WO2013069529A1 - 非水電解液及び該電解液を用いた非水電解液二次電池 - Google Patents

非水電解液及び該電解液を用いた非水電解液二次電池 Download PDF

Info

Publication number
WO2013069529A1
WO2013069529A1 PCT/JP2012/078304 JP2012078304W WO2013069529A1 WO 2013069529 A1 WO2013069529 A1 WO 2013069529A1 JP 2012078304 W JP2012078304 W JP 2012078304W WO 2013069529 A1 WO2013069529 A1 WO 2013069529A1
Authority
WO
WIPO (PCT)
Prior art keywords
general formula
compound represented
aqueous electrolyte
carbon atoms
secondary battery
Prior art date
Application number
PCT/JP2012/078304
Other languages
English (en)
French (fr)
Inventor
滝 敬之
裕知 渡辺
厚輝 渋谷
晃子 田崎
Original Assignee
株式会社Adeka
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Adeka filed Critical 株式会社Adeka
Priority to KR1020147007634A priority Critical patent/KR101892601B1/ko
Priority to US14/346,533 priority patent/US9419306B2/en
Priority to CN201280045040.7A priority patent/CN103828116B/zh
Priority to EP12847605.8A priority patent/EP2779299B1/en
Publication of WO2013069529A1 publication Critical patent/WO2013069529A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a non-aqueous electrolyte containing a dicarbonate compound having a specific structure and a non-aqueous electrolyte secondary battery using the electrolyte.
  • non-aqueous electrolyte secondary batteries having high voltage and high energy density have been widely used as power sources. Also, from the viewpoint of environmental problems, battery cars and hybrid cars using electric power as a part of power have been put into practical use.
  • 1,3-propane sultone see, for example, Patent Document 1
  • vinyl ethylene carbonate see, for example, Patent Document 2
  • vinylene carbonate see, for example, Patent Document 3
  • 1,3-propane sultone see, for example, Patent Document 4
  • vinylene carbonate for example, refer to Patent Document 5
  • vinyl ethylene carbonate for example, refer to Patent Document 6
  • SEI Solid Electrolyte Interface: solid electrolyte
  • a stable coating called a “film” is formed, and this coating covers the surface of the negative electrode, thereby suppressing the reductive decomposition of the electrolytic solution.
  • disiloxanes containing unsaturated groups such as vinyl groups (see, for example, Patent Document 7), fluorosilanes to which alkenyl groups are bonded (for example, see Patent Document 8), alkylene bisfluorosilanes (for example, Patent Document 9). ), Fluorosilane to which an ether group is bonded (for example, see Patent Document 10), etc. are considered to protect the positive electrode by being adsorbed on the surface of the positive electrode and suppress oxidative decomposition of the nonaqueous electrolytic solution.
  • an additive is repeatedly adsorbed and desorbed from the electrode surface at a high temperature, the protective effect in high-temperature storage is not sufficient.
  • Patent Document 11 discloses that 1,2-bis (difluoromethylsilyl) ethane can be used as an additive for lithium batteries. However, Patent Document 11 does not disclose test results as a battery, nor does it disclose a compound having a synergistic effect with 1,2-bis (difluoromethylsilyl) ethane.
  • JP 63-102173 A Japanese Patent Laid-Open No. 04-87156 Japanese Patent Laid-Open No. 05-74486 Japanese Patent Laid-Open No. 10-50342 US Pat. No. 5,626,981 JP 2001-6729 A JP 2002-134169 A US Patent Application Publication No. 2004/0007688 US Patent Application Publication No. 2006/0269843 US Patent Application Publication No. 2007/0243470 US Patent Application Publication No. 2009/0197167
  • an object of the present invention is to provide a non-aqueous electrolyte for a secondary battery capable of maintaining a small internal resistance and a high electric capacity even at high temperature storage, and a non-aqueous electrolyte secondary battery using the non-aqueous electrolyte. It is to provide.
  • the present invention is a non-aqueous electrolyte for a secondary battery in which an electrolyte salt, a compound represented by the following general formula (1), and a compound represented by the following general formula (2) are dissolved in an organic solvent, A secondary in which the content of the compound represented by the following general formula (2) is 0.1 to 8% by mass relative to the total of the compound represented by the following general formula (1) and the compound represented by the following general formula (2)
  • a non-aqueous electrolyte for a battery is provided.
  • R 1 and R 2 each independently represents an alkyl group having 1 to 8 carbon atoms.
  • R 3 and R 4 each independently represents an alkyl group having 1 to 8 carbon atoms.
  • non-aqueous electrolyte for secondary batteries of the present invention it is possible to provide a non-aqueous electrolyte secondary battery that maintains high electric capacity and low internal resistance even after high-temperature storage.
  • FIG. 1 is a longitudinal sectional view schematically showing an example of the structure of a coin-type battery of the nonaqueous electrolyte secondary battery of the present invention.
  • FIG. 2 is a schematic diagram showing a basic configuration of a cylindrical battery of the nonaqueous electrolyte secondary battery of the present invention.
  • FIG. 3 is a perspective view showing the internal structure of the cylindrical battery of the nonaqueous electrolyte secondary battery of the present invention as a cross section.
  • the non-aqueous electrolyte for a secondary battery of the present invention is a non-aqueous electrolyte for a secondary battery in which an electrolyte salt, a compound represented by the general formula (1), and a compound represented by the general formula (2) are dissolved in an organic solvent.
  • the content of the compound represented by the general formula (2) relative to the total of the compound represented by the general formula (1) and the compound represented by the general formula (2) is 0.1 to It is 8 mass%.
  • R 1 and R 2 each independently represents an alkyl group having 1 to 8 carbon atoms.
  • alkyl group having 1 to 8 carbon atoms include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, secondary butyl, t-butyl, pentyl, isopentyl, secondary pentyl, t-pentyl, hexyl, secondary hexyl, heptyl Secondary heptyl, octyl, secondary octyl, 2-methylpentyl, 2-ethylhexyl and the like can be mentioned.
  • R 1 and R 2 methyl and ethyl are preferable, and methyl is more preferable because it has little adverse effect on the movement of lithium ions and good charge characteristics.
  • R 1 and R 2 may be the same group or different groups, but at least one of them is preferably methyl for the same reason.
  • preferable compounds among the compounds represented by the general formula (1) include 1,2-bis (difluoromethylsilyl) ethane, 1,2-bis (difluoroethylsilyl) ethane, and 1-difluoromethylsilyl. Examples include -2-difluoroethylsilylethane and 1-difluoromethylsilyl-2-difluoropropylsilylethane.
  • the compound represented by the general formula (1) can be obtained by substituting a fluorine atom for a chlorine atom or an alkoxyl group having 1 to 3 carbon atoms of the compound represented by the following general formula (1a).
  • R 1 and R 2 have the same meaning as in the general formula (1), and X 1 represents a chlorine atom or an alkoxyl group having 1 to 3 carbon atoms.
  • a method of substituting X 1 of the compound represented by the general formula (1a) with a fluorine atom is a known method, for example, a method using antimony trifluoride (J. Amer. Chem. Soc., 68, 2655 ( 1946), a method using calcium fluoride (see US Pat. No. 3,646,092), a method using an aqueous hydrofluoric acid solution (see J. Amer. Chem. Soc., 73, 5127 (1951)) Or the like.
  • R 3 and R 4 each independently represents an alkyl group having 1 to 8 carbon atoms.
  • the alkyl group having 1 to 8 carbon atoms include groups exemplified in the description of R 1 and R 2 in the general formula (1).
  • R 3 and R 4 methyl and ethyl are preferable and methyl is more preferable because it has little adverse effect on the movement of lithium ions and good charge characteristics.
  • R 3 and R 4 may be the same group or different groups, but at least one is preferably methyl for the same reason.
  • preferable compounds among the compounds represented by the general formula (2) include 1,1-bis (difluoromethylsilyl) ethane, 1,1-bis (difluoroethylsilyl) ethane, and 1-difluoromethylsilyl.
  • examples include 1-difluoroethylsilylethane, 1-difluoromethylrosilyl-1-difluoropropylsilylethane, and the like.
  • the compound represented by the general formula (2) with respect to the total of the compound represented by the general formula (1) and the compound represented by the general formula (2)
  • the amount is from 0.1 to 8% by mass, and since the decrease in battery performance during high-temperature storage is small, it is preferably from 0.3 to 7% by mass, more preferably from 0.5 to 6% by mass. .
  • the non-aqueous electrolyte for a secondary battery of the present invention when the total content of the compound represented by the general formula (1) and the compound represented by the general formula (2) is too small, a sufficient effect is obtained. If it is not obtained, and if it is too much, not only an increase effect corresponding to the blending amount cannot be obtained, but the battery performance may be adversely affected. Therefore, the general formula (1)
  • the total content of the compound represented by formula (2) and the compound represented by the general formula (2) is preferably 0.01 to 3% by mass, more preferably 0.02 to 2% by mass, Most preferably, it is 0.03 to 1% by mass.
  • the compound represented by the general formula (2) is, similarly to the compound represented by the general formula (1), a chlorine atom or an alkoxyl having 1 to 3 carbon atoms of the compound represented by the following general formula (2a). It can be obtained by substituting a group with a fluorine atom.
  • R 3 and R 4 have the same meaning as in the general formula (2), and X 2 represents a chlorine atom or an alkoxyl group having 1 to 3 carbon atoms.
  • a compound in which X 2 is a methoxyl group is, for example, a vinylsilane compound represented by the following general formula (2b) and It can obtain as a mixture with the compound represented by the following general formula (2e) by the hydrosilation reaction by the platinum catalyst with the hydrosilane compound represented by the following general formula (2c).
  • the production ratio of the compound represented by the following general formula (2d) varies depending on the type of platinum catalyst, but 15 to 25% in the case of a platinum-divinyltetramethyldisiloxane complex (Karstedt catalyst) and 25 to 35 in the case of chloroplatinic acid. %. (In the formulas (2b) to (2e), R 3 and R 4 have the same meaning as in the general formula (2).)
  • the compound represented by the general formula (2d) is isolated from the mixture of the compound represented by the general formula (2d) and the compound represented by the general formula (2e), and the methoxy group is substituted with a fluorine atom.
  • the compound represented by the general formula (2e) is a compound corresponding to the compound represented by the general formula (1a), it may be substituted as it is in the mixture.
  • organic solvent used for the non-aqueous electrolyte for secondary batteries of the present invention will be described.
  • an organic solvent used for the non-aqueous electrolyte for secondary batteries of this invention what is normally used for the non-aqueous electrolyte can be used 1 type or in combination of 2 or more types. Specific examples include saturated cyclic carbonate compounds, saturated cyclic ester compounds, sulfoxide compounds, sulfone compounds, amide compounds, saturated chain carbonate compounds, chain ether compounds, cyclic ether compounds, and saturated chain ester compounds.
  • saturated cyclic carbonate compounds saturated cyclic ester compounds, sulfoxide compounds, sulfone compounds and amide compounds have a high relative dielectric constant, and thus serve to increase the dielectric constant of the non-aqueous electrolyte for secondary batteries
  • a saturated cyclic carbonate compound is particularly preferable.
  • saturated cyclic carbonate compounds include ethylene carbonate, 1,2-propylene carbonate, 1,3-propylene carbonate, 1,2-butylene carbonate, 1,3-butylene carbonate, 1,1, -dimethylethylene carbonate. Etc.
