カットの指示を燃料供給系に出力し、その後、アクセル開度Tpからアクセルペダルが踏み込まれたことが検出されたときに、エンジン再始動条件が成立したとしてエンジン再始動の指示をスタータ30に出力する。
すなわち、アイドリングストップ制御部90は、エンジン停止条件が成立したときにエンジン10を停止させ、前記停止後においてエンジン再始動条件が成立したときにエンジン10を再始動させる。前記エンジン停止条件およびエンジン再始動条件は、前述したものに限らない。例えば、車輪速Vhが完全に0km/hとなることをエンジン停止条件とすることもできるし、ブレーキペダルから足が離れたことをエンジン再始動条件とすることもできる。
SOC制御部100は、目標SOC推定部110と、バッテリSOC算出部120と、フィードバック制御部130とを備える。目標SOC推定部110は、車両の走行時(例えば、車輪速Vh>0km/hの時)に、アイドリングストップ制御によるエンジン停止から再始動までの期間(以下、「ストップアンドスタート期間」と呼ぶ)において使用すると予想されるSOCを、目標SOC(以下、「目標SOC値」とも呼ぶ)C1として推定するもので、詳しい構成についてはC節で説明する。なお、この目標SOC推定部110が[課題を解決するための手段]の欄に記載した「アイドリングストップ用容量設定部」に相当する。「SOC」は、バッテリに残存している電気量を、バッテリを満充電したときに蓄えられる電気量で除した値として定義される。
バッテリSOC算出部120は、バッテリ電流センサ88によって検出されたバッテリ40の充放電電流(「バッテリ電流」と呼ぶ)Abに基づいて、バッテリ40の現在のSOC(以下、「現在SOC値」と呼ぶ)C2を算出する。詳しくは、バッテリ40の充電電流をプラス値とし、バッテリ40の放電電流をマイナス値として充放電電流Abを積算することで、現在SOC値C2を算出する。バッテリ電流センサ88およびバッテリSOC算出部120の構成が、[課題を解決するための手段]の欄に記載した「SOC検出部」に相当する。なお、SOC検出部は、バッテリ電流センサ88によって検出されたバッテリ電流に基づいて算出するものに限る必要はなく、バッテリ電解液比重センサ、セル電圧センサ、バッテリ端子電圧センサ等に基づいて求める構成としてもよい。さらに、SOC検出部は、バッテリに残存している電気量を検出する構成に限る必要もなく、例えば充電可能量等の他のパラメータで蓄電状態を検出するものとすることもできる。
フィードバック制御部130は、車両の走行時に、目標SOC値C1から現在SOC値C2を差し引いた差分値を求め、その差分値を値0にフィードバック制御で一致させる電圧指示値Svを求める。その電圧指示値Svはオルタネータ35の発電量を指示するもので、オルタネータ35に送られる。この結果、燃料発電によって現在SOC値C2が目標SOC値C1に制御される。フィードバック制御部130の構成が、[課題を解決するための手段]の欄に記載した「残存容量制御部」に相当する。
SOC制御部100には、図示はしないが、上記以外に、「バッテリ制御」と呼ばれる機能と、「充電制御」と呼ばれる機能が設けられている。バッテリ制御について説明する。バッテリ、特に本実施例の鉛バッテリは、長寿命化の要請から、使用可能なSOC範囲(運用するSOC範囲)が予め定められている。このため、このSOC範囲の下限値(例えば60%)をバッテリ40のSOCが下回るときにエンジン10の動力を増大してSOCを前記SOC範囲内とし、SOC範囲の上限値(例えば90%)をSOCが上回るときにSOCを消費して前記SOC範囲内とする「バッテリ制御」が行われる。アイドリングストップ制御によるエンジンの停止時においてもSOCが下限値を下回ると、エンジンが始動して燃料発電によってSOCを前記SOC範囲内とする。
「充電制御」は、通常走行中に燃料発電によるバッテリへの充電を抑えることで燃料消費量を節約し、減速走行中に回生発電によりバッテリへの充電を行なう制御処理である。充電制御については周知の構成であることから、詳しく説明しないが、概ね次の処理を行う。充電制御においては、通常走行時におけるフィードバック制御部130によるフィードバック制御を、目標SOC値C1が現在SOC値C2を上回るときに実行し、通常走行時に目標SOC値C1が現在SOC値C2以下であるときには、所定の発電カット電圧をオルタネータ35への電圧指示値Svとする。この構成により、通常走行時における充電を抑制し燃料消費量を節約することができる。なお、「通常走行」とは、車速が0km/hである「停車」、および前記回生発電が行われる「減速走行」のいずれにも該当しない自動車200の状態である。
C.目標SOC推定部の構成:
目標SOC推定部110は、走行環境予測部112と、自車両状態予測部114と、SOC配分要求レベル算出部116と、目標SOC算出部118とを備える。
走行環境予測部112は走行環境を予測する。ここでいう「走行環境」とは、今後(現在以後)どれくらいアイドリングストップ状態となるかを示すパラメータであり、今後の所定期間におけるストップアンドスタート期間の割合に関わるパラメータとも言える。すなわち、「走行環境」は、アイドリングストップ制御による停車を引き起こす車両の走行環境である。走行環境予測部112は、詳しくは、車輪速センサ82によって検出された車輪速Vhに基づいて、走行環境を指数で示す走行環境指数を算出する。具体的には、現在から遡る所定期間(例えば10分間)における停車時間の比率Rを車輪速Vhに基づいて算出し、その比率から走行環境指数P1を算出する。すなわち、所定期間において車輪速Vhが値0となる停車時間の合計を求め、その合計を所定期間の全時間で割り算することで比率Rを算出し、その比率Rから走行環境指数P1を算出する。
比率Rが高いということは、前記車両の停止頻度と停止期間の長さが高いということであり、今後の車両の停止頻度と長さも高いと予測することができる。このため、本実施例では、下記に従って走行環境指数P1を決定する。
・10分間停止時間比率R<38%のとき、走行環境指数P1を値1とする。
・38%≦10分間停止時間比率R<42%のとき、走行環境指数P1を値2とする。
・42%≦10分間停止時間比率R<46%のとき、走行環境指数P1を値3とする。
・10分間停止時間比率R≧46%のとき、走行環境指数P1を値4とする。
前記38%、42%、46%という閾値はこれらに限らず、別の数値とすることができる。また、求める走行環境指数P1は1〜4までの4つに限らず、3つ、5つ、6つ等の他の数とすることもできる。なお、走行環境指数P1が低い場合は郊外であり、走行環境指数P1が高い場合は市街地であると言えることから、走行環境指数P1の値が高いほど、市街化度が高いといえる。
