WO2013051444A1 - リチウムイオン二次電池用負極およびリチウムイオン二次電池 - Google Patents

リチウムイオン二次電池用負極およびリチウムイオン二次電池 Download PDF

Info

Publication number
WO2013051444A1
WO2013051444A1 PCT/JP2012/074826 JP2012074826W WO2013051444A1 WO 2013051444 A1 WO2013051444 A1 WO 2013051444A1 JP 2012074826 W JP2012074826 W JP 2012074826W WO 2013051444 A1 WO2013051444 A1 WO 2013051444A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
lithium ion
ion secondary
secondary battery
positron
Prior art date
Application number
PCT/JP2012/074826
Other languages
English (en)
French (fr)
Inventor
佐々木 龍朗
市川 裕一
Original Assignee
住友ベークライト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ベークライト株式会社 filed Critical 住友ベークライト株式会社
Priority to KR1020147008046A priority Critical patent/KR101589842B1/ko
Priority to US14/349,147 priority patent/US20140242434A1/en
Priority to EP12838909.5A priority patent/EP2765635A1/en
Priority to CN201280046883.9A priority patent/CN103828093A/zh
Publication of WO2013051444A1 publication Critical patent/WO2013051444A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0431Cells with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a negative electrode for a lithium ion secondary battery and a lithium ion secondary battery.
  • This application claims priority based on Japanese Patent Application No. 2011-220974 for which it applied to Japan on October 5, 2011, and uses the content here.
  • such a lithium ion secondary battery is generally sealed after inserting a wound body obtained by winding a laminated body in which a positive electrode, a negative electrode, and a separator are laminated, into a battery case, injecting an electrolytic solution.
  • a wound body obtained by winding a laminated body in which a positive electrode, a negative electrode, and a separator are laminated into a battery case, injecting an electrolytic solution.
  • the lithium ion secondary battery having such a structure in order to improve the capacity and output of the battery, the number of times of winding is increased and the contact area between the electrolyte, the positive electrode, and the negative electrode is increased.
  • An object of the present invention is to provide a negative electrode for a lithium ion secondary battery that can be a lithium ion secondary battery having stable output and capacity characteristics, and to have stable output and capacity characteristics.
  • the object is to provide a lithium ion secondary battery.
  • a negative electrode used in a lithium ion secondary battery A negative electrode material layer mainly composed of a carbon material; Consists of a laminate with a negative electrode current collector, A negative electrode for a lithium ion secondary battery, wherein the negative electrode layer has a critical radius of curvature of 15 mm or less when the negative electrode material layer is in a dry state.
  • the positron lifetime of the hard carbon measured by the positron annihilation method is 370 picoseconds or more and 480 picoseconds or less
  • C Measurement temperature and atmosphere: 25 ° C.
  • the carbon material includes hard carbon and carbon material, The above (1) to (6) satisfying the relationship of 1.2 ⁇ A / B ⁇ 19, where the graphite content is A [wt%] and the hard carbon content is B [wt%].
  • the negative electrode for lithium ion secondary batteries as described in any one of these.
  • lithium ion secondary batteries which can be used as the lithium ion secondary battery provided with the characteristics of stable output, capacity, etc., lithium with the characteristics of stable output, capacity, etc.
  • An ion secondary battery can be provided.
  • FIG. 1 is a cross-sectional view showing an example of a negative electrode for a lithium ion secondary battery of the present invention
  • FIG. 2 is a view showing the relationship between the number of annihilation ⁇ rays and the positron annihilation time.
  • a negative electrode (hereinafter also simply referred to as a negative electrode) 10 for a lithium ion secondary battery includes two negative electrode material layers 1 and a negative electrode current collector sandwiched between the two negative electrode material layers 1. It is comprised by the laminated body which the body 2 laminated
  • the negative electrode material layer 1 is a layer mainly composed of a carbon material.
  • the negative electrode current collector 2 is made of, for example, copper foil or nickel foil.
  • a lithium ion secondary battery is generally manufactured by inserting a wound body obtained by winding a laminate of a positive electrode, a negative electrode, and a separator into a battery case, injecting an electrolytic solution, and sealing the battery. Is done.
  • the lithium ion secondary battery having such a structure in order to improve the capacity and output of the battery, the number of times of winding is increased and the contact area between the electrolyte, the positive electrode, and the negative electrode is increased.
  • the negative electrode for a lithium ion secondary battery of the present invention is characterized in that the critical radius of curvature is 15 mm or less when the negative electrode material layer is in a dry state.
  • the limit radius of curvature is 15 mm or less, preferably 10 mm or less, and more preferably 2 mm or less. Thereby, the effect of this invention can be made more remarkable.
  • the critical radius of curvature exceeds the above upper limit, when wound, the negative electrode material layer and the negative electrode current collector may be damaged, which may cause a short circuit or deterioration of characteristics. .
  • the critical radius of curvature refers to the minimum radius of the cylinder that does not cause an abnormality such as delamination or damage to the negative electrode material layer and the negative electrode current collector when the negative electrode is wound around the cylinder once (360 °). .
  • the critical curvature radius is measured when the negative electrode material layer is in a dry state. Specifically, the dry negative electrode material layer has no change in weight before and after the negative electrode material layer is dried at 130 ° C. for 30 minutes. The state that is recognized as.
  • a carbon material is used as the main material constituting the negative electrode material layer.
  • the carbon material include hard carbon (non-graphitizable carbon) and graphite (graphite).
  • the carbon material it is preferable to use hard carbon and graphite in combination as the carbon material.
  • hard carbon and graphite it is possible to improve the stability during cycling and improve the input / output characteristics of a large current while increasing the charge / discharge efficiency.
  • the limit curvature radius can be made smaller by using hard carbon and graphite together. As a result, a lithium ion secondary battery having more stable characteristics such as output and capacity can be obtained.
  • Graphite is one of the allotropes of carbon, and is a hexagonal hexagonal plate crystal material that forms a layered lattice made of layers in which six carbon rings are connected.
  • the charge / discharge efficiency (discharge capacity / charge capacity) can be increased.
  • the graphite content in the carbon material for a lithium ion secondary battery is preferably 55 to 95% by weight, and more preferably 60 to 85% by weight.
  • the charge / discharge efficiency can be increased, the stability during cycling can be increased, and the input / output characteristics of a large current can be improved.
  • the graphite content is less than the lower limit, sufficient charge / discharge efficiency cannot be obtained.
  • the stability during cycling and the effect of improving the input / output characteristics of a large current are not sufficient.
  • Hard carbon is a carbon material obtained by firing a polymer that does not easily develop a graphite crystal structure, and is an amorphous substance.
  • hard carbon is a carbon material obtained by carbonizing a resin or resin composition.
  • the content of hard carbon in the carbon material for a lithium ion secondary battery is preferably 5 to 45% by weight, and more preferably 15 to 40% by weight.
  • the resin used as the raw material of the hard carbon, or the resin contained in the resin composition is not particularly limited, for example, a thermosetting resin, a thermoplastic resin, or petroleum-based tar and pitch by-produced during ethylene production, Coal tar produced during coal dry distillation, heavy components and pitches obtained by distilling off low boiling components of coal tar, petroleum-based or coal-based tars or pitches such as tars and pitches obtained by coal liquefaction, and the above tars
  • those obtained by crosslinking the pitch and the like can be contained, and one or more of these can be used in combination.
  • the resin composition contains the above resin as a main component, and can contain a curing agent, an additive, and the like, and can be appropriately subjected to a crosslinking treatment by oxidation or the like as appropriate. it can.
  • thermosetting resin is not particularly limited, and examples thereof include phenolic resins such as novolac type phenolic resin and resol type phenolic resin, epoxy resins such as bisphenol type epoxy resin and novolac type epoxy resin, melamine resin, urea resin, and aniline resin. , Cyanate resin, furan resin, ketone resin, unsaturated polyester resin, urethane resin and the like. In addition, modified products obtained by modifying these with various components can also be used.
  • phenolic resins such as novolac type phenolic resin and resol type phenolic resin
  • epoxy resins such as bisphenol type epoxy resin and novolac type epoxy resin
  • melamine resin melamine resin
  • urea resin urea resin
  • aniline resin aniline resin
  • Cyanate resin furan resin, ketone resin, unsaturated polyester resin, urethane resin and the like.
  • modified products obtained by modifying these with various components can also be used.
  • thermoplastic resin is not particularly limited.
  • polyethylene polystyrene, polyacrylonitrile, acrylonitrile-styrene (AS) resin, acrylonitrile-butadiene-styrene (ABS) resin, polypropylene, vinyl chloride, methacrylic resin, polyethylene terephthalate.
  • Polyamide polycarbonate, polyacetal, polyphenylene ether, polybutylene terephthalate, polyphenylene sulfide, polysulfone, polyethersulfone, polyetheretherketone, polyetherimide, polyamideimide, polyimide, polyphthalamide, and the like.
  • thermosetting resin is preferable as the main resin used for hard carbon. Thereby, the residual carbon rate of hard carbon can be raised more.
  • thermosetting resins those selected from novolac type phenol resins, resol type phenol resins, melamine resins, furan resins, aniline resins, and modified products thereof are preferable.
  • the freedom degree of design of a carbon material spreads and it can manufacture at low cost. Further, the stability during cycling and the input / output characteristics of a large current can be further improved.
  • curing agent when using a thermosetting resin, can be used together.
  • the curing agent to be used is not particularly limited.
  • a novolak type phenol resin hexamethylenetetramine, resol type phenol resin, polyacetal, paraform and the like can be used.
  • epoxy resins known as epoxy resins such as polyamine compounds such as aliphatic polyamines and aromatic polyamines, acid anhydrides, imidazole compounds, dicyandiamide, novolac-type phenol resins, bisphenol-type phenol resins, and resol-type phenol resins. Can be used.
  • the resin composition used in the present embodiment is used in a smaller amount than usual or without using a curing agent. You can also.
  • additives can be blended in addition to the above components.
  • the additive used here is not particularly limited, but for example, a carbon material precursor carbonized at 200 to 800 ° C., an organic acid, an inorganic acid, a nitrogen-containing compound, an oxygen-containing compound, an aromatic compound, and non-ferrous A metal element etc. can be mentioned. These additives can be used alone or in combination of two or more depending on the type and properties of the resin used.
  • a nitrogen-containing resin described later may be included as a main component resin.
  • at least one kind of nitrogen-containing compound may be included as a component other than the main component resin, or the nitrogen-containing resin is included as the main component resin.
  • a nitrogen-containing compound may be included as a component other than the main component resin.
  • thermosetting resins include melamine resins, urea resins, aniline resins, cyanate resins, urethane resins, phenol resins modified with nitrogen-containing components such as amines, and epoxy resins.
  • thermoplastic resin examples include polyacrylonitrile, acrylonitrile-styrene (AS) resin, acrylonitrile-butadiene-styrene (ABS) resin, polyamide, polyetherimide, polyamideimide, polyimide, and polyphthalamide.
  • thermosetting resin examples include phenol resin, epoxy resin, furan resin, and unsaturated polyester resin.
  • thermoplastic resin examples include polyethylene, polystyrene, polypropylene, vinyl chloride, methacrylic resin, polyethylene terephthalate, polycarbonate, polyacetal, polyphenylene ether, polybutylene terephthalate, polyphenylene sulfide, polysulfone, polyethersulfone, and polyetheretherketone. .
  • a nitrogen-containing compound when used as a component other than the main component resin, the type thereof is not particularly limited.
  • hexamethylenetetramine which is a curing agent for novolac type phenol resins
  • aliphatic polyamine which is a curing agent for epoxy resins.
  • a compound containing nitrogen such as an amine compound, ammonium salt, nitrate, nitro compound which does not function as a curing agent can be used.