  • saturated cyclic ester compound examples include ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -caprolactone, ⁇ -hexanolactone, and ⁇ -octanolactone.
  • sulfoxide compound examples include dimethyl sulfoxide, diethyl sulfoxide, dipropyl sulfoxide, diphenyl sulfoxide, thiophene, and the like.
  • sulfone compounds include dimethyl sulfone, diethyl sulfone, dipropyl sulfone, diphenyl sulfone, sulfolane (also referred to as tetramethylene sulfone), 3-methyl sulfolane, 3,4-dimethyl sulfolane, 3,4-diphenimethyl sulfolane, sulfolene. , 3-methylsulfolene, 3-ethylsulfolene, 3-bromomethylsulfolene and the like, and sulfolane and tetramethylsulfolane are preferable.
  • the amide compound include N-methylpyrrolidone, dimethylformamide, dimethylacetamide and the like.
  • saturated chain carbonate compounds, chain ether compounds, cyclic ether compounds, and saturated chain ester compounds can reduce the viscosity of the non-aqueous electrolyte for secondary batteries, and the mobility of electrolyte ions. Battery characteristics such as output density can be made excellent. Moreover, since it is low-viscosity, the performance of the non-aqueous electrolyte for secondary batteries at low temperatures can be increased, and among these, saturated chain carbonate compounds are preferred.
  • saturated chain carbonate compounds include dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC), ethyl butyl carbonate, methyl-t-butyl carbonate, diisopropyl carbonate, and t-butyl propyl carbonate. Etc.
  • Examples of the chain or cyclic ether compound include dimethoxyethane (DME), ethoxymethoxyethane, diethoxyethane, tetrahydrofuran, dioxolane, dioxane, 1,2-bis (methoxycarbonyloxy) ethane, 1,2-bis ( Ethoxycarbonyloxy) ethane, 1,2-bis (ethoxycarbonyloxy) propane, ethylene glycol bis (trifluoroethyl) ether, propylene glycol bis (trifluoroethyl) ether, ethylene glycol bis (trifluoromethyl) ether, diethylene glycol bis (Trifluoroethyl) ether and the like can be mentioned, and among these, dioxolane is preferable.
  • DME dimethoxyethane
  • ethoxymethoxyethane diethoxyethane
  • tetrahydrofuran dioxolane
  • dioxane 1,2-bis (
  • saturated chain ester compound monoester compounds and diester compounds having a total number of carbon atoms in the molecule of 2 to 8 are preferable.
  • Specific compounds include methyl formate, ethyl formate, methyl acetate, ethyl acetate, Propyl acetate, isobutyl acetate, butyl acetate, methyl propionate, ethyl propionate, methyl butyrate, methyl isobutyrate, methyl trimethyl acetate, ethyl trimethyl acetate, methyl malonate, ethyl malonate, methyl succinate, ethyl succinate, 3- Examples include methyl methoxypropionate, ethyl 3-methoxypropionate, ethylene glycol diacetyl, propylene glycol diacetyl, and the like.Methyl formate, ethyl formate, methyl acetate, ethyl acetate, propyl acetate,
  • acetonitrile acetonitrile, propionitrile, nitromethane and their derivatives can be used as the organic solvent.
  • the electrolyte salt of the non-aqueous electrolyte for secondary batteries of the present invention will be described.
  • the electrolyte salt used for the non-aqueous electrolyte for secondary batteries of the present invention conventionally known electrolyte salts are used.
  • LiPF 6 , LiBF 4 , LiClO 4, LiAsF 6, LiCF 3 SO 3, and LiC (CF 3 SO 2) 3 and derivatives LiCF 3 SO 3, and LiC (CF 3 SO 2) 3 To use at least one member selected from the group consisting of derivatives, because of excellent electrical characteristics preferred.
  • the electrolyte salt is dissolved in the organic solvent so that the concentration of the non-aqueous electrolyte solution for secondary batteries of the present invention is 0.1 to 3.0 mol / L, particularly 0.5 to 2.0 mol / L. It is preferable to do. If the concentration of the electrolyte salt is less than 0.1 mol / L, a sufficient current density may not be obtained, and if it is more than 3.0 mol / L, the stability of the non-aqueous electrolyte may be impaired.
  • the non-aqueous electrolyte for secondary batteries of the present invention has a high synergistic effect with the compound represented by the general formula (1) and the compound represented by the general formula (2). It is preferable to contain the compound represented by this.
  • R 5 and R 6 are each independently an alkyl group having 1 to 8 carbon atoms, a halogenated alkyl group having 1 to 8 carbon atoms, an alkenyl group having 2 to 8 carbon atoms, or an alkynyl group having 2 to 8 carbon atoms. Or an aryl group having 6 to 8 carbon atoms, and Q represents an oxygen atom or a divalent hydrocarbon group having 1 to 6 carbon atoms.
  • R 5 and R 6 are each independently an alkyl group having 1 to 8 carbon atoms, a halogenated alkyl group having 1 to 8 carbon atoms, an alkenyl group having 2 to 8 carbon atoms, or 2 carbon atoms. Represents an alkynyl group having 8 to 8 carbon atoms or an aryl group having 6 to 8 carbon atoms. Examples of the alkyl group having 1 to 8 carbon atoms include the groups exemplified as R 1 and R 2 in the general formula (1).
  • halogenated alkyl group having 1 to 8 carbon atoms examples include trifluoromethyl, 2-fluoroethyl, 2,2,2-trifluoroethyl, 1,1,2,2-tetrafluoroethyl, pentafluoroethyl, 3- Fluoropropyl, 3,3,3-trifluoropropyl, 2,2,3,3-tetrafluoropropyl, heptafluoropropyl, chloromethyl, 1-chloroethyl, 2-chloroethyl, 3-chloropropyl, 4-chlorobutyl, 5 -Chloropentyl, 6-chlorohexyl, 8-chlorooctyl.
  • alkenyl group having 2 to 8 carbon atoms examples include vinyl, allyl, 3-butenyl, 4-propenyl, 5-hexenyl, 7-octenyl and the like.
  • alkynyl group having 2 to 8 carbon atoms examples include ethynyl, 2-propynyl, 3-butynyl, 4-pentynyl, 5-hexynyl, 7-octynyl and the like.
  • Examples of the aryl group having 6 to 8 carbon atoms include phenyl, toluyl, xylyl, ethylphenyl, fluorophenyl, difluorophenyl, chlorophenyl, dichlorophenyl and the like.
  • R 5 and R 6 methyl, ethyl, propyl, isopropyl, butyl, pentyl, 3-chloropropyl, and 4-chlorobutyl are preferable because they have little adverse effect on the movement of lithium ions and good charging characteristics. Methyl, ethyl, and propyl are preferred, and methyl and ethyl are most preferred.
  • Q represents an oxygen atom or a divalent hydrocarbon group having 1 to 6 carbon atoms.
  • the divalent hydrocarbon group having 1 to 6 carbon atoms include methylene, ethylene, trimethylene, tetramethylene, pentamethylene, hexamethylene, 2-methylbutane-1,4-diyl, 1,2-ethynyl, 2-butene- Examples include 1,4-diyl, 2-butene-2,3-diyl, vinylene, ethynylene, and phenylene.
  • Q is preferably an oxygen atom, ethylene and trimethylene, and more preferably an oxygen atom and ethylene, because high battery performance can be obtained.
  • Preferred compounds among the compounds represented by the general formula (3) include, for example, 1,3-difluoro-1,1,3,3-tetramethyldisiloxane, 1,3-difluoro-1,1,3. , 3-tetraethyldisiloxane, 1,3-difluoro-1,1,3,3-tetrapropyldisiloxane, 1,3-difluoro-1,1,3,3-tetrabutyldisiloxane, 1,3-difluoro -1,1,3,3-tetrapentyldisiloxane, 1,3-difluoro-1,1,3,3-tetrahexyldisiloxane, 1,2-bis (fluorodimethylsilyl) ethane, 1,2-bis (Fluorodiethylsilyl) ethane, 1,2-bis (fluorodipropylsilyl) ethane, 1,2-bis (fluorodibutylsily
  • the content of the compound represented by the general formula (3) is 0 with respect to the non-aqueous electrolyte. 0.01 to 5% by mass is preferable, 0.03 to 4% by mass is more preferable, and 0.05 to 3% by mass is most preferable. Only 1 type may be used for the compound represented by the said General formula (3), and it may use it in combination of 2 or more type.
  • the cyclic carbonate compound having an unsaturated group the chain carbonate compound having an unsaturated group, the unsaturated diester compound, the halogenated cyclic carbonate compound, the cyclic It is preferable to contain one or more compounds selected from the group consisting of sulfites and cyclic sulfates.
  • Examples of the cyclic carbonate compound having an unsaturated group include vinylene carbonate, vinyl ethylene strength-bonate, propylidene carbonate, ethylene ethylidene carbonate, and ethylene isopropylidene carbonate.
  • Examples of the chain carbonate compound having an unsaturated group include dipropargyl carbonate, propargyl methyl carbonate, ethyl propargyl carbonate, bis (1-methylpropargyl) carbonate, and bis (1-dimethylpropargyl) carbonate.
  • Examples of the unsaturated diester compound include dimethyl maleate, diethyl maleate, dipropyl maleate, dibutyl maleate, dipentyl maleate, dihexyl maleate, diheptyl maleate, dioctyl maleate, dimethyl fumarate, diethyl fumarate, and fumaric acid.
  • Examples of the halogenated cyclic carbonate compound include chloroethylene carbonate, dichloroethylene carbonate, fluoroethylene carbonate, and difluoroethylene carbonate.
  • Examples of the cyclic sulfite ester include ethylene sulfite.
  • Examples of the cyclic sulfate include propane sultone and butane sultone.
  • vinylene carbonate, vinyl ethylene carbonate, dipropargyl carbonate, dimethyl acetylenedicarboxylate, diethyl acetylenedicarboxylate, chloroethylene carbonate, dichloroethylene carbonate, fluoroethylene carbonate, ethylene sulfite, propane sultone, and butane sultone are preferable.
  • Vinylene carbonate, dipropargyl carbonate, acetylenedicarboxylate dimeter, chloroethylene carbonate, fluoroethylene carbonate, ethylene sulfite, and propane sultone are more preferable, and vinylene carbonate, dipropargyl carbonate, chloroethylene carbonate, fluoroethylene carbonate, ethylene sulfite. And Propanes Ton is most preferable.
  • the non-aqueous electrolyte for a secondary battery of the present invention when the content of these compounds is too small, a sufficient effect cannot be exhibited, and when the content is too large, an increase effect corresponding to the blending amount is obtained.
  • the total content of these compounds is preferably 0.005 to 10% by mass relative to the non-aqueous electrolyte. It is more preferably from 02 to 5% by mass, and most preferably from 0.05 to 3% by mass.
  • the non-aqueous electrolyte for a secondary battery of the present invention described above can be suitably used as a non-aqueous electrolyte for a secondary battery constituting a lithium ion secondary battery.
  • the non-aqueous electrolyte secondary battery of the present invention has a negative electrode containing a negative electrode active material, a positive electrode containing a positive electrode active material, and a non-aqueous electrolyte, and the non-aqueous electrolyte for non-secondary batteries of the present invention It is characterized in that a water electrolyte is used, and a separator may be provided between the negative electrode and the positive electrode.
  • a positive electrode material such as a positive electrode active material, a binder, and a conductive material, which is slurried with an organic solvent or water, is applied to a current collector and dried.
  • a sheet rolled into a sheet is used.
  • the positive electrode active material include TiS 2 , TiS 3 , MoS 3 , FeS 2 , Li (1-x) MnO 2 , Li (1-x) Mn 2 O 4 , Li (1-x) CoO 2 , Li ( 1-x) NiO 2, LiV 2 O 3, V 2 O 5 and the like.
  • X in these positive electrode active materials represents a number of 0 to 1.
  • These positive electrode active materials may be materials such as Li, Mg, Al, or materials added or substituted with transition metals such as Co, Ti, Nb, and Cr.
  • these lithium-metal composite oxides can be used alone or in combination.
  • the lithium-metal composite oxide is preferably at least one of a lithium manganese-containing composite oxide having a layered structure or a spinel structure, a lithium nickel-containing composite oxide, and a lithium cobalt-containing composite oxide.
  • the binder for the positive electrode active material include, but are not limited to, polyvinylidene fluoride, polytetrafluoroethylene, EPDM, SBR, NBR, fluororubber, and polyacrylic acid.
  • the amount of the binder used is preferably 0.1 to 20 parts by mass, more preferably 0.5 to 10 parts by mass with respect to 100 parts by mass of the positive electrode active material.
  • Examples of the conductive material for the positive electrode include graphite fine particles, carbon black such as acetylene black and ketjen black, amorphous carbon fine particles such as needle coke, and carbon nanofibers, but are not limited thereto.
  • the amount of the conductive material used is preferably 0.01 to 20 parts by mass, more preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the positive electrode active material.
