TW201334268A - 鋰離子二次電池用負極及鋰離子二次電池 - Google Patents

鋰離子二次電池用負極及鋰離子二次電池 Download PDF

Info

Publication number
TW201334268A
TW201334268A TW101135698A TW101135698A TW201334268A TW 201334268 A TW201334268 A TW 201334268A TW 101135698 A TW101135698 A TW 101135698A TW 101135698 A TW101135698 A TW 101135698A TW 201334268 A TW201334268 A TW 201334268A
Authority
TW
Taiwan
Prior art keywords
negative electrode
secondary battery
lithium ion
ion secondary
resin
Prior art date
Application number
TW101135698A
Other languages
English (en)
Inventor
Tatsuro Sasaki
Yuichi Ichikawa
Original Assignee
Sumitomo Bakelite Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co filed Critical Sumitomo Bakelite Co
Publication of TW201334268A publication Critical patent/TW201334268A/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0431Cells with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本發明提供鋰離子二次電池之負極,以做出具穩定輸出、電容量等特性之鋰離子二次電池,以及提供鋰離子二次電池,該電池具備穩定輸出、電容量等特性。該鋰離子二次電池用負極,為使用於鋰離子二次電池之負極,係由以碳材料為主之負極材層與負極集電體之積層體構成,該負極材層於乾燥狀態之負極的極限曲率半徑為15mm以下為其特徵,該碳材料中之硬碳的含量為5~45重量%為佳。

Description

鋰離子二次電池用負極及鋰離子二次電池
本發明係關於鋰離子二次電池用負極及鋰離子二次電池。
本申請案基於2011年10月5日於日本申請之2011-220974號,主張優先權,且在此引用該內容。
至今之鋰離子二次電池之負極皆使用碳材料,其原因為進行充放電循環時,使用碳材料之負極上亦不易析出樹枝狀鋰結晶(lithium dendrite),進而能保證安全性。
另,該鋰離子二次電池一般係由正極、負極、分隔件積層成之積層體經卷繞後成為捲繞體再插入電池罐中,注入電解液後封裝而成(例如,參照專利文獻1)。該構造之鋰離子二次電池中,卷繞之圈數越多,電解質與正負極之接觸面積越大,以達到提升電池電容量及輸出之目的。
但是,在卷繞時所施加於正負極之應力會產生構成各極之材料(活性物質)剝落之問題,且該剝落之材料貫穿分隔件後,除了產生短路,剝落物亦會使得電池特性下降的問題產生;特別的是,該傾向容易發生在負極上,而成為一大問題。
專利文獻1:日本特開2004-319311號公報
本發明之目的在於提供一種鋰離子二次電池之負極,其可做出具穩定輸出、電容量等特性之鋰離子二次電池, 並提供一種鋰離子二次電池,該電池具備穩定輸出、電容量等特性。
藉由下列(1)~(8)所記載之本發明,遂能達成該目的。
(1)一種鋰離子二次電池用負極,係由負極材層與負極集電體之積層體構成,該負極材層主要由碳材料構成且於乾燥狀態之負極的極限曲率半徑為15mm以下。
(2)如第1項之鋰離子二次電池用負極,該碳材料包含硬碳。
(3)如第2項之鋰離子二次電池用負極,該碳材料中之硬碳的含量為5~45重量%。
(4)如第1至3項中任一項之鋰離子二次電池用負極,利用正子消滅法(Positron annihilation),於以下(A)~(E)條件下測量上述之硬碳,其正子壽命在370皮秒以上,480皮秒以下。
(A)正子源:係利用電子加速器使電子‧正子對生成正子
(B)伽瑪射線偵測器:BaF2閃爍偵檢器及光電倍增管
(C)測量溫度及環境:25℃、真空中
(D)消滅伽瑪射線計算數:3×106以上
(E)正子束能量:10keV
且,由X射線光電子能譜(X-ray Photoelectron Spectroscopy,XPS法)測量於285eV附近確認到之峰值其半高寬在0.8eV以上,1.8eV以下。
(5)如第1至4項中任一項之鋰離子二次電池用負極, 該碳材料包含石墨。
(6)如第5項之鋰離子二次電池用負極,該碳材料之石墨的含量為55~95重量%。
(7)如第1至6項中任一項之鋰離子二次電池用負極,其中,該碳材料包含硬碳與石墨,當令該石墨之含量為A[重量%]、該硬碳之含量為B[重量%]時,該鋰離子二次電池用負極滿足1.2 A/B 19關係。
(8)一種鋰離子二次電池,係具有: 由第1至7項中任一項之鋰離子二次電池用負極、分隔件、鋰離子二次電池用正極積層成之積層體經卷繞成之捲繞體、與電解質。
本發明可提供一種鋰離子二次電池之負極,其能做出具穩定輸出、電容量等特性之鋰離子二次電池,並可提供一種鋰離子二次電池,該電池具備穩定輸出、電容量等特性。
以下,基於圖面說明本發明之實施形態。
《鋰離子二次電池用負極》
首先,說明關於本發明之鋰離子二次電池用負極。
圖1係表示本發明之鋰離子二次電池用負極之一例的截面圖,圖2係表示消滅伽瑪射線計算數與正子消滅時間之關係圖。
如圖1所示,本實施形態之鋰離子二次電池用負極(以下簡稱為負極)10為兩個負極材層1與該兩個負極材層1所 夾持之負極集電體2積層成之積層體所構成。
負極材層1係主要由碳材料所構成之層。
負極集電體2,例如,為銅箔或鎳箔等構成。
另,該鋰離子二次電池一般係由正極、負極、分隔件積層成之積層體經卷繞後成為捲繞體再插入電池罐中,注入電解液後封裝而成。該構造之鋰離子二次電池中,卷繞之圈數越多,電解質與正負極之接觸面積越大,以達到提升電池電容量及輸出之目的。
但是,在卷繞時所施加於正負極上之應力會產生構成各極之材料(活性物質)剝落之問題,且剝落之材料貫穿分隔件後,除了產生短路,剝落物亦會使得電池特性下降的問題產生;特別的是,該傾向容易發生在負極上,而成為一大問題。
對於此,本發明之鋰離子二次電池用負極具有之特徵為,其負極材層在乾燥狀態時之極限曲率半徑在15mm以下,藉由具有該特徵,於鋰離子二次電池製造時,在卷繞之際,可有效地防止負極材層(負極材)之剝離,故可防止短路、特性之下降,而可製造出具備穩定輸出、電容量等特性之鋰離子二次電池。
且在本發明中,極限曲率半徑為15mm以下,但10mm以下為佳,2mm以下更佳,據此,本發明之效果可更顯著。相對於此,若極限曲率半徑超越上述上限值,於卷繞時負極材層或負極集電體會產生損傷,而有會發生短路或特性之下降的情況。
於此,極限曲率半徑係指,將負極依圓柱纏繞一周(360°)時,負極材層及負極集電體無產生層間剝離或損傷等異常之圓柱的最小半徑。
又,極限曲率半徑之測量係於負極材層為乾燥狀態下進行測量,而乾燥狀態之負極材層具體而言係指,負極材層經130℃、30分鐘的乾燥前後確認無重量變化之狀態。
構成該負極材層之主要材料係使用碳材料。
作為碳材料,可列舉如硬碳(難石墨化之碳)、石墨(graphite)等。
尤其,併用硬碳與石墨作為碳材料較佳,因此具有高充放電效率的同時,亦可提升循環時之穩定性及改善大電流之輸出入特性。又,藉由併用硬碳與石墨,可更縮小極限曲率半徑。而可做出具備更穩定輸出、電容量等特性之鋰離子二次電池。
以下說明各成分 (石墨)
石墨是碳的一種同素異形體,由六碳環連成之層而形成層狀格子之六方晶系,為一種六角板狀結晶之物質。
將石墨(graphite)作為碳材料使用之場合,充放電效率(放電容量/充電容量)可得到提升。
鋰離子二次電池用碳材料之石墨的含量以55~95重量%為佳,60~85重量%更佳,石墨的含量若為上述範圍,則為高充放電效率者的同時,亦可提升循環時之穩定性及改善大電流之輸出入特性。相對於此,石墨之含量若未達上 述之下限值,則無法得到足夠地充放電效率。另一方面,石墨之含量若超過上述之上限值,則循環穩定性及大電流之輸出入特性無法得到充分地改善效果。
(硬碳)
硬碳(難石墨化之碳)係指不易轉變成石墨結晶構造之高分子經高溫燒成後所得到之碳材料,為一種非晶質(amorphous)物質。換言之,硬碳係指可由樹脂或樹脂組成物經碳化處理後所得到之碳材料。
將硬碳作為碳材料使用之情形時,可提高循環穩定性、改善大電流輸出入特性。
鋰離子二次電池用碳材料中之石墨的含量以5~45重量%為佳,15~40重量%更佳。藉此可不損失優異的充放電效率,更有效提高循環穩定性及大電流輸出入特性。
併用石墨與硬碳之情形時,當令該石墨之含量為A[重量%]、該硬碳之含量為B[重量%]時,滿足1.2 A/B 19之關係為佳,滿足1.5 A/B 5之關係更佳。藉由滿足該關係,可不損失優異的充放電效率,更有效提高循環穩定性及大電流輸出入特性。