本実施例では、走行環境指数P1を車輪速センサ82によって検出された車輪速Vhに基づいて求めていたが、本発明ではこれに限られない。例えば、車速センサによって検出された車速の平均値、車輪速センサ82によって検出された車輪速Vhの変化率(すなわち加速度)、MT(Manual Transmission)車の場合手動変速機のシフトポジション、またはAT(Automatic Transmission)車の場合の自動変速機のギヤ比等に基づいて求める構成としてもよい。すなわち、車速の平均値が低いほど市街化度が高くなることから、車速の平均値が低いほど走行環境指数P1を高い値とすればよい。車輪速Vhの変化率が高いほど市街化度が高くなることから、車輪速Vhの変化率が高いほど走行環境指数P1を高い値とすればよい。手動変速機のシフトポジションが頻繁に行われるほど市街化度が高くなることから、手動変速機のシフトポジションが頻繁に行われるほど走行環境指数P1を高い値とすればよい。自動変速機のギヤ比等が頻繁に切り換わるほど市街化度が高くなることから、自動変速機のギヤ比等が頻繁に切り換わるほど走行環境指数P1を高い値とすればよい。
なお、前記車輪速Vhと車輪速Vhに替わる各パラメータは、それらの中から選択した1つに基づいて走行環境指数P1を求める構成に限る必要もなく、2つ以上のパラメータに基づいて走行環境指数P1を求める構成としてもよい。2つ以上のパラメータを採用する場合、各パラメータに個別の重み付け指数を掛けて走行環境指数P1を求める構成とすることが好ましい。なお、前述した車輪速Vhと車輪速Vhに替わる各パラメータを採用することで、自動車200という自律系のみで走行環境を予測することができる。これに対して、自律系の外側から取得する情報に基づいて、走行環境指数P1を求める構成としてもよい。自律系の外側から取得する情報としては、ナビゲーションシステムの道路地図情報等がある。ナビゲーションシステムの道路地図情報に基づいて今後の走行地位置が市街地か郊外かを見極めて、走行環境指数P1を求めることができる。
自車両状態予測部114は、自動車200の状態(自車両状態)を予測する。ここでいう「自車両状態」とは、自動車200が今後どの程度SOCを消費するかを表すパラメータである。自車両状態予測部114は、オルタネータ電流センサ89によって検出されたオルタネータ電流値Aaと、バッテリ電流センサ88によって検出されたバッテリ電流値Abと、ブレーキスイッチ84の出力信号(ブレーキスイッチ信号)SW1と、方向指示器スイッチ87の出力信号(方向指示器スイッチ信号)SW2とに基づいて、補機類70で費やす電力量を算出し、その電力量を自車両状態P2として出力する。補機類70で費やす電力量が大きいときにはSOCを消費する速度は早いことから、本実施例では、自車両状態予測部114は、補機類70で費やす電力量を自車両状態P2として求める。自車両で費やす電力量の詳しい求め方については、D節で詳述する。
さらに、自車両状態予測部114は、現在検出されるセンサ信号によって補機類の現在の動作状況を求め、その現在の動作状況を今後の自車両状態と見なすものであったが、これに替えて、上記のように求めた現在の動作状況から動作状況が変化する兆候を捕らえることで、今後の自車両状態を予測する構成としてもよい。
前記構成の走行環境予測部112および自車両状態予測部114は、自動車200の運転が開始された以後、常にその予測を行っている。各部12〜14は、実際は、ECU50に備えられたCPUが、ROMに記憶されたコンピュータプログラムを実行することで実現する。走行環境予測部112によって算出した走行環境指数P1と、自車両状態予測部114によって算出した自車両状態P2とは、SOC配分要求レベル算出部116に送られる。
SOC配分要求レベル算出部116は走行環境指数P1および自車両状態P2に基づいてSOC配分要求レベルP3を算出し、目標SOC算出部118はSOC配分要求レベルP3に基づいて目標SOC値C1を算出する。以下、SOC配分要求レベル算出部116および目標SOC算出部118の内容を、以下に詳述する。
図3は、目標SOC推定ルーチンを示すフローチャートである。この目標SOC推定ルーチンは、車両の走行時に所定時間(例えば、60sec)毎に繰り返し実行される。すなわち、目標SOC推定ルーチンは、アイドリングストップ制御によるエンジン10の停止時には実行されない。図示するように、処理が開始されると、ECU50のCPUは、走行環境予測部112(図2)によって求められた走行環境指数P1を取得する(ステップS100)とともに、自車両状態予測部114(図2)によって求められた自車両状態P2を取得する(ステップS200)。
ステップS200の実行後、CPUは、SOC配分要求レベル算出用マップMPを用いて、走行環境指数P1と自車両状態P2に基づいてSOC配分要求レベルを算出する処理を行う(ステップS300)。バッテリには、先に説明したように、使用可能なSOC範囲がバッテリの種類毎に定められている。本実施例では、使用可能SOC範囲をアイドリングストップ用と充電制御用とに配分することを図っており、「SOC配分要求レベル」は前記配分のレベルを指定するパラメータである。
図4は、SOC配分要求レベル算出用マップMPを示す説明図である。図示するように、SOC配分要求レベル算出用マップMPは、横軸に走行環境指数P1をとり、縦軸に自車両状態P2をとり、横軸の値と縦軸の値とに対応するSOC配分要求レベルP3をマッピングしたマップデータである。走行環境指数P1と、自車両状態P2と、SOC配分要求レベルP3との関係を、予め実験的にあるいはシミュレーションにより求めることで、SOC配分要求レベル算出用マップMPは作成されており、ROMに記憶している。ステップS300では、ROMからSOC配分要求レベル算出用マップMPを呼び出し、そのマップMPを参照して、ステップS100で求めた走行環境指数P1とステップS200で求めた自車両状態P2とに対応するSOC配分要求レベルP3を取得する。図示の例では、SOC配分要求レベルP3としてA、B、C、Dの4つの値が用意されている。A、B、C、Dはこの順で高い値となっている。走行環境指数P1が高いほど、自車両状態P2が高いほど、SOC配分要求レベルP3は高い値となる。
図3に戻って、ステップS300の実行後、CPUは、目標SOC算出用テーブルTBを用いて、SOC配分要求レベルP3に基づいて目標SOC値C1を算出する処理を行う(ステップS400)。
図5は、目標SOC算出用テーブルTBを示す説明図である。図示するように、目標SOC算出用テーブルTBは、横軸にSOC配分要求レベルP3をとり、縦軸に目標SOC値C1をとり、直線LでSOC配分要求レベルP3と目標SOC値C1の関係を示している。このSOC配分要求レベルP3と目標SOC値C1の関係を、予め実験的にあるいはシミュレーションにより求めることで、目標SOC算出用テーブルTBは作成されており、ROMに記憶している。ステップS400は、ROMから目標SOC算出用テーブルTBを呼び出し、そのテーブルTBを参照して、ステップS300で算出したSOC配分要求レベルP3に対応する目標SOC値C1を取得する。
