WO2013071493A1 - 平面显示面板及其修复方法 - Google Patents
平面显示面板及其修复方法 Download PDFInfo
- Publication number
- WO2013071493A1 WO2013071493A1 PCT/CN2011/082252 CN2011082252W WO2013071493A1 WO 2013071493 A1 WO2013071493 A1 WO 2013071493A1 CN 2011082252 W CN2011082252 W CN 2011082252W WO 2013071493 A1 WO2013071493 A1 WO 2013071493A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lines
- repair
- data
- line
- display panel
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/136—Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
- G02F1/1362—Active matrix addressed cells
- G02F1/136259—Repairing; Defects
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/136—Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
- G02F1/1362—Active matrix addressed cells
- G02F1/136259—Repairing; Defects
- G02F1/136263—Line defects
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/136—Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
- G02F1/1362—Active matrix addressed cells
- G02F1/136259—Repairing; Defects
- G02F1/136272—Auxiliary lines
Definitions
- the invention relates to a flat display panel and a repairing method thereof, in particular to a flat display panel with a repaired line structure and a repairing method for broken wires.
- Today's consumer electronics products generally use thin and light flat panel displays, of which liquid crystal displays have been widely used by various electronic devices such as televisions, mobile phones, personal digital assistants, digital cameras, computer screens or notebook computers.
- FIG. 1 is a partial schematic view of a liquid crystal display panel in the prior art.
- the liquid crystal display panel includes a plurality of pixel electrodes 100, a plurality of columns of data lines 102, and a plurality of rows of scanning lines 101.
- a pixel electrode 100 is connected to a scan line 101 and a data line 102 through a thin film transistor 103.
- the thin film transistor 103 is turned on or formed in accordance with the scanning signal of the scanning line 101: when the scanning signal transmitted from the scanning line 101 is at a high level, the thin film transistor 103 is turned on, and the data voltage on the data line 102 is output to the pixel electrode 100.
- the liquid crystal molecules between the pixel electrode 100 and the common line 105 are rotated according to the voltage difference between the data voltage received by the pixel electrode 100 and the common voltage supplied by the common line 105 to generate different gray scales.
- the data line 102 sometimes has a disconnection G.
- chemical vapor deposition Chemical Vapor Deposition
- CVD Repair Vapor deposition repair
- An object of the present invention is to provide a flat display panel having a repair line structure and a repair method of the broken wire. After the card forming process, a laser can be used to connect a specific repair line to the disconnected data line, so that a signal that could not be transmitted through the broken data line can be transmitted via the repair line.
- the flat display panel having the repair line structure and the repair method of the broken line can reduce the amount of product scrapping to solve the problems of the prior art.
- the present invention provides a flat display panel comprising: a plurality of pixel electrodes arranged in a matrix; a plurality of rows of scanning lines extending parallel to each other and extending in a first direction for transmitting scanning signals; and a plurality of columns of data lines parallel to each other and Extending in a second direction, the second direction is perpendicular to the first direction for transmitting a data signal, and the plurality of thin film transistors are one-to-one coupled to the pixel electrode, a plurality of rows of scan lines and the plurality of columns of data lines, each of the thin film transistors being configured to receive the scan signals transmitted from the coupled scan lines, and to turn on the data signals transmitted by the coupled data lines to corresponding ones a pixel electrode; and a plurality of repair lines parallel to and overlapping the plurality of columns of data lines, the plurality of repair lines being one-to-one disposed on one side of the plurality of pixel electrodes and not connected to each other, and The plurality of repair lines and the plurality of scan
- each repair line is I-shaped.
- a plurality of connecting members are further included, and two ends of each connecting member respectively overlap one end of two repairing lines in the same column, wherein one of the data lines is broken and one of the data lines is broken.
- two repair lines are selected from the plurality of repair lines overlapping the data line of the disconnected line, and the selected two repair lines are located in the broken data. Two sides of the broken line position of the line are overlapped with one of the connecting members, and the selected two repairing lines are electrically connected to the broken data line and the connecting member.
- an insulating layer is disposed between the plurality of repair lines and the data line, and the protective layer is located between the plurality of connecting members and the protective layer. Between the data lines.
- the disconnected data line is electrically connected at both ends of the broken line.
- a repair line for a broken data line is electrically connected at both ends of the broken line.
- the invention further provides a method for repairing a flat display panel, comprising: providing a glass substrate; forming a first metal layer on the glass substrate; etching the first metal layer to form a gate of the plurality of thin film transistors a plurality of repair lines and a plurality of scan lines; forming an insulating layer on the gates of the plurality of thin film transistors, the plurality of repair lines, and the plurality of scan lines; forming a semiconductor layer on the insulating layer Etching the semiconductor layer to form a channel region of the plurality of thin film transistors; and forming a second metal layer and etching the second metal layer to form source and drain of the plurality of thin film transistors Extreme and multiple data lines.
- the repair of the disconnected position of the broken data line is selected. a line, and electrically connecting the selected repair line to the disconnected data line; forming a protective layer on the plurality of data lines, the source and the drain of the plurality of thin film transistors; forming A transparent conductive layer is over the protective layer.
- the two repair lines and the broken data line are selected. Electrically connecting, the selected two repair lines are overlapped with the broken data lines, and respectively located at two ends of the broken line of the broken data line; in the plurality of data lines Forming a protective layer on the source and the drain of the plurality of thin film transistors; forming a transparent conductive layer on the protective layer; etching the transparent conductive layer to be above the selected two repair lines Forming a connector, the connector overlapping the selected two repair lines; and electrically connecting the connector and the broken data line.
- the step of electrically connecting is to fuse the selected two repair lines to the data line of the broken line to weld the selected two repair lines. And the disconnected data line, and the laser fuses the selected two repair lines to overlap the connecting member to weld the selected two repair lines and the connecting member.
- the method further comprises: etching the protective layer to form a connection hole over the drain; and etching the transparent conductive layer To form a pixel electrode.
- the present invention provides a flat display panel having a repair line structure and a repair method of the broken line.
- the laser is used to connect the specific repair line and the connector so that the data signal originally transmitted through the disconnected data line can be maintained by the electrical circuit formed by the repair line and the connector bypassing the broken data line. Transfer. Therefore, the flat display panel having the repair line structure and the repair method of the broken wire of the present invention can reduce the amount of product scrapping.