成為硬碳之原材料之樹脂或包含樹脂之樹脂組成物,並不特別限定,例如:熱硬化性樹脂、熱可塑性樹脂、或是製造乙烯時副生成之石油系之焦油(tar)及瀝青(pitch)、煤炭化(coal carbonization)生成之煤焦油(coal tar)、煤焦油中低沸點成分經蒸餾除去後之重質成分或瀝青、由煤的液化得到之焦油及瀝青般之石油系或是煤系之焦油或瀝青,進 而可含有上述之焦油、瀝青等經交聯處理後之物等,且亦可從該等中組合一種或兩種以上來使用。
又,如之後所述,樹脂組成物將上述樹脂作為主成分的同時,可一併含有硬化劑、添加劑等,進而亦可適當實施氧化等交聯處理等。
熱硬化樹脂不特別限定,例如可列舉:清漆(novolac)型酚醛樹脂、可溶型酚醛樹脂等之酚醛樹脂、雙酚型環氧樹脂、清漆型酚醛環氧樹脂等之環氧樹脂、三聚氰胺樹脂、尿素樹脂、苯胺樹脂、氰酸酯樹脂、呋喃樹脂、酮樹脂、不飽和聚酯樹脂、胺基甲酸酯樹脂等。又,該等藉多種成分而改質之改質物亦可使用。
又,熱可塑性樹脂並不被特別限定,例如可列舉:聚乙烯、聚苯乙烯、聚丙烯腈、丙烯腈-苯乙烯(AS)樹脂、丙烯腈-丁二烯-苯乙烯(ABS)樹脂、聚丙烯、氯乙烯、甲基丙烯酸樹脂、聚對苯二甲酸乙二酯、聚醯胺、聚碳酸酯、聚縮醛、聚苯醚、聚對苯二甲酸丁二酯、聚苯硫醚、聚碸、聚醚碸、聚醚醚酮、聚醚醯亞胺、聚醯胺醯亞胺、聚醯亞胺、聚鄰苯二甲醯胺等。
特別是作為成為用於硬碳的主成分之樹脂,以熱硬化性樹脂為佳,藉此可使硬碳之殘碳率更高。
尤其,即便於在熱硬化性樹脂中,較佳也是選自清漆型酚醛樹脂、可溶型酚醛樹脂、三聚氰胺樹脂、呋喃樹脂,及苯胺樹脂,及該等之改質物者。藉此能擴大碳材料之設計自由度,可以低價格製造。且可進而提高循環穩定性、 大電流之輸出入特性。
又,於使用熱硬化性樹脂之情況時可併用其之硬化劑。
並不特別限定所使用之硬化劑,例如:清漆型酚醛樹脂的情況時可能夠使用環六亞甲四胺、可溶型酚醛樹脂、聚縮醛、聚甲醛等。且環氧樹脂的情況下可使用脂肪族多胺、芳香族多胺等多胺化合物、酸酐、咪唑化合物、二氰二胺、清漆型酚醛樹脂、雙酚型酚醛樹脂、可溶型酚醛樹脂等、也可使用周知之環氧樹脂硬化劑。
另外,即使為通常併用一定量硬化劑之熱硬化樹脂,在本實施形態所使用之樹脂組成物中,硬化劑較通常使用量為少,或是可以不併用硬化劑的方式來使用。
又,作為硬碳之原材料的樹脂組成物中,上述成分以外,可配合添加劑。
不特別限定在此使用之添加劑,例如可列舉:經200~800℃碳化處理之碳材料前驅物、有機酸、無機酸、含氮化合物、含氧化合物、芳香族化合物、及非鐵金屬元素等。視使用之樹脂的種類或性狀等,可於該等添加劑中使用1種或組合2種以上來使用。
作為硬碳之原材料所使用的樹脂,包含後述之含氮樹脂類作為主成分樹脂亦可。且主成分樹脂不包含含氮樹脂類時,至少包含1種以上之含氮化合物作為主成分樹脂以外的成分亦可,及在包含含氮樹脂類作為主成分樹脂的同時,包含含氮化合物作為主成分樹脂以外的成分亦可。可藉由將此樹脂碳化處理來得到含有氮之硬碳。若硬碳中包 含氮,則藉由氮具有之陰電性,可賦予硬碳(鋰離子二次電池用碳材料)適宜的電特性。藉此促進鋰離子之吸收、放出,而可賦予高充放電特性。
於此,可例舉以下作為含氮樹脂類者。
作為熱硬化性樹脂可列舉:三聚氰胺樹脂、尿素樹脂、苯胺樹脂、氰酸酯樹脂、胺基甲酸酯樹脂等、經胺等之含氮成分改質之酚醛樹脂、環氧樹脂等。
作為熱可塑性樹脂可列舉:聚丙烯腈、丙烯腈-苯乙烯(AS)樹脂、丙烯腈-丁二烯-苯乙烯(ABS)樹脂、聚醯胺、聚醚醯亞胺、聚醯胺亞胺、聚醯亞胺、聚鄰苯二甲醯胺等。
又,可例舉以下作為含氮樹脂以外之樹脂者。
作為熱硬化性樹脂可列舉:酚醛樹脂、環氧樹脂、呋喃樹脂、不飽和聚酯樹脂等。
作為熱可塑性樹脂可列舉:聚乙烯、聚苯乙烯、聚丙烯、氯乙烯、甲基丙烯酸樹脂、聚對苯二甲酸乙二酯、聚碳酸酯、聚縮醛、聚苯醚、聚對苯二甲酸丁二酯、聚苯硫醚、聚碸、聚醚碸、聚醚醚酮等。
又,使用含氮化合物作為主成分樹脂以外之成分的情況,該種類並不特別限定,例如,為清漆型酚醛樹脂之硬化劑的環六亞甲四胺、為環氧樹脂的硬化劑之脂肪族多胺、芳香族多胺、二氰二胺等之外,即使是硬化劑成分以外,亦可使用無硬化劑功能之胺化合物、銨鹽、硝酸鹽、硝基化合物等含有氮之化合物。
作為上述之含氮化合物,無論是主成分樹脂中包含含氮樹脂類的情況或是不包含的情況下,使用1種亦可,併用2種以上亦可。
作為硬碳之原材料所使用的樹脂組成物或是樹脂之氮含量雖不特別限定,但5~65重量%為佳,10~20重量%更佳。
藉由進行該樹脂組成物或樹脂之碳化處理所得的硬碳中之碳原子含量為95wt%以上為佳,且氮原子含量為0.5~5wt%為佳。
藉該氮原子在0.5wt%以上,特別是含有1.0wt%以上時,因氮具有之陰電性,可賦予硬碳適宜的電特性。藉此促進鋰離子之吸收、放出,而可賦予高充放電特性。
又藉由使氮原子在5wt%以下,特別是3wt%以下時,賦予硬碳之過強電性被抑制,防止引起吸收之鋰離子電吸附於氮原子。藉此可抑制不可逆容量之增加,而可得到高充放電特性。
除了適當設定上述樹脂組成物或樹脂中的氮含量之外,藉由適當設定樹脂組成物或樹脂之碳化條件、施行碳化處理前之硬化處理或預碳化處理,可調整硬碳中的氮含量。
就得到上述氮含量之碳材料的方法而言,例如有以下方法:使樹脂組成物或樹脂中之氮含量為預定值,對此作碳化處理時的條件,特別是最終溫度的調整之方法。
作為硬碳之原材料所使用的樹脂組成物之調製方法並 不特別限定,例如可利用下述方法來調製,將上述主成分樹脂與其以外的成分依預定的比率配合、將該等溶融混合之方法、將該等成分在溶劑中溶解後混合之方法、或是將這些成分粉碎後混合之方法等。
在本說明書中,上述氮含量係利用熱傳導係數法測量者。
本方法為將測量試料利用燃燒法後使之轉換成單純氣體(CO2、H2O、N2)之後,將氣體化試料均質化後令其通過管柱者。藉此將這些氣體階段性分離,從各自的熱傳導係數中,可測量碳、氫及氮含量。
另,本發明中為使用珀金埃爾默公司製‧元素分析測量裝置「PE2400」。
又,本發明所使用之硬碳較佳為藉由正子消滅法測得之正子壽命於370皮秒以上480皮秒以下者,380皮秒以上460皮秒以下者更佳。
由正子消滅法測得之正子壽命於370皮秒,以上480皮秒以下的情況,如之後所述,硬碳上會形成鋰易於出入之大小的空隙,能夠大量提高鋰離子二次電池用碳材料之充電容量、放電容量。
另,藉由以下條件之正子消滅法測量正子壽命。
(A)正子源:係利用電子加速器使電子‧正子對生成正子
(B)伽瑪射線偵測器:BaF2閃爍偵檢器及光電倍增管
(C)測量溫度及環境:25℃、真空中
(D)消滅伽瑪射線計算數:3×106以上
(E)正子束能量:10keV
且,由X射線光電子能譜(XPS法)測量於285eV附近確認到之峰值其半高寬在0.8eV以上,1.8eV以下。
在此說明正子壽命與空隙大小之關係。
正子壽命法為,計算正子(e+)射入試料之後到正子消滅為止之時間,為一種空隙大小之測量方法。
正子為電子之反物質,具有與電子同樣之靜止質量但為正電荷。
