WO2013047432A1 - リチウム二次電池 - Google Patents

リチウム二次電池 Download PDF

Info

Publication number
WO2013047432A1
WO2013047432A1 PCT/JP2012/074384 JP2012074384W WO2013047432A1 WO 2013047432 A1 WO2013047432 A1 WO 2013047432A1 JP 2012074384 W JP2012074384 W JP 2012074384W WO 2013047432 A1 WO2013047432 A1 WO 2013047432A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
current collector
lithium secondary
secondary battery
active material
Prior art date
Application number
PCT/JP2012/074384
Other languages
English (en)
French (fr)
Inventor
径 小林
福井 厚史
泰三 砂野
神野 丸男
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to US14/344,125 priority Critical patent/US20150044535A1/en
Priority to CN201280047432.7A priority patent/CN103843190B/zh
Publication of WO2013047432A1 publication Critical patent/WO2013047432A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0431Cells with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • H01M4/602Polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • H01M4/662Alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/102Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure
    • H01M50/107Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a lithium secondary battery.
  • lithium secondary batteries using silicon or a silicon alloy as a negative electrode active material are known.
  • Silicon or a silicon alloy exhibits a higher theoretical capacity than, for example, graphite. Therefore, the capacity of the lithium secondary battery can be increased by using silicon or a silicon alloy as the negative electrode active material.
  • the negative electrode active material that is alloyed with lithium such as silicon or silicon alloy
  • changes in volume during charge and discharge For this reason, there is a problem that stress is applied to the current collector during charge / discharge, and the current collector is deformed.
  • Patent Document 1 a tensile strength of 400 N / mm 2 or more, a proportional limit 160 N / mm 2 or more, an elastic modulus 1.1 N / mm 2 or more and the collector It has been proposed to use a current collector made of a copper alloy having a surface roughness Ra of 0.01 ⁇ m to 1 ⁇ m.
  • the lithium secondary battery may be deformed during charging and discharging.
  • the main object of the present invention is to provide a lithium secondary battery that is not easily deformed during charge and discharge.
  • the lithium secondary battery according to the present invention includes a spiral electrode body and a cylindrical battery container.
  • the battery container houses an electrode body.
  • the electrode body has a negative electrode, a positive electrode, and a separator.
  • the negative electrode has a negative electrode current collector and a negative electrode active material layer.
  • the negative electrode active material layer is disposed on the negative electrode current collector.
  • the negative electrode active material layer includes a negative electrode active material that is alloyed with lithium.
  • the positive electrode faces the negative electrode.
  • the separator is disposed between the negative electrode and the positive electrode.
  • FIG. 1 is a schematic cross-sectional view of a lithium secondary battery according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of a negative electrode according to an embodiment of the present invention.
  • FIG. 3 is a side view of a part of the lithium secondary battery manufactured in Experimental Example 11 after a charge / discharge test.
  • FIG. 4 is a side view of a part of the lithium secondary battery produced in Experimental Example 12 after a charge / discharge test.
  • FIG. 5 is a graph showing the relationship between the capacity charged per unit area of the negative electrode and the product of the proof stress and thickness of the negative electrode current collector (proof strength ⁇ thickness) in Experimental Examples 1 to 14.
  • FIG. 1 is a schematic cross-sectional view of a lithium secondary battery according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of a negative electrode according to an embodiment of the present invention.
  • FIG. 3 is a side view of a part of the lithium secondary battery manufactured in Experimental Example 11 after
  • FIG. 6 is a graph showing the relationship between the ratio of Cu present on the surface of the negative electrode current collector and the rate of change in yield strength in Experimental Examples 15 to 19.
  • FIG. 7 is a cross-sectional photograph of a part of the negative electrode in Experimental Example 20.
  • FIG. 8 is a cross-sectional photograph of a part of the negative electrode in Experimental Example 22.
  • FIG. 9 is a diagram showing the relationship between the amount of strain and stress for explaining the yield elongation.
  • FIG. 10 is a graph showing the relationship between the amount of NiCo in the coating layer of the negative electrode current collector and the rate of good weldability when the current collector [Ni] is welded in Experimental Examples 27 to 32.
  • FIG. 11 is a graph showing the relationship between the amount of NiCo in the coating layer of the negative electrode current collector and the initial discharge capacity of the lithium secondary battery in Experimental Examples 33 to 36.
  • the lithium secondary battery 1 is a cylindrical secondary battery.
  • the lithium secondary battery 1 includes a spiral electrode body 10 and a battery container 20. Since the battery case 20 has a cylindrical shape, the urging force in the radial direction applied to the electrode body 10 by the battery case 20 is difficult to concentrate on a part and becomes uniform, so that the negative electrode 11 and the positive electrode 12 are less likely to be wrinkled and bent. That is, when the negative electrode current collector 11a cannot withstand the stress associated with the volume change of the negative electrode active material, the negative electrode 11 does not have a wavy shape in the thickness direction but tends to extend straight in a direction horizontal to the surface. .
  • the negative electrode 11 and the positive electrode 12 are likely to wrinkle and bend, and thus are required for the negative electrode current collector 11a to suppress battery deformation.
  • the electrode body 10 includes a negative electrode 11, a positive electrode 12, and a separator 13.
  • the negative electrode 11 and the positive electrode 12 are opposed to each other.
  • the separator 13 is disposed between the negative electrode 11 and the positive electrode 12.
  • the separator 13 separates the negative electrode 11 from the positive electrode 12.
  • the electrode body 10 is wound in a spiral shape. That is, the electrode body 10 is formed by winding a laminate in which the negative electrode 11, the separator 13, and the positive electrode 12 are laminated in this order. For this reason, the electrode body 10 is substantially cylindrical.
  • Non-aqueous electrolyte The electrode body 10 is impregnated with a nonaqueous electrolyte.
  • a nonaqueous electrolyte for example, a known non-aqueous electrolyte can be used.
  • the nonaqueous electrolyte includes, for example, lithium hexafluorophosphate (LiPF 6 ) in a solvent such as fluoroethylene carbonate (FEC) that is a cyclic carbonate or methyl ethyl carbonate (MEC) that is a chain carbonate. What was dissolved can be used.
  • FEC fluoroethylene carbonate
  • MEC methyl ethyl carbonate
  • the electrode body 10 is housed in a bottomed cylindrical battery case 20.
  • the constituent material of the battery container 20 is not particularly limited.
  • the battery container 20 may be made of metal or alloy, for example.
  • the negative electrode 11 includes a negative electrode current collector 11a and a negative electrode active material layer 11b.
  • the negative electrode current collector 11a can be made of, for example, a foil made of a metal such as Cu or an alloy containing a metal such as Cu.
  • the negative electrode current collector 11a preferably contains Cu as a main component.
  • “including as a main component” means including at a ratio of 50 at% or more.
  • the negative electrode current collector 11a is preferably a copper foil or a copper alloy foil.
  • the yield elongation is preferably 0.24% or more, more preferably 0.26% or more, and further preferably 0.29% or more.
  • the ratio of Cu present on the surface of the negative electrode current collector 11a is preferably 80 at% or less, and more preferably 30 at% or less.
  • the surface of the negative electrode current collector 11a means a region from the surface to a depth of 10 nm.
  • the negative electrode current collector 11a may have a current collector body 11a1 and a coating layer 11a2 disposed on at least one main surface of the current collector body 11a1.
  • the coating layer 11a2 is preferably disposed on both main surfaces of the current collector body 11a1.
  • the ratio of Cu in the coating layer 11a2 is preferably 80 at% or less, and more preferably 30 at% or less.
  • the coating layer 11a2 may cover the entire main surfaces of the current collector body 11a1, but the area ratio of the coating layer 11a2 to the main surfaces of the current collector body 11a1 may be 95% or less. preferable. In this case, the adhesion strength between the negative electrode current collector 11a and the negative electrode active material layer 11b can be further increased. However, if the area ratio of the coating layer 11a2 in each main surface of the current collector main body 11a1 is too small, the negative electrode current collector 11a when the temperature of the negative electrode current collector 11a becomes high at the time of manufacturing the negative electrode 11 or the like. In some cases, the decrease in the yield strength of the steel cannot be sufficiently suppressed.
  • the area ratio which the coating layer 11a2 occupies in each main surface of the electrical power collector main body 11a1 is 50% or more.
  • the coating layer 11a2 may be a coating layer made of NiCo.
  • the amount of NiCo in the coating layer is preferably 32 ⁇ g / cm 2 or more.
  • NiCo amount of the coating layer if 32 [mu] g / cm 2 or more, when welding the current collecting tab may be welded in a good state.
  • the upper limit value of the NiCo amount of the coating layer is preferably 100 ⁇ g / cm 2 or less, more preferably 60 ⁇ g / cm 2 or less from the viewpoint of productivity.
  • the coating coverage of the coating layer made of NiCo is preferably 95% or less, more preferably 90% or less, and still more preferably 87% or less.
  • the lower limit value of the coating coverage is 50% or more.
  • the initial discharge capacity of the lithium secondary battery can be increased.
  • the thickness of the negative electrode current collector 11a is preferably, for example, about 6 ⁇ m to 50 ⁇ m, and more preferably 8 ⁇ m to 25 ⁇ m.
  • the negative electrode active material layer 11b is disposed on at least one main surface of the negative electrode current collector 11a. Specifically, in the present embodiment, the negative electrode active material layer 11b is disposed on both main surfaces of the negative electrode current collector 11a.