- FIG. 1 is a partial schematic view of a liquid crystal display panel in the prior art.
- FIG. 2 is a partial schematic view of the flat display panel of the first embodiment having the repair line structure before the repair data line is broken.
- 3 to 7 are schematic views showing a method of repairing the first embodiment of the flat display panel of the present invention.
- FIG. 8 is a partial schematic view showing the flat display panel of the second embodiment having the repair line structure before the repair data line is broken.
- 9 to 13 are schematic views showing a method of repairing a second embodiment of the flat display panel of the present invention.
- Figure 14 is a partial schematic view of the flat display panel of the third embodiment of the present invention having a repair line structure before the repair data line is broken.
- FIG. 2 is a partial schematic view of the flat display panel of the first embodiment with a repair line structure before the repair data line is broken.
- the flat display panel includes a plurality of pixel electrodes and hundreds of scan lines, data lines, and repair lines.
- the following embodiments illustrate only a partial flat display panel.
- the flat display panel includes a plurality of pixel electrodes 300a, 300b, and 300c arranged in a matrix, a plurality of scanning lines 301a, 301b, and 301c extending parallel to each other and extending toward a first direction X, and a plurality of lines parallel to each other and facing a second direction Y
- the extended data lines 302a, 302b, and 302c, the plurality of thin film transistors 303a, 303b, and 303c, and the repair lines 307a, 307b, and 307c parallel to the data line 302a, the second direction Y is perpendicular to the first direction X.
- the gate of the thin film transistor 303a is coupled to the scan line 301a, the source is coupled to the data line 302a, the drain is coupled to the pixel electrode 300a, and the structure and connection relationship of the thin film transistors 303b and 303c are the same as those of the thin film transistor 303a. Let me repeat.
- the thin film transistor 303a receives the scan signal from the coupled scan line 301a, the data signal transmitted by the coupled data line 302a is turned on to the corresponding pixel electrode 300a.
- the liquid crystal molecules corresponding to the pixel electrode 300a are rotated in accordance with the data voltage applied to the pixel electrode 300a to display different gray scales.
- the same mask development process (Photo Etching) Process, PEP) etching a first metal layer (not shown) to form a plurality of rows of scan lines 301a, 301b, and 301c and a plurality of repair lines 307a, 307b, and 307c, and a plurality of repair lines 307a, 307b, and 307c are one
- the pair is disposed on one side of the pixel electrodes 300a, 300b, and 300c.
- a second metal layer (not shown) is then etched using another mask development process to form a plurality of columns of data lines 302a, 302b, and 302c.
- At least one insulating layer is disposed between the scan lines 301a, 301b and 301c and the repair lines 307a, 307b and 307c formed by the first metal layer and the data lines 302a, 302b and 302c formed by the second metal layer (not shown) Show), to avoid direct connection of scan lines, repair lines and data lines.
- the repair lines corresponding to the pixel electrodes of the same column are overlapped with one column of data lines, for example, the data lines 302a are overlaid on the repair lines 307a, 307b.
- each data line can normally transmit signals.
- the data line 302a is disconnected, as shown by G at the broken line in Fig. 2, the data signal will not be transmitted.
- the repair line 307a located below the data line 302a of the broken line is selected, and the ends 321 and 322 of the broken line G of the data line 302a are melted by laser.
- the insulating layer located under the two ends 321 and 322 is laser-fired to open the hole, so that the metal material data line 302a is melted and then contacts the repair line 307a through the opening to electrically connect the data line 302a and the repair line 307a. Effect.
- the data line 302a and the repair line 307a bypass the break line G to form an electrical path such that the data signal can bypass the position where the data line 302a is broken through the electrical path to continue normal transmission.
- FIG. 3 to FIG. 7 are schematic diagrams of a method for repairing the first embodiment of the flat display panel 300 of the present invention.
- a glass substrate 350 is provided as a lower substrate, and then a metal thin film deposition process is performed to form a first metal layer (not shown) on the surface of the glass substrate 350, and a first mask is used.
- the film is subjected to a first lithography etching to etch the gate 371 of the thin film transistor 303a, the repair line 307a, and the scanning line 301a.
- an insulating layer 351 made of silicon nitride (SiNx) is deposited to cover the gate electrode 371, the repair line 307a, and the scan line 301a.
- the second lithography is performed using the second mask to constitute the semiconductor layer 372.
- the semiconductor layer 372 includes an amorphous silicon layer 372a as a channel of the thin film transistor 303a and an ohmic contact layer for reducing impedance (Ohmic) Contact layer) 372b.
- a second metal layer (not shown) is formed on the insulating layer 351, and a third mask is used to perform a third lithography process to define the thin film transistor 303a.
- Data line 302a is directly connected to source 373.
- FIG. 7 is also a cross-sectional view of the flat display panel 300 shown in FIG. 2 along line A-A'.
- Indium tin is formed on the protective layer 375
- the oxide, ITO is a transparent conductive layer of the material, and then the transparent conductive layer is etched by a fifth mask to form the pixel electrode 300b.
- the pixel electrode 300b is electrically connected to the drain 374 of the thin film transistor 303a through a connection hole 531 formed in advance.
- the third lithography process of FIG. 5 it may be detected whether the data line is broken. If the data line 302a is found to be broken, the two ends 321 and 322 (shown in FIG. 2) of the disconnection G of the data line 302a are selected as the melting point of the laser. The insulating layer 351 located under the two ends 321 and 322 is laser-fired to open the hole, so that the metal material data line 302a is melted and then contacts the repair line 307a through the opening to reach the data line 302a and the repair line 307a. The effect of the connection. After the process is completed, the fourth and fifth lithography etching processes shown in FIGS. 6 and 7 are continued.
- FIG. 8 is a partial schematic view of the flat display panel of the second embodiment of the present invention with the repair line structure before the repair data line is broken.
- the flat display panel 400 is provided between the two repair lines 307a and 307b of the same column, and is provided with a connector 308a overlapping one end of the two repair lines 307a and 307b.
- a first metal layer (not shown) is etched by the same mask development process to form a plurality of rows of scanning lines 301a, 301b, and 301c and a plurality of repair lines 307a, 307b, and 307c.
- the plurality of repair lines 307a, 307b, and 307c are one-to-one disposed on one side of the pixel electrodes 300a, 300b, and 300c.