已知正子若射入物質中,與電子成對(正子-電子對(正負電子偶)),之後會消滅,若對碳材料打入正子,正子(e+)與高分子中被趕出之電子的一個結合後形成正負電子偶。正負電子偶被捕捉於高分子材料中電子密度低之部分,也就是高分子中局部空隙,與從空隙璧出來之電子雲重疊後消滅。當正負電子偶存在於高分子中空隙時,該空隙的大小與正負電子偶之消滅壽命有著反比之關係,即若空隙小則正負電子偶與周圍電子之重疊變大,正子消滅壽命變短,另一方面,若空隙大則正負電子偶與空隙壁漏出之其他電子重疊後消滅之機率變低,正負電子偶的消滅壽命變長;因此,藉由測量正負電子偶之消滅壽命而能夠估計碳材料中之空隙大小。
如上述所述,射入碳材料之正子在失去能量後,與電子形成正負電子偶後消滅,此時從碳材料會放出伽瑪射線。
因此,放出之伽瑪射線成為測量之終止訊號。
在正子消滅壽命的測量中,經常作為正子源之電子加速器或通用之物質為放射性同位元素22 Na22 Na22 Ne發生β+衰變時,會同時放出正子及1.28MeV之伽瑪射線。射入碳材料中之正子經消滅過程後放出511keV之伽瑪射線,因此以1.28MeV之伽瑪射線設為開始訊號,以511keV之伽瑪射線設為終止訊號,只要量測兩者的時間差則可得到正子之消滅壽命;具體而言,如圖2所示,得到正子壽命光譜。該正子壽命光譜之趨勢A表示正子壽命,且從正子壽命光譜能了解碳材料之正子壽命。
且,使用電子加速器作為正子源的情況下,藉由電子束照射鉭或鎢所構成之靶材所產生之制動輻射而引發電子‧正子對的生成,進而生成正子;於電子加速器的情況,正子束射入試料之時間點做為測量開始點(相當於上述22 Na之開始訊號),終止訊號則與22 Na之情形同樣之原理來實施測量。
由正子消滅法所測量到之正子壽命未滿370皮秒的情況時,空孔大小過小,不利於鋰離子之吸入、放出。且,經由正子消滅法測量之正子壽命若超過480皮秒,雖鋰吸入量增加,但因電解液等其他物質的侵入使靜電容量增加,藉此推測會不利於鋰之放出。
且,硬碳由X射線光電子能譜法(XPS法)測量於285eV附近確認到之峰值其半高寬在0.8eV以上,1.8eV以下為佳,0.9eV以上1.6eV以下更佳。由XPS法測量於285eV附近確認到之峰值其半高寬在1.8eV以下的情形時,存在於 硬碳表面之元素幾乎都是由C-C所鍵結者,且其狀態為實質上不存在會與鋰離子等離子傳導相關活性物質反應之官能基或雜質。且於285eV附近確認到之峰值其半高寬在0.8eV以上的情形時,不會產生過度結晶化等問題,因此,如本碳材料由XPS法測量於285eV附近確認到之峰值其半高寬在0.8eV以上,1.8eV以下之情形時,不可逆容量所產生之充放電效率之下降被抑制。
接下來,說明XPS測量與表面狀態之關係。
XPS測量法為,以X光照射固態試料表面,藉此測量自被激發之原子放出的光電子之運動能量,以此求出原子內之電子結合能(視原子不同而有固定值),而鑑定出於表面存在之構成元素之方法。
FT-IR法雖亦能分析表面狀態,鑑定存在於從表面起算約1μm之化學鍵結,相對於此,XPS測量法則可鑑定存在於從表面起算數Å之化學鍵結。因此為了鑑定離表面更近之官能基,較佳係使用XPS測量法。
且,硬碳使用自廣角X光繞射之Bragg式所計算出的(002)面的平均面間隔d002為3.4Å以上、3.9Å以下為佳。平均面間隔d002為3.4Å以上、特別是3.6Å以上的情況時,不易發生伴隨鋰離子吸入所引起之層間收縮、膨脹,故可抑制充放電循環性之下降。
另一方面,平均面間隔d002在3.9Å以下,特別是3.8Å以下的情形,鋰離子能夠平順地吸入、脫離,而可抑制充放電效率之下降。
進而,硬碳之c軸方向((002)面正交方向)之晶粒大小Lc在8Å以上、50Å以下為佳。
藉由使Lc為8Å以上,特別是9Å以上,則有形成能夠吸入、脫離鋰離子之碳層間空間,得到充足充放電容量之效果,使之50Å以下,特別是15Å以下時,可有抑制因鋰離子之吸入、脫離所造成的碳積層構造之崩壞或電解液之還原分解、或抑制充放電效率與充放電循環性之下降的效果。
Lc由下列方法所算出。
由X光繞射測量得到之光譜中的002面峰值之半高寬與繞射角代入Scherrer式而決定Lc。
Lc=0.94λ/(βcosθ) (Scherrer式)
Lc:晶粒大小
λ:於陰極輸出之特性X光Kα1之波長
β:峰值之半高寬(弧度(radian))
θ:光譜的反射角度
硬碳的X光繞射光譜中,由島津製作所製‧X光繞射裝置「XRD-7000」所測量,硬碳中,上述平均面間隔的測量方法如下。
由硬碳的X光繞射測量得到之光譜,平均面間隔d由以下之Bragg式算出。
λ=2dhklsinθ (Bragg式)(dhkl=d002)
λ:於陰極輸出之特性X光Kα1之波長
θ:光譜的反射角度
進而,利用BET多點法計算硬碳對氮吸附量而得到的比表面積為15m2/g以下、1m2/g以上為佳。
利用BET多點法計算氮吸附量而得到的比表面積為15m2/g以下時,可抑制碳材料與電解液的反應。
又,使BET多點法計算氮吸附量而得到的比表面積為1m2/g以上時,可得到適宜之電解液對碳材料的浸透性。
比表面積的計算方法如下。
由下列(1)式算出單一分子吸附量Wm,下列(2)式算出總表面積Stotal,下列(3)式求出比表面積S。
1/[W(Po/P-1)]=(C-1)/WmC(P/Po)/WmC‧‧(1)
式(1)中,P:吸附平衡時吸附質之氣壓、Po:於吸附溫度時吸附質之飽和蒸氣壓、W:於吸附平衡壓P時之吸附量、Wm單一分子層之吸附量、C:固體表面與吸附質相互作用之大小的關連常數(C=exp{(E1-E2)RT})[E1:第一層之吸附熱(kJ/mol)、E2:於吸附質的測量溫度時之液化熱(kJ/mol)]
Stotal=(WmNAcs)M‧‧‧‧‧‧‧‧‧(2)
式(2)中,N:亞佛加厥數、M:分子量、Acs:吸附斷面積
S=Stotal/w‧‧‧‧‧‧‧‧‧‧‧‧(3)
式(3)中,w=樣品重量(g)
如以上之硬碳能由樹脂或樹脂組合物為代表例經如下方式製造。
首先,製造將被碳化處理之樹脂或樹脂組成物。
用以調製樹脂組成物之裝置不特別限定,例如:進行熔融混合時的情況時可使用混練輥、單軸或二軸捏揉機等之混練裝置。又,進行溶解混合的情況時可使用亨舍爾混合機(Henschel mixer)、分散器等混合裝置。然後在進行粉碎混合的情況時,可使用如鎚碎機、噴射磨機等裝置。
如此而得到之樹脂組成物中,複數種類之成分僅以物理方式混合者亦可,藉由於調製樹脂組成物時之混合(攪拌、捏揉等)之際賦予的機械能及由其轉換而來之熱能,使其一部分產生化學反應者亦可。具體而言,藉由機械能之機械化學的反應、藉由熱能之化學反應亦可。
硬碳係指由上述之樹脂組成物或樹脂經碳化處理後而成之物。
於此並不特別限定碳化處理之條件,例如以1~200℃/小時從常溫昇溫,保持於800~3000℃、0.1~50小時,較佳為保持0.5~10小時。碳化處理之氣氛為氮氣、氦氣等不活性氣氛下,或是不活性氣體中存在有微量氧氣之實質上不活性氣氛,又或是還原氣體氣氛下進行為佳。藉此可抑制樹脂的熱分解(氧化分解),而得到希望之碳材料。
此碳化處理之溫度、時間等條件可依硬碳之特性作適當之調整。
又,為了得到XPS法測量於285eV附近確認到之峰值其半高寬在0.8eV以上,1.8eV以下之碳材料,可因應樹脂等來決定適宜條件,例如碳化處理時之溫度於1000℃以上、昇溫速度未滿200℃/小時為佳。
此,因硬碳表面之不活性官能基等,推測可得到XPS法測量於285eV附近確認到之峰值其半高寬在0.8eV以上,1.8eV以下之硬碳。
另,施行上述碳化處理前時,可施行預碳化處理。
於此不特別限定預碳化處理之條件,例如,可於200℃~600℃進行1~10小時。藉此於碳化處理前藉由施行預碳化處理而讓樹脂組成物或樹脂等不融化,在碳化處理步驟前對樹脂組成物或樹脂等施行粉碎處理的情況亦是,且能防止粉碎後之樹脂組成物或樹脂等於碳化處理時再熔合,可有效率地得到希望之碳材料。
此時,就用以獲得由正子消滅法測得之正子壽命在370皮秒以上,480皮秒以下之硬碳之方法之一例而言,例如可例舉在還原氣體、不活性氣體不存在之狀態下,施行預碳化處理。
又,當使用熱硬化性樹脂、聚合性高分子化合物作為硬碳製造用之樹脂時,於此預碳化處理之前,可對樹脂組成物或樹脂施行硬化處理。
不特別限定硬化處理方法,例如可藉由以下方法來進行:給予樹脂組成物可硬化反應之熱量以熱硬化之方法,或是併用樹脂與硬化劑之方法等。藉此,預碳化處理實質上能在固態下進行,故可在一定程度維持樹脂構造之狀態下進行碳化處理或預碳化處理、可控制硬碳之構造或特性。
另,施行上述碳化處理或預碳化處理之情況時,亦可於上述樹脂組成物中添加金屬、顏料、潤滑劑、抗靜電劑、 抗氧化劑等,以賦予碳材料希望之特性。
當施行上述硬化處理及/或預碳化處理的情況時,於其後、上述碳化處理前,先行粉碎處理物亦可。經此程序,碳化處理時之熱經歷的不均程度減少,可提高硬碳表面狀態的均一性。而且,處理物之操作性可較為良好。
進而,為了得到由正子消滅法測得之正子壽命在370皮秒以上、480皮秒以下之硬碳,例如,於碳化處理後亦可視需要在存在還原氣體或不活性氣體情況下,自然冷卻至800~500℃,其後以100℃/小時冷卻至成為100℃以下。
藉此能夠抑制硬碳因急速冷卻導致之破裂,可維持形成之空隙,因此維測可得到由正子消滅法測得之正子壽命在370皮秒以上、480皮秒以下之硬碳。
另,構成負極材層1之材料除了上述碳素材外,作為黏結劑可添加:包含聚乙烯、聚丙烯等之氟系高分子、聚偏二氟乙烯(PVDF)、羧甲基纖維素(CMC)、丁二烯橡膠、苯乙烯丁二烯橡膠(SBR乳膠)等橡膠狀高分子、聚醯亞胺等。
負極10能由下例方式製造來得到。
相對於上述鋰離子二次電池用碳材料100重量份,添加黏結劑:1~30重量份,及適量之調整黏度用溶劑(水、N-甲基-2-吡咯啶酮(N-methyl-2-pyrrolidone)、二甲基甲醯胺等)後混練成糊狀混合物,再經壓縮成形、滾筒成形等形成片狀、粒狀等而可得到負極材層1;然後將此所得之負極材層1與負極集電體2積層,藉此可得到負極10。
又,亦可相對於上述鋰離子二次電池用碳材料100重量份,添加黏結劑:1~30重量份,及適量之調整黏度用溶劑(水、N-甲基-2-吡咯啶酮、二甲基甲醯胺等)後混練成漿狀混合物並使用其作為負極材料,將此塗布並成形於負極集電體2,藉此可形成負極材層1來製造出負極10。
《捲繞體‧鋰離子二次電池》
接下來,說明使用有上述鋰離子二次電池用負極之捲繞體及鋰離子二次電池
圖3係表示應用在鋰離子二次電池之捲繞體的層構成之一例,圖4係表示構成鋰離子二次電池之捲繞體的一例之模式圖。
如圖3所示,捲回體100係由負極10與正極20與分隔件30積層而成之積層體40所構成,藉由此積層體經卷繞後形成之。
負極10如上所述,由兩個負極材層1與該兩個負極材層1所夾持之負極集電體2所構成。
正極20如圖3所示,具有正極材層3與正極集電體4,為兩個正極材層3夾持正極集電體4而成之積層體所構成。
並不特別限定構成正極材層3之正極材料,可使用例如,鋰鈷氧化物(LiCoO2)、鋰鎳氧化物(LiNiO2)、鋰錳氧化物(LiMn2O4)等之複合氧化物或聚苯胺、聚吡咯等導電高分子。
正極集電體4可使用如鋁箔。
然後於本實施形態之正極20可藉已知之正極之製造方 法製造。
於本實施形態,分隔件30係於負極10與正極20間設置一層,以及以卷繞時在積層體40上下面負極10與正極20不接觸的方式於積層體40之正極20側下方再設一層分隔件。
分隔件30並不被特別限定,可使用如聚乙烯、聚丙烯等之多孔質膜、不織布等。
又,如圖4所示,於負極10設有端子11,且正極20設有端子21。
而後,如圖4所示,將積層體40卷繞成捲繞體100。
將捲繞體100插入電池罐,注入電解質後進而封裝,藉此成為鋰離子二次電池,端子11側成為負極、端子21側成為正極。
電解質係使用在非水溶劑中溶有作為電解質之鋰鹽之物。
此非水溶劑可使用如碳酸丙烯酯、碳酸乙烯酯、γ-丁內酯等環狀酯類、碳酸二甲酯或碳酸二乙酯等鏈狀酯類、二甲氧乙烷等鏈狀醚類等之混合物等。
電解質可使用如LiClO4、LiPF6等鋰金屬鹽類、四烷銨鹽類等。又,上述鹽類亦可與聚環氧乙烷、聚丙烯腈等混合而作為固態電解質使用。
以上說明關於本發明之適宜實施形態,但本發明並不被此特別限定。
以下詳細說明基於本發明之實施例及比較例,但本發 明並不被此特別限定。又,各實施例、比較例中所示之「份」為「重量份」、「%」為「重量%」。
首先,說明於以下之實施例、比較例之測量方法。
1.由正子壽命法測量正子壽命之方法
使用正子‧正負電子偶壽命測量‧奈米空孔量測裝置(產業技術綜合研究所製),測量正子消滅時產生之電磁波(消滅伽瑪射線)而測出正子壽命。
具體如下:
(A)正子源:使用產業技術綜合研究所 計算邊界研究部門之電子加速器,由電子‧正子對產生出正子(前述之電子加速器以電子束照射靶材(鉭)引發電子‧正子對生成後產生正子)。
(B)伽瑪射線偵測器:BaF2閃爍偵檢器及光電倍增管
(C)測量溫度及環境:25℃、真空中
(D)消滅伽瑪射線計算數:3×106以上
(E)正子束能量:10keV
(F)試料大小:粉末以0.1mm之厚度塗布於試料片(鋁板)
2.表面狀態藉由XPS之分析
使用Escalab-220iXL(Thermo Fisher Scientific公司製),於下列之條件下實施量測而得到285eV附近確認到之峰值,其半高寬由下列計算方法所算出。
(測量條件)
X光源:Mg-Kα
輸出:12kV-10mA
(計算方法)
基於所得之光譜,依下列方式可求得峰值強度及半高寬。峰值強度之求得為從對象峰值兩端畫出基線,以從該基線至峰值頂點之強度為峰值強度;其原因在於,通常得到之光譜其基線會因測量環境或樣品之差異等而變化。另,於所得之光譜中,複數峰值重疊的情形時,由這些複數峰值之兩端畫出基線。又峰值之半高寬係以下述方式求得:與峰值頂點相距上述求得之峰值強度一半強度的點,從此點畫出平行於基線之線,再讀取其與峰值兩端之交點的能量即所求。
3.平均面間隔(d002),c軸方向之晶粒大小(Lc)
使用島津製作所製‧X光繞射裝置「XRD-7000」測量平均面間隔。
藉碳材料之X光繞射測量求出之光譜,平均面間隔d002由下列之Bragg式算出。
λ=2dhklsinθ (Bragg式)(dhkl=d002)
λ:於陰極輸出之特性X光Kα1之波長
θ:光譜的反射角度
又,Lc如下列方法所算出。
由X光繞射測量得到之光譜中的002面峰值之半高寬與繞射角代入Scherrer式而決定Lc。
Lc=0.94λ/(βcosθ) (Scherrer式)
Lc:晶粒大小
λ:於陰極輸出之X光Kα1之波長
β:峰值之半高寬(弧度)
θ:光譜的反射角度
4.比表面積
使用Yuasa公司製之Nova-1200裝置藉氮吸附之BET多點法來測量,具體地計算方法如前述之實施形態。
5.碳含量、氮含量 使用珀金埃爾默公司製‧元素分析測量裝置
「PE2400」測量;將測量試料利用燃繞法後使之轉換成CO2、H2O、N2之後,將氣體化試料均質化後令其通過管柱。藉此將這些氣體階段性分離,從各自的熱傳導係數中,可測量碳、氫及氮含量。
1)碳含量
所得之硬碳經110℃/真空中、3小時的乾燥處理後,使用元素分析測量裝置測量碳組成比例。
2)氮含量
所得之硬碳經110℃/真空中、3小時的乾燥處理後,使用元素分析測量裝置測量氮組成比例。
6.含水率即極限曲率半徑之測量 (1)評估用負極之製造
相對於各實施例、各比較例中得到之碳材料100份,添加作為結合劑(binder)之聚偏二氟乙烯(Poly vinylidene fluoride)10份以及適量作為稀釋溶劑之水並混合,調製漿狀之負極混合物。調製後之負極漿狀混合物塗布於18μm厚 之銅箔兩面,其後經110℃、1小時之真空乾燥。量測乾燥後之重量後再經130℃、30分鐘之乾燥。確認於130℃、30分鐘之乾燥前後無重量變化遂得評估用負極。負極材層之厚度為50μm。
(2)極限曲率半徑之測量
將得到之評估用負極捲繞於半徑為15mm、10mm、2mm之圓柱上,以目視方式觀察負極材層及負極集電體是否有層間剝離或損傷等異常。若無異常,則知極限曲率半徑為該圓柱之半徑以下。
極限曲率半徑為2mm以下之情形為A、大於2mm小於10mm之情形為B、大於10mm小於15mm之情形為C、大於15mm之情形為D。
二次電池評估用二極式鈕釦形電池
準備由各實施例、比較例中所得之負極。
正極使用鋰金屬於二極式鈕釦形電池中實施評估。電解液為使用體積比1:1之碳酸乙烯酯與碳酸二乙酯之混合液體,其中以1mol/L之濃度溶入過氯酸鋰者。
8.充電容量、放電容量、充放電效率 (1)充電容量、放電容量之評估
充電條件為以25mA/g之定電流充電至成為1mV後,保持1mV,衰減至1.25mA/g之電流後終止充電。又,放電條件之截止電位設為1.5V。
(2)充放電效率之評估
基於上述(1)所得之值代入下列式而算出。
充放電效率(%)=[放電容量/充電容量]×100
(3)60循環後之容量維持率的評估
上述(1)所得之充放電容量之值與反覆充放電60次後之充放電容量之比由下列方式算出。
60循環後之容量維持率(%)=[第60循環之放電容量/第1循環充電容量]×100
第2次循環之後的充放電條件為以250mA/g之定電流充電至成為1mV後,保持1mV,衰減至12.5mA/g之電流後終止充電。又,放電條件之截止電位設為1.5V。
(4)大電流特性
基於上述(1)所得之放電容量的值,於1小時放電結束之電流值定為1C,以1C之電流值放電所得之放電容量與5C之電流值放電所得之放電容量之比[5C放電容量/1C放電容量]作為大電流特性之指標。
9.實施例 (實施例1)
樹脂組成物之酚醛樹脂PR-217(住友bakelite股份有限公司製)由以下(a)~(f)之順序處理後得到硬碳。
(a)不進行置換還原氣體、置換不活性氣體、流動還原氣體、流動不活性氣體中任一種情況,以100℃/小時從室溫昇溫至500℃
(b)不進行置換還原氣體、置換不活性氣體、流動還原氣體、流動不活性氣體中任一種情況,500℃下經2小時去脂處理後冷卻
(c)經由振動球磨機進行微粉碎
(d)於不活性氣體(氮)置換及流動下,以100℃/小時從室溫昇溫至1200℃
(e)於不活性氣體(氮)流通下,1200℃下行8小時之碳化處理
(f)於不活性氣體(氮)流通下,自然冷卻至600℃後,以100℃/小時從600℃冷卻至100℃以下
使用研缽混合100重量份之石墨(中間相碳微球)與43重量份的所得之硬碳而得到碳材料。
(實施例2~5)
石墨與硬碳之含量如表1所示而變更之外,施予與前述實施例1同樣之步驟而得到碳材料。
(實施例6)
於實施例1中,使用苯胺樹脂(由以下方法合成者)取代酚醛樹脂。
100份之聚苯胺與697份之37%甲醛水溶液與2份之草酸倒入具有攪拌裝置及冷卻管之三口燒瓶,於100℃經3小時反應後脫水而得到110份之苯胺樹脂。所得之苯胺樹脂的重量平均分子量約為800。
由以上方法所得之100份的苯胺樹脂與10份之環六亞甲四胺經過粉碎混合所得之樹脂組成物經與實施例1同樣之步驟處理後而得到碳材料。
(實施例7)
與實施例6使用同樣之樹脂組成物。
又,於樹脂組成物之處理時,除了於實施例1的(d)、(e)之步驟改以如下處理以外,與實施例6施行相同處理而得到碳材料。
(d)於不活性氣體(氮)之置換及流動下,以100℃/小時從室溫昇溫至1100℃
(e)於不活性氣體(氮)流通下,1100℃下行8小時之碳化處理
(實施例8)
準備由石墨(中間相碳微球)構成之碳材料。
(實施例9)
準備由實施例1之硬碳構成之碳材料。
(比較例)
使用與實施例1相同之樹脂組成物。
又,於樹脂組成物之處理時,除了實施例1的(c)之步驟改以如下處理以外,與實施例1施行相同之處理而得到碳材料。
(c)經離心研磨機而粉碎
上述各實施例及比較例中之石墨的含量、硬碳的含量、硬碳之正子壽命、XPS、平均面間隔、晶粒大小、比表面積、碳含有率、氮含有率如表一所示。
又,使用各實施例、比較例中所得之碳材料作為負極的情況時,其充電容量、放電容量、充放電效率、負極材層之含水量、極限曲率半徑同表1所示。
由表1所了解到,於使用有本發明之鋰離子二次電池用負極之鋰離子二次電池中,於任何項目中都為發揮穩定之特性者。相對於此,於比較例中未得到充足地結果。
本發明為具備穩定輸出、容量等特性之鋰離子二次電池,及適用於該鋰離子二次電池所要求之鋰離子二次電池用負極。
10‧‧‧負極
1‧‧‧負極材層
20‧‧‧正極
3‧‧‧正極材層
4‧‧‧正極集電體
30‧‧‧分隔件
40‧‧‧積層體
100‧‧‧捲繞體
11、21‧‧‧端子
圖1係表示本發明之鋰離子二次電池用負極之一例的截面圖。
圖2係表示消滅伽瑪射線計算數與正子消滅時間之關係圖。
圖3係表示應用在鋰離子二次電池之捲繞體的層構成之一例。
圖4係表示構成鋰離子二次電池之捲繞體的一例之模式圖。

Claims (8)

  1. 一種鋰離子二次電池用負極,係由負極材層與負極集電體之積層體構成,該負極材層主要由碳材料構成,且於乾燥狀態之負極的極限曲率半徑為15mm以下。
  2. 如申請專利範圍第1項之鋰離子二次電池用負極,該碳材料包含硬碳。
  3. 如申請專利範圍第2項之鋰離子二次電池用負極,該碳材料中之硬碳的含量為5~45重量%。
  4. 如申請專利範圍第1至3項中任一項之鋰離子二次電池用負極,利用正子消滅法(Positron annihilation),於以下(A)~(E)條件下測量上述之硬碳,其正子壽命在370皮秒以上,480皮秒以下。(A)正子源:係利用電子加速器使電子‧正子對生成正子(B)伽瑪射線偵測器:BaF2閃爍偵檢器及光電倍增管(C)測量溫度及環境:25℃、真空中(D)消滅伽瑪射線計算數:3×106以上(E)正子束能量:10keV且,由X射線光電子能譜(XPS法)測量於285eV附近確認到之峰值其半高寬在0.8eV以上,1.8eV以下。
  5. 如申請專利範圍第1至4項中任一項之鋰離子二次電池用負極,該碳材料包含石墨。
  6. 如申請專利範圍第5項之鋰離子二次電池用負極, 該碳材料之石墨的含量為55~95重量%。
  7. 如申請專利範圍第1至6項中任一項之鋰離子二次電池用負極,其中,該碳材料包含硬碳與石墨,當令該石墨之含量為A[重量%]、該硬碳之含量為B[重量%]時,該鋰離子二次電池用負極滿足1.2 A/B 19關係。
  8. 一種鋰離子二次電池,係具有:由申請專利範圍第1至7項中任一項之鋰離子二次電池用負極、分隔件、鋰離子二次電池用正極積層成之積層體經卷繞成之捲繞體、與電解質。
TW101135698A 2011-10-05 2012-09-28 鋰離子二次電池用負極及鋰離子二次電池 TW201334268A (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011220974A JP2013080659A (ja) 2011-10-05 2011-10-05 リチウムイオン二次電池用負極およびリチウムイオン二次電池

Publications (1)

Publication Number Publication Date
TW201334268A true TW201334268A (zh) 2013-08-16

Family

ID=48043605

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101135698A TW201334268A (zh) 2011-10-05 2012-09-28 鋰離子二次電池用負極及鋰離子二次電池

Country Status (7)

Country Link
US (1) US20140242434A1 (zh)
EP (1) EP2765635A1 (zh)
JP (1) JP2013080659A (zh)
KR (1) KR101589842B1 (zh)
CN (1) CN103828093A (zh)
TW (1) TW201334268A (zh)
WO (1) WO2013051444A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140227522A1 (en) * 2011-09-09 2014-08-14 Sumitomo Bakelite Company Limited Carbon material for lithium ion secondary battery, negative electrode material for lithium ion secondary battery and lithium ion secondary battery
JP6064825B2 (ja) * 2013-07-26 2017-01-25 住友電気工業株式会社 ナトリウム溶融塩電池
US10693183B2 (en) * 2015-04-09 2020-06-23 Battelle Memorial Institute Ether-based electrolyte for Na-ion battery anode
CN115259134A (zh) * 2022-08-30 2022-11-01 山东零壹肆先进材料有限公司 沥青基交联法制备的硬碳负极材料及其制备方法和应用

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3430614B2 (ja) * 1993-06-03 2003-07-28 ソニー株式会社 非水電解液二次電池
US5916707A (en) * 1995-11-15 1999-06-29 Sony Corporation Nonaqueous-electrolyte secondary battery and battery case for limiting expansion thereof due to internal pressure
JPH1092428A (ja) * 1996-09-12 1998-04-10 Toshiba Corp 非水電解液二次電池
JPH11250909A (ja) * 1998-02-27 1999-09-17 Sanyo Electric Co Ltd リチウム二次電池
JP4379925B2 (ja) * 1998-04-21 2009-12-09 住友金属工業株式会社 リチウムイオン二次電池の負極材料に適したグラファイト粉末
US6413486B2 (en) * 1998-06-05 2002-07-02 Matsushita Electric Industrial Co., Ltd. Nonaqueous secondary battery, constituent elements of battery, and materials thereof
JP2001357888A (ja) * 2000-06-14 2001-12-26 Shin Kobe Electric Mach Co Ltd 円筒形リチウム二次電池
JP2002124256A (ja) * 2000-10-12 2002-04-26 Mitsubishi Gas Chem Co Inc 非水溶媒二次電池
JP2002270159A (ja) * 2001-03-09 2002-09-20 Sony Corp 電 池
JP4305035B2 (ja) 2003-04-17 2009-07-29 新神戸電機株式会社 捲回式円筒型リチウムイオン電池
JP5577565B2 (ja) * 2006-09-19 2014-08-27 ソニー株式会社 リチウムイオン二次電池
JP2008287936A (ja) * 2007-05-15 2008-11-27 Asahi Kasei Chemicals Corp 電極の製造方法
JP5477391B2 (ja) * 2009-11-25 2014-04-23 住友ベークライト株式会社 リチウムイオン二次電池用炭素材、リチウムイオン二次電池用負極材およびリチウムイオン二次電池

Also Published As

Publication number Publication date
US20140242434A1 (en) 2014-08-28
CN103828093A (zh) 2014-05-28
KR20140056363A (ko) 2014-05-09
JP2013080659A (ja) 2013-05-02
WO2013051444A1 (ja) 2013-04-11
EP2765635A1 (en) 2014-08-13
KR101589842B1 (ko) 2016-01-28

Similar Documents

Publication Publication Date Title
US9236603B2 (en) Carbon material for lithium ion secondary cell, negative electrode material for lithium ion secondary cell and lithium ion secondary cell
TWI557972B (zh) 鋰離子二次電池用碳材、鋰離子二次電池用負極材及鋰離子二次電池
US20150017539A1 (en) Carbon material for lithium ion secondary battery, negative electrode material for lithium ion secondary battery, and lithium ion secondary battery
JP5454272B2 (ja) リチウムイオン二次電池用炭素材、リチウムイオン二次電池用負極材およびリチウムイオン二次電池
JP5440308B2 (ja) リチウムイオン二次電池用炭素材、リチウムイオン二次電池用負極材およびリチウムイオン二次電池
TW201334268A (zh) 鋰離子二次電池用負極及鋰離子二次電池
JP5831110B2 (ja) リチウムイオン二次電池用炭素材、リチウムイオン二次電池用負極材およびリチウムイオン二次電池
JP5365598B2 (ja) リチウムイオン二次電池用炭素材、リチウムイオン二次電池用負極材およびリチウムイオン二次電池
JP5561225B2 (ja) リチウムイオン二次電池用炭素材、リチウムイオン二次電池用負極材およびリチウムイオン二次電池
US20140230240A1 (en) Method of producing lithium ion secondary battery
JP5838673B2 (ja) リチウムイオン二次電池用炭素材、リチウムイオン二次電池用負極材およびリチウムイオン二次電池
JP5862175B2 (ja) リチウムイオン二次電池用負極の製造方法
JP5961956B2 (ja) リチウムイオン二次電池用炭素材、リチウムイオン二次電池用負極材およびリチウムイオン二次電池
JP5561188B2 (ja) リチウムイオン二次電池用負極合剤、リチウムイオン二次電池用負極、およびリチウムイオン二次電池
JP2013218855A (ja) 負極用炭素材、負極活物質、負極およびリチウムイオン二次電池
JP2013222551A (ja) 負極用材料、負極およびリチウムイオン二次電池
JP2013218856A (ja) 負極用材料、負極およびリチウムイオン二次電池