  • the thickness of each negative electrode active material layer 11b is preferably 10 ⁇ m to 40 ⁇ m, and more preferably 15 ⁇ m to 25 ⁇ m.
  • the negative electrode active material layer 11b contains a negative electrode active material that is alloyed with lithium.
  • the negative electrode active material layer 11b may further include, for example, an appropriate binder or an appropriate conductive agent.
  • the negative electrode active material layer 11b preferably includes, for example, a polyimide resin as a binder.
  • the polyimide resin has a strong adhesion strength to a member made of Cu or a copper alloy. For this reason, when the negative electrode active material layer 11b contains a polyimide resin, the adhesion strength between the negative electrode active material layer 11b and the negative electrode current collector 11a can be increased.
  • the negative electrode active material layer 11b and the negative electrode current collector 11a peels off from the negative electrode current collector due to the volume change of the negative electrode active material accompanying charge / discharge, and the lithium secondary battery The charge / discharge capacity may be reduced.
  • the adhesion strength between the negative electrode active material layer 11b and the negative electrode current collector 11a is sufficiently increased by using a binder containing a polyimide resin as in the present embodiment, the negative electrode current collector of the negative electrode active material layer 11b is used. Separation from the body 11a is suppressed, and a decrease in charge / discharge capacity of the lithium secondary battery 1 can be prevented.
  • the thickness of the stress accompanying the volume change of the negative electrode active material In addition to the stress in the direction, the stress in the plane direction is transmitted to the negative electrode current collector 11a via the adhesion surface between the negative electrode current collector 11a and the negative electrode active material layer 11b, so that part or all of the negative electrode active material layer Compared with a battery that peels from the negative electrode current collector, the battery tends to be deformed due to charge and discharge, and the strength of the negative electrode current collector required to suppress this tends to increase.
  • the negative electrode active material preferably alloyed with lithium is, for example, one or more metals selected from the group consisting of silicon, germanium, tin and aluminum, or selected from the group consisting of silicon, germanium, tin and aluminum. And alloys containing one or more metals.
  • silicone and a silicon alloy is used more preferably as a negative electrode active material alloyed with lithium. That is, the negative electrode active material preferably contains silicon.
  • the positive electrode 12 includes a positive electrode current collector and a positive electrode active material layer.
  • the positive electrode current collector can be formed of, for example, a metal such as Al or an alloy containing a metal such as Al.
  • the positive electrode active material layer is provided on at least one main surface of the positive electrode current collector.
  • the positive electrode active material layer contains a positive electrode active material.
  • Specific examples of the positive electrode active material that is preferably used include lithium cobalt composite oxides such as lithium cobaltate (LiCoO 2 ).
  • the positive electrode active material layer may further contain an appropriate binder or conductive agent in addition to the positive electrode active material.
  • Separator 13 can be constituted by a publicly known separator, for example.
  • the separator 13 can be comprised by the porous film made from resin, for example.
  • the resin porous membrane include a polyethylene microporous membrane and a polypropylene microporous membrane.
  • a value obtained by multiplying the yield strength of the negative electrode current collector 11a and the thickness of the negative electrode current collector 11a is A
  • a ⁇ 0.075 ⁇ B-3 Is satisfied.
  • increasing A is to increase either or both of the yield strength and thickness of the negative electrode current collector.
  • the yield strength of copper or copper alloy foil is increased, the electrical conductivity and elongation at break tend to decrease.
  • the negative electrode current collector when copper or copper alloy foil is used for the negative electrode current collector, if the proof stress is increased too much, the conductivity decreases, the battery capacity decreases, and the elongation at break decreases, so the negative electrode in the battery manufacturing process. It may be difficult to handle the current collector and the negative electrode. Also, if the thickness of the negative electrode current collector is made too large, the proportion of the negative electrode active material and the positive electrode active material in the battery will be reduced, resulting in a decrease in battery capacity, making it impossible to fully utilize the high capacity merit of silicon, etc. There is.
  • the lithium secondary battery 1 is A ⁇ 0.075 ⁇ B-0.5 More preferably, A ⁇ 0.075 ⁇ B-1.5 It is further preferable to satisfy In this case, the deformation of the lithium secondary battery 1 can be efficiently suppressed by minimizing the above-described adverse effects caused by increasing the yield strength and thickness of the negative electrode current collector 11a.
  • proof strength is ⁇ ⁇ (1%) measured by the total elongation method of JIS Z 2241.
  • the negative electrode current collector 11a contains Cu as a main component and the ratio of Cu present on the surface of the negative electrode current collector 11a is high, the negative electrode active material layer 11b contains a polyimide resin or the like. It was found that the proof stress of the negative electrode current collector 11a is reduced when the negative electrode current collector 11a is heat-treated at the time of fabrication. In addition, the present inventors have found that the proof stress of the negative electrode current collector 11a is greatly reduced particularly when the negative electrode current collector 11a is heat-treated at a temperature of 250 ° C. or higher.
  • the ratio of Cu present on the surface of the negative electrode current collector 11a is 80 at% or less. For this reason, even when the temperature of the negative electrode current collector 11a becomes high during the production of the negative electrode 11, the proof stress of the negative electrode current collector 11a is unlikely to decrease. Therefore, it is possible to obtain the negative electrode current collector 11a having a higher proof stress. As a result, deformation associated with charging / discharging of the lithium secondary battery 1 can be more effectively suppressed. From the viewpoint of more effectively suppressing deformation associated with charging / discharging of the lithium secondary battery 1, the ratio of Cu present on the surface of the negative electrode current collector 11a is preferably 30 at% or less.
  • the abundance ratio of Cu on the surface of the negative electrode current collector 11a is high, the yield strength of the negative electrode current collector 11a is reduced due to the heat treatment via Cu existing on the surface of the negative electrode current collector 11a. This is because oxygen easily diffuses to Cu existing inside the negative electrode current collector 11a, and not only Cu existing on the surface of the negative electrode current collector 11a but also Cu existing inside is oxidized. it is conceivable that.
  • the area ratio of the coating layer 11a2 in each main surface of the current collector main body 11a1 is 95% or less, the initial efficiency and the capacity maintenance rate of the lithium secondary battery 1 can be increased. This is because the adhesion strength between the negative electrode current collector 11a and the negative electrode active material layer 11b can be increased by setting the area ratio of the coating layer 11a2 in each main surface of the current collector main body 11a1 to 95% or less. It is thought that. From the viewpoint of further improving the initial efficiency and capacity maintenance rate of the lithium secondary battery 1, the area ratio of the coating layer 11a2 in each main surface of the current collector main body 11a1 is preferably 93% or less.
  • Example 1 A cylindrical lithium secondary battery 1 having a diameter of 18 mm and a height of 65.0 mm was produced using a negative electrode, a positive electrode, a non-aqueous electrolyte, and a cylindrical battery container produced in the following manner.
  • a negative electrode active material was prepared in the following manner.
  • the silicon core installed in the reduction furnace is heated to 800 ° C., and a gas in which a high-purity monosilane gas SiH 4 and hydrogen gas are mixed is flowed to deposit polycrystalline silicon on the surface of the silicon core.
  • a polycrystalline silicon mass was made.
  • this multi-part silicon mass was pulverized and classified to obtain a negative electrode active material composed of polycrystalline silicon particles having a purity of 99%.
  • the crystallite size of the negative electrode active material was 32 nm.
  • the average particle diameter of the negative electrode active material was 10 ⁇ m.
  • the crystallite size was calculated by the Scherrer equation by obtaining the half width of the peak of the (111) plane of silicon by powder X-ray diffraction. The average particle size was determined by a laser diffraction method.
  • the negative electrode active material, the graphite powder, and the thermoplastic polyimide resin were made to have a mass ratio of 100: 3: 8.6.
  • the negative electrode current collector 11a was obtained by roughening both surfaces of the copper foil having the thickness and proof strength shown in Table 1 by electrolytic copper plating.
  • the roughness of the surface of the roughened copper foil was 0.2 ⁇ m in Ra.
  • the average crest distance S on the surface of the roughened copper foil was 0.9 ⁇ m.
  • the negative electrode mixture slurry was applied on both surfaces of the negative electrode current collector 11a in air at 25 ° C. and dried in air at 120 ° C. Then, after rolling in the air of 25 degreeC, this was heat-processed for 10 hours at the temperature shown in Table 1 in argon atmosphere, and the negative electrode active material layer 11b was formed on both surfaces of the negative electrode collector 11a.
  • the negative electrode current collector 11a having the negative electrode active material layer 11b formed on both sides thereof is cut into a band shape having a width of 58.6 mm, and a negative electrode current collector tab 11c made of nickel is attached to the negative electrode current collector 11a.