  • As the solvent for forming the slurry an organic solvent or water that dissolves the binder is used.
  • organic solvent examples include N-methylpyrrolidone, dimethylformamide, dimethylacetamide, methyl ethyl ketone, cyclohexanone, methyl acetate, methyl acrylate, diethyltriamine, NN-dimethylaminopropylamine, polyethylene oxide, tetrahydrofuran and the like.
  • the amount of the solvent used is preferably 30 to 300 parts by mass, and more preferably 50 to 200 parts by mass with respect to 100 parts by mass of the positive electrode active material.
  • aluminum, stainless steel, nickel-plated steel or the like is usually used.
  • a negative electrode material such as a negative electrode active material, a binder and a conductive material, which is slurried with an organic solvent or water, is applied to a current collector and dried.
  • a sheet rolled into a sheet is used.
  • the negative electrode active material include crystalline carbon materials such as artificial graphite and natural graphite, and simple metals and alloys such as lithium, tin, zinc, and aluminum, and crystalline carbon materials are particularly preferable.
  • binder for the negative electrode active material examples include, but are not limited to, polyvinylidene fluoride, polytetrafluoroethylene, EPDM, SBR, NBR, fluororubber, and polyacrylic acid.
  • the amount of the binder used is preferably 0.001 to 5 parts by mass, more preferably 0.05 to 3 parts by mass, and most preferably 0.01 to 2 parts by mass with respect to 100 parts by mass of the negative electrode active material. .
  • Examples of the conductive material for the negative electrode include graphite fine particles, carbon black such as acetylene black and ketjen black, amorphous carbon fine particles such as needle coke, and carbon nanofibers, but are not limited thereto.
  • the conductive material is used in an amount of preferably 0.01 to 20 parts by mass, more preferably 0.05 to 15 parts by mass with respect to 100 parts by mass of the negative electrode active material.
  • As the solvent for forming a slurry an organic solvent or water that dissolves the binder is used.
  • organic solvent examples include N-methylpyrrolidone, dimethylformamide, dimethylacetamide, methyl ethyl ketone, cyclohexanone, methyl acetate, methyl acrylate, diethyltriamine, NN-dimethylaminopropylamine, polyethylene oxide, tetrahydrofuran and the like.
  • the amount of the solvent used is preferably 30 to 300 parts by mass, more preferably 50 to 200 parts by mass, with respect to 100 parts by mass of the negative electrode active material.
  • a conductive agent such as furnace black, acetylene black, ketjen black, vapor grown carbon fiber (VGCF), or carbon nanofiber is used for the purpose of improving the conductivity in the electrode.
  • VGCF vapor grown carbon fiber
  • carbon nanofiber vapor grown carbon fiber
  • copper, nickel, stainless steel, nickel-plated steel or the like is usually used.
  • a separator between the positive electrode and the negative electrode it is preferable to use a separator between the positive electrode and the negative electrode, and a commonly used polymer microporous film can be used without particular limitation as the separator.
  • the film include polyethylene, polypropylene, polyvinylidene fluoride, polyvinylidene chloride, polyacrylonitrile, polyacrylamide, polytetrafluoroethylene, polysulfone, polyethersulfone, polycarbonate, polyamide, polyimide, polyethylene oxide and polypropylene oxide.
  • the microporosity method includes a phase separation method in which a polymer compound and a solvent solution are formed into a film while microphase separation is performed, and the solvent is extracted and removed to make it porous.
  • the film is extruded and then heat-treated, the crystals are aligned in one direction, and a gap is formed between the crystals by stretching to make it porous, and so on.
  • the electrode material, the non-aqueous electrolyte, and the separator include a phenol-based antioxidant, a phosphorus-based antioxidant, and a thioether-based antioxidant for the purpose of improving safety.
  • a hindered amine compound or the like may be added.
  • the shape of the nonaqueous electrolyte secondary battery of the present invention having the above configuration is not particularly limited, and can be various shapes such as a coin shape, a cylindrical shape, and a square shape.
  • FIG. 1 shows an example of a coin-type battery of the nonaqueous electrolyte secondary battery of the present invention
  • FIGS. 2 and 3 show examples of a cylindrical battery, respectively.
  • 1 is a positive electrode capable of releasing lithium ions
  • 1a is a positive electrode current collector
  • 2 is a carbonaceous material capable of inserting and extracting lithium ions released from the positive electrode.
  • the negative electrode current collector, 2a is a negative electrode current collector
  • 3 is a non-aqueous electrolyte for secondary batteries of the present invention
  • 4 is a stainless steel positive electrode case
  • 5 is a stainless steel negative electrode case
  • 6 is a polypropylene gasket
  • 7 is This is a polyethylene separator.
  • 11 is a negative electrode
  • 12 is a negative electrode current collector
  • 13 is a positive electrode
  • 14 is a positive electrode current collector
  • 15 is the present invention.
  • Nonaqueous electrolyte for secondary battery 16 is separator
  • 17 is positive terminal
  • 18 is negative terminal
  • 19 is negative electrode plate
  • 20 is negative electrode lead
  • 21 is positive electrode plate
  • 22 is positive electrode lead
  • 23 is case
  • 24 is insulation
  • 25 is a gasket
  • 26 is a safety valve
  • 27 is a PTC element.
  • the following Production Example 1 is a synthesis example of the compound represented by the general formula (1), and the following Production Example 2 includes the compound represented by the general formula (1) and the compound represented by the general formula (2).
  • Examples of the synthesis of the mixture, Examples 1 to 9 and Comparative Examples 1 to 8 below are examples of the non-aqueous electrolyte of the present invention and non-aqueous electrolyte secondary batteries using the same and comparative examples thereof.
  • Production Example 1 Synthesis of 1,2-bis (difluoromethylsilyl) ethane 76.8 g (0.43 mol) of antimony trifluoride was charged into a glass reaction vessel equipped with a thermometer, a stirrer, and a condenser. While cooling with water to 0 to 10 ° C., 76.8 g (0.3 mol) of 2-bis (dichloromethylsilyl) ethane was added dropwise. 2-bis (dichloromethylsilyl) ethane having a purity of 99.5% and 1,1-bis (difluoromethylfluorosilyl) ethane content of 0.1% was used. After completion of the dropping, stirring was continued at 30 ° C.
  • 1,2-bis (difluoromethylsilyl) ethane is a compound in which R 1 and R 2 are methyl in the general formula (1).
  • Production Example 2 Synthesis of a mixture of 1,2-bis (difluoromethylsilyl) ethane and 1,1-bis (difluoromethylsilyl) ethane Dimethoxy was placed in a stainless steel pressure vessel equipped with a thermometer, a stirrer and a cooling tube. 53.6 g (0.4 mol) of methylsilane, 67.2 g (0.42 mol) of dimethoxymethylvinylsilane, and 0.5 ml of a 0.1 mol / L isopropanol solution of chloroplatinic acid were charged, and the container was sealed. The mixture was heated with stirring and reacted at 80 ° C. for 30 minutes.
  • 1,2-bis (difluoromethylsilyl) ethane is a compound in which R 1 and R 2 are methyl in the general formula (1), and 1,1-bis (difluoromethylsilyl) ethane is represented by the general formula (1).
  • R 3 and R 4 are methyl compounds.
  • Examples 1 to 9 and Comparative Examples 1 to 9 Preparation of nonaqueous electrolyte and production of nonaqueous electrolyte secondary battery using the same [Preparation of nonaqueous electrolyte]
  • the following compound A1, mixture A2, B1, B2, C1 and C2 as electrolyte additives were dissolved in the following electrolyte solution A in the ratio shown in [Table 1], and the nonaqueous electrolyte of the present invention and comparative nonaqueous were dissolved.
  • An electrolyte solution was prepared.
  • the number in () in [Table 1] represents the concentration (% by mass) in the non-aqueous electrolyte.
  • (Production of negative electrode) 97.5 parts by mass of artificial graphite as a negative electrode active material, 1.5 parts by mass of styrene butadiene rubber as a binder, and 1.0 part by mass of carboxymethyl cellulose as a thickener were mixed to obtain a negative electrode material.
  • This negative electrode material was dispersed in 120 parts by mass of water to form a slurry, which was applied to a copper negative electrode current collector, dried, and press-molded to obtain a negative electrode plate. Then, this negative electrode plate was cut into a predetermined size to produce a disc-shaped negative electrode.
  • an initial characteristic test and a cycle characteristic test were performed by the following test methods.
  • the initial characteristic test the discharge capacity ratio and the internal resistance ratio were obtained.
  • the cycle characteristic test the discharge capacity maintenance rate and the internal resistance increase rate were obtained.
  • the test results are shown in [Table 2] below.
  • it is a non-aqueous electrolyte secondary battery which is excellent in an initial characteristic, so that the numerical value of internal resistance ratio is so low that discharge capacity ratio is high.
  • it is a non-aqueous electrolyte secondary battery in which the higher the discharge capacity retention rate and the lower the internal increase rate, the better the cycle characteristics.
  • Method for measuring discharge capacity ratio A lithium secondary battery is placed in a constant temperature bath at 20 ° C., and charged at a constant current and a constant voltage up to 4.3 V with a charging current of 0.3 mA / cm 2 (current value corresponding to 0.2 C). The operation of performing a constant current discharge to 3.0 V at a discharge current of 0.3 mA / cm 2 (current value corresponding to 0.2 C) was performed five times. Thereafter, 4.3 V until a constant current and constant voltage charging at a charging current 0.3 mA / cm 2, and a constant current discharge to 3.0V at a discharge current 0.3 mA / cm 2.
  • the discharge capacity measured at the sixth time was defined as the initial discharge capacity of the battery, and the ratio of the initial discharge capacity when the discharge capacity ratio (%) was 100 as the initial discharge capacity of Example 1 as shown in the following formula.
  • Discharge capacity ratio (%) [(initial discharge capacity) / (initial discharge capacity in Example 1)] ⁇ 100
  • Method for measuring discharge capacity retention rate The lithium secondary battery after the initial characteristic test was placed in a constant temperature bath at 60 ° C., and a charging current of 1.5 mA / cm 2 (current value equivalent to 1 C, 1 C represents the battery capacity in 1 hour.
  • the cycle of carrying out constant current charging to 4.3 V at a discharging current value) and constant current discharging to 3.0 V at a discharging current of 1.5 mA / cm 2 was repeated 250 times.
  • the 250th discharge capacity is defined as the discharge capacity after the cycle test, and the discharge capacity retention rate (%) is obtained as a ratio of the discharge capacity after the cycle test when the initial discharge capacity is 100 as shown in the following formula. It was.
  • Discharge capacity retention rate (%) [(discharge capacity after cycle test) / (initial discharge capacity)] ⁇ 100
  • the non-aqueous electrolyte for a secondary battery of the present invention can provide a non-aqueous electrolyte secondary battery that can maintain a small internal resistance and a high discharge capacity even when used for a long period of time and when the temperature changes greatly.
  • Such non-aqueous electrolyte secondary batteries include video cameras, digital cameras, portable music players, sound recorders, portable DVD players, portable game machines, notebook computers, electronic dictionaries, electronic notebooks, electronic books, mobile phones, mobile TVs, It can be used for various applications such as electric assist bicycles, battery cars, and hybrid cars. Among them, it can be suitably used for applications such as battery cars and hybrid cars that may be used at high temperatures.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)