図示するように、直線Lで示される目標SOC値C1は、バッテリ40の使用可能SOC範囲W内に設定される値であり、その使用可能SOC範囲Wを充電制御用容量とアイドリングストップ用容量とに配分したときの配分率を示す。換言すれば、バッテリ40の使用可能SOC範囲Wに対して、アイドリングストップ用容量の領域が下側に、充電制御用容量の領域が上側にそれぞれ設定されており、両領域の境が目標SOC値C1となっている。また、使用可能SOC範囲Wの下限値にアイドリングストップ用容量を加えた水準が目標SOC値C1として設定されているとも言える。
充電制御用容量は、前述した充電制御による燃料発電の抑制によって必要となる電池容量である。アイドリングストップ用容量は、今後のストップアンドスタート期間において使用されると予想される容量である。本実施例では、アイドリングストップ用容量は、予想される最大の大きさに定められている。SOC配分要求レベルP3が高い値になるほど、アイドリングストップ用容量は大きくなっている。直線Lよりも上側にSOCを制御したとき、そのSOCに対応する使用可能SOC範囲内の残存容量がアイドリングストップ用容量を上回ることからアイドリングストップ制御を完全に実施できるといえるが、その上回る分だけ余剰である。このため、直線Lで示される目標SOC値C1は、今後アイドリングストップ制御を完全に実施でき、かつSOC貯蔵のための発電量を最小にできるSOCを示しているといえる。
目標SOC値C1は、直線Lに示すように、SOC配分要求レベルP3の上昇に従ってリニアに増大するものであったが、本発明ではこれに限られない。例えば、SOC配分要求レベルP3が所定値以下のときにはSOC配分要求レベルP3の上昇に従ってリニアに増大し、SOC配分要求レベルP3が所定値を上回るときには一定値を維持するように、目標SOC値C1を定めた構成としてもよい。この構成は、使用可能SOC範囲が比較的小さいバッテリの場合に有効である。さらに、目標SOC値C1の変化を直線で示す構成に換えて、曲線で示す構成とすることもできる。
図3に戻って、ステップS400の実行後、CPUは、ステップS400で算出した目標SOC値C1をフィードバック制御部130に出力し(ステップS500)、その後、目標SOC推定ルーチンを一旦終了する。フィードバック制御部130(図2)では、現在SOC値C2が前記算出された目標SOC値C1に制御される。現在SOC値C2は、バッテリ40の使用可能SOC範囲における残存容量を指し示すが、上記制御の結果、車両走行中に、残存容量はアイドリングストップ用容量を下回ることを回避することができる。すなわち、図5において、現在SOC値が充電制御用容量の領域に位置するとき、すなわち、前記残存容量がアイドリングストップ用容量を上回るときに、充電制御がなされて燃料発電によるバッテリ40への充電が抑えられている。そして、SOCが低下してアイドリングストップ用容量を下回ろうとするとき、燃料発電によって、直線Lで示される目標SOC値C1にSOCは制御されることで、前記アイドリングストップ用容量を下回ろうとすることが回避される。
図6は、自動車200の運転中における車速とバッテリ40のSOC(現在SOC値C2)についてのタイムチャートを示す説明図である。タイムチャートは、縦軸に車速とSOCをとり、横軸に時間をとったものである。自動車200の運転が開始され、時刻t0において自動車200が発進すると、車速は次第に増し、通常走行に至る。その後、時刻t1において、車両が減速状態に移行する。この時刻t0から時刻t1までのt0−t1期間においては、実線に示すように、SOCは徐々に低下する。この実線は従来例についてのもので、本実施例では2点鎖線のように変化する。これについては後述する。
時刻t1の後、時刻t2において車両は停止する。t1−t2の期間では、減速による回生発電がなされ、実線に示すようにSOCは徐々に上昇する。時刻t2(厳密に言えばエンジン停止条件が成立したとき)から車速が立ち上がる時刻t3までの期間がストップアンドスタート期間SSTであり、エンジン10は停止されている。ストップアンドスタート期間SSTでは、補機類による電力消費によってSOCは徐々に下降する。従来例では、実線に示すように、この停止の最中にSOCが下限値SLに達すると(時刻tb)、バッテリ制御によってエンジン10は再始動することになる。再始動後、実線に示すように、エンジン10の動力により発電されSOCは増大する。
本実施例では、通常走行時にSOCが低下して、バッテリ40の使用可能SOC範囲における残存容量がアイドリングストップ用容量を下回ったときに(時刻ta)、燃料発電によってSOCが増大される。図中2点鎖線に示すようにta−t2期間においてSOCは増大する。この増大は、今後のストップアンドスタート期間に使用すると予想される最大の電池容量を考慮したものであることから、ストップアンドスタート期間t2−t3においてSOCが低下しても、SOCは下限値SLに至ることがない。なお、「今後のストップアンドスタート期間」とは、図示の一つのストップアンドスタート期間SSTに限るものではなく、所定の期間において複数のストップアンドスタート期間があれば、それらストップアンドスタート期間の全部である。
したがって、本実施例では、従来例のように、ストップアンドスタート期間t2−t3において、SOCが下限値に達してエンジン10が再始動されることがない。自車両状態予測部114について、次に詳述する。
D.自車両状態予測部の構成:
図7は、自車両状態予測部114の機能を示すブロック図である。図示するように、自車両状態予測部114は、電流値取得部114a、所定補機動作判定部114b、電流変化抑制部114c、なまし処理部114d、および補機類消費電力算出部114eを備える。電流値取得部114aは、オルタネータ電流センサ89によって検出されたオルタネータ電流値Aaと、バッテリ電流センサ88によって検出されたバッテリ電流値Abとの入力を受けている。所定補機動作判定部114bは、ブレーキスイッチ信号SW1と方向指示器スイッチ信号SW2との入力を受け、ブレーキスイッチおよび方向指示器スイッチの少なくとも一方がオン状態にあるか否かを判定する。
電流値取得部114aによってオルタネータ電流値Aaとバッテリ電流値Abに基づいて補機類に流れる電流値Ac(図1参照)を求め、なまし処理部114dによって電流値Acに対してなまし処理を施し、補機類消費電力算出部114eによってなまし処理後の電流値Adに基づいて補機類消費電力PWを求める。電流値取得部114aとなまし処理部114dとの間には、電流変化抑制部114cが設けられている。電流変化抑制部114cは、所定補機動作判定部114bによって肯定判定されたときに、なまし処理部114dによるなまし処理において最新の電流値Acの影響を抑制するべく、電流値Acを低下した電流値Ac*をなまし処理部114dに出力する。また、電流変化抑制部114cは、所定補機動作判定部114bによって否定判定されたときには、電流値Acをそのまま電流値Ac*としてなまし処理部114dに出力する。以下、電流値Acを補機類電流値Acと呼び、電流値Ac*をなまし入力電流値Ac*と呼び、電流値Adをなまし出力電流値Adと呼ぶ。