  • a negative electrode current collector tab 11c made of nickel is attached to the negative electrode current collector 11a.
  • a positive electrode active material was prepared in the following manner. Li 2 CO 3 and CoCO 3 are mixed using a mortar so that the molar ratio of Li to Co (Li: Co) is 1: 1, and heat-treated at 800 ° C. for 24 hours in an air atmosphere. Crushed. As a result, the powder of the lithium cobalt oxide having an average particle size represented by LiCoO 2 is 11 ⁇ m were obtained. This lithium cobaltate powder was used as a positive electrode active material.
  • the positive electrode active material had a BET specific surface area of 0.37 m 2 / g.
  • the mass ratio of the positive electrode active material, the carbon material powder (conductive material) having an average particle diameter of 2 ⁇ m, and polyvinylidene fluoride (binder) is set to 95: 2.5: 2.5.
  • the mixture was kneaded to prepare a positive electrode mixture slurry.
  • the positive electrode mixture slurry was applied to both surfaces of a positive electrode current collector made of an aluminum foil having a thickness of 15 ⁇ m at a coating amount per unit area shown in Table 1, dried, and then rolled. Then, the positive electrode 12 was produced by cutting out in the strip
  • the positive electrode 12 and the negative electrode 11 produced as described above were opposed to each other with a separator 13 made of a lithium ion-permeable polyethylene microporous film interposed therebetween, thereby producing a laminate.
  • the laminate was wound in a spiral shape with a core having an outer diameter of 4 mm, and the core was removed to produce an electrode body 10.
  • only the negative electrode 11 and the separator 13 were wound up, and the positive electrode 12 was also wound up from the point wound up once.
  • an urging portion including the negative electrode 11 and the separator 13 was formed on the inner peripheral portion of the main portion including the positive electrode 12, the negative electrode 11, and the separator 13. Since the urging portion urges the main portion uniformly in the radial direction, wrinkles and deflections can be made difficult to occur on the electrode plate.
  • the electrode body 10 was accommodated in the battery container 20. Then, the positive electrode current collecting tab 12a was electrically connected to the positive electrode lid 14 provided with the positive electrode external terminal 14a, and the negative electrode current collecting tab 11c was electrically connected to the battery container 20. Next, the non-aqueous electrolyte produced as described above was poured into the battery container 20 and sealed with the insulating packing 15 to produce the lithium secondary battery 1.
  • FIG. 5 is a graph showing the relationship between the capacity charged per unit area of the negative electrode and the yield strength of the negative electrode current collector in Experimental Examples 1 to 14.
  • FIG. 3 shows a side view photograph of a part of the lithium secondary battery fabricated in Experimental Example 11 after the charge / discharge test.
  • FIG. 4 shows a side view photograph of a part of the lithium secondary battery manufactured in Experimental Example 12 after the charge / discharge test.
  • the chromate treatment is a treatment method specified in JIS Z 0103, and more specifically, the surface on which a metal is treated with a solution containing chromic acid or dichromate as a main component to form a rust preventive film. It is a processing method.
  • the yield strength was measured by performing the tension test prescribed
  • FIG. 6 is a graph showing the relationship between the ratio of Cu present on the surface of the negative electrode current collector and the rate of change in yield strength in Experimental Examples 15 to 19.
  • the presence ratio of Cu on the surface was obtained by integrating elements from the surface to a depth of 10 nm by XPS analysis.
  • the ratio of Cu present at a depth of 100 nm of each of the current collectors produced in Experimental Examples 15 to 19 was determined to be 90% or more in all cases. From this, it is understood that the thickness of the coating layer composed of the Zn—Ni plating layer and the chromate layer is less than 100 nm.
  • the ratio of Cu present on the surface of the current collector 80 at% or less is more preferably 70 at% or less, and further preferably 30 at% or less. I understand.
  • Example 20 A negative electrode and a lithium secondary battery were produced in the same manner as in Experimental Example 2, except that the linear pressure during rolling of the negative electrode was as shown in Table 3.
  • a cross-sectional photograph of a part of the negative electrode in Experimental Example 20 is shown in FIG.
  • a cross-sectional photograph of a part of the negative electrode in Experimental Example 22 is shown in FIG.
  • each experimental example two negative electrodes were produced under the same conditions, one was used for producing a lithium secondary battery, and the other was a coating layer on the surface of the current collector body composed of zirconium copper alloy foil.
  • the cross section of the negative electrode produced in each experimental example was processed using a cross section polisher, and the cross section near the surface of the negative electrode current collector was observed using a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • a region having a length of 250 ⁇ m is extracted as an evaluation region in the plane direction of the negative electrode current collector, and a portion where silicon particles as the negative electrode active material are stuck in the current collector main body at a depth of 100 nm or more.
  • the length of the current collector in the surface direction was measured, and a value obtained by dividing the length by 250 ⁇ mm, which is the length of the entire evaluation region, was obtained as the coating layer coverage.
  • each lithium secondary battery was charged at a constant current of 170 mA for 4 hours. Thereafter, constant current charging was performed with a current of 680 mA until the battery voltage reached 4.25 V, and further initial charging was performed with constant voltage charging with a voltage of 4.25 V until the current value reached 170 mA.
  • the initial efficiency shown in Table 3 is a value normalized with the initial efficiency of the lithium secondary battery fabricated in Experimental Example 20 as 100.
  • the lithium secondary battery is charged at a constant current until the battery voltage reaches 4.25 V at a current of 1700 mA, and further charged at a constant voltage until the current value reaches 170 mA at a voltage of 4.25 V.
  • charging / discharging was performed 100 cycles, with constant current discharging at a current of 3400 mA until the battery voltage reached 3.0 V as one cycle.
  • the ratio of the discharge capacity of the 100th cycle with respect to the discharge capacity of the 1st cycle was calculated
  • the results are shown in Table 3.
  • the capacity retention ratio shown in Table 3 is a value normalized with the capacity retention ratio of the lithium secondary battery fabricated in Experimental Example 20 as 100.
  • the positive electrode was produced in the same manner as in Experimental Examples 1 to 14 except that the coating weight per unit area was set to the value shown in Table 4.
  • each copper foil For the proof stress and yield elongation of each copper foil, the same heat treatment as described above was performed on each copper foil, and the proof stress and yield elongation of the negative electrode current collector after the heat treatment were measured.
  • FIG. 9 is a diagram for explaining the yield elongation rate.
  • the yield elongation was measured by the tensile test method of JIS Z 2241 as in the measurement of the proof stress. As shown in FIG. 9, after the relationship between the strain amount and the stress changes linearly, it is bent and the change amount of the stress becomes smaller with respect to the change of the strain amount. The amount of strain (that is, the elongation) at this bending point is the yield elongation.
  • Table 4 shows the charge capacity B of the lithium secondary battery, the copper foil thickness, the copper foil yield strength, the proof strength x thickness value, the deformation amount of the lithium secondary battery, the yield elongation of the negative electrode current collector, the 20 of the lithium secondary battery. The evaluation result of the fracture state of the electrode plate after cycling is shown.
  • the proof stress ⁇ thickness value A is A> 0.0075 ⁇ B ⁇ 3 with respect to the charge capacity B per unit area. Therefore, the battery deformation after the first charge / discharge is suppressed.
  • the electrode plate (negative electrode) was broken after 20 cycles. This is because the negative electrode current collector has a proof strength of a certain level or more, so that the deformation amount of the electrode plate in one cycle is kept small, but the yield elongation of the negative electrode current collector is less than 0.26%. For this reason, it is considered that the deformation of the electrode plate reaches the plastic deformation region. For this reason, when charging and discharging are repeated, plastic elongation is accumulated, and the electrode plate is considered to break within a predetermined cycle.
  • a Ni—Co alloy was electroplated on the surface of the above-mentioned zirconium copper alloy foil (thickness 13.5 ⁇ m).
  • a plating solution of nickel sulfate 175 g / L, cobalt sulfate 25 g / L, sodium citrate 30 g / L, solution temperature 40 ° C., pH 3 was used.
  • Negative current collectors of Experimental Examples 27 to 36 were fabricated by controlling the plating amount (NiCo amount) by setting the current density to 4.5 A / dm 2 and the plating time to the time shown in Table 5.
  • Table 5 shows the Ni amount and Co amount in the coating layer of the negative electrode current collector, and the NiCo amount which is the total amount thereof. Both the Ni amount and the Co amount were measured with a fluorescent X-ray analyzer.
  • Example 27 to 32 The negative electrode current collector obtained in Experimental Examples 27 to 32 was welded with a nickel tab as a current collecting tab by ultrasonic welding. After welding, when the nickel tab was peeled off, the cell peeled off at the welding interface was judged as “defective” and the case where it was broken by the copper alloy foil as the negative electrode current collector was judged as “good”. The numbers are shown in Table 6 as “good weldability ratio”.
  • the initial discharge capacity was measured by performing the same test as in Experimental Example 10.
  • Table 7 shows the coating coverage and initial discharge capacity. Note that the initial discharge capacity shown in Table 7 is a value normalized with the experimental example 33 as 100.
  • FIG. 11 shows the relationship between the amount of NiCo and the initial discharge capacity.

Abstract

 充放電時に変形しにくいリチウム二次電池を提供する。 リチウム二次電池1は、渦巻き状の電極体10と、円筒形の電池容器20とを備えている。電池容器20は、電極体10を収納している。電極体10は、負極11と、正極12と、セパレータ13とを有する。負極11は、負極集電体11aと、負極活物質層11bとを有する。負極活物質層11bは、負極集電体11aの上に配されている。負極活物質層11bは、リチウムと合金化する負極活物質を含む。正極12は、負極11と対向している。セパレータ13は、負極11と正極12との間に配されている。負極集電体11aの耐力と負極集電体11aの厚みとを乗じて得られる値をAとし、負極11の単位面積当たりに充電される容量をBとしたときに、A≧0.075×B-3が満たされる。

Description

リチウム二次電池
 本発明は、リチウム二次電池に関する。
 従来、シリコンやシリコン合金を負極活物質として用いたリチウム二次電池が知られている。シリコンやシリコン合金は、例えば黒鉛などと比較して、高い理論容量を示す。従って、シリコンやシリコン合金を負極活物質として用いることによりリチウム二次電池を高容量化し得る。
 しかしながら、シリコンやシリコン合金などのリチウムと合金化する負極活物質は、充放電時に体積変化する。このため、充放電時に集電体に応力が負荷され、集電体が変形してしまうという問題がある。
 このような問題に鑑み、特許文献1では、引張強度が400N/mm以上であり、比例限界が160N/mm以上であり、弾性係数が1.1N/mm以上であり、且つ集電体の表面粗さRaが0.01μm~1μmの範囲内にある銅合金からなる集電体を用いることが提案されている。
特開2003-7305号公報
 特許文献1に記載の集電体を用いた場合、充放電時にリチウム二次電池が変形する場合がある。
 本発明は、充放電時に変形しにくいリチウム二次電池を提供することを主な目的とする。
 本発明に係るリチウム二次電池は、渦巻き状の電極体と、円筒形の電池容器とを備えている。電池容器は、電極体を収納している。電極体は、負極と、正極と、セパレータとを有する。負極は、負極集電体と、負極活物質層とを有する。負極活物質層は、負極集電体の上に配されている。負極活物質層は、リチウムと合金化する負極活物質を含む。正極は、負極と対向している。セパレータは、負極と正極との間に配されている。負極集電体の耐力と負極集電体の厚みとを乗じて得られる値をAとし、負極の単位面積当たりに充電される容量をBとしたときに、A≧0.075×B-3が満たされる。
 本発明によれば、充放電時に変形しにくいリチウム二次電池を提供することができる。
図1は、本発明の一実施形態におけるリチウム二次電池の略図的断面図である。 図2は、本発明の一実施形態における負極の略図的断面図である。 図3は、実験例11において作製したリチウム二次電池の一部分の充放電試験後における側面写真である。 図4は、実験例12において作製したリチウム二次電池の一部分の充放電試験後における側面写真である。 図5は、実験例1~14における負極の単位面積当たりに充電される容量と、負極集電体の耐力と厚みとの積(耐力×厚み)との関係を表すグラフである。 図6は、実験例15~19における負極集電体の表面におけるCuの存在割合と耐力変化率との関係を表すグラフである。 図7は、実験例20における負極の一部分の断面写真である。 図8は、実験例22における負極の一部分の断面写真である。 図9は、降伏伸び率を説明するための歪み量と応力との関係を示す図である。 図10は、実験例27~32における負極集電体のコーティング層のNiCo量と、集電[Ni]を溶接した際の溶接性良品率との関係を表すグラフである。 図11は、実験例33~36における負極集電体のコーティング層におけるNiCo量と、リチウム二次電池の初期放電容量との関係を表すグラフである。
 以下、本発明を実施した好ましい形態の一例について説明する。但し、下記の実施形態は、単なる例示である。本発明は、下記の実施形態に何ら限定されない。
 実施形態等において参照する図面は、模式的に記載されたものであり、図面に描画された物体の寸法の比率などは、現実の物体の寸法の比率などとは異なる場合がある。図面相互間においても、物体の寸法比率等が異なる場合がある。具体的な物体の寸法比率等は、以下の説明を参酌して判断されるべきである。
 (第1の実施形態)
 図1に示されるように、リチウム二次電池1は、円筒形の二次電池である。リチウム二次電池1は、渦巻き状の電極体10と、電池容器20とを備えている。電池容器20が円筒形状であるため、電池容器20が電極体10に与える径方向への付勢力が一部分に集中し難く、均一になるので、負極11や正極12にシワ、たわみが生じにくい。すなわち、負極活物質の体積変化に伴う応力に負極集電体11aが耐え切れない場合、負極11が厚み方向にうねった形状にならずに面に対して水平な方向に真っ直ぐに伸びる傾向にある。なお、電池容器20の形状が円筒以外の形状、例えば扁平形状である場合は、負極11、正極12にシワ、たわみが生じやすいため、電池変形抑制のために負極集電体11aに必要とされる強度は、本発明とは異なる。
 (電極体10)
 電極体10は、負極11と正極12とセパレータ13とを有する。負極11と正極12とは、対向している。セパレータ13は、負極11と正極12との間に配されている。このセパレータ13によって負極11と正極12とが隔離されている。電極体10は、渦巻き状に巻回されている。即ち、電極体10は、負極11とセパレータ13と正極12とがこの順番で積層された積層体が巻回されてなる。このため、電極体10は、略円柱状である。
 (非水電解質)
 電極体10には、非水電解質が含浸している。非水電解質としては、例えば、公知の非水電解質を用いることができる。具体的には、非水電解質は、例えば、環状カーボネートであるフルオロエチレンカーボネート(FEC)や鎖状カーボネートであるメチルエチルカーボネート(MEC)などの溶媒に、六フッ化リン酸リチウム(LiPF)を溶解させたものを使用することができる。
 (電池容器)
 電極体10は、有底円筒形の電池容器20に収納されている。電池容器20の構成材料は、特に限定されない。電池容器20は、例えば、金属製または合金製であってもよい。
 (負極11)
 図2に示されるように、負極11は、負極集電体11aと、負極活物質層11bとを有する。負極集電体11aは、例えば、Cuなどの金属や、Cuなどの金属を含む合金からなる箔により構成することができる。負極集電体11aは、Cuを主成分として含むことが好ましい。ここで、「主成分として含む」とは、50at%以上の割合で含むことを意味する。
 負極集電体11aは、銅箔または銅合金箔であることが好ましい。この場合、その降伏伸び率は、0.24%以上であることが好ましく、さらに好ましくは0.26%以上であり、さらに好ましくは0.29%以上である。
 負極集電体11aの表面におけるCuの存在割合は、80at%以下であることが好ましく、30at%以下であることがより好ましい。
 ここで、負極集電体11aの表面とは、表面から深さ10nmまでの領域を意味している。
 負極集電体11aは、集電体本体11a1と、集電体本体11a1の少なくとも一主面の上に配されているコーティング層11a2とを有していてもよい。本実施形態のように、負極活物質層11bが負極集電体11aの両側に配されている場合は、コーティング層11a2を集電体本体11a1の両主面の上に配することが好ましい。コーティング層11a2におけるCuの存在割合は、80at%以下であることが好ましく、30at%以下であることがより好ましい。
 コーティング層11a2は、集電体本体11a1の各主面の全体を覆っていてもよいが、集電体本体11a1の各主面におけるコーティング層11a2の占める面積割合は、95%以下であることが好ましい。この場合、負極集電体11aと負極活物質層11bとの密着強度をより高めることができる。但し、集電体本体11a1の各主面におけるコーティング層11a2の占める面積割合が小さすぎると、負極11の作製時などにおいて負極集電体11aの温度が高くなった場合の、負極集電体11aの耐力の低下を十分に抑制できない場合がある。これは、集電体本体11a1の表面のうちコーティング層11a2により被覆されていない部分に存在するCuを経由して、集電体本体11a1の内部に存在するCuにまで酸素が拡散する場合があるからである。従って、集電体本体11a1の各主面におけるコーティング層11a2の占める面積割合は、50%以上であることが好ましい。
 コーティング層11a2は、NiCoからなるコーティング層であってもよい。この場合、コーティング層のNiCo量は、32μg/cm以上であることが好ましい。コーティング層のNiCo量が、32μg/cm以上であれば、集電タブを溶接した際、良好の状態で溶接することができる。コーティング層のNiCo量の上限値は、生産性の観点から100μg/cm以下であることが好ましく、60μg/cm以下であることがより好ましい。
 また、NiCoからなるコーティング層のコーティング被覆率は、95%以下であることが好ましく、さらに好ましくは90%以下であり、さらに好ましくは87%以下である。コーティング被覆率の下限値は、50%以上である。
 コーティング被覆率が95%以下であると、リチウム二次電池の初期放電容量を高めることができる。
 負極集電体11aの厚みは、例えば、6μm~50μm程度であることが好ましく、8μm~25μmであることがより好ましい。
 負極活物質層11bは、負極集電体11aの少なくとも一方の主面の上に配されている。具体的には、本実施形態では、負極活物質層11bは、負極集電体11aの両方の主面の上に配されている。各負極活物質層11bの厚みは、10μm~40μmであることが好ましく、15μm~25μmであることがより好ましい。
 負極活物質層11bは、リチウムと合金化する負極活物質を含む。負極活物質層11bは、負極活物質に加え、例えば、適宜のバインダーや適宜の導電剤をさらに含んでいてもよい。負極活物質層11bは、例えば、バインダーとしてポリイミド樹脂を含んでいることが好ましい。ポリイミド樹脂は、Cuや銅合金からなる部材に対して強い密着強度を有する。このため、負極活物質層11bがポリイミド樹脂を含む場合、負極活物質層11bと負極集電体11aとの密着強度を高めることができる。負極活物質層11bと負極集電体11aとの密着強度が不十分であると、充放電に伴う負極活物質の体積変化により負極活物質層が負極集電体から剥離し、リチウム二次電池の充放電容量が低下する場合がある。本実施形態のように、ポリイミド樹脂を含むバインダーを用いる等により負極活物質層11bと負極集電体11aとの密着強度が十分に高められている場合は、負極活物質層11bの負極集電体11aからの剥離が抑制され、リチウム二次電池1の充放電容量の低下を防ぐことができる。一方で、負極活物質層11bと負極集電体11aとの密着強度が高く、負極活物質層11bが負極集電体11aから剥離しない場合、負極活物質の体積変化に伴う応力のうち、厚み方向の応力に加えて、面方向の応力が、負極集電体11aと負極活物質層11bとの密着面を介して負極集電体11aに伝わるため、負極活物質層の一部または全部が負極集電体から剥離してしまう電池と比較して、充放電に伴う電池の変形が生じやすく、これを抑制するために必要とされる負極集電体の強度が大きくなる傾向にある。
 好ましく用いられる、リチウムと合金化する負極活物質としては、例えば、シリコン、ゲルマニウム、スズ及びアルミニウムからなる群から選ばれた一種以上の金属、またはシリコン、ゲルマニウム、スズ及びアルミニウムからなる群から選ばれた一種以上の金属を含む合金などが挙げられる。なかでも、リチウム二次電池1の容量をより大きくし得ることから、シリコン及びシリコン合金のうちの少なくとも一方がリチウムと合金化する負極活物質としてより好ましく用いられる。即ち、負極活物質は、シリコンを含むことが好ましい。
 (正極12)
 正極12は、正極集電体と、正極活物質層とを有する。正極集電体は、例えば、Alなどの金属や、Alなどの金属を含む合金により形成することができる。
 正極活物質層は、正極集電体の少なくとも一方の主面の上に設けられている。正極活物質層は、正極活物質を含んでいる。好ましく用いられる正極活物質の具体例としては、例えば、コバルト酸リチウム(LiCoO)などのリチウムコバルト複合酸化物が挙げられる。正極活物質層は、正極活物質に加え、適宜のバインダーや導電剤をさらに含んでいてもよい。
 (セパレータ13)
 セパレータ13は、例えば公知のセパレータにより構成することができる。具体的には、セパレータ13は、例えば、樹脂製の多孔膜により構成することができる。樹脂製の多孔膜の具体例としては、例えば、ポリエチレン製微多孔膜,ポリプロピレン製微多孔膜などが挙げられる。
 リチウム二次電池1では、
 負極集電体11aの耐力と、負極集電体11aの厚みを乗じて得られる値をAとし、
 負極11の単位面積当たりに充電される容量をBとしたときに、
A≧0.075×B-3
が満たされる。このため、充放電時にリチウム二次電池1の変形が生じ難い。但し、Aを大きくすることは、負極集電体の耐力と厚みのどちらか、または両方を大きくすることである。一般に、銅または銅合金箔の耐力を大きくすると、導電率および破断伸び率が低下する傾向にあることが知られている。従って、負極集電体に銅または銅合金箔を用いた場合、耐力を大きくしすぎると導電率が低下することで電池容量が低下したり、破断伸び率が低下することで電池作製工程における負極集電体および負極の扱いが困難になる場合がある。また、負極集電体の厚みを大きくしすぎると負極活物質および正極活物質の電池内に占める割合が小さくなることで電池容量が小さくなり、シリコン等の持つ高い容量メリットを十分に活かせなくなる場合がある。従って、リチウム二次電池1は、
A≦0.075×B-0.5
を満たすことがより好ましく、
A≦0.075×B-1.5
を満たすことがさらに好ましい。この場合、負極集電体11aの耐力および厚みを大きくすることによる上記の弊害を最小限に抑えることで、効率的にリチウム二次電池1の変形を抑制することができる。
 なお、本発明において、「耐力」とは、JIS Z 2241の全伸び法で測定されたσε(1%)のことである。
 ところで、負極集電体11aとしては、CuまたはCu合金が広く用いられている。本発明者らは、負極集電体11aがCuを主成分として含み、負極集電体11aの表面におけるCuの存在割合が高いと、負極活物質層11bがポリイミド樹脂等を含んでおり、負極11の作製時に負極集電体11aが熱処理された場合に、負極集電体11aの耐力が低下することを見出した。また、本発明者らは、特に、負極集電体11aに対して250℃以上の温度の熱処理が行われたときに負極集電体11aの耐力が大きく低下することを見出した。
 本実施形態では、負極集電体11aの表面におけるCuの存在割合が80at%以下とされている。このため、負極11の作製時などにおいて負極集電体11aの温度が高くなった場合であっても、負極集電体11aの耐力が低下しにくい。従って、さらに高い耐力を有する負極集電体11aを得ることができる。その結果、リチウム二次電池1の充放電に伴う変形をより効果的に抑制することができる。リチウム二次電池1の充放電に伴う変形をさらに効果的に抑制する観点からは、負極集電体11aの表面におけるCuの存在割合は、30at%以下であることが好ましい。
 なお、負極集電体11aの表面におけるCuの存在割合が高い場合に、熱処理に伴って負極集電体11aの耐力が低下するのは、負極集電体11aの表面に存在するCuを経由して負極集電体11aの内部に存在するCuにまで酸素が拡散しやすく、負極集電体11aの表面に存在するCuのみならず、内部に存在するCuまでもが酸化されてしまうためであると考えられる。
 また、集電体本体11a1の各主面におけるコーティング層11a2の占める面積割合が95%以下である場合には、リチウム二次電池1の初期効率及び容量維持率を高めることができる。これは、集電体本体11a1の各主面におけるコーティング層11a2の占める面積割合を95%以下とすることで、負極集電体11aと負極活物質層11bとの密着強度を高めることができるためであると考えられる。リチウム二次電池1の初期効率及び容量維持率をさらに高める観点からは、集電体本体11a1の各主面におけるコーティング層11a2の占める面積割合は、93%以下であることが好ましい。
 以下、本発明について、具体的な実験例に基づいて、さらに詳細に説明するが、本発明は以下の実験例に何ら限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施することが可能である。
 (実験例1)
 以下の要領で作製した負極と正極と非水電解液と、円筒形の電池容器とを用い、直径が18mm、高さが65.0mmである円柱形のリチウム二次電池1を作製した。
 [負極11の作製]
 まず、下記の要領で、負極活物質を作製した。還元炉内に設置されたケイ素芯を800℃まで通電加熱させ、これに高純度のモノシランガスSiHと水素ガスとを混合させたガスを流し、ケイ素芯の表面に多結晶ケイ素を析出させて、多結晶ケイ素塊を作製した。次に、この多結品ケイ素塊を粉砕し分級して、純度が99%の多結晶ケイ素粒子からなる負極活物質を得た。負極活物質の結晶子サイズは32nmであった。負極活物質の平均粒子径は10μmであった。なお、結晶子サイズは、粉末X線回折によりケイ素の(111)面のピークの半値幅を求めてscherrerの式により算出した。また、平均粒子径はレーザー回折法により求めた。
 次に、上記作製の負極活物質と、平均粒子径が3.5μmである黒鉛粉末(導電剤)と、ガラス転移温度が約300℃で重量平均分子量が約50000である熱可塑性ポリイミド樹脂(バインダー)の前駆体であるワニスとをN-メチル-2-ピロリドン(分散媒)に加えて混合し、負極合剤スラリーを得た。実験例1では、負極活物質と黒鉛粉末と熱可塑性ポリイミド樹脂とが質量比で100:3:8.6となるようにした。
 次に、表1に記載の厚み及び耐力を有する銅箔の両面を電解銅メッキにより粗面化させることにより、負極集電体11aを得た。粗面化された銅箔の表面の粗さは、Raで0.2μmであった。また、粗面化された銅箔の表面における平均山間隔Sは、0.9μmであった。
 次に、負極集電体11aの両面の上に、負極合剤スラリーを25℃の空気中で塗布し、120℃の空気中で乾燥させた。その後、25℃の空気中において圧延した後、これをアルゴン雰囲気中において表1に示す温度で10時間熱処理して、負極集電体11aの両面に負極活物質層11bを形成した。
 次に、負極集電体11aの両面に負極活物質層11bが形成されたものを幅58.6mmの帯状に切り出し、これにニッケルで構成された負極集電タブ11cを取り付けることにより、負極11を作製した。
 〔正極12の作製〕
 まず、以下の要領で、正極活物質を作製した。LiCOとCoCOとを、LiとCoとのモル比(Li:Co)が1:1になるようにして乳鉢を用いて混合し、空気雰囲気中において800℃で24時間熱処理した後、粉砕した。その結果、平均粒子径が11μmであるLiCoOで表わされるコバルト酸リチウムの粉末が得られた。このコバルト酸リチウム粉末を正極活物質として用いた。なお、正極活物質のBET比表面積は0.37m/gであった。
 次に、正極活物質と、平均粒子径が2μmである炭素材料粉末(導電材)と、ポリフッ化ビニリデン(バインダー)とを、質量比で95:2.5:2.5となるようにして、分散媒のN-メチル-2-ピロリドンに加え、混練することにより正極合剤スラリーを調製した。
 次に、正極合剤スラリーを、厚み15μmのアルミニウム箔からなる正極集電体の両面に、表1に示す単位面積当たりの塗布量で塗布し、乾燥させた後に、圧延した。その後、幅56.8mmの帯状に切り出し、アルミニウムからなる正極集電タブ12aを取り付けることにより正極12を作製した。
 〔非水電解液の作製〕
 4-フルオロエチレンカーボネート(FEC)と、エチルメチルカーボネート(EMC)とを2:8の体積比で混合させた混合溶媒に、六フッ化リン酸リチウムLiPFを1.0mol/lの濃度になるように溶解させた。そして、これに0.4wt%の二酸化炭素ガスを添加して非水電解液を作製した。
 〔電池の作製〕
 上記作製の正極12と負極11とを、リチウムイオン透過性のポリエチレン製の微多孔膜からなるセパレータ13を介在させて対向させ積層体を作製した。この積層体を、外径4mmの巻芯によりスパイラル状に巻き、巻芯を抜き取ることにより電極体10を作製した。なお、負極11とセパレータ13のみを巻き取り、1周巻き取った地点より正極12も合わせて巻き取った。これにより、正極12、負極11及びセパレータ13からなる主部の内周部に、負極11及びセパレータ13からなる付勢部を形成した。付勢部が主部に対して、径方向に均一に付勢することで、極板にシワ、たわみが生じ難くすることができる。
 次に、電極体10を電池容器20に収容した。そして、正極集電タブ12aを正極外部端子14aが設けられた正極蓋14に電気的に接続すると共に、負極集電タブ11cを電池容器20に電気的に接続した。次に、この電池容器20内に上記作製の非水電解液を注液し、絶縁パッキン15を用いて封口し、リチウム二次電池1を作製した。
 なお、実験例1では、負極11の単位体積当たりに充電される容量Bは、表1に示す通り、78.7Ah/mであった。
 (実験例2~14)
 表1に記載の、正極合剤スラリーの塗布量、負極11の単位体積当たりに充電される容量B、負極集電体11aの作製に用いた銅箔の種類、厚み及び耐力並びに熱処理温度としたこと以外は、実験例1と同様にしてリチウム二次電池を作製した。
 なお、集電体にジルコニウム銅合金箔を用いた実験例2~4、8、10~12、14については、負極集電体11aの表面におけるCuの存在割合を、XPS分析を用いて表面から深さ10nmまでの元素を積算して測定した結果を表1に記載した。
 〔評価〕
 実験例1~14のそれぞれにおいて作製したリチウム二次電池の軸方向における長さ寸法をノギスを用いて測定した。次に、リチウム二次電池を、それぞれ170mAの電流で4時間定電流充電を行った後、680mAの電流で電池電圧が4.25Vになるまで定電流充電を行い、さらに4.25Vの電圧で電流値が170mAになるまで定電圧充電させて、初期充電を行った。次に、リチウム二次電池を、680mAの電流で電池電圧が3.0Vになるまで定電流放電させる初期放電を行った。その後、リチウム二次電池の軸方向における長さ寸法をノギスを用いて再度測定した。初期充電及び初期放電を行う前のリチウム二次電池の長さ寸法と、初期充電及び初期放電を行った後のリチウム二次電池の長さ寸法との差を変形量として求めた。結果を表1に示す。
 また、実験例1~14における負極の単位面積当たりに充電される容量と、負極集電体の耐力との関係を表すグラフを図5に示す。
 実験例11において作製したリチウム二次電池の一部分の充放電試験後における側面写真を図3に示す。実験例12において作製したリチウム二次電池の一部分の充放電試験後における側面写真を図4に示す。
Figure JPOXMLDOC01-appb-T000001
 表1及び図3~5に示す結果から、A≧0.075×B-3を満足する負極を用いることにより、充放電時におけるリチウム二次電池の変形を抑制できることが分かる。
 (実験例15~19)
 厚みが12μmであるジルコニウム銅合金箔の表面に、Zn-Ni合金を電気めっきした後に、クロメート処理を施した。ここで、Zn-Ni合金のめっき量を、表面におけるCuの存在割合が表2に示すような割合となるようにした。
 なお、クロメート処理とは、JIS Z 0103に規定されている処理方法であって、詳細には、クロム酸または二クロム酸塩を主成分とする溶液で金属を処理して防錆被膜を作る表面処理方法である。
 得られた集電体について、JIS Z 2241に規定された引張試験を行うことにより、耐力を測定した。
 次に、アルゴン雰囲気中にて400℃で10時間の熱処理を行った。その後、集電体の耐力を、同様の手法で再度測定した。熱処理前の耐力と熱処理後の耐力とから、熱処理前後における耐力の変化率を求めた。結果を表2に示す。また、実験例15~19における負極集電体の表面におけるCuの存在割合と耐力変化率との関係を表すグラフを図6に示す。
 なお、表面のCuの存在割合は、XPS分析により表面から深さ10nmまでの元素を積算して求めた。
 実験例15~19において作製した集電体のそれぞれの深さ100nmにおけるCuの存在割合を求めたところ、いずれにおいても90%以上であった。このことから、Zn-Niめっき層とクロメート層からなるコーティング層の厚みは、100nm未満であると理解される。
Figure JPOXMLDOC01-appb-T000002
 表2に示す結果から、集電体の表面におけるCuの存在割合を80at%以下にすることにより熱処理による耐力低下を抑制できることが分かる。また、熱処理による耐力低下をさらに効果的に抑制する観点からは、集電体の表面におけるCuの存在割合は、70at%以下であることがより好ましく、30at%以下であることがさらに好ましいことが分かる。
 (実験例20~23)
 負極の圧延時の線圧を表3に示すようにしたこと以外は、実験例2と同様にして負極を作製すると共にリチウム二次電池を作製した。実験例20における負極の一部分の断面写真を図7に示す。実験例22における負極の一部分の断面写真を図8に示す。
 各実験例においては、負極を同じ条件で2つずつ作製し、ひとつをリチウム二次電池の作製に用い、もう一つは、ジルコニウム銅合金箔により構成された集電体本体の表面におけるコーティング層の面積割合を測定するために用いた。具体的には、各実験例において作製した負極についてクロスセクションポリッシャーを用いて断面加工し、負極集電体表面近傍の断面を走査型電子顕微鏡(SEM)を用いて観察した。観察した断面のうち、負極集電体の面方向に250μmの長さの領域を評価領域として抜き出し、負極活物質であるシリコン粒子が集電体本体に100nm以上の深さで刺さっている部分の集電体の面方向の長さを計測し、その長さを評価領域全体の長さである250μmmで除算した値を、コーティング層被覆率として求めた。
 次に、実験例20~23のそれぞれにおいて作製したリチウム二次電池の初期効率及び容量維持率を以下の要領で測定した。まず、各リチウム二次電池を、170mAの電流で4時間定電流充電を行った。その後、680mAの電流で電池電圧が4.25Vになるまで定電流充電を行い、さらに4.25Vの電圧で電流値が170mAになるまで定電圧充電させる初期充電を行った。
 次に、リチウム二次電池を、680mAの電流で電池電圧が3.0Vになるまで定電流放電させる初期放電を行った。そして、初期放電量の初期充電量に対する割合を初期効率として求めた。結果を表3に示す。なお、表3に示される初期効率は、実験例20において作製したリチウム二次電池の初期効率を100として規格化した値である。
 次に、リチウム二次電池を、1700mAの電流で電池電圧が4.25Vになるまで定電流充電を行い、さらに4.25Vの電圧で電流値が170mAになるまで定電圧充電させて、充電を行った後に、3400mAの電流で電池電圧が3.0Vになるまで定電流放電させることを1サイクルとして、100サイクル充放電を行った。そして、1サイクル目の放電容量に対する100サイクル目の放電容量の割合を容量維持率として求めた。結果を表3に示す。なお、表3に示される容量維持率は、実験例20において作製したリチウム二次電池の容量維持率を100として規格化した値である。
Figure JPOXMLDOC01-appb-T000003
 表3に示す結果から、集電体本体の表面におけるコーティング層の占める面積割合(コーティング層被覆率)を95%以下とすることにより、高い初期効率及び高い容量維持率が得られることが分かる。初期効率及び容量維持率をさらに高める観点から、集電体本体の表面におけるコーティング層の占める面積割合は、93%以下であることが好ましいことが分かる。
 (実験例24~26)
 表4に示す銅箔を用い、負極合成スラリーを塗布した後、表4に示す熱処理温度で10時間熱処理して、負極集電体11aの両面に負極活物質層11bを形成した。
 正極は、単位面積当たりの塗布重量を表4に示す値とした以外は、実験例1~14と同様に作製した。
 各銅箔の耐力及び降伏伸び率は、上記と同様の熱処理を各銅箔に対して行い、熱処理後の負極集電体について、耐力及び降伏伸び率を測定した。
 図9は、降伏伸び率を説明するための図である。降伏伸び率は、耐力の測定と同様に、JIS Z 2241の引張試験方法で測定した。図9に示すように、歪み量と応力の関係が直線的に変化した後、屈曲して歪み量の変化に対し応力の変化量が小さくなる。この屈曲点における歪み量(すなわち伸び率)が降伏伸び率である。
 実験例1~14と同様の充放電条件で充放電を行い、上記と同様にして充放電後のリチウム二次電池の変形量を測定した。
 また、20サイクル後の負極の状態について、極板の破断有り及びなしで評価した。
 表4に、リチウム二次電池の充電容量B、銅箔厚み、銅箔耐力、耐力×厚みの値、リチウム二次電池の変形量、負極集電体の降伏伸び率、リチウム二次電池の20サイクル後の極板の破断状態の評価結果を示す。
Figure JPOXMLDOC01-appb-T000004
 表4に示すように、実験例24~26のリチウム二次電池は、耐力×厚みの値Aが、単位面積当たりの充電容量Bに対し、A>0.0075×B-3となっているので、初回充放電後の電池変形が抑制されている。
 しかしながら、実験例24においては、20サイクル後に極板(負極)が破断している。これは、負極集電体が一定以上の耐力を有しているので、1サイクルの極板変形量は小さく抑えられているものの、負極集電体の降伏伸び率が0.26%未満であるため、極板の変形が塑性変形領域に達していると考えられる。このため、充放電を繰り返すと、塑性伸びが蓄積し、所定サイクル内で極板が破断するものと思われる。
 これに対して、実験例25及び26においては、20サイクル後も極板が破断していない。これは、降伏伸び率が0.26%以上であるので、極板の変形が弾性領域に収まっており、充放電を繰り返しても、伸び変形が蓄積されないため、20サイクル後も極板が破断していないものと思われる。
 [実験例27~36]
 上記のジルコニウム銅合金箔(厚み13.5μm)の表面に、Ni-Co合金を電気めっきした。めっき液としては、硫酸ニッケル175g/L、硫酸コバルト25g/L、クエン酸ナトリウム30g/L、液温40℃、pH3のめっき液を用いた。
 電流密度を4.5A/dmとして、めっき時間を表5に示す時間にすることにより、めっき量(NiCo量)を制御して、実験例27~36の負極集電体を作製した。
 負極集電体のコーティング層におけるNi量、Co量、及びこれらの合計量であるNiCo量を表5に示す。Ni量及びCo量は、いずれも蛍光X線分析装置で測定した。
Figure JPOXMLDOC01-appb-T000005
 (実験例27~32)
 実験例27~32で得られた負極集電体に、超音波溶接で、集電タブであるニッケルタブを溶接した。溶接後、ニッケルタブを引き剥がした際に、溶接の界面で剥がれたセルを「不良」、負極集電体である銅合金箔で破断した場合を「良品」とし、100セル評価した内の良品数を、「溶接性良品率」として、表6に示した。
 また、NiCo量と、溶接性良品率との関係を、図10に示した。
Figure JPOXMLDOC01-appb-T000006
 表6及び図10から明らかなように、NiCo量が、32μg/cm以上になると、溶接性が良好になることがわかる。
 (実験例33~36)
 実験例20~23と同様に、負極集電体の上に負極合剤スラリーを塗布し、負極を作製し、得られた負極を用いて、リチウム二次電池を作製した。
 実験例33と34及び実験例35と36においては、実験例20~23と同様に、負極の圧延時の線圧を変えることにより、コーティング被覆率が100%の実験例33及び35と、コーティング被覆率が87%の実験例34及び36の負極を作製した。なお、コーティング被覆率は、実験例20~23と同様にして測定した。
 初期放電容量は、実験例10と同様の試験を行い、測定した。
 コーティング被覆率及び初期放電容量を表7に示す。なお、表7に示す初期放電容量は、実験例33を100として規格化した値である。
 また、図11に、NiCo量と初期放電容量との関係を示す。
Figure JPOXMLDOC01-appb-T000007
 表7及び図11から明らかなように、コーティング被覆率が100%である場合、NiCo量が大きいと、初期放電容量が低くなることがわかる。また、コーティング被覆率が95%以下であると、初期放電容量が良好であることがわかる。また、その度合いはNiCo量が大きいほど大きくなることがわかる。
1…リチウム二次電池
10…電極体
11…負極
11a…負極集電体
11a1…集電体本体
11a2…コーティング層
11b…負極活物質層
11c…負極集電タブ
12…正極
12a…正極集電タブ
13…セパレータ
14…正極蓋
14a…正極外部端子
15…絶縁パッキン
20…電池容器

Claims (9)

  1.  渦巻き状の電極体と、
     前記電極体を収納している円筒形の電池容器と、
    を備え、
     前記電極体は、
     負極集電体と、前記負極集電体の上に配されており、リチウムと合金化する負極活物質を含む負極活物質層とを有する負極と、
     前記負極と対向している正極と、
     前記負極と前記正極との間に配されているセパレータと、
    を有し、
     前記負極集電体の耐力と前記負極集電体の厚みとを乗じて得られる値をAとし、前記負極の単位面積当たりに充電される容量をBとしたときに、
    A≧0.075×B-3
    が満たされる、リチウム二次電池。
  2.  前記負極集電体が、銅箔または銅合金箔であり、その降伏伸び率が0.24%以上である請求項1に記載のリチウム二次電池。
  3.  前記銅箔または銅合金箔が、圧延箔である、請求項2に記載のリチウム二次電池。
  4.  前記負極活物質層は、ポリイミド樹脂をさらに含み、
     前記負極集電体は、Cuを主成分として含み、
     前記負極集電体の表面におけるCuの存在割合が、80at%以下である、請求項1~3のいずれか一項に記載のリチウム二次電池。
  5.  前記負極集電体の表面におけるCuの存在割合が、30at%以下である、請求項4に記載のリチウム二次電池。
  6.  前記負極集電体は、
     集電体本体と、
     前記集電体本体の一主面の上に配されており、Cuの存在割合が80at%以下であるコーティング層と、
    を有し、
     前記集電体本体の一主面における前記コーティング層の占める面積割合が95%以下である、請求項4または5に記載のリチウム二次電池。
  7.  前記負極集電体は、
     集電体本体と、
     前記集電体本体の一主面の上に配された、NiCoからなるコーティング層と、
    を有する、請求項1~6のいずれか一項に記載のリチウム二次電池。
  8.  前記コーティング層のNiCo量が、32μg/cm以上である、請求項7に記載のリチウム二次電池。
  9.  前記負極活物質がシリコンを含む、請求項1~8のいずれか一項に記載のリチウム二次電池。
PCT/JP2012/074384 2011-09-27 2012-09-24 リチウム二次電池 WO2013047432A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/344,125 US20150044535A1 (en) 2011-09-27 2012-09-24 Lithium secondary battery
CN201280047432.7A CN103843190B (zh) 2011-09-27 2012-09-24 锂二次电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011210286 2011-09-27
JP2011-210286 2011-09-27

Publications (1)

Publication Number Publication Date
WO2013047432A1 true WO2013047432A1 (ja) 2013-04-04

Family

ID=47995464

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/074384 WO2013047432A1 (ja) 2011-09-27 2012-09-24 リチウム二次電池

Country Status (4)

Country Link
US (1) US20150044535A1 (ja)
JP (1) JPWO2013047432A1 (ja)
CN (1) CN103843190B (ja)
WO (1) WO2013047432A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018010880A (ja) * 2017-10-24 2018-01-18 株式会社東芝 負極、非水電解質二次電池及び電池パック
JP2020184515A (ja) * 2019-04-28 2020-11-12 寧徳時代新能源科技股▲分▼有限公司Contemporary Amperex Technology Co., Limited 負極集電体、負極シート及び電気化学装置
WO2023053771A1 (ja) 2021-09-30 2023-04-06 パナソニックIpマネジメント株式会社 リチウムイオン二次電池
WO2023053773A1 (ja) * 2021-09-30 2023-04-06 パナソニックIpマネジメント株式会社 リチウムイオン二次電池
WO2023100498A1 (ja) * 2021-11-30 2023-06-08 パナソニックIpマネジメント株式会社 リチウムイオン二次電池
WO2024042939A1 (ja) * 2022-08-26 2024-02-29 パナソニックIpマネジメント株式会社 非水電解質二次電池

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102040819B1 (ko) 2016-10-07 2019-11-06 주식회사 엘지화학 전극 유닛 및 그러한 전극 유닛의 제조 방법
US20200067094A1 (en) * 2016-11-29 2020-02-27 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery
US10431787B2 (en) * 2017-08-18 2019-10-01 Ford Global Technologies, Llc Battery pack retention assembly and retention method
JP7301267B2 (ja) * 2017-12-28 2023-07-03 パナソニックエナジー株式会社 非水電解質二次電池
CN111492527B (zh) * 2018-03-02 2023-09-15 株式会社村田制作所 全固体电池
CN111919327B (zh) * 2018-03-27 2023-10-17 日本碍子株式会社 锂二次电池
JP6889412B2 (ja) * 2018-07-19 2021-06-18 トヨタ自動車株式会社 非水電解質二次電池、負極合材層の評価方法、および非水電解質二次電池の製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004303638A (ja) * 2003-03-31 2004-10-28 Canon Inc リチウム二次電池
JP2009043523A (ja) * 2007-08-08 2009-02-26 Panasonic Corp リチウム二次電池用負極の製造方法、およびリチウム二次電池用負極
WO2009063801A1 (ja) * 2007-11-12 2009-05-22 Sanyo Electric Co., Ltd. 非水電解質二次電池負極材、非水電解質二次電池用負極及び非水電解質二次電池、並びに非水電解質二次電池負極材の活物質用多結晶珪素粒子の製造方法
JP2010282761A (ja) * 2009-06-02 2010-12-16 Mitsubishi Chemicals Corp リチウム二次電池
WO2011090044A1 (ja) * 2010-01-25 2011-07-28 Jx日鉱日石金属株式会社 二次電池負極集電体用銅箔
JP2011187195A (ja) * 2010-03-05 2011-09-22 Hitachi Cable Ltd 二次電池用負極の製造方法、二次電池用負極、及び二次電池用負極銅箔

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY158819A (en) * 2007-04-20 2016-11-15 Jx Nippon Mining & Metals Corp Electrolytic copper foil for lithium rechargeable battery and process for producing the copper foil
US20090186276A1 (en) * 2008-01-18 2009-07-23 Aruna Zhamu Hybrid nano-filament cathode compositions for lithium metal or lithium ion batteries

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004303638A (ja) * 2003-03-31 2004-10-28 Canon Inc リチウム二次電池
JP2009043523A (ja) * 2007-08-08 2009-02-26 Panasonic Corp リチウム二次電池用負極の製造方法、およびリチウム二次電池用負極
WO2009063801A1 (ja) * 2007-11-12 2009-05-22 Sanyo Electric Co., Ltd. 非水電解質二次電池負極材、非水電解質二次電池用負極及び非水電解質二次電池、並びに非水電解質二次電池負極材の活物質用多結晶珪素粒子の製造方法
JP2010282761A (ja) * 2009-06-02 2010-12-16 Mitsubishi Chemicals Corp リチウム二次電池
WO2011090044A1 (ja) * 2010-01-25 2011-07-28 Jx日鉱日石金属株式会社 二次電池負極集電体用銅箔
JP2011187195A (ja) * 2010-03-05 2011-09-22 Hitachi Cable Ltd 二次電池用負極の製造方法、二次電池用負極、及び二次電池用負極銅箔

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018010880A (ja) * 2017-10-24 2018-01-18 株式会社東芝 負極、非水電解質二次電池及び電池パック
JP2020184515A (ja) * 2019-04-28 2020-11-12 寧徳時代新能源科技股▲分▼有限公司Contemporary Amperex Technology Co., Limited 負極集電体、負極シート及び電気化学装置
JP7013430B2 (ja) 2019-04-28 2022-02-15 寧徳時代新能源科技股▲分▼有限公司 負極集電体、負極シート及び電気化学装置
US11476469B2 (en) 2019-04-28 2022-10-18 Contemporary Amperex Technology Co., Limited Negative current collector, negative electrode plate, electrochemical device, and apparatus
WO2023053771A1 (ja) 2021-09-30 2023-04-06 パナソニックIpマネジメント株式会社 リチウムイオン二次電池
WO2023053773A1 (ja) * 2021-09-30 2023-04-06 パナソニックIpマネジメント株式会社 リチウムイオン二次電池
WO2023100498A1 (ja) * 2021-11-30 2023-06-08 パナソニックIpマネジメント株式会社 リチウムイオン二次電池
WO2024042939A1 (ja) * 2022-08-26 2024-02-29 パナソニックIpマネジメント株式会社 非水電解質二次電池

Also Published As

Publication number Publication date
CN103843190B (zh) 2016-10-12
US20150044535A1 (en) 2015-02-12
JPWO2013047432A1 (ja) 2015-03-26
CN103843190A (zh) 2014-06-04

Similar Documents

Publication Publication Date Title
WO2013047432A1 (ja) リチウム二次電池
JP6237775B2 (ja) 非水電解質二次電池用負極
JP4979432B2 (ja) 円筒型リチウム二次電池
KR20210022074A (ko) 전착 동박, 및 이를 포함하는 전극 및 리튬 이온 이차 전지
US9312559B2 (en) Nonaqueous electrolyte secondary battery provided with a wound electrode body
EP3352277A1 (en) Composite electrolyte for secondary batteries, secondary battery and battery pack
JP7316772B2 (ja) リチウム二次電池集電体に用いられる銅箔
JP5931749B2 (ja) 非水電解液二次電池用正極活物質、その製造方法、当該正極活物質を用いた非水電解液二次電池用正極、及び、当該正極を用いた非水電解液二次電池
JP5311861B2 (ja) リチウム二次電池
KR20140003511A (ko) 리튬이온 이차전지, 그 이차전지용 전극, 그 이차전지의 전극용 전해 동박
JP5570843B2 (ja) リチウムイオン二次電池
JP2009099523A (ja) リチウム二次電池
US20170141403A1 (en) Electrolytic copper foil, and collector, negative electrode, and lithium battery comprising same
US20120082892A1 (en) Lithium secondary battery
JP2014136821A (ja) 銅合金箔、リチウムイオン二次電池用負極、リチウムイオン二次電池、及び銅合金箔の製造方法
EP3473736B1 (en) Rolled copper foil for negative electrode current collector of secondary battery, negative electrode of secondary battery and secondary battery using the rolled copper, and method for manufacturing rolled copper foil for negative electrode current collector of secondary battery
EP2330662A1 (en) Nonaqueous electrolyte secondary battery and method for manufacturing the same
WO2014192286A1 (ja) 電池用リチウム薄膜積層体
JP2010043333A (ja) 正極集電体用アルミニウム箔
US20200295378A1 (en) Electrodeposited copper foil with anti-burr property
EP3352280A1 (en) Composite electrolyte for secondary battery, secondary battery, and battery pack
JP6862752B2 (ja) 非水電解質二次電池用負極及びこれを用いた非水電解質二次電池
WO2014049985A1 (ja) リチウム二次電池用負極及びリチウム二次電池
EP2924773B1 (en) Negative electrode for electrical device and electrical device provided with same
JP2010027304A (ja) 正極集電体用アルミニウム箔

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12836260

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013536260

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14344125

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12836260

Country of ref document: EP

Kind code of ref document: A1