- a second metal layer (not shown) is then etched using another mask development process to form a plurality of columns of data lines 302a, 302b, and 302c.
- At least one insulating layer is disposed between the scan lines 301a, 301b and 301c and the repair lines 307a, 307b and 307c formed by the first metal layer and the data lines 302a, 302b and 302c formed by the second metal layer (not shown) Show), to avoid direct connection of scan lines, repair lines and data lines.
- the connector 308a is formed by etching a transparent conductive layer (for example, indium tin oxide) by a development process of another mask.
- At least a protective layer (not shown) is disposed between the connecting member 308a and the data line 302a for preventing direct connection of the scan line, the repair line, the data line and the connecting member.
- the repair lines corresponding to the pixel electrodes of the same column are overlapped with one column of data lines, for example, the data lines 302a are overlaid on the repair lines 307a, 307b.
- the widths of the repair lines 307a, 307b, and 307c need to be larger than the widths of the data lines 302a, 302b, and 302c overlapping therewith.
- the connector 308a does not overlap the corresponding data line 302a.
- the repair lines 307a, 307b, and 307c have an appearance similar to an "I" shape.
- each of the data lines 302a and 302b can normally transmit signals.
- the data line 302a is disconnected, as indicated by the broken line G in Fig. 8, the data signal will not be transmitted.
- the repair lines 307a, 307b at both ends of the broken line G are selected.
- the ends 323, 324 of the disconnection G of the data line 302a are melted by laser light.
- the insulating layer located under the ends 323, 324 is laser-fired to open the hole, so that the metal material data line 302a is melted and then contacts the repair lines 307a, 307b through the opening.
- the ends 325, 326 of the disconnection G of the connector 308a are melted by laser light.
- the insulating layer and the protective layer located under the ends 325, 326 are laser-fired to open the opening, so that the transparent conductive material connecting member 308a is melted and then contacts the repairing lines 307a, 307b through the opening. In this way, the effect of electrically connecting the data line 302a, the connector 308a, and the repair lines 307a and 307b can be achieved.
- the connecting member 308a and the repairing lines 307a and 307b form an electrical path for bypassing the disconnecting portion G so that the data signal can pass the electrical path to bypass the disconnected position of the data line 302a. Continue normal delivery.
- FIG. 9 to FIG. 13 are schematic diagrams showing a method of repairing the second embodiment of the flat display panel 400 of the present invention.
- a glass substrate 350 is provided as a lower substrate, followed by a metal thin film deposition process to form a first metal layer (not shown) on the surface of the glass substrate 350, and utilize a first
- the mask is used to perform the first lithography etching to etch the gate 371 of the thin film transistor 303a, the repair line 307a, and the scan line 301a.
- an insulating layer 351 made of silicon nitride is deposited to cover the gate electrode 371, the repair line 307a, and the scan line 301a. Continuously depositing an amorphous silicon layer on the insulating layer 351 and a high electron doping concentration of N+ Amorphous silicon layer.
- the second lithography is performed using the second mask to constitute the semiconductor layer 372.
- the semiconductor layer 372 includes an amorphous silicon layer 372a as a channel of the thin film transistor 303a and an ohmic contact layer 372b for reducing the impedance.
- a second metal layer (not shown) is formed on the insulating layer 351, and a third mask is used to perform a third lithography process to define the thin film transistor 303a.
- Data line 302a is directly connected to source 373.
- a protective layer 375 made of silicon nitride is deposited, and the source 373, the drain 374 and the insulating layer 351 are covered, and a fourth mask is used to perform fourth lithography etching to remove the drain.
- a portion of the protective layer 375 over the pole 374 extends up to the surface of the drain 374 to form a via 531 above the drain 374.
- FIG. 13 is also a cross-sectional view of the flat display panel 300 shown in FIG. 8 along line C-C'.
- Indium tin is formed on the protective layer 375 Oxide, ITO) is a transparent conductive layer of material, and then the transparent conductive layer is etched by a fifth mask to form the pixel electrode 300b and the connecting member 308a.
- the pixel electrode 300b is electrically connected to the drain 374 of the thin film transistor 303a through a connection hole 531 formed in advance.
- the third lithography process of FIG. 11 it is possible to first detect whether the data line is open. If the data line 302a is found to be broken, the two ends 323, 324 (shown in FIG. 8) of the disconnection G of the data line 302a are selected as the melting point of the laser. The insulating layer 351 located under the ends 323, 324 is laser-fired to open the hole, so that the metal data line 302a is melted and then contacts the repair lines 307a, 307b through the opening to reach the data line 302a and the repair line 307a. , 307b electrical connection effect. After the process is completed, the fourth and fifth lithography etching processes shown in FIG. 12 and FIG. 13 are continued.
- the two end points 325, 326 (shown in FIG. 8) of the connecting member are selected as the melting point of the laser.
- the insulating layer 351 and the protective layer 375 located under the two ends 325, 326 are laser-fired to make the connecting member 308a of the transparent conductive material melt and then contact the repairing lines 307a, 307b through the opening to reach the connecting member. The effect of electrically connecting 308a and repair lines 307a, 307b.
- the data line 302a, the connector 308a, and the repair lines 307a and 307b form an electrical path for bypassing the disconnection G, so that the data signal can pass the electric power at the position where the data line 302a is disconnected.
- the sexual path continues to pass normally.
- FIG. 14 is a partial schematic view of the flat display panel of the third embodiment of the present invention with the repair line structure before the repair data line is broken. 8 and FIG. 14 have the same functions of the components having the same reference numerals and will not be further described herein.
- the repair line 307a different from that shown in FIG. 8 has an "I" shape, and the appearance of the repair line 317a of FIG. 14 is FIG.
- the "I"-shaped repair line 307a has a shape in which the longitudinal axis is folded in half as a center line.
- the pixel electrode 300a on the side close to the thin film transistor 303a in FIG. 14 can further extend toward the data line 302a, and has a larger aperture ratio (Aperture). Rate).