  • nitrogen-containing compound one type may be used or two or more types may be used in combination, whether or not the main component resin contains nitrogen-containing resins.
  • the resin composition used as the raw material for the hard carbon or the nitrogen content in the resin is not particularly limited, but is preferably 5 to 65% by weight, more preferably 10 to 20% by weight.
  • the carbon atom content in the hard carbon obtained by carbonizing the resin composition or the resin is 95 wt% or more, and the nitrogen atom content is 0.5 to 5 wt%. Is preferred.
  • the nitrogen atom by setting the nitrogen atom to 5 wt% or less, particularly 3 wt% or less, it is possible to prevent the electrical characteristics imparted to the hard carbon from becoming excessively strong, and the occluded lithium ions are electrically connected to the nitrogen atoms. Adsorption is prevented. Thereby, an increase in irreversible capacity can be suppressed and high charge / discharge characteristics can be obtained.
  • the nitrogen content in the hard carbon is the above-mentioned resin composition or the nitrogen content in the resin, as well as the conditions for carbonizing the resin composition or the resin, or when performing a curing treatment or a pre-carbonization treatment before the carbonization treatment. These conditions can also be adjusted by appropriately setting.
  • the nitrogen content in the resin composition or the resin is set as a predetermined value, and conditions for carbonizing the resin composition, in particular, the final temperature is adjusted. There are methods.
  • the method for preparing a resin composition used as a raw material for hard carbon is not particularly limited. For example, a method in which the main component resin and other components are blended in a predetermined ratio, and these are melt mixed. It can be prepared by a method in which components are dissolved in a solvent and mixed, or a method in which these components are pulverized and mixed.
  • the nitrogen content is measured by a thermal conductivity method.
  • a measurement sample is converted into a simple gas (CO 2 , H 2 O, and N 2 ) using a combustion method, and then the gasified sample is homogenized and then passed through a column. .
  • these gas is isolate
  • the elemental analysis measuring device “PE2400” manufactured by PerkinElmer Co., Ltd. was used.
  • the hard carbon used in the present invention preferably has a positron lifetime measured by a positron annihilation method of 370 picoseconds or more and 480 picoseconds or less, and more preferably 380 picoseconds or more and 460 picoseconds or less. preferable.
  • the positron lifetime measured by the positron annihilation method is not less than 370 picoseconds and not more than 480 picoseconds, it can be said that, as will be described later, voids having a size in which lithium easily enters and exits are formed in hard carbon.
  • the charge capacity and discharge capacity of the carbon material for the secondary battery can be further increased.
  • positron beam source A positron is generated from an electron / positron pair using an electron accelerator
  • B Gamma ray detector: BaF 2 scintillator and photomultiplier tube
  • C Measurement temperature and atmosphere: 25 ° C. in vacuum
  • D Count of annihilation ⁇ -ray: 3 ⁇ 10 6 or more
  • E Positron beam energy: 10 keV
  • the half width of the peak observed in the vicinity of 285 eV measured by X-ray Photoelectron Spectroscopy (XPS method) is 0.8 eV or more and 1.8 eV or less.
  • the positron lifetime method is a method for measuring the size of the void by measuring the time from when the positron (e + ) enters the sample until it disappears.
  • a positron is an antimatter of electrons and has the same static mass as an electron, but its charge is positive. It is known that when a positron is incident on a substance, it becomes a pair (positron-electron pair (positronium)) and then disappears. When a positron is injected into the carbon material, the positron (e + ) is combined with one of the electrons struck out in the polymer to form positronium. Positronium is trapped in a portion having a low electron density in the polymer material, that is, a local void in the polymer, and overlaps with the electron cloud emitted from the void wall and disappears.
  • the size of the voids and the annihilation lifetime of positronium are inversely related. That is, when the void is small, the overlap between the positronium and the surrounding electrons is increased, and the positron annihilation lifetime is shortened. On the other hand, when the void is large, the probability that the positronium overlaps with other electrons that have exuded from the void wall and disappears becomes low, and the annihilation lifetime of the positronium becomes long. Therefore, the size of the voids in the carbon material can be evaluated by measuring the annihilation lifetime of positronium.
  • the positron incident on the carbon material loses energy, and then forms positronium and disappears together with the electron.
  • ⁇ rays are emitted from the carbon material. Accordingly, the emitted ⁇ rays serve as a measurement end signal.
  • positron annihilation lifetime For the measurement of positron annihilation lifetime, often used radioactive isotopes 22 Na as that of an electron accelerator and generic as positron source. 22 Na emits positrons and 1.28 MeV gamma rays simultaneously when ⁇ + decays to 22 Ne. The positron incident on the carbon material emits 511 keV gamma rays through an annihilation process. Therefore, the annihilation lifetime of the positron can be obtained by measuring the time difference between the 1.28 MeV ⁇ ray and the 511 kev ⁇ ray as the end signal. Specifically, a positron lifetime spectrum as shown in FIG. 2 is obtained. The slope A of the positron lifetime spectrum indicates the positron lifetime, and the positron lifetime of the carbon material can be grasped from the positron lifetime spectrum.
  • electron / positron pair generation is caused by the braking X-rays generated by irradiating the target made of tantalum or tungsten with an electron beam to generate positrons.
  • the time when the positron beam is incident on the sample is set as a measurement start point (corresponding to the start signal in the 22 Na), and the end signal is measured on the same principle as in the case of 22 Na.
  • the positron lifetime measured by the positron annihilation method is less than 370 picoseconds, the pore size is too small and it becomes difficult to occlude and release lithium ions.
  • the positron lifetime measured by the positron annihilation method exceeds 480 picoseconds, the amount of occlusion of lithium is increased, but it is assumed that lithium is less likely to be released due to an increase in electrostatic capacity due to intrusion of other substances such as an electrolytic solution. Is done.
  • the hard carbon preferably has a half width of a peak observed near 285 eV measured by XPS method of 0.8 eV or more and 1.8 eV or less, and more preferably 0.9 eV or more and 1.6 eV or less.
  • the half width of the peak observed near 285 eV measured by XPS method is 1.8 eV or less, most of the elements present on the hard carbon surface are due to inactive C—C bonds, etc., and lithium ions, etc. In this state, there is substantially no functional group or impurity that reacts with the active substance involved in ion conduction.
  • the half width of the peak recognized in the vicinity of 285 eV is 0.8 eV or more, problems such as excessive crystallization do not occur. Therefore, when the full width at half maximum of the peak observed in the vicinity of 285 eV measured by the XPS method is 0.8 eV or more and 1.8 eV or less as in the present carbon material, the decrease in charge and discharge efficiency due to the irreversible capacity is suppressed.
  • the XPS measurement method irradiates the surface of a solid sample with X-rays and measures the kinetic energy of photoelectrons emitted from the excited atoms. As a result, the binding energy of electrons in the atoms (a value specific to each atom is determined). It is a method for identifying constituent elements present on the surface.
  • the surface state can also be analyzed by the FT-IR method, which identifies a chemical bond existing at about 1 ⁇ m from the surface, whereas the XPS measurement method identifies an element present several kilometers from the surface. be able to. From this, it is preferable to use the XPS measurement method to identify the functional group closer to the surface.
  • the hard carbon preferably has an average interplanar spacing d 002 of (002) planes of 3.4 mm or more and 3.9 mm or less calculated from the wide-angle X-ray diffraction method using the Bragg equation.
  • the average interplanar distance d 002 is 3.4 mm or more, particularly 3.6 mm or more, the interlayer contraction / expansion due to the occlusion of lithium ions is less likely to occur, so that the reduction in charge / discharge cycle performance can be suppressed.
  • the average interplanar distance d 002 is 3.9 mm or less, particularly 3.8 mm or less, lithium ions are smoothly occluded / desorbed, and a decrease in charge / discharge efficiency can be suppressed.
  • the hard carbon has a crystallite size Lc in the c-axis direction ((002) plane orthogonal direction) of 8 to 50 mm.
  • Lc By setting Lc to 8 mm or more, particularly 9 mm or more, there is an effect that a carbon interlayer space capable of inserting and extracting lithium ions is formed, and a sufficient charge / discharge capacity can be obtained. By doing so, it is possible to suppress the collapse of the carbon laminate structure due to the insertion / desorption of lithium ions and the reductive decomposition of the electrolytic solution, and to suppress the decrease in charge / discharge efficiency and charge / discharge cycle performance.
  • Lc is calculated as follows. It was determined from the half width of the 002 plane peak and the diffraction angle in the spectrum obtained from the X-ray diffraction measurement using the following Scherrer equation.
  • Lc 0.94 ⁇ / ( ⁇ cos ⁇ ) (Scherrer equation)
  • Lc Crystallite size
  • Characteristic X-ray K ⁇ 1 wavelength output from the cathode
  • Half width of peak (radian)
  • Reflection angle of spectrum
  • the X-ray diffraction spectrum of hard carbon was measured with an X-ray diffractometer “XRD-7000” manufactured by Shimadzu Corporation.
  • the method for measuring the average spacing in hard carbon is as follows.
  • the hard carbon preferably has a specific surface area of 15 m 2 / g or less and 1 m 2 / g or more according to the BET three-point method in nitrogen adsorption.
  • Reaction with a carbon material and electrolyte solution can be suppressed because the specific surface area by BET 3 point method in nitrogen adsorption is 15 m ⁇ 2 > / g or less.
  • the calculation method of the specific surface area is as follows.
  • the monomolecular adsorption amount Wm was calculated from the following formula (1)
  • the total surface area Total was calculated from the following formula (2)
  • the specific surface area S was calculated from the following formula (3).
  • the hard carbon as described above can be produced as follows in a typical example of a resin or a resin composition.
  • a resin or resin composition to be carbonized is manufactured.
  • the apparatus for preparing the resin composition is not particularly limited.
  • a kneading apparatus such as a kneading roll, a single screw or a twin screw kneader can be used.
  • dissolution mixing mixing apparatuses, such as a Henschel mixer and a disperser, can be used.
  • pulverization mixing apparatuses, such as a hammer mill and a jet mill, can be used, for example.
  • the resin composition thus obtained may be one obtained by physically mixing a plurality of types of components, or is applied during mixing (stirring, kneading, etc.) during preparation of the resin composition.
  • a part of the material may be chemically reacted with mechanical energy and thermal energy converted from the mechanical energy. Specifically, a mechanochemical reaction using mechanical energy or a chemical reaction using thermal energy may be performed.
  • Hard carbon is obtained by carbonizing the above resin composition or resin.
  • the conditions for the carbonization treatment are not particularly limited.
  • the temperature is raised from room temperature at 1 to 200 ° C./hour, and kept at 800 to 3000 ° C. for 0.1 to 50 hours, preferably 0.5 to 10 hours.
  • the atmosphere during the carbonization treatment is an inert atmosphere such as nitrogen or helium gas, or a substantially inert atmosphere where a trace amount of oxygen is present in the inert gas, or a reducing gas atmosphere. Is preferred. By doing in this way, thermal decomposition (oxidative decomposition) of resin can be suppressed and a desired carbon material can be obtained.
  • the conditions such as temperature and time during carbonization can be adjusted as appropriate in order to optimize the characteristics of the hard carbon.
  • conditions may be appropriately determined according to the resin or the like.
  • the temperature during the carbonization treatment may be set to 1000 ° C. or higher, and the temperature increase rate may be set to less than 200 ° C./hour.
  • the hard carbon surface becomes a thing by an inactive functional group etc., and the half width of the peak recognized near 285 eV measured by XPS method is 0.8 eV or more and 1.8 eV or less. It is speculated that it can be obtained.
  • a pre carbonization process can be performed before performing the said carbonization process.
  • the conditions for the pre-carbonization treatment are not particularly limited.