各部114a〜114dは、図1のECU50に備えられたCPUが、ROMに記憶されたコンピュータプログラムを実行することで実現する。以下、このコンピュータプログラムに従う自車両状態予測処理ルーチンについて詳述する。なお、各部114a〜114dは、図1に示したECU50以外の他の具体的な装置やハードウェア回路によっても実現可能である。自車両状態予測処理ルーチンは、個別に実行される2つの処理ルーチンによって構成される。2つの処理ルーチンを、「第1自車両状態予測処理ルーチン」、「第2自車両状態予測処理ルーチン」と呼ぶ。
図8は、第1自車両状態予測処理ルーチンを示すフローチャートである。この処理ルーチンは、前述したようにECU50に備えられたCPUにより実行されるもので、一定の時間毎に繰り返し実行される。処理が開始されると、ECU50に備えられたCPUは、まず、オルタネータ電流センサ89からオルタネータ電流値Aaを、バッテリ電流センサ88からバッテリ電流値Abをそれぞれ取り込む(ステップS110)。次いで、CPUは、オルタネータ電流値Aaとバッテリ電流値Abに基づいて、結線LN(図1参照)側に流れる補機類電流値Acを算出する(ステップS120)。補機類電流値Acは、詳しくは、次式(1)に基づいて求められる。
Ac=Aa−Ab …(1)
その後、CPUは、ブレーキスイッチ84からブレーキスイッチ信号SW1を、方向指示器スイッチ87から方向指示器スイッチ信号SW2をそれぞれ取り込む(ステップS130)。続いて、CPUは、ブレーキスイッチ信号SW1がオン状態、または方向指示器スイッチ信号SW2がオン状態であるか否かを判定する(ステップS140)。ここで否定判定、すなわち、ブレーキスイッチ信号SW1がオフ状態で、かつ方向指示器スイッチ信号SW2がオフ状態であると判定されたときには、CPUは、ステップS120で算出された今回の補機類電流値Acを、今回のなまし入力電流値Ac*と定める(ステップS150)。ここでいう「今回」とは、第1自車両状態予測処理ルーチンを今回実行しているときを意味する。第1自車両状態予測処理ルーチンを前回実行しているときは「前回」と呼ぶことにする。図においては、今回の実行時に得られた各電流値を[XXX電流値]_newと示し、前回の実行時に得られた各電流値を[XXX電流値]_oldと示す。なお、この第1自車両状態予測処理ルーチンでは、今回の実行時に得られた各電流値は次回の実行時までRAMに一時的に記憶されるものとする。
ステップS150の実行後、CPUは、今回のなまし入力電流値Ac*に対してなまし処理を施して、今回のなまし出力電流値Adを求める処理を行う(ステップS160)。なまし処理は、過去の所定時間(例えば、10秒)のデータで今回のなまし入力電流値Ac*を平滑化するものであり、次式(2)に基づいて求められる。
[なまし出力電流値]_new ←[なまし出力電流値]_old+([補機類電流値]_new−[なまし出力電流値]_old)/(10000/32) …(2)
式(2)は、32ms周期で補機電流が更新され、10秒間(=10000ms)で平滑化がなされる場合のものである。
続いて、CPUは、今回のなまし出力電流値Adに所定電圧を掛けることで補機類消費電力PWを算出し、補機類消費電力PWを自車両状態P2とする(ステップS170)。ステップS170の実行後、CPUは、第1自車両状態予測処理ルーチンを一旦終了する。
一方、ステップS140で、ブレーキスイッチ信号SW1がオン状態、または方向指示器スイッチ信号SW2がオン状態であると判定されたときには、CPUは、前回のなまし出力電流値Adを今回のなまし入力電流値Ac*と定める(ステップS180)。ステップS180の実行後、CPUはステップS160に処理を進める。
以上のように構成した第1自車両状態予測処理ルーチンのステップS110およびS120において、ECU50に備えられたCPUは電流値取得部114a(図7)として機能する。ステップS130およびS140において、CPUは所定補機動作判定部114b(図7)として機能する。ステップS180において、CPUは電流変化抑制部114c(図7)として機能する。ステップS160において、CPUはなまし処理部114d(図7)として機能する。ステップS170において、CPUは補機類消費電力算出部114e(図7)として機能する。
図9ないし図11のタイムチャートを用いて、第1自車両状態予測処理ルーチンの動作を説明する。図9はブレーキスイッチ信号SW1がオフ状態で、かつ方向指示器スイッチ信号SW2がオフ状態であるときのものである。図9(a)にブレーキスイッチ信号SW1を示し、図9(b)に方向指示器スイッチ信号SW2を示し、図9(c)に補機類電流値Acを示し、図9(d)になまし出力電流値Adを示した。図9(a)、(b)に示すように、ブレーキスイッチ信号SW1および方向指示器スイッチ信号SW2が共にオフ状態であるときには、図9(c)に示す補機類電流値Acは、なまし処理によって、図9(d)に示すように平滑化されたなまし出力電流値Adが得られる。
図10はブレーキスイッチ信号SW1がオン状態に切り替わるときのものである。図10(a)にブレーキスイッチ信号SW1を示し、図10(b)に補機類電流値Acを示し、図10(c)になまし入力電流値Ac*を示し、図10(d)になまし出力電流値Adを示した。図10(a)に示すようにブレーキスイッチ信号SW1がオン状態になると(時刻t11−t12)、図10(b)に示すように補機類電流値Acは、ストップランプ76が点灯する分だけ一時的に上昇する。時刻t11から時刻t12までの期間においては、従来、補機類電流値Acの一時的な上昇を受けて、図10(c)の破線のように、なまし入力電流値Ac*も一時的に上昇するところが、本実施例では、ステップS180(図8)で、前回のなまし出力電流値Adを今回のなまし入力電流値Ac*と定めることで、図10(c)の実線のように、一時的に上昇することはない。前回のなまし出力電流値Adを今回のなまし入力電流値Ac*と定めるということは、今回の補機類電流値Acと前回のなまし出力電流値Adとの偏差Dを今回の補機類電流値Acから減じた結果を今回のなまし入力電流値Ac*とすることであり、上記の上昇分に相当する偏差Dだけ減算されたなまし入力電流値Ac*となることが判る。
したがって、ブレーキスイッチ84がオンされたときに、従来、なまし入力電流値Ac*の一時的な上昇を受けて、なまし出力電流値Adは図10(d)の破線のように上昇するところが、本実施例では、前述したようになまし入力電流値Ac*の一時的な上昇がないことから、なまし出力電流値Adは、図10(d)の実線のようにほぼ一定となる。
