WO2013065531A1 - 磁性膜のイオンビームエッチング方法及びイオンビームエッチング装置 - Google Patents

磁性膜のイオンビームエッチング方法及びイオンビームエッチング装置 Download PDF

Info

Publication number
WO2013065531A1
WO2013065531A1 PCT/JP2012/077398 JP2012077398W WO2013065531A1 WO 2013065531 A1 WO2013065531 A1 WO 2013065531A1 JP 2012077398 W JP2012077398 W JP 2012077398W WO 2013065531 A1 WO2013065531 A1 WO 2013065531A1
Authority
WO
WIPO (PCT)
Prior art keywords
ion beam
carbon
gas
beam etching
containing gas
Prior art date
Application number
PCT/JP2012/077398
Other languages
English (en)
French (fr)
Inventor
吉三 小平
智彦 豊里
Original Assignee
キヤノンアネルバ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノンアネルバ株式会社 filed Critical キヤノンアネルバ株式会社
Priority to JP2013541715A priority Critical patent/JP5689980B2/ja
Priority to KR1020147006127A priority patent/KR101578178B1/ko
Priority to US14/351,341 priority patent/US10388491B2/en
Publication of WO2013065531A1 publication Critical patent/WO2013065531A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/08Apparatus, e.g. for photomechanical printing surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/305Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating or etching
    • H01J37/3053Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating or etching for evaporating or etching
    • H01J37/3056Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating or etching for evaporating or etching for microworking, e.g. etching of gratings, trimming of electrical components
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F4/00Processes for removing metallic material from surfaces, not provided for in group C23F1/00 or C23F3/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/12Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys
    • H01F10/16Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys containing cobalt
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/32Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying conductive, insulating or magnetic material on a magnetic film, specially adapted for a thin magnetic film
    • H01F41/34Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying conductive, insulating or magnetic material on a magnetic film, specially adapted for a thin magnetic film in patterns, e.g. by lithography
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/305Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating or etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32798Further details of plasma apparatus not provided for in groups H01J37/3244 - H01J37/32788; special provisions for cleaning or maintenance of the apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32798Further details of plasma apparatus not provided for in groups H01J37/3244 - H01J37/32788; special provisions for cleaning or maintenance of the apparatus
    • H01J37/3288Maintenance
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices

Definitions

  • the present invention relates to an ion beam etching method used for etching a magnetic film formed on a substrate in manufacturing a magnetic device, and an ion beam etching apparatus used for the method.
  • MRAM Magnetic Random Access Memory, magnetoresistive memory
  • TMR Tunnel Magneto Resistive, tunnel magnetoresistance
  • DRAM Dynamic Random Access Memory Density, Memory Density
  • an etching technique is used for processing a magnetoresistive effect element included in the MRAM.
  • reactive ion beam etching reactive Ion
  • a carbon-containing gas such as hydrocarbon
  • Patent Document 1 when a carbon-containing gas is used as a process gas, a large amount of carbon polymer is generated in the plasma generation portion. This large amount of carbon polymer causes problems such as generation of particles and deterioration of process reproducibility.
  • the present invention has been made in view of this problem, and an ion beam etching method capable of reducing the generation of carbon polymer in a plasma generation portion and selectively etching a magnetic film, and ion beam etching used in the method.
  • An object is to provide an apparatus.
  • the gist of the present invention is that, in ion beam etching of a magnetic film using a carbon-containing gas, the carbon-containing gas is introduced into the substrate processing space in addition to the plasma generation unit.
  • the ion beam etching method of the magnetic film of the present invention is to solve the above problems,
  • plasma is generated by introducing the first carbon-containing gas from the first gas introduction unit, Ions are extracted from the plasma to form an ion beam,
  • a second carbon-containing gas is introduced into a processing space in which the substrate is placed from a second gas introduction unit different from the first gas introduction unit.
  • the ion beam etching apparatus of the present invention provides A plasma generator; A first gas introduction unit for introducing a gas into the plasma generation unit; A grid for extracting ions from the plasma generator; A processing space in which the substrate is placed; An ion beam etching apparatus comprising: A second gas introduction part for introducing gas into the processing space;
  • the grid is made of titanium or titanium carbide, or has a surface coated with Ti or titanium carbide.
  • the ion beam etching apparatus of the present invention provides A plasma generator; A first gas introduction unit for introducing a first carbon-containing gas into the plasma generation unit; A grid for extracting ions from the plasma generator; A processing space in which the substrate is placed; An ion beam etching apparatus comprising: A second gas introduction part for introducing a second carbon-containing gas into the processing space is provided.
  • the generation of carbon polymer in an ion beam etching apparatus is reduced to suppress generation of particles and deterioration of process reproducibility, and select the magnetic film. Etching becomes possible.
  • FIG. 1 shows a schematic diagram of an embodiment of an ion beam etching apparatus of the present invention.
  • the ion beam etching apparatus 100 includes a processing space 101 and a plasma generation unit 102.
  • An exhaust pump 103 is installed in the processing space 101.
  • the plasma generation unit 102 is provided with a bell jar 104 as a discharge vessel, a first gas introduction unit 105, an RF antenna 106, a matching unit 107, and an electromagnetic coil 108.
  • a grid 109 is provided at the boundary with the processing space 101. Has been.
  • the plasma generation unit 102 is partitioned by a grid 109, an inner wall of the ion beam etching apparatus 100, a bell jar 104, and the like.
  • the grid 109 is composed of a plurality of electrodes.
  • the grid 109 is constituted by three electrodes.
  • a first electrode 115, a second electrode 116, and a third electrode 117 are formed in this order from the bell jar 104 side.
  • the third electrode 117 is also called a ground electrode and is grounded.
  • the ion beam is neutralized by the neutralizer 113.
  • the grid 109 is preferably made of a material resistant to the process gas used in the present invention, that is, a carbon-containing gas.
  • examples of such materials include molybdenum, titanium, and titanium carbide. Therefore, the grid 109 itself is made of any one of molybdenum, titanium, and titanium carbide, or at least the surface of the grid 109 is coated with molybdenum by coating the surface of the grid 109 with molybdenum, titanium, or titanium carbide.
  • Titanium, or titanium carbide is preferable.
  • a gas plasma can be generated in the plasma generation unit 102 by introducing a gas from the first gas introduction unit 105 and applying a high frequency to the RF antenna 106.
  • the first gas introduction unit 105 is connected to a pipe (not shown), a valve, a flow rate regulator, and the like from a cylinder (not shown) that stores a process gas (not shown). To be introduced.
  • the substrate 111 is processed by applying a DC voltage to the grid 109, extracting ions in the plasma generation unit 102 as a beam, and irradiating the substrate 111.
  • the extracted ion beam is electrically neutralized by a neutralizer (not shown) and irradiated onto the substrate 111.
  • a second gas introduction part 114 is provided in the processing space 101, and a process gas can be introduced.
  • the substrate holder 110 can be arbitrarily tilted with respect to the ion beam.
  • the substrate 111 can be rotated (rotated) in the in-plane direction.
  • FIG. 2 schematically shows the etching process of the magnetic film of the magnetoresistive effect element by the ion beam etching method.
  • a base layer 23 serving as a lower electrode is formed on a substrate 24 such as silicon or glass.
  • a multilayer film 22 having a magnetoresistive effect element is formed on the base layer 23.
  • a cap layer 21 serving as an upper electrode is formed on the multilayer film 22.
  • FIG. 2 shows a state of the cap layer 21 after the patterning process is performed using a photoresist or the like. The layer above the cap layer 21 is appropriately selected depending on the etching method and the etching object.
  • the underlayer 23 is processed into a lower electrode in a later step, a conductive material is used.
  • a conductive material is used as the underlayer 23, Ta, Ti, Ru, or the like can be used.
  • the multilayer film means a film having a basic structure in a magnetoresistive effect element.
  • the basic structure refers to a portion that is composed of a pair of ferromagnetic layers and a nonmagnetic intermediate layer and that produces a magnetoresistive effect.
  • an antiferromagnetic layer 224 PtMn
  • a magnetization fixed layer 223 CoFeB
  • a barrier layer 222 MgO
  • a free layer 221 CoFeB
  • the cap layer 21 is used as a hard mask when the multilayer film 22 is etched.
  • the cap layer 21 is used as an upper electrode after processing the multilayer film 22, but the upper electrode layer may be provided separately from the hard mask.
  • a single layer film or a laminated film of Ta, Ti, or these conductive compounds such as TaN, TiN, TaC, and TiC can be used.
  • Ta and its compounds are preferable from the viewpoint of selectivity with the multilayer film 22 during ion beam etching.
  • the multilayer film 22 is etched using the ion beam etching method of the present invention.
  • the operation of the ion beam etching apparatus at this time will be described with reference to FIG.
  • a first carbon-containing gas is introduced into the bell jar 104 from the first gas introduction unit 105.
  • Carbon monoxide, carbon dioxide, hydrocarbon, and alcohol are used as the first carbon-containing gas.
  • the hydrocarbon a gas having a small number of carbon atoms such as methane, ethane, ethylene, and acetylene is preferable, and as the alcohol, a lower alcohol such as methanol and ethanol is preferable.
  • alkanes and alcohols such as methane and ethane are more suitable because the amount of carbon polymer produced is small.
  • an inert gas such as argon, krypton, xenon, or nitrogen, hydrogen, carbon, oxygen, or the like may be added to the first carbon-containing gas.
  • This first carbon-containing gas is introduced into the bell jar 104 to generate plasma.
  • a voltage is applied to the grid, and ions are extracted from the plasma to form an ion beam.