Abstract

 本発明は、高温保存においても、小さな内部抵抗と高い電気容量が維持することが出来る電池用非水電解液及び該非水電解液を用いた非水電解液二次電池を提供するものであり、具体的には、電解質塩、下記一般式(1)で表わされる化合物、及び下記一般式(2)で表わされる化合物を有機溶媒に溶解させた二次電池用非水電解液であって、下記一般式(1)で表わされる化合物と下記一般式(2)で表わされる化合物との合計に対する下記一般式(2)で表わされる化合物の含有量が0.1~8質量%である二次電池用非水電解液を提供するものである。 (式中、R1~R4はそれぞれ独立して炭素数1~8のアルキル基を表わす。)

Description

非水電解液及び該電解液を用いた非水電解液二次電池
 本発明は、特定の構造を有するジカーボネート化合物を含有する非水電解液及び該電解液を用いた非水電解液二次電池に関する。
 近年の携帯用パソコン、ハンディビデオカメラ、情報端末等の携帯電子機器の普及に伴い、高電圧、高エネルギー密度を有する非水電解液二次電池が電源として広く用いられるようになった。また、環境問題の観点から、電池自動車や電力を動力の一部に利用したハイブリッド車の実用化が行われている。
 非水電解液二次電池では、非水電解液電池の安定性や電気特性の向上のために、電解液用の種々の添加剤が提案されている。例えば、1,3-プロパンスルトン(例えば、特許文献1を参照)、ビニルエチレンカーボネート(例えば、特許文献2を参照)、ビニレンカーボネート(例えば、特許文献3を参照)、1,3-プロパンスルトン、ブタンスルトン(例えば、特許文献4を参照)、ビニレンカーボネート(例えば、特許文献5を参照)、ビニルエチレンカーボネート(例えば、特許文献6を参照)等は、負極の表面にSEI(Solid Electrolyte Interface:固体電解質膜)と呼ばれる安定な被膜を形成し、この被膜が負極の表面を覆うことにより、電解液の還元分解を抑制するものと考えられている。また、ビニル基等不飽和基を含有するジシロキサン(例えば、特許文献7を参照)、アルケニル基が結合したフルオロシラン(例えば、特許文献8を参照)、アルキレンビスフルオロシラン(例えば、特許文献9を参照)、エーテル基が結合したフルオロシラン(例えば、特許文献10を参照)等は、正極表面に吸着することで正極を保護し、非水電解液の酸化分解を抑制すると考えられている。しかしながら、このような添加剤は、高温においては電極表面への吸着と脱離が繰り返されるために、高温保存における保護効果が十分なものではなかった。
 一方、特許文献11では、1,2-ビス(ジフルオロメチルシリル)エタンがリチウム電池用添加剤として使用できることが開示されている。しかし、特許文献11では、電池としての試験結果が開示されておらず、1,2-ビス(ジフルオロメチルシリル)エタンと相乗効果を有する化合物についても開示されていない。
特開昭63-102173号公報 特開平04-87156号公報 特開平05-74486号公報 特開平10-50342号公報 米国特許5626981号明細書 特開2001-6729号公報 特開2002-134169号公報 米国特許出願公開第2004/0007688号明細書 米国特許出願公開第2006/0269843号明細書 米国特許出願公開第2007/0243470号明細書 米国特許出願公開第2009/0197167号明細書
 従って、本発明の目的は、高温保存においても、小さな内部抵抗と高い電気容量が維持することが出来る二次電池用非水電解液及び該非水電解液を用いた非水電解液二次電池を提供することにある。
 本発明者は、鋭意検討を行なった結果、特定の構造のフルオロシラン化合物を含有する非水電解液を使用することで前記目的を達成することを見出し、本発明を完成させた。
 すなわち、本発明は、電解質塩、下記一般式(1)で表わされる化合物、及び下記一般式(2)で表わされる化合物を有機溶媒に溶解させた二次電池用非水電解液であって、下記一般式(1)で表わされる化合物と下記一般式(2)で表わされる化合物との合計に対する下記一般式(2)で表わされる化合物の含有量が0.1~8質量%である二次電池用非水電解液を提供するものである。
Figure JPOXMLDOC01-appb-C000004
(式中、R1及びR2はそれぞれ独立して炭素数1~8のアルキル基を表わす。)
Figure JPOXMLDOC01-appb-C000005
(式中、R3及びR4はそれぞれ独立して炭素数1~8のアルキル基を表わす。)
 本発明の二次電池用非水電解液を使用することによって、高温保存を経ても高い電気容量と低い内部抵抗を維持する非水電解液二次電池が提供可能になった。
図1は、本発明の非水電解液二次電池のコイン型電池の構造の一例を概略的に示す縦断面図である。 図2は、本発明の非水電解液二次電池の円筒型電池の基本構成を示す概略図である。 図3は、本発明の非水電解液二次電池の円筒型電池の内部構造を断面として示す斜視図である。
 以下、本発明の二次電池用非水電解液及び該電解液を用いた非水電解液二次電池について、好ましい実施形態に基づき詳細に説明する。
 本発明の二次電池用非水電解液は、電解質塩、前記一般式(1)で表わされる化合物、及び前記一般式(2)で表わされる化合物を有機溶媒に溶解させた二次電池用非水電解液であって、前記一般式(1)で表わされる化合物と前記一般式(2)で表わされる化合物との合計に対する前記一般式(2)で表わされる化合物の含有量が0.1~8質量%であることを特徴とする。
 先ず、前記一般式(1)で表される化合物について説明する。一般式(1)において、R1及びR2はそれぞれ独立して炭素数1~8のアルキル基を表わす。炭素数1~8のアルキル基としては、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、2級ブチル、t-ブチル、ペンチル、イソペンチル、2級ペンチル、t-ペンチル、ヘキシル、2級ヘキシル、ヘプチル、2級ヘプチル、オクチル、2級オクチル、2-メチルペンチル、2-エチルヘキシル等が挙げられる。R1及びR2としては、リチウムイオンの移動への悪影響が少なく充電特性が良好であることから、メチル及びエチルが好ましく、メチルが更に好ましい。R1とR2とは、同一の基でも、異なる基でもよいが、同様の理由から、少なくとも一方がメチルであることが好ましい。
 前記一般式(1)で表される化合物のうち好ましい化合物の具体例としては、1,2-ビス(ジフルオロメチルシリル)エタン、1,2-ビス(ジフルオロエチルシリル)エタン、1-ジフルオロメチルシリル-2-ジフルオロエチルシリルエタン、1-ジフルオロメチルシリル-2-ジフルオロプロピルシリルエタン等が挙げられる。
 前記一般式(1)で表される化合物は、下記一般式(1a)で表される化合物の塩素原子又は炭素数1~3のアルコキシル基をフッ素原子に置換することにより得ることができる。
Figure JPOXMLDOC01-appb-C000006
(式中、R1及びR2は前記一般式(1)と同義であり、X1は塩素原子又は炭素数1~3のアルコキシル基を表わす。)
 前記一般式(1a)で表される化合物のX1をフッ素原子に置換する方法は、公知の方法、例えば、三フッ化アンチモンを用いる方法(J. Amer. Chem. Soc.,68,2655(1946年)を参照)、フッ化カルシウムを用いる方法(米国特許3646092号を参照)、フッ化水素酸水溶液を用いる方法(J. Amer. Chem. Soc.,73,5127(1951年)を参照)等の方法によればよい。
 次に、前記一般式(2)で表される化合物について説明する。一般式(2)において、R3及びR4はそれぞれ独立して炭素数1~8のアルキル基を表わす。炭素数1~8のアルキル基としては、一般式(1)のR1及びR2の説明で例示した基が挙げられる。R3及びR4としては、リチウムイオンの移動への悪影響が少なく充電特性が良好であることから、メチル及びエチルが好ましく、メチルが更に好ましい。R3とR4とは、同一の基でも、異なる基でもよいが、同様の理由から、少なくとも一方がメチルであることが好ましい。
 前記一般式(2)で表される化合物のうち好ましい化合物の具体例としては、1,1-ビス(ジフルオロメチルシリル)エタン、1,1-ビス(ジフルオロエチルシリル)エタン、1-ジフルオロメチルシリル-1-ジフルオロエチルシリルエタン、1-ジフルオロメチルロシリル-1-ジフルオロプロピルシリルエタン等が挙げられる。
 本発明の二次電池用非水電解液において、前記一般式(1)で表わされる化合物と前記一般式(2)で表わされる化合物との合計に対する前記一般式(2)で表わされる化合物の含有量は0.1~8質量%であり、高温保存における電池性能の低下が少ないことから、0.3~7質量%であることが好ましく、0.5~6質量%であることが更に好ましい。
 本発明の二次電池用非水電解液において、前記一般式(1)で表わされる化合物と前記一般式(2)で表わされる化合物の合計の含有量があまりに少ない場合には、十分な効果が得られず、またあまりに多い場合には、配合量に見合う増量効果は得られないばかりか、却って電池性能に悪影響を及ぼすことがあることから、非水電解液に対して、前記一般式(1)で表わされる化合物と前記一般式(2)で表わされる化合物の合計の含有量が、0.01~3質量%であることが好ましく、0.02~2質量%であることが更に好ましく、0.03~1質量%であることが最も好ましい。
 前記一般式(2)で表される化合物は、前記一般式(1)で表される化合物と同様に、下記一般式(2a)で表される化合物の塩素原子又は炭素数1~3のアルコキシル基をフッ素原子に置換することにより得ることができる。
Figure JPOXMLDOC01-appb-C000007
(式中、R3及びR4は前記一般式(2)と同義であり、X2は塩素原子又は炭素数1~3のアルコキシル基を表わす。)
 前記一般式(2a)で表される化合物のうち、X2がメトキシル基である化合物(下記一般式(2d)で表わされる化合物)は、例えば、下記一般式(2b)で表わされるビニルシラン化合物と下記一般式(2c)で表わされるヒドロシラン化合物との白金触媒によるヒドロシリル化反応により、下記一般式(2e)で表わされる化合物との混合物として得ることができる。下記一般式(2d)で表わされる化合物の生成割合は白金触媒の種類によっても異なるが、白金-ジビニルテトラメチルジシロキサン錯体(Karstedt触媒)の場合15~25%、塩化白金酸の場合25~35%である。
Figure JPOXMLDOC01-appb-C000008
(式(2b)~(2e)中、R3及びR4は前記一般式(2)と同義である。)
 前記一般式(2d)で表わされる化合物と前記一般式(2e)で表わされる化合物との混合物から、前記一般式(2d)で表わされる化合物を単離し、メトキシ基をフッ素原子に置換してもよいが、前記一般式(2e)で表わされる化合物は前記一般式(1a)で表される化合物に該当する化合物であることから、混合物のまま置換してもよい。