図11は方向指示器スイッチ信号SW2がオン状態に切り替わるときのものである。図11(a)に方向指示器スイッチ信号SW2を示し、図11(b)に補機類電流値Acを示し、図11(c)になまし入力電流値Ac*を示し、図11(d)になまし出力電流値Adを示した。図11(a)に示すように方向指示器スイッチ信号SW2がオン状態になると(時刻t21−t22)、図11(b)に示すように補機類電流値Acは、方向指示器78が点滅を繰り返す分だけ上下に繰り返し変動する。時刻t21から時刻t22までの期間においては、従来、補機類電流値Acの上下の変動を受けて、図11(c)の破線のように、なまし入力電流値Ac*も上下に繰り返し変動するところが、本実施例では、ステップS180(図8)で、前回のなまし出力電流値Adを今回のなまし入力電流値Ac*と定めることで、図11(c)の実線のように、上下に変動することはない。前回のなまし出力電流値Adを今回のなまし入力電流値Ac*と定めるということは、今回の補機類電流値Acと前回のなまし出力電流値Adとの偏差Dを今回の補機類電流値Acから減じた結果を今回のなまし入力電流値Ac*とすることであり、上記の上下の変動分に相当する偏差Dだけ減算されたなまし入力電流値Ac*となることが判る。この結果、なまし処理において最新の電流値の影響が抑制される。
したがって、方向指示器スイッチ87がオンされたときに、従来、なまし入力電流値Ac*の上下の繰り返しの変動を受けて、なまし出力電流値Adは図11(d)の破線のように上下に繰り返し変動するところが、本実施例では、前述したようになまし入力電流値Ac*の上下の繰り返しの変動がないことから、なまし出力電流値Adは、図11(d)の実線のようにほぼ一定となる。
図12は、第2自車両状態予測処理ルーチンを示すフローチャートである。この第2自車両状態予測処理ルーチンは、ECU50に備えられたCPUにより実行されるもので、第1自車両状態予測処理ルーチン(図8)とは個別に一定の時間毎に繰り返し実行される。
第2自車両状態予測処理ルーチンは、第1自車両状態予測処理ルーチン(図8)と同様にステップS110、S120、S150、S160、およびS170を備える。これらステップ数の処理は、第1自車両状態予測処理ルーチン(図8)の同一のステップ数の処理と同じであり、その説明を省略する。
ステップS120によって補機類電流値Acが求められると、CPUは、その補機類電流値Acが所定値A0より大きいか否かを判定する(ステップS210)。エンジン10の始動時にはスタータ30に大電流が流れるが、この大電流が流れたことを判定可能なように所定値A0は、例えば50Aに定められている。なお、50Aは一例であり、40A等の他の閾値とすることもできる。ステップS210で、補機類電流値Acが所定値A0以下であると判定されたときには、CPUは、ステップS150に処理を進め、ステップS120で算出された今回の補機類電流値Acを今回のなまし入力電流値Ac*と定める。
一方、ステップS210で、補機類電流値Acが所定値A0より大きいと判定されたときには、CPUは、前回のなまし出力電流値Adを今回のなまし出力電流値Adと定め(ステップS220)、その後、ステップS170に処理を進め、ステップS220によって定まった今回のなまし出力電流値Adに基づいて、補機類消費電力PWを算出する。
図13のタイムチャートを用いて、第2自車両状態予測処理ルーチンの動作を説明する。図13(a)に補機類電流値Acを示し、図13(b)になまし出力電流値Adを示した。例えば、エンジン10の始動時にスタータ30に大電流が流れると、図13(a)に示すように、補機類電流値Acが瞬間的に大きくなる。従来、補機類電流値Acの瞬間的な上昇を受けて、図13(b)の破線のように、なまし入力電流値Ac*も上昇する。これに対して、補機類電流値Acが所定値A0より大きくなったときには(時刻t31−t32)、前回のなまし出力電流値Adをそのまま今回のなまし出力電流値Adとしていることから、図13(b)の実線に示すように、なまし出力電流値Adは急激に上昇することがない。
以上のように構成した第2自車両状態予測処理ルーチン(図12)のステップS210において、CPUは所定補機動作判定部114b(図7)として機能する。すなわち、ステップS210による補機類電流値Acが所定値A0より大きいか否かの判定によって、電流値を一時的に急変しうる所定の補機が動作状態にあるか否かを判定している。ステップS220において、CPUは電流変化抑制部114c(図7)として機能する。
E.作用、効果:
本実施例の自動車200では、図6を用いて既述したように、ストップアンドスタート期間t2−t3において、SOCが下限値に達してエンジン10が再始動されることがない。ストップアンドスタート期間の途中でSOC不足からエンジンを再始動する場合は、エンジンの運転時に動力増大してSOCを増加する場合に比べて、3倍から5倍近くの燃料量が必要である。すなわち、エンジンの運転時における単位SOC(例えばSOC1%)当たりの燃費効果は、ストップアンドスタート期間の途中でSOC不足からエンジンを再始動する場合に比べて、3倍から5倍優れている。したがって、本実施例の自動車200は、従来例に比べて燃費を向上させることができる。
さらに、本実施例によれば、ストップランプ76または方向指示器78が動作して、補機類に流れる電流値が一時的に変動した場合に、なまし処理において最新の電流値の影響が抑制されることから、その一時的な電流値の変動によって、充電制御用容量とアイドリングストップ用容量との間の配分率が誤って設定されることを防止することができる。方向指示器78は点滅し、ストップランプ76は運転者の操作によって点灯と消灯とを繰り返し得ることから、ストップランプ76や方向指示器78の動作によって補機類電流値Acは上下に繰り返し変動する。この上下に繰り返し変動する補機類電流値Acをそのまま用いて前記配分率を決定した場合、充電制御とアイドリングストップ制御との間でハンチングが生じる虞があるが、本実施例では、前述したように、なまし処理結果をほぼ一定とすることができることから、前記ハンチングが生じることを防止することができる。
また、本実施例によれば、スタータ30の駆動によって補機類電流値Acが瞬間的に大きくなった場合にも、なまし処理において最新の電流値の影響が抑制されることから、その瞬間的な大電流によって、充電制御用容量とアイドリングストップ用容量との間の配分率が誤って設定されることを防止することができる。したがって、この場合にも、充電制御とアイドリングストップ制御との間の選択を誤って行うことを防止することができる。
F.変形例:
なお、この発明は上記の実施例や実施形態に限られるものではなく、その要旨を逸脱しない範囲において種々の態様において実施することが可能であり、例えば次のような変形も可能である。
