WO2013058058A1 - 鉛蓄電池 - Google Patents

鉛蓄電池 Download PDF

Info

Publication number
WO2013058058A1
WO2013058058A1 PCT/JP2012/074268 JP2012074268W WO2013058058A1 WO 2013058058 A1 WO2013058058 A1 WO 2013058058A1 JP 2012074268 W JP2012074268 W JP 2012074268W WO 2013058058 A1 WO2013058058 A1 WO 2013058058A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode plate
positive electrode
active material
charge
negative electrode
Prior art date
Application number
PCT/JP2012/074268
Other languages
English (en)
French (fr)
Inventor
柴原 敏夫
箕浦 敏
耕二 木暮
Original Assignee
新神戸電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=48140712&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2013058058(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 新神戸電機株式会社 filed Critical 新神戸電機株式会社
Priority to CN201280051434.3A priority Critical patent/CN103891037B/zh
Priority to EP12841374.7A priority patent/EP2770574B1/en
Priority to JP2013539583A priority patent/JP5831553B2/ja
Publication of WO2013058058A1 publication Critical patent/WO2013058058A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/14Electrodes for lead-acid accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • H01M10/08Selection of materials as electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • H01M10/12Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/627Expanders for lead-acid accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0002Aqueous electrolytes
    • H01M2300/0005Acid electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a liquid lead-acid battery having an electrolytic solution released from an electrode plate group / separator in a battery case.
  • Lead-acid batteries are inexpensive and highly reliable, and are widely used as power sources for starting automobiles, power sources for electric vehicles such as golf carts, and power supplies for industrial equipment such as uninterruptible power supplies. Yes.
  • Micro-hybrid vehicles such as an idling stop vehicle (hereinafter referred to as an ISS vehicle) that reduces engine operation time and a power generation control vehicle that uses engine rotation as a power source are being considered as vehicles that have taken measures to improve fuel efficiency.
  • an ISS vehicle the number of engine starts increases, and the lead-acid battery is repeatedly discharged with a large current each time. Further, in an ISS vehicle or a power generation control vehicle, the amount of power generated by the alternator is reduced, and the lead storage battery is charged intermittently, so charging is often insufficient. Therefore, the lead storage battery used for this type of application is required to improve the performance of charging as much as possible in a short time, that is, the charge acceptability.
  • the lead storage battery that is used as described above will be used in a partially charged state called PSOC (Partial State Of Charge).
  • PSOC Partial State Of Charge
  • Lead acid batteries tend to have a shorter life when used under PSOC than when used in a fully charged state.
  • the reason for the shortening of the life when used under PSOC is that if charging / discharging is repeated in a state where charging is insufficient, lead sulfate produced on the negative electrode plate becomes coarse during discharge, and lead sulfate is generated by charging. It is thought that it is difficult to return to the metallic lead that is a thing. Therefore, lead-acid batteries used under PSOC have an excessive charge shortage by improving the charge acceptance (allowing as many charges as possible in a short time) to extend their life. It is necessary to prevent repeated charging / discharging in a state in which the lead sulfate is charged, and to prevent lead sulfate from becoming coarse due to repeated charging / discharging.
  • the amount of carbonaceous conductive material added to the negative electrode active material has to be limited, and by adding the carbonaceous conductive material to the negative electrode active material, the charge acceptability of the lead acid battery as a whole is increased. There are limits to improving
  • Sealed lead-acid batteries not only have a low battery capacity due to the limited amount of electrolyte, but also cause a phenomenon called thermal escape when the operating temperature is high. Use is inevitable. Therefore, when a sealed lead-acid battery is used in an automobile, it is necessary to mount the battery in a luggage room or the like. However, mounting the battery in a luggage room or the like causes an increase in wire harness, which is not preferable. As a lead acid battery for automobiles, it is preferable to use a liquid type lead acid battery without such restrictions. Therefore, there is an urgent need to improve the charge acceptability of the liquid lead-acid battery.
  • Patent Document 3 Japanese Patent Laid-Open No. 2006-196191 discloses that a carbonaceous conductive material is added in order to improve charge acceptance.
  • Patent Document 4 Japanese Patent Application Laid-Open No. 2003-0513066 discloses that conductive carbon and activated carbon are added to the negative electrode active material to improve the discharge characteristics under PSOC.
  • Patent Document 5 Japanese Patent Laid-Open No. 10-40907 discloses that the discharge capacity is increased by increasing the specific surface area of the positive electrode active material.
  • lignin is added to the electrolytic solution at the time of battery formation to refine the positive electrode active material and increase the specific surface area.
  • Patent Document 5 discloses an invention for increasing the discharge capacity of a battery. In the improvement of charge acceptance required for lead-acid storage batteries for idling stop vehicles and power generation control vehicles and cycle characteristics under PSOC. The big effect is not obtained.
  • Patent Document 6 Japanese Patent Laid-Open No. 62-29073 discloses that an organic and / or inorganic flocculant is added to an electrolytic solution. This is intended to prevent the occurrence of an internal short circuit, which is mainly caused by the floating of PbO 2 fine particles in the electrolyte, and to improve the battery life.
  • Patent Document 7 Japanese Patent Laid-Open No. 02-236967 discloses that a surfactant is added to the electrolytic solution. This is intended to improve the recovery chargeability after being left overdischarged.
  • Patent Document 8 Japanese Patent Laid-Open No. 2011-165378 discloses that phosphoric acid is added to an electrolytic solution. The purpose of this is to increase the active material utilization rate of the positive electrode plate and extend the life of the battery.
  • JP 2003-36882 A Japanese Patent Application Laid-Open No. 07-201331 JP 2006-196191 A JP 2003-051306 A Japanese Patent Laid-Open No. 10-40907 JP 62-29073 A Japanese Patent Laid-Open No. 02-236967 JP 2011-165378 A
  • the purpose is to improve the life performance in use.
  • the present invention provides an electrode plate group in which a negative electrode plate in which a negative electrode active material is filled in a negative electrode current collector and a positive electrode plate in which a positive electrode active material is filled in a positive electrode current collector are stacked via a separator. It is intended for a liquid lead-acid battery that has a configuration that is housed in a battery case together with a liquid, in which charging is performed intermittently and high-rate discharge to a load is performed in a partially charged state.
  • At least a carbonaceous conductive material and an organic compound that suppresses the coarsening of the negative electrode active material due to repeated charge / discharge (hereinafter referred to as “an organic compound that suppresses the coarsening of the negative electrode active material”).
  • an organic compound that suppresses the coarsening of the negative electrode active material is added to the negative electrode active material.
  • the positive electrode plate is configured to a range of unit plate group volume [cm 3] to 3.5 to a positive electrode active material total surface area [m 2] per 15.6 [m 2 / cm 3] .
  • a compound selected from a cationic flocculant, a cationic surfactant, and phosphoric acid is added to the electrolytic solution.
  • the “electrode group volume” is the entire part of the electrode plate group accommodated in one cell, which is the smallest unit of the lead storage battery, with respect to the part relating to power generation, ignoring the irregularities on the outer surface. It is the apparent volume when viewed.
  • a part excluding the respective ear part and leg part of the positive electrode current collector and the negative electrode current collector (if the leg part is not provided, only the ear part is provided. Excluded part, the same shall apply hereinafter) shall be the part involved in power generation of the electrode plate group.
  • [cm 3 ] is used as a unit of the electrode plate group volume.
  • the negative electrode current collector is housed in the cell chamber in the area of one side excluding the ear portion and the leg portion.
  • the volume of the electrode plate group is obtained by performing a calculation of multiplying the thickness dimension of the electrode plate group in the state accommodated in the room.
  • the “positive electrode active material total surface area” is the total surface area of the positive electrode active materials of all the positive electrode plates constituting the electrode plate group accommodated in one cell which is the minimum unit of the lead storage battery.
  • the surface area Sk of the kth positive electrode active material can be expressed by the product of the specific surface area of the active material filled in the positive electrode plate and the mass of the active material.
  • the number of positive electrode plates constituting one electrode plate group is n
  • the total surface area of the positive electrode active material is Sp
  • the “total surface area of positive electrode active material” divided by the “electrode group volume” defined as described above is defined as “total surface area of positive electrode active material per unit electrode plate group volume”.
  • the unit of the specific surface area is [m 2 / g].
  • the specific surface area of the active material is measured by a measuring method described later.
  • a negative electrode plate in which at least a carbonaceous conductive material and an organic compound that suppresses the coarsening of the negative electrode active material are added to the negative electrode active material is used, and the unit electrode plate group volume [cm 3 ] per unit electrode
  • the total surface area [m 2 ] of the positive electrode active material is set in the range of 3.5 to 15.6 [m 2 / cm 3 ], and the electrolytic solution includes a cationic flocculant, a cationic surfactant, and phosphoric acid.
  • the positive electrode plate has a total surface area [cm 2 ] per unit electrode plate group volume [cm 3 ] of 2.6 to 3.9 [cm 2 / cm 3 ].
  • a board is formed.
  • [m 2 ] is used as the unit of the total surface area of the positive electrode active material, but [cm 2 ] is used as the unit of the total surface area of the positive electrode plate.
  • the “total surface area of the positive electrode plate” is the total surface area of the portions involved in power generation of the positive electrode plate constituting the electrode plate group accommodated in one cell which is the minimum unit of the lead storage battery.
  • the total surface area of both the front and back surfaces of each positive electrode plate excluding the ears and legs if the current collector frame is square or rectangular.
  • the total surface area of the positive electrode plate is obtained by multiplying [cm 2 ] by the number of positive electrode plates constituting the electrode plate group, which is twice the product of the vertical dimension and the horizontal dimension of the frame portion.
  • a value obtained by dividing “plate total surface area” by “electrode plate group volume” is referred to as “positive electrode plate total surface area per unit electrode plate group volume”.
  • the present inventor when the total surface area of the positive electrode active material per unit electrode plate group volume is set in an appropriate range, reduces the reaction overvoltage in the charge reaction of the positive electrode active material, facilitates the progress of the charge reaction,
  • the positive electrode plate having improved charge acceptability, and thus improved charge acceptability has at least a carbonaceous conductive material and an organic compound that suppresses coarsening of the negative electrode active material as a negative electrode active material.
  • a negative electrode plate with improved performance When used together with a negative electrode plate with improved charge acceptability and improved life performance (hereinafter referred to as “a negative electrode plate with improved performance”), the charge acceptability of the entire lead storage battery is used. It has been found that the lifetime performance when used under PSOC can be further improved.
  • Total positive electrode active material surface area per unit electrode plate group volume and “total positive electrode plate surface area per unit electrode plate group volume” were newly introduced.
  • the same effect can be obtained by increasing the number of electrode plates and increasing the total surface area of the positive electrode plates.
  • the electrode plate group is housed in a fixed battery volume to satisfy the rated capacity, so the amount of active material and surface area ( The number of electrode plates) cannot be set freely.
  • the product of the specific surface area and the amount of active material is used instead of the specific surface area.
  • the total surface area of the positive electrode active material is used, and the total surface area of the positive electrode plate, which is the total surface area of the parts involved in power generation of the positive electrode plate, is used instead of the number of electrode plates. Is used as a parameter for specifying the configuration of the positive electrode plate as the total surface area of the positive electrode plate per unit electrode plate group volume.
  • the effect of improving the charge acceptance of the entire lead storage battery cannot be obtained significantly, but the unit electrode plate When the total surface area of the positive electrode active material per group volume is 3.5 m 2 / cm 3 or more, the effect of improving the charge acceptance of the entire lead-acid battery can be significantly obtained.
  • the total surface area of the positive electrode active material per unit electrode plate group volume is not necessarily increased.
  • the value of the total surface area of the positive electrode active material per unit electrode plate group volume is set in the range of 3.5 m 2 / cm 3 or more and 15.6 m 2 / cm 3 or less.
  • a negative electrode plate whose performance is improved by adding at least a carbonaceous conductive material and an organic compound that suppresses coarsening of the negative electrode active material associated with charge and discharge to the negative electrode active material, and a unit related to the discharge reaction
  • a lead-acid battery is assembled using a positive electrode plate having a total surface area of positive electrode active material per electrode plate volume of 3.5 m 2 / cm 3 or more and 15.6 m 2 / cm 3 or less, the performance of the negative electrode is exclusively obtained.
  • a compound selected from a cationic flocculant, a cationic surfactant, and phosphoric acid is added to the electrolytic solution, the following effects can be obtained.
  • a cationic flocculant or a cationic surfactant are electrically adsorbed with an organic compound (which is negatively charged) that suppresses the coarsening of the negative electrode active material accompanying charge / discharge.
  • the organic compound that suppresses the coarsening of the negative electrode active material associated with charge / discharge has the effect of reducing the amount of the organic compound adsorbed on the lead ions. For this reason, the side effect which inhibits the charging reaction of a negative electrode can be decreased.
  • phosphoric acid there exists an effect
  • the present invention uses a positive electrode plate in which the total surface area of the positive electrode active material per unit electrode plate group volume is set in an appropriate range in combination with a negative electrode plate with improved performance (charge acceptance and life performance), By adding a compound selected from a cationic flocculant, a cationic surfactant and phosphoric acid to the electrolyte, the effect of improving the charge acceptability of lead-acid batteries and the life performance when used under PSOC can be obtained. Furthermore, by using a positive electrode plate in which the total surface area of the positive electrode plate per unit electrode plate group volume is set to an appropriate range, the charge acceptability of the lead storage battery and the life performance during use under PSOC are further improved. It is clarified that it can be done.
  • the negative electrode plate it is preferable to use a negative electrode plate having as high a charge acceptability and life performance as possible.
  • the amount of carbonaceous conductive material added to the negative electrode active material in order to improve the charge acceptance of the negative electrode plate and the organic added to the negative electrode active material to suppress the coarsening of the negative electrode active material due to charge / discharge The amount of the compound and the amount of the cationic flocculant and the cationic surfactant to be added to the electrolytic solution are not particularly defined, but in carrying out the present invention, the performance of the negative electrode plate is improved as much as possible.
  • the amount of the additive is set. It is also natural to set the amount of phosphoric acid added to the electrolyte so as to improve the performance of the positive electrode plate as much as possible.
  • a positive electrode plate having a positive electrode active material total surface area per unit electrode plate group volume of 3.5 m 2 / cm 3 or more and 15.6 m 2 / cm 3 or less and improved charge acceptability, and a negative electrode active material
  • a carbonaceous conductive material and an organic compound that suppresses the coarsening of the negative electrode active material are used in combination with a negative electrode plate that has improved charge acceptability and life performance.
  • a cationic surfactant, a phosphoric acid, and the addition of a compound selected from phosphoric acid, the lead-acid battery as a whole has improved the charge-acceptability
  • the negative-electrode plate has improved the charge-acceptability exclusively Can be improved.
  • the lead acid battery according to the present invention is a liquid lead acid battery in which charging is performed intermittently and high rate discharge to a load is performed under PSOC, and is suitable for use in a micro hybrid vehicle such as an ISS car. is there.
  • a lead storage battery according to the present invention is configured by laminating a negative electrode plate formed by filling a negative electrode current collector with a negative electrode active material and a positive electrode plate formed by filling a positive electrode current collector with a positive electrode current collector through a separator.
  • the electrode plate group is housed in the battery case together with the electrolytic solution.
  • the present inventor reduced the reaction overvoltage and improved the charge acceptance.
  • improving the charge acceptability of the positive electrode plate further improves the charge acceptability of the lead acid battery as a whole, compared with the conventional lead acid battery that only improved the charge acceptability of the negative electrode plate. I found out to get. If the charge acceptability can be improved, not only can high-rate discharge to the load under PSOC be performed without trouble, but lead sulfate is coarsened by repeated charge and discharge in a state of insufficient charge. The life performance can be improved.
  • FIG. 1 shows the relationship between the charging current and the potentials of the negative electrode plate and the positive electrode plate when charging an automotive lead-acid battery having an open circuit voltage of 12 V with a charging voltage of 14 V (constant).
  • the vertical axis represents the charging current
  • the horizontal axis represents the potential (vs. SHE) of the positive electrode plate and the negative electrode plate measured with reference to the standard hydrogen electrode.
  • N1 and N2 indicate the charging current versus potential curve of the negative electrode plate
  • P1 and P2 indicate the charging current versus potential curve of the positive electrode plate.
  • the charging current vs. potential curve of the negative electrode plate should be shown in the third quadrant of the orthogonal coordinate system, but in FIG. In the first quadrant, the polarity of the potential and current is reversed and the charging current vs. potential curve of the positive electrode plate is shown.
  • N1 represents a charging current versus potential curve when the overvoltage of the charging reaction performed on the negative electrode plate is higher than that of N2.
  • the charging current vs. potential curve of the negative electrode plate is greatly swelled outward as shown in the figure, but when the overvoltage is low, it stands up from N1 as in N2. Become a curved line.
  • P1 shows a charging current versus potential curve when the overvoltage of the charging reaction performed on the positive electrode plate is higher than that of P2.
  • the charging current vs. potential curve P1 swells outward from the charging current vs. potential curve P2 when the reaction overvoltage is low, and when the reaction overvoltage is low, the curve rises more than P1.
  • the overvoltage ⁇ of the charging reaction is a change in potential generated at each electrode when the charging voltage is applied in an open circuit state
  • the overvoltage ⁇ is the potential of each electrode and the equilibrium potential when the charging voltage is applied.
  • the absolute value of the difference from (open circuit voltage), that is, ⁇
  • the charging current vs. potential curve of the negative electrode plate that is not particularly devised to improve the charge acceptability of the negative electrode active material takes a shape bulging outward as shown by N1 in FIG. 1, but the negative electrode active material is a carbonaceous conductive material.
  • the charge current vs. potential curve of the negative electrode plate improved in charge acceptability by adding an appropriate amount of an organic compound that suppresses the coarsening of the negative electrode active material caused by charging and discharging takes an upright shape such as N2.