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Mathematical Physics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Liquid Crystal (AREA)
Abstract
一种平面显示面板(300)及其修复方法,所述平面显示面板包含多条平行于数据线(302)的修复线(307),所述多条修复线(307)设置于多个像素电极(300a,300b,300c)的一侧且彼此不相互连接,当其中一条数据线(302)断路时,利用修复线(307)在断路处(G)构建电性旁路,以绕过数据线(302)的断路之处(G),使得数据信号得以经过该电性旁路传递至像素电极(300a,300b,300c)。
Description
本发明涉及一种平面显示面板以及其修复方法,尤指一种具有修复线结构的平面显示面板以及断线的修复方法。
现今消费电子产品普遍采用轻薄的平板显示器,其中液晶显示器已经逐渐被各种电子设备如电视、移动电话、个人数字助理、数码相机、计算机屏幕或笔记本电脑等所广泛使用。
薄膜晶体管液晶显示面板由于具有高画质、空间利用效率佳、消耗功率低、无辐射等优越特性,因而已逐渐成为市场的主流。请参阅图1,图1为现有技术中液晶显示面板的局部示意图。液晶显示面板包含多个像素电极100、多列数据线102和多行扫描线101。如图所示,一像素电极100透过一薄膜晶体管103连接到一条扫描线101以及一条数据线102。薄膜晶体管103会根据扫描线101的扫描信号导通或形成断路:当扫描线101传送的扫描信号为高电平时,薄膜晶体管103导通,使数据线102上的数据电压输出至像素电极100。而像素电极100与共通线105之间的液晶分子就是依据像素电极100所接收的数据电压与共通线105提供的公共电压的电压差来旋转进而产生不同的灰阶。
然而,在形成液晶显示面板的过程中,数据线102有时候会有断线处G。一般来说,如果是在成盒(Cell)工艺之前检测数据线102发生断线,则会采用化学气相沉积修复(Chemical
vapor deposition Repair,CVD
Repair)进行修补。但在成盒工艺后如果还是侦测到会出现数据线102断线不良,目前则采用报废的方式处理。这会造成较大的浪费,影响产品的良率,提高了生产成本。
本发明的目的是提供一种具有修复线结构的平面显示面板以及断线的修复方法。在成盒工艺之后,对于已断线的数据线可以利用激光连接特定修复线,使得原先无法透过已断线的数据线传送的信号,得以经由所述修复线传送。所述具有修复线结构的平面显示面板以及断线的修复方法可以降低产品报废的数量,以解决现有技术的问题。
本发明提供一种平面显示面板,包含:多个像素电极,呈矩阵排列;多行扫描线,彼此相互平行并朝一第一方向延伸,用来传输扫描信号;多列数据线,彼此相互平行并朝一第二方向延伸,所述第二方向垂直于所述第一方向,用来传输数据信号;多个薄膜晶体管,所述多个薄膜晶体管是一对一耦接于所述像素电极、所述多行扫描线和所述多列数据线,每一薄膜晶体管用来于接收耦接的扫描线传来的所述扫描信号时,导通耦接的数据线传输的所述数据信号给对应的像素电极;以及多条修复线,平行并重叠于所述多列数据线,所述多条修复线是一对一设置于所述多个像素电极的一侧且彼此不相互连接,且所述多条修复线与所述多行扫描线由同一金属层构成。
依据本发明的一实施例,每一修复线呈I字型。
依据本发明的一实施例,另包含多个连接件,每一连接件的两端分别重叠两条位于同一列的修复线的一端,其中,当其中一列数据线已断线导致其中之一的像素电极无法接收所述数据信号时,在重叠于所述已断线的数据线的多条修复线中选取两条修复线,所述选取的两条修复线是位在所述已断线数据线的断线位置的两侧并重叠于其中一连接件,所述选取的两条修复线电性连接所述已断线的数据线及所述连接件。
依据本发明的一实施例,另包含一绝缘层以及一保护层,所述绝缘层位于所述多条修复线与所述数据线之间,所述保护层位于所述多个连接件与所述数据线之间。
依据本发明的一实施例,当其中一条数据线已断线导致一像素电极无法接收所述数据信号时,所述已断线的数据线在断线处的两端是电性连接重叠于所述已断线数据线的修复线。
本发明又提供一种修复平面显示面板的方法,包含:提供一玻璃基板;形成一第一金属层于所述玻璃基板上;蚀刻所述第一金属层,以形成多个薄膜晶体管的栅极、多条修复线以及多条扫描线;在所述多个薄膜晶体管的栅极、所述多条修复线以及所述多条扫描线上形成一绝缘层;形成一半导体层于所述绝缘层上;蚀刻所述半导体层,以形成所述多个薄膜晶体管的通道区域;以及形成一第二金属层,并蚀刻所述第二金属层,以形成所述多个薄膜晶体管的源极和漏极以及多条数据线。
依据本发明的一实施例,如果其中一条数据线已断线,且所述数据线的断线位置重叠于其中一条修复线,选取与所述已断线的数据线的断线位置重叠的修复线,并将所述选取的修复线与所述已断线的数据线电性连接;在所述多条数据线、所述多个薄膜晶体管的源极和漏极上形成一保护层;形成一透明导电层于所述保护层之上。
依据本发明的一实施例,如果其中一条数据线已断线,且所述数据线的断线位置不重叠于所述多条修复线,选取两条修复线与所述已断线的数据线电性连接,所述选取的两条修复线是重叠于所述已断线的数据线,且分别位于所述已断线的数据线的断线位置的两端;在所述多条数据线、所述多个薄膜晶体管的源极和漏极上形成一保护层;形成一透明导电层于所述保护层之上;蚀刻所述透明导电层以在所述选取的两条修复线的上方形成一连接件,所述连接件重叠于所述选取的两条修复线;以及电性所述连接件和所述已断线的数据线。
依据本发明的一实施例,所述电性连接的步骤是以激光熔断所述选取的两条修复线与所述已断线的数据线重叠之处,以熔接所述选取的两条修复线与所述已断线的数据线,并以激光熔断所述选取的两条修复线与所述连接件重叠之处,以熔接所述选取的两条修复线与所述连接件。
依据本发明的一实施例,在形成所述保护层的步骤之后,所述方法另包含:蚀刻所述保护层,以在所述漏极的上方形成一连接孔;以及蚀刻所述透明导电层以形成一像素电极。
相较于现有技术,本发明提供一种具有修复线结构的平面显示面板以及断线的修复方法。利用激光连接特定修复线和连接件,使得原先无法透过已断线的数据线传送的数据信号,得以经由所述修复线和连接件形成的电性回路绕过已断线的数据线而维持传送。所以本发明具有修复线结构的平面显示面板以及断线的修复方法可以降低产品报废的数量。
图1为现有技术中液晶显示面板的局部示意图。
图2为本发明具有修复线结构的第一实施例的平面显示面板在修补数据线断线前的局部示意图。
图3至图7为修补本发明平面显示面板的第一实施例的方法示意图。
图8为本发明具有修复线结构的第二实施例的平面显示面板在修补数据线断线前的局部示意图。
图9至图13为修补本发明平面显示面板的第二实施例的方法示意图。
图14是本发明具有修复线结构的第三实施例的平面显示面板在修补数据线断线前的局部示意图。
以下各实施例的说明是参考附加的图式,用以例示本发明可用以实施之特定实施例。本发明所提到的方向用语,例如“上”、“下”、“前”、“后”、“左”、“右”、“顶”、“底”、“水平”、“垂直”等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本发明,而非用以限制本发明。