 次に、本発明の二次電池用非水電解液に用いられる有機溶媒について説明する。本発明の二次電池用非水電解液に用いられる有機溶媒としては、非水電解液に通常用いられているものを1種又は2種以上組み合わせて用いることができる。具体的には、飽和環状カーボネート化合物、飽和環状エステル化合物、スルホキシド化合物、スルホン化合物、アマイド化合物、飽和鎖状カーボネート化合物、鎖状エーテル化合物、環状エーテル化合物、飽和鎖状エステル化合物等が挙げられる。
 前記有機溶媒のうち、飽和環状カーボネート化合物、飽和環状エステル化合物、スルホキシド化合物、スルホン化合物及びアマイド化合物は、比誘電率が高いため、二次電池用非水電解液の誘電率を上げる役割を果たし、特に飽和環状カーボネート化合物が好ましい。斯かる飽和環状カーボネート化合物としては、例えば、エチレンカーボネート、1,2-プロピレンカーボネート、1,3-プロピレンカーボネート、1,2-ブチレンカーボネート、1,3-ブチレンカーボネート、1,1,-ジメチルエチレンカーボネート等が挙げられる。前記飽和環状エステル化合物としては、γ-ブチロラクトン、γ-バレロラクトン、γ-カプロラクトン、δ-ヘキサノラクトン、δ-オクタノラクトン等が挙げられる。前記スルホキシド化合物としては、ジメチルスルホキシド、ジエチルスルホキシド、ジプロピルスルホキシド、ジフェニルスルホキシド、チオフェン等が挙げられる。前記スルホン化合物としては、ジメチルスルホン、ジエチルスルホン、ジプロピルスルホン、ジフェニルスルホン、スルホラン(テトラメチレンスルホンともいう)、3-メチルスルホラン、3,4-ジメチルスルホラン、3,4-ジフェニメチルスルホラン、スルホレン、3-メチルスルホレン、3-エチルスルホレン、3-ブロモメチルスルホレン等が挙げられ、スルホラン、テトラメチルスルホランが好ましい。前記アマイド化合物としては、N-メチルピロリドン、ジメチルホルムアミド、ジメチルアセトアミド等が挙げられる。
 前記有機溶媒のうち、飽和鎖状カーボネート化合物、鎖状エーテル化合物、環状エーテル化合物及び飽和鎖状エステル化合物は、二次電池用非水電解液の粘度を低くすることができ、電解質イオンの移動性を高くすることができる等、出力密度等の電池特性を優れたものにすることができる。また、低粘度であるため、低温での二次電池用非水電解液の性能を高くすることができ、中でも、飽和鎖状カーボネート化合物が好ましい。斯かる飽和鎖状カーボネート化合物としては、例えば、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ジエチルカーボネート(DEC)、エチルブチルカーボネート、メチル-t-ブチルカーボネート、ジイソプロピルカーボネート、t-ブチルプロピルカーボネート等が挙げられる。前記鎖状又は環状エーテル化合物としては、例えば、ジメトキシエタン(DME)、エトキシメトキシエタン、ジエトキシエタン、テトラヒドロフラン、ジオキソラン、ジオキサン、1,2-ビス(メトキシカルボニルオキシ)エタン、1,2-ビス(エトキシカルボニルオキシ)エタン、1,2-ビス(エトキシカルボニルオキシ)プロパン、エチレングリコールビス(トリフルオロエチル)エーテル、プロピレングリコールビス(トリフルオロエチル)エーテル、エチレングリコールビス(トリフルオロメチル)エーテル、ジエチレングリコールビス(トリフルオロエチル)エーテル等が挙げられ、これらの中でもジオキソランが好ましい。
 前記飽和鎖状エステル化合物としては、分子中の炭素数の合計が2~8であるモノエステル化合物及びジエステル化合物が好ましく、具体的な化合物としては、ギ酸メチル、ギ酸エチル、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸イソブチル、酢酸ブチル、プロピオン酸メチル、プロピオン酸エチル、酪酸メチル、イソ酪酸メチル、トリメチル酢酸メチル、トリメチル酢酸エチル、マロン酸メチル、マロン酸エチル、コハク酸メチル、コハク酸エチル、3-メトキシプロピオン酸メチル、3-メトキシプロピオン酸エチル、エチレングリコールジアセチル、プロピレングリコールジアセチル等が挙げられ、ギ酸メチル、ギ酸エチル、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸イソブチル、酢酸ブチル、プロピオン酸メチル、プロピオン酸エチルが好ましい。
 その他、有機溶媒としてアセトニトリル、プロピオニトリル、ニトロメタンやこれらの誘導体を用いることもできる。
 本発明の二次電池用非水電解液の電解質塩について説明する。本発明の二次電池用非水電解液に用いられる電解質塩としては、従来公知の電解質塩が用いられ、例えば、LiPF6、LiBF4、LiAsF6、LiCF3SO3、LiCF3CO2、LiN(CF3SO22、LiC(CF3SO23、LiB(CF3SO34、LiB(C242、LiBF2(C24)、LiSbF6、LiSiF5、LiAlF4、LiSCN、LiClO4、LiCl、LiF、LiBr、LiI、LiAlF4、LiAlCl4、NaClO4、NaBF4、NaI、及びこれらの誘導体等が挙げられ、これらの中でも、LiPF6、LiBF4、LiClO4、LiAsF6、LiCF3SO3、及びLiC(CF3SO23並びにLiCF3SO3の誘導体、及びLiC(CF3SO23の誘導体からなる群から選ばれる1種以上を用いるのが、電気特性に優れるので好ましい。
 前記電解質塩は、本発明の二次電池用非水電解液の濃度が、0.1~3.0mol/L、特に0.5~2.0mol/Lとなるように、前記有機溶媒に溶解することが好ましい。前記電解質塩の濃度が0.1mol/Lより小さいと、充分な電流密度を得られないことがあり、3.0mol/Lより大きいと、非水電解液の安定性を損なう恐れがある。
 本発明の二次電池用非水電解液は、前記一般式(1)で表わされる化合物及び前記一般式(2)で表わされる化合物との相乗効果が高いことから、更に、下記一般式(3)で表わされる化合物を含有することが好ましい。
Figure JPOXMLDOC01-appb-C000009
(式中、R5及びR6はそれぞれ独立に炭素数1~8のアルキル基、炭素数1~8のハロゲン化アルキル基、炭素数2~8のアルケニル基、炭素数2~8のアルキニル基又は炭素数6~8のアリール基を表わし、Qは酸素原子又は炭素数1~6の2価の炭化水素基を表わす。)
 前記一般式(3)において、R5及びR6はそれぞれ独立して炭素数1~8のアルキル基、炭素数1~8のハロゲン化アルキル基、炭素数2~8のアルケニル基、炭素数2~8のアルキニル基又は炭素数6~8のアリール基を表わす。炭素数1~8のアルキル基としては、前記一般式(1)のR1及びR2で例示した基が挙げられる。炭素数1~8のハロゲン化アルキル基としては、トリフルオロメチル、2-フルオロエチル、2,2,2-トリフルオロエチル、1,1,2,2-テトラフルオロエチル、ペンタフルオロエチル、3-フルオロプロピル、3,3,3-トリフルオロプロピル、2,2,3,3-テトラフルオロプロピル、ヘプタフルオロプロピル、クロロメチル、1-クロロエチル、2-クロロエチル、3-クロロプロピル、4-クロロブチル、5-クロロペンチル、6-クロロヘキシル、8-クロロオクチルが挙げられる。炭素数2~8のアルケニル基としては、ビニル、アリル、3-ブテニル、4-プロペニル、5-ヘキセニル、7-オクテニル等が挙げられる。炭素数2~8のアルキニル基としては、エチニル、2-プロピニル、3-ブチニル、4-ペンチニル、5-ヘキシニル、7-オクチニル等が挙げられる。炭素数6~8のアリール基としては、フェニル、トルイル、キシリル、エチルフェニル、フルオロフェニル、ジフルオロフェニル、クロロフェニル、ジクロロフェニル等が挙げられる。R5及びR6としては、リチウムイオンの移動への悪影響が少なく充電特性が良好であることから、メチル、エチル、プロピル、イソプロピル、ブチル、ペンチル、3-クロロプロピル、及び4-クロロブチルが好ましく、メチル、エチル、及びプロピルが好ましく、メチル及びエチルが最も好ましい。
 前記一般式(3)において、Qは酸素原子又は炭素数1~6の2価の炭化水素基を表わす。炭素数1~6の2価の炭化水素基としては、メチレン、エチレン、トリメチレン、テトラメチレン、ペンタメチレン、ヘキサメチレン、2-メチルブタン-1,4-ジイル、1,2-エチニル、2-ブテン-1,4-ジイル、2-ブテン-2,3-ジイル、ビニレン、エチニレン、フェニレン等が挙げられる。Qとしては、高い電池性能が得られることから、酸素原子、エチレン及びトリメチレンが好ましく、酸素原子及びエチレンが更に好ましい。
 前記一般式(3)で表わされる化合物の中で好ましい化合物としては、例えば、1,3-ジフルオロ-1,1,3,3-テトラメチルジシロキサン、1,3-ジフルオロ-1,1,3,3-テトラエチルジシロキサン、1,3-ジフルオロ-1,1,3,3-テトラプロピルジシロキサン、1,3-ジフルオロ-1,1,3,3-テトラブチルジシロキサン、1,3-ジフルオロ-1,1,3,3-テトラペンチルジシロキサン、1,3-ジフルオロ-1,1,3,3-テトラヘキシルジシロキサン、1,2-ビス(フルオロジメチルシリル)エタン、1,2-ビス(フルオロジエチルシリル)エタン、1、2-ビス(フルオロジプロピルシリル)エタン、1,2-ビス(フルオロジブチルシリル)エタン、1-フルオロジメチルシリル-2-フルオロエチルシリルエタン、1,3-ビス(フルオロジメチルシリル)プロパン、1,3-ビス(フルオロジエチルシリル)プロパン、1,3-ビス(フルオロジプロピルシリル)プロパン、1,3-ビス(フルオロジブチルシリル)プロパン等が挙げられる。
 本発明の非水電解液において、前記一般式(3)で表される化合物の含有量が、あまりに少ない場合には、十分な効果を発揮できず、またあまりに多い場合には、配合量に見合う増量効果は得られないばかりか、却って非水電解液の特性に悪影響を及ぼすことがあることから、前記一般式(3)で表される化合物の含有量は、非水電解液に対して0.01~5質量%が好ましく、0.03~4質量%が更に好ましく、0.05~3質量%が最も好ましい。前記一般式(3)で表される化合物は1種のみを使用してもよいし、2種以上を組合せて使用してもよい。
 本発明の非水電解液は、電池性能が向上することから、更に、不飽和基を有する環状カーボネート化合物、不飽和基を有する鎖状カーボネート化合物、不飽和ジエステル化合物、ハロゲン化環状カーボネート化合物、環状亜硫酸エステル及び環状硫酸エステルからなる群より選ばれた1種以上の化合物を含有することが好ましい。