  • the introduction amount of the first carbon-containing gas is selected in consideration of the replacement frequency of the bell jar 104 by the carbon polymer formed in the bell jar 104.
  • the second carbon-containing gas is also introduced from the second gas introduction part 114 provided in the processing space 101.
  • the second gas introduction unit 114 is connected to a pipe (not shown), a valve, a flow rate regulator, and the like from a cylinder that stores a process gas (not shown), and a gas having a predetermined flow rate is supplied to the processing space 101 via these. be introduced.
  • Carbon monoxide, carbon dioxide, hydrocarbon, and alcohol are used as the second carbon-containing gas.
  • the hydrocarbon a gas having a small number of carbon atoms such as methane, ethane, ethylene, and acetylene is preferable, and as the alcohol, a lower alcohol such as methanol and ethanol is preferable. Moreover, you may use these mixed gas.
  • the second carbon-containing gas may be added with an inert gas such as argon, krypton, or nitrogen, carbon, oxygen, or the like.
  • the first carbon-containing gas and the second carbon-containing gas may be the same gas. In that case, since the atmosphere in the ion beam etching apparatus can be made more uniform, the stability of the process is increased.
  • the same gas supply source (cylinder) can be used.
  • the timing of introducing the second carbon-containing gas may be after the first gas is introduced into the plasma generation unit 102 and discharged to form an ion beam, or the second carbon-containing gas is introduced into the processing space in advance. You can keep it.
  • the reaction between the substrate to be processed and the carbon-containing gas is promoted even when the amount of the carbon-containing gas introduced into the plasma generation unit is reduced. It becomes possible.
  • the second carbon-containing gas does not pass through the plasma generation unit 102 until it is supplied to the substrate 111.
  • it is possible to increase the reactivity by introducing electrons or energy into the second carbon-containing gas using an electron gun or an electron source separate from the neutralizer 113 for neutralizing the ion beam. .
  • the reactivity with the second carbon-containing gas and the reactive ion beam can be increased by heating the substrate 111 with a heater.
  • the shape of the second gas introduction part 114 of the ion beam etching apparatus 100 is different from that of the first embodiment.
  • the second gas introduction unit 114 in the present embodiment has an annular portion for injecting gas, and has a structure in which gas can be uniformly injected from the periphery of the substrate. By using such a form, it becomes possible to perform processing in the substrate surface more uniformly.
  • FIG. 4 In this embodiment, an ion gun 119 is provided in the processing space 101.
  • a second gas introduction unit 114 is connected to the ion gun 119 so that a gas having a predetermined flow rate can be introduced into the ion gun 119.
  • FIG. 5 is a view showing an example of an ion gun 119 according to the present invention.
  • 301 is an anode (anode)
  • 302 is a cathode (cathode)
  • 303 is an insulator for insulating the anode 301 and the cathode 302.
  • the cathode 302 has a cylindrical shape, one end is opened facing the anode 301, and the other end is closed.
  • the cathode 302 has a hollow portion 307 for forming plasma inside.
  • the cross-sectional shape of the hollow portion of the cathode 302 is generally circular, but it suffices if there is a space where plasma can be formed, such as a regular octagon or a regular hexagon.
  • the anode 301 and the cathode 302 are connected to a power source 306 in order to apply a predetermined voltage to each.
  • Reference numeral 304 denotes a gas introduction path for introducing a discharge gas into the neutralizer. A gas is introduced into the ion gun 119 from the second gas introduction unit 114.
  • the second gas introduction unit 114 may be directly introduced into the processing space 101 and diffused from there to supply the gas to the discharge portion of the ion gun 119. However, it is better to introduce the gas directly into the ion gun 119.
  • the substrate 111 can be processed without reducing the degree of vacuum of 101.
  • the etching process of the substrate 111 can be performed more uniformly.
  • Plasma is formed in the hollow portion 307 by introducing a gas into the ion gun 119 and applying a negative voltage to the cathode 302. Further, by applying a positive voltage to the anode 301, negative ions are extracted from the opening of the anode 301.
  • the gas introduced into the ion gun 119 is preferably a mixed gas of an inert gas and a carbon-containing gas in order to suppress film deposition in the ion gun 119.
  • carbon monoxide, carbon dioxide, hydrocarbon, and alcohol are used as in the other embodiments described above.
  • titanium is used for the anode 301 and the cathode 302 in consideration of heat resistance and sputtering resistance.
  • the material may be changed in consideration of reactivity with the gas introduced into the ion gun 119 and the like.
  • the ion gun 119 is not limited to the configuration described above, and other forms may be used.
  • the anode 301 and the cathode 302 may be configured in reverse to extract positive ions.
  • plasma may be formed using other than the hollow type electrode.
  • the substrate holder 110 is configured to be inclined at an arbitrary angle with respect to the grid 109. Therefore, the amount of ions irradiated on the substrate 111 from the ion gun 119 varies depending on the position of the ion gun 119 and the tilt angle of the substrate 111. Further, the ion irradiation amount at each point in the substrate 111 also changes.
  • the mounting table 121 is provided on the substrate holder 110, the ion gun 119 is provided on the mounting table 121, and the substrate holder 110 and the ion gun 119 are integrated, thereby tilting the substrate 111. Even when the angle changes, the change in the irradiation amount of ions from the ion gun 119 can be reduced.
  • the substrate holder 110 and the ion gun 119 are not integrated, by providing the ion gun 119 in the vicinity of the rotation axis when changing the tilt angle of the substrate holder 110, even if the tilt angle of the substrate 111 changes, the ion gun 119 Changes in ion irradiation amount can be reduced.
  • the ion gun 119 is placed on the substrate holder 110 and tilted integrally with the substrate 111, the ion irradiation amount can be made constant regardless of the tilt angle of the substrate 111.
  • an appropriate spacer may be provided between the substrate holder 110 and the ion gun 119 in order to optimize the ion irradiation angle to the substrate 111.
  • a third gas introduction unit 120 may be further provided to introduce the third carbon-containing gas.
  • the third carbon-containing gas carbon monoxide, carbon dioxide, hydrocarbon, or alcohol is used.
  • a gas having a small number of carbon atoms such as methane, ethane, ethylene, and acetylene is preferable
  • the alcohol a lower alcohol such as methanol and ethanol is preferable.
  • alkanes and alcohols such as methane and ethane are more suitable because the amount of carbon polymer produced is small.
  • an inert gas such as argon, krypton, xenon, or nitrogen, hydrogen, carbon, oxygen, or the like may be added to the third carbon-containing gas.
  • the second carbon-containing gas is also introduced into the processing space 101. For this reason, even when the introduction amount of the carbon-containing gas introduced into the bell jar 104 is reduced, the multilayer film 22 is selectively etched with respect to the cap layer 21 and the generation of carbon polymer in the bell jar 104 is reduced. It becomes possible.
  • the etching process of the magnetic film of the magnetoresistive effect element has been described, but the present invention is also effective for the etching process of the magnetic film in other magnetic devices.
  • Specific examples include etching of a magnetic film for forming a writing part of a magnetic head, and etching of a magnetic film for manufacturing a magnetic recording medium such as DTM (Discrete Track Media) and BPM (Bit Patterned Media). Etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Drying Of Semiconductors (AREA)
  • Hall/Mr Elements (AREA)
  • ing And Chemical Polishing (AREA)
  • Thin Magnetic Films (AREA)