请参阅图2,图2为本发明具有修复线结构的第一实施例的平面显示面板在修补数据线断线前的局部示意图。平面显示面板包含多个像素电极和数百条的扫描线、数据线和修复线,为简化图式以及便于说明,以下的实施例说明仅绘示部分平面显示面板。平面显示面板包含多个呈矩阵排列的像素电极300a、300b和300c、多条彼此相互平行并朝一第一方向X延伸的扫描线301a、301b和301c、多条彼此相互平行并朝一第二方向Y延伸的数据线302a、302b和302c、多个薄膜晶体管303a、303b和303c、和平行于数据线302a的修复线307a、307b和307c,第二方向Y垂直于第一方向X。薄膜晶体管303a的栅极耦接至扫描线301a,源极耦接至数据线302a,漏极耦接至像素电极300a,薄膜晶体管303b和303c的结构与连接关系与薄膜晶体管303a相同,在此不另赘述。当薄膜晶体管303a接收耦接的扫描线301a传来的扫描信号时,会导通耦接的数据线302a传输的数据信号给对应的像素电极300a。像素电极300a对应的液晶分子是依据施加于像素电极300a的数据电压来旋转,以显示不同的灰阶。
在成盒工艺中,会利用同一掩膜的显影制程(Photo Etching
Process,PEP)蚀刻一第一金属层(未图示)以一并形成多行扫描线301a、301b和301c和多条修复线307a、307b和307c,多条修复线307a、307b和307c是一对一设置于像素电极300a、300b和300c的一侧。接着会利用另一掩膜的显影制程蚀刻一第二金属层(未图示)以形成多列数据线302a、302b和302c。由该第一金属层形成的扫描线301a、301b和301c和修复线307a、307b和307c,与由该第二金属层形成的数据线302a、302b和302c之间至少设置一绝缘层(未图示),用来避免扫描线、修复线和数据线直接电性连接。较佳地,对应于同一列的像素电极的修复线皆重叠于一列数据线,例如:数据线302a重叠于修复线307a、307b之上。
在成盒工艺的过程之中,会检测每一条数据线是否可以正常地传递信号。当数据线302a发生断线时,如图2断线处G所示,数据信号将无法传递。当侦测到其中一条数据线302a有断线处G后,选取位于该断线的数据线302a下方的修复线307a,并以激光熔化数据线302a的断线处G的两端点321、322。位于两端点321、322下方的绝缘层会被激光烧出开孔,使得金属材质的数据线302a熔化后会经过该开孔与修复线307a接触,以达到数据线302a和修复线307a电性连接的效果。
如上所述,数据线302a和修复线307a会绕过断线处G而形成一个电性路径,使得数据信号可以经过该电性路径绕过数据线302a断线的位置以继续正常的传递。
在以下的揭露之中,将解说本发明平面显示面板300的制程方式。在此请参阅图3至图7,图3至图7为修补本发明平面显示面板300的第一实施例的方法示意图。
在此请先参阅图3,首先提供一个玻璃基板350当作下基板,接着进行一金属薄膜沉积制程,以于玻璃基板350表面形成一第一金属层(未显示),并利用一第一掩膜来进行第一微影蚀刻,以蚀刻得到薄膜晶体管303a的栅极371、修复线307a以及扫描线301a。
接着请参阅图4,接着沉积以氮化硅(SiNx)为材质的绝缘层351而覆盖栅极371、修复线307a以及扫描线301a。于绝缘层351上连续沉积非晶硅(a-Si,Amorphous
Si)层以及一高电子掺杂浓度的N+
非晶硅层。利用第二掩膜来进行第二微影蚀刻以构成半导体层372。半导体层372包含作为薄膜晶体管303a通道的非晶硅层372a以及用来降低阻抗的欧姆接触层(Ohmic
contact layer)372b。
请参阅图5,接着在绝缘层351上形成一全面覆盖的第二金属层(未绘示于图中),并利用第三掩膜来进行第三微影蚀刻以分别定义出薄膜晶体管303a的源极373及漏极374以及数据线302a。数据线302a是直接连接到源极373。
请参阅图6,接着沉积以氮化硅为材质的保护层(passivation
layer)375,并覆盖源极373、及漏极374和数据线302a,再利用第四掩膜来进行第四微影蚀刻用以去除漏极374上方的部份保护层375,直至漏极374表面,以于漏极374上方形成连接孔(Via)531。
请参阅图7,图7也是图2所示的平面显示面板300沿线段A-A’的剖面图。在保护层375上形成以氧化铟锡物(Indium tin
oxide,ITO)为材质的透明导电层,接着利用一第五掩膜蚀刻该透明导电层以形成像素电极300b。像素电极300b透过预先形成的连接孔531与薄膜晶体管303a的漏极374电性连接。
在图5的第三微影蚀刻制程之后,可以先检测数据线是否断路。如果发现数据线302a出现断路,选取数据线302a的断线处G的两端点321、322(绘示于图2)作为激光的熔断点。位于两端点321、322下方的绝缘层351会被激光烧出开孔,使得金属材质的数据线302a熔化后会经过该开孔与修复线307a接触,以达到数据线302a和修复线307a电性连接的效果。当此制程完成后,再继续图6、7所示的第四、第五微影蚀刻制程。
请参阅图8,图8为本发明具有修复线结构的第二实施例的平面显示面板在修补数据线断线前的局部示意图。为了简化说明,在图8中凡是与图2所示的组件具有相同编号者具有相同的功能。不同于图2所示的平面显示面板300,平面显示面板400在同一列的两修复线307a和307b之间,设有与两修复线307a和307b的一端重叠的连接件308a。在成盒工艺中,利用同一掩膜的显影制程蚀刻一第一金属层(未图示)以形成的多行扫描线301a、301b和301c和多条修复线307a、307b和307c。多条修复线307a、307b和307c是一对一设置于像素电极300a、300b和300c的一侧。接着会利用另一掩膜的显影制程蚀刻一第二金属层(未图示)以形成多列数据线302a、302b和302c。由该第一金属层形成的扫描线301a、301b和301c和修复线307a、307b和307c,与由该第二金属层形成的数据线302a、302b和302c之间至少设置一绝缘层(未图示),用来避免扫描线、修复线和数据线直接电性连接。连接件308a则是利用另一掩膜的显影制程蚀刻透明导电层(例如氧化铟锡物)所形成。连接件308a与数据线302a之间至少设置一保护层(未图示),用来避免扫描线、修复线、数据线和连接件直接电性连接。较佳地,对应于同一列的像素电极的修复线皆重叠于一列数据线,例如:数据线302a重叠于修复线307a、307b之上。请注意,修复线307a、307b和307c的宽度需大于与其重叠的数据线302a、302b和302c的宽度。连接件308a则不重叠于对应的数据线302a。较佳地,修复线307a、307b和307c的外型类似于”I”字型。”I”字型的修复线307a、307b的凸出区域3072与连接件308a重叠,而像素电极302a则可扩展到”I”字型的修复线307a的凹陷区域3071内。因此像素电极302a的开口率(Aperture
rate)不会受到影响。
在成盒工艺的过程之中,会检测每一条数据线302a和302b是否可以正常地传递信号。当数据线302a发生断线时,如图8断线处G所示,数据信号将无法传递。当侦测到其中一条数据线302a有断线处G时,选取断线处G两端的修复线307a、307b。接着以激光熔化数据线302a的断线处G的两端点323、324。位于两端点323、324下方的绝缘层会被激光烧出开孔,使得金属材质的数据线302a熔化后会经过该开孔与修复线307a、307b接触。另外,以激光熔化连接件308a的断线处G的两端点325、326。位于两端点325、326下方的绝缘层和保护层会被激光烧出开孔,使得透明导电材质的连接件308a熔化后会经过该开孔与修复线307a、307b接触。如此一来,就可以达到数据线302a、连接件308a、修复线307a和307b电性连接的效果。
经过激光熔断制程后,连接件308a、修复线307a和307b会形成一个电性路径,用来绕过断线处G,使得数据信号可以经过该电性路径绕过数据线302a断线的位置以继续正常的传递。
以下将解说本发明平面显示面板400的制程方式。在此请参阅图9至图13,图9至图13为修补本发明平面显示面板400的第二实施例的方法示意图。
在此请先参阅图9,首先提供一个玻璃基板350当作下基板,接着进行一金属薄膜沉积制程,以于玻璃基板350表面形成一层第一金属层(未显示),并利用一第一掩膜来进行第一微影蚀刻,以蚀刻得到薄膜晶体管303a的栅极371、修复线307a以及扫描线301a。
接着请参阅图10,接着沉积以氮化硅为材质的绝缘层351而覆盖栅极371、修复线307a以及扫描线301a。于绝缘层351上连续沉积非晶硅层以及一高电子掺杂浓度的N+
非晶硅层。利用第二掩膜来进行第二微影蚀刻以构成半导体层372。半导体层372包含作为薄膜晶体管303a通道的非晶硅层372a以及用来降低阻抗的欧姆接触层372b。
请参阅图11,接着在绝缘层351上形成一全面覆盖的第二金属层(未绘示于图中),并利用第三掩膜来进行第三微影蚀刻以分别定义出薄膜晶体管303a的源极373及漏极374以及数据线302a。数据线302a是直接连接到源极373。
请参阅图12,接着沉积以氮化硅为材质的保护层375,并覆盖源极373、及漏极374和绝缘层351,再利用第四掩膜来进行第四微影蚀刻用以去除漏极374上方的部份保护层375,直至漏极374表面,以于漏极374上方形成连接孔(Via)531。
请参阅图13,图13也是图8所示的平面显示面板300沿线段C-C’的剖面图。在保护层375上形成以氧化铟锡物(Indium tin
oxide,ITO)为材质的透明导电层,接着利用一第五掩膜蚀刻该透明导电层以形成像素电极300b和连接件308a。像素电极300b透过预先形成的连接孔531与薄膜晶体管303a的漏极374电性连接。
在图11的第三微影蚀刻制程之后,可以先检测数据线是否断路。如果发现数据线302a出现断路,选取数据线302a的断线处G的两端点323、324(绘示于图8)做为激光的熔断点。位于两端点323、324下方的绝缘层351会被激光烧出开孔,使得金属材质的数据线302a熔化后会经过该开孔与修复线307a、307b接触,以达到数据线302a和修复线307a、307b电性连接的效果。当此制程完成后,再继续图12、图13所示的第四、第五微影蚀刻制程。
在第五微影蚀刻制程之后,由于数据线302a出现断路,因此选取连接件的两端点325、326(绘示于图8)做为激光的熔断点。位于两端点325、326下方的绝缘层351和保护层375会被激光烧出开孔,使得透明导电材质的连接件308a熔化后会经过该开孔与修复线307a、307b接触,以达到连接件308a和修复线307a、307b电性连接的效果。
经过激光熔断制程后,数据线302a、连接件308a、修复线307a和307b会形成一个电性路径,用来绕过断线处G,使得数据信号在数据线302a断线的位置可以经过该电性路径继续正常的传递。
请参阅图14,图14是本发明具有修复线结构的第三实施例的平面显示面板在修补数据线断线前的局部示意图。图8和图14具有相同标号的组件具有相同的功能,在此不另赘述。不同于图8所示的修复线307a呈“I”字型,图14的修复线317a的外型,是将图8
的“I”字型的修复线307a以纵向轴线作为中心线对折后的形状。相较于图8,在图14中靠近薄膜晶体管303a一侧的像素电极300a更可以朝向数据线302a方向延伸,而有较大的开口率(Aperture
rate)。
综上所述,虽然本发明已以较佳实施例揭露如上,但该较佳实施例并非用以限制本发明,该领域的普通技术人员,在不脱离本发明的精神和范围内,均可作各种更动与润饰,因此本发明的保护范围以权利要求界定的范围为准。
Claims (13)
- 一种平面显示面板,包含:多个像素电极,呈矩阵排列;多行扫描线,彼此相互平行并朝一第一方向延伸,用来传输扫描信号;多列数据线,彼此相互平行并朝一第二方向延伸,所述第二方向垂直于所述第一方向,用来传输数据信号;多个薄膜晶体管,所述多个薄膜晶体管是一对一耦接于所述像素电极、所述多行扫描线和所述多列数据线,每一薄膜晶体管用来于接收耦接的扫描线传来的所述扫描信号时,导通耦接的数据线传输的所述数据信号给对应的像素电极;以及多条修复线,平行并重叠于所述多列数据线,所述多条修复线是一对一设置于所述多个像素电极的一侧且彼此不相互连接,且所述多条修复线与所述多行扫描线由同一金属层构成。
- 根据权利要求1所述的平面显示面板,其特征在于,每一修复线呈I字型。
- 根据权利要求1所述的平面显示面板,其特征在于,另包含多个连接件,每一连接件的两端分别重叠两条位于同一列的修复线的一端,其中,当其中一列数据线已断线导致其中之一的像素电极无法接收所述数据信号时,在重叠于所述已断线的数据线的多条修复线中选取两条修复线,所述选取的两条修复线是位在所述已断线数据线的断线位置的两侧并重叠于其中一连接件,所述选取的两条修复线电性连接所述已断线的数据线及所述连接件。
- 根据权利要求3所述的平面显示面板,其特征在于,另包含一绝缘层以及一保护层,所述绝缘层位于所述多条修复线与所述数据线之间,所述保护层位于所述多个连接件与所述数据线之间。
- 根据权利要求3所述的平面显示面板,其特征在于,所述多条连接件与所述多个像素电极的材质皆是氧化铟锡物。
- 根据权利要求1所述的平面显示面板,其特征在于,当其中一条数据线已断线导致一像素电极无法接收所述数据信号时,所述已断线的数据线在断线处的两端是电性连接重叠于所述已断线数据线的修复线。
- 根据权利要求5所述的平面显示面板,其特征在于,另包含一绝缘层,位于所述多条修复线与所述数据线之间。
- 一种修复平面显示面板的方法,包含:提供一玻璃基板;形成一第一金属层于所述玻璃基板上;蚀刻所述第一金属层,以形成多个薄膜晶体管的栅极、多条修复线以及多条扫描线;在所述多个薄膜晶体管的栅极、所述多条修复线以及所述多条扫描线上形成一绝缘层;形成一半导体层于所述绝缘层上;蚀刻所述半导体层,以形成所述多个薄膜晶体管的通道区域;以及形成一第二金属层,并蚀刻所述第二金属层,以形成所述多个薄膜晶体管的源极和漏极以及多条数据线。