 前記不飽和基を有する環状カーボネート化合物としては、ビニレンカーボネート、ビニルエチレン力-ボネート、プロピリデンカーボネート、エチレンエチリデンカーボネート、エチレンイソプロピリデンカーボンート等が挙げられる。前記不飽和基を有する鎖状カーボネート化合物としては、ジプロパルギルカーボネート、プロパルギルメチルカーボネート、エチルプロパルギルカーボネート、ビス(1-メチルプロパルギル)カーボネート、ビス(1-ジメチルプロパルギル)カーボネート等が挙げられる。前記不飽和ジエステル化合物としては、マレイン酸ジメチル、マレイン酸ジエチル、マレイン酸ジプロピル、マレイン酸ジブチル、マレイン酸ジペンチル、マレイン酸ジヘキシル、マレイン酸ジヘプチル、マレイン酸ジオクチル、フマル酸ジメチル、フマル酸ジエチル、フマル酸ジプロピル、フマル酸ジブチル、フマル酸ジペンチル、フマル酸ジヘキシル、フマル酸ジヘプチル、フマル酸ジオクチル、アセチレンジカルボン酸ジメチル、アセチレンジカルボン酸ジエチル、アセテレンジカルボン酸ジプロピル、アセチレンジカルボン酸ジブチル、アセテレンジカルボン酸ジペンジル、アセチレンジカルボン酸ジヘキシル、アセチレンジカルボン酸ジヘプチル、アセチレンジカルボン酸ジオクチル等が挙げられる。前記ハロゲン化環状カーボネート化合物としては、クロロエチレンカーボネート、ジクロロエチレンカーボネート、フルオロエチレンカーボネート、ジフルオロエチレンカーボネート等が挙げられる。前記環状亜硫酸エステルとしては、エチレンサルファイト等が挙げられる。前記環状硫酸エステルとしては、プロパンスルトン、ブタンスルトン等が挙げられる。これらの化合物の中では、ビニレンカーボネート、ビニルエチレンカーボネート、ジプロパルギルカーボネート、アセチレンジカルボン酸ジメチル、アセチレンジカルボン酸ジエチル、クロロエチレンカーボネート、ジクロロエチレンカーボネート、フルオロエチレンカーボネート、エチレンサルファイト、プロパンスルトン、及びブタンスルトンが好ましく、ビニレンカーボネート、ジプロパルギルカーボネート、アセチレンジカルボン酸ジメテル、クロロエチレンカーボネート、フルオロエチレンカーボネート、エチレンサルファイト、及びプロパンスルトンが更に好ましく、ビニレンカーボネート、ジプロパルギルカーボネート、クロロエチレンカーボネート、フルオロエチレンカーボネート、エチレンサルファイト、及びプロパンスルトンが最も好ましい。
 これらの化合物は1種のみを使用してもよいし、2種以上を組合せて使用してもよい。本発明の二次電池用非水電解液において、これらの化合物の含有量が、あまりに少ない場合には十分な効果を発揮できず、またあまりに多い場合には、配合量に見合う増量効果は得られないばかりか、却って非水電解液の特性に悪影響を及ぼすことがあることから、これらの化合物の含有量は、合計で非水電解液に対して0.005~10質量%が好ましく、0.02~5質量%が更に好ましく、0.05~3質量%が最も好ましい。
 以上説明した本発明の二次電池用非水電解液は、特にリチウムイオン二次電池を構成する二次電池用非水電解液として好適に使用できる。
 次に、本発明の非水電解液二次電池について説明する。
 本発明の非水電解液二次電池は、負極活物質を含有する負極、正極活物質を含有する正極、及び非水電解液を有し、該非水電解液として本発明の二次電池用非水電解液を用いた点に特徴を有するものであり、負極と正極の間にセパレーターを有してもよい。
 本発明の非水電解液二次電池の正極としては、正極活物質、結着剤及び導電材等の正極材料を有機溶媒又は水でスラリー化したものを集電体に塗布・乾燥し、必要に応じて圧延してシート状にしたものが使用される。
 前記正極活物質としては、TiS2、TiS3、MoS3、FeS2、Li(1-x)MnO2、Li(1-x)Mn24、Li(1-x)CoO2、Li(1-x)NiO2、LiV23、V25等が挙げられる。尚、これらの正極活物質におけるXは0~1の数を示す。これらの正極活物質は、各々にLi、Mg、Al、又はCo、Ti、Nb、Cr等の遷移金属を添加又は置換した材料等であってもよい。また、これらのリチウム-金属複合酸化物を単独で用いるばかりでなくこれらを複数種類混合して用いることもできる。この中でも、リチウム-金属複合酸化物としては、層状構造又はスピネル構造のリチウムマンガン含有複合酸化物、リチウムニッケル含有複合酸化物及びリチウムコバルト含有複合酸化物のうちの1種以上であることが好ましい。
 前記正極活物質の結着剤としては、例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、EPDM、SBR、NBR、フッ素ゴム、ポリアクリル酸等が挙げられるが、これらに限定されない。
 前記結着剤の使用量は、前記正極活物質100質量部に対し、0.1~20質量部が好ましく、0.5~10質量部が更に好ましい。
 前記正極の導電材としては、黒鉛の微粒子、アセチレンブラック、ケッチェンブラック等のカーボンブラック、ニードルコークス等の無定形炭素の微粒子等、カーボンナノファイバー等が使用されるが、これらに限定されない。
 前記導電材の使用量は、前記正極活物質100質量部に対し、0.01~20質量部が好ましく、0.1~10質量部が更に好ましい。
 前記スラリー化する溶媒としては、結着剤を溶解する有機溶剤又は水が使用される。該有機溶剤としては、例えば、N-メチルピロリドン、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、シクロヘキサノン、酢酸メチル、アクリル酸メチル、ジエチルトリアミン、N-N-ジメチルアミノプロピルアミン、ポリエチレンオキシド、テトラヒドロフラン等が挙げられるが、これに限定されない。
 前記溶媒の使用量は、前記正極活物質100質量部に対し、30~300質量部が好ましく、50~200質量部が更に好ましい。
 前記正極の集電体には、通常、アルミニウム、ステンレス鋼、ニッケルメッキ鋼等が使用される。
 本発明の非水電解液二次電池の負極としては、負極活物質、結着剤及び導電材等の負極材料を有機溶媒又は水でスラリー化したものを集電体に塗布・乾燥し、必要に応じて圧延してシート状にしたものが使用される。
 前記負極活物質としては、人造黒鉛、天然黒鉛等の結晶性炭素材料のほか、リチウム、スズ、亜鉛、アルミニウム等の金属単体や合金が挙げられ、特に、結晶性炭素材料が好ましい。
 前記負極活物質の結着剤としては、例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、EPDM、SBR、NBR、フッ素ゴム、ポリアクリル酸等が挙げられるが、これらに限定されない。
 前記結着剤の使用量は、前記負極活物質100質量部に対し、0.001~5質量部が好ましく、0.05~3質量部が更に好ましく、0.01~2質量部が最も好ましい。
 前記負極の導電材としては、黒鉛の微粒子、アセチレンブラック、ケッチェンブラック等のカーボンブラック、ニードルコークス等の無定形炭素の微粒子等、カーボンナノファイバー等が使用されるが、これらに限定されない。
 前記導電材の使用量は、前記負極活物質100質量部に対し、0.01~20質量部が好ましく、0.05~15質量部が更に好ましい。
 スラリー化する溶媒としては、結着剤を溶解する有機溶剤もしくは水が使用される。該有機溶剤としては、例えば、N-メチルピロリドン、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、シクロヘキサノン、酢酸メチル、アクリル酸メチル、ジエチルトリアミン、N-N-ジメチルアミノプロピルアミン、ポリエチレンオキシド、テトラヒドロフラン等が挙げられるが、これに限定されない。
 前記溶媒の使用量は、前記負極活物質100質量部に対し、30~300質量部が好ましく、50~200質量部が更に好ましい。
 負極には電極内の導電性を向上させる目的でファーネスブラック、アセチレンブラック、ケッチェンブラック、気相成長炭素繊維(VGCF)、カーボンナノファーバー等の導電剤等が使用される。
 前記負極の集電体には、通常、銅、ニッケル、ステンレス鋼、ニッケルメッキ鋼等が使用される。
 本発明の非水電解液二次電池では、正極と負極との間にセパレータを用いることが好ましく、該セパレータとしては、通常用いられる高分子の微多孔フィルムを特に限定なく使用できる。該フィルムとしては、例えば、ポリエチレン、ポリプロピレン、ポリフッ化ビニリデン、ポリ塩化ビニリデン、ポリアクリロニトリル、ポリアクリルアミド、ポリテトラフルオロエチレン、ポリスルホン、ポリエーテルスルホン、ポリカーボネート、ポリアミド、ポリイミド、ポリエチレンオキシドやポリプロピレンオキシド等のポリエーテル類、カルボキシメチルセルロースやヒドロキシプロピルセルロース等の種々のセルロース類、ポリ(メタ)アクリル酸及びその種々のエステル類等を主体とする高分子化合物やその誘導体、これらの共重合体や混合物からなるフィルム等が挙げられる。これらのフィルムは、単独で用いてもよいし、これらのフィルムを重ね合わせて複層フィルムとして用いてもよい。さらに、これらのフィルムには、種々の添加剤を用いてもよく、その種類や含有量は特に制限されない。これらのフィルムの中でも、本発明の非水電解液二次電池には、ポリエチレンやポリプロピレン、ポリフッ化ビニリデン、ポリスルホンからなるフィルムが好ましく用いられる。
 これらのフィルムは、電解液がしみ込んでイオンが透過し易いように、微多孔化がなされている。この微多孔化の方法としては、高分子化合物と溶剤の溶液をミクロ相分離させながら製膜し、溶剤を抽出除去して多孔化する「相分離法」と、溶融した高分子化合物を高ドラフトで押し出し製膜した後に熱処理し、結晶を一方向に配列させ、さらに延伸によって結晶間に間隙を形成して多孔化をはかる「延伸法」等が挙げられ、用いられるフィルムによって適宜選択される。
 本発明の非水電解液二次電池において、電極材料、非水電解液及びセパレータには、より安全性を向上する目的で、フェノール系酸化防止剤、リン系酸化防止剤、チオエーテル系酸化防止剤、ヒンダードアミン化合物等を添加してもよい。
 前記構成からなる本発明の非水電解液二次電池は、その形状には特に制限を受けず、コイン型、円筒型、角型等、種々の形状とすることができる。図1は、本発明の非水電解液二次電池のコイン型電池の一例を、図2及び図3は円筒型電池の一例をそれぞれ示したものである。
 図1に示すコイン型の非水電解液二次電池10において、1はリチウムイオンを放出できる正極、1aは正極集電体、2は正極から放出されたリチウムイオンを吸蔵、放出できる炭素質材料よりなる負極、2aは負極集電体、3は本発明の二次電池用非水電解液、4はステンレス製の正極ケース、5はステンレス製の負極ケース、6はポリプロピレン製のガスケット、7はポリエチレン製のセパレータである。