  • the resin composition or resin is infusibilized by performing the pre-carbonization treatment before the carbonization treatment, and the resin composition or the resin is pulverized before the carbonization treatment step, The resin composition or the resin can be prevented from being re-fused during carbonization, and a desired carbon material can be obtained efficiently.
  • pre-carbonization treatment is performed in the absence of a reducing gas or an inert gas. Can be done.
  • thermosetting resin or a polymerizable polymer compound when used as the resin for producing hard carbon, the resin composition or the resin can be cured before the pre-carbonization treatment.
  • a hardening processing method For example, it can carry out by the method of giving heat quantity which can perform hardening reaction to a resin composition, and the method of thermosetting, or the method of using resin and a hardening
  • the pre-carbonization treatment can be performed substantially in the solid phase, the carbonization treatment or the pre-carbonization treatment can be performed in a state where the structure of the resin is maintained to some extent, and the structure and characteristics of the hard carbon can be controlled. become.
  • a metal, a pigment, a lubricant, an antistatic agent, an antioxidant, or the like is added to the resin composition to impart desired characteristics to the carbon material. You can also.
  • the processed product may be pulverized before the carbonization treatment.
  • variation in the thermal history during carbonization treatment can be reduced, and the uniformity of the surface state of the hard carbon can be improved.
  • the handleability of a processed material can be made favorable.
  • a hard carbon having a positron lifetime measured by the positron annihilation method of 370 picoseconds or more and 480 picoseconds or less for example, after carbonization treatment, if necessary, in the presence of a reducing gas or an inert gas, It may be naturally cooled to 800 to 500 ° C. and then cooled at 100 ° C./hour until it becomes 100 ° C. or lower.
  • the positron lifetime measured by the positron annihilation method is 370 picoseconds or more and 480 picoseconds or less. It is estimated that carbon can be obtained.
  • the material constituting the negative electrode material layer 1 includes, in addition to the above carbon materials, fluorine-based polymers including polyethylene, polypropylene, etc., polyvinylidene fluoride (PVDF), carboxymethyl cellulose (CMC), butadiene rubber, styrene butadiene rubber (A rubbery polymer such as SBR latex), polyimide, or the like can be added as a binder.
  • fluorine-based polymers including polyethylene, polypropylene, etc., polyvinylidene fluoride (PVDF), carboxymethyl cellulose (CMC), butadiene rubber, styrene butadiene rubber (A rubbery polymer such as SBR latex), polyimide, or the like can be added as a binder.
  • fluorine-based polymers including polyethylene, polypropylene, etc., polyvinylidene fluoride (PVDF), carboxymethyl cellulose (CMC), butadiene rubber, styrene
  • the negative electrode 10 can be manufactured as follows, for example. To 100 parts by weight of the carbon material for lithium ion secondary battery, a binder: 1 to 30 parts by weight, and an appropriate amount of a viscosity adjusting solvent (water, N-methyl-2-pyrrolidone, dimethylformamide, etc.) are added.
  • the negative electrode material layer 1 can be obtained by forming a paste-like mixture by kneading into a sheet or pellet by compression molding or roll molding. And the negative electrode 10 can be obtained by laminating
  • binder 1 to 30 parts by weight of binder and an appropriate amount of viscosity adjusting solvent (water, N-methyl-2-pyrrolidone, dimethylformamide, etc.) are added to 100 parts by weight of the carbon material for lithium ion secondary batteries. Then, the mixture kneaded and made into a slurry is used as the negative electrode material, and this is applied to the negative electrode current collector 2 and molded, whereby the negative electrode material layer 1 can be formed and the negative electrode 10 can be produced.
  • viscosity adjusting solvent water, N-methyl-2-pyrrolidone, dimethylformamide, etc.
  • FIG. 3 is a cross-sectional view showing an example of a layer structure of a wound body applied to a lithium ion secondary battery
  • FIG. 4 is a schematic view showing an example of a wound body constituting the lithium ion secondary battery.
  • the wound body 100 is composed of a laminated body 40 in which a negative electrode 10, a positive electrode 20, and a separator 30 are laminated, and is formed by winding this laminated body.
  • the negative electrode 10 includes the two negative electrode material layers 1 and the negative electrode current collector 2 sandwiched between the two negative electrode material layers 1.
  • the positive electrode 20 includes a positive electrode material layer 3 and a positive electrode current collector 4, and is configured by a laminate in which the positive electrode current collector 4 is sandwiched between two positive electrode material layers 3. .
  • the positive electrode material constituting the positive electrode material layer 3 is not particularly limited.
  • a composite such as lithium cobalt oxide (LiCoO 2 ), lithium nickel oxide (LiNiO 2 ), lithium manganese oxide (LiMn 2 O 4 ), or the like.
  • Oxides, conductive polymers such as polyaniline and polypyrrole, and the like can be used.
  • the positive electrode current collector 4 for example, an aluminum foil can be used.
  • the positive electrode 20 in this embodiment can be manufactured with the manufacturing method of the known positive electrode.
  • the separator 30 includes one layer between the negative electrode 10 and the positive electrode 20, and the negative electrode 10 and the positive electrode 20 are not in contact with each other on the upper and lower surfaces of the stacked body 40 when wound. Another layer is provided on the lower surface on the positive electrode 20 side.
  • the separator 30 is not particularly limited, and for example, a porous film such as polyethylene or polypropylene, a nonwoven fabric, or the like can be used.
  • the negative electrode 10 is provided with a terminal 11 as shown in FIG. 4, and the positive electrode 20 is provided with a terminal 21.
  • the laminated body 40 is wound and becomes the wound body 100, as shown in FIG.
  • the wound body 100 is inserted into a battery case, injected with an electrolyte, and further sealed to form a lithium ion secondary battery.
  • the terminal 11 side becomes a negative electrode
  • the terminal 21 side becomes a positive electrode.
  • a non-aqueous solvent in which a lithium salt serving as an electrolyte is dissolved is used.
  • a non-aqueous solvent a mixture of cyclic esters such as propylene carbonate, ethylene carbonate and ⁇ -butyrolactone, chain esters such as dimethyl carbonate and diethyl carbonate, chain ethers such as dimethoxyethane, and the like can be used. it can.
  • lithium metal salts such as LiClO 4 and LiPF 6 , tetraalkylammonium salts, and the like can be used. Further, the above salts can be mixed with polyethylene oxide, polyacrylonitrile, etc. and used as a solid electrolyte.
  • Measurement method of positron lifetime by positron lifetime method Using positron / positronium lifetime measurement / nano-hole measuring device (manufactured by National Institute of Advanced Industrial Science and Technology) The positron lifetime was measured.
  • Positron beam source An electron accelerator from the National Institute of Advanced Industrial Science and Technology (AIST), which generates positrons from electron / positron pair generation (the electron accelerator irradiates a target (tantalum) with an electron beam Causes generation of electron-positron pairs, generating positrons)
  • AIST Advanced Industrial Science and Technology
  • Gamma ray detector BaF 2 scintillator and photomultiplier tube
  • Measurement temperature and atmosphere 25 ° C.
  • the peak intensity and the peak half-value width are obtained as follows.
  • a baseline is drawn from both ends of the target peak, and the intensity from the baseline to the peak apex is defined as the peak intensity. This is because the base line of the spectrum usually obtained changes depending on the environment at the time of measurement, the difference in the sample, and the like.
  • a baseline is drawn from both ends of the overlapping peaks.
  • the half width of the peak is obtained by drawing a line parallel to the base line from a point having an intensity of 1 ⁇ 2 of the peak intensity obtained from the peak apex, and reading the energy at the intersection with both ends of the peak.
  • Average spacing (d 002 ), crystallite size in the c-axis direction (Lc) The average interplanar spacing was measured using an X-ray diffractometer “XRD-7000” manufactured by Shimadzu Corporation.
  • the average interplanar distance d 002 was calculated from the following Bragg equation.
  • Lc was measured as follows. It was determined from the half width of the 002 plane peak and the diffraction angle in the spectrum obtained from the X-ray diffraction measurement using the following Scherrer equation.
  • Lc 0.94 ⁇ / ( ⁇ cos ⁇ ) (Scherrer equation)
  • Lc Crystallite size
  • Characteristic X-ray K ⁇ 1 wavelength output from the cathode
  • Half width of peak (radian)
  • Reflection angle of spectrum
  • Specific surface area was measured by a BET three-point method in nitrogen adsorption using a Nova-1200 device manufactured by Yuasa. A specific calculation method is as described in the above embodiment.
  • Carbon content, nitrogen content Measured using an elemental analysis measuring device “PE2400” manufactured by PerkinElmer.
  • the measurement sample is converted into CO 2 , H 2 O, and N 2 using a combustion method, and then the gasified sample is homogenized and then passed through the column. Thereby, these gases were separated stepwise, and the contents of carbon, hydrogen, and nitrogen were measured from the respective thermal conductivities.
  • A is greater than 2 mm and 10 mm or less
  • B is greater than 10 mm and 15 mm or less
  • C is greater than 15 mm
  • D is greater than 15 mm.
  • Bipolar Coin Cell for Secondary Battery Evaluation A negative electrode obtained in each example and comparative example was prepared. The positive electrode was evaluated with a bipolar coin cell using lithium metal.
  • electrolytic solution a solution obtained by dissolving 1 mol / liter of lithium perchlorate in a mixed solution of ethylene carbonate and diethyl carbonate having a volume ratio of 1: 1 was used.
  • Charging capacity, discharging capacity, charging / discharging efficiency (1) Evaluation of charging capacity, discharging capacity Charging conditions are as follows: 1 mA at a constant current of 25 mA / g until the current reaches 1 mV, then the current decays to 1.25 mA / g with 1 mV holding. The charging was terminated. The cut-off potential under discharge conditions was 1.5V.
  • the second and subsequent charging / discharging conditions were such that charging was terminated at a constant current of 250 mA / g until it reached 1 mV, and then the current was attenuated to 12.5 mA / g when held at 1 mV.
  • the cut-off potential under discharge conditions was 1.5V.
  • Example 8 As a resin composition, phenol resin PR-217 (manufactured by Sumitomo Bakelite Co., Ltd.) was processed in the order of the following steps (a) to (f) to obtain hard carbon.
  • Example 2 A carbon material was obtained in the same manner as in Example 1 except that the contents of graphite and hard carbon were changed as shown in Table 1.
  • Example 6 In Example 1, an aniline resin (synthesized by the following method) was used instead of the phenol resin.
  • aniline resin 100 parts of aniline, 697 parts of 37% aqueous solution of formaldehyde, and 2 parts of oxalic acid were placed in a three-necked flask equipped with a stirrer and a condenser, reacted at 100 ° C. for 3 hours, and dehydrated to obtain 110 parts of aniline resin.
  • the obtained aniline resin had a weight average molecular weight of about 800.
  • the resin composition obtained by pulverizing and mixing 100 parts of the aniline resin and 10 parts of hexamethylenetetramine obtained as described above was treated in the same process as in Example 1 to obtain a carbon material.
  • Example 7 The same resin composition as in Example 6 was used.
  • Example 6 Further, in the treatment of the resin composition, a carbon material was obtained in the same manner as in Example 6 except that the steps (d) and (e) of Example 1 were as follows.
  • Example 8 A carbon material composed of graphite (mesophase carbon microbeads) was prepared.
  • Example 9 A carbon material composed of the hard carbon of Example 1 was prepared.
  • Example 1 when the resin composition was treated, a carbon material was obtained in the same manner as in Example 1 except that the step (c) of Example 1 was performed as follows.
  • Table 1 also shows the charge capacity, discharge capacity, charge / discharge efficiency, moisture content of the negative electrode material layer, and critical curvature radius when the carbon materials obtained in the examples and comparative examples are used as the negative electrode.
  • the lithium ion secondary battery using the negative electrode for a lithium ion secondary battery of the present invention exhibited stable characteristics in all items. On the other hand, in the comparative example, sufficient results were not obtained.
  • the present invention can be applied to a lithium ion secondary battery having characteristics such as stable output and capacity, and a negative electrode for a lithium ion secondary battery required for such a lithium ion secondary battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

安定した出力、容量等の特性を備えたリチウムイオン二次電池とすることができるリチウムイオン二次電池用負極、および、安定した出力、容量等の特性を備えたリチウムイオン二次電池が提供される。そのようなリチウムイオン二次電池用負極は、リチウムイオン二次電池に用いられる負極であって、主として炭素材で構成された負極材層と、負極集電体との積層体で構成され、前記負極材層が乾燥状態における負極の限界曲率半径が15mm以下であることを特徴とする。炭素材中における前記ハードカーボンの含有量は、5~45重量%であるのが好ましい。

Description

リチウムイオン二次電池用負極およびリチウムイオン二次電池
 本発明は、リチウムイオン二次電池用負極およびリチウムイオン二次電池に関する。
本願は、2011年10月5日に日本に出願された特願2011-220974号に基づき優先権を主張し、その内容をここに援用する。
 従来より、リチウムイオン二次電池の負極には、炭素材が使用されている。充放電サイクルが進行しても、炭素材料を使用した負極上にはデンドライト状リチウムが析出されにくく、安全性が保証されるためである。
 ところで、このようなリチウムイオン二次電池は、一般に、正極と、負極と、セパレータとが積層した積層体を捲回した捲回体を電池ケースに挿入し、電解液を注入した後、封口することにより製造される(例えば、特許文献1参照)。このような構造のリチウムイオン二次電池では、電池の容量や出力を向上させる目的で、捲回の回数を多くし、電解質と正極および負極との接触面積を大きくしている。
 しかしながら、捲回する際に正極・負極に応力が掛かり、各極を構成する材料(活物質)が剥離してしまうといった問題があった。そして、この剥離した材料がセパレータを貫通し、短絡が生じてしまったり、剥離したことによって特性が低下してしまったりといった問題が生じていた。特に、このような傾向は、負極で生じやすく、問題となっていた。
特開2004-319311号公報
 本発明の目的は、安定した出力、容量等の特性を備えたリチウムイオン二次電池とすることができるリチウムイオン二次電池用負極を提供すること、安定した出力、容量等の特性を備えたリチウムイオン二次電池を提供することにある。
 このような目的は、下記(1)~(8)に記載の本発明により達成される。
 (1) リチウムイオン二次電池に用いられる負極であって、
 主として炭素材で構成された負極材層と、
 負極集電体との積層体で構成され、
 前記負極材層が乾燥状態における負極の限界曲率半径が15mm以下であることを特徴とするリチウムイオン二次電池用負極。
 (2) 前記炭素材は、ハードカーボンを含む上記(1)に記載のリチウムイオン二次電池用負極。
 (3) 前記炭素材中における前記ハードカーボンの含有量は、5~45重量%である上記(2)に記載のリチウムイオン二次電池用負極。
 (4) 以下の条件(A)~(E)のもと、陽電子消滅法により測定した前記ハードカーボンの陽電子寿命が370ピコ秒以上、480ピコ秒以下であり、
(A)陽電子線源:            電子加速器を用いて電子・陽電子対から陽電子を発生
(B)ガンマ線検出器:        BaFシンチレーターおよび光電子増倍管
(C)測定温度及び雰囲気:    25℃、真空中
(D)消滅γ線カウント数:    3×10以上
(E)陽電子ビームエネルギー:10keV
 かつ、X-ray  Photoelectron  Spectroscopy(XPS法)により測定した285eV付近に認められるピークの半値幅が0.8eV以上、1.8eV以下である上記(1)ないし(3)のいずれか一に記載のリチウムイオン二次電池用負極。
 (5) 前記炭素材は、黒鉛を含む上記(1)ないし(4)のいずれか一に記載のリチウムイオン二次電池用負極。
 (6) 前記黒鉛の含有量は、55~95重量%である上記(5)に記載のリチウムイオン二次電池用負極。
 (7) 前記炭素材は、ハードカーボンと炭素材とを含み、
 前記黒鉛の含有量をA[重量%]、前記ハードカーボンの含有量をB[重量%]としたとき、1.2≦A/B≦19の関係を満足する上記(1)ないし(6)のいずれか一に記載のリチウムイオン二次電池用負極。
 (8) 上記(1)ないし(7)のいずれか1項に記載のリチウムイオン二次電池用負極と、セパレータと、リチウムイオン二次電池用正極と、が積層した積層体とを捲回した捲回体と、
 電解質と、を有することを特徴とするリチウムイオン二次電池。
 発明によれば、安定した出力、容量等の特性を備えたリチウムイオン二次電池とすることができるリチウムイオン二次電池用負極を提供すること、安定した出力、容量等の特性を備えたリチウムイオン二次電池を提供することができる。
本発明のリチウムイオン二次電池用負極の一例を示す断面図である。 消滅γ線のカウント数と、陽電子消滅時間との関係を示す図である。 リチウムイオン二次電池に適用される捲回体の層構成の一例を示す断面図である。 リチウムイオン二次電池を構成する捲回体の一例を示す模式図である。
 以下、本発明の実施形態を図面に基づいて説明する。
 《リチウムイオン二次電池用負極》
 まず、本発明のリチウムイオン二次電池用負極について説明する。
 図1は、本発明のリチウムイオン二次電池用負極の一例を示す断面図、図2は、消滅γ線のカウント数と、陽電子消滅時間との関係を示す図である。
 図1に示すように、本実施形態のリチウムイオン二次電池用負極(以下単に負極ともいう)10は、2つの負極材層1と、当該2つの負極材層1で挟持された負極集電体2とが積層した積層体で構成されている。
 負極材層1は、主として炭素材で構成された層である。
 負極集電体2は、例えば、銅箔またはニッケル箔等で構成されている。
 ところで、リチウムイオン二次電池は、一般に、正極と、負極と、セパレータとが積層した積層体を捲回した捲回体を電池ケースに挿入し、電解液を注入した後、封口することにより製造される。このような構造のリチウムイオン二次電池では、電池の容量や出力を向上させる目的で、捲回の回数を多くし、電解質と正極および負極との接触面積を大きくしている。
 しかしながら、捲回する際に正極・負極に応力が掛かり、各極を構成する材料(活物質)が剥離してしまうといった問題があった。そして、この剥離した材料がセパレータを貫通し、短絡が生じてしまったり、剥離したことによって特性が低下してしまったりといった問題が生じていた。特に、このような傾向は、負極で生じやすく、問題となっていた。
 これに対して、本発明のリチウムイオン二次電池用負極は、負極材層が乾燥状態であるときの、その限界曲率半径が15mm以下である点に特徴を有している。このような特徴を有することにより、リチウムイオン二次電池の製造時において、捲回した際に負極材層(負極材)が剥離するのを効果的に防止することができる。その結果、短絡や特性の低下を防止することができ、安定した出力、容量等の特性を備えたリチウムイオン二次電池を製造することができる。
 なお、本発明において、限界曲率半径は15mm以下であるが、10mm以下であるのが好ましく、2mm以下であるのがより好ましい。これにより、本発明の効果をより顕著なものとすることができる。これに対して、限界曲率半径が上記上限値を超えると、捲回した際に、負極材層や負極集電体に損傷等が生じてしまい、短絡や特性の低下が生じてしまう場合がある。
 ここで、限界曲率半径とは、負極を円柱に一周(360°)巻き付けた際に、負極材層および負極集電体に、層間剥離や損傷等の異常が生じない円柱の最小の半径をいう。
 また、限界曲率半径の測定は、負極材層が乾燥状態において測定するが、乾燥状態の負極材層とは、具体的には、負極材層を130℃30分間乾燥した前後で重量変化が無いと認められる状態をいう。
 上述したように負極材層を構成する主材料としては、炭素材が用いられる。
 炭素材としては、ハードカーボン(難黒鉛化性炭素)や黒鉛(グラファイト)等が挙げられる。
 特に、炭素材としては、ハードカーボンと黒鉛とを併用するのが好ましい。これにより、充放電効率を高いものとしつつ、サイクル時の安定性を高め、大電流の入出力特性を改善することができる。また、ハードカーボンと黒鉛とを併用することにより、限界曲率半径をより小さなものとすることができる。その結果、より安定した出力、容量等の特性を備えたリチウムイオン二次電池とすることができる。
 以下各成分について説明する。
 (黒鉛)
 黒鉛とは、炭素の同素体の1つであり、六炭素環が連なった層からできている層状格子をなす六方晶系、六角板状結晶の物質である。
 炭素材として黒鉛(グラファイト)を用いた場合、充放電効率(放電容量/充電容量)を高いものとすることができる。
 リチウムイオン二次電池用炭素材中における黒鉛の含有量は、55~95重量%であるのが好ましく、60~85重量%であるのがより好ましい。黒鉛の含有量が上記範囲であると、充放電効率を高いものとしつつ、サイクル時の安定性を高め、大電流の入出力特性を改善することができる。これに対して、黒鉛の含有量が前記下限値未満であると、十分な充放電効率が得られない。一方、黒鉛の含有量が前記上限値を超えると、サイクル時の安定性、および、大電流の入出力特性の改善効果が十分なものとならない。
 (ハードカーボン)
 ハードカーボン(難黒鉛化性炭素)とは、グラファイト結晶構造が発達しにくい高分子を焼成して得られる炭素材であって、アモルファス(非晶質)な物質である。言い換えると、ハードカーボンとは、樹脂または樹脂組成物を炭化処理することにより得られる炭素素材である。
 炭素材としてハードカーボンを用いた場合、サイクル時の安定性を高め、大電流の入出力特性を改善したものとすることができる。
 リチウムイオン二次電池用炭素材中におけるハードカーボンの含有量は、5~45重量%であるのが好ましく、15~40重量%であるのがより好ましい。これにより、優れた充放電効率を損なうことなく、サイクル時の安定性、および、大電流の入出力特性をより効果的に高いものとすることができる。
 黒鉛とハードカーボンとを併用する場合、黒鉛の含有量をA[重量%]、ハードカーボンの含有量をB[重量%]としたとき、1.2≦A/B≦19の関係を満足するのが好ましく、1.5≦A/B≦5の関係を満足するのがより好ましい。このような関係を満足することにより、優れた充放電効率を損なうことなく、サイクル時の安定性、および、大電流の入出力特性をさらに効果的に高いものとすることができる。
 ハードカーボンの原材料となる、樹脂あるいは、樹脂組成物に含まれる樹脂としては、特に限定されず、例えば、熱硬化性樹脂、熱可塑性樹脂、あるいはエチレン製造時に副生する石油系のタールおよびピッチ、石炭乾留時に生成するコールタール、コールタールの低沸点成分を蒸留除去した重質成分やピッチ、石炭の液化により得られるタール及びピッチのような石油系または石炭系のタール若しくはピッチ、さらには前記タール、ピッチ等を架橋処理したものなどを含有することができ、これらのうち1種または2種以上を組み合わせて用いることができる。
 また、後述するように、樹脂組成物は、上記樹脂を主成分とするとともに、硬化剤、添加剤などを併せて含有することができ、さらには酸化等による架橋処理なども適宜実施することができる。
 熱硬化性樹脂としては、特に限定されず、例えば、ノボラック型フェノール樹脂、レゾール型フェノール樹脂などのフェノール樹脂、ビスフェノール型エポキシ樹脂、ノボラック型エポキシ樹脂などのエポキシ樹脂、メラミン樹脂、尿素樹脂、アニリン樹脂、シアネート樹脂、フラン樹脂、ケトン樹脂、不飽和ポリエステル樹脂、ウレタン樹脂などが挙げられる。また、これらが種々の成分で変性された変性物を用いることもできる。
 また、熱可塑性樹脂としては、特に限定されず、例えば、ポリエチレン、ポリスチレン、ポリアクリロニトリル、アクリロニトリル-スチレン(AS)樹脂、アクリロニトリル-ブタジエン-スチレン(ABS)樹脂、ポリプロピレン、塩化ビニル、メタクリル樹脂、ポリエチレンテレフタレート、ポリアミド、ポリカーボネート、ポリアセタール、ポリフェニレンエーテル、ポリブチレンテレフタレート、ポリフェニレンサルファイド、ポリサルホン、ポリエーテルサルホン、ポリエーテルエーテルケトン、ポリエーテルイミド、ポリアミドイミド、ポリイミド、ポリフタルアミド、などが挙げられる。
 特にハードカーボンに用いられる主成分となる樹脂としては、熱硬化性樹脂が好ましい。これにより、ハードカーボンの残炭率をより高めることができる。
 特に、熱硬化性樹脂の中でも、ノボラック型フェノール樹脂、レゾール型フェノール樹脂、メラミン樹脂、フラン樹脂、及び、アニリン樹脂、およびこれらの変性物から選ばれるものであることが好ましい。これにより、炭素材の設計の自由度が広がり、低価格で製造することができる。また、サイクル時の安定性、および、大電流の入出力特性をさらに高いものとすることができる。
 また、熱硬化性樹脂を用いる場合には、その硬化剤を併用することができる。
 用いられる硬化剤としては、特に限定されず、例えば、ノボラック型フェノール樹脂の場合はヘキサメチレンテトラミン、レゾール型フェノール樹脂、ポリアセタール、パラホルムなどを用いることができる。また、エポキシ樹脂の場合は、脂肪族ポリアミン、芳香族ポリアミンなどのポリアミン化合物、酸無水物、イミダゾール化合物、ジシアンジアミド、ノボラック型フェノール樹脂、ビスフェノール型フェノール樹脂、レゾール型フェノール樹脂など、エポキシ樹脂にて公知の硬化剤を用いることができる。
 なお、通常は所定量の硬化剤を併用する熱硬化性樹脂であっても、本実施形態で用いられる樹脂組成物においては、通常よりも少ない量を用いたり、あるいは硬化剤を併用しないで用いたりすることもできる。
 また、ハードカーボンの原材料としての樹脂組成物においては、上記成分の他、添加剤を配合することができる。
 ここで用いられる添加剤としては特に限定されないが、例えば、200~800℃にて炭化処理した炭素材前駆体、有機酸、無機酸、含窒素化合物、含酸素化合物、芳香族化合物、および、非鉄金属元素などを挙げることができる。これら添加剤は、用いる樹脂の種類や性状などにより、1種または2種類以上を組み合わせて用いることができる。
 ハードカーボンの原材料として用いられる樹脂としては、後述する含窒素樹脂類を主成分樹脂として含んでいてもよい。また、主成分樹脂に含窒素樹脂類が含まれていないときには主成分樹脂以外の成分として、少なくとも1種以上の含窒素化合物を含んでいてもよいし、含窒素樹脂類を主成分樹脂として含むとともに含窒素化合物を主成分樹脂以外の成分として含んでいてもよい。このような樹脂を炭化処理することにより、窒素を含有するハードカーボンを得ることができる。ハードカーボン中に窒素が含まれると、窒素の有する電気陰性度により、ハードカーボン(リチウムイオン二次電池用炭素材)に好適な電気的特性を付与することができる。これにより、リチウムイオンの吸蔵・放出を促進させ、高い充放電特性を付与することができる。
 ここで、含窒素樹脂類としては、以下のものを例示することができる。
 熱硬化性樹脂としては、メラミン樹脂、尿素樹脂、アニリン樹脂、シアネート樹脂、ウレタン樹脂のほか、アミンなどの含窒素成分で変性されたフェノール樹脂、エポキシ樹脂などが挙げられる。
 熱可塑性樹脂としては、ポリアクリロニトリル、アクリロニトリル-スチレン(AS)樹脂、アクリロニトリル-ブタジエン-スチレン(ABS)樹脂、ポリアミド、ポリエーテルイミド、ポリアミドイミド、ポリイミド、ポリフタルアミドなどが挙げられる。
 また、含窒素樹脂類以外の樹脂としては、以下のものを例示することができる。
 熱硬化性樹脂としては、フェノール樹脂、エポキシ樹脂、フラン樹脂、不飽和ポリエステル樹脂などが挙げられる。
 熱可塑性樹脂としては、ポリエチレン、ポリスチレン、ポリプロピレン、塩化ビニル、メタクリル樹脂、ポリエチレンテレフタレート、ポリカーボネート、ポリアセタール、ポリフェニレンエーテル、ポリブチレンテレフタレート、ポリフェニレンサルファイド、ポリサルホン、ポリエーテルサルホン、ポリエーテルエーテルケトンなどが挙げられる。
 また、主成分樹脂以外の成分として含窒素化合物を用いる場合、その種類としては特に限定されないが、例えば、ノボラック型フェノール樹脂の硬化剤であるヘキサメチレンテトラミン、エポキシ樹脂の硬化剤である脂肪族ポリアミン、芳香族ポリアミン、ジシアンジアミドなどのほか、硬化剤成分以外にも、硬化剤として機能しないアミン化合物、アンモニウム塩、硝酸塩、ニトロ化合物など窒素を含有する化合物を用いることができる。
  上記含窒素化合物としては、主成分樹脂に含窒素樹脂類を含む場合であっても含まない場合であっても、1種類を用いてもよいし、2種類以上を併用してもよい。
 ハードカーボンの原材料として用いられる樹脂組成物、あるいは樹脂中の窒素含有量としては特に限定されないが、5~65重量%であることが好ましく、10~20重量%であるのがより好ましい。
 このような樹脂組成物あるいは樹脂の炭化処理を行うことにより得られるハードカーボン中における炭素原子含有量は95wt%以上であるのが好ましく、さらに、窒素原子含有量が0.5~5wt%であるのが好ましい。
 このように窒素原子を0.5wt%以上、特に1.0wt%以上含有することで、窒素の有する電気陰性度により、ハードカーボンに好適な電気的特性を付与することができる。これにより、リチウムイオンの吸蔵・放出を促進させ、高い充放電特性を付与することができる。
 また、窒素原子を5wt%以下、特に3wt%以下とすることで、ハードカーボンに付与される電気的特性が過剰に強くなってしまうことが抑制され、吸蔵されたリチウムイオンが窒素原子と電気的吸着を起こすことが防止される。これにより、不可逆容量の増加を抑制し、高い充放電特性を得ることができる。
 ハードカーボン中の窒素含有量は、上記樹脂組成物あるいは樹脂中の窒素含有量のほか、樹脂組成物あるいは樹脂を炭化する条件や、炭化処理の前に硬化処理やプレ炭化処理を行う場合には、それらの条件についても適宜設定することによって、調整することができる。
 例えば、上述したような窒素含有量である炭素材を得る方法としては、樹脂組成物あるいは樹脂中の窒素含有量を所定値として、これを炭化処理する際の条件、特に、最終温度を調整する方法があげられる。
 ハードカーボンの原材料として用いられる樹脂組成物の調製方法としては特に限定されず、例えば、上記主成分樹脂と、これ以外の成分とを所定の比率で配合し、これらを溶融混合する方法、これらの成分を溶媒に溶解して混合する方法、あるいは、これらの成分を粉砕して混合する方法などにより調製することができる。
 本明細書中において、上記窒素含有量は熱伝導度法により測定したものである。
 本方法は、測定試料を、燃焼法を用いて単純なガス(CO、HO、およびN)に変換した後に、ガス化した試料を均質化した上でカラムを通過させるものである。これにより、これらのガスが段階的に分離され、それぞれの熱伝導率から、炭素、水素、及び窒素の含有量を測定することができる。
 なお、本発明では、パーキンエルマー社製・元素分析測定装置「PE2400」を用いて実施した。
 また、本発明で用いるハードカーボンは、陽電子消滅法により測定した陽電子寿命が370ピコ秒以上480ピコ秒以下のものであるのが好ましく、380ピコ秒以上460ピコ秒以下のものであるのがより好ましい。
 陽電子消滅法により測定した陽電子寿命が370ピコ秒以上、480ピコ秒以下である場合には、後述するようにリチウムが出入りしやすいサイズの空隙がハードカーボンに形成されているといえ、リチウムイオン二次電池用炭素材の充電容量、放電容量をさらに高めることができる。
 なお、陽電子消滅法による陽電子寿命の測定は、以下の条件で行った。
(A)陽電子線源:            電子加速器を用いて電子・陽電子対から陽電子を発生
(B)ガンマ線検出器:        BaFシンチレーターおよび光電子増倍管
(C)測定温度及び雰囲気:    25℃、真空中
(D)消滅γ線カウント数:    3×10以上
(E)陽電子ビームエネルギー:10keV
 かつ、X-ray  Photoelectron  Spectroscopy(XPS法)により測定した285eV付近に認められるピークの半値幅が0.8eV以上、1.8eV以下である。
 ここで、陽電子寿命と、空隙サイズとの関係について説明する。
 陽電子寿命法とは、陽電子(e)が試料に入射してから、消滅するまでの時間を計測して、空隙の大きさを測定する方法である。
 陽電子は、電子の反物質であり、電子と同じ静止質量を持つがその電荷は正である。
 陽電子は、物質中に入射すると、電子と対(陽電子-電子対(ポジトロニウム))になり、その後消滅することが知られている。炭素材に陽電子を打ち込むと、陽電子(e)は高分子中で叩き出された電子の1つと結合してポジトロニウムを形成する。ポジトロニウムは高分子材料中の電子密度の低い部分、すなわち高分子中の局所空隙にトラップされ、空隙壁から出た電子雲と重なり消滅する。ポジトロニウムが高分子中の空隙中に存在する場合、その空隙の大きさとポジトロニウムの消滅寿命は反比例の関係にある。すなわち、空隙が小さいとポジトロニウムと周囲電子との重なりが大きくなり、陽電子消滅寿命は短くなる。一方、空隙が大きいとポジトロニウムが空隙壁からしみ出した他の電子と重なって消滅する確率が低くなりポジトロニウムの消滅寿命は長くなる。したがって、ポジトロニウムの消滅寿命を測定することにより炭素材中の空隙の大きさを評価することができる。
 上述したように、炭素材に入射した陽電子は、エネルギーを失った後、電子とともに、ポジトロニウムを形成し消滅する。この際、炭素材からは、γ線が放出されることとなる。
 従って、放出されたγ線が測定の終了信号となる。
 陽電子消滅寿命の測定には、陽電子源として電子加速器や汎用のものとしては放射性同位元素22Naがよく用いられる。22Naは22Neにβ崩壊するときに、陽電子と1.28MeVのγ線を同時放出する。炭素材中に入射した陽電子は、消滅過程を経て511keVのγ線を放出する。したがって、1.28MeVのγ線を開始信号とし、511kevのγ線を終了信号として、両者の時間差を計測すれば陽電子の消滅寿命を求めることができる。具体的には、図2に示すような、陽電子寿命スペクトルが得られる。この陽電子寿命スペクトルの傾きAが陽電子寿命を示しており、陽電子寿命スペクトルから炭素材の陽電子寿命を把握することができる。
  また、陽電子源として、電子加速器を使用する場合には、タンタルまたはタングステンからなるターゲットに電子ビームを照射することによって発生する制動X線により電子・陽電子対生成を引起こさせ、陽電子を発生させる。電子加速器の場合、陽電子ビームを試料に入射した時点を測定開始点(前記22Naにおける開始信号に相当)とし、終了信号は22Naの場合と同様の原理で測定を実施する。
 陽電子消滅法により測定した陽電子寿命が370ピコ秒未満の場合には、空孔サイズが小さすぎて、リチウムイオンを吸蔵、放出しにくくなる。また、陽電子消滅法により測定した陽電子寿命が480ピコ秒を超えると、リチウムを吸蔵量は多くなるが、電解液等他の物質の侵入により、静電容量の増加によりリチウムが放出しにくくなると推測される。
 また、ハードカーボンは、XPS法により測定した285eV付近に認められるピークの半値幅が0.8eV以上1.8eV以下であるのが好ましく、0.9eV以上1.6eV以下であるのがより好ましい。XPS法により測定した285eV付近に認められるピークの半値幅が1.8eV以下である場合は、ハードカーボン表面に存在する元素のほとんどが不活性なC-C結合等によるものであり、リチウムイオン等のイオン伝導に関わる活性物質と反応する官能基や不純物が実質的に存在しない状態となる。また285eV付近に認められるピークの半値幅が0.8eV以上の場合には、過度な結晶化などの問題が生じることがない。そのため、本炭素材のようにXPS法により測定した285eV付近に認められるピークの半値幅が0.8eV以上、1.8eV以下の場合には、不可逆容量に起因する充放電効率の低下が抑制される。
 次に、XPS測定と表面状態との関係について説明する。
 XPS測定法とは、固体試料表面にX線を照射し、それによって励起された原子から放出された光電子の運動エネルギーを測定することで、原子内における電子の結合エネルギー(原子により固有の値を持つ)が求められ、表面に存在する構成元素の同定を行う方法である。
 FT-IR法も表面状態を分析することができるが、これは表面から約1μmに存在する化学結合の同定を行うのに対し、XPS測定法では表面から数Åに存在する元素の同定を行うことができる。このことから、より表面に近い官能基の同定を行うにはXPS測定法を用いるのが好ましい。
 また、ハードカーボンは、広角X線回折法からBragg式を用いて算出される(002)面の平均面間隔d002が3.4Å以上、3.9Å以下であることが好ましい。平均面間隔d002が3.4Å以上、特に3.6Å以上である場合には、リチウムイオンの吸蔵に伴う層間の収縮・膨張が起こり難くなるため、充放電サイクル性の低下を抑制できる。
 一方で、平均面間隔d002が3.9Å以下、特に3.8Å以下である場合にはリチウムイオンの吸蔵・脱離が円滑に行われ、充放電効率の低下を抑制できる。
 さらに、ハードカーボンは、c軸方向((002)面直交方向)の結晶子の大きさLcが8Å以上、50Å以下であることが好ましい。
 Lcを8Å以上、特に9Å以上とすることでリチウムイオンを吸蔵・脱離することができる炭素層間スペースが形成され、十分な充放電容量が得られるという効果があり、50Å以下、特に15Å以下とすることでリチウムイオンの吸蔵・脱離による炭素積層構造の崩壊や、電解液の還元分解を抑制し、充放電効率と充放電サイクル性の低下を抑制できるという効果がある。
 Lcは以下のようにして算出される。
 X線回折測定から求められるスペクトルにおける002面ピークの半値幅と回折角から次のScherrerの式を用いて決定した。
Lc=0.94λ/(βcosθ) (Scherrerの式)
Lc:結晶子の大きさ
λ:陰極から出力される特性X線Kα1の波長
β:ピークの半値幅(ラジアン)
θ:スペクトルの反射角度
 ハードカーボンにおけるX線回折スペクトルは、島津製作所製・X線回折装置「XRD-7000」により測定したものである。ハードカーボンにおける、上記平均面間隔の測定方法は以下の通りである。
 ハードカーボンのX線回折測定から求められるスペクトルより、平均面間隔dを以下のBragg式より算出した。
λ=2dhklsinθ (Bragg式)(dhkl=d002
λ:陰極から出力される特性X線Kα1の波長
θ:スペクトルの反射角度
 さらに、ハードカーボンは、窒素吸着におけるBET3点法による比表面積が15m/g以下、1m/g以上であることが好ましい。
 窒素吸着におけるBET3点法による比表面積が15m/g以下であることで、炭素材と電解液との反応を抑制できる。
 また、窒素吸着におけるBET3点法による比表面積を1m/g以上とすることで電解液の炭素材への適切な浸透性が得られるという効果がある。
 比表面積の算出方法は以下の通りである。
 下記(1)式より単分子吸着量Wmを算出し、下記(2)式より総表面積Stotalを算出し、下記(3)式より比表面積Sを求めた。
1/[W(Po/P-1)=(C-1)/WmC(P/Po)/WmC・・(1)
式(1)中、P:吸着平衡にある吸着質の気体の圧力、Po:吸着温度における吸着質の飽和蒸気圧、W:吸着平衡圧Pにおける吸着量、Wm:単分子層吸着量、C:固体表面と吸着質との相互作用の大きさに関する定数(C=exp{(E1-E2)RT})[E1:第一層の吸着熱(kJ/mol)、E2:吸着質の測定温度における液化熱(kJ/mol)]
Stotal=(WmNAcs)M・・・・・・・・・(2)
式(2)中、N:アボガドロ数、M:分子量、Acs:吸着断面積
S=Stotal/w・・・・・・(3)
式(3)中、w:サンプル重量(g)
 以上のようなハードカーボンは、樹脂あるいは、樹脂組成物の代表例では以下のようにして製造することができる。
 はじめに、炭化処理すべき、樹脂あるいは、樹脂組成物を製造する。
 樹脂組成物の調製のための装置としては特に限定されないが、例えば、溶融混合を行う場合には、混練ロール、単軸あるいは二軸ニーダーなどの混練装置を用いることができる。また、溶解混合を行う場合は、ヘンシェルミキサー、ディスパーザなどの混合装置を用いることができる。そして、粉砕混合を行う場合には、例えば、ハンマーミル、ジェットミルなどの装置を用いることができる。
 このようにして得られた樹脂組成物は、複数種類の成分を物理的に混合しただけのものであってもよいし、樹脂組成物の調製時、混合(攪拌、混練など)に際して付与される機械的エネルギーおよびこれが変換された熱エネルギーにより、その一部を化学的に反応させたものであってもよい。具体的には、機械的エネルギーによるメカノケミカル的反応、熱エネルギーによる化学反応をさせてもよい。
 ハードカーボンは、上記の樹脂組成物あるいは、樹脂を炭化処理してなるものである。
 ここで炭化処理の条件としては特に限定されないが、例えば、常温から1~200℃/時間で昇温して、800~3000℃で0.1~50時間、好ましくは0.5~10時間保持して行うことができる。炭化処理時の雰囲気としては窒素、ヘリウムガスなどの不活性雰囲気下、もしくは不活性ガス中に微量の酸素が存在するような、実質的に不活性な雰囲気下、または還元ガス雰囲気下で行うことが好ましい。このようにすることで、樹脂の熱分解(酸化分解)を抑制し、所望の炭素材を得ることができる。
 このような炭化処理時の温度、時間等の条件は、ハードカーボンの特性を最適なものにするため適宜調整することができる。
 また、XPS法により測定した285eV付近に認められるピークの半値幅が0.8eV以上、1.8eV以下である炭素材を得るために、樹脂等に応じて適宜条件を定めればよいが、例えば炭化処理時の温度を1000℃以上にしたり、昇温速度を200℃/時間未満にするとよい。
 このようにすることで、ハードカーボン表面が不活性な官能基等によるものとなり、XPS法により測定した285eV付近に認められるピークの半値幅が0.8eV以上、1.8eV以下であるハードカーボンを得ることができると推測される。
 なお、上記炭化処理を行う前に、プレ炭化処理を行うことができる。
 ここでプレ炭化処理の条件としては特に限定されないが、例えば、200~600℃で1~10時間行うことができる。このように、炭化処理前にプレ炭化処理を行うことで、樹脂組成物あるいは樹脂等を不融化させ、炭化処理工程前に樹脂組成物あるいは樹脂等の粉砕処理を行った場合でも、粉砕後の樹脂組成物あるいは樹脂等が炭化処理時に再融着するのを防ぎ、所望とする炭素材を効率的に得ることができるようになる。
 このとき、陽電子消滅法により測定した陽電子寿命が370ピコ秒以上、480ピコ秒以下であるハードカーボンを得るための方法の一例としては、還元ガス、不活性ガスが存在しない状態で、プレ炭化処理を行うことがあげられる。
 また、ハードカーボン製造用の樹脂として、熱硬化性樹脂や重合性高分子化合物を用いた場合には、このプレ炭化処理の前に、樹脂組成物あるいは樹脂の硬化処理を行うこともできる。
 硬化処理方法としては特に限定されないが、例えば、樹脂組成物に硬化反応が可能な熱量を与えて熱硬化する方法、あるいは、樹脂と硬化剤とを併用する方法などにより行うことができる。これにより、プレ炭化処理を実質的に固相でできるため、樹脂の構造をある程度維持した状態で炭化処理またはプレ炭化処理を行うことができ、ハードカーボンの構造や特性を制御することができるようになる。
 なお、上記炭化処理あるいはプレ炭化処理を行う場合には、上記樹脂組成物に、金属、顔料、滑剤、帯電防止剤、酸化防止剤などを添加して、所望する特性を炭素材に付与することもできる。
 上記硬化処理および/またはプレ炭化処理を行った場合は、その後、上記炭化処理の前に、処理物を粉砕しておいてもよい。こうした場合には、炭化処理時の熱履歴のバラツキを低減させ、ハードカーボンの表面状態の均一性を高めることができる。そして、処理物の取り扱い性を良好なものにすることができる。
 さらに、陽電子消滅法により測定した陽電子寿命が370ピコ秒以上、480ピコ秒以下のハードカーボンを得るために、たとえば、必要に応じて炭化処理後において、還元ガスまたは不活性ガスの存在下で、800~500℃まで自然冷却し、その後、100℃以下となるまで100℃/時間で冷却してもよい。
 このようにすることで、急速冷却によるハードカーボンの割れが抑制され、形成された空隙が維持できるという理由により、陽電子消滅法により測定した陽電子寿命が370ピコ秒以上、480ピコ秒以下であるハードカーボンを得ることができると推測される。
 なお、負極材層1を構成する材料としては、上記炭素材の他、ポリエチレン、ポリプロピレン等を含むフッ素系高分子、ポリフッ化ビニリデン(PVDF)、カルボキシメチルセルロース(CMC)、ブタジエンゴム、スチレンブタジエンゴム(SBRラテックス)等のゴム状高分子、ポリイミド等をバインダーとして添加することができる。
 負極10は、例えば、以下のようにして製造することができる。
 上記リチウムイオン二次電池用炭素材100重量部に対して、バインダー:1~30重量部、および適量の粘度調整用溶剤(水、N-メチル-2-ピロリドン、ジメチルホルムアミド等)を添加して混練して、ペースト状にした混合物を圧縮成形、ロール成形などによりシート状、ペレット状などに成形して、負極材層1を得ることができる。そして、このようにして得られた負極材層1と負極集電体2とを積層することにより、負極10を得ることができる。
 また、上記リチウムイオン二次電池用炭素材100重量部に対して、バインダー:1~30重量部、および適量の粘度調整用溶剤(水、N-メチル-2-ピロリドン、ジメチルホルムアミド等)を添加して混練して、スラリー状にした混合物を負極材として用い、これを負極集電体2に塗布、成形することにより、負極材層1を形成し、負極10を製造することもできる。
 《捲回体・リチウムイオン二次電池》
 次に、上記リチウムイオン二次電池用負極を用いた捲回体およびリチウムイオン二次電池について説明する。
 図3は、リチウムイオン二次電池に適用される捲回体の層構成の一例を示す断面図、図4は、リチウムイオン二次電池を構成する捲回体の一例を示す模式図である。
 捲回体100は、図3に示すように、負極10と、正極20と、セパレータ30とが積層した積層体40で構成されており、この積層体が捲回することにより形成されている。
 負極10は、上述したように、2つの負極材層1と、当該2つの負極材層1で挟持された負極集電体2とで構成されている。
 正極20は、図3に示すように、正極材層3と正極集電体4とを有しており、正極集電体4を2つの正極材層3で挟持した積層体で構成されている。
 正極材層3を構成する正極材としては、特に限定されず、例えば、リチウムコバルト酸化物(LiCoO)、リチウムニッケル酸化物(LiNiO)、リチウムマンガン酸化物(LiMn)などの複合酸化物や、ポリアニリン、ポリピロールなどの導電性高分子などを用いることができる。
 正極集電体4としては、例えば、アルミニウム箔を用いることができる。
 そして、本実施形態における正極20は、既知の正極の製造方法により製造することができる。
 本実施形態において、セパレータ30は、負極10と正極20との間に1層と、捲回した際に積層体40の上下の面において負極10と正極20とが接触しないように積層体40の正極20側の下面にもう1層設けられている。
 セパレータ30としては、特に限定されず、例えば、ポリエチレン、ポリプロピレンなどの多孔質フィルム、不織布等を用いることができる。
 また、負極10には、図4に示すように端子11が設けられており、また、正極20には端子21が設けられている。
 そして、積層体40が、図4に示すように、捲回され捲回体100となる。
 捲回体100は、電池ケースに挿入され、電解質を注入し、さらに、封口することにより、リチウムイオン二次電池となる。端子11側が負極となり、端子21側が正極となる。
 電解質としては、非水系溶媒に電解質となるリチウム塩を溶解したものが用いられる。
 この非水系溶媒としては、プロピレンカーボネート、エチレンカーボネート、γ-ブチロラクトンなどの環状エステル類、ジメチルカーボネートやジエチルカーボネートなどの鎖状エステル類、ジメトキシエタンなどの鎖状エーテル類などの混合物などを用いることができる。
 電解質としては、LiClO、LiPFなどのリチウム金属塩、テトラアルキルアンモニウム塩などを用いることができる。また、上記塩類をポリエチレンオキサイド、ポリアクリロニトリルなどに混合し、固体電解質として用いることもできる。
 以上、本発明について、好適な実施形態に基づいて説明したが、本発明はこれらに限定されるものではない。
 以下、本発明を実施例および比較例に基づいて詳細に説明するが、本発明はこれに限定されるものではない。また、各実施例、比較例で示される「部」は「重量部」、「%」は「重量%」を示す。
 はじめに、以下の実施例、比較例における測定方法を説明する。
 1.陽電子寿命法による陽電子寿命の測定方法
 陽電子・ポジトロニウム寿命測定・ナノ空孔計測装置(産業技術総合研究所製)を用いて、陽電子が消滅する際に発生する電磁波(消滅γ線)を測定し、陽電子寿命を測定した。
 具体的には、以下のようである。
(A)陽電子線源:産業技術総合研究所  計測フロンティア研究部門の電子加速器を用いて、電子・陽電子対生成から陽電子を発生(前記電子加速器は、ターゲット(タンタル)に電子ビームを照射して、電子・陽電子対生成を引きおこし、陽電子を発生)
(B)ガンマ線検出器:BaFシンチレーターおよび光電子増倍管
(C)測定温度及び雰囲気:25℃、真空中(1×10-5Pa(1×10-7Torr))
(D)消滅γ線カウント数:3×10以上
(E)陽電子ビームエネルギー:10keV
(F)試料サイズ:粉末を試料ホルダ(アルミ板)に厚み0.1mmで塗布
 2.XPS測定による表面状態の分析
  Escalab-220iXL(サーモフィッシャー  サイエンティフィック社製)を用い、下記の条件にて測定を実施し、得られた285eV付近に認められるピークの半値幅を下記の計算方法で算出した。
(測定条件)
  X線源:Mg-Kα
  出力:12kV-10mA
(計算方法)
 得られたスペクトルを基に、以下のようにしてピーク強度及びピーク半値幅を求める。
ピーク強度を求めるには、対象のピークの両端からベースラインを引き、このベースラインからピーク頂点までの強度をピーク強度とする。これは通常得られるスペクトルのベースラインは、測定時の環境やサンプルの違い等により変化するからである。なお、得られたスペクトルにおいて、複数のピークが重複した場合は、それら重複ピークの両端からベースラインを引く。またピーク半値幅は、ピーク頂点から前記で求めたピーク強度の1/2の強度の点からベースラインに平行に線を引き、ピーク両端との交点のエネルギーを読み取ることで求める。
 3.平均面間隔(d002)、c軸方向の結晶子の大きさ(Lc)
 島津製作所製・X線回折装置「XRD-7000」を使用して平均面間隔を測定した。
 炭素材のX線回折測定から求められるスペクトルより、平均面間隔d002を以下のBragg式より算出した。
λ=2dhklsinθ (Bragg式)(dhkl=d002
λ:陰極から出力される特性X線Kα1の波長
θ:スペクトルの反射角度
  また、Lcは以下のようにして測定した。
  X線回折測定から求められるスペクトルにおける002面ピークの半値幅と回折角から次のScherrerの式を用いて決定した。
Lc=0.94λ/(βcosθ) (Scherrerの式)
Lc:結晶子の大きさ
λ:陰極から出力される特性X線Kα1の波長
β:ピークの半値幅(ラジアン)
θ:スペクトルの反射角度
 4.比表面積
 ユアサ社製のNova-1200装置を使用して窒素吸着におけるBET3点法により測定した。具体的な算出方法は、前記実施形態で述べた通りである。
 5.炭素含有率、窒素含有率
 パーキンエルマー社製・元素分析測定装置「PE2400」を用いて測定した。測定試料を、燃焼法を用いてCO、HO、およびNに変換した後に、ガス化した試料を均質化した上でカラムを通過させる。これにより、これらのガスが段階的に分離され、それぞれの熱伝導率から、炭素、水素、及び窒素の含有量を測定した。
ア)炭素含有量
 得られたハードカーボンを、110℃/真空中、3時間乾燥処理後、元素分析測定装置を用いて炭素組成比を測定した。
イ)窒素含有量
 得られたハードカーボンを、110℃/真空中、3時間乾燥処理後、元素分析測定装置を用いて窒素組成比を測定した。
 6.含水率および限界曲率半径の測定
(1)評価用負極の製造
 各実施例、各比較例で得られた炭素材100部に対して、結合剤(バインダー)としてポリフッ化ビニリデン10部、希釈溶媒として水を適量加え混合し、スラリー状の負極混合物を調製した。調製した負極スラリー状混合物を18μmの銅箔の両面に塗布し、その後、110℃で1時間真空乾燥した。乾燥後の重量を量り、130℃30分間乾燥した。130℃30分間乾燥した前後で重量変化が無いことを確認し、評価用負極を得た。負極材層の厚さは、50μmであった。
 (2)限界曲率半径の測定
 半径が15mm、10mm、2mmの円柱に得られた評価用負極を巻き付け、負極材層および負極集電体に、層間剥離や損傷等の異常が無いかどうかを目視により観察した。異常が無ければ、限界曲率半径がその円柱の半径以下であることが解る。
 限界曲率半径が2mm以下であった場合をA、2mmよりも大きく10mm以下であった場合をB、10mmよりも大きく15mm以下であった場合をC、15mmよりも大きい場合をDとした。
 7.二次電池評価用二極式コインセル
 各実施例、比較例で得られた負極を用意した。
  正極はリチウム金属を用いて二極式コインセルにて評価を行った。電解液として体積比が1:1のエチレンカーボネートとジエチルカーボネートの混合液に過塩素酸リチウムを1モル/リットル溶解させたものを用いた。
 8.充電容量、放電容量、充放電効率
(1)充電容量、放電容量の評価
 充電条件は電流25mA/gの定電流で1mVになるまで充電した後、1mV保持で1.25mA/gまで電流が減衰したところを充電終止とした。また、放電条件のカットオフ電位は、1.5Vとした。
(2)充放電効率の評価
 上記(1)で得られた値をもとに、下記式により算出した。
 充放電効率(%)=[放電容量/充電容量]×100
(3)60サイクル容量維持率の評価
 上記(1)で得られた充放電容量の値と60回充放電を繰り返した後の放電容量の比を下記式により算出した。
 60サイクル容量維持率(%)=[60サイクル目放電容量/1サイクル目充電容量]×100
 2回目以降の充放電条件は、充電条件を電流250mA/gの定電流で1mVになるまで充電した後、1mV保持で12.5mA/gまで電流が減衰したところを充電終止とした。また、放電条件のカットオフ電位は、1.5Vとした。
(4)大電流特性
 上記(1)で得られた放電容量の値をもとに、1時間で放電終了する電流値を1Cとし、1Cの電流値で放電して得られた放電容量と、5Cの電流値で放電して得られた放電容量の比[5C放電容量/1C放電容量]を大電流特性の指標とした。
 8.実施例
 (実施例1)
 樹脂組成物として、フェノール樹脂PR-217(住友ベークライト(株)製)を以下の工程(a)~(f)の順で処理を行い、ハードカーボンを得た。
 (a)還元ガス置換、不活性ガス置換、還元ガス流通、不活性ガス流通のいずれも無しで、室温から500℃まで、100℃/時間で昇温
 (b)還元ガス置換、不活性ガス置換、還元ガス流通、不活性ガス流通のいずれも無しで、500℃で2時間脱脂処理後、冷却
 (c)振動ボールミルで微粉砕
 (d)不活性ガス(窒素)置換および流通下、室温から1200℃まで、100℃/時間で昇温
 (e)不活性ガス(窒素)流通下、1200℃で8時間炭化処理
 (f)不活性ガス(窒素)流通下、600℃まで自然放冷後、600℃から100℃以下まで、100℃/時間で冷却
 黒鉛(メソフェーズカーボンマイクロビーズ)100重量部と、得られたハードカーボン43重量部とを乳鉢を用いて混合し、炭素材を得た。
 (実施例2~5)
 黒鉛とハードカーボンの含有量を表1に示すように変更した以外は、前記実施例1と同様にして炭素材を得た。
 (実施例6)
 実施例1においてフェノール樹脂にかえて、アニリン樹脂(以下の方法で合成したもの)を用いた。
 アニリン100部と37% ホルムアルデヒド水溶液697部、蓚酸2部を攪拌装置及び冷却管を備えた3つ口フラスコに入れ、100℃で3時間反応後、脱水し、アニリン樹脂110部を得た。得られたアニリン樹脂の重量平均分子量は約800であった。
 以上のようにして得られたアニリン樹脂100部とヘキサメチレンテトラミン10部を粉砕混合し得られた樹脂組成物を、実施例1と同様の工程で処理を行い、炭素材を得た。
 (実施例7)
 実施例6と同様の樹脂組成物を使用した。
 また、樹脂組成物の処理に際して、実施例1の(d)、(e)の工程を以下のようにした点以外は、実施例6と同様にして炭素材を得た。
 (d)不活性ガス(窒素)置換および流通下、室温から1100℃まで、100℃/時間で昇温
 (e)不活性ガス(窒素)流通下、1100℃で8時間炭化処理
 (実施例8)
 黒鉛(メソフェーズカーボンマイクロビーズ)から構成される炭素材を用意した。
 (実施例9)
 実施例1のハードカーボンから構成される炭素材を用意した。
 (比較例)
 実施例1と同様の樹脂組成物を使用した。
 また、樹脂組成物の処理に際して、実施例1の(c)の工程を以下のようにした点以外は、実施例1と同様にして炭素材を得た。
 (c)遠心粉砕機により粉砕
 上記各実施例および比較例における黒鉛の含有量、ハードカーボンの含有量、ハードカーボンについての陽電子寿命、XPS、平均面間隔、結晶子の大きさ、比表面積、炭素含有率、窒素含有率を表1に示す。
 また、各実施例、比較例で得られた炭素材を負極として使用した場合の充電容量、放電容量、充放電効率、負極材層の含水率、限界曲率半径を同じく表1に示す。
Figure JPOXMLDOC01-appb-T000001
     

    
 表1から解るように、本発明のリチウムイオン二次電池用負極を用いたリチウムイオン二次電池では、いずれの項目においても安定した特性を発揮するものであった。これに対して、比較例では、十分な結果が得られなかった。
 発明は、安定した出力、容量等の特性を備えたリチウムイオン二次電池、および、そのようなリチウムイオン二次電池に求められるリチウムイオン二次電池用負極に適用できる。
10    負極
1     負極材層
2     負極集電体
20    正極
3     正極材層
4     正極集電体
30    セパレータ
40    積層体
100   捲回体
11、21 端子
 

Claims (8)

  1.  リチウムイオン二次電池に用いられる負極であって、
     主として炭素材で構成された負極材層と、
     負極集電体との積層体で構成され、
     前記負極材層が乾燥状態における負極の限界曲率半径が15mm以下であることを特徴とするリチウムイオン二次電池用負極。
  2.  前記炭素材は、ハードカーボンを含む請求項1に記載のリチウムイオン二次電池用負極。
  3.  前記炭素材中における前記ハードカーボンの含有量は、5~45重量%である請求項2に記載のリチウムイオン二次電池用負極。
  4.  以下の条件(A)~(E)のもと、陽電子消滅法により測定した前記ハードカーボンの陽電子寿命が370ピコ秒以上、480ピコ秒以下であり、
    (A)陽電子線源:            電子加速器を用いて電子・陽電子対から陽電子を発生
    (B)ガンマ線検出器:        BaFシンチレーターおよび光電子増倍管
    (C)測定温度及び雰囲気:    25℃、真空中
    (D)消滅γ線カウント数:    3×10以上
    (E)陽電子ビームエネルギー:10keV
     かつ、X-ray  Photoelectron  Spectroscopy(XPS法)により測定した285eV付近に認められるピークの半値幅が0.8eV以上、1.8eV以下である請求項1ないし3のいずれか1項に記載のリチウムイオン二次電池用負極。
  5.  前記炭素材は、黒鉛を含む請求項1ないし4のいずれか記載のリチウムイオン二次電池用負極。
  6.  前記黒鉛の含有量は、55~95重量%である請求項5に記載のリチウムイオン二次電池用負極。
  7.  前記炭素材は、ハードカーボンと炭素材とを含み、
     前記黒鉛の含有量をA[重量%]、前記ハードカーボンの含有量をB[重量%]としたとき、1.2≦A/B≦19の関係を満足する請求項1ないし6のいずれか1項に記載のリチウムイオン二次電池用負極。
  8.  請求項1ないし7のいずれか1項に記載のリチウムイオン二次電池用負極と、セパレータと、リチウムイオン二次電池用正極と、が積層した積層体とを捲回した捲回体と、
     電解質と、を有することを特徴とするリチウムイオン二次電池。
PCT/JP2012/074826 2011-10-05 2012-09-27 リチウムイオン二次電池用負極およびリチウムイオン二次電池 WO2013051444A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020147008046A KR101589842B1 (ko) 2011-10-05 2012-09-27 리튬 이온 2차 전지용 부극 및 리튬 이온 2차 전지
US14/349,147 US20140242434A1 (en) 2011-10-05 2012-09-27 Negative electrode for lithium ion secondary batteries and lithium ion secondary battery
EP12838909.5A EP2765635A1 (en) 2011-10-05 2012-09-27 Negative electrode for lithium ion secondary batteries, and lithium ion secondary battery
CN201280046883.9A CN103828093A (zh) 2011-10-05 2012-09-27 锂离子二次电池用负极及锂离子二次电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-220974 2011-10-05
JP2011220974A JP2013080659A (ja) 2011-10-05 2011-10-05 リチウムイオン二次電池用負極およびリチウムイオン二次電池

Publications (1)

Publication Number Publication Date
WO2013051444A1 true WO2013051444A1 (ja) 2013-04-11

Family

ID=48043605

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/074826 WO2013051444A1 (ja) 2011-10-05 2012-09-27 リチウムイオン二次電池用負極およびリチウムイオン二次電池

Country Status (7)

Country Link
US (1) US20140242434A1 (ja)
EP (1) EP2765635A1 (ja)
JP (1) JP2013080659A (ja)
KR (1) KR101589842B1 (ja)
CN (1) CN103828093A (ja)
TW (1) TW201334268A (ja)
WO (1) WO2013051444A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140227522A1 (en) * 2011-09-09 2014-08-14 Sumitomo Bakelite Company Limited Carbon material for lithium ion secondary battery, negative electrode material for lithium ion secondary battery and lithium ion secondary battery
JP6064825B2 (ja) * 2013-07-26 2017-01-25 住友電気工業株式会社 ナトリウム溶融塩電池
US10693183B2 (en) * 2015-04-09 2020-06-23 Battelle Memorial Institute Ether-based electrolyte for Na-ion battery anode
CN115148951A (zh) * 2021-03-31 2022-10-04 宁德新能源科技有限公司 电化学装置及电子装置
CN115259134B (zh) * 2022-08-30 2024-09-24 山东零壹肆先进材料有限公司 沥青基交联法制备的硬碳负极材料及其制备方法和应用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07192724A (ja) * 1993-06-03 1995-07-28 Sony Corp 非水電解液二次電池
JPH1092428A (ja) * 1996-09-12 1998-04-10 Toshiba Corp 非水電解液二次電池
JPH11250909A (ja) * 1998-02-27 1999-09-17 Sanyo Electric Co Ltd リチウム二次電池
JP2001357888A (ja) * 2000-06-14 2001-12-26 Shin Kobe Electric Mach Co Ltd 円筒形リチウム二次電池
JP2002124256A (ja) * 2000-10-12 2002-04-26 Mitsubishi Gas Chem Co Inc 非水溶媒二次電池
JP2002270159A (ja) * 2001-03-09 2002-09-20 Sony Corp 電 池
JP2004319311A (ja) 2003-04-17 2004-11-11 Shin Kobe Electric Mach Co Ltd 捲回式円筒型リチウムイオン電池
JP2008287936A (ja) * 2007-05-15 2008-11-27 Asahi Kasei Chemicals Corp 電極の製造方法
WO2011064936A1 (ja) * 2009-11-25 2011-06-03 住友ベークライト株式会社 リチウムイオン二次電池用炭素材、リチウムイオン二次電池用負極材およびリチウムイオン二次電池

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5916707A (en) * 1995-11-15 1999-06-29 Sony Corporation Nonaqueous-electrolyte secondary battery and battery case for limiting expansion thereof due to internal pressure
JP4379925B2 (ja) * 1998-04-21 2009-12-09 住友金属工業株式会社 リチウムイオン二次電池の負極材料に適したグラファイト粉末
US6413486B2 (en) * 1998-06-05 2002-07-02 Matsushita Electric Industrial Co., Ltd. Nonaqueous secondary battery, constituent elements of battery, and materials thereof
JP5577565B2 (ja) * 2006-09-19 2014-08-27 ソニー株式会社 リチウムイオン二次電池

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07192724A (ja) * 1993-06-03 1995-07-28 Sony Corp 非水電解液二次電池
JPH1092428A (ja) * 1996-09-12 1998-04-10 Toshiba Corp 非水電解液二次電池
JPH11250909A (ja) * 1998-02-27 1999-09-17 Sanyo Electric Co Ltd リチウム二次電池
JP2001357888A (ja) * 2000-06-14 2001-12-26 Shin Kobe Electric Mach Co Ltd 円筒形リチウム二次電池
JP2002124256A (ja) * 2000-10-12 2002-04-26 Mitsubishi Gas Chem Co Inc 非水溶媒二次電池
JP2002270159A (ja) * 2001-03-09 2002-09-20 Sony Corp 電 池
JP2004319311A (ja) 2003-04-17 2004-11-11 Shin Kobe Electric Mach Co Ltd 捲回式円筒型リチウムイオン電池
JP2008287936A (ja) * 2007-05-15 2008-11-27 Asahi Kasei Chemicals Corp 電極の製造方法
WO2011064936A1 (ja) * 2009-11-25 2011-06-03 住友ベークライト株式会社 リチウムイオン二次電池用炭素材、リチウムイオン二次電池用負極材およびリチウムイオン二次電池

Also Published As

Publication number Publication date
CN103828093A (zh) 2014-05-28
EP2765635A1 (en) 2014-08-13
US20140242434A1 (en) 2014-08-28
KR101589842B1 (ko) 2016-01-28
KR20140056363A (ko) 2014-05-09
JP2013080659A (ja) 2013-05-02
TW201334268A (zh) 2013-08-16

Similar Documents

Publication Publication Date Title
JP5477391B2 (ja) リチウムイオン二次電池用炭素材、リチウムイオン二次電池用負極材およびリチウムイオン二次電池
WO2013035859A1 (ja) リチウムイオン二次電池用炭素材、リチウムイオン二次電池用負極材およびリチウムイオン二次電池
WO2013136747A1 (ja) リチウムイオン二次電池用炭素材、リチウムイオン二次電池用負極材およびリチウムイオン二次電池
JP5454272B2 (ja) リチウムイオン二次電池用炭素材、リチウムイオン二次電池用負極材およびリチウムイオン二次電池
JP5440308B2 (ja) リチウムイオン二次電池用炭素材、リチウムイオン二次電池用負極材およびリチウムイオン二次電池
WO2013051444A1 (ja) リチウムイオン二次電池用負極およびリチウムイオン二次電池
JP5831110B2 (ja) リチウムイオン二次電池用炭素材、リチウムイオン二次電池用負極材およびリチウムイオン二次電池
JP2013222550A (ja) 負極用材料、負極およびリチウムイオン二次電池
JP5365598B2 (ja) リチウムイオン二次電池用炭素材、リチウムイオン二次電池用負極材およびリチウムイオン二次電池
JP5561225B2 (ja) リチウムイオン二次電池用炭素材、リチウムイオン二次電池用負極材およびリチウムイオン二次電池
JP5838673B2 (ja) リチウムイオン二次電池用炭素材、リチウムイオン二次電池用負極材およびリチウムイオン二次電池
JP5961956B2 (ja) リチウムイオン二次電池用炭素材、リチウムイオン二次電池用負極材およびリチウムイオン二次電池
JP5862175B2 (ja) リチウムイオン二次電池用負極の製造方法
JP5561188B2 (ja) リチウムイオン二次電池用負極合剤、リチウムイオン二次電池用負極、およびリチウムイオン二次電池
JP5447287B2 (ja) リチウムイオン二次電池用炭素材、リチウムイオン二次電池用負極材およびリチウムイオン二次電池
JP2013218855A (ja) 負極用炭素材、負極活物質、負極およびリチウムイオン二次電池
WO2013042223A1 (ja) リチウムイオン二次電池用炭素材、リチウムイオン二次電池用負極材およびリチウムイオン二次電池
JP2013222551A (ja) 負極用材料、負極およびリチウムイオン二次電池
JP2013218856A (ja) 負極用材料、負極およびリチウムイオン二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12838909

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147008046

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14349147

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012838909

Country of ref document: EP