Abstract

 磁気デバイスの製造において、反応性イオンビームエッチングで基板上の磁性膜をエッチングする際に、イオンビームエッチング装置のプラズマ生成部に発生する多量の炭素ポリマーに起因するパーティクルの発生やプロセス再現性の劣化を抑制する。 イオンビームエッチング装置において、プラズマ生成部に第1のガス導入部より第1の炭素含有ガスを導入するのに加えて、基板処理空間にも第2のガス導入部より第2の炭素含有ガスを別途導入して反応性イオンビームエッチングを行うことにより、プラズマ生成部への炭素ポリマーの形成を抑制しつつ、良好な選択比及びエッチングレートで磁性材料をエッチングする。

Description

磁性膜のイオンビームエッチング方法及びイオンビームエッチング装置
 本発明は磁気デバイスの製造において、基板上に形成された磁性膜をエッチング加工する際に用いられるイオンビームエッチング方法と、該方法に用いられるイオンビームエッチング装置に関する。
 MRAM(Magnetic Random Access Memory,磁気抵抗メモリ)はTMR(Tunneling Magneto Resistive,トンネル磁気抵抗)等の磁気抵抗効果を利用した不揮発性メモリで、DRAM(Dynamic Random Access Memory)並みの集積密度とSRAM(Static Random Access Memory)並みの高速性を持ち、且つ無制限にデータが書き換えられる画期的な次世代メモリとして世界から注目されている。
 一般にMRAMに含まれる磁気抵抗効果素子の加工にエッチング技術が用いられる。この磁気抵抗効果素子の磁性膜のエッチングにおいて、難エッチング材であるCoやFeなどの磁性材料を効率良くエッチングするために、炭化水素などの炭素含有ガスを用いた反応性イオンビームエッチング(Reactive Ion Beam Etching)法が提案されている(特許文献1)。
特表2005-527101号公報
 しかしこのイオンビームエッチング法において、特許文献1に示されるようにプロセスガスとして炭素含有ガスを用いた場合、プラズマ生成部に多量の炭素ポリマーが発生する。この多量の炭素ポリマーは、パーティクルの発生やプロセス再現性の劣化などの問題を引き起こす。
 本発明はこの問題に鑑みなされたものであり、プラズマ生成部における炭素ポリマーの発生を低減し、且つ磁性膜に対して選択的にエッチング可能なイオンビームエッチング方法と、該方法に用いるイオンビームエッチング装置を提供することを目的とする。
 本発明は、炭素含有ガスを用いた磁性膜のイオンビームエッチングにおいて、プラズマ生成部に加えて基板処理空間にも炭素含有ガスを導入することを要旨とする。
 即ち、本発明の磁性膜のイオンビームエッチング方法は、上述した課題を解決するために、
 イオンビームエッチング装置において、第1のガス導入部より第1の炭素含有ガスを導入してプラズマを生成し、
 前記プラズマからイオンを引き出してイオンビームを形成し、
 基板上に形成された磁性膜を前記イオンビームによってエッチングする磁性膜のイオンビームエッチング方法であって、
 前記エッチングの際に第1のガス導入部と異なる第2のガス導入部より第2の炭素含有ガスを前記基板が載置された処理空間に導入することを特徴とする。
 また、本発明のイオンビームエッチング装置は、上述した課題を解決するために、
 プラズマ生成部と、
 前記プラズマ生成部にガスを導入するための第1のガス導入部と、
 前記プラズマ生成部からイオンを引き出すためのグリッドと、
 基板が載置される処理空間と、
を有するイオンビームエッチング装置であって、
 前記処理空間にガスを導入するための第2のガス導入部を備え、
 前記グリッドはチタンまたは炭化チタンで構成されているか、もしくはTiまたは炭化チタンによって表面がコーティングされていることを特徴とする。
 また、本発明のイオンビームエッチング装置は、上述した課題を解決するために、
 プラズマ生成部と、
 前記プラズマ生成部に第1の炭素含有ガスを導入するための第1のガス導入部と、
 前記プラズマ生成部からイオンを引き出すためのグリッドと、
 基板が載置される処理空間と、
を有するイオンビームエッチング装置であって、
 前記処理空間に第2の炭素含有ガスを導入するための第2のガス導入部を備えたことを特徴とする。
 本発明によれば、磁気デバイスの磁性膜のイオンビームエッチングにおいて、イオンビームエッチング装置における炭素ポリマーの発生を低減してパーティクルの発生やプロセス再現性の劣化を抑制しつつ、磁性膜に対して選択的なエッチングが可能となる。
本発明の第1の実施形態を説明するための図である。 本発明により磁気抵抗効果素子の磁性膜をエッチングする工程を説明するための図である。 本発明の第2の実施形態を説明するための図である。 本発明の第3の実施形態を説明するための図である。 本発明の第3の実施形態に係るイオンガンを説明するための図である。 本発明の第3の実施形態を説明するための図である。 本発明の第4の実施形態を説明するための図である。
 (第1の実施形態)
 以下、図面を参照して本発明の実施の形態を説明するが、本発明は本実施形態に限定されず、その要旨を逸脱しない範囲において適宜変更可能である。尚、以下で説明する図面において、同機能を有するものは同一符号を付し、その繰り返しの説明は省略することもある。
 図1は本発明のイオンビームエッチング装置の一実施形態の概略図を示す。イオンビームエッチング装置100は処理空間101とプラズマ生成部102で構成されている。処理空間101には排気ポンプ103が設置されている。プラズマ生成部102には放電容器としてのベルジャ104、第1のガス導入部105、RFアンテナ106、整合器107、電磁コイル108が設置されており、処理空間101との境界にはグリッド109が設置されている。プラズマ生成部102は、グリッド109、イオンビームエッチング装置100の内壁及びベルジャ104などで区画される。
 グリッド109は複数枚の電極から構成される。本発明では例えば3枚の電極によってグリッド109が構成されている。ベルジャ104側から順に第1電極115、第2電極116、第3電極117となっている。第1電極には正の電圧が、第2電極には負の電圧が印加されることで、電位差によってイオンが加速される。第3電極117は、アース電極とも呼ばれ接地されている。第2電極116と第3電極117との電位差を制御することにより、静電レンズ効果を用いてイオンビームの径を所定の数値範囲内に制御することができる。イオンビームはニュートラライザー113により中和される。
 このグリッド109は本発明に用いるプロセスガス、即ち炭素含有ガスに対して耐性を持つ材質が好ましい。そのような材質としてモリブデンやチタン、炭化チタンが挙げられる。よって、グリッド109自体をモリブデン、チタン、炭化チタンのいずれかで構成するか、或いは、グリッド109の表面にモリブデン、チタン、炭化チタンのいずれかをコーティングすることにより、グリッド109の少なくとも表面を、モリブデン、チタン、炭化チタンのいずれかで構成することが好ましい。
 処理空間101内には基板ホルダ110があり、基板111が静電吸着(ESC)電極112上に載置される。第1のガス導入部105からガスを導入し、RFアンテナ106に高周波を印加することでプラズマ生成部102内にガスのプラズマを発生させることができる。第1のガス導入部105には不図示のプロセスガスを溜めているボンベから不図示の配管、バルブ、流量調整器などが接続され、これらを介して、所定の流量のガスがプラズマ生成部102に導入される。そしてグリッド109に直流電圧を印加し、プラズマ生成部102内のイオンをビームとして引き出し、基板111に照射することで基板111の処理が行われる。引き出されたイオンビームは、不図示のニュートラライザーにより電気的に中和され、基板111に照射される。また処理空間101には第2のガス導入部114が設けられており、プロセスガスを導入することができる。基板ホルダ110は、イオンビームに対して任意に傾斜することができる。また基板111をその面内方向に回転(自転)できる構造となっている。
 この図1に示す装置を用いて、本発明のイオンビームエッチング方法により磁性デバイスの磁性膜のエッチング加工を行う。図2はイオンビームエッチング方法による磁気抵抗効果素子の磁性膜のエッチング工程を模式的に示したものである。
 図2に示すように本実施形態における磁気抵抗効果素子に係る積層構造は、例えばシリコンやガラス等の基板24の上に下部電極となる下地層23が形成される。下地層23の上に磁気抵抗効果素子を有する多層膜22が形成されている。多層膜22の上には、上部電極の役割を担うキャップ層21が形成されている。図2にはフォトレジスト等を用いてパターニング処理が行われた後のキャップ層21の状態を示す。キャップ層21より上の層はエッチング法やエッチング対象物によって適宜選択されるものである。
 下地層23は、後の工程で下部電極に加工されるため、導電性の材質が用いられる。下地層23としてはTaやTi、Ruなどを用いることができる。
 尚、本実施形態において多層膜とは磁気抵抗効果素子における基本構造を有するものをいう。基本構造とは、一対の強磁性層及び非磁性中間層から構成され、磁気抵抗効果を生じせしめる部分を指す。
 多層膜22の磁気抵抗効果素子は例えば、反強磁性層224(PtMn)、磁化固定層223(CoFeB)、バリア層222(MgO)、フリー層221(CoFeB)が下から順に積層される。
 キャップ層21は、多層膜22をエッチングする際にハードマスクとして用いられる。また、本実施形態においてキャップ層21は、多層膜22の加工後に上部電極として用いられるが、上部電極層はハードマスクと別に設けられていても良い。キャップ層21としてはTa、Tiもしくはこれらの導電性化合物であるTaNやTiN、TaC、TiC等の単層膜又は積層膜を用いることができる。
 特に、イオンビームエッチング時の多層膜22との選択比の観点からTa及びその化合物が好ましい。
 この図2(a)から図2(b)に示す状態への加工において、本発明のイオンビームエッチング方法を用いて多層膜22のエッチングを行う。この時のイオンビームエッチング装置の動作を、図1を用いて説明する。
 先ず、ベルジャ104内に第1のガス導入部105より第1の炭素含有ガスを導入する。第1の炭素含有ガスとしては一酸化炭素や二酸化炭素、炭化水素、アルコールが用いられる。炭化水素としてはメタンやエタン、エチレン、アセチレンなどの炭素数が少ないガスが好適であり、アルコールとしてはメタノールやエタノールなどの低級アルコールが好適である。特にメタンやエタンなどのアルカンやアルコールは炭素ポリマーの生成量が少ないためより好適である。またこれらの混合ガスを用いても良い。第1の炭素含有ガスには、第1の炭素含有ガス以外にもアルゴンやクリプトン、キセノン、窒素などの不活性ガスや水素、炭素、酸素などが添加されていてもよい。
 この第1の炭素含有ガスをベルジャ104内に導入し、プラズマを発生させる。そしてグリッドに電圧を印加して、プラズマからイオンを引き出すことでイオンビームを形成する。
 この時、第1の炭素含有ガスの導入量は、ベルジャ104内に形成される炭素ポリマーによるベルジャ104の交換頻度等を考慮して選択される。
 一方、処理空間101内に設けられた第2のガス導入部114からも第2の炭素含有ガスを導入する。第2のガス導入部114には不図示のプロセスガスを溜めているボンベから不図示の配管、バルブ、流量調整器などが接続され、これらを介して、所定の流量のガスが処理空間101に導入される。第2の炭素含有ガスとしては一酸化炭素や二酸化炭素、炭化水素、アルコールが用いられる。炭化水素としてはメタンやエタン、エチレン、アセチレンなどの炭素数が少ないガスが好適であり、アルコールとしてはメタノールやエタノールなどの低級アルコールが好適である。またこれらの混合ガスを用いても良い。
 第2の炭素含有ガスは第2の炭素含有ガス以外にもアルゴンやクリプトン、窒素などの不活性ガスや炭素、酸素などが添加されていてもよい。また第1の炭素含有ガスと第2の炭素含有ガスは同じガスでも良い。その場合、イオンビームエッチング装置内の雰囲気をより均一にすることができるためプロセスの安定性が増す。また同一のガス供給源(ボンベ)を用いることが可能となる。
 第2の炭素含有ガスを導入するタイミングは、第1のガスをプラズマ生成部102に導入して放電させ、イオンビームを形成した後でも良いし、予め処理空間に第2の炭素含有ガスを導入しておいても良い。
 本発明はこのように処理空間101にも炭素含有ガスを導入することで、プラズマ生成部への炭素含有ガスの導入量を減らした場合でも、被処理基板と炭素含有ガスとの反応を促進させることが可能となる。また第2の炭素含有ガスは、基板111へ供給されるまでの間に、プラズマ生成部102を通過しない。この結果、プラズマ生成部に生じる炭素ポリマーを抑制しつつ、良好な選択比及びエッチングレートで磁性膜を加工することが可能となる。この時イオンビームを中和するためのニュートラライザー113とは別途の電子銃や電子源を用いて、電子もしくはエネルギーを第2の炭素含有ガスに導入することで反応性を高めることが可能である。
 または、基板111をヒータによって加熱することで、第2の炭素含有ガス及び反応性イオンビームとの反応性を高めることもできる。
 (第2の実施形態)
 図3を用いて、第2の実施形態を説明する。
 本実施形態では第1の実施形態と比較して、イオンビームエッチング装置100の第2のガス導入部114の形状が異なる。図2に示すように、本実施形態における第2のガス導入部114はガスを噴射する部分が円環状になっており、基板の周囲から均一にガスを噴射できる構造となっている。このような形態を用いることで、基板面内の処理をより均一に行うことが可能となる。
 (第3の実施形態)
 図4~図6を用いて、第3の実施形態を説明する。図4に示すように、本実施形態では処理空間101内にイオンガン119が設けられている。イオンガン119には第2のガス導入部114が接続されており、所定の流量のガスをイオンガン119の内部に導入可能となっている。
 図5は本発明に係るイオンガン119の一例を示す図である。
 図5において、301はアノード(陽極)、302はカソード(陰極)、303はアノード301とカソード302を絶縁するための絶縁体である。カソード302は筒形であり、一端がアノード301に対向して開口しており、他端は閉塞している。カソード302は内部にプラズマを形成するための中空部307を有する。カソード302の中空部の断面形状は一般に円状であるが、正八角形や正六角形など、プラズマが形成できる空間が存在すれば良い。アノード301及びカソード302は各々に所定の電圧を印加するために電源306に接続されている。304は中和器内に放電用ガスを導入するためのガス導入路であり、第2のガス導入部114よりガスがイオンガン119の内部に導入される。
 第2のガス導入部114は処理空間101に直接導入され、そこから拡散してイオンガン119の放電部分にガスが供給されるようにしても良いが、イオンガン119の内部に直接導入したほうが処理空間101の真空度を低下させずに基板111の処理が可能となる。
 さらに、処理空間101において、イオンガン119を基板111の中心軸を中心として対称に配置すると基板111のエッチング処理をより均一に行うことが可能となる。
 イオンガン119内にガスを導入し、カソード302に負の電圧を印加することで、中空部307にプラズマが形成される。さらにアノード301に正の電圧を印加することでアノード301の開口部より負イオンが引き出される。
 イオンガン119内に導入するガスとしては、イオンガン119内への膜堆積を抑制するために、不活性ガスと炭素含有ガスとの混合ガスが好ましい。
 一例として、イオンガン119内部にArとメタンの混合ガスを導入した場合を考える。この場合カソード302近傍でプラズマが形成され、該プラズマ中からCH3-やCH2 2-などの種々の負イオンが生成される。そしてこれらの負イオンはカソード302とアノード301の電位差により加速され、アノード301の開口部より引き出される。
 イオンガン119内に導入するガスとしては、上述の他の実施形態と同様に一酸化炭素や二酸化炭素、炭化水素、アルコールが用いられる。
 アノード301及びカソード302には、例えば、耐熱性や耐スパッタ性を考慮してチタンが用いられる。但し、イオンガン119内に導入するガスとの反応性等を考慮して材質を変更しても良い。
 イオンガン119は上述した構成に限らず、他の形態を用いても良い。例えばアノード301とカソード302を逆に構成し、正イオンを引き出すように構成しても良い。またホロータイプの電極以外を用いてプラズマを形成しても良い。
 ところで、基板ホルダ110はグリッド109に対して任意の角度に傾斜可能に構成される。従ってイオンガン119の位置と基板111の傾斜角度によって、イオンガン119から基板111に照射されるイオンの量が変化する。また基板111内の各点におけるイオンの照射量も変化する。
 この点について、図6に示すように、基板ホルダ110上に、載置台121を設け、載置台121上にイオンガン119を設けて基板ホルダ110とイオンガン119を一体とすることで、基板111の傾斜角度が変化した場合でも、イオンガン119からのイオンの照射量の変化を低減することができる。
 また基板ホルダ110とイオンガン119が一体でなくとも、基板ホルダ110の傾斜角度を変更する際の回転軸近傍にイオンガン119を設けることで、基板111の傾斜角度が変化した場合でも、イオンガン119からのイオンの照射量の変化を低減することができる。
 もしくはイオンガン119を基板ホルダ110上に載置し、基板111と一体に傾斜するようにすると、基板111の傾斜角度に寄らず、イオン照射量を一定とすることが可能となる。その際、基板111へのイオンの照射角度を最適化するために、基板ホルダ110とイオンガン119の間に適宜スペーサを設けてもよい。
 (第4の実施形態)
 図7に示すように、第2のガス導入部114とイオンガン119に加えて、さらに第3のガス導入部120を設けて第3の炭素含有ガスを導入しても良い。このような構成とすることで、第2のガス導入部114からイオンガン119内に導入する第2の炭素含有ガスの導入量を低減させた場合でも、反応性の低下を抑制することができる。またイオンガン119内に導入する炭素含有ガスの導入量を低減できるため、イオンガン119内に形成される炭素ポリマーの量を低減しつつ基板111の処理が可能となる。
 第3の炭素含有ガスとしては一酸化炭素や二酸化炭素、炭化水素、アルコールが用いられる。炭化水素としてはメタンやエタン、エチレン、アセチレンなどの炭素数が少ないガスが好適であり、アルコールとしてはメタノールやエタノールなどの低級アルコールが好適である。特にメタンやエタンなどのアルカンやアルコールは炭素ポリマーの生成量が少ないためより好適である。またこれらの混合ガスを用いても良い。第3の炭素含有ガスには、第3の炭素含有ガス以外にもアルゴンやクリプトン、キセノン、窒素などの不活性ガスや水素、炭素、酸素などが添加されていてもよい。
 このように本発明では、ベルジャ104内に導入する第1の炭素含有ガスに加え、処理空間101内にも第2の炭素含有ガスを導入している。このためベルジャ104内に導入する炭素含有ガスの導入量を少なくした場合にも、キャップ層21に対して多層膜22が選択的にエッチングされ、且つベルジャ104内への炭素ポリマーの生成を低減させることが可能となる。
 上述した実施形態では、磁気抵抗効果素子の磁性膜のエッチング加工について述べたが、本発明はこれ以外の磁気デバイスにおける磁性膜のエッチング加工にも有効である。具体的な例としては、磁気ヘッドの書き込み部を形成するための磁性膜のエッチングや、DTM(Discrete Track Media)及びBPM(Bit Patterned Media)などの磁気記録媒体を製造するための磁性膜のエッチングなどが挙げられる。
 21:キャップ層、22:多層膜、23:下地層、24:基板、100:イオンビームエッチング装置、101:処理空間、102:プラズマ生成部、103:排気ポンプ、104:ベルジャ、105:第1のガス導入部、106:RFアンテナ、107:整合器、108:電磁コイル、109:グリッド、110:基板ホルダ、111:基板、112:ESC電極、113:ニュートラライザー、114:第2のガス導入部、115:第1電極、116:第2電極、117:第3電極、119:イオンガン、120:第3のガス導入部、121:載置台、221:フリー層、222:バリア層、223:磁化固定層、224:反強磁性層、301:アノード、302:カソード、303:絶縁体、304:ガス導入路、306:電源

Claims (16)

  1.  イオンビームエッチング装置において、第1のガス導入部より第1の炭素含有ガスを導入してプラズマを生成し、
     前記プラズマからイオンを引き出してイオンビームを形成し、
     基板上に形成された磁性膜を前記イオンビームによってエッチングする磁性膜のイオンビームエッチング方法であって、
     前記エッチングの際に第1のガス導入部と異なる第2のガス導入部より第2の炭素含有ガスを前記基板が載置された処理空間に導入することを特徴とする磁性膜のイオンビームエッチング方法。
  2.  前記第1の炭素含有ガスは二酸化炭素、一酸化炭素、炭化水素またはアルコールのいずれかもしくはこれらの混合ガスであり、
     前記第2の炭素含有ガスは二酸化炭素、一酸化炭素、炭化水素またはアルコールのいずれかもしくはこれらの混合ガスであることを特徴とする請求項1に記載の磁性膜のイオンビームエッチング方法。
  3.  前記第1の炭素含有ガスと前記第2の炭素含有ガスは同一であることを特徴とする請求項1または2に記載の磁性膜のイオンビームエッチング方法。
  4.  前記処理空間内で前記第2の炭素含有ガスのプラズマを形成し、前記第2の炭素含有ガスのプラズマ中のイオンを前記基板に供給することを特徴とする請求項1乃至3のいずれか1項に記載の磁性膜のイオンビームエッチング方法。
  5.  前記処理空間内に設けられたイオンガンに前記第2の炭素含有ガスが導入され、前記イオンガンの内部で前記第2の炭素含有ガスのプラズマを形成し、前記第2の炭素含有ガスのプラズマ中のイオンを前記基板に供給することを特徴とする請求項4に記載の磁性膜のイオンビームエッチング方法。
  6.  前記エッチングの際に前記第1及び第2のガス導入部と異なる第3のガス導入部より第3の炭素含有ガスを前記処理空間に導入することを特徴とする請求項1乃至5のいずれかに記載の磁性膜のイオンビームエッチング方法。
  7.  プラズマ生成部と、
     前記プラズマ生成部にガスを導入するための第1のガス導入部と、
     前記プラズマ生成部からイオンを引き出すためのグリッドと、
     基板が載置される処理空間と、
    を有するイオンビームエッチング装置であって、
     前記処理空間にガスを導入するための第2のガス導入部を備え、
     前記グリッドはチタンまたは炭化チタンで構成されているか、もしくはTiまたは炭化チタンによって表面がコーティングされていることを特徴とするイオンビームエッチング装置。
  8.  前記第1のガス導入部および前記第2のガス導入部は炭素含有ガスを導入するものであることを特徴とする請求項7に記載のイオンビームエッチング装置。
  9.  前記第2のガス導入部のガス噴出部が円環状であることを特徴とする請求項7または8に記載のイオンビームエッチング装置。
  10.  前記処理空間内にイオンガンを備え、前記イオンガンに前記第2のガス導入部が接続されていることを特徴とする請求項7または8に記載のイオンビームエッチング装置。
  11.  前記処理空間に第3の炭素含有ガスを導入するための第3のガス導入部を備えていることを特徴とする請求項7乃至10のいずれかに記載のイオンビームエッチング装置。
  12.  プラズマ生成部と、
     前記プラズマ生成部に第1の炭素含有ガスを導入するための第1のガス導入部と、
     前記プラズマ生成部からイオンを引き出すためのグリッドと、
     基板が載置される処理空間と、
    を有するイオンビームエッチング装置であって、
     前記処理空間に第2の炭素含有ガスを導入するための第2のガス導入部を備えていることを特徴とするイオンビームエッチング装置。
  13.  前記グリッドは、少なくともその表面がモリブデン、チタン、炭化チタンのいずれかで構成されていることを特徴とする請求項12に記載のイオンビームエッチング装置。
  14.  前記第2のガス導入部のガス噴出部が円環状であることを特徴とする請求項12または13に記載のイオンビームエッチング装置。
  15.  前記処理空間内にイオンガンを備え、前記イオンガンに前記第2のガス導入部が接続されていることを特徴とする請求項12または13に記載のイオンビームエッチング装置。
  16.  前記処理空間に第3の炭素含有ガスを導入するための第3のガス導入部を備えていることを特徴とする請求項12乃至15のいずれかに記載のイオンビームエッチング装置。
PCT/JP2012/077398 2011-10-31 2012-10-24 磁性膜のイオンビームエッチング方法及びイオンビームエッチング装置 WO2013065531A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013541715A JP5689980B2 (ja) 2011-10-31 2012-10-24 磁性膜のイオンビームエッチング方法及びイオンビームエッチング装置
KR1020147006127A KR101578178B1 (ko) 2011-10-31 2012-10-24 자성막의 이온 빔 에칭 방법 및 이온 빔 에칭 장치
US14/351,341 US10388491B2 (en) 2011-10-31 2012-10-24 Ion beam etching method of magnetic film and ion beam etching apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-238370 2011-10-31
JP2011238370 2011-10-31
JP2012164516 2012-07-25
JP2012-164516 2012-07-25

Publications (1)

Publication Number Publication Date
WO2013065531A1 true WO2013065531A1 (ja) 2013-05-10

Family

ID=48191885

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/077398 WO2013065531A1 (ja) 2011-10-31 2012-10-24 磁性膜のイオンビームエッチング方法及びイオンビームエッチング装置

Country Status (5)

Country Link
US (1) US10388491B2 (ja)
JP (2) JP5689980B2 (ja)
KR (1) KR101578178B1 (ja)
TW (1) TWI525698B (ja)
WO (1) WO2013065531A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015019065A (ja) * 2013-07-11 2015-01-29 ラム リサーチ コーポレーションLam Research Corporation イオン加速器を備えるデュアルチャンバプラズマエッチング装置
US9793126B2 (en) 2010-08-04 2017-10-17 Lam Research Corporation Ion to neutral control for wafer processing with dual plasma source reactor
JP2018529224A (ja) * 2015-07-24 2018-10-04 ヴァリアン セミコンダクター イクイップメント アソシエイツ インコーポレイテッド 方向性プラズマとユースポイントケミストリを用いる基板処理装置及び技術
US10224221B2 (en) 2013-04-05 2019-03-05 Lam Research Corporation Internal plasma grid for semiconductor fabrication
WO2021054147A1 (ja) * 2019-09-17 2021-03-25 東京エレクトロン株式会社 プラズマ処理装置
JP2021052170A (ja) * 2019-09-17 2021-04-01 東京エレクトロン株式会社 プラズマ処理装置

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9039911B2 (en) 2012-08-27 2015-05-26 Lam Research Corporation Plasma-enhanced etching in an augmented plasma processing system
CN104584196B (zh) 2012-06-29 2017-02-22 佳能安内华股份有限公司 离子束处理方法和离子束处理装置
US9230819B2 (en) 2013-04-05 2016-01-05 Lam Research Corporation Internal plasma grid applications for semiconductor fabrication in context of ion-ion plasma processing
US9017526B2 (en) 2013-07-08 2015-04-28 Lam Research Corporation Ion beam etching system
JP6030099B2 (ja) * 2014-08-18 2016-11-24 東京エレクトロン株式会社 残渣層除去方法及び残渣層除去装置
KR101908903B1 (ko) * 2017-01-23 2018-10-18 성균관대학교산학협력단 전자총용 그리드 코팅층 형성방법 및 전자총용 그리드
US11581164B2 (en) * 2017-03-29 2023-02-14 Excelitas Technologies Corp. Metal plating of grids for ion beam sputtering
US10684407B2 (en) * 2017-10-30 2020-06-16 Facebook Technologies, Llc Reactivity enhancement in ion beam etcher
US11137536B2 (en) 2018-07-26 2021-10-05 Facebook Technologies, Llc Bragg-like gratings on high refractive index material
US11226446B2 (en) 2020-05-06 2022-01-18 Facebook Technologies, Llc Hydrogen/nitrogen doping and chemically assisted etching of high refractive index gratings

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08264519A (ja) * 1995-03-24 1996-10-11 Nissin Electric Co Ltd プラズマ発生装置及びプラズマ処理装置
JP2002038285A (ja) * 2000-07-25 2002-02-06 National Institute For Materials Science ドライエッチング用マスク材
JP2004281232A (ja) * 2003-03-14 2004-10-07 Ebara Corp ビーム源及びビーム処理装置
JP2004356179A (ja) * 2003-05-27 2004-12-16 Sony Corp ドライエッチング方法及びその装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60246546A (ja) 1984-05-21 1985-12-06 Nippon Telegr & Teleph Corp <Ntt> イオンビ−ム装置用グリツド
JPH04249319A (ja) 1991-02-04 1992-09-04 Nippon Telegr & Teleph Corp <Ntt> イオンガン用グリッド及びその製造方法
US5525392A (en) * 1992-12-10 1996-06-11 International Business Machines Corporation Magnetic recording medium having a fluorinated polymeric protective layer formed by an ion beam
CA2130167C (en) * 1993-08-27 1999-07-20 Jesse N. Matossian Nondestructive determination of plasma processing treatment
JPH0982494A (ja) 1995-09-11 1997-03-28 Hitachi Ltd プラズマ処理装置およびプラズマ処理方法
JP3940467B2 (ja) 1997-06-03 2007-07-04 株式会社アルバック 反応性イオンエッチング装置及び方法
JP2005527101A (ja) 2001-08-21 2005-09-08 シーゲイト テクノロジー エルエルシー 炭素ベースのガスを用いる磁気薄膜のイオンビームエッチング選択性の向上
JP4111274B2 (ja) 2003-07-24 2008-07-02 キヤノンアネルバ株式会社 磁性材料のドライエッチング方法
JP2006049817A (ja) 2004-07-07 2006-02-16 Showa Denko Kk プラズマ処理方法およびプラズマエッチング方法
JP5099291B2 (ja) * 2006-02-14 2012-12-19 エスアイアイ・ナノテクノロジー株式会社 集束イオンビーム装置及び試料の断面加工・観察方法
US8329593B2 (en) 2007-12-12 2012-12-11 Applied Materials, Inc. Method and apparatus for removing polymer from the wafer backside and edge
JP5246474B2 (ja) 2008-02-08 2013-07-24 Tdk株式会社 ミリング装置及びミリング方法
WO2009107485A1 (ja) * 2008-02-27 2009-09-03 キヤノンアネルバ株式会社 磁気抵抗効果素子の製造方法及び製造装置
JP5461148B2 (ja) 2009-11-05 2014-04-02 株式会社日立ハイテクノロジーズ プラズマエッチング方法及び装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08264519A (ja) * 1995-03-24 1996-10-11 Nissin Electric Co Ltd プラズマ発生装置及びプラズマ処理装置
JP2002038285A (ja) * 2000-07-25 2002-02-06 National Institute For Materials Science ドライエッチング用マスク材
JP2004281232A (ja) * 2003-03-14 2004-10-07 Ebara Corp ビーム源及びビーム処理装置
JP2004356179A (ja) * 2003-05-27 2004-12-16 Sony Corp ドライエッチング方法及びその装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9793126B2 (en) 2010-08-04 2017-10-17 Lam Research Corporation Ion to neutral control for wafer processing with dual plasma source reactor
US10224221B2 (en) 2013-04-05 2019-03-05 Lam Research Corporation Internal plasma grid for semiconductor fabrication
US11171021B2 (en) 2013-04-05 2021-11-09 Lam Research Corporation Internal plasma grid for semiconductor fabrication
JP2015019065A (ja) * 2013-07-11 2015-01-29 ラム リサーチ コーポレーションLam Research Corporation イオン加速器を備えるデュアルチャンバプラズマエッチング装置
US10134605B2 (en) 2013-07-11 2018-11-20 Lam Research Corporation Dual chamber plasma etcher with ion accelerator
JP2018529224A (ja) * 2015-07-24 2018-10-04 ヴァリアン セミコンダクター イクイップメント アソシエイツ インコーポレイテッド 方向性プラズマとユースポイントケミストリを用いる基板処理装置及び技術
WO2021054147A1 (ja) * 2019-09-17 2021-03-25 東京エレクトロン株式会社 プラズマ処理装置
JP2021052170A (ja) * 2019-09-17 2021-04-01 東京エレクトロン株式会社 プラズマ処理装置
JP7394694B2 (ja) 2019-09-17 2023-12-08 東京エレクトロン株式会社 プラズマ処理装置

Also Published As

Publication number Publication date
US10388491B2 (en) 2019-08-20
US20140251790A1 (en) 2014-09-11
KR20140047728A (ko) 2014-04-22
JP5689980B2 (ja) 2015-03-25
TW201335990A (zh) 2013-09-01
TWI525698B (zh) 2016-03-11
JPWO2013065531A1 (ja) 2015-04-02
JP5922751B2 (ja) 2016-05-24
JP2015046645A (ja) 2015-03-12
KR101578178B1 (ko) 2015-12-16

Similar Documents

Publication Publication Date Title
JP5922751B2 (ja) イオンビームエッチング装置
JP5380464B2 (ja) プラズマ処理装置、プラズマ処理方法、および被処理基板を備える素子の製造方法
TWI564941B (zh) 用於圖案化之磁碟媒體應用的電漿離子佈植製程
US8981507B2 (en) Method for manufacturing nonvolatile memory device
US9601688B2 (en) Method of manufacturing magnetoresistive element and method of processing magnetoresistive film
JP5216918B2 (ja) イオンビーム発生装置、基板処理装置及び電子デバイスの製造方法
US10157961B2 (en) Method of manufacturing magnetoresistive element
JP2011014881A (ja) 磁気素子の製造方法と装置
WO2012176747A1 (ja) 機能素子の製造方法
JP6018220B2 (ja) 磁気抵抗効果素子の製造方法
JP2006351843A (ja) 真空処理装置及びトンネル接合素子の製造方法
WO2019188450A1 (ja) エッチング方法
WO2011111343A1 (ja) イオンビーム発生装置及びこれを用いた基板処理装置と電子デバイスの製造方法
KR101602869B1 (ko) 자기 저항 효과 소자의 제조 방법 및 제조 시스템
JP5270751B2 (ja) プラズマ処理装置および磁気記録媒体の製造方法
CN101236746A (zh) 防止磁头体之隧道磁电阻阻抗降低的方法及磁头制造方法
Whang et al. A fast dry etching of magnetic tunnel junction using a new plasma source

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12846106

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013541715

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147006127

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14351341

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12846106

Country of ref document: EP

Kind code of ref document: A1