 また、図2及び図3に示す円筒型の非水電解液二次電池10'において、11は負極、12は負極集電体、13は正極、14は正極集電体、15は本発明の二次電池用非水電解液、16はセパレータ、17は正極端子、18は負極端子、19は負極板、20は負極リード、21は正極板、22は正極リード、23はケース、24は絶縁板、25はガスケット、26は安全弁、27はPTC素子である。
 以下、実施例により本発明を具体的に説明するが、これらは本発明の範囲を限定するものではない。尚、実施例中の「部」や「%」は、特にことわらないかぎり質量によるものである。
 下記製造例1は、前記一般式(1)で表わされる化合物の合成例であり、下記製造例2は、前記一般式(1)で表わされる化合物と前記一般式(2)で表わされる化合物の混合物の合成例であり、下記実施例1~9及び比較例1~8は、本発明の非水電解液及びこれを用いた非水電解液二次電池の実施例並びにその比較例である。
 製造例1:1,2-ビス(ジフルオロメチルシリル)エタンの合成
 温度計、攪拌装置及び冷却管を備えたガラス製反応容器に、三フッ化アンチモン76.8g(0.43モル)を仕込み、0~10℃になるように水冷しながら、2-ビス(ジクロロメチルシリル)エタン76.8g(0.3モル)を滴下した。2-ビス(ジクロロメチルシリル)エタンは純度99.5%で、1,1-ビス(ジフルオロメチルフルオロシリル)エタンの含有量が0.1%であるものを用いた。滴下終了後、30℃で2時間撹拌を続けて反応を完了させた。反応溶液から2回蒸留を繰り返すことで1,1-ビス(ジフルオロメチルシリル)エタンを含まない1,2-ビス(ジフルオロメチルシリル)エタン(化合物A1)40.2gを得た。1,2-ビス(ジフルオロメチルシリル)エタンは前記一般式(1)において、R1及びR2がメチルの化合物である。
 製造例2:1,2-ビス(ジフルオロメチルシリル)エタンと1,1-ビス(ジフルオロメチルシリル)エタンとの混合物の合成
 温度計、攪拌装置及び冷却管を備えたステンレス製の耐圧容器にジメトキシメチルシラン53.6g(0.4モル)、ジメトキシメチルビニルシラン67.2g(0.42モル)、及び塩化白金酸の0.1モル/Lのイソプロパノール溶液0.5mlを仕込み、容器を密閉した。撹拌しながら加熱し、80℃で30分間反応を行なった。反応後、反応液を蒸留し、1,2-ビス(ジメトキシメチルシリル)エタンと1,1-ビス(ジメトキシメチルシリル)エタンとの混合物88.4gを得た。
 温度計、攪拌装置及び冷却管を備えたPFA製反応容器に、前記混合物76.8g(合計で0.3モル)及び溶媒としてシクロペンタン50gを仕込み、0~10℃になるように水冷しながら、46%フッ化水素水58.7g(1.35モル)を滴下した。滴下終了後、30℃で2時間撹拌を続けて反応を完了させた。反応溶液を静置し、分離した水層を除去し、有機層を飽和食塩水で洗浄した。有機層を蒸留することで、1、2-ビス(ジフルオロメチルシリル)エタン70%、1、1-ビス(ジフルオロメチルシリル)エタン30%からなる混合物(混合物A2)44.7gを得た。混合物の組成はガスクロ分析により求めた。尚、1、2-ビス(ジフルオロメチルシリル)エタンは前記一般式(1)において、R1及びR2がメチルの化合物であり、1、1-ビス(ジフルオロメチルシリル)エタンは前記一般式(2)において、R3及びR4がメチルの化合物である。
 実施例1~9及び比較例1~9:非水電解液の調製及びこれを用いた非水電解液二次電池の作製
〔非水電解液の調製〕
 電解液添加剤として下記の化合物A1、混合物A2、B1、B2、C1及びC2を〔表1〕に示す割合で下記の電解質溶液Aに溶解し、本発明の非水電解液及び比較の非水電解液を調製した。尚、〔表1〕中の( )内の数字は、非水電解液における濃度(質量%)を表す。
〔化合物A1〕
1,2-ビス(ジフルオロメチルシリル)エタン
〔混合物A2〕
1,2-ビス(ジフルオロメチルシリル)エタン(70%)と1,1-ビス(ジフルオロメチルシリル)エタン(30%)との混合物
〔化合物B1〕
1,2-ビス(フルオロジメチルシリル)エタン
〔化合物B2〕
1,3-ジフルオロ-1,1,3,3-テトラメチルジシロキサン
〔化合物C1〕
ビニレンカーボネート
〔化合物C2〕
プロパンスルトン
〔電解質溶液A〕
 エチレンカーボネート30体積%、エチルメチルカーボネート40体積%、ジメチルカーボネート25体積%及び酢酸プロピル5体積%からなる混合溶媒にLiPF6を1mol/Lの濃度になるよう溶解したもの。
Figure JPOXMLDOC01-appb-T000010
〔正極の作製〕
 正極活物質としてLiCoO290質量部、導電材としてアセチレンブラック5質量部
、及び結着剤としてポリフッ化ビニリデン(PVDF)5質量部を混合して、正極材料とした。この正極材料をN-メチル-2-ピロリドン(NMP)140質量部に分散させてスラリー状とし、アルミニウム製の正極集電体に塗布し、乾燥後、プレス成型して、正極板とした。その後、この正極板を所定の大きさにカットして円盤状正極を作製した。
〔負極の作製〕
 負極活物質として人造黒鉛97.5質量部、及び結着剤としてスチレンブタジエンゴム1.5質量部、増粘剤としてカルボキシメチルセルロース1.0質量部を混合して、負極材料とした。この負極材料を水120質量部に分散させてスラリー状とし、銅製の負極集電体に塗布し、乾燥後、プレス成型して、負極板とした。その後、この負極板を所定の大きさにカットし、円盤状負極を作製した。
〔電池の組み立て〕
 得られた円盤状正極と円盤状負極を、厚さ25μmのポリエチレン製の微多孔フィルムをはさんでケース内に保持した。その後、本発明の非水電解液又は比較の非水電解液と正極との組合せが〔表1〕となるように、それぞれの非水電解液をケース内に注入し、ケースを密閉、封止して、実施例1~9及び比較例1~8のリチウム二次電池(φ20mtn、厚さ3.2mmのコイン型)を製作した。
 実施例1~9及び比較例1~8のリチウム二次電池を用いて、下記試験法により、初期特性試験及びサイクル特性試験を行った。初期特性試験では、放電容量比及び内部抵抗比を求めた。またサイクル特性試験では、放電容量維持率及び内部抵抗増加率を求めた。これらの試験結果を下記〔表2〕に示す。尚、放電容量比が高いほど、内部抵抗比の数値が低いほど初期特性に優れる非水電解液二次電池である。また、放電容量維持率が高いほど、内部増加率が低いほどサイクル特性に優れる非水電解液二次電池である。
<初期特性試験方法>
a.放電容量比の測定方法
 リチウム二次電池を、20℃の恒温槽内に入れ、充電電流0.3mA/cm2(0.2C相当の電流値)で4.3Vまで定電流定電圧充電し、放電電流0.3mA/cm2(0.2C相当の電流値)で3.0Vまで定電流放電する操作を5回行った。その後、充電電流0.3mA/cm2で4.3Vまで定電流定電圧充電し、放電電流0.3mA/cm2で3.0Vまで定電流放電した。この6回目に測定した放電容量を、電池の初期放電容量とし、下記式に示すように、放電容量比(%)を、実施例1の初期放電容量を100とした場合の初期放電容量の割合として求めた。
 放電容量比(%)=[(初期放電容量)/(実施例1における初期放電容量)]×100
b.内部抵抗比の測定方法
 上記6回目の放電容量を測定後のリチウム二次電池について、先ず、充電電流1.5mA/cm2(1C相当の電流値)でSOC60%になるように定電流充電し、交流インピーダンス測定装置(IVIUM TECHNOLOGIES製、商品名:モバイル型ポテンショスタットCompactStat)を用いて、周波数100kHz~0.02Hzまで走査し、縦軸に虚数部、横軸に実数部を示すコール-コールプロットを作成した。続いて、このコール-コールプロットにおいて、円弧部分を円でフィッティングして、この円の実数部分と交差する二点のうち、大きい方の値を、電池の初期内部抵抗とし、下記式に示すように、内部抵抗比(%)を、実施例1の初期内部抵抗を100とした場合の初期内部抵抗の割合として求めた。
 内部抵抗比(%)=[(初期内部抵抗)/(実施例1における初期内部抵抗)]×100
<サイクル特性試験方法>
a.放電容量維持率の測定方法
 初期特性試験後のリチウム二次電池を、60℃の恒温槽内に入れ、充電電流1.5mA/cm2(1C相当の電流値、1Cは電池容量を1時間で放電する電流値)で4.3Vまで定電流充電し、放電電流1.5mA/cm2で3.0Vまで定電流放電を行うサイクルを250回繰り返して行った。この250回目の放電容量をサイクル試験後の放電容量とし、下記式に示すように、放電容量維持率(%)を、初期放電容量を100とした場合のサイクル試験後の放電容量の割合として求めた。
 放電容量維持率(%)=[(サイクル試験後の放電容量)/(初期放電容量)]×100
b.内部抵抗増加率の測定方法
 サイクル試験後、雰囲気温度を20℃に戻して、20℃における内部抵抗を、上記内部抵抗比の測定方法と同様にして測定し、この時の内部抵抗を、サイクル試験後の内部抵抗とし、下記式に示すように、内部抵抗増加率(%)を、各電池の初期内部抵抗を100とした場合のサイクル試験後の内部抵抗の増加の割合として求めた。
 内部抵抗増加率(%)=[(サイクル試験後の内部抵抗-初期内部抵抗)/(初期内部抵抗)]×100
Figure JPOXMLDOC01-appb-T000011
 表2の結果から明らかなように、本発明の非水電解液のように、上記一般式(1)で表わされる化合物〔1,2-ビス(ジフルオロメチルシリル)エタン〕と上記一般式(2)で表わされる化合物〔1,1-ビス(ジフルオロメチルシリル)エタン〕との割合が特定の範囲である場合に、60℃でのサイクル試験後において、放電容量の低下や内部抵抗上昇が少なく、優れた電池特性を維持できることが確認できた。
1  正極
1a 正極集電体
2  負極
2a 負極集電体
3  非水電解液
4  正極ケース
5  負極ケース
6  ガスケット
7  セパレータ
10 コイン型の非水電解液二次電池
10' 円筒型の非水電解液二次電池
11 負極
12 負極集電体
13 正極
14 正極集電体
15 非水電解液
16 セパレータ
17 正極端子
18 負極端子
19 負極板
20 負極リード
21 正極
22 正極リード
23 ケース
24 絶縁板
25 ガスケット
26 安全弁
27 PTC素子
 本発明の二次電池用非水電解液は、小さな内部抵抗と高い放電容量を長期使用及び温度変化の大きい場合においても維持することが出来る非水電解液二次電池を提供できる。斯かる非水電解液二次電池は、ビデオカメラ、デジタルカメラ、携帯音楽プレーヤー、サウンドレコーダー、ポータブルDVDプレーヤー、携帯ゲーム機、ノートパソコン、電子辞書、電子手帳、電子書籍、携帯電話、携帯テレビ、電動アシスト自転車、電池自動車、ハイブリッド車等様々な用途に用いることができ、中でも、高温状態で使用される場合がある、電池自動車、ハイブリッド車等用途に好適に使用できる。