- 根据权利要求8所述修复平面显示面板的方法,其特征在于,所述方法另包含:如果其中一条数据线已断线,且所述数据线的断线位置重叠于其中一条修复线,选取与所述已断线的数据线的断线位置重叠的修复线,并将所述选取的修复线与所述已断线的数据线电性连接;在所述多条数据线、所述多个薄膜晶体管的源极和漏极上形成一保护层;形成一透明导电层于所述保护层之上。
- 根据权利要求8所述修复平面显示面板的方法,其特征在于,所述方法另包含:如果其中一条数据线已断线,且所述数据线的断线位置不重叠于所述多条修复线,选取两条修复线与所述已断线的数据线电性连接,所述选取的两条修复线是重叠于所述已断线的数据线,且分别位于所述已断线的数据线的断线位置的两端;在所述多条数据线、所述多个薄膜晶体管的源极和漏极上形成一保护层;形成一透明导电层于所述保护层之上;蚀刻所述透明导电层以在所述选取的两条修复线的上方形成一连接件,所述连接件重叠于所述选取的两条修复线;以及电性所述连接件和所述已断线的数据线。
- 根据权利要求10所述修复平面显示面板的方法,其特征在于,所述多条连接件与所述多个像素电极的材质皆是氧化铟锡物。
- 根据权利要求8所述修复平面显示面板的方法,其特征在于,所述电性连接的步骤是以激光熔断所述选取的两条修复线与所述已断线的数据线重叠之处,以熔接所述选取的两条修复线与所述已断线的数据线,并以激光熔断所述选取的两条修复线与所述连接件重叠之处,以熔接所述选取的两条修复线与所述连接件。
- 根据权利要求8所述修复平面显示面板的方法,其特征在于,在形成所述保护层的步骤之后,所述方法另包含:蚀刻所述保护层,以在所述漏极的上方形成一连接孔;以及蚀刻所述透明导电层以形成一像素电极。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/379,020 US20130120230A1 (en) | 2011-11-14 | 2011-11-16 | Flat Display Panel And A Method Of Repairing The Same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110359711.4 | 2011-11-14 | ||
CN2011103597114A CN102508384A (zh) | 2011-11-14 | 2011-11-14 | 平面显示面板及其修复方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013071493A1 true WO2013071493A1 (zh) | 2013-05-23 |
Family
ID=46220487
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2011/082252 WO2013071493A1 (zh) | 2011-11-14 | 2011-11-16 | 平面显示面板及其修复方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN102508384A (zh) |
WO (1) | WO2013071493A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110888269A (zh) * | 2019-11-29 | 2020-03-17 | 上海中航光电子有限公司 | 显示面板和显示装置 |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102914888B (zh) * | 2012-11-12 | 2015-02-11 | 深圳市华星光电技术有限公司 | 一种修补液晶显示阵列基板断线的方法及装置 |
US9911799B2 (en) | 2013-05-22 | 2018-03-06 | Samsung Display Co., Ltd. | Organic light-emitting display apparatus and method of repairing the same |
KR102140444B1 (ko) * | 2013-11-06 | 2020-08-04 | 엘지디스플레이 주식회사 | 유기발광표시장치 |
CN103605243B (zh) * | 2013-11-21 | 2016-02-24 | 深圳市华星光电技术有限公司 | 一种薄膜晶体管阵列基板及修补方法 |
CN103995378B (zh) * | 2013-12-31 | 2016-10-05 | 深圳市华星光电技术有限公司 | 制造显示装置的方法和修复方法以及液晶显示面板 |
US9529239B2 (en) | 2013-12-31 | 2016-12-27 | Shenzhen China Star Optoelectronics Technologies Co., Ltd. | Manufacturing method and repairing method for display device as well as liquid crystal display panel |
KR20160059530A (ko) * | 2014-11-18 | 2016-05-27 | 삼성디스플레이 주식회사 | 표시 기판의 제조 방법, 표시 기판의 리페어 방법 및 이에 의해 리페어된 표시 기판 |
CN106154663B (zh) * | 2016-08-09 | 2019-04-12 | 京东方科技集团股份有限公司 | 一种像素结构、显示装置、阵列基板及其制作方法 |
CN109786307B (zh) * | 2017-11-15 | 2021-02-05 | 鸿富锦精密工业(深圳)有限公司 | 微型led显示面板的制备方法 |
CN111399295B (zh) * | 2020-04-26 | 2022-11-29 | 成都中电熊猫显示科技有限公司 | 断线修补方法、装置、电子设备和存储介质 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6958802B2 (en) * | 2002-07-23 | 2005-10-25 | Advanced Display Inc. | Display device having island-shaped conductor for repairing line disconnection |
TW200742890A (en) * | 2006-05-09 | 2007-11-16 | Au Optronics Corp | Rescue structure and method for laser welding |
CN101086564A (zh) * | 2006-06-09 | 2007-12-12 | 三星电子株式会社 | 显示基板及其修复方法 |