  • the charge current vs. potential curve of the positive electrode plate that is not particularly devised to improve the charge acceptability of the positive electrode active material takes the form of P1 in FIG.
  • P1 is a charge current vs. potential curve of the positive electrode plate used in the conventional lead-acid battery, and is a curve that stands up compared to N1. This means that in a lead-acid battery, the charge acceptability of the negative electrode plate is originally low and the charge acceptability of the positive electrode plate is high.
  • the charge current vs. potential curve of the positive electrode plate takes a form that stands further than P1 as P2 in FIG. .
  • a lead-acid battery is assembled using a negative electrode plate and a positive electrode plate whose charging current vs. potential characteristic curves are N1 and P1, respectively, charging that flows when a charging voltage of 14 V is applied from an open circuit voltage (12 V) state.
  • the current is I11.
  • the open circuit voltage is the difference between the positive electrode potential and the negative electrode potential, and 14 V to be applied is also the difference between the bipolar potentials.
  • a lead-acid battery is formed by combining a negative electrode plate with improved charge acceptance by reducing the overvoltage of the charge reaction so that the charge current vs. potential characteristic curve is N2, and a positive electrode plate where the charge current vs. potential curve is P1.
  • the charging current that flows when a charging voltage of 14 V is applied is I21 (> I11). This shows that the charging current can be greatly increased even if the charging current vs. potential curve of the positive electrode plate remains P1 (without particularly improving the performance of the positive electrode plate). That is, if the charge acceptability of the negative electrode active material is improved so that the charge current vs. potential characteristic curve is N2, the charge acceptability of the lead acid battery as a whole can be greatly increased without particularly improving the charge acceptability of the positive electrode plate. Can be improved.
  • a lead-acid battery is assembled by combining a positive electrode plate having a reduced reaction overvoltage so that the charge current vs. potential curve is P2, and a negative electrode plate having a charge current vs. potential curve of N1, a charge voltage of 14V is obtained.
  • the charging current that flows when applied is I12 (> I11), and the charge acceptance is improved as compared with the case where the positive electrode plate having a charging current vs. potential curve of P1 and the negative electrode plate having a charging current vs. potential curve of N1 is used. Can do. However, the charge acceptability cannot be improved as much as the combination of the positive electrode plate having the charge current vs. potential curve P1 and the negative electrode plate having the charge current vs. potential curve N2.
  • the negative voltage was reduced so that the charge current vs. potential curve would be N2 (improves charge acceptance), and the overvoltage was lowered so that the charge current vs. potential curve would be P2 (charge acceptance).
  • the charging current that flows when a 14V charging voltage is applied can be increased to I22 (> I11), and the lead-acid battery as a whole is accepted for charging.
  • the property can be greatly improved.
  • the positive electrode plate is used in combination with the negative electrode plate having improved charge acceptability, thereby charging the lead acid battery as a whole. Attention was paid to the fact that the acceptability can be significantly improved over conventional lead-acid batteries that have only improved the charge acceptability of the negative electrode plate.
  • the active material specific surface area of the positive electrode active material is measured by a gas adsorption method.
  • a gas adsorption method an inert gas whose molecular size is known is adsorbed on the surface of a measurement sample, and the surface area is obtained from the amount of adsorption and the area occupied by the inert gas.
  • Nitrogen gas can be used as the inert gas. Specifically, it is measured based on the following BET equation.
  • Equation (1) is well established when P / Po is in the range of 0.05 to 0.35.
  • the equation (1) is transformed (the numerator denominator on the left side is divided by P) to obtain the equation (2).
  • V adsorption amount
  • P / Po relative pressure
  • Expression (4) and Expression (5) are modified, Expression (6) and Expression (7) are obtained, respectively, and Expression (8) for obtaining the monomolecular layer adsorption amount Vm is obtained. That is, when the adsorption amount V at a certain relative pressure P / Po is measured at several points and the slope and intercept of the plot are obtained, the monomolecular layer adsorption amount Vm is obtained.
  • the total surface area Total of the sample is obtained by the equation (9), and the specific surface area S is obtained by the equation (10) from the total surface area Total.
  • the positive electrode active material total surface area per volume unit plate group i.e., the higher the product of the active material specific surface area and the active material weight is reactive species of the discharge reaction of hydrogen ions (H +) and sulfate ions (SO 4 2 - )
  • H + hydrogen ions
  • SO 4 2 - sulfate ions
  • the carbonaceous conductive material added to the negative electrode active material in order to improve the charge acceptability of the negative electrode active material is a carbon-based conductive material, and conventionally known graphite, carbon black, activated carbon And at least one selected from the group of carbonaceous conductive materials composed of carbon fibers and carbon nanotubes.
  • the carbonaceous conductive material is preferably selected from a material group consisting of graphite, carbon black, activated carbon, carbon fiber, and carbon nanotube.
  • the amount of carbonaceous conductive material added is preferably in the range of 0.1 to 3 parts by mass with respect to 100 parts by mass of the negative electrode active material.
  • Lead-acid batteries mounted on micro hybrid vehicles such as ISS vehicles and power generation control vehicles are used in a partially charged state called PSOC.
  • PSOC partially charged state
  • a phenomenon called sulfation in which lead sulfate, which is an insulator generated in the negative electrode active material during discharge, becomes coarse with repeated charging and discharging, is an early phenomenon. To occur. When sulfation occurs, the charge acceptability and discharge performance of the negative electrode active material are significantly reduced.
  • the carbonaceous conductive material added to the negative electrode active material suppresses the coarsening of lead sulfate, maintains the lead sulfate in a fine state, suppresses the decrease in the concentration of lead ions dissolved from the lead sulfate, It acts to maintain a state with high charge acceptability.
  • the charging reaction of the negative electrode active material depends on the concentration of lead ions dissolved from lead sulfate, which is a discharge product, and the charge acceptance increases as the amount of lead ions increases.
  • the carbonaceous conductive material added to the negative electrode active material has a function of finely dispersing lead sulfate generated in the negative electrode active material during discharge. If the charge / discharge cycle is repeated in a state of insufficient charge, lead sulfate, which is a discharge product, is coarsened, and the concentration of lead ions dissolved from lead sulfate decreases, resulting in a decrease in charge acceptability.
  • carbonaceous conductive material If carbonaceous conductive material is added, it is possible to keep lead sulfate in a fine state by suppressing the coarsening of lead sulfate, and to maintain a high concentration of lead ions dissolved from lead sulfate.
  • the charge acceptability of the negative electrode can be maintained in a high state over a long period.
  • an organic compound that suppresses at least coarsening of the negative electrode active material due to charge / discharge is added to the negative electrode active material.
  • a bisphenol / aminobenzenesulfonic acid / formaldehyde condensate for example, a bisphenol / sodium aminobenzenesulfonate / formaldehyde condensate represented by the chemical structural formula 1 is used.
  • this does not preclude the use of other compounds having the same action, such as sodium lignin sulfonate having a partial structure shown in chemical structural formula 2.
  • a formaldehyde condensate of bisphenols and sulfites represented by chemical structural formulas 3, 5, and 6 or a formaldehyde condensate of bisphenols and amino acid salts represented by chemical structural formula 4 can be used in the same manner.
  • the carbonaceous conductive material and the organic compound that suppresses the coarsening of the negative electrode active material are added to the negative electrode active material to improve the performance of the negative electrode plate, and this negative electrode plate can be combined with the positive electrode plate described above.
  • this negative electrode plate can be combined with the positive electrode plate described above.
  • a compound selected from a cationic flocculant, a cationic surfactant, and phosphoric acid to the electrolyte, the entire battery can be charged. The acceptability can be further improved.
  • the cationic flocculant is organic, allylamine amide sulfate polymer, allylamine polymer, allylamine dimethylallylamine copolymer, partially uread polyallylamine, polyvinylamidine, etc. can be used to obtain the same effect. it can. Moreover, if it is an inorganic type, an equivalent effect can be acquired using a sulfate band, lime, etc.
  • the cationic surfactant tetrapropylammonium promide, tetrapropylammonium salt, alkyltrimethylammonium salt, dialkyldimethylammonium salt, alkylbenzyldimethylammonium salt and the like can be used to obtain the same effect.
  • an unformed positive electrode plate was prepared.
  • a mixture of lead oxide, red lead and cut fiber (polyethylene terephthalate short fiber, the same applies hereinafter) is kneaded with water, and then kneaded with dilute sulfuric acid added little by little to produce a positive electrode active material paste. did.
  • This active material paste is filled into an expanded current collector produced by subjecting a rolled sheet made of a lead alloy to an expanding process, and aged for 24 hours in an atmosphere of 40 ° C. and 95% humidity, and then dried to leave the paste.
  • a chemical positive plate was prepared.
  • an unformed negative electrode plate was produced.
  • Water was added to the mixture and kneaded, followed by kneading while adding dilute sulfuric acid little by little to prepare an active material paste for negative electrode.
  • This active material paste is filled into an expanded current collector produced by subjecting a rolled sheet made of a lead alloy to an expanding process, and aged for 24 hours in an atmosphere of 40 ° C. and 95% humidity, and then dried to leave the paste.
  • a chemical negative electrode plate was prepared.
  • the negative electrode plate, the positive electrode plate, and a commonly used polyethylene separator were combined to assemble a B19 size lead-acid battery defined in JIS D5301.
  • the battery was assembled by alternately stacking positive and negative electrode plates via separators, and the total surface area of the positive electrode plate per unit electrode plate group volume was 1.9 cm 2 / cm 3 (three positive electrode plates and three negative electrode plates).
  • To 4.5 cm 2 / cm 3 (7 positive electrode plates, 7 negative electrode plates), and the ears of the electrode plates of the same polarity using a cast-on-strap (COS) method Were welded to produce an electrode plate group.
  • the electrode group volume of this lead storage battery was 350 [cm 3 ].
  • the positive electrode plate and the negative electrode plate having the same size were used to form the electrode plate group. Therefore, the area of one side of the negative electrode current collector excluding the ear and the leg (width 10.1 [ cm] and a height of 11.1 [cm]) multiplied by the thickness dimension of the electrode plate group accommodated in the cell chamber (measured in the electrode stacking direction) 3.12 [cm]. By performing the calculation, the electrode plate group volume was determined.
  • the electrolyte is A: Allylamine amide sulfate polymer (organic cationic flocculant) B: Sulfuric acid band (inorganic cationic flocculant) C: Tetrapropylammonium promide (cationic surfactant) D: As shown in Table 1, an additive selected from phosphoric acid was added to dilute sulfuric acid having a specific gravity of 1.24. Electrolyte type E is additive-free. For any additive, the vicinity of the amount added in this example is optimal. If the amount added is too large, it leads to a decrease in capacity and a decrease in charge acceptability. Therefore, the amount added up to about five times that in this embodiment is a practical upper limit range. On the other hand, if the addition amount of the additive is too small, a sufficient effect cannot be obtained. Therefore, the addition amount up to about 1/5 of this example is a practical lower limit range.
  • the characteristics and amount of the active material of the positive electrode active material vary depending on the temperature at the time of chemical conversion, the current density, the specific gravity of the electrolyte, and the amount of lead sulfate contained in the active material paste.
  • the specific surface area of the positive electrode active material can be decreased by increasing the chemical conversion temperature, and can be increased by increasing the specific gravity of the electrolyte. Therefore, in this example, the amount of active material is adjusted by the amount of lead sulfate contained in the active material paste, and at the same time, the temperature at the time of battery cell formation is adjusted, and various types of lead having different total positive electrode active material surface areas per unit electrode plate group volume.
  • a storage battery was prepared.
  • the adjustment of the total surface area of the positive electrode active material per unit electrode plate group volume is not limited to the amount of lead sulfate contained in the active material paste and the conversion conditions, for example, lead powder starting material, lead powder kneading conditions, electrode plate aging This can be realized by appropriately selecting conditions and the like. Even if the means for adjusting the total surface area of the positive electrode active material per unit electrode plate group volume is different, as a result, if the total surface area of the positive electrode active material per unit electrode plate group volume is within the scope of the present invention, An effect can be obtained.
  • the total surface area of the positive electrode active material per unit electrode plate group volume was determined by preparing a battery for measuring the active material characteristics, disassembling and taking out the positive electrode plate, and then calculating the specific surface area shown in equations (1) to (10) above. The product of the measured value and the weight of the active material was obtained, and the product was measured by a method of dividing this by the electrode plate group volume.
  • the charge acceptability was measured as follows. Adjust the SOC (charged state) to 90% of the fully charged state in a constant temperature bath at 25 ° C and apply 14V charging voltage (however, the current before reaching 14V is limited to 100A). ) The charging current value at 5 seconds from the start (5th charging current value) was measured. The higher the 5th second charging current value, the higher the initial charge acceptability.
  • Cycle characteristics were measured as follows. Adjust the ambient temperature so that the battery temperature is 25 ° C, perform constant current discharge for 45A-59 seconds and 300A-1 seconds, then charge constant current / constant voltage for 100A-14V-60 seconds as one cycle.
  • a life test was conducted. This test is a cycle test that simulates the use of lead-acid batteries in ISS cars. In this life test, since the amount of charge is small relative to the amount of discharge, the battery gradually becomes insufficient when charging is not performed completely. As a result, the voltage at the first second when the discharge current is 300 A for 1 second is obtained. Decrease gradually.
  • Tables 2 to 5 show the measurement results of the charging current at the 5th second and the measurement results of the cycle characteristics, which were performed on the various lead storage batteries produced.
  • the total surface area of the positive electrode active material per unit electrode plate group volume was 3.0 m 2 / cm 3
  • the case of the electrolyte type E was defined as Conventional Example 1.
  • the total surface area of the positive electrode active material per unit electrode plate group volume is 3.0 m 2 / cm 3
  • the case of the electrolyte type A is Reference Example 1
  • the volume per unit electrode plate group volume The total surface area of the positive electrode active material was 16.0 m 2 / cm 3, and the case of electrolyte type A was designated as Reference Example 2.
  • the total surface area of the positive electrode active material per unit electrode plate group volume is 3.0
  • the case of the electrolyte type B is referred to as Reference Example 3
  • the total surface area of the positive electrode active material per unit electrode plate group volume is 16.0 m 2 / cm. 3 and the case of electrolyte type B was designated as Reference Example 4.
  • the case of the electrolyte type C is referred to as Reference Example 5 and Reference Example 6
  • the case of the electrolyte type D is referred to as Reference Example 7 and Reference Example 8
  • the case of the electrolyte type AD is referred to as Reference Example 9 and Reference Example 10.
  • Reference Example 11 and Reference Example 12 were used for the electrolyte type BD
  • Reference Example 13 and Reference Example 14 were used for the electrolyte type CD.
  • the charging current and cycle characteristics at the 5th second shown in each table are evaluated with the conventional example 1 in Table 2 being 100 (the initial value is 100 for the 5th charging current).
  • the charging current (charge acceptance) at the fifth second is significantly greater than when the electrolyte additive A, B, C, D is used alone.
  • cycle characteristics life performance under PSOC.
  • the cationic flocculant and the cationic surfactant have the effect of improving the charge acceptability by inhibiting the adsorption of lead ions to the organic compound that suppresses the coarsening of the negative electrode active material.
  • Phosphoric acid has a different effect of improving charge acceptability by the action of refining lead sulfate produced at the positive electrode, so combining them both improved charge acceptability and improved cycle characteristics. Conceivable.
  • the charging current at 5 seconds continues to increase as the total surface area of the positive electrode active material per unit electrode plate group volume increases, but the cycle characteristic reaches a peak in the middle and starts to decrease.
  • the positive electrode active material total surface area per unit plate group volume when it comes to 16.0 m 2 / cm 3 they tend to cycle characteristics than that of 15.6 m 2 / cm 3 is rapidly lowered. This is because a phenomenon called mudification occurred in which the structure of the active material collapses due to repeated charge and discharge. For this reason, the total surface area of the positive electrode active material per unit electrode plate group volume is set in the range of 3.5 to 15.6 m 2 / cm 3 .
  • Tables 2 to 3 above are the cases where the compound represented by the chemical structural formula 1 is used as the organic compound for suppressing the coarsening of the negative electrode active material, but the compounds represented by the chemical structural formula 2 to the chemical structural formula 6 are used. The same tendency is shown when using.
  • the total surface area of the positive electrode plate per unit electrode plate group volume is 4.5 cm 2 / cm 3. It is usually difficult to make. Conversely, when the total surface area of the positive electrode plate per unit electrode plate group volume is set to 1.9 cm 2 / cm 3 , the electrode plate becomes thicker, and the rated capacity is restricted due to the limitation that the electrode plate is housed in a fixed volume battery case. Is usually difficult to satisfy. Therefore, the total surface area of the positive electrode plate per unit electrode plate group volume is most preferably in the range of 2.6 to 3.9 cm 2 / cm 3 . This also shows the same tendency when the electrolyte type is other than A.
  • the electrolyte includes a cationic flocculant, a cationic surfactant, By adding a compound selected from phosphoric acid, it was possible to further improve the charge acceptability of the battery as a whole compared to a conventional lead acid battery.
  • the charge acceptance was improved only by improving the characteristics of the negative electrode plate, but in the present invention, by increasing the value of the total surface area of the positive electrode active material per unit electrode plate group volume,
  • the overall battery charge acceptance is improved. It was possible to improve further than this, enabling further high rate discharge under PSOC.
  • the present invention it is possible to improve the charge acceptability of the lead storage battery, so that it is possible to prevent repeated charge and discharge in a state of insufficient charge, so that discharge is generated by repeated charge and discharge in a state of insufficient charge. It is possible to prevent the lead sulfate, which is a product, from becoming coarse, and to improve the life performance of the lead storage battery under PSOC. This is a major advance for lead-acid batteries used under PSOC and greatly contributes to improving the performance of lead-acid batteries mounted on micro hybrid vehicles and the like.
  • the present invention makes it possible to provide a liquid lead-acid battery with improved charge acceptability and lifetime performance under PSOC, and is a micro hybrid vehicle such as an ISS vehicle or a power generation control vehicle. It contributes to the spread of such. Therefore, the present invention is useful for solving the global problem of reducing carbon dioxide emission by improving the fuel efficiency of automobiles and suppressing global warming, and has great industrial applicability. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

 充電が間欠的に短時間ずつ行われ、部分充電状態で負荷への高率放電が行われる液式の鉛蓄電池において、充電受入れ性及びPSOC下での寿命特性を従来よりも向上させた鉛蓄電池を提供する。正極板として、単位極板群体積当たりの正極活物質総表面積が3.5~15.6m/cmの範囲に設定されたものを使用する。負極板としては、負極活物質に炭素質導電材と、充放電に伴う負極活物質の粗大化を抑制する有機化合物とが前記負極活物質に添加したものを用いる。加えて、電解液には陽イオン系凝集剤、陽イオン系界面活性剤、燐酸から選ばれた化合物を添加して充電受け入れ性及び寿命性能を向上させる。

Description

鉛蓄電池
 本発明は、電槽内に極板群・セパレータから遊離した電解液を有する液式鉛蓄電池に関するものである。
 鉛蓄電池は、安価で信頼性が高いという特徴を有するため、自動車始動用の動力源、ゴルフカート等の電動車両の動力源、更には無停電電源装置等の産業機器の電源として広く使用されている。
 近年、自動車においては、大気汚染防止、地球温暖化防止のため、様々な燃費向上対策が検討されている。燃費向上対策を施した自動車としては、エンジンの動作時間を少なくするアイドリングストップ車(以下、ISS車)や、エンジンの回転を無駄なく動力に使用する発電制御車といったマイクロハイブリッド車が検討されている。
  ISS車では、エンジンの始動回数が多くなり、その都度、鉛蓄電池の大電流放電が繰り返される。またISS車や発電制御車では、オルタネータによる発電量が少なくなり、鉛蓄電池の充電が間欠的に行われるので充電が不十分となることが多い。そのため、この種の用途に用いられる鉛蓄電池には、短時間の間にできるだけ多くの充電を行うことができる性能、即ち、充電受入れ性を向上させることが要求される。
 上記のような使われ方をする鉛蓄電池は、PSOC(Partial State Of Charge)と呼ばれる部分充電状態で使用されることになる。鉛蓄電池は、PSOC下で使われると、完全充電状態で使用される場合よりも、寿命が短くなる傾向がある。PSOC下で使われると寿命が短くなる理由は、充電が不足している状態で充放電を繰り返すと、放電の際に負極板に生成される硫酸鉛が粗大化していき、硫酸鉛が充電生成物である金属鉛に戻り難くなることにあると考えられている。従って、PSOC下で使用される鉛蓄電池においては、その寿命を延ばすためにも、充電受入れ性を向上させて(短時間でできるだけ多くの充電を行うことを可能にして)、充電が過度に不足している状態で充放電が繰り返されるのを防ぎ、充放電の繰り返しにより硫酸鉛が粗大化するのを抑制する必要がある。
 このように、最近の自動車用鉛蓄電池においては、短時間の充電で負荷への高率放電を行うことを可能にすると共に、PSOC下で使用された場合の電池の寿命性能を向上させるために、充電受入れ性を向上させることが極めて重要な課題となっている。
 鉛蓄電池においては、もともと正極活物質の充電受入れ性は高いが、負極活物質の充電受入れ性が劣るため、鉛蓄電池の充電受入れ性を向上させるためには、負極活物質の充電受入れ性を向上させることが必須である。そのため、従来は、専ら負極活物質の充電受入れ性を向上させるための努力がされてきた。特許文献1(特開2003-36882号公報)や特許文献2(特開平07-201331号公報)には、負極活物質に添加する炭素質導電材を増量することにより充電受入れ性を向上させ、PSOC下での鉛蓄電池の寿命を向上させることが提案されている。
 しかし、これらの提案は、電解液をリテーナと呼ばれるセパレータに含浸させ、電槽中に遊離の電解液を存在させないようにした密閉型の鉛蓄電池を対象としたものであり、極板群・セパレータから遊離した電解液を電槽内に有する液式の鉛蓄電池を対象としたものではない。液式の鉛蓄電池においても、負極活物質に添加する炭素質導電材を増量することが考えられるが、液式の鉛蓄電池において負極活物質に添加する炭素質導電材の量をむやみに増加させると、負極活物質中の炭素質導電材が電解液に流出して電解液に濁りを生じさせ、最悪の場合、内部短絡を引き起こしてしまう。従って、液式の鉛蓄電池では、負極活物質に添加する炭素質導電材の量を制限せざるを得ず、負極活物質に炭素質導電材を添加することにより鉛蓄電池全体としての充電受入性を向上させることには限界がある。
 密閉型の鉛蓄電池は、電解液量が制限されているため電池容量が低いだけでなく、使用温度が高い場合に熱逸走と呼ばれる現象が発生するため、エンジンルームのような高温環境下での使用は避けざるを得ない。そのため、密閉型の鉛蓄電池を自動車に用いる場合、ラゲッジルームなどに電池を搭載する必要があるが、ラゲッジルームなどに電池を搭載すると、ワイヤーハーネスの増加を招き、好ましくない。自動車用の鉛蓄電池としては、このような制約がない液式の鉛蓄電池を用いるのが好ましい。従って、液式の鉛蓄電池の充電受入れ性を向上させることが急務になっている。
 特許文献3(特開2006-196191号公報)には、充電受入れ性を向上させるために炭素質導電材を添加することが開示されている。また、特許文献4(特開2003-051306)には、負極活物質に導電性カーボンと活性炭を添加して、PSOC下での放電特性を改善することが開示されている。
 更に、特許文献5(特開平10-40907号公報)には、正極活物質の比表面積を大きくして、放電容量を大きくすることが開示されている。これは、リグニンを電池化成時の電解液中に添加することにより、正極活物質を微細化し、比表面積を大きくするものである。特許文献5に開示されているのは電池の放電容量を大きくするための発明であり、アイドリングストップ車や発電制御車用の鉛蓄電池に必要な充電受け入れ性やPSOC下でのサイクル特性の向上においては、大きな効果は得られない。
 また、電解液添加剤に関して、以下の技術が公知となっている。
特許文献6(特開昭62-29073号公報)には、電解液中に有機及び/又は無機凝集剤を添加することが開示されている。これは、PbO微粒子が電解液中に浮遊することが主因である内部短絡の発生を防止し電池寿命の改善を図ることを目的としている。
  特許文献7(特開平02-236967号公報)には、電解液中に界面活性剤を添加することが開示されている。これは、過放電放置後の回復充電性を改善することを目的としている。
  特許文献8(特開2011-165378号公報)には、電解液中に燐酸を添加することが開示されている。これは、正極板の活物質利用率を高くし、かつ、電池の長寿命化を図ることを目的としている。
特開2003-36882号公報 特開平07-201331号公報 特開2006-196191号公報 特開2003-051306号公報 特開平10-40907号公報 特開昭62-29073号公報 特開平02-236967号公報 特開2011-165378号公報
 上記のように、液式の鉛蓄電池の充電受入れ性の向上及びPSOC下での寿命性能の向上を図るために、従来は専ら負極活物質の性能を改善することに着目した提案がされていた。しかしながら、負極活物質の充電受入れ性を向上させ、寿命性能を改善しただけでは、鉛蓄電池の充電受入れ性及びPSOC下で使用した際の寿命性能を向上させることに限界があり、PSOC下で使用される鉛蓄電池の性能の更なる向上を図ることは困難である。
 本発明の目的は、充電が間欠的に短時間ずつ行われ、部分充電状態で負荷への高率放電が行われる液式の鉛蓄電池において、従来の鉛蓄電池よりも更に充電受入性及びPSOC下での使用における寿命性能を向上させることにある。
 本発明は、負極活物質を負極集電体に充填してなる負極板と、正極活物質を正極集電体に充填してなる正極板とをセパレータを介して積層した極板群を、電解液とともに電槽内に収容した構成を有して、充電が間欠的に行われ、部分充電状態で負荷への高率放電が行われる液式鉛蓄電池を対象とする。
 本発明においては、少なくとも、炭素質導電材と、充放電の繰り返しに伴って負極活物質が粗大化するのを抑制する作用をする有機化合物(以下「負極活物質の粗大化を抑制する有機化合物」という。)とが負極活物質に添加される。
  そして、正極板は、単位極板群体積[cm]当たりの正極活物質総表面積[m]を3.5ないし15.6[m/cm]の範囲とするように構成される。加えて、電解液には陽イオン系凝集剤、陽イオン系界面活性剤、燐酸から選ばれた化合物が添加される。
 ここで、「極板群体積」とは、鉛蓄電池の最小単位である1セル内に収容される極板群の各部のうち、発電に関与する部分を外面の凹凸を無視して全体的に見た場合の見かけの体積である。本発明においては、極板群の各部の内、正極集電体及び負極集電体のそれぞれの耳部と脚部とを除いた部分(脚部が設けられていない場合には耳部のみを除いた部分、以下同じ。)を、極板群の発電に関与する部分とする。本明細書では、極板群体積の単位として[cm]を用いる。
 極板群を構成する正極板及び負極板の大きさが同じである場合には、負極集電体の耳部と脚部とを除いた部分の片面の面積に、セル室内に収容された状態での極板群の厚み寸法(極板の積層方向に測った寸法)を乗じる演算を行うか、または正極集電体の耳部と脚部とを除いた部分の、片面の面積に、セル室内に収容された状態での極板群の厚み寸法を乗じる演算を行うことにより、極板群体積を求めるものとする。
  正極板及び負極板の大きさが異なる場合には、大きい方の極板の集電体の耳部と脚部とを除いた部分の片面の面積に、セル室内に収容された状態での極板群の奥行き寸法を乗じる演算を行うことにより、上記極板群体積を求めるものとする。
 また「正極活物質総表面積」とは、鉛蓄電池の最小単位である1セル内に収容される極板群を構成しているすべての正極板の正極活物質の表面積の総計である。k枚目の正極活物質の表面積Skは、その正極板に充填されている活物質の比表面積と活物質質量との積で表わすことができる。一つの極板群を構成する正極板の枚数がnである場合、正極活物質総表面積をSpとすると、Sp=S1+S2+…+Snで表わすことができる。本発明では、上記「正極活物質総表面積」を前述のように定義された「極板群体積」で除したものを「単位極板群体積当たりの正極活物質総表面積」としている。本明細書では、「単位極板群体積当たりの正極活物質総表面積」の数値が大きくなりすぎるのを避けるために、正極活物質総表面積の単位として[m]を用い、活物質質量の単位として[g]を用いる。
従って、比表面積の単位は[m/g]となる。なお、本発明においては、活物質の比表面積を後述する測定方法により測定するものとする。
 本発明の好ましい態様では、少なくとも、炭素質導電材と、負極活物質の粗大化を抑制する有機化合物とが負極活物質に添加された負極板を用い、単位極板群体積[cm]当たりの正極活物質総表面積[m]を3.5ないし15.6[m/cm]の範囲に設定し、電解液には陽イオン系凝集剤、陽イオン系界面活性剤、燐酸から選ばれた化合物を添加するとともに、単位極板群体積[cm]当たりの正極板総表面積[cm]を2.6ないし3.9[cm/cm]の範囲とするように正極板が構…成される。本明細書では、前述のように、正極活物質総表面積の単位として[m]を用いるが、正極板総表面積の単位としては[cm]を用いる。
 ここで、「正極板総表面積」とは、鉛蓄電池の最小単位である1セル内に収容される極板群を構成する正極板の発電に関与する部分の表面積の合計である。本発明においては、各正極板の集電体の耳部及び脚部を除いた部分の表裏両面の表面積の合計(集電体の枠部が正方形または長方形である場合には、集電体の枠部の縦寸法と横寸法との積の2倍)[cm]に、極板群を構成する正極板の枚数を乗じることにより、「正極板総表面積」を求めるものとし、上記「正極板総表面積」を「極板群体積」で除したものを「単位極板群体積当たりの正極板総表面積」とする。
 本発明者は、単位極板群体積当たりの正極活物質総表面積を適切な範囲に設定すると、正極活物質の充電反応における反応過電圧を低下させて充電反応の進行を容易にし、正極活物質の充電受入性を向上させることができること、及びこのようにして充電受け入れ性を向上させた正極板を、少なくとも炭素質導電材と、負極活物質の粗大化を抑制する有機化合物とが負極活物質に添加されることにより充電受入性が改善され、寿命性能が改善された負極板(以下「性能が改善された負極板」という。)と共に用いると、鉛蓄電池全体の充電受入性を従来の鉛蓄電池よりも更に向上させ、PSOC下で使用された場合の寿命性能を更に改善することができることを見出した。
 また、性能が改善された負極板を用い、単位極板群体積当たりの正極活物質総表面積を適切な範囲に設定した上で、更に単位極板群体積当たりの正極板総表面積を適切な範囲に設定することにより、鉛蓄電池全体の充電受入性及びPSOC下で使用された場合の寿命性能を更に改善することができることを見出した。
 本発明では、正極活物質の充電反応における反応過電圧を低下させて充電反応の進行を容易にする効果を得るために必要とされる正極板の構成をより的確に特定するためのパラメータとして、「単位極板群体積当たりの正極活物質総表面積」と、「単位極板群体積当たりの正極板総表面積」とを新たに導入した。
 正極活物質の充電反応における反応過電圧を低下させて充電反応の進行を容易にするという所期の効果を得るために、例えば、正極活物質の比表面積の範囲を広い範囲に特定することが考えられるが、正極活物質の比表面積を特定しただけでは、上記の効果を得るために必要な正極板の構成を一義的に限定することができない。すなわち、比表面積が狭い活物質を使用しても、活物質量を多くすることで正極活物質の充電反応における反応過電圧を低下させて充電反応の進行を容易にする効果を得ることができるため、比表面積の範囲を特定しただけでは、上記の効果を得るために必要な正極板の構成を的確に特定したということができない。
 また、極板の枚数を多くし、正極板総表面積を大きくすることでも同様の効果を得ることができる。しかしながら、実際の鉛蓄電池では、JIS D 5301に規定されているように、一定の電池体積の中に極板群を収納して定格容量を満足するという制限が加わるため、活物質量や表面積(極板枚数)を自由に設定することはできない。本発明では、これらの制限を加味して、所期の効果を得るために必要な正極板の構成を厳密に規定するために、比表面積の代わりに比表面積と活物質量の積である「正極活物質総表面積」を用い、更に極板枚数の代わりに正極板の発電に関与する部分の表面積の総計である「正極板総表面積」を用いて、この正極板総表面積を極板群体積で除したものを、単位極板群体積当たりの正極板総表面積として、正極板の構成を特定するためのパラメータとして用いている。
 単位極板群体積当たりの正極活物質総表面積を3.5m/cm未満とした場合には、鉛蓄電池全体の充電受入性を向上させる効果を顕著に得ることはできないが、単位極板群体積当たりの正極活物質総表面積を3.5m/cm以上とすれば、鉛蓄電池全体の充電受入性を向上させる効果を顕著に得ることができる。鉛蓄電池全体の充電受入性を向上させることができれば、PSOC(部分充電状態)下での負荷への高率放電を支障なく行わせることができ、また充電不足の状態で充放電が繰り返されることにより放電生成物である硫酸鉛が粗大化するのを抑制することができるため、PSOC下で使用された場合の電池の寿命性能を向上させることができる。
 単位極板群体積当たりの正極活物質総表面積の値を過度に大きくすると、正極活物質が微細になり過ぎて、充放電の繰り返しにより活物質の構造が崩壊し、所謂泥状化と呼ばれる現象が起るため、正極板の寿命が短くなり、実用に耐える鉛蓄電池を得ることができなくなる。従って、単位極板群体積当たりの正極活物質総表面積は、むやみに高くすればよいと言うわけではない。実験によれば、単位極板群体積当たりの正極活物質総表面積を35m/cm以上とすると電池の充電受け入れ性及び寿命性能を改善することができるが、単位極板群体積当たりの正極活物質総表面積の値が15.6m/cmを超えると、正極活物質が泥状化する現象が顕著に起ることが明らかになった。従って、単位極板群体積当たりの正極活物質総表面積の値は、3.5m/cm以上15.6m/cm以下の範囲に設定する。
 即ち、負極活物質に、少なくとも、炭素質導電材と、充放電に伴う負極活物質の粗大化を抑制する有機化合物とが添加されることにより性能が改善された負極板と、放電反応に関する単位極板群体積当たりの正極活物質総表面積が3.5m/cm以上15.6m/cm以下の範囲に設定された正極板とを用いて鉛蓄電池を組み立てると、専ら負極の性能を向上させることにより充電受入性を向上させていた従来の鉛蓄電池よりも更に充電受入性を向上させて、PSOC下での負荷への高率放電を可能にするとともに、充電が不足する状態で充放電が繰り返されることにより放電生成物である硫酸鉛が粗大化するのを抑制して、PSOC下で使用される場合の寿命性能を向上させた鉛蓄電池を得ることができる。
 上記に加え、電解液に陽イオン系凝集剤、陽イオン系界面活性剤、燐酸から選ばれた化合物が添加されているので、以下の効果を得ることができる。陽イオン系凝集剤又は陽イオン系界面活性剤を添加した場合は、これらが、充放電に伴う負極活物質の粗大化を抑制する有機化合物(これはマイナスに帯電する。)と電気的に吸着し、充放電に伴う負極活物質の粗大化を抑制する有機化合物が鉛イオンに吸着する量を少なくする作用を有する。
このため、負極の充電反応を阻害する副作用を少なくすることができる。また、燐酸を添加した場合は、正極の硫酸鉛を微細化させる作用があり、正極の充電受け入れ性を高くすることができる。
 本発明は、単位極板群体積当たりの正極活物質総表面積を適正な範囲に設定した正極板を、性能(充電受入性及び寿命性能)が改善された負極板と組み合わせて用い、加えて、電解液に陽イオン系凝集剤、陽イオン系界面活性剤、燐酸から選ばれた化合物を添加することにより、鉛蓄電池の充電受け入れ性及びPSOC下使用時の寿命性能を向上させる効果が顕著に得られること、更には、単位極板群体積当たりの正極板総表面積を適正な範囲に設定した正極板を用いることにより、鉛蓄電池の充電受け入れ性及びPSOC下で使用時の寿命性能を更に向上させることができることを明らかにしたものである。
 負極板としては、充電受入性及び寿命性能ができるだけ高いものを用いることが好ましい。本発明においては、負極板の充電受入性を改善するために負極活物質に添加する炭素質導電材の量及び充放電による負極活物質の粗大化を抑制するために負極活物質に添加する有機化合物の量及び電解液に添加する陽イオン系凝集剤、陽イオン系界面活性剤の量を特に規定しないが、本発明を実施するに当って、負極板の性能を可能な限り向上させるように、上記添加物の添加量を設定することは当然である。また、正極板の性能を可能な限り向上させるように電解液に添加する燐酸の添加量を設定することも当然である。
 本発明によれば、単位極板群体積当たりの正極活物質総表面積を3.5m/cm以上15.6m/cm以下として充電受入性を向上させた正極板と、負極活物質に炭素質導電材と負極活物質の粗大化を抑制する有機化合物とを添加して充電受入性及び寿命性能を改善した負極板とを組み合わせて用い、加えて、電解液に陽イオン系凝集剤、陽イオン系界面活性剤、燐酸から選ばれた化合物を添加したことにより、鉛蓄電池全体としての充電受入性を、専ら負極板を改善することにより充電受入性を向上させていた従来の鉛蓄電池よりも向上させることができる。従って、PSOC下での負荷への高率放電を可能にすることができるだけでなく、充電不足の状態で充放電が繰り返されることにより硫酸鉛が粗大化するのを抑制して、PSOC下での使用時の寿命性能を向上させることができる。
充電電圧を14V(一定)として、開回路電圧が12Vの自動車用鉛蓄電池を充電する場合の充電電流と負極板及び正極板の電位との関係を示した線図である。
 本発明に係わる鉛蓄電池は、充電が間欠的に行われ、PSOC下で負荷への高率放電が行われる液式鉛蓄電池で、ISS車などのマイクロハイブリッド車等で用いるのに好適なものである。本発明に係わる鉛蓄電池は、負極活物質を負極集電体に充填してなる負極板と、正極活物質を正極集電体に充填してなる正極板とをセパレータを介して積層して構成した極板群を、電解液とともに電槽内に収容した構成を有する。これらの基本構成は、従来の鉛蓄電池と同様である。
 これまで、鉛蓄電池においては、充電受け入れ性を向上させるために、専ら負極の充電受け入れ性を向上させる努力がなされていたが、本発明では、負極だけでなく、正極の充電受け入れ性をも向上させ、充電受け入れ性が改善された負極板と、充電受け入れ性が改善された正極板とを組み合わせて用いることにより、加えて、電解液に陽イオン系凝集剤、陽イオン系界面活性剤、燐酸から選ばれた化合物を添加することにより、鉛蓄電池の充電受け入れ性の更なる向上を図り、充電不足の状態で充放電が繰り返されることにより硫酸鉛が粗大化するのを抑制して、寿命性能の更なる向上を図る。本発明の実施例を説明するのに先立ち、本発明の基本的な技術思想について説明する。
 本発明者は、充電時の正極板の電位の変化と充電電流との関係及び負極板の電位の変化と充電電流との関係を分析した結果、反応過電圧を低下させて充電受入性を向上させた負極板を用いる場合に、正極板の充電受入性を向上させると、鉛蓄電池全体としての充電受入性を、負極板の充電受入性のみを向上させていた従来の鉛蓄電池よりも更に向上させ得ることを見いだした。充電受け入れ性を向上させることができれば、PSOC下での負荷への高率放電を支障なく行わせることができるだけでなく、充電不足の状態で充放電が繰り返されることにより硫酸鉛が粗大化するのを抑制して、寿命性能を向上させことができる。
 図1は、充電電圧を14V(一定)として、開回路電圧が12Vの自動車用鉛蓄電池を充電する場合の充電電流と負極板及び正極板の電位との関係を示したものである。図1において、縦軸は充電電流を示し、横軸は標準水素電極を基準にして測定された正極板及び負極板の電位(vs.SHE)を示している。図中N1及びN2は負極板の充電電流対電位曲線を示し、P1及びP2は、正極板の充電電流対電位曲線を示している。なお本来であれば、負極板の充電電流対電位曲線は、直交座標系の第3象限に図示されるべきであるが、図1においては、説明の便宜上、負極板の充電電流対電位曲線を、電位及び電流の極性を反転させて正極板の充電電流対電位曲線と共に第1象限に図示している。
 図1において、N1はN2に比べて負極板で行われる充電反応の過電圧が高い場合の充電電流対電位曲線を示している。充電反応の過電圧が高い場合、負極板の充電電流対電位曲線は、図示のN1のように大きく外側に膨らんだ形になるが、過電圧が低い場合には、N2のように、N1よりも起立した曲線になる。
 またP1はP2に比べて正極板で行われる充電反応の過電圧が高い場合の充電電流対電位曲線を示している。過電圧が高い場合の充電電流対電位曲線P1は、反応過電圧が低い場合の充電電流対電位曲線P2よりも外側に膨らんだ形になり、反応過電圧が低い場合には、P1よりも起立した曲線になる。
 ここで充電反応の過電圧ηは、開回路の状態で充電電圧を印加した際に各電極で生じる電位の変化分であり、過電圧ηは、充電電圧を印加した際の各電極の電位と平衡電位(開回路電圧)との差の絶対値、即ち、η=|充電電圧を印加した際の電極電位-平衡電位|で表わされる。
 負極活物質の充電受け入れ性を向上させる工夫が特にされていない負極板の充電電流対電位曲線は、図1のN1のように外側に膨らんだ形をとるが、負極活物質に炭素質導電材及び充放電に伴って生じる負極活物質の粗大化を抑制する有機化合物が適量添加されて充電受け入れ性が改善された負極板の充電電流対電位曲線は、N2のように起立した形をとる。
 正極活物質の充電受け入れ性を向上させる工夫が特にされていない正極板の充電電流対電位曲線は、図1のP1のような形をとる。P1は従来の鉛蓄電池で用いられていた正極板の充電電流対電位曲線であり、N1に比べて起立した曲線となっている。このことは、鉛蓄電池においては、もともと負極板の充電受入性が低く、正極板の充電受入性が高いことを意味している。正極活物質の充電反応の過電圧を低下させて正極板の充電受け入れ性を向上させた場合、正極板の充電電流対電位曲線は、図1のP2のようにP1よりも更に起立した形をとる。
 今、充電電流対電位特性曲線がそれぞれN1及びP1である負極板及び正極板を用いて鉛蓄電池を組み立てたとすると、開回路電圧(12V)の状態から14Vの充電電圧を印加したときに流れる充電電流はI11となる。開回路電圧は、正極電位と負極電位との差であり、印加する14Vも両極電位の差である。
 次に充電電流対電位特性曲線がN2となるように充電反応の過電圧を低下させて充電受け入れ性を改善した負極板と、充電電流対電位曲線がP1となる正極板とを組み合わせて鉛蓄電池を構成したとすると、14Vの充電電圧を印加したときに流れる充電電流はI21(>I11)となる。このことから、正極板の充電電流対電位曲線がP1のままであっても(正極板の性能を特に改善しなくても)、充電電流を大きく増大させることができることが分かる。即ち、充電電流対電位特性曲線がN2となるように負極活物質の充電受入性を改善すれば、正極板の充電受入性を特に改善しなくても、鉛蓄電池全体としての充電受入性を大きく向上させることができる。
 次に、充電電流対電位曲線がP2となるように反応過電圧を低下させた正極板を、充電電流対電位曲線がN1である負極板と組み合わせて鉛蓄電池を組み立てたとすると、14Vの充電電圧を印加したときに流れる充電電流はI12(>I11)となり、充電電流対電位曲線がP1の正極板と、充電電流対電位曲線がN1の負極板を用いた場合よりも充電受入性を向上させることができる。しかし、充電電流対電位曲線がP1の正極板と充電電流対電位曲線がN2の負極板とを組み合わせた場合ほどの充電受入性の向上を図ることはできない。
 ところが、充電電流対電位曲線がN2となるように過電圧を低下させた(充電受入性を向上させた)負極板と、充電電流対電位曲線がP2となるように過電圧を低下させた(充電受入性を向上させた)正極板とを組み合わせて鉛蓄電池を組み立てると、14Vの充電電圧を印加した際に流れる充電電流をI22(>I11)まで増大させることができ、鉛蓄電池全体としての充電受入性を、負極板の充電受入性のみを向上させた場合に比べて、大幅に向上させることができる。
 本発明者は、上記のように、正極板の充電受入性を改善することができると、当該正極板を充電受入性が改善された負極板と組み合わせて用いることにより、鉛蓄電池全体としての充電受入性を、負極板の充電受入性のみを向上させていた従来の鉛蓄電池よりも大幅に向上させ得ることに着目した。
 そこで、正極板の充電受入性を向上させるためにとるべき手段を種々検討し、実験を行った結果、単位極板群体積当たりの正極活物質総表面積を増大させれば、充電電流対電位曲線が図1のP2のように起立した曲線となるように、正極板の充電受入性を改善することができることを見出した。そして、単位極板群体積当たりの正極活物質総表面積を3.5m/cm以上の範囲に設定することにより充電受入性を改善した正極板を、炭素質導電材と充放電に伴って生じる負極活物質の粗大化を抑制する作用をする有機化合物とを負極活物質に添加して充電受入性及び寿命性能を改善した負極板と組み合わせて鉛蓄電池を組み立てることにより、加えて、電解液に陽イオン系凝集剤、陽イオン系界面活性剤、燐酸から選ばれた化合物を添加することにより、負極板の充電受入性のみを改善することにより電池全体としての充電受け入れ性を改善していた従来の鉛蓄電池よりも、鉛蓄電池全体としての充電受入性を更に向上させ、PSOC下での使用時の寿命性能を更に改善することができることを見出した。
 本発明においては、正極活物質の活物質比表面積をガス吸着法により測定するものとする。ガス吸着法は、一つの分子の大きさが分かっている不活性ガスを測定試料の表面に吸着させ、その吸着量と不活性ガスの占有面積とから表面積を求める方法であり、比表面積測定の一般的な手法である。不活性ガスとしては、窒素ガスを用いることができる。具体的には、以下のBET式に基づいて測定する。
 式(1)の関係式は、P/Poが0.05~0.35の範囲でよく成立する。式(1)を変形して(左辺の分子分母をPで割る)、式(2)を得る。
  測定に用いる比表面積計では、試料に吸着占有面積のわかったガス分子を吸着させその吸着量(V)と相対圧力(P/Po)の関係を測定する。測定したVとP/Poより、式(2)の左辺とP/Poをプロットする。ここで、勾配をsとし、式(2)より式(3)を導く。
  切片をiとすると、切片i、勾配sは、それぞれ式(4)、式(5)のとおりとなる。
式(4)、式(5)を変形すると、それぞれ式(6)、式(7)となり、単分子層吸着量Vmを求める式(8)が得られる。
  すなわち、ある相対圧力P/Poにおける吸着量Vを数点測定し、プロットの傾きと切片を求めると、単分子層吸着量Vmが求まる。試料の全表面積Stotalは式(9)で求められ、比表面積Sは全表面積Stotalより式(10)で求められる。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000010
 単位極板群体積当たりの正極活物質総表面積すなわち、活物質比表面積と活物質量との積が高いことは、放電反応の反応種である水素イオン(H)や硫酸イオン(SO 2-)の拡散移動が速やかに行われる状態を長く維持して、放電反応を長時間に亘って継続させることができることを意味する。反応種の拡散が長時間に亘って維持されることは、反応種の拡散パスが多く存在していることを意味している。
 一方、充電反応においては、充電反応の進行に伴って生成してくる水素イオンや硫酸イオンの拡散パスが必要になるが、単位極板群体積当たりの正極活物質総表面積を高くしておくと、充電反応を行わせる際に生成してくる水素イオンや硫酸イオンの拡散パスを多く存在させて、生成物を極板の反応表面に蓄積させることなく速やかに拡散させることができ、これにより、充電反応を極板全体に亘って円滑に行わせて、充電反応の進行を容易にし、正極板の充電受入れ性を向上させることができるものと思われる。
 本発明において、負極活物質の充電受け入れ性を改善するために負極活物質に添加する炭素質導電材は、カーボン系の導電材であって、従来から知られている、黒鉛、カーボンブラック、活性炭、炭素繊維及びカーボンナノチューブからなる炭素質導電材群の中から選択された少なくとも1つであればよい。
  炭素質導電材は、好ましくは、黒鉛、カーボンブラック、活性炭、炭素繊維及びカーボンナノチューブからなる材料群の中から選択される。炭素質導電材の添加量は、負極活物質100質量部に対し0.1~3質量部の範囲とするのが好ましい。
 ISS車や発電制御車などのマイクロハイブリッド車両に搭載される鉛蓄電池は、PSOCと呼ばれる部分充電状態で使用される。このような状況下で使用される鉛蓄電池においては、放電の際に負極活物質に生成される絶縁体である硫酸鉛が充放電の繰り返しに伴って粗大化していく、サルフェーションと呼ばれる現象が早期に生じる。サルフェーションが起ると、負極活物質の充電受入れ性及び放電性能が著しく低下する。
  負極活物質に添加された炭素質導電材は、硫酸鉛の粗大化を抑制し、硫酸鉛を微細な状態に維持して、硫酸鉛から溶け出す鉛イオンの濃度が低下するのを抑制し、充電受け入れ性が高い状態を維持する作用をする。
 負極活物質の充電反応は、放電生成物である硫酸鉛から溶解する鉛イオンの濃度に依存し、鉛イオンが多いほど充電受入れ性が高くなる。負極活物質に添加する炭素質導電材は、放電の際に負極活物質に生成される硫酸鉛を微細に分散させる作用がある。充電不足の状態で充放電サイクルを繰り返すと、放電生成物である硫酸鉛の粗大化を招き、硫酸鉛から溶解する鉛イオンの濃度が低下して充電受け入れ性が低下するが、負極活物質に炭素質導電材を添加しておくと、硫酸鉛の粗大化を抑制して硫酸鉛を微細な状態に維持し、硫酸鉛から溶解する鉛イオンの濃度を高い状態に維持することができるため、長期間に亘って負極の充電受け入れ性を高い状態に維持することができる。
 本発明では、負極板の性能を改善するために、負極活物質に、上記の炭素質導電材のほかに、少なくとも充放電に伴う負極活物質の粗大化を抑制する有機化合物を添加する。
  ここで、負極活物質の粗大化を抑制する有機化合物は、ビスフェノール類・アミノベンゼンスルホン酸・ホルムアルデヒド縮合物、例えば、化学構造式1に示すビスフェノール類・アミノベンゼンスルホン酸ナトリウム・ホルムアルデヒド縮合物を用いることが望ましいが、化学構造式2に部分構造を示すリグニンスルホン酸ナトリウム等、その他の同作用を有する化合物を用いることを妨げるものではない。また、化学構造式3,5,6で示されるビスフェノール類と亜硫酸塩のホルムアルデヒド縮合物もしくは化学構造式4で示されるビスフェノール類とアミノ酸塩のホルムアルデヒド縮合物等を同様に用いることができる。
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
 上記のように炭素質導電材と負極活物質の粗大化を抑制する有機化合物とを負極活物質に添加して負極板の性能を改善し、この負極板を前述した正極板と組み合せるだけでも充電受入れ性を向上させることが可能であるが、加えて、電解液には陽イオン系凝集剤、陽イオン系界面活性剤、燐酸から選ばれた化合物を添加することにより、電池全体としての充電受入れ性を更に向上させることができる。
 前述したように、陽イオン系凝集剤又は陽イオン系界面活性剤を添加した場合は、これらが、充放電に伴う負極活物質の粗大化を抑制する有機化合物(これはマイナスに帯電する。)と電気的に吸着し、充放電に伴う負極活物質の粗大化を抑制する有機化合物が鉛イオンに吸着する量を少なくする作用を有している。このため、負極の充電反応を阻害する副作用を少なくすることができる。また、燐酸を添加した場合は、正極の硫酸鉛を微細化させる作用を有しており、正極の充電受け入れ性を高くすることができる。
  このような観点から、本発明の更に好ましい態様では、燐酸と、陽イオン系凝集剤又は陽イオン系界面活性剤とを、組み合せて添加する。
 陽イオン系凝集剤は、有機系であれば、アリルアミンアミド硫酸塩重合体、アリルアミン重合体、アリルアミンジメチルアリルアミン共重合体、部分尿素化ポリアリルアミン、ポリビニルアミジンなどを用いて同等の効果を得ることができる。また、無機系であれば、硫酸バンド、石灰などを用いて同等の効果を得ることができる。
  陽イオン系界面活性剤は、テトラプロピルアンモニウムプロミド、テトラプロピルアンモニウム塩、アルキルトリメチルアンモニウム塩、ジアルキルジメチルアンモニウム塩、アルキルベンジルジメチルアンモニウム塩などを用いて同等の効果を得ることができる。
 先ず、未化成の正極板を作製した。酸化鉛と鉛丹とカットファイバ(ポリエチレンテレフタレート短繊維、以下同。)との混合物に水を加えて混練し、続いて希硫酸を少量ずつ添加しながら混練して、正極用活物質ペーストを製造した。この活物質ペーストを、鉛合金からなる圧延シートにエキスパンド加工を施すことにより作製されたエキスパンド式集電体に充填し、40℃、湿度95%の雰囲気で24時間熟成し、その後乾燥して未化成の正極板を作製した。
 次に、未化成の負極板を作製した。酸化鉛と、カットファイバと、硫酸バリウムと、炭素質導電材としてのカーボンブラックと、負極活物質の粗大化を抑制する有機化合物としての、ビスフェノールA・アミノベンゼンスルホン酸ナトリウム塩・ホルムアルデヒド縮合物の混合物に水を加えて混練し、続いて希硫酸を少量ずつ添加しながら混練して、負極用活物質ペーストを作製した。この活物質ペーストを、鉛合金からなる圧延シートにエキスパンド加工を施すことにより作製されたエキスパンド式集電体に充填し、40℃、湿度95%の雰囲気で24時間熟成し、その後乾燥して未化成の負極板を作製した。
 次に上記負極板と、正極板と一般に用いられているポリエチレン製セパレータとを組み合わせて、JIS D5301に規定するB19サイズの鉛蓄電池を組み立てた。電池の組み立ては、正極板と負極板とをセパレータを介して交互に積層し、単位極板群体積当たりの正極板総表面積が1.9cm/cm(正極板3枚、負極板3枚)から4.5cm/cm(正極板7枚、負極板7枚)となるように規定した極板群を構成し、キャストオンストラップ(COS)方式で同極の極板の耳部同士を溶接して極板群を作製した。この鉛蓄電池の極板群体積は、350[cm]であった。本実施例では、同じ大きさの正極板及び負極板を用いて極板群を構成したので、負極集電体の耳部と脚部とを除いた部分の片面の面積(幅10.1[cm]、高さ11.1[cm]の積)に、セル室内に収容された状態での極板群の厚み寸法(極板の積層方向に測った寸法)3.12[cm]を乗じる演算を行うことにより、極板群体積を求めた。
 次に電槽化成を行った。電解液は、
A:アリルアミンアミド硫酸塩重合体(有機陽イオン系凝集剤)
B:硫酸バンド(無機陽イオン系凝集剤)
C:テトラプロピルアンモニウムプロミド(陽イオン系界面活性剤)
D:燐酸
から選ばれる添加剤を、表1に示すように比重が1.24の希硫酸に添加したものとした。電解液種別Eは添加剤無添加である。いずれの添加剤も、本実施例の添加量の近傍が最適となる。添加量が多すぎると容量低下や充電受入れ性の低下につながるため、本実施例の5倍程度までの添加量が実用的な上限範囲である。他方、添加剤の添加量が少なすぎると十分な効果が得られないため、本実施例の1/5程度までの添加量が実用的な下限範囲である。
Figure JPOXMLDOC01-appb-T000017
 組み立てた鉛蓄電池の電槽に、表1の各種電解液を注入し、活物質量に基づく理論容量の200%の電気量を通電して電槽化成を行い、鉛蓄電池を完成した。
 正極活物質は、化成時の温度、電流密度、電解液比重及び活物質ペーストに含まれていた硫酸鉛量によって、活物質の特性と量が変化する。正極活物質比表面積は、化成温度を高くすると減少し、電解液比重を高くすると増加させることができる。そこで、本実施例では、活物質ペーストに含まれる硫酸鉛量により活物質量を調整すると同時に電槽化成時の温度を調整し、単位極板群体積当たりの正極活物質総表面積が異なる各種鉛蓄電池を準備した。単位極板群体積当たりの正極活物質総表面積の調整は、前記の活物質ペーストに含まれる硫酸鉛量と化成条件以外にも、例えば、鉛粉出発原料、鉛粉練合条件、極板熟成条件等を適宜選択することにより実現できる。単位極板群体積当たりの正極活物質総表面積を調整する手段が異なっても、結果として、単位極板群体積当たりの正極活物質総表面積が本発明の範囲内であれば、本発明所定の効果を得ることができる。
 単位極板群体積当たりの正極活物質総表面積は、活物質特性測定用の電池を作製し、解体して正極板を取り出し、先に、式(1)から式(10)で示した比表面積の測定値と活物質重量の積を求めて、これを極板群体積にて除する方法により測定した。
 作製した鉛蓄電池について、充電受け入れ性の測定と、サイクル特性の測定とを行った。まず、充電受入れ性の測定は次のようにして行なった。組立て初期の鉛蓄電池を、25℃の恒温槽の中でSOC(充電状態)を満充電状態の90%に調整し、14Vの充電電圧の印加(但し、14Vに達する前の電流を100Aに制限)開始時から5秒目の充電電流値(5秒目充電電流値)を計測した。5秒目充電電流値が高い場合ほど初期の充電受入れ性が高いことを意味する。また、40℃の恒温槽の中で、充電電圧14.8V(但し、14.8Vに達する前の電流を25Aに制限),充電時間10分の充電と、25A定電流放電,放電時間4分の放電を1サイクルとしたサイクル試験を5000サイクル繰り返した後、上記の初期と同様の条件で充電受け入れ性の測定を行った。すなわち、5000サイクル後の5秒目充電電流値が高いほど初期の良好な充電受け入れ性をその後も維持していることを意味する。
 サイクル特性の測定(寿命試験)は次のように行なった。電池温度が25℃になるように雰囲気温度を調整し、45A-59秒間、300A-1秒間の定電流放電を行った後、100A-14V-60秒間の定電流・定電圧充電を1サイクルとする寿命試験を行った。この試験はISS車での鉛蓄電池の使われ方を模擬したサイクル試験である。この寿命試験では、放電量に対して充電量が少ないため、充電が完全に行なわれないと徐々に充電不足になり、その結果、放電電流を300Aとして1秒間放電した時の1秒目電圧が徐々に低下する。即ち、定電流・定電圧充電時に負極が分極して早期に定電圧充電に切り替わると、充電電流が減衰して充電不足になる。この寿命試験では、300A放電時の1秒目電圧が7.2Vを下回ったときを、その電池の寿命と判定した。
 充放電サイクル中も高い充電受け入れ性を維持しなければ、充電不足の状態が継続し、サイクル特性は悪くなる。上記の5秒目充電電流値の充放電サイクルに伴う変化とサイクル特性を評価することで、充放電サイクル中の充電受け入れ性の良否を適正に評価することになる。
 上記の試験により、定電圧充電時の充電受入れ性と、PSOC下で使用されたときの耐久性とを評価できる。
 作製した各種の鉛蓄電池について行った5秒目充電電流の測定結果と、サイクル特性の測定結果とを表2から表5に示した。表2において、単位極板群体積当たりの正極活物質総表面積を3.0m/cmとし、電解液種別Eの場合を従来例1とした。そして、表2、表3において、単位極板群体積当たりの正極活物質総表面積を3.0m/cmとし、電解液種別Aの場合を参考例1とし、単位極板群体積当たりの正極活物質総表面積を16.0m/cmとし、電解液種別Aの場合を参考例2とした。更に単位極板群体積当たりの正極活物質総表面積を3.0とし、電解液種別Bの場合を参考例3とし、単位極板群体積当たりの正極活物質総表面積を16.0m/cmとし、電解液種別Bの場合を参考例4とした。以下同様に、電解液種別Cの場合を参考例5、参考例6とし、電解液種別Dの場合を参考例7、参考例8とし、電解液種別ADの場合を参考例9、参考例10とし、電解液種別BDの場合を参考例11、参考例12とし、電解液種別CDの場合を参考例13、参考例14とした。
 各表に示された5秒目充電電流及びサイクル特性は、表2の従来例1を100(5秒目充電電流にあっては、初期を100)として評価したものである。
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
 上記の表2、表3の結果は、単位極板群体積当たりの正極板総表面積を3.2m/cmに固定し、単位極板群体積当たりの正極活物質総表面積を3.0から16.0m/cmまで変化させた8種類の正極板を4種類の電解液添加剤A,B,C,D単独及びA,B,CそれぞれとDの各組み合わせとした場合の5秒目充電電流の測定結果と、サイクル特性の測定結果を示したものである。
この結果から、電解液添加剤としてA,B,C,Dのいずれを用いても、単位極板群体積当たりの正極活物質総表面積を3.5から15.6m/cmの範囲に設定すると、従来例は勿論のこと、参考例よりも5秒目充電電流(充電受け入れ性)及びサイクル特性(PSOC下での寿命性能)を両立して改善できることが分かる。
 更に、電解液添加剤としてA,B,CそれぞれとDを組み合わせることにより、電解液添加剤A,B,C,Dを単独で用いる場合と比較して大幅に5秒目充電電流(充電受け入れ性)及びサイクル特性(PSOC下での寿命性能)が改善することが分かる。これは、陽イオン系の凝集剤と陽イオン系の界面活性剤は、負極活物質の粗大化を抑制する有機化合物に鉛イオンが吸着することを阻害して充電受入性を向上させる作用を持ち、燐酸は、正極で生成する硫酸鉛を微細化する作用により充電受入性を向上させるという異なる作用があるので、両者を組合せることにより、より充電受入性が向上し、サイクル特性も向上したと考えられる。
 5秒目充電電流は、単位極板群体積当たりの正極活物質総表面積を増大させるにつれて上昇し続けるが、サイクル特性は、中間でピークを迎えて減少に転じる。特に、単位極板群体積当たりの正極活物質総表面積が16.0m/cmとなると、15.6m/cmの場合よりサイクル特性が急激に低下する傾向にある。これは、充放電の繰り返しにより活物質の構造が崩壊する、泥状化と呼ばれる現象が起こったためである。このことから、単位極板群体積当たりの正極活物質総表面積は3.5から15.6m/cmの範囲に設定する。
 以上の表2から表3は、負極活物質の粗大化を抑制する有機化合物として化学構造式1で示される化合物を用いた場合であるが、化学構造式2から化学構造式6で示される化合物を用いた場合も同様の傾向を示す。
Figure JPOXMLDOC01-appb-T000020
 上記の表4の結果は、単位極板群体積当たりの正極活物質総表面積が6.0及び12.5m/cmである場合に、単位極板群体積当たりの正極板総表面積を1.9から4.5cm/cmまで変化させた場合の5秒目充電電流の測定結果と、サイクル特性の測定結果とを示したものである。
  この結果から、単位極板群体積当たりの正極板総表面積を大きくすると、すなわち極板枚数を増やすと、5秒目充電電流は増加するが、サイクル特性は逆に低下してゆくことが分かる。極板群は一定体積の電槽内に収納するという制限があり、極板を薄くすることには限界があるため、単位極板群体積当たりの正極板総表面積を4.5cm/cmにすることは通常困難である。逆に、単位極板群体積当たりの正極板総表面積を1.9cm/cmとすることは極板を厚くすることになり、一定体積の電槽内に収納するという制限上、定格容量を満足することが通常困難である。そのため、単位極板群体積当たりの正極板総表面積は、2.6から3.9cm/cmの範囲にあることが最も好ましい。これは、電解液種別がA以外の場合も同様の傾向を示す。
Figure JPOXMLDOC01-appb-T000021
 上記の表5の結果は、正負極板の枚数が同枚数である実施例(表2)のNo.3を基準に、正負極板の枚数をいずれか一方が多い枚数構成とした場合について、5秒目充電電流の測定結果と、サイクル特性の測定結果とを示したものである。本実施例(No.67,69)では、極板枚数合計が1枚減る分の厚みを、正負極板の厚みに均等に割り振って調節した。その結果、単位極板群体積当たりの正極活物質総表面積と単位極板群体積当たりの正極板総表面積は表5のように変化した。
 この結果から、正極板の枚数が負極板の枚数より多い方が5秒目充電電流及びサイクル特性が向上することが分かる。これは、電解液種別がA以外の場合も同様の傾向を示す。
 従来の鉛蓄電池では、鉛蓄電池の充電受入れ性を改善するに当って、専ら負極板の充電受入れ性及び寿命性能を改善することにより力が注がれ、正極板の性能を改善することにより鉛蓄電池の充電受入れ性を改善するとの考え方はとられていなかった。そのため、従来は負極の充電受入れ性により鉛蓄電池全体の充電受入れ性が決まっており、鉛蓄電池の充電受入れ性を向上させる上で限界があった。本発明では、この限界を打破するために正極活物質の性能に着目し、正極活物質の性能を改善するし、加えて、電解液には陽イオン系凝集剤、陽イオン系界面活性剤、燐酸から選ばれた化合物を添加することにより、電池全体としての充電受入れ性を従来の鉛蓄電池よりも更に改善することを可能にした。
 従来技術では、負極板の特性を改良することによってのみで充電受入れ性の向上を図っていたが、本発明では、単位極板群体積当たりの正極活物質総表面積の値を大きくすることにより、正極板の充電受入れ性を改良し、加えて、電解液には陽イオン系凝集剤、陽イオン系界面活性剤、燐酸から選ばれた化合物を添加することにより、電池全体の充電受け入れ性を従来よりも更に改善することを可能にして、PSOC下でのさらなる高率放電を可能にした。
 また本発明によれば、鉛蓄電池の充電受け入れ性を改善できることにより、充電不足の状態で充放電が繰り返されるのを防ぐことができるため、充電不足の状態で充放電が繰り返されることにより放電生成物である硫酸鉛が粗大化するのを防ぐことができ、PSOC下での鉛蓄電池の寿命性能を改善することができる。これは、PSOC下で使用される鉛蓄電池にとって大きな前進であり、マイクロハイブリッド車等に搭載される鉛蓄電池の性能の向上に大きく寄与するものである。
 以上のように本発明は、充電受入れ性及びPSOC下での寿命性能が従来より向上した液式鉛蓄電池を提供することを可能にするものであり、ISS車や発電制御車などのマイクロハイブリッド車等の普及に寄与するものである。従って、本発明は、自動車の燃費向上により炭酸ガスの排出量の低減を図り、地球温暖化を抑制するという地球規模の課題の解決に役立つものであり、産業上の利用可能性が大である。

Claims (4)

  1.  負極活物質を負極集電体に充填してなる負極板と、正極活物質を正極集電体に充填してなる正極板とをセパレータを介して積層した極板群を、電解液とともに電槽内に収容した構成を有して、充電が間欠的に行われ、部分充電状態で負荷への高率放電が行われる液式鉛蓄電池であって、
     少なくとも、炭素質導電材と、充放電に伴う負極活物質の粗大化を抑制する有機化合物とが前記負極活物質に添加され、
     前記正極板は、単位極板群体積[cm]当たりの正極活物質総表面積[m]を、3.5ないし15.6[m/cm]の範囲とするように構成されていること、
     加えて、電解液には陽イオン系凝集剤、陽イオン系界面活性剤、燐酸から選ばれた化合物が添加されていること、
    を特徴とする鉛蓄電池。
  2.  前記正極板は、単位極板群体積[cm]当たりの正極板総表面積[cm]を2.6ないし3.9cm/cmの範囲とするように構成されていること、
    を特徴とする請求項1に記載の鉛蓄電池。
  3.  前記極板群を構成する正極板の枚数が負極板の枚数以上に設定されていること、
    を特徴とする請求項1又は2に記載の鉛蓄電池。
  4.  燐酸と、陽イオン系凝集剤又は陽イオン系界面活性剤とが、添加されている請求項1から3のいずれかに記載の鉛蓄電池。
PCT/JP2012/074268 2011-10-18 2012-09-21 鉛蓄電池 WO2013058058A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201280051434.3A CN103891037B (zh) 2011-10-18 2012-09-21 铅蓄电池
EP12841374.7A EP2770574B1 (en) 2011-10-18 2012-09-21 Lead storage battery
JP2013539583A JP5831553B2 (ja) 2011-10-18 2012-09-21 鉛蓄電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011228560 2011-10-18
JP2011-228560 2011-10-18

Publications (1)

Publication Number Publication Date
WO2013058058A1 true WO2013058058A1 (ja) 2013-04-25

Family

ID=48140712

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/074268 WO2013058058A1 (ja) 2011-10-18 2012-09-21 鉛蓄電池

Country Status (4)

Country Link
EP (1) EP2770574B1 (ja)
JP (4) JP5831553B2 (ja)
CN (2) CN103891037B (ja)
WO (1) WO2013058058A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015032481A (ja) * 2013-08-02 2015-02-16 株式会社Gsユアサ 鉛蓄電池
WO2015163287A1 (ja) * 2014-04-22 2015-10-29 日立化成株式会社 ビスフェノール系樹脂、電極及び鉛蓄電池
JP2015225710A (ja) * 2014-05-26 2015-12-14 新神戸電機株式会社 鉛蓄電池
JP2016081736A (ja) * 2014-10-17 2016-05-16 日立化成株式会社 鉛蓄電池
JP2018092959A (ja) * 2018-03-27 2018-06-14 日立化成株式会社 鉛蓄電池
JP2019204801A (ja) * 2019-09-04 2019-11-28 日立化成株式会社 鉛蓄電池
JP2021111445A (ja) * 2020-01-06 2021-08-02 古河電池株式会社 鉛蓄電池
JP2021111492A (ja) * 2020-01-08 2021-08-02 古河電池株式会社 液式鉛蓄電池
WO2022113623A1 (ja) 2020-11-27 2022-06-02 株式会社Gsユアサ 鉛蓄電池

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017098665A1 (ja) * 2015-12-11 2017-06-15 日立化成株式会社 鉛蓄電池
JP6775764B2 (ja) * 2016-09-30 2020-10-28 株式会社Gsユアサ 鉛蓄電池
JP7099448B2 (ja) * 2017-04-28 2022-07-12 株式会社Gsユアサ 鉛蓄電池
CN111029671B (zh) * 2019-12-10 2022-06-21 天能电池(芜湖)有限公司 一种降低充电能耗的加酸充电工艺

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58155672A (ja) * 1982-02-15 1983-09-16 コンパニ−・ユ−ロペンヌ・ダキユミユラテユ−ル 鉛蓄電池用電解質
JPS6229073A (ja) 1985-07-30 1987-02-07 Shin Kobe Electric Mach Co Ltd 鉛蓄電池
JPS63213264A (ja) * 1987-02-27 1988-09-06 Shin Kobe Electric Mach Co Ltd 鉛蓄電池
JPH02236967A (ja) 1989-03-10 1990-09-19 Matsushita Electric Ind Co Ltd 鉛蓄電池
JPH07201331A (ja) 1993-12-29 1995-08-04 Japan Storage Battery Co Ltd 密閉形鉛蓄電池
JPH1040907A (ja) 1996-07-29 1998-02-13 Shin Kobe Electric Mach Co Ltd 鉛蓄電池用正極板の製造法
JP2003036882A (ja) 2001-07-19 2003-02-07 Furukawa Battery Co Ltd:The シール型鉛蓄電池
JP2003051306A (ja) 2001-08-07 2003-02-21 Furukawa Battery Co Ltd:The 鉛蓄電池用負極
JP2006196191A (ja) 2005-01-11 2006-07-27 Shin Kobe Electric Mach Co Ltd 鉛蓄電池
JP2011165378A (ja) 2010-02-05 2011-08-25 Shin Kobe Electric Mach Co Ltd 鉛蓄電池の製造方法
WO2011108056A1 (ja) * 2010-03-01 2011-09-09 新神戸電機株式会社 鉛蓄電池
WO2011142072A1 (ja) * 2010-05-10 2011-11-17 新神戸電機株式会社 鉛蓄電池
WO2012042917A1 (ja) * 2010-09-30 2012-04-05 新神戸電機株式会社 鉛蓄電池

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52136332A (en) * 1976-05-08 1977-11-15 Kouhei Mogi Lead battery and method of regenerating lead battery
JPS55113273A (en) * 1979-02-22 1980-09-01 Yuasa Battery Co Ltd Lead battery
JPS6091572A (ja) * 1983-10-24 1985-05-22 Yuasa Battery Co Ltd 密閉形鉛蓄電池
JPH02106875A (ja) * 1988-10-17 1990-04-18 Matsushita Electric Ind Co Ltd 鉛蓄電池
JPH06150961A (ja) * 1992-10-31 1994-05-31 Japan Storage Battery Co Ltd 密閉形鉛蓄電池
JPH06196200A (ja) * 1992-12-24 1994-07-15 Toyo Riken Kk 鉛蓄電池の機能回復方法及び機能回復液
JP3992336B2 (ja) * 1997-10-13 2007-10-17 株式会社ジーエス・ユアサコーポレーション 鉛蓄電池用負極板
CN1221991A (zh) * 1997-12-31 1999-07-07 大连泰基能源有限公司 电动车用高比能量铅酸蓄电池
JP2001023682A (ja) * 1999-07-08 2001-01-26 Matsushita Electric Ind Co Ltd シール形鉛蓄電池
CN1124657C (zh) * 2000-04-29 2003-10-15 郑双慧 一种高能蓄电池
CN1363964A (zh) * 2001-01-11 2002-08-14 张贵洲 一种高能蓄电池电解质
JP2003100289A (ja) * 2001-09-25 2003-04-04 Japan Storage Battery Co Ltd 密閉式鉛蓄電池及びその使用方法
JP2004087248A (ja) * 2002-08-26 2004-03-18 Japan Storage Battery Co Ltd 鉛蓄電池
CN1409425A (zh) * 2002-10-10 2003-04-09 陈有孝 电动车用高能量全密闭铅酸蓄电池
TWI333290B (en) * 2004-06-16 2010-11-11 Panasonic Corp Lead-acid battery
JP2006210058A (ja) * 2005-01-26 2006-08-10 Furukawa Battery Co Ltd:The 鉛蓄電池
JP4953600B2 (ja) * 2005-08-29 2012-06-13 古河電池株式会社 鉛蓄電池
CN101091282B (zh) * 2005-09-27 2014-09-03 古河电池株式会社 铅蓄电池及其制造方法
CN105119020A (zh) * 2008-05-20 2015-12-02 株式会社杰士汤浅国际 铅蓄电池及其制造方法
JP2010102922A (ja) * 2008-10-23 2010-05-06 Furukawa Battery Co Ltd:The 制御弁式鉛蓄電池
CN101882694B (zh) * 2010-06-21 2012-06-20 冯家齐 一种铅酸蓄电池的电解液及其制备方法
CN102013534B (zh) * 2010-11-05 2013-05-08 江西省电力科学研究院 一种基于正极保护的阀控式铅酸蓄电池容量激活液

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58155672A (ja) * 1982-02-15 1983-09-16 コンパニ−・ユ−ロペンヌ・ダキユミユラテユ−ル 鉛蓄電池用電解質
JPS6229073A (ja) 1985-07-30 1987-02-07 Shin Kobe Electric Mach Co Ltd 鉛蓄電池
JPS63213264A (ja) * 1987-02-27 1988-09-06 Shin Kobe Electric Mach Co Ltd 鉛蓄電池
JPH02236967A (ja) 1989-03-10 1990-09-19 Matsushita Electric Ind Co Ltd 鉛蓄電池
JPH07201331A (ja) 1993-12-29 1995-08-04 Japan Storage Battery Co Ltd 密閉形鉛蓄電池
JPH1040907A (ja) 1996-07-29 1998-02-13 Shin Kobe Electric Mach Co Ltd 鉛蓄電池用正極板の製造法
JP2003036882A (ja) 2001-07-19 2003-02-07 Furukawa Battery Co Ltd:The シール型鉛蓄電池
JP2003051306A (ja) 2001-08-07 2003-02-21 Furukawa Battery Co Ltd:The 鉛蓄電池用負極
JP2006196191A (ja) 2005-01-11 2006-07-27 Shin Kobe Electric Mach Co Ltd 鉛蓄電池
JP2011165378A (ja) 2010-02-05 2011-08-25 Shin Kobe Electric Mach Co Ltd 鉛蓄電池の製造方法
WO2011108056A1 (ja) * 2010-03-01 2011-09-09 新神戸電機株式会社 鉛蓄電池
WO2011142072A1 (ja) * 2010-05-10 2011-11-17 新神戸電機株式会社 鉛蓄電池
WO2012042917A1 (ja) * 2010-09-30 2012-04-05 新神戸電機株式会社 鉛蓄電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2770574A4 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015032481A (ja) * 2013-08-02 2015-02-16 株式会社Gsユアサ 鉛蓄電池
WO2015163287A1 (ja) * 2014-04-22 2015-10-29 日立化成株式会社 ビスフェノール系樹脂、電極及び鉛蓄電池
JPWO2015163287A1 (ja) * 2014-04-22 2017-04-13 日立化成株式会社 ビスフェノール系樹脂、電極及び鉛蓄電池
JP2015225710A (ja) * 2014-05-26 2015-12-14 新神戸電機株式会社 鉛蓄電池
JP2016081736A (ja) * 2014-10-17 2016-05-16 日立化成株式会社 鉛蓄電池
JP2018092959A (ja) * 2018-03-27 2018-06-14 日立化成株式会社 鉛蓄電池
JP2019204801A (ja) * 2019-09-04 2019-11-28 日立化成株式会社 鉛蓄電池
JP2021111445A (ja) * 2020-01-06 2021-08-02 古河電池株式会社 鉛蓄電池
JP7128482B2 (ja) 2020-01-06 2022-08-31 古河電池株式会社 鉛蓄電池
JP2021111492A (ja) * 2020-01-08 2021-08-02 古河電池株式会社 液式鉛蓄電池
JP7348082B2 (ja) 2020-01-08 2023-09-20 古河電池株式会社 液式鉛蓄電池
WO2022113623A1 (ja) 2020-11-27 2022-06-02 株式会社Gsユアサ 鉛蓄電池

Also Published As

Publication number Publication date
JP2016001618A (ja) 2016-01-07
EP2770574A1 (en) 2014-08-27
CN105977549B (zh) 2019-03-29
JP6597842B2 (ja) 2019-10-30
CN103891037B (zh) 2016-08-17
EP2770574B1 (en) 2016-05-04
JP6135725B2 (ja) 2017-05-31
JPWO2013058058A1 (ja) 2015-04-02
JP6358357B2 (ja) 2018-07-18
JP2017126587A (ja) 2017-07-20
EP2770574A4 (en) 2015-04-08
JP2018139235A (ja) 2018-09-06
JP5831553B2 (ja) 2015-12-09
CN105977549A (zh) 2016-09-28
CN103891037A (zh) 2014-06-25

Similar Documents

Publication Publication Date Title
JP6597842B2 (ja) 鉛蓄電池
JP5783170B2 (ja) 鉛蓄電池
JP5621841B2 (ja) 鉛蓄電池
JP5500315B2 (ja) 鉛蓄電池
JP5083481B2 (ja) 鉛蓄電池
JP5598532B2 (ja) 鉛蓄電池
JP5858048B2 (ja) 鉛蓄電池
JP6311799B2 (ja) 鉛蓄電池
JP2013065443A (ja) 鉛蓄電池
JP2003123760A (ja) 鉛蓄電池用負極
JP2008243493A (ja) 鉛蓄電池
Hernández et al. Studies on electrolyte formulations to improve life of lead acid batteries working under partial state of charge conditions
JP6582636B2 (ja) 鉛蓄電池
JP2017183160A (ja) 鉛蓄電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12841374

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013539583

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012841374

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2301003529

Country of ref document: TH