・変形例1:
上記実施例では、第1自車両状態予測処理ルーチン(図8)と第2自車両状態予測処理ルーチン(図12)との双方を実行するように構成していたが、本発明はこれに限られない。例えば、第1自車両状態予測処理ルーチンだけを実行する構成としてもよいし、あるいは第2自車両状態予測処理ルーチンだけを実行する構成としてもよい。また、第1自車両状態予測処理ルーチン(図8)では、ブレーキスイッチ信号SW1がオン状態となったときだけステップS180の処理を実行するようにしてもよいし、方向指示器スイッチ信号SW2がオン状態となったときだけステップS180の処理を実行するようにしてもよい。
・変形例2:
上記実施例では、点灯と消灯を繰り返しうる点滅補機をストップランプ76と方向指示器78としていたが、本発明はこれに限られない。他の点灯と消灯を繰り返しうる補機とすることもできる。また、瞬時大電流補機をスタータ30としていたが、本発明はこれに限られない。例えば、電動パワーステアリング、アンチロックブレーキシステム、車両安定制御装置(VSC:Vehicle Stability Control)等とすることもできる。さらには、上記実施例では、電流値を一時的に急変し得る所定の補機として、点滅補機と瞬時大電流補機を挙げていたが、これら以外にも、動作と非動作を繰り返し得る補機としてもよい。動作と非動作を繰り返し得る補機としては、例えば、パワーウィンドウが該当する。
・変形例3:
上記実施例では、第自車両状態予測処理ルーチン(図8)において、電流変化抑制部114c(図7)は、前回のなまし出力電流値Adを今回のなまし入力電流値Ac*と定め(ステップS180)、その今回のなまし入力電流値Ac*に対してなまし処理を施す(ステップS160)構成としていたが、この構成は、第2自車両状態予測処理ルーチン(図12)におけるステップS220の処理、すなわち、前回のなまし出力電流値Adをそのまま今回のなまし出力電流値Adとして保持する構成と実質的に同一である。したがって、第1自車両状態予測処理ルーチン(図8)において、ステップS180の処理を、第2自車両状態予測処理ルーチン(図12)におけるステップS220の処理内容と同一とし、このステップS180の処理の出口をステップS170に変更する構成としてもよい。また、第2自車両状態予測処理ルーチン(図12)において、ステップS220の処理を、第1自車両状態予測処理ルーチン(図8)におけるステップS180の処理内容と同一とし、このステップS220の処理の出口をステップS160に変更する構成としてもよい。また、電流変化抑制部114cは、こうした構成に限る必要はなく、なまし処理において最新の補機類電流値の影響を抑制する構成であれば、どのような構成とすることもできる。
・変形例4:
上記実施例では、走行環境指数P1と自車両状態P2に基づいてSOC配分要求レベルP3を一旦求め、SOC配分要求レベルP3に基づいて目標SOCを算出する構成であったが、これに換えて、走行環境指数P1と自車両状態P2に基づいて、目標SOCを直接、算出する構成としてもよい。すなわち、走行環境指数P1と自車両状態P2に基づいて、バッテリの使用可能SOC範囲を充電制御用とアイドリングストップ用とを配分する配分率を直接算出する構成としてもよい。
・変形例5:
上記実施例では、SOC配分要求レベルは、走行環境指数P1と自車両状態P2の両方に基づいて算出していたが、これに換えて、自車両状態P2だけに基づいて算出する構成としてもよい。
・変形例6:
上記実施例では、結線LN(図1参照)側に流れる電流値Ac、すなわち補機類を含めた電子機器全般に流れる電流の電流値を、オルタネータ電流値Aaとバッテリ電流値Abに基づいて算出する構成としたが、本発明ではこれに限られない。例えば、結線LNの上流側に電流センサを設けて、この電流センサから電流値を得る構成としてもよい。要は、バッテリの電力を用いて動作する、補機類を含めた電子機器全般に流れる電流の電流値を取得することができれば、いずれの構成とすることもできる。
・変形例7:
前記実施例では、電流値取得部114a(図7)によってオルタネータ電流値Aaとバッテリ電流値Abに基づいて補機類電流値Acを求め、補機類電流値Acを電流変化抑制部114c(図7)に送る構成としたが、本発明はこれに限られない。例えば、図14に示すように、推定補機電流値算出部114fによって、補機類電流値Acに補正を掛けて、その補正後の補機類電流値Ac′を電流変化抑制部114cに送る構成としてもよい。推定補機電流値算出部114fは、例えば、外気温センサによって検出された外気温、車室温センサにより検出された車室温、エアコン設定温度スイッチによる設定温度等から空調装置74の作動状態を予測し、予測される制御上、応答が必要な補機電流の増減分でもって補機類電流値Acを補正する構成とする。なお、推定補機電流値算出部114fは、この構成に限る必要はなく、電動ファン等の他の要因を加味した補機類電流値に補正してもよい。
・変形例8:
上記実施例では、バッテリは鉛蓄電池としたが、本発明ではこれに限られない。例えば、リチウムイオン蓄電池、ロッキングチェア型蓄電体等の他の種類のバッテリに替えることもできる。また、上記実施例では、車両は自動車であったが、これに換えて、電車等の自動車以外の車両としてもよい。
・変形例9:
上記実施例においてソフトウェアで実現されている機能の一部をハードウェア(例えば集積回路)で実現してもよく、あるいは、ハードウェアで実現されている機能の一部をソフトウェアで実現してもよい。
・変形例10:
なお、前述した実施例および各変形例における構成要素の中の、独立請求項で記載された要素以外の要素は、付加的な要素であり、適宜省略可能である。例えば、通常走行中はバッテリへの充電を抑えることで燃料消費量を節約し、減速走行中に回生発電によりバッテリへの充電を行なう充電制御についても省略することができる。
10…エンジン
15…自動変速機
20…ディファレンシャルギア
25…駆動輪
30…スタータ
34…駆動機構
35…オルタネータ
40…バッテリ
50…ECU
70…補機類
72…ヘッドライト
74…空調装置
82…車輪速センサ
84…ブレーキスイッチ
86…アクセル開度センサ
87…方向指示器スイッチ
88…バッテリ電流センサ
89…オルタネータ電流センサ
90…アイドリングストップ制御部
100…SOC制御部
110…目標SOC推定部
112…走行環境予測部
114…自車両状態予測部
114a…電流値取得部
114b…所定補機動作判定部
114c…電流変化抑制部
114d…なまし処理部
114e…補機類消費電力算出部
116…SOC配分要求レベル算出部
118…目標SOC算出部
120…バッテリSOC算出部
130…フィードバック制御部
200…自動車
Aa…オルタネータ電流値
Ab…バッテリ電流値
Ac…補機類電流値
Ac*…なまし入力電流値
Ad…なまし出力電流値

Claims (8)

  1. エンジンと、前記エンジンの動力によって駆動される発電機の発電量によって充電可能なバッテリと、前記バッテリの電力を用いて動作する補機類とを有する車両に搭載される車両制御装置であって、
    アイドリングストップ制御を行うアイドリングストップ制御部と、
    前記バッテリの蓄電状態(SOC)を検出するSOC検出部と、
    前記補機類に流れる電流の電流値を取得する電流値取得部と、
    前記電流値を補正する電流補正部と、
    前記車両の走行時に、前記バッテリの使用可能なSOC範囲に対して、前記アイドリングストップ制御によるエンジン停止から再始動までのストップアンドスタート期間において使用すると予想されるアイドリングストップ用容量を、前記電流補正部によって補正された電流値に基づいて設定するアイドリングストップ用容量設定部と、
    前記車両の走行時に、前記SOC検出部によって検出されたSOCに対応する、前記使用可能なSOC範囲における残存容量が、前記アイドリングストップ用容量を下回ることを回避するように、前記発電機の発電量を制御する残存容量制御部と
    を備え、
    前記電流補正部は、
    なまし入力信号として前記電流値取得部によって取得した電流値を入力して、前記なまし入力信号になまし処理を施すなまし処理部と、
    前記補機類に属し前記電流値を一時的に急変し得る所定の補機が動作状態にあるか否かを判定する所定補機動作判定部と、
    前記所定の補機が動作状態にあると判定されたときに、前記なまし入力信号を前記なまし処理部の前回の出力結果に置き換えて前記なまし処理部になまし処理を実行させることにより、前記なまし処理において前記電流値取得部により取得された最新の電流値の影響を抑制する電流変化抑制部と
    を備える、車両制御装置。
  2. 請求項1に記載の車両制御装置であって、
    前記車両の走行時に、前記発電機の発電を抑制し、前記車両の減速走行中の回生発電による前記バッテリへの充電を許可する充電制御部を備え、
    前記アイドリングストップ用容量設定部は、
    前記バッテリの使用可能なSOC範囲を、前記充電制御部による前記発電機の発電の抑制によって必要となる充電制御用容量と、前記アイドリングストップ用容量とに配分したときの配分率を規定するパラメータを、前記アイドリングストップ用容量として設定する、車両制御装置
  3. 請求項1または請求項2に記載の車両制御装置であって、
    前記所定の補機は、点灯と消灯を繰り返しうる点滅補機である、車両制御装置。
  4. 請求項に記載の車両制御装置であって、
    前記点滅補機は、ブレーキペダルの踏み込み時に点灯するストップランプであり、
    前記所定補機動作判定部は、前記ブレーキペダルの踏み込みの有無を検出するブレーキスイッチがオン状態にあるか否かを判定する、車両制御装置。
  5. 請求項に記載の車両制御装置であって、
    前記点滅補機は、方向指示器であり、
    前記所定補機動作判定部は、前記方向指示器の作動を指示する方向指示器スイッチがオン状態にあるか否かを判定する、車両制御装置。
  6. 請求項1または請求項2に記載の車両制御装置であって、
    前記所定の補機は、瞬間的に大電流を流しうる瞬時大電流補機であり、
    前記所定補機動作判定部は、前記電流値取得部によって取得した電流値が所定値より大きいか否かを判定する、車両制御装置。
  7. 車両であって、
    エンジンと、
    前記エンジンの動力によって駆動される発電機の発電量によって充電可能なバッテリと、
    前記バッテリの電力を用いて動作する補機類と、
    アイドリングストップ制御を行うアイドリングストップ制御部と、
    前記バッテリの蓄電状態(SOC)を検出するSOC検出部と、
    前記補機類に流れる電流の電流値を取得する電流値取得部と、
    前記電流値を補正する電流補正部と、
    前記車両の走行時に、前記バッテリの使用可能なSOC範囲に対して、前記アイドリングストップ制御によるエンジン停止から再始動までのストップアンドスタート期間において使用すると予想されるアイドリングストップ用容量を、前記電流補正部によって補正された電流値に基づいて設定するアイドリングストップ用容量設定部と、
    前記車両の走行時に、前記SOC検出部によって検出されたSOCに対応する、前記使用可能なSOC範囲における残存容量が、前記アイドリングストップ用容量を下回ることを回避するように、前記発電機の発電量を制御する残存容量制御部と
    を備え、
    前記電流補正部は、
    なまし入力信号として前記電流値取得部によって取得した電流値を入力して、前記なまし入力信号になまし処理を施すなまし処理部と、
    前記補機類に属し前記電流値を一時的に急変し得る所定の補機が動作状態にあるか否かを判定する所定補機動作判定部と、
    前記所定の補機が動作状態にあると判定されたときに、前記なまし入力信号を前記なまし処理部の前回の出力結果に置き換えて前記なまし処理部になまし処理を実行させることにより、前記なまし処理において前記電流値取得部により取得された最新の電流値の影響を抑制する電流変化抑制部と
    を備える、車両。
  8. エンジンと、前記エンジンの動力によって駆動される発電機の発電量によって充電可能なバッテリと、前記バッテリの電力を用いて動作する補機類とを有する車両を制御する車両制御方法であって、
    (a)アイドリングストップ制御を行う工程と、
    (b)前記バッテリの蓄電状態(SOC)を検出する工程と、
    )前記補機類に流れる電流の電流値を取得する工程と、
    )前記電流値を補正する工程と、
    e)前記車両の走行時に、前記バッテリの使用可能なSOC範囲に対して、前記アイドリングストップ制御によるエンジン停止から再始動までのストップアンドスタート期間において使用すると予想されるアイドリングストップ用容量を、前記工程()によって補正された電流値に基づいて設定する工程と、
    )前記車両の走行時に、前記工程(b)によって検出されたSOCに対応する、前記使用可能なSOC範囲における残存容量が、前記アイドリングストップ用容量を下回ることを回避するように、前記発電機の発電量を制御する工程と
    を備え、
    前記工程()は、
    (e−1)なまし入力信号として前記工程(d)によって取得した電流値を入力して、前記なまし入力信号になまし処理を施す工程と、
    前記補機類に属し前記電流値を一時的に急変し得る所定の補機が動作状態にあるか否かを判定する工程と、
    前記所定の補機が動作状態にないと判定されたときに、前記工程(d)によって取得した電流値になまし処理を施す工程と、
    前記所定の補機が動作状態にあると判定されたときに、前回、前記なまし処理を実行したときに得られた処理結果になまし処理を施すことにより、前記なまし処理において前記工程()により取得された最新の電流値の影響を抑制する工程と
    を備える車両制御方法。
JP2013553082A 2012-01-11 2012-01-11 車両制御装置、車両、および車両制御方法 Active JP5811192B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/000124 WO2013105132A1 (ja) 2012-01-11 2012-01-11 車両制御装置、車両、および車両制御方法

Publications (2)

Publication Number Publication Date
JPWO2013105132A1 JPWO2013105132A1 (ja) 2015-05-11
JP5811192B2 true JP5811192B2 (ja) 2015-11-11

Family

ID=48781115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013553082A Active JP5811192B2 (ja) 2012-01-11 2012-01-11 車両制御装置、車両、および車両制御方法

Country Status (5)

Country Link
US (1) US9211890B2 (ja)
EP (1) EP2804288B1 (ja)
JP (1) JP5811192B2 (ja)
CN (1) CN104040828B (ja)
WO (1) WO2013105132A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5966583B2 (ja) * 2012-05-11 2016-08-10 日産自動車株式会社 電力制御装置
CN105102791B (zh) 2013-04-01 2016-12-21 丰田自动车株式会社 充电控制装置、车辆控制装置、车辆、充电控制方法以及车辆控制方法
JP6011578B2 (ja) * 2014-05-14 2016-10-19 トヨタ自動車株式会社 車両制御装置、車両および車両制御方法
JP6237708B2 (ja) * 2015-06-11 2017-11-29 トヨタ自動車株式会社 車両制御装置
JP6738653B2 (ja) * 2015-11-13 2020-08-12 古河電気工業株式会社 電源装置および電源装置の制御方法
US9669716B1 (en) 2015-12-15 2017-06-06 Automotive Research & Testing Center Energy charge controller, energy charge controlling system and method thereof
JP2017166434A (ja) * 2016-03-17 2017-09-21 株式会社オートネットワーク技術研究所 停止制御回路
JP6834608B2 (ja) * 2017-03-07 2021-02-24 株式会社Gsユアサ 電気化学素子の管理装置
US10439427B2 (en) * 2017-08-03 2019-10-08 Ford Global Technologies, Llc Determining a fuel quantity to charge a vehicle battery
CN113404598B (zh) * 2020-03-16 2022-11-25 广州汽车集团股份有限公司 一种发动机的控制方法、控制装置及可读存储介质
CN112776613B (zh) * 2021-03-04 2022-07-19 潍柴雷沃重工股份有限公司 提高农用机械起步能力的方法、系统、控制器和农用机械

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0793789B2 (ja) * 1986-04-30 1995-10-09 康文 山形 自動車用バツテリの完全放電防止装置
EP0575622B1 (en) * 1991-12-13 1999-04-07 The Furukawa Electric Co., Ltd. Electrical Load Level Detector and Method of and Apparatus employing the same
JPH11294249A (ja) * 1998-04-06 1999-10-26 Denso Corp 内燃機関の異常検出装置
JP3478193B2 (ja) * 1999-05-24 2003-12-15 トヨタ自動車株式会社 電源監視装置
JP2002238181A (ja) * 2001-02-13 2002-08-23 Denso Corp 車載バッテリの充電状態検出装置
JP2004084484A (ja) 2002-08-23 2004-03-18 Honda Motor Co Ltd 車両用制御装置
JP2004176624A (ja) 2002-11-27 2004-06-24 Nissan Motor Co Ltd ハイブリッド車両
JP2005067293A (ja) 2003-08-21 2005-03-17 Matsushita Electric Ind Co Ltd 鉛蓄電池の制御方法
DE20318046U1 (de) * 2003-11-21 2004-03-11 Behnke, Wolfgang Michael Motor-Generator mit Gleichspannungs-Kondensator
JP4581461B2 (ja) * 2004-04-02 2010-11-17 日産自動車株式会社 内燃機関の発電制御装置
JP4307455B2 (ja) * 2006-02-21 2009-08-05 株式会社豊田中央研究所 ハイブリッド車両の制御装置
US9109566B2 (en) * 2007-07-20 2015-08-18 William L. Aldrich, III Method of smoothing non-driver-commanded restarts of a hybrid vehicle
JP2009232652A (ja) * 2008-03-25 2009-10-08 Aisin Aw Co Ltd 回転電機制御システム及び当該回転電機制御システムを備えた車両駆動システム
JP4951610B2 (ja) * 2008-11-14 2012-06-13 日立オートモティブシステムズ株式会社 内燃機関の運転制御装置
JP5379713B2 (ja) 2010-02-12 2013-12-25 富士重工業株式会社 アイドリングストップ車両
JP5407945B2 (ja) * 2010-03-05 2014-02-05 株式会社デンソー 充電制御システム
JP5187405B2 (ja) 2011-02-14 2013-04-24 トヨタ自動車株式会社 車両用電源制御装置

Also Published As

Publication number Publication date
US20140330473A1 (en) 2014-11-06
EP2804288B1 (en) 2019-07-24
CN104040828A (zh) 2014-09-10
EP2804288A4 (en) 2016-01-20
CN104040828B (zh) 2016-07-27
EP2804288A1 (en) 2014-11-19
JPWO2013105132A1 (ja) 2015-05-11
WO2013105132A1 (ja) 2013-07-18
US9211890B2 (en) 2015-12-15

Similar Documents

Publication Publication Date Title
JP5811192B2 (ja) 車両制御装置、車両、および車両制御方法
JP5896081B2 (ja) 充電制御装置、車両制御装置、車両、充電制御方法、および車両制御方法
JP5842927B2 (ja) 車両制御装置、車両、および車両制御方法
JP5783267B2 (ja) 車両制御装置、車両及び車両制御方法
JP5729484B2 (ja) 走行環境予測装置および車両制御装置、並びにそれらの方法
JP2014056468A (ja) 走行環境推定装置およびその方法
JP6369389B2 (ja) 電源制御装置
JP6269540B2 (ja) 車両制御装置
JP5812117B2 (ja) 車両を制御する方法、車両制御装置
JP2013127225A (ja) 車両制御装置、車両、および車両制御方法
JP2016028198A (ja) 車両制御装置、車両、および車両制御方法
JP5831400B2 (ja) 車両制御装置、車両、および車両制御方法
JP2014136535A (ja) 車両制御装置、車両、および車両制御方法

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150818

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150831

R151 Written notification of patent or utility model registration

Ref document number: 5811192

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151