CN101174067A (zh) * | 2006-11-03 | 2008-05-07 | 三星电子株式会社 | 液晶显示装置和修复其中坏像素的方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101246719B1 (ko) * | 2006-06-21 | 2013-03-25 | 엘지디스플레이 주식회사 | 횡전계형 액정표시장치용 어레이 기판 및 이의 제조 방법 |
CN100555051C (zh) * | 2007-12-28 | 2009-10-28 | 昆山龙腾光电有限公司 | 液晶显示装置阵列基板及其缺陷修补方法 |
CN102023429B (zh) * | 2009-09-17 | 2013-10-23 | 北京京东方光电科技有限公司 | Tft-lcd阵列基板及其制造和断线修复方法 |
KR101225444B1 (ko) * | 2009-12-08 | 2013-01-22 | 엘지디스플레이 주식회사 | 액정표시장치 및 그의 제조방법과 그의 리페어 방법 |
CN201886251U (zh) * | 2010-12-24 | 2011-06-29 | 京东方科技集团股份有限公司 | 薄膜晶体管阵列基板及已修复的薄膜晶体管阵列基板 |
-
2011
- 2011-11-14 CN CN2011103597114A patent/CN102508384A/zh active Pending
- 2011-11-16 WO PCT/CN2011/082252 patent/WO2013071493A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6958802B2 (en) * | 2002-07-23 | 2005-10-25 | Advanced Display Inc. | Display device having island-shaped conductor for repairing line disconnection |
TW200742890A (en) * | 2006-05-09 | 2007-11-16 | Au Optronics Corp | Rescue structure and method for laser welding |
CN101086564A (zh) * | 2006-06-09 | 2007-12-12 | 三星电子株式会社 | 显示基板及其修复方法 |
CN101174067A (zh) * | 2006-11-03 | 2008-05-07 | 三星电子株式会社 | 液晶显示装置和修复其中坏像素的方法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110888269A (zh) * | 2019-11-29 | 2020-03-17 | 上海中航光电子有限公司 | 显示面板和显示装置 |
CN110888269B (zh) * | 2019-11-29 | 2022-06-07 | 上海中航光电子有限公司 | 显示面板和显示装置 |
Also Published As
Publication number | Publication date |
---|---|
CN102508384A (zh) | 2012-06-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013071493A1 (zh) | 平面显示面板及其修复方法 | |
US9176353B2 (en) | Liquid crystal display device | |
JP4199357B2 (ja) | 液晶表示装置及びその製造方法 | |
US8896778B2 (en) | Liquid crystal display device | |
CN101661174B (zh) | 液晶显示面板及其制造方法 | |
US8519398B2 (en) | Display device | |
WO2012136010A1 (zh) | 芯片扇出设计、其形成方法及使用所述设计的液晶显示器 | |
US7824939B2 (en) | Method for manufacturing display device comprising separated and electrically connected source wiring layers | |
US7688392B2 (en) | Pixel structure including a gate having an opening and an extension line between the data line and the source | |
CN100454561C (zh) | 薄膜晶体管阵列基板及其制造方法、修复方法 | |
WO2013056468A1 (zh) | 液晶显示面板、软性电路板及液晶显示设备 | |
WO2013104300A1 (zh) | 阵列基板及包括该阵列基板的显示装置 | |
US20230178560A1 (en) | Thin-film transistor and method for manufacturing same, and array substrate and display panel | |
WO2016029517A1 (zh) | 薄膜晶体管阵列基板及其像素暗点化处理方法 | |
WO2022141519A1 (zh) | 一种液晶显示面板及其制作方法、显示装置 | |
WO2014026321A1 (zh) | 平面显示面板及其修复方法 | |
US20020130983A1 (en) | Liquid crystal display | |
WO2013143064A1 (zh) | 液晶显示面板以及其制造方法 | |
WO2013155724A1 (zh) | 显示面板的布线结构及像素结构 | |
KR20020046022A (ko) | 액정 표시장치의 게이트/공통전극 단락 방지방법 | |
WO2013063814A1 (zh) | 液晶显示面板及其制造方法 | |
US10396100B2 (en) | Array substrate, display panel and pixel patching method | |
KR20040017637A (ko) | 액정표시소자의 콘택 배선 및 그 형성방법 | |
WO2019056521A1 (zh) | 阵列基板、显示面板及像素修补方法 | |
CN113571531B (zh) | 阵列基底及其制作方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 13379020 Country of ref document: US |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11875908 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11875908 Country of ref document: EP Kind code of ref document: A1 |