Claims (3)

  1.  電解質塩、下記一般式(1)で表わされる化合物、及び下記一般式(2)で表わされる化合物を有機溶媒に溶解させた二次電池用非水電解液であって、下記一般式(1)で表わされる化合物と下記一般式(2)で表わされる化合物との合計に対する下記一般式(2)で表わされる化合物の含有量が0.1~8質量%である二次電池用非水電解液。
    Figure JPOXMLDOC01-appb-C000001
    (式中、R1及びR2はそれぞれ独立して炭素数1~8のアルキル基を表わす。)
    Figure JPOXMLDOC01-appb-C000002
    (式中、R3及びR4はそれぞれ独立して炭素数1~8のアルキル基を表わす。)
  2.  更に、下記一般式(3)で表わされる化合物を含有することを特徴とする請求項1に記載の二次電池用非水電解液。
    Figure JPOXMLDOC01-appb-C000003
    (式中、R5及びR6はそれぞれ独立して炭炭素数1~8のアルキル基、炭素数1~8のハロゲン化アルキル基、炭素数2~8のアルケニル基、炭素数2~8のアルキニル基又は炭素数6~8のアリール基を表わし、Qは酸素原子又は炭素数1~6の2価の炭化水素基を表わす。)
  3.  負極活物質を含有する負極、正極活物質を含有する正極、及び、請求項1又は2に記載の二次電池用非水電解液を有する非水電解液二次電池。
PCT/JP2012/078304 2011-11-10 2012-11-01 非水電解液及び該電解液を用いた非水電解液二次電池 WO2013069529A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020147007634A KR101892601B1 (ko) 2011-11-10 2012-11-01 비수전해액 및 그 전해액을 이용한 비수전해액 이차전지
US14/346,533 US9419306B2 (en) 2011-11-10 2012-11-01 Nonaqueous electrolyte and nonaqueous secondary battery using same
CN201280045040.7A CN103828116B (zh) 2011-11-10 2012-11-01 非水电解液及使用了该电解液的非水电解液二次电池
EP12847605.8A EP2779299B1 (en) 2011-11-10 2012-11-01 Nonaqueous electrolyte solution, and nonaqueous electrolyte secondary battery using said electrolyte solution

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011246808A JP5823261B2 (ja) 2011-11-10 2011-11-10 非水電解液及び該電解液を用いた非水電解液二次電池
JP2011-246808 2011-11-10

Publications (1)

Publication Number Publication Date
WO2013069529A1 true WO2013069529A1 (ja) 2013-05-16

Family

ID=48289906

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/078304 WO2013069529A1 (ja) 2011-11-10 2012-11-01 非水電解液及び該電解液を用いた非水電解液二次電池

Country Status (6)

Country Link
US (1) US9419306B2 (ja)
EP (1) EP2779299B1 (ja)
JP (1) JP5823261B2 (ja)
KR (1) KR101892601B1 (ja)
CN (1) CN103828116B (ja)
WO (1) WO2013069529A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013098028A (ja) * 2011-11-01 2013-05-20 Adeka Corp 非水電解液二次電池及び新規フルオロシラン化合物
CN111029650A (zh) * 2017-02-13 2020-04-17 宁德新能源科技有限公司 一种电解液及二次电池

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016018844A (ja) * 2014-07-07 2016-02-01 パナソニック株式会社 キャパシタ用非水電解液及びキャパシタ
WO2017078107A1 (ja) * 2015-11-05 2017-05-11 三井化学株式会社 二次電池用非水電解液、及び二次電池
KR102529247B1 (ko) 2019-05-02 2023-05-08 주식회사 엘지에너지솔루션 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3646092A (en) 1969-05-20 1972-02-29 Inst Silikon & Fluorkarbonchem Process for the recovery of trimethylfluorosilane from a mixture of silicontetrachloride trimethylchlorosilane and hydrocarbons boiling at the same range
JPS63102173A (ja) 1986-10-16 1988-05-07 Hitachi Maxell Ltd リチウム二次電池
JPH0487156A (ja) 1990-07-26 1992-03-19 Sanyo Electric Co Ltd 非水系電解液電池
JPH0574486A (ja) 1991-09-10 1993-03-26 Sanyo Electric Co Ltd 非水系電解液電池
US5626981A (en) 1994-04-22 1997-05-06 Saft Rechargeable lithium electrochemical cell
JPH1050342A (ja) 1996-08-01 1998-02-20 Sony Corp 非水電解質二次電池
JP2001006729A (ja) 1999-06-18 2001-01-12 Mitsubishi Chemicals Corp 非水系電解液二次電池
JP2002134169A (ja) 2000-10-30 2002-05-10 Denso Corp 非水電解液及び該電解液を用いた非水電解液二次電池
US20040007688A1 (en) 2002-07-05 2004-01-15 Denso Corporation Nonaqueous electrolytic solution and nonaqueous secondary battery using the same
US20060269843A1 (en) 2005-05-30 2006-11-30 Denso Corporation Nonaqueous electrolyte and nonaqueous electrolyte secondary battery using the same
US20070243470A1 (en) 2006-04-17 2007-10-18 Denso Corporation Nonaqueous electrolyte solution and secondary battery using the electrolyte solution
JP2009512148A (ja) * 2005-10-10 2009-03-19 ゾルファイ フルーオル ゲゼルシャフト ミット ベシュレンクテル ハフツング リチウムイオン電池用のフッ素化添加剤
WO2012066878A1 (ja) * 2010-11-16 2012-05-24 株式会社Adeka 非水電解液二次電池
WO2012066879A1 (ja) * 2010-11-16 2012-05-24 株式会社Adeka 非水電解液二次電池

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107069091A (zh) * 2005-10-20 2017-08-18 三菱化学株式会社 锂二次电池以及其中使用的非水电解液
EP2560229B1 (en) 2005-10-20 2019-06-05 Mitsubishi Chemical Corporation Lithium secondary batteries and nonaqueous electrolyte for use in the same
US20110136018A1 (en) 2008-08-06 2011-06-09 Mitsui Chemicals, Inc. Non-aqueous electrolytic solution, lithium secondary battery and method for producing same, and mixed-type non-aqueous electrolytic solution

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3646092A (en) 1969-05-20 1972-02-29 Inst Silikon & Fluorkarbonchem Process for the recovery of trimethylfluorosilane from a mixture of silicontetrachloride trimethylchlorosilane and hydrocarbons boiling at the same range
JPS63102173A (ja) 1986-10-16 1988-05-07 Hitachi Maxell Ltd リチウム二次電池
JPH0487156A (ja) 1990-07-26 1992-03-19 Sanyo Electric Co Ltd 非水系電解液電池
JPH0574486A (ja) 1991-09-10 1993-03-26 Sanyo Electric Co Ltd 非水系電解液電池
US5626981A (en) 1994-04-22 1997-05-06 Saft Rechargeable lithium electrochemical cell
JPH1050342A (ja) 1996-08-01 1998-02-20 Sony Corp 非水電解質二次電池
JP2001006729A (ja) 1999-06-18 2001-01-12 Mitsubishi Chemicals Corp 非水系電解液二次電池
JP2002134169A (ja) 2000-10-30 2002-05-10 Denso Corp 非水電解液及び該電解液を用いた非水電解液二次電池
US20040007688A1 (en) 2002-07-05 2004-01-15 Denso Corporation Nonaqueous electrolytic solution and nonaqueous secondary battery using the same
US20060269843A1 (en) 2005-05-30 2006-11-30 Denso Corporation Nonaqueous electrolyte and nonaqueous electrolyte secondary battery using the same
JP2007012595A (ja) * 2005-05-30 2007-01-18 Denso Corp 非水電解液及び該電解液を用いた非水電解液二次電池
JP2009512148A (ja) * 2005-10-10 2009-03-19 ゾルファイ フルーオル ゲゼルシャフト ミット ベシュレンクテル ハフツング リチウムイオン電池用のフッ素化添加剤
US20090197167A1 (en) 2005-10-10 2009-08-06 Solvay Fluor Gmbh Fluorinated Additives For Lithium Ion Batteries
US20070243470A1 (en) 2006-04-17 2007-10-18 Denso Corporation Nonaqueous electrolyte solution and secondary battery using the electrolyte solution
WO2012066878A1 (ja) * 2010-11-16 2012-05-24 株式会社Adeka 非水電解液二次電池
WO2012066879A1 (ja) * 2010-11-16 2012-05-24 株式会社Adeka 非水電解液二次電池

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
J. AMER CHEM. SOC., vol. 68, 1946, pages 2655
J. AMER CHEM. SOC., vol. 73, 1951, pages 5127

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013098028A (ja) * 2011-11-01 2013-05-20 Adeka Corp 非水電解液二次電池及び新規フルオロシラン化合物
CN111029650A (zh) * 2017-02-13 2020-04-17 宁德新能源科技有限公司 一种电解液及二次电池

Also Published As

Publication number Publication date
CN103828116A (zh) 2014-05-28
EP2779299A1 (en) 2014-09-17
CN103828116B (zh) 2016-04-27
KR20140096263A (ko) 2014-08-05
EP2779299A4 (en) 2015-07-15
JP2013105540A (ja) 2013-05-30
EP2779299B1 (en) 2017-08-02
US20140242456A1 (en) 2014-08-28
KR101892601B1 (ko) 2018-08-28
JP5823261B2 (ja) 2015-11-25
US9419306B2 (en) 2016-08-16

Similar Documents

Publication Publication Date Title
JP5955629B2 (ja) 非水電解液二次電池
JP5781294B2 (ja) 非水電解液二次電池
JP5781293B2 (ja) 非水電解液二次電池
JP5004495B2 (ja) 非水電解液および該電解液を用いた二次電池
JP5631111B2 (ja) 非水電解液及び該電解液を用いた非水電解液二次電池
JP5222538B2 (ja) 非水電解液及び該電解液を用いた非水電解液二次電池
US20130071731A1 (en) Nonaqueous electrolytic solution and nonaqueous electrolyte secondary battery
JP6295197B2 (ja) 蓄電デバイス
JP5072379B2 (ja) 非水電解液及び該電解液を用いた二次電池
JP2013145702A (ja) 非水電解液二次電池及び二次電池用非水電解液
WO2016013480A1 (ja) 非水電解液二次電池、非水電解液及び化合物
WO2017047626A1 (ja) 非水電解液及び非水電解液二次電池
JP2001256995A (ja) 非水電解液及び非水電解液二次電池
JP5897869B2 (ja) 新規フルオロシラン化合物
JP5180612B2 (ja) 非水電解液及び該電解液を用いた非水電解液二次電池
JP5823261B2 (ja) 非水電解液及び該電解液を用いた非水電解液二次電池
JP5709574B2 (ja) 二次電池用非水電解液及び該電解液を有する非水電解液二次電池
JP5350880B2 (ja) 非水電解液及び該電解液を用いた非水電解液二次電池
CN108352572B (zh) 非水电解液用添加剂、非水电解液及蓄电装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280045040.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12847605

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2012847605

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012847605

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14346533

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20147007634

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE