JP5072379B2 - 非水電解液及び該電解液を用いた二次電池 - Google Patents

非水電解液及び該電解液を用いた二次電池 Download PDF

Info

Publication number
JP5072379B2
JP5072379B2 JP2007015944A JP2007015944A JP5072379B2 JP 5072379 B2 JP5072379 B2 JP 5072379B2 JP 2007015944 A JP2007015944 A JP 2007015944A JP 2007015944 A JP2007015944 A JP 2007015944A JP 5072379 B2 JP5072379 B2 JP 5072379B2
Authority
JP
Japan
Prior art keywords
group
carbon atoms
aqueous electrolyte
examples
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007015944A
Other languages
English (en)
Other versions
JP2008181831A (ja
Inventor
和希 平田
覚 鈴木
恭平 宇佐美
敬之 滝
敦郎 冨田
洋人 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Adeka Corp
Denso Corp
Original Assignee
Adeka Corp
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Adeka Corp, Denso Corp filed Critical Adeka Corp
Priority to JP2007015944A priority Critical patent/JP5072379B2/ja
Publication of JP2008181831A publication Critical patent/JP2008181831A/ja
Application granted granted Critical
Publication of JP5072379B2 publication Critical patent/JP5072379B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Description

本発明は、特定の構造を有する不飽和結合含有ケイ素化合物を含有する非水電解液及び該電解液を用いた非水電解液二次電池に関する。
近年の携帯用パソコン、ハンディビデオカメラ等の携帯電子機器の普及に伴い、高電圧、高エネルギー密度を有する非水電解液二次電池が電源として広く用いられるようになった。
また、環境問題の観点から、電池自動車や電力を動力の一部に利用したハイブリッド車の実用化が行われている。
しかし、非水電解液二次電池は、高温保存時あるいは充放電を繰り返すことで電気容量の低下や内部抵抗の上昇を示し、安定した電力供給源としての信頼性が不足していた。
非水電解液二次電池の安定性や電気特性の向上のために、種々の添加剤が提案されている。例えば、特許文献1には、リチウム負極上で電解液の還元分解を抑制する安定な被膜いわゆるSEI(Solid Electrolyte Interface:固体電解質膜)を形成するために環状化合物であるビニレンカーボネートを含有する電解液が提案されており、特許文献2にはビニルエチレンカーボネートを含有する電解液が提案されている。特許文献3及び特許文献4には、結晶度の高い黒鉛系負極上に安定な被膜を形成するためにビニレンカーボネート及びビニルエチレンカーボネートなどを含有する電解液が提案されている。
ビニレンカーボネートやビニルエチレンカーボネートなど不飽和基を含む環状化合物を含有する電解液は、リチウム、天然黒鉛、人造黒鉛、易黒鉛化炭素、難黒鉛化炭素、炭素コート天然黒鉛、ポリアセンなどいずれの負極に使用した場合にも一定の効果が得られる。それは、負極の表面を皮膜で覆うことにより、負極表面で起こっていた溶媒の分解などの副反応の抑制が緩和されるためであり、初期の不可逆容量の低下などが改善される。そのため特にビニレンカーボネートは電解液添加剤として広く使用されている。しかしその効果は十分なものではなかった。すなわち、ビニレンカーボネートやビニルエチレンカーボネートなどにより形成される被膜は、耐久性が低いために、電池の長期使用中や80℃以上の環境下では分解してしまい、皮膜分解後は再び負極表面が露出してしまうために電池の長期使用中や80℃以上の環境下では電池の劣化が起こるという弱点があった。この弱点を補おうとして電解液中に過剰に添加した場合は、生成した皮膜成分の抵抗により、初期の抵抗上昇が大きくなり、逆に電池性能低下を導くという問題が生じる。そのため、ビニレンカーボネートやビニルエチレンカーボネートなどの環状化合物の電解液への添加は、電池の長期特性や高温特性を根本的に解決することに繋がるものではなかった。
特許文献5及び特許文献6には、ケイ素化合物を電解液に添加することで、内部抵抗の変化率が小さく、かつ低温時の内部抵抗増加が小さいために、高い電気容量を維持することができる電池が提案されている。しかしながら、その効果はまだ満足のいくものではなかった。
特開平05−74486号公報 特開平04−87156号公報 特開平08−045545号公報 特開2001−006729号公報 特開2002−134169号公報 特開2004−039510号公報
従って、本発明の目的は、長期使用もしくは高温保存において、小さな内部抵抗と高い電気容量を維持することができる電池を提供できる非水電解液、及び該非水電解液を用いた非水電解液二次電池を提供することにある。
本発明者らは、鋭意検討を行なった結果、電解質塩を有機溶媒に溶解した電解液において、特定の構造を有する不飽和結合含有ケイ素化合物を含有させることにより、上記目的を達成しえることを知見した。
即ち本発明は、上記知見に基づきなされたもので、炭素質材料を用いた負極を備える二次電池用非水電解液において、該非水電解液は、電解質塩を有機溶媒に溶解してなり、下記一般式(1)で表される炭素炭素3重結合と炭素炭素2重結合を分子内に併せ持つ不飽和結合含有ケイ素化合物を0.001〜10質量%含有することを特徴とする非水電解液、及び該非水電解液を使用した、炭素質材料を用いた負極を備える非水電解液二次電池を提供することにより、上記目的を達成したものである。
Figure 0005072379
(式中、R1及びR2は、それぞれ独立にハロゲン原子で置換してもよい炭素原子数1〜8のアルキル基、炭素原子数2〜8のアルケニル基、炭素原子数2〜8のアルキニル基又は炭素原子数6〜18のアリール基を示し、R3、R4、R5及びR6は、それぞれ独立に水素原子、ハロゲン原子で置換してもよい炭素原子数1〜8のアルキル基、炭素原子数2〜8のアルケニル基、炭素原子数2〜8のアルキニル基、炭素原子数6〜18のアリール基又はシリル基を示す。)
本発明は、上記不飽和結合含有ケイ素化合物を電解液に添加することによって、電極の表面状態を理想的な状態にすることができる。即ち、本発明において、上記不飽和結合含有ケイ素化合物は、電極表面に作用して、その表面状態を改質して安定性を向上させる。その安定化効果によって副反応等を抑制することができるので、従来の電解液では決して得ることができなかった優れた耐久性を有する電池、即ち長期使用及び高温保存において小さい内部抵抗と高い電気容量を長く維持することができる電池を提供することができる。
以下に本発明の非水電解液及び該非水電解液を用いた非水電解液二次電池について詳述する。
本発明の非水電解液において、上記一般式(1)においてR1及びR2で表わされる炭素原子数1〜8のアルキル基としては、メチル、エチル、プロピル、ブチル、第二ブチル、第三ブチル、ペンチル、ヘキシル、ヘプチル、オクチル、2−エチル−ヘキシル、シクロペンチル、シクロヘキシル、トリフルオロメチル、ペンタフルオロエチル、ヘプタフルオロプロピル基等が挙げられ、炭素原子数2〜8のアルケニル基としては、ビニル、アリル、ブテニル、1-トリフルオロメチルビニル基等が挙げられ、炭素原子数2〜8のアルキニル基としては、エチニル、プロピニル、ブチニル、ペンチニル、ヘキシニル基等が挙げられ、炭素原子数6〜18のアリール基としては、フェニル、フルオロフェニル、ジフルオロフェニル等が挙げられる。R3、R4、R5、R6で表される炭素原子数1〜8のアルキル基としては、メチル、エチル、プロピル、ブチル、第二ブチル、第三ブチル、ペンチル、ヘキシル、ヘプチル、オクチル、2−エチル−ヘキシル、シクロペンチル、シクロヘキシル、トリフルオロメチル、ペンタフルオロエチル、ヘプタフルオロプロピル基等が挙げられ、炭素原子数2〜8のアルケニル基としては、ビニル、アリル、ブテニル、1-トリフルオロメチルビニル基等が挙げられ、炭素原子数2〜8のアルキニル基としては、エチニル、プロピニル、ブチニル、ペンチニル、ヘキシニル基等が挙げられ、炭素原子数6〜18のアリール基としては、フェニル、フルオロフェニル、ジフルオロフェニル等が挙げられ、シリル基としては、トリメチルシリル、トリエチルシリル、トリプロピルシリル、トリフェニルシリル、ジメチルビニルシリル、メチルジビニルシリル、トリビニルシリル、エチニルジメチルビニル、エチニルメチルビニルシリル、エチニルジビニルシリル、ジメチルフルオロシリル等が挙げられる。
上記一般式(1)で表わされる不飽和結合含有ケイ素化合物としては、下記の化合物No.1〜化合物No.16等が挙げられるが、これらの化合物に限定されるものではない。
Figure 0005072379
上記一般式(1)で表される不飽和結合含有ケイ素化合物の中でも、下記一般式(2)で表される化合物(上記化合物No.1〜No.8及びNo.16が該当する)が化合物自体の安定性が高く、製造がしやすいという面があるため好ましい。
Figure 0005072379
(式中、R1及びR2は、それぞれ独立にハロゲン原子で置換してもよい炭素原子数1〜8のアルキル基、炭素原子数2〜8のアルケニル基、炭素原子数2〜8のアルキニル基又は炭素原子数6〜18のアリール基を示す。)
本発明の非水電解液中における上記一般式(1)で表される不飽和基含有ケイ素化合物の含有量は、0.001〜10質量%であり、より好ましくは0.005〜5質量%であり、最も好ましくは0.01〜2質量%である。0.001質量%未満ではその効果が認められ難く、また、10質量%を超えて含有させても、効果はそれ以上発現しなくなるので無駄であるばかりでなく、却って電解液の特性に悪影響を及ぼすことがあるので好ましくない。
本発明の非水電解液には、さらに下記一般式(3)、(4)、(5)、(6)又は(7)で表わされるケイ素化合物を含有させてもよい。これらケイ素化合物の含有量は、好ましくは0.05〜20質量%であり、より好ましくは0.05〜10質量%であり、最も好ましくは0.1〜5質量%である。0.05質量%未満ではその効果が認められ難く、また、20質量%を超えて含有させても、効果はそれ以上発現しなくなるので無駄であるばかりでなく、却って電解液の特性に悪影響を及ぼすことがあるので好ましくない。これらケイ素化合物は、1種又は2種以上組み合わせて用いることができる。
Figure 0005072379
Figure 0005072379
Figure 0005072379
Figure 0005072379
Figure 0005072379
(式中、R7、R8及びR9は、それぞれ独立にハロゲン原子で置換してもよい炭素原子数1〜8のアルキル基、炭素原子数2〜8のアルケニル基、炭素原子数2〜8のアルキニル基、アルキル基又はハロゲン原子で置換してもよい炭素原子数6〜18のアリール基を示し、R10は、炭素原子数1〜8のアルキレン基、炭素原子数2〜8のアルケニレン基、炭素原子数2〜8のアルキニレン基、アルキル基又はハロゲン原子で置換してもよい炭素原子数6〜18のアリーレン基を示す。mは1又は2であり、mが1の場合は、Xは、フルオロ基、トリフルオロメチル基、炭素原子数1〜8のアルコキシ基、炭素原子数2〜8のアルケニルオキシ基、炭素原子数6〜8のアリールオキシ基、炭素原子数2〜8のアシロキシ基、炭素原子数1〜8のスルホネート基、イソシアニル基、イソチアニル基又はシアノ基を示し、mが2の場合は、Xは炭素原子数1〜8のアルキレン基、炭素原子数1〜8のアルキレンジオキシ基、炭素原子数2〜8のアルケニレン基、炭素原子数2〜8のアルケニレンジオキシ基、炭素原子数2〜8のアルキニレン基、炭素原子数2〜8のアルキニレンジオキシ基、炭素原子数6〜8のアリーレン基、炭素原子数6〜8のアリーレンジオキシ基、炭素原子数2〜8のジアシロキシ基、酸素原子又は直接結合を示す。Yは、フルオロ基、トリフルオロメチル基、ビニル基、炭素原子数1〜8のアルコキシ基、炭素原子数2〜8のアルケニルオキシ基、炭素原子数6〜8のアリールオキシ基、炭素原子数2〜8のアシロキシ基、炭素原子数1〜8のスルホネート基、イソシアニル基、イソチアニル基又はシアノ基を示す。Zは炭素原子数1〜8のアルキレン基、炭素原子数1〜8のアルキレンジオキシ基、炭素原子数2〜8のアルケニレン基、炭素原子数2〜8のアルケニレンジオキシ基、炭素原子数2〜8のアルキニレン基、炭素原子数2〜8のアルキニレンジオキシ基、炭素原子数6〜8のアリーレン基、炭素原子数6〜8のアリーレンジオキシ基、炭素原子数2〜8のジアシロキシ基、酸素原子又は直接結合を示す。R11は炭素原子数2〜8のアルケニル基を示す。)
上記一般式(3)、(4)、(5)、(6)又は(7)で表わされるケイ素化合物において、R7、R8、及びR9で表わされる炭素原子数1〜8のアルキル基としては、メチル、エチル、プロピル、ブチル、第二ブチル、第三ブチル、ペンチル、ヘキシル、ヘプチル、オクチル、2−エチル−ヘキシル、トリフルオロメチル、テトラフルオロエチル、ヘプタフルオロプロピル、2,2,2−トリフルオロエチル等が挙げられ、炭素原子数2〜8のアルケニル基としては、ビニル、アリル、1−プロペニル、イソプロペニル、2−ブテニル、1,3−ブタジエニル、2−ペンテニル、2−オクテニル等が挙げられ、炭素原子数2〜8のアルキニル基としては、エチニル、1−プロピニル、2−プロピニル、1−ブチニル、2−ブチニル、3−ブチニル等が挙げられ、炭素原子数6〜18のアリール基としては、フェニル、2−フルオロフェニル、3−フルオロフェニル、4-フルオロフェニル、2,4−ジフルオロフェニル、3,5−ジフルオロフェニル、2,6−ジフルオロフェニル、2,3−ジフルオロフェニル、4,5−ジフルオロフェニル、2,4,6−トリフルオロフェニル、2,3,4−トリフルオロフェニル、テトラフルオロフェニル、p−トリル、m−トリル、o−トリル、2,4−キシリル、3,5−キシリル等が挙げられる。R10で表わされる炭素原子数1〜8のアルキレン基としては、メチレン、エチレン、トリメチレン、メチルエチレン、テトラメチレン、ペンタメチレン、ヘキサメチレン、ヘプタメチレン、オクタメチレン、ジフルオロエチレン、テトラフルオロエチレン、ヘキサフルオロトリメチレン等が挙げられ、炭素原子数2〜8のアルケニレン基としては、ビニレン、プロピニレン、ブテニレン、ペンテニレン等が挙げられ、炭素原子数2〜8のアルキニレン基としては、エチニレン、プロピニレン、ブチニレン、ペンチニレン等が挙げられ、炭素原子数6〜18のアリ−レン基としては、フェニレン、フルオロフェニレン、ジフルオロフェニレン等が挙げられる。
上記一般式(3)、(4)又は(5)で表わされるケイ素化合物において、mが1の時、Xで表わされる炭素原子数1〜8のアルコキシ基としては、メトキシ、エトキシ、プロポキシ、ブトキシ、第二ブトキシ、第三ブトキシ、ペントキシ、ヘキシロキシ、ヘプトキシ、オクチロキシ、2−エチル−ヘキシロキシ、2,2,2−トリフルオロエトキシ等が挙げられ、炭素原子数2〜8のアルケニルオキシ基としては、ビニロキシ、アリロキシ、1−プロペロキシ、イソプロペロキシ等が挙げられ、炭素原子数6〜8のアリールオキシ基としては、フェノキシ、p−フルオロフェノキシ、m−フルオロフェノキシ、o−フルオロフェノキシ、2,4−ジフルオロフェノキシ、3,5−ジフルオロフェノキシ、p−メチルフェノキシ、m−メチルフェノキシ、o−メチルフェノキシ、2,4−ジメチルフェノキシ、3,5−ジメチルフェノキ等が挙げられ、炭素原子数2〜8のアシロキシ基としては、アセトキシ、プロピオニロキシ、トリフルオロアセトキシ、ジフルオロアセトキシ等が挙げられ、炭素原子数1〜8のスルホネート基としては、メタンスルホネート、エタンスルホネート、プロパンスルホネート、ブタンスルホネート、ペンタンスルホネート、ヘキサンスルホネート、ヘプタンスルホネート、オクタンスルホネート、トリフルオロメタンスルホネート、ペンタフルオロエタンスルホネート、ヘキサフルオロプロパンスルホネート、パーフルオロブタンスルホネート、パーフルオロペンタンスルホネート、パーフルオロヘキサンスルホネート、パーフルオロヘプタンスルホネート、パーフルオロオクタンスルホネート等が挙げられる。
上記一般式(3)、(4)又は(5)で表わされるケイ素化合物において、mが2の時、Xで表わされる炭素原子数1〜8のアルキレン基としては、メチレン、エチレン、メチルメチレン、トリメチレン、メチルエチレン、テトラメチレン、ペンタメチレン、ヘキサメチレン、ヘプタメチレン、オクタメチレン、ジフルオロメチレン、テトラフルオロエチレン、ヘキサフルオロトリメチレン等が挙げられる。炭素原子数1〜8のアルキレンジオキシ基としては、上記炭素原子数1〜8のアルキレン基から誘導されるアルキレンジオキシ基が挙げられる。炭素原子数2〜8のアルケニレン基としては、ビニレン、プロピニレン、ブテニレン、ペンテニレン等が挙げられる。炭素原子数2〜8のアルケニレンジオキシ基としては、上記炭素原子数2〜8のアルケニレン基から誘導されるアルケニレンジオキシ基が挙げられる。上記炭素原子数2〜8のアルキニレン基としては、エチニレン、プロピニレン、ブチニレン、ペンチニレン等が挙げられる。上記炭素原子数2〜8のアルキニレンジオキシ基としては、上記炭素原子数2〜8のアルキニレン基から誘導されるアルキニレンジオキシ基が挙げられる。炭素原子数6〜8のアリーレン基としては、フェニレン、フルオロフェニレン、ジフルオロフェニレン等が挙げられる。炭素原子数6〜8のアリーレンジオキシ基としては上記アリーレン基から誘導されるアリーレンジオキシ基が挙げられる。炭素原子数2〜8のジアシロキシ基としては、オキサリロキシ、マロニロキシ、スクイニロキシ、マレイロキシ、フマリロキシ等が挙げられる。
上記一般式(6)又は(7)で表わされるケイ素化合物において、Yで表わされる炭素原子数1〜8のアルコキシ基としては、メトキシ、エトキシ、プロポキシ、ブトキシ、第二ブトキシ、第三ブトキシ、ペントキシ、ヘキシロキシ、ヘプトキシ、オクチロキシ、2−エチル−ヘキシロキシ、2,2,2−トリフルオロエトキシ等が挙げられ、炭素原子数2〜8のアルケニルオキシ基としては、ビニロキシ、アリロキシ、1−プロペロキシ、イソプロペロキシ等が挙げられ、炭素原子数6〜8のアリールオキシ基としては、フェノキシ、p−フルオロフェノキシ、m−フルオロフェノキシ、o−フルオロフェノキシ、2,4−ジフルオロフェノキシ、3,5−ジフルオロフェノキシ、p−メチルフェノキシ、m−メチルフェノキシ、o−メチルフェノキシ、2,4−ジメチルフェノキシ、3,5−ジメチルフェノキ等が挙げられ、炭素原子数2〜8のアシロキシ基としては、アセトキシ、プロピオニロキシ、トリフルオロアセトキシ、ジフルオロアセトキシ等が挙げられ、炭素原子数1〜8のスルホネート基としては、メタンスルホネート、エタンスルホネート、プロパンスルホネート、ブタンスルホネート、ペンタンスルホネート、ヘキサンスルホネート、ヘプタンスルホネート、オクタンスルホネート、トリフルオロメタンスルホネート、ペンタフルオロエタンスルホネート、ヘキサフルオロプロパンスルホネート、パーフルオロブタンスルホネート、パーフルオロペンタンスルホネート、パーフルオロヘキサンスルホネート、パーフルオロヘプタンスルホネート、パーフルオロオクタンスルホネート等が挙げられる。
上記一般式(6)で表わされるケイ素化合物において、Zで表わされる炭素原子数1〜8のアルキレン基としては、メチレン、エチレン、メチルメチレン、トリメチレン、メチルエチレン、テトラメチレン、ペンタメチレン、ヘキサメチレン、ヘプタメチレン、オクタメチレン、ジフルオロメチレン、テトラフルオロエチレン、ヘキサフルオロトリメチレン等が挙げられる。炭素原子数1〜8のアルキレンジオキシ基としては、上記炭素原子数1〜8のアルキレン基から誘導されるアルキレンジオキシ基が挙げられる。炭素原子数2〜8のアルケニレン基としては、ビニレン、プロピニレン、ブテニレン、ペンテニレン等が挙げられる。炭素原子数2〜8のアルケニレンジオキシ基としては、上記炭素原子数2〜8のアルケニレン基から誘導されるアルケニレンジオキシ基が挙げられる。上記炭素原子数2〜8のアルキニレン基としては、エチニレン、プロピニレン、ブチニレン、ペンチニレン等が挙げられる。上記炭素原子数2〜8のアルキニレンジオキシ基としては、上記炭素原子数2〜8のアルキニレン基から誘導されるアルキニレンジオキシ基が挙げられる。炭素原子数6〜8のアリーレン基としては、フェニレン、フルオロフェニレン、ジフルオロフェニレン等が挙げられる。炭素原子数6〜8のアリーレンジオキシ基としては上記アリーレン基から誘導されるアリーレンジオキシ基が挙げられる。炭素原子数2〜8のジアシロキシ基としては、オキサリロキシ、マロニロキシ、スクイニロキシ、マレイロキシ、フマリロキシ等が挙げられる。
11で表わされる炭素原子数2〜8のアルケニル基としては、ビニル、アリル、1−プロペニル、イソプロペニル、2−ブテニル、1,3−ブタジエニル、2−ペンテニル、2−オクテニル等が挙げられる。
上記一般式(3)、(4)、(5)、(6)又は(7)で表される化合物としては下記の化合物No.17〜化合物No.101などが挙げられるがこれに限定されるものではない。
Figure 0005072379
Figure 0005072379
Figure 0005072379
Figure 0005072379
Figure 0005072379
本発明の非水電解液において、上記ケイ素化合物は有機溶媒に添加される。該有機溶媒としては、非水電解液に通常用いられているものを1種又は2種以上組み合わせて用いることができるが、環状カーボネート化合物、、環状エステル化合物、スルホン又はスルホキシド化合物、アマイド化合物、鎖状カーボネート化合物、鎖状又は環状エーテル化合物、鎖状エステル化合物からなる群から選ばれる1種以上を含有することが好ましい。特に、環状カーボネート化合物及び鎖状カーボネート化合物をそれぞれ1種以上含有することが好ましく、この組み合わせを用いることで、サイクル特性に優れるばかりでなく、電解液の粘度、得られる電池の電気容量・出力等のバランスのとれた非水電解液が提供できる。
本発明の非水電解液に用いられる有機溶媒を具体的に以下に列挙する。しかしながら、本発明に用いられる有機溶媒は、以下の例示によって限定されるものではない。
環状カーボネート化合物、環状エステル化合物、スルホン又はスルホキシド化合物及びアマイド化合物は、比誘電率が高いため、電解液の誘電率を上げる役割を果たす。さらに具体的には、環状カーボネート化合物としては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、1,2−ブチレンカーボネート、イソブチレンカーボネート等が挙げられる。環状エステル化合物としては、γ−ブチロラクトン、γ−バレロラクトン等が挙げられる。スルホン又はスルホキシド化合物としては、スルホラン、スルホレン、テトラメチルスルホラン、ジフェニルスルホン、ジメチルスルホン、ジメチルスルホキシド、プロパンスルトン、ブチレンスルトン等が挙げられ、これらの中でもスルホラン類が好ましい。アマイド化合物としては、N−メチルピロリドン、ジメチルフォルムアミド、ジメチルアセトアミド等が挙げられる。
鎖状カーボネート化合物、鎖状又は環状エーテル化合物及び鎖状エステル化合物は、非水電解液の粘度を低くすることができる。そのため、電解質イオンの移動性を高くすることができる等、出力密度等の電池特性を優れたものにすることができる。また、低粘度であるため、低温での非水電解液の性能を高くすることができる。具体的には、鎖状カーボネート化合物としては、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ジエチルカーボネート(DEC)、エチル−n−ブチルカーボネート、メチル−t−ブチルカーボネート、ジ−i−プロピルカーボネート、t−ブチル−i−プロピルカーボネート等が挙げられる。鎖状又は環状エーテル化合物としては、ジメトキシエタン(DME)、エトキシメトキシエタン、ジエトキシエタン、テトラヒドロフラン、ジオキソラン、ジオキサン、1,2−ビス(メトキシカルボニルオキシ)エタン、1,2−ビス(エトキシカルボニルオキシ)エタン、1,2−ビス(エトキシカルボニルオキシ)プロパン、エチレングリコールビス(トリフルオロエチル)エーテル、i−プロピレングリコール(トリフルオロエチル)エーテル、エチレングリコールビス(トリフルオロメチル)エーテル、ジエチレングリコールビス(トリフルオロエチル)エーテル等が挙げられ、これらの中でもジオキソラン類が好ましい。鎖状エステル化合物としては、下記一般式(8)で表されるカルボン酸エステル化合物等が挙げられる。
Figure 0005072379
上記一般式(8)における炭素原子数1〜4のアルキル基としては、メチル、エチル、プロピル、イソプロピル、ブチル、第二ブチル、第三ブチルが挙げられ、上記一般式(8)で表される化合物を具体的に例示すると、蟻酸メチル、蟻酸エチル、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸第二ブチル、酢酸ブチル、プロピオン酸メチル、プロピオン酸エチル等が挙げられる。上記一般式(8)で表されるカルボン酸エステル化合物は、凝固点が低く、有機溶剤、特に環状カーボネート化合物及び鎖状カーボネート化合物をそれぞれ少なくとも1種以上含有する有機溶剤にさらに添加すると、低温においても電池特性を向上させることができるため好ましい。上記一般式(8)で表されるカルボン酸エステル化合物の添加量は、有機溶媒中において1〜50質量%が好ましい。
その他、アセトニトリル、プロピオニトリル、ニトロメタンやこれらの誘導体を用いることもできる。
また、本発明の非水電解液には、充放電効率を高めるためにさらに、ビニレンカーボネート(VC)又はビニルエチレンカーボネート(VEC)を非水電解液中、好ましくは0.01〜10質量%、より好ましくは0.05〜5質量%含有させてもよい。
また、本発明の非水電解液には、難燃性を付与するために、ハロゲン系、リン系、その他の難燃剤を適宜添加することができる。リン系難燃剤としては、トリメチルホスフェート、トリエチルホスフェート等のリン酸エステル類が挙げられる。
上記難燃剤の添加量は、本発明の非水電解液を構成する有機溶媒に対して5〜100質量%が好ましく、10〜50質量%が特に好ましい。5質量%未満では十分な難燃化効果が得られない。
本発明の非水電解液において用いられる電解質塩としては、従来公知の電解質塩が用いられ、例えば、LiPF6、LiBF4、LiAsF6、LiCF3SO3、LiN(CF3SO22、LiC(CF3SO23、LiSbF6、LiSiF5、LiAlF4、LiSCN、LiClO4、LiCl、LiF、LiBr、LiI、LiAlF4、LiAlCl4、NaClO4、NaBF4、NaI、これらの誘導体等が挙げられ、これらの中でも、LiPF6、LiBF4、LiClO4、LiAsF6、LiCF3SO3、LiN(CF3SO22及びLiC(CF3SO23並びにLiCF3SO3の誘導体、LiN(CF3SO22の誘導体及びLiC(CF3SO23の誘導体からなる群から選ばれる1種以上を用いるのが、電気特性に優れるので好ましい。
上記電解質塩は、本発明の非水電解液中の濃度が、0.1〜3.0モル/リットル、特に0.5〜2.0モル/リットルとなるように、上記有機溶媒に溶解することが好ましい。該電解質塩の濃度が0.1モル/リットルより小さいと、充分な電流密度を得られないことがあり、3.0モル/リットルより大きいと、非水電解液の安定性を損なう恐れがある。
本発明の非水電解液は、一次又は二次電池、特に後述する非水電解液二次電池を構成する非水電解液として好適に使用できる。
電池の電極材料としては、正極及び負極があり、正極としては、正極活物質と結着剤と導電材とを有機溶媒又は水でスラリー化したものを集電体に塗布し、乾燥してシート状にしたものが使用される。正極活物質としては、TiS2、TiS3、MoS3、FeS2、Li(1-x)MnO2、Li(1-x)Mn24、Li(1-x)CoO2、Li(1-x)NiO2、LiV23、V25、LiFePO4等が挙げられる。なお、これらの正極活物質におけるXは0〜1の数を示す。各々にLi、Mg、Al、又はCo、Mn、Ni、Ti、Nb、Cr等の遷移金属を添加又は置換した材料等であってもよい。また、これらのリチウム−金属複合酸化物等は単独で用いるばかりでなくこれらを複数種類混合して用いることもできる。これらの中でもリチウム−金属複合酸化物としては、層状構造又はスピネル構造のリチウムマンガン含有複合酸化物、リチウムニッケル含有複合酸化物及びリチウムコバルト含有複合酸化物のうちの1種以上であることが好ましい。正極活物質の結着剤としては、例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、EPDM、SBR、NBR、フッ素ゴム等が挙げられるが、これらに限定されない。
負極としては、通常、負極活物質と結着剤とを有機溶媒又は水でスラリー化したものを集電体に塗布し、乾燥してシート状にしたものが使用される。負極活物質としては、リチウム、リチウム合金、スズ化合物等の無機化合物、炭素質材料、導電性ポリマー等が挙げられる。特に、安全性の高いリチウムイオンを吸蔵、放出できる炭素質材料が好ましい。この炭素質材料は、特に限定されないが、黒鉛及び石油系コークス、石炭系コークス、石油系ピッチの炭化物、石炭系ピッチの炭化物、フェノール樹脂・結晶セルロース等樹脂の炭化物等、及びこれらを一部炭化した炭素材、ファーネスブラック、アセチレンブラック、ピッチ系炭素繊維、PAN系炭素繊維等が挙げられる。負極活物質の結着剤としては、上記の正極活物質の結着剤と同様のものが挙げられる。
正極の導電材としては、黒鉛の微粒子、アセチレンブラック、ケッチェンブラック等のカーボンブラック、ニードルコークス等の無定形炭素の微粒子等、カーボンナノファイバー等が使用されるが、これらに限定されない。スラリー化する溶媒としては、通常は結着剤を溶解する有機溶剤が使用される。該有機溶剤としては、例えば、N−メチルピロリドン、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、シクロヘキサノン、酢酸メチル、アクリル酸メチル、ジエチルトリアミン、N−N−ジメチルアミノプロピルアミン、エチレンオキシド、テトラヒドロフラン等が挙げられるが、これに限定されない。
負極の集電体には、通常、銅、ニッケル、ステンレス鋼、ニッケルメッキ鋼等が使用され、正極の集電体には、通常、アルミニウム、ステンレス鋼、ニッケルメッキ鋼等が使用される。
本発明の非水電解液二次電池では、正極と負極との間にセパレータを用いるが、該セパレータとしては、通常用いられる高分子の微多孔フィルムを特に限定なく使用できる。該フィルムとしては、例えば、ポリエチレン、ポリプロピレン、ポリフッ化ビニリデン、ポリ塩化ビニリデン、ポリアクリロニトリル、ポリアクリルアミド、ポリテトラフルオロエチレン、ポリスルホン、ポリエーテルスルホン、ポリカーボネート、ポリアミド、ポリイミド、ポリエチレンオキシドやポリプロピレンオキシド等のポリエーテル類、カルボキシメチルセルロースやヒドロキシプロピルセルロース等の種々のセルロース類、ポリ(メタ)アクリル酸及びその種々のエステル類等を主体とする高分子化合物やその誘導体、これらの共重合体や混合物からなるフィルム等が挙げられる。これらのフィルムは、単独で用いてもよいし、これらのフィルムを重ね合わせて複層フィルムとして用いてもよい。さらに、これらのフィルムには、種々の添加剤を用いてもよく、その種類や含有量は特に制限されない。これらのフィルムの中でも、本発明の非水電解液二次電池には、ポリエチレンやポリプロピレン、ポリフッ化ビニリデン、ポリスルホンからなるフィルムが好ましく用いられる。
これらのフィルムは、電解液がしみ込んでイオンが透過し易いように、微多孔化がなされている。この微多孔化の方法としては、高分子化合物と溶剤の溶液をミクロ相分離させながら製膜し、溶剤を抽出除去して多孔化する「相分離法」と、溶融した高分子化合物を高ドラフトで押し出し製膜した後に熱処理し、結晶を一方向に配列させ、さらに延伸によって結晶間に間隙を形成して多孔化をはかる「延伸法」等が挙げられ、用いられるフィルムによって適宜選択される。
本発明の非水電解液二次電池において、電極材料、非水電解液及びセパレータには、より安全性を向上する目的で、フェノール系酸化防止剤、リン系酸化防止剤、チオエーテル系酸化防止剤、ヒンダードアミン化合物等を添加してもよい。
上記フェノール系酸化防止剤としては、例えば、1,6−ヘキサメチレンビス〔(3−第三ブチル−5−メチル−4−ヒドロキシフェニル)プロピオン酸アミド〕、4,4'−チオビス(6−第三ブチル−m−クレゾール)、4,4'−ブチリデンビス(6−第三ブチル−m−クレゾール)、1,1,3−トリス(2−メチル−4−ヒドロキシ−5−第三ブチルフェニル)ブタン、1,3,5−トリス(2,6−ジメチル−3−ヒドロキシ−4−第三ブチルベンジル)イソシアヌレート、1,3,5−トリス(3,5−ジ第三ブチル−4−ヒドロキシベンジル)イソシアヌレート、1,3,5−トリス(3,5−ジ第三ブチル−4−ヒドロキシベンジル)−2,4,6−トリメチルベンゼン、テトラキス〔3−(3,5−ジ第三ブチル−4−ヒドロキシフェニル)プロピオン酸メチル〕メタン、チオジエチレングリコールビス〔(3,5−ジ第三ブチル−4−ヒドロキシフェニル)プロピオネート〕、1,6−ヘキサメチレンビス〔(3,5−ジ第三ブチル−4−ヒドロキシフェニル)プロピオネート〕、ビス〔3,3−ビス(4−ヒドロキシ−3−第三ブチルフェニル)ブチリックアシッド〕グリコールエステル、ビス〔2−第三ブチル−4−メチル−6−(2−ヒドロキシ−3−第三ブチル−5−メチルベンジル)フェニル〕テレフタレート、1,3,5−トリス〔(3,5−ジ第三ブチル−4−ヒドロキシフェニル)プロピオニルオキシエチル〕イソシアヌレート、3,9−ビス〔1,1−ジメチル−2−{(3−第三ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオニルオキシ}エチル〕−2,4,8,10−テトラオキサスピロ〔5,5〕ウンデカン、トリエチレングリコールビス〔(3−第三ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオネート〕等が挙げられ、電極材料に添加する場合は、電極材料100質量部に対して、0.01〜10質量部、特に0.05〜5質量部が用いるのが好ましい。
上記リン系酸化防止剤としては、例えば、トリスノニルフェニルホスファイト、トリス〔2−第三ブチル−4−(3−第三ブチル−4−ヒドロキシ−5−メチルフェニルチオ)−5−メチルフェニル〕ホスファイト、トリデシルホスファイト、オクチルジフェニルホスファイト、ジ(デシル)モノフェニルホスファイト、ジ(トリデシル)ペンタエリスリトールジホスファイト、ジ(ノニルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4−ジ第三ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6−ジ第三ブチル−4−メチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4,6−トリ第三ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4−ジクミルフェニル)ペンタエリスリトールジホスファイト、テトラ(トリデシル)イソプロピリデンジフェノールジホスファイト、テトラ(トリデシル
)−4,4'−n−ブチリデンビス(2−第三ブチル−5−メチルフェノール)ジホスファイト、ヘキサ(トリデシル)−1,1,3−トリス(2−メチル−4−ヒドロキシ−5−第三ブチルフェニル)ブタントリホスファイト、テトラキス(2,4−ジ第三ブチルフェニル)ビフェニレンジホスホナイト、9,10−ジハイドロ−9−オキサ−10−ホスファフェナンスレン−10−オキサイド、2,2'−メチレンビス(4,6−第三ブチルフェニル)−2−エチルヘキシルホスファイト、2,2'−メチレンビス(4,6−第三ブチルフェニル)−オクタデシルホスファイト、2,2'−エチリデンビス(4,6−ジ第三ブチルフェニル)フルオロホスファイト、トリス(2−〔(2,4,8,10−テトラキス第三ブチルジベンゾ〔d,f〕〔1,3,2〕ジオキサホスフェピン−6−イル)オキシ〕エチル)アミン、2−エチル−2−ブチルプロピレングリコールと2,4,6−トリ第三ブチルフェノールのホスファイト等が挙げられる。
上記チオエーテル系酸化防止剤としては、例えば、チオジプロピオン酸ジラウリル、チオジプロピオン酸ジミリスチル、チオジプロピオン酸ジステアリル等のジアルキルチオジプロピオネート類及びペンタエリスリトールテトラ(β−アルキルメルカプトプロピオン酸エステル類が挙げられる。
上記ヒンダードアミン化合物としては、例えば、2,2,6,6−テトラメチル−4−ピペリジルステアレート、1,2,2,6,6−ペンタメチル−4−ピペリジルステアレート、2,2,6,6−テトラメチル−4−ピペリジルベンゾエート、ビス(2,2,6,6−テトラメチル−4−ピペリジル)セバケート、テトラキス(2,2,6,6−テトラメチル−4−ピペリジル)−1,2,3,4−ブタンテトラカルボキシレート、テトラキス(1,2,2,6,6−ペンタメチル−4−ピペリジル)−1,2,3,4−ブタンテトラカルボキシレート、ビス(2,2,6,6−テトラメチル−4−ピペリジル)・ジ(トリデシル)−1,2,3,4−ブタンテトラカルボキシレート、ビス(1,2,2,6,6−ペンタメチル−4−ピペリジル)・ジ(トリデシル)−1,2,3,4−ブタンテトラカルボキシレート、ビス(1,2,2,4,4−ペンタメチル−4−ピペリジル)−2−ブチル−2−(3,5−ジ第三ブチル−4−ヒドロキシベンジル)マロネート、1−(2−ヒドロキシエチル)−2,2,6,6−テトラメチル−4−ピペリジノ−ル/コハク酸ジエチル重縮合物、1,6−ビス(2,2,6,6−テトラメチル−4−ピペリジルアミノ)ヘキサン/2,4−ジクロロ−6−モルホリノ−s−トリアジン重縮合物、1,6−ビス(2,2,6,6−テトラメチル−4−ピペリジルアミノ)ヘキサン/2,4−ジクロロ−6−第三オクチルアミノ−s−トリアジン重縮合物、1,5,8,12−テトラキス〔2,4−ビス(N−ブチル−N−(2,2,6,6−テトラメチル−4−ピペリジル)アミノ)−s−トリアジン−6−イル〕−1,5,8,12−テトラアザドデカン、1,5,8,12−テトラキス〔2,4−ビス(N−ブチル−N−(1,2,2,6,6−ペンタメチル−4−ピペリジル)アミノ)−s−トリアジン−6−イル〕−1,5,8−12−テトラアザドデカン、1,6,11−トリス〔2,4−ビス(N−ブチル−N−(2,2,6,6−テトラメチル−4−ピペリジル)アミノ)−s−トリアジン−6−イル〕アミノウンデカン、1,6,11−トリス〔2,4−ビス(N−ブチル−N−(1,2,2,6,6−ペンタメチル−4−ピペリジル)アミノ)−s−トリアジン−6−イル〕アミノウンデカン等のヒンダードアミン化合物が挙げられる。
上記構成からなる本発明の非水電解液二次電池は、その形状には特に制限を受けず、コイン型、円筒型、角型等、種々の形状とすることができる。図1は、本発明の非水電解液二次電池のコイン型電池の一例を、図2及び図3は円筒型電池の一例をそれぞれ示したものである。
図1に示すコイン型の非水電解液二次電池10において、1はリチウムイオンを放出できる正極、1aは正極集電体、2は正極から放出されたリチウムイオンを吸蔵、放出できる炭素室材料よりなる負極、2aは負極集電体、3は本発明の非水電解液、4はステンレス製の正極ケース、5はステンレス製の負極ケース、6はポリプロピレン製のガスケット、7はポリエチレン製のセパレータである。
また、図2及び図3に示す円筒型の非水電解液二次電池10'において、11は負極、12は負極集合体、13は正極、14は正極集電体、15は本発明の非水電解液、16はセパレータ、17は正極端子、18は負極端子、19は負極板、20は負極リード、21は正極板、22は正極リード、23はケース、24は絶縁板、25はガスケット、26は安全弁、27はPTC素子である。
以下に、実施例により本発明を詳細に説明する。ただし、以下の実施例により本発明はなんら制限されるものではない。
実施例及び比較例において、非水電解液二次電池(リチウム二次電池)は、以下の作製手順に従って作製された。
<作製手順>
(正極の作製)
LiNi0.8Co0.17Al0.032を85質量部と、アセチレンブラックを12質量部と、カルボキシメチルセルロースナトリウム塩(CMC)を1質量部と、ポリエチレンオキシド(PEO)を1質量部とを、水80質量部に分散させ、さらに結着材としてポリテトラフルオロエチレン(PTFE)を1質量部追加し分散させ、スラリーとした。このスラリーをアルミニウム製の正極集電体両面に塗布し、乾燥後、プレス成型して、正極板とした。その後、この正極板を所定の大きさにカットし、電流取り出し用のリードタブ溶接部となる部分の電極合剤を掻き取ることでシート状正極を作製した。
(負極の作製)
負極活物質としての黒鉛炭素材料粉末を98質量部と、カルボキシメチルセルロースナトリウム塩(CMC)を1質量部とを、水98質量部に分散させ、さらに結着材としてスチレンブタジエンゴム(SBR)を1質量部追加し分散させ、スラリーとした。このスラリーを銅製の負極集電体両面に塗布し、乾燥後、プレス成型して、負極板とした。その後、この負極板を所定の大きさにカットし、電流取り出し用のリードタブ溶接部となる部分の電極合材を掻き取ることでシート状負極を作製した。
(非水電解液の調製)
有機溶媒を後述の実施例及び比較例において示す配合量(体積%)で混合し、さらに、LiPF6を1モル/リットルの濃度で溶解し、試験化合物(表1記載)を表1記載の配合量(質量%)で添加して非水電解液とした。
(電池の組み立て)
得られたシート状正極及びシート状負極を、厚さ25μmのポリエチレン製の微多孔フィルムを介した状態で巻回させて、巻回型電極体を形成した。得られた巻回型電極体をケースの内部に挿入し、ケース内に保持した。このとき、シート状正極あるいはシート状負極のリードタブ溶接部に一端が溶接された集電リードを、ケースの正極端子あるいは負極端子にそれぞれ接合した。その後、非水電解液を巻回型電極体が保持されたケース内に注入し、ケースを密閉、封止して、φ18mm、軸方向の長さ65mmの円筒型リチウム二次電池を製作した。
〔実施例及び比較例〕
エチレンカーボネート25体積%、エチルメチルカーボネート40体積%、ジメチルカーボネート30体積%、及びジエチルカーボネート5体積%からなる混合溶媒に、LiPF6を1モル/リットルの濃度で溶解し、試験化合物(表1参照)を加えて、非水電解液とした。上記非水電解液を用いてリチウム二次電池を作製し、該リチウム二次電池について、下記試験方法に従って、サイクル特性試験及び80℃保存試験を行った。サイクル特性試験及び80℃保存試験において、放電容量回復率(%)及び内部抵抗比を求めた。サイクル特性試験及び80℃保存試験の試験方法は、それぞれ以下の通りである。
<サイクル特性試験方法>
リチウム二次電池を、雰囲気温度60℃の恒温槽内に入れ、充電電流2.2mA/cm2(2C相当の電流値、1Cは電池容量を1時間で放電する電流値)で4.1Vまで定電流充電し、放電電流2.2mA/cm2(2C相当の電流値)で3Vまで定電流放電を行うサイクルを500回繰り返して行った。その後、雰囲気温度を20℃に戻して、充電電流1.1mA/cm2(1C相当の電流値)で4.1Vまで定電流定電圧充電し、放電電流0.33mA/cm2(1/3C相当の電流値)で3.0Vまで定電流放電し、このときの放電容量と初期放電容量とから、下記式により放電容量回復率(%)を求めた。また、上記の500回のサイクルの前後に、20℃における内部抵抗を測定し、その測定結果から下記式により内部抵抗比を求めた。尚、リチウム二次電池の初期放電容量及び内部抵抗は、下記測定方法により、それぞれ測定した。
放電容量回復率(%)=[(サイクル後の放電容量)/(初期放電容量)]×100
内部抵抗比=「(サイクル後の内部抵抗)/(実施例1におけるサイクル前の内部抵抗)]
×100
<初期放電容量測定方法>
まず、充電電流0.25mA/cm2(1/4C相当の電流値)で4.1Vまで定電流定電圧充電し、放電電流0.33mA/cm2(1/3C相当の電流値)で3.0Vまで定電流放電を行った。次に、充電電流1.1mA/cm2(1C相当の電流値)で4.1Vまで定電流定電圧充電し、放電電流1.1mA/cm2(1C相当の電流値)で3.0Vまで定電流放電する操作を4回行った。その後、充電電流1.1mA/cm2(1C相当の電流値)で4.1Vまで定電流定電圧充電し、放電電流0.33mA/cm2(1/3C相当の電流値)で3.0Vまで定電流放電し、この時の放電容量を電池初期容量とした。なお、測定は20℃の雰囲気で行った。
<内部抵抗測定方法>
まず、充電電流1.1mA/cm2(1C相当の電流値)で3.75Vまで定電流定電圧充電し、交流インピーダンス測定装置((株)東陽テクニカ製:周波数応答アナライザsolartron1260、ポテンショ/ガルバノスタットsolartron1287)を用いて、周波数100kHz〜0.02Hzまで走査し、縦軸に虚数部、横軸に実数部を示すコール−コールプロットを作成した。続いて、このコール−コールプロットにおいて、円弧部分を円でフィッティングして、この円の実数部分と交差する二点のうち、大きい方の値を抵抗値とし、電池の内部抵抗とした。
<80℃保存試験方法>
満充電したリチウム二次電池を、雰囲気温度80℃の恒温槽内に入れて保存した。その後、雰囲気温度を20℃に戻して、放電容量回復率と内部抵抗比をそれぞれ測定した。尚、初期放電容量及び内部抵抗は、下記測定方法により、それぞれ測定した。
放電容量回復率(%)=[(80℃保存試験後の放電容量)/(初期放電容量)]×100
内部抵抗比=「(80℃保存試験後の内部抵抗)/(実施例1におけるサイクル前の内部抵抗)]×100
サイクル特性試験及び低温特性評価試験の試験結果を表1に示す。
Figure 0005072379
〔表1〕の結果から明らかなように、本発明の上記一般式(1)で表される不飽和結合含有ケイ素化合物を含有する非水電解液を用いた本発明の非水電解液二次電池は、サイクル特性及び高温保存特性に優れていることが確認できた。これに対し、比較化合物No.1、比較化合物No.2、VC、及びそれらを併せて含有する非水電解液を用いた非水電解液二次電池の場合では、サイクル特性及び高温保存特性は、本発明の非水電解液を用いた非水電解液二次電池に比べると劣っていた。
Figure 0005072379
Figure 0005072379
本発明の非水電解液を用いることで、サイクル特性及び高温保存特性に優れた非水電解液二次電池を提供できる。
図1は、本発明の非水電解液二次電池のコイン型電池の構造の一例を概略的に示す縦断面図である。 図2は、本発明の非水電解液二次電池の円筒型電池の基本構成を示す概略図である。 図3は、本発明の非水電解液二次電池の円筒型電池の内部構造を断面として示す斜視図である。
符号の説明
1 正極
1a 正極集電体
2 負極
2a 負極集電体
3 電解液
4 正極ケース
5 負極ケース
6 ガスケット
7 セパレータ
10 コイン型の非水電解液二次電池
10' 円筒型の非水電解液二次電池
11 負極
12 負極集合体
13 正極
14 正極集合体
15 電解液
16 セパレータ
17 正極端子
18 負極端子
19 負極板
20 負極リード
21 正極
22 正極リード
23 ケース
24 絶縁板
25 ガスケット
26 安全弁
27 PTC素子

Claims (5)

  1. 炭素質材料を用いた負極を備える二次電池用非水電解液において、該非水電解液は、電解質塩を有機溶媒に溶解してなり、下記一般式(1)で表される炭素炭素3重結合と炭素炭素2重結合を分子内に併せ持つ不飽和結合含有ケイ素化合物を0.001〜10質量%含有することを特徴とする非水電解液。
    Figure 0005072379
    (式中、R1及びR2は、それぞれ独立にハロゲン原子で置換してもよい炭素原子数1〜8のアルキル基、炭素原子数2〜8のアルケニル基、炭素原子数2〜8のアルキニル基又は炭素原子数6〜18のアリール基を示し、R3、R4、R5及びR6は、それぞれ独立に水素原子、ハロゲン原子で置換してもよい炭素原子数1〜8のアルキル基、炭素原子数2〜8のアルケニル基、炭素原子数2〜8のアルキニル基、炭素原子数6〜18のアリール基又はシリル基を示す。)
  2. 上記一般式(1)で表される不飽和結合含有ケイ素化合物が、下記一般式(2)で表されるエチニル基とビニル基を分子内に併せ持つケイ素化合物である請求項1記載の非水電解液。
    Figure 0005072379
    (式中、R1及びR2は、それぞれ独立にハロゲン原子で置換してもよい炭素原子数1〜8のアルキル基、炭素原子数2〜8のアルケニル基、炭素原子数2〜8のアルキニル基、又は炭素原子数6〜18のアリール基を示す。)
  3. さらに、下記一般式(3)、(4)、(5)、(6)又は(7)で表わされるケイ素化合物少なくとも1種を0.05〜20質量%含有する請求項1又は2記載の非水電解液。
    Figure 0005072379
    Figure 0005072379
    Figure 0005072379
    Figure 0005072379
    Figure 0005072379
    (式中、R7、R8及びR9は、それぞれ独立にハロゲン原子で置換してもよい炭素原子数1〜8のアルキル基、炭素原子数2〜8のアルケニル基、炭素原子数2〜8のアルキニル基、アルキル基又はハロゲン原子で置換してもよい炭素原子数6〜18のアリール基を示し、R10は、炭素原子数1〜8のアルキレン基、炭素原子数2〜8のアルケニレン基、炭素原子数2〜8のアルキニレン基、アルキル基又はハロゲン原子で置換してもよい炭素原子数6〜18のアリーレン基を示す。mは1又は2であり、mが1の場合は、Xは、フルオロ基、トリフルオロメチル基、炭素原子数1〜8のアルコキシ基、炭素原子数2〜8のアルケニルオキシ基、炭素原子数6〜8のアリールオキシ基、炭素原子数2〜8のアシロキシ基、炭素原子数1〜8のスルホネート基、イソシアニル基、イソチアニル基又はシアノ基を示し、mが2の場合は、Xは炭素原子数1〜8のアルキレン基、炭素原子数1〜8のアルキレンジオキシ基、炭素原子数2〜8のアルケニレン基、炭素原子数2〜8のアルケニレンジオキシ基、炭素原子数2〜8のアルキニレン基、炭素原子数2〜8のアルキニレンジオキシ基、炭素原子数6〜8のアリーレン基、炭素原子数6〜8のアリーレンジオキシ基、炭素原子数2〜8のジアシロキシ基、酸素原子又は直接結合を示す。Yは、フルオロ基、トリフルオロメチル基、ビニル基、炭素原子数1〜8のアルコキシ基、炭素原子数2〜8のアルケニルオキシ基、炭素原子数6〜8のアリールオキシ基、炭素原子数2〜8のアシロキシ基、炭素原子数1〜8のスルホネート基、イソシアニル基、イソチアニル基又はシアノ基を示す。Zは炭素原子数1〜8のアルキレン基、炭素原子数1〜8のアルキレンジオキシ基、炭素原子数2〜8のアルケニレン基、炭素原子数2〜8のアルケニレンジオキシ基、炭素原子数2〜8のアルキニレン基、炭素原子数2〜8のアルキニレンジオキシ基、炭素原子数6〜8のアリーレン基、炭素原子数6〜8のアリーレンジオキシ基、炭素原子数2〜8のジアシロキシ基、酸素原子又は直接結合を示す。R11は炭素原子数2〜8のアルケニル基を示す。)
  4. さらに、ビニレンカーボネート又はビニルエチレンカーボネートを0.01〜10質量%含有する請求項1〜3の何れか1項に記載の非水電解液。
  5. 請求項1〜4の何れか1項に記載の非水電解液を使用した、炭素質材料を用いた負極を備える非水電解液二次電池。
JP2007015944A 2007-01-26 2007-01-26 非水電解液及び該電解液を用いた二次電池 Expired - Fee Related JP5072379B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007015944A JP5072379B2 (ja) 2007-01-26 2007-01-26 非水電解液及び該電解液を用いた二次電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007015944A JP5072379B2 (ja) 2007-01-26 2007-01-26 非水電解液及び該電解液を用いた二次電池

Publications (2)

Publication Number Publication Date
JP2008181831A JP2008181831A (ja) 2008-08-07
JP5072379B2 true JP5072379B2 (ja) 2012-11-14

Family

ID=39725552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007015944A Expired - Fee Related JP5072379B2 (ja) 2007-01-26 2007-01-26 非水電解液及び該電解液を用いた二次電池

Country Status (1)

Country Link
JP (1) JP5072379B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019117101A1 (ja) 2017-12-12 2019-06-20 セントラル硝子株式会社 非水電解液電池用電解液及びそれを用いた非水電解液電池
KR20200090223A (ko) 2017-12-12 2020-07-28 샌트랄 글래스 컴퍼니 리미티드 비수전해액 전지용 전해액 및 그것을 이용한 비수전해액 전지

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101135502B1 (ko) * 2008-12-22 2012-04-16 삼성에스디아이 주식회사 리튬 이차 전지
WO2016133169A1 (ja) * 2015-02-19 2016-08-25 セントラル硝子株式会社 非水電解液電池用電解液、及びこれを用いた非水電解液電池
JP6665396B2 (ja) 2015-02-19 2020-03-13 セントラル硝子株式会社 非水電解液電池用電解液、及びこれを用いた非水電解液電池
CN105206874A (zh) * 2015-10-19 2015-12-30 东莞市凯欣电池材料有限公司 一种含有炔基硅烷的锂离子电池电解液及使用该电解液的锂离子电池
JP7116314B2 (ja) * 2017-12-06 2022-08-10 セントラル硝子株式会社 非水電解液電池用電解液及びそれを用いた非水電解液電池
WO2019111983A1 (ja) 2017-12-06 2019-06-13 セントラル硝子株式会社 非水電解液電池用電解液及びそれを用いた非水電解液電池
JP7423894B2 (ja) * 2019-03-04 2024-01-30 株式会社Gsユアサ 非水電解液二次電池及び非水電解液二次電池の製造方法
JPWO2020246521A1 (ja) * 2019-06-05 2020-12-10
CN111211355A (zh) * 2020-01-15 2020-05-29 松山湖材料实验室 高电压锂离子电池电解液添加剂、电解液及其电池
EP4184646A4 (en) * 2020-07-15 2024-01-10 Zhejiang Research Institute of Chemical Industry Co., Ltd. SILANE ADDITIVE, ELECTROLYTE AND LITHIUM-ION BATTERY CONTAINING THIS ADDITIVE
JP2023018964A (ja) * 2021-07-28 2023-02-09 信越化学工業株式会社 負極、リチウムイオン二次電池及びリチウムイオン二次電池の製造方法
EP4379888A1 (en) * 2021-07-28 2024-06-05 Shin-Etsu Chemical Co., Ltd. Non-aqueous electrolyte solution and non-aqueous electrolyte secondary battery provided with same
JP2023030979A (ja) * 2021-08-24 2023-03-08 信越化学工業株式会社 非水系電解質及び非水電解質二次電池

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4079681B2 (ja) * 2002-04-26 2008-04-23 株式会社デンソー 非水電解液および該電解液を用いた非水電解液二次電池
JP4070793B2 (ja) * 2005-05-30 2008-04-02 株式会社デンソー 非水電解液及び該電解液を用いた非水電解液二次電池
JP5004495B2 (ja) * 2006-04-17 2012-08-22 株式会社デンソー 非水電解液および該電解液を用いた二次電池
JP4931489B2 (ja) * 2006-06-21 2012-05-16 株式会社デンソー 非水電解液および該電解液を用いた二次電池

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019117101A1 (ja) 2017-12-12 2019-06-20 セントラル硝子株式会社 非水電解液電池用電解液及びそれを用いた非水電解液電池
KR20200090223A (ko) 2017-12-12 2020-07-28 샌트랄 글래스 컴퍼니 리미티드 비수전해액 전지용 전해액 및 그것을 이용한 비수전해액 전지

Also Published As

Publication number Publication date
JP2008181831A (ja) 2008-08-07

Similar Documents

Publication Publication Date Title
JP5004495B2 (ja) 非水電解液および該電解液を用いた二次電池
JP5072379B2 (ja) 非水電解液及び該電解液を用いた二次電池
JP4070793B2 (ja) 非水電解液及び該電解液を用いた非水電解液二次電池
JP5222538B2 (ja) 非水電解液及び該電解液を用いた非水電解液二次電池
JP5955629B2 (ja) 非水電解液二次電池
JP3497812B2 (ja) 非水電解液を用いた非水電解液二次電池
JP4931489B2 (ja) 非水電解液および該電解液を用いた二次電池
JP4093699B2 (ja) 非水電解液及び非水電解液二次電池
CN114583270B (zh) 一种锂离子电池
JP2004039510A (ja) 非水電解液及び該電解液を用いた非水電解液二次電池
WO2016147872A1 (ja) 非水電解液及び非水電解液二次電池
JP5121127B2 (ja) 非水電解液組成物及び該組成物を用いた非水電解液二次電池
JP5230341B2 (ja) 二次電池用非水電解液及び該電解液を用いた非水電解液二次電池
WO2016013480A1 (ja) 非水電解液二次電池、非水電解液及び化合物
JP5084164B2 (ja) 非水電解液および該電解液を用いた二次電池
JP2013145702A (ja) 非水電解液二次電池及び二次電池用非水電解液
JP5180612B2 (ja) 非水電解液及び該電解液を用いた非水電解液二次電池
JP5897869B2 (ja) 新規フルオロシラン化合物
JP3810062B2 (ja) 非水電解液及び該電解液を用いた非水電解液二次電池
JP2002373702A (ja) 非水電解液及び該電解液を用いた非水電解液二次電池
JP2001345120A (ja) 非水電解液及び該電解液を用いた非水電解液二次電池
JP4854316B2 (ja) 非水電解液及び該電解液を用いた非水電解液二次電池
JP2006236648A (ja) 非水電解液及び該非水電解液を用いた非水電解液二次電池
JP2010027361A (ja) 二次電池用非水電解液及び該電解液を用いた非水電解液二次電池
JP2007123171A (ja) 非水電解液組成物及び該組成物を用いた非水電解液二次電池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120821

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120821

R150 Certificate of patent or registration of utility model

Ref document number: 5072379

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees