WO2013038671A1 - コモンモードノイズフィルタおよびその製造方法 - Google Patents

コモンモードノイズフィルタおよびその製造方法 Download PDF

Info

Publication number
WO2013038671A1
WO2013038671A1 PCT/JP2012/005829 JP2012005829W WO2013038671A1 WO 2013038671 A1 WO2013038671 A1 WO 2013038671A1 JP 2012005829 W JP2012005829 W JP 2012005829W WO 2013038671 A1 WO2013038671 A1 WO 2013038671A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating layer
insulating
layer
sheet
disposed
Prior art date
Application number
PCT/JP2012/005829
Other languages
English (en)
French (fr)
Inventor
吉田 則隆
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011201438A external-priority patent/JP5974263B2/ja
Priority claimed from JP2011201437A external-priority patent/JP5974262B2/ja
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to US14/238,181 priority Critical patent/US9269487B2/en
Priority to CN201280044971.5A priority patent/CN103814419B/zh
Publication of WO2013038671A1 publication Critical patent/WO2013038671A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2804Printed windings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • H01F17/0013Printed inductances with stacked layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • H01F2017/0066Printed inductances with a magnetic layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F2017/0093Common mode choke coil

Definitions

  • the present invention relates to a common mode noise filter including a pair of coil conductors disposed between magnetic substrates and a method for manufacturing the same.
  • This common mode noise filter has two coils wound in the same direction. Normally, when a current is passed through a coil, a magnetic field is generated, and a braking effect is caused by self-induction.
  • the two coils of the common mode noise filter block the passage of common mode noise current by utilizing their interaction. Specifically, when a differential mode current is passed through two coils, these currents flow in opposite directions, so that the magnetic flux generated from the currents is canceled and the current flows smoothly. On the other hand, since the current of the common mode noise flows in the same direction, the magnetic fluxes generated in the coils are combined and strengthened. As a result, a stronger braking action works due to the electromotive force due to the self-inducing action, and the passage of the common mode noise current can be prevented.
  • Patent Document 1 discloses a common mode noise filter including a plurality of coil conductor patterns and insulating layers laminated between a pair of oxide magnetic layers.
  • the pair of oxide magnetic layers is made of Ni—Zn—Cu ferrite
  • the insulating layer is made of Cu—Zn ferrite or Zn ferrite.
  • the two coils are brought close to each other to synthesize magnetic flux generated in the coils and strengthen each other to exert a stronger braking action so that the common mode noise filter functions better. Is desired. However, when the two coils are brought close to each other, the stray capacitance between the coils increases, so that a resonance phenomenon occurs and the passage of the high-frequency signal current is inhibited.
  • a ferrite material has a relative dielectric constant of about 10 to 15, whereas a glass-based material to which a low dielectric constant silica-based filler is added has a relative dielectric constant of about 4 to 6.
  • the noise filter described in Patent Document 2 the stray capacitance between the coils can be suitably reduced by forming the insulating layer from a glass-based material.
  • the conventional non-magnetic ferrite material is used for the insulating layer. A noise filter with good characteristics can be obtained.
  • Patent Document 3 describes a ceramic electronic component using a material having pores with a low dielectric constant and a method for manufacturing the same in order to obtain an electronic component with good high-frequency characteristics.
  • a laminate obtained by laminating an insulating layer made of a glass-based material and provided with a plurality of pores inside between a pair of opposing coil conductors the stray capacitance between the coils can be significantly reduced.
  • a common mode noise filter with extremely high frequency characteristics can be obtained.
  • the oxide magnetic layer of the laminate is formed of Ni—Zn—Cu ferrite
  • the oxide magnetic layer, the insulating layer, and the coil conductor are made of completely different materials. Therefore, it is difficult to integrally fire the laminate without causing structural defects such as cracks and delamination between the layers.
  • the heat treatment step after firing such as baking of the external terminal electrode printed and formed on the laminate, A crack may occur in the insulating layer between the coil conductors.
  • the common mode noise filter includes a first insulating layer, a first coil conductor disposed on an upper surface of the first insulating layer, a second coil conductor disposed on a lower surface of the first insulating layer, A second insulating layer disposed on an upper surface of the first insulating layer so as to cover one coil conductor and having a plurality of pores including glass and an inorganic filler dispersed therein, and the second coil conductor And a third insulating layer disposed on the lower surface of the second insulating layer.
  • the first insulating layer includes glass and an inorganic filler and has a plurality of pores dispersed inside.
  • the second insulating layer covers the first coil conductor and includes a plurality of pores that contain glass and an inorganic filler and are dispersed inside.
  • the third insulating layer covers the second coil conductor and includes a plurality of pores that contain glass and an inorganic filler and are dispersed inside.
  • This common mode noise filter can obtain extremely high frequency characteristics with a high yield.
  • FIG. 1 is a perspective view of a common mode noise filter according to Embodiment 1 of the present invention.
  • FIG. 2 is an exploded perspective view of the common mode noise filter according to the first embodiment.
  • FIG. 3 is a cross-sectional view of the common mode noise filter shown in FIG. 4 is an enlarged cross-sectional view of the common mode noise filter shown in FIG.
  • FIG. 5 is an enlarged cross-sectional view of another common mode noise filter according to the first exemplary embodiment.
  • FIG. 6 is a diagram illustrating a manufacturing process of the common mode noise filter according to the first embodiment.
  • FIG. 7 is a diagram showing an evaluation result of the common mode noise filter in the first embodiment.
  • FIG. 8 is a perspective view of a common mode noise filter according to Embodiment 2 of the present invention.
  • FIG. 1 is a perspective view of a common mode noise filter according to Embodiment 1 of the present invention.
  • FIG. 2 is an exploded perspective view of the common mode noise filter according to the first embodiment.
  • FIG. 9 is an exploded perspective view of the common mode noise filter according to the second embodiment.
  • FIG. 10 is a cross-sectional view of the common mode noise filter shown in FIG. 8 taken along line 10-10.
  • FIG. 11 is an enlarged cross-sectional view of the common mode noise filter shown in FIG.
  • FIG. 12 is a diagram showing an evaluation result of the common mode noise filter in the second embodiment.
  • FIG. 13 is a diagram illustrating a manufacturing process of the common mode noise filter according to the second embodiment.
  • (Embodiment 1) 1 and 2 are a perspective view and an exploded perspective view, respectively, of a common mode noise filter 1001 according to Embodiment 1 of the present invention.
  • 3 is a cross-sectional view of the common mode noise filter 1001 shown in FIG.
  • the common mode noise filter 1001 is disposed on the insulating layer 11a, the coil conductor 12a disposed on the upper surface 111a of the insulating layer 11a, and the upper surface 111a of the insulating layer 11a so as to contact the coil conductor 12a and cover the coil conductor 12a.
  • the common mode noise filter 1001 includes one or more oxide magnetic layers 15c made of the same material as the oxide magnetic layer 15a and one or more oxide magnetic layers made of the same material as the oxide magnetic layer 15b. 15d, one or more insulating layers 16a, and one or more insulating layers 16b.
  • the insulating layers 16a are alternately stacked with the oxide magnetic layers 15a and 15c.
  • the insulating layers 16b are alternately stacked with the oxide magnetic layers 15b and 15d.
  • the extraction electrode 13a is provided on the upper surface 111b of the insulating layer 11b.
  • the via electrode 14a penetrates the insulating layer 11b from the upper surface 111b to the lower surface 211b.
  • the oxide magnetic layer 15a is disposed on the upper surface 111b of the insulating layer 11b so as to contact the extraction electrode 13a and cover the extraction electrode 13a.
  • the extraction electrode 13b is provided on the lower surface 211c of the insulating layer 11c.
  • the via electrode 14b penetrates the insulating layer 11c from the upper surface 111c to the lower surface 211c.
  • the oxide magnetic layer 15b is disposed on the lower surface 211c of the insulating layer 11c so as to contact the extraction electrode 13b and cover the extraction electrode 13b.
  • the insulating layer 11a is made of borosilicate glass and an inorganic filler.
  • the insulating magnetic layers 15a and 15b sandwich the insulating layers 11a, 11b and 11c.
  • the insulating layers 16a and 16b contain a glass component and do not have pores dispersed inside.
  • the insulating layers 11a, 11b, and 11c are nonmagnetic layers that have substantially no magnetism.
  • the oxide magnetic layers 15a, 15b, 15c, and 15d are made of a magnetic material such as ferrite based on Fe 2 O 3 .
  • the total number of oxide magnetic layers 15a and 15c is three
  • the number of insulating layers 16a is two
  • the total number of oxide magnetic layers 15b and 15d is three.
  • the number of insulating layers 16b is two.
  • the firing shrinkage behavior of the oxide magnetic layers 15a, 15b, 15c, and 15d made of a material different from that of the insulating layer 11a can be made closer to the insulating layer 11a, and cracks and peeling between the layers can be prevented by integral simultaneous firing.
  • the total number of oxide magnetic layers 15a and 15c and the total number of oxide magnetic layers 15b and 15d may be two.
  • the common mode noise filter 1001 may not have the insulating layers 16a and 16b containing glass components.
  • the coil conductors 12a and 12b are formed by forming a conductive material such as Ag in a spiral shape and plating, and are electrically connected to each other through the extraction electrodes 13a and 13b and the via electrodes 14a and 14b.
  • the shape of the coil conductors 12a and 12b is not limited to a spiral shape, and may be other shapes such as a spiral shape and a meandering shape.
  • the method of forming the coil conductors 12a and 12b is not limited to plating, and it can be formed by other methods such as printing and vapor deposition.
  • FIG. 4 is an enlarged sectional view of the common mode noise filter 1001.
  • a plurality of pores 911a are dispersed inside the insulating layer 11a
  • a plurality of pores 911b are dispersed inside the insulating layer 11b
  • a plurality of pores 911c are dispersed inside the insulating layer 11c.
  • the porosity which is the ratio of the total volume of the pores 911a to the volume of the insulating layer 11a
  • the porosity which is the ratio of the total volume of the pores 911b to the volume of the insulating layer 11b, and the volume of the insulating layer 11c.
  • the glass powder and the inorganic filler powder which are raw material powders of the insulating layers 11a to 11c, are thermally decomposed at a firing temperature range including the firing temperature and its vicinity. It is desirable to mix an inorganic blowing agent that generates gas.
  • vanished particles or hollow particles that disappear during firing may be added to the raw material powder.
  • Resin particles such as polyethylene can be used as the disappearing particles.
  • the resin particles disappear by about 500 ° C. Therefore, when trying to secure the above range of porosity, it is easy to generate continuous open pores that are open on the surfaces facing the insulating layers 11a to 11c and connected to each other, and reliability deterioration due to moisture absorption or the like is likely to occur. . If sintering is advanced so as not to form the open pores, the porosity is lowered.
  • the firing shrinkage of the insulating layers 11a to 11c proceeds to some extent in the firing temperature range, and after the glass melt has wetted the filler and the inorganic foaming agent, the foaming agent is thermally decomposed to cause gas Is generated. Thereby, the generated gas is suitably trapped inside the glass. Therefore, independent closed pores can be generated with high density, high porosity can be easily obtained, and independent open pores are also formed, so that it is easy to ensure the bonding strength with the coil conductors 12a and 12b.
  • Open pores refer to pores that partially communicate with the outside of the glass-based material constituting the insulating layer, and closed pores are pores that are inside the glass-based material and do not communicate with the outside of the glass-based material. Point to.
  • the continuous air hole refers to a pore having a form in which a plurality of pores are connected, and the independent pore refers to a pore that exists independently in the glass-based material.
  • the inorganic foaming agent CaCO 3 or SrCO 3 is particularly preferably used.
  • the inorganic foaming agent CaCO 3 or SrCO 3 is desirable, but a mixture of CaCO 3 and SrCO 3 may be used.
  • various carbonates, nitrates, sulfates, and the like can be used as inorganic foaming agents as long as they decompose at 600 to 1000 ° C., for example, BaCO 3 , Al 2 (SO 4 ) 3 , Ce 2 ( SO 4 ) 3 can be used.
  • disassembly of this inorganic foaming agent completes is 600 to 1000 degreeC, More preferably, it is 700 to 1000 degreeC. If the decomposition completion temperature is within this range, the gas generated in the temperature raising process is suitably trapped inside the insulating layers 11a, 11b, and 11c.
  • the decomposition completion temperature is a temperature at which the TG-DTA measurement (measured with TG8120 manufactured by Rigaku Corporation) of the raw material powder used as the foaming agent is performed, and the weight reduction is completed on the TG chart.
  • the amount of the inorganic foaming agent added is preferably 1 wt% to 4 wt%, and if it is 5 wt% or less, the open pores composed of a plurality of pores connected to each other are hardly generated, so that the water absorption of the insulating layers 11a, 11b, and 11c.
  • the rate can be 0.5% or less. Thereby, sufficient insulation reliability can be ensured without performing special treatment such as resin impregnation.
  • the glass composition of the borosilicate glass used in the insulating layers 11a, 11b, and 11c is made of a material containing at least one selected from Al 2 O 3 and alkali metal oxides in addition to SiO 2 and B 2 O 3. It is desirable. In consideration of adverse effects on the environment, it is desirable that this glass composition does not substantially contain PbO.
  • the glass bending point of the borosilicate glass used in the insulating layers 11a, 11b, and 11c is preferably 550 ° C. or higher and 750 ° C. or lower. This is because when the glass bending point is lower than 550 ° C., the deformation during firing is remarkable, and the chemical resistance is inferior, so that problems such as plating may occur. Further, if the glass bending point exceeds 750 ° C., the densification in the temperature range in which the coil conductors 12a and 12b can be simultaneously fired may be insufficient.
  • the glass bending point is a temperature at which the glass transitions from expansion to contraction when TMA measurement (measured with TMA8310 manufactured by Rigaku Corporation) is performed using a glass rod-shaped sample.
  • inorganic fillers such as alumina, diopside, mullite, cordierite, and silica are used as the inorganic filler used in the insulating layers 11a, 11b, and 11c as long as they do not easily react with borosilicate glass during firing. be able to.
  • cordierite or silica having a low dielectric constant as an inorganic filler, the dielectric constant of the insulating layer 11a disposed between the coil conductors 12a and 12b and the insulating layer disposed between the coil conductor 12a and the extraction electrode 13a. It is desirable because the dielectric constant of 11b and the dielectric constant of the insulating layer 11c disposed between the coil conductor 12b and the extraction electrode 13b can be effectively lowered.
  • FIG. 5 is an enlarged cross-sectional view of another common mode noise filter 1002 in the first embodiment.
  • the same reference numerals are assigned to the same parts as those in the common mode noise filter 1001 shown in FIG. 3 and FIG.
  • an insulating layer 16c containing a glass component is disposed on the upper surface 111b of the insulating layer 11b so as to be in contact with the extracting electrode 13a and cover the extracting electrode 13a, and an oxide magnetic material is formed on the upper surface 116c of the insulating layer 16c.
  • Layer 15a is disposed.
  • an insulating layer 16d containing a glass component is disposed on the lower surface 211c of the insulating layer 11c so as to abut against the extracting electrode 13b and cover the extracting electrode 13b, and an oxide magnetic layer 15b is disposed on the lower surface 216d of the insulating layer 16d. ing.
  • the oxide magnetic layers 15a and 15b are not in contact with the extraction electrodes 13a and 13b, respectively. Since the oxide magnetic layers 15a and 15b are difficult to sinter in a temperature range in which simultaneous firing with Ag is possible, reliability against moisture absorption can be further improved by not contacting the extraction electrodes 13a and 13b.
  • the insulating layers 16c and 16d do not have pores dispersed inside.
  • a laminated body 1001A is configured by integrating the above-described components of the common mode noise filter 1001 (1002).
  • Four external terminal electrodes 17 made of Ag are provided on both sides of the laminated body 1001A.
  • the external terminal electrode 17 is connected to the coil conductors 12a and 12b and the extraction electrodes 13a and 13b, respectively.
  • the surface of the external terminal electrode 17 is desirably provided with a nickel plating layer and a tin plating layer in order to suppress electrode corrosion.
  • FIG. 6 is a diagram illustrating a manufacturing process of the common mode noise filter 1001.
  • the insulation sheet which comprises the insulating layer 11a is produced and prepared.
  • a mixed powder is obtained by blending and mixing 63 wt% of borosilicate glass powder, 4 wt% of SrCO 3 powder, and 33 wt% of inorganic filler (step S101).
  • PVB butyral resin
  • an acrylic resin an acrylic resin
  • a plasticizer BBP benzylbutyl phthalate
  • this slurry is applied on a PET (polyethylene terephthalate) film by a doctor blade method to form the slurry to obtain an insulating sheet as a green sheet (step S103).
  • An insulating sheet constituting the insulating layers 11b and 11c is prepared and prepared.
  • a mixed powder is obtained by blending and mixing 63 wt% of borosilicate glass powder, 4 wt% of SrCO 3 powder and 33 wt% of inorganic filler. Thereafter, a slurry is prepared from the mixed powder in the same manner as the insulating sheet constituting the insulating layer 11a, and the slurry is molded to obtain an insulating sheet.
  • An oxide magnetic sheet that constitutes the oxide magnetic layers 15a to 15d is prepared and prepared. Prepare a powder of ferrite material 100 wt%. Thereafter, a slurry is produced from this powder in the same manner as the insulating sheet constituting the insulating layer 11a, and this slurry is molded to obtain an oxide magnetic sheet.
  • An insulating sheet constituting the insulating layers 16a and 16b is prepared and prepared.
  • a mixed powder is obtained by blending and mixing 69 wt% of borosilicate glass powder and 31 wt% of inorganic filler. Thereafter, a slurry is prepared from the mixed powder in the same manner as the insulating sheet constituting the insulating layer 11a, and the slurry is molded to obtain an insulating sheet.
  • the insulating layer 11a is made of the same material as the insulating layers 11b and 11c. Even if they are different materials, the insulating layers 11b and 11c have the same effect as long as they have a plurality of pores dispersed inside as well as the insulating layer 11a.
  • via holes are formed at predetermined positions of the insulating sheets constituting the insulating layers 11b and 11c, and a conductive paste made of Ag powder and glass frit is filled. This conductive paste is baked to form via electrodes 14a and 14b (step S104).
  • coil conductors 12a and 12b and lead electrodes 13a and 13b are formed.
  • Conductor patterns to be coil conductors 12a and 12b made of Ag and lead electrodes 13a and 13b are formed on the base plate by plating in a predetermined pattern shape. Thereafter, the conductor patterns are transferred from the base plate to the insulating sheets constituting the insulating layers 11a, 11b, and 11c.
  • each layer may be formed by paste printing, and formation of the coil conductors 12a and 12b, the extraction electrodes 13a and 13b, and the via electrodes 14a and 14b.
  • the method is not particularly limited to the above.
  • each sheet including the insulating sheet to which the conductor pattern is transferred is sequentially laminated to produce a sheet laminate, and the sheet laminate is cut to a desired size to obtain an individual laminate 1001A (step S105).
  • a chip component such as the common mode noise filter 1001 cuts a sheet laminated body of 50 mm square or more into about 1 to 2 mm square to obtain a laminated body 1001A.
  • the laminate 1001A is fired at a predetermined temperature and time to advance sintering, and gas is generated from the inorganic foaming agent to obtain a fired body 1001B (step S106).
  • the SrCO 3 powder which is an inorganic foaming agent mixed with the raw materials of the insulating layers 11a to 11c, is thermally decomposed, and carbon dioxide gas is generated inside the laminate 1001A.
  • a plurality of pores 911a to 911c are formed in the insulating layers 11a to 11c, and the Sr element remains in the insulating layers 11a to 11c.
  • CaCO 3 is used as the inorganic foaming agent, a plurality of pores 911a to 911c are formed in the insulating layers 11a to 11c and the Ca element remains.
  • step S107 barrel polishing is performed on the fired body (step S107). Specifically, about 10,000 fired bodies are put in a planetary mill with media having a diameter of 2 mm, SiC abrasive, and pure water, and are rotated at 150 rpm for 10 minutes. As a result, unevenness on the surface of the fired body is removed and corner portions are chamfered, so that the external terminal electrode 17 can be satisfactorily applied to the fired body.
  • a conductive paste containing Ag powder and glass frit is applied to both sides of the fired body so as to be electrically connected to the coil conductors 12a and 12b and the extraction electrodes 13a and 13b.
  • the external terminal electrode 17 is formed by baking heat treatment (step S108).
  • the insulating layers 11a to 11c include only independent closed pores in the inside, and almost no open communication pores are generated. Insulation reliability can be secured. However, in order to ensure higher reliability, after the external terminal electrode 17 is formed, the fired body may be immersed in a fluorine-based silane coupling agent or the like, and the open pores on the surface may be impregnated.
  • a nickel plating layer and a tin plating layer are formed on the surface of the external terminal electrode 17 by plating to form a common mode noise filter 1001 (step S109).
  • the glass used for the insulating layer 11a for example, borosilicate glass having a thermal expansion coefficient of about 3 to 6 ppm / K can be used. Furthermore, Ag or Cu can be used as the metal forming the coil conductors 12a and 12b. The thermal expansion coefficients of Ag and Cu are about 19 ppm / K and 17 ppm / K, respectively, which are very different from 3 to 6 ppm / K of borosilicate glass. In addition, since the insulating layer 11a has a plurality of pores 911a dispersed therein, the strength is low.
  • the coil disposed on the upper surface of the coil conductor 12a disposed on the upper surface 111a of the insulating layer 11a and the lower surface 211a of the insulating layer 11a.
  • a strong layer substantially free of pores such as ferrite is disposed on the lower surface of the conductor 12b, thermal stress concentrates on the insulating layer 11a having a lower strength than the strong layer, and cracks are generated.
  • an insulating layer 11b having a plurality of pores 911a dispersed therein is disposed on the upper surface of the coil conductor 12a, and an insulating layer 11c having a plurality of pores 911c dispersed therein. Is disposed on the lower surface of the coil conductor 12b.
  • FIG. 7 shows the evaluation results for the occurrence of cracks in the common mode noise filter 1002 in the first embodiment shown in FIG.
  • Samples Nos. 1 to 6 were prepared by changing the thicknesses of the insulating layers 11b, 11c, 16c, and 16d, and the presence or absence of cracks generated in the insulating layer 11a in these samples was confirmed.
  • the total thickness of the insulating layer 11b and the insulating layer 16c and the total thickness of the insulating layer 11c and the insulating layer 16d were fixed to 25 ⁇ m, and the thickness of the insulating layer 11a was set to 25 ⁇ m.
  • FIG. 7 shows the ratio of the number of defective products to the number of samples 50 for each sample number as the occurrence rate of cracks.
  • each of the insulating layers 11a, 11b, 11c, 16c, and 16d is sintered and integrated after firing, it may be difficult to confirm the boundary between the layers by observation with an SEM.
  • the boundary of each layer is defined as follows.
  • the boundary between the insulating layer 11a and the insulating layer 11b is defined as a line segment that passes through the point where the coil conductor 12a is divided into two equal parts in the stacking direction and is substantially parallel to the upper surface or the lower surface of the fired body.
  • the boundary between the insulating layer 11a and the insulating layer 11c is defined as a line segment that passes through the point where the coil conductor 12b is divided into two equal parts in the stacking direction and is generally parallel to the upper surface or the lower surface of the fired body.
  • the boundary between the insulating layer 11b and the insulating layer 16c is defined as a line segment that passes through the point where the extraction electrode 13a is divided into two equal parts in the stacking direction and is substantially parallel to the upper surface or the lower surface of the sintered body.
  • the boundary between the insulating layer 11c and the insulating layer 16d is defined as a line segment that passes through the point where the extraction electrode 13b is equally divided in the stacking direction and is substantially parallel to the upper surface or the lower surface of the sintered body.
  • the extraction electrode 13a is provided between the insulating layer 16c and the oxide magnetic layer 15a, and between the insulating layer 16d and the oxide magnetic layer 15b.
  • the boundary of each layer is defined.
  • the boundary between the layers is defined by providing the extraction electrode 13a between the insulating layer 11b and the oxide magnetic layer 15a.
  • the crack generation rate of sample number 1 in which the insulating layers 11 b and 11 c are not provided and the thickness of the insulating layers 16 c and 16 d is 25 ⁇ m is 41/50, which is 80% or more.
  • Sample No. 2 in which the insulating layers 11b and 11c have a thickness of 3 ⁇ m has a crack generation rate of 5/50 and 10%, which dramatically suppresses the generation of cracks.
  • the thickness of the insulating layers 11b and 11c is 5 ⁇ m or more, the occurrence rate of cracks is remarkably reduced to 0/50.
  • the insulating layers 16c and 16d have a thickness of 25 ⁇ m, and the extraction electrodes 13a and 13b are separated from the insulating layer 11a by a distance of 3 ⁇ m, 5 ⁇ m, 10 ⁇ m, 15 ⁇ m, and 25 ⁇ m, respectively.
  • the incidence of cracks was also examined. However, the crack generation rate did not change depending on the distance between the extraction electrodes 13a and 13b from the insulating layer 11a, and the effect of suppressing cracks was not obtained.
  • the occurrence rate of cracks after baking heat treatment of the conductive paste for forming the external terminal electrode 17 can be dramatically suppressed. Furthermore, the suppression effect can be exhibited more remarkably by setting the thickness of the insulating layers 11b and 11c to 5 ⁇ m or more.
  • the common mode noise filters 1001 and 1002 according to the first embodiment are made of a glass-based material having a plurality of pores 911a for dispersing the insulating layer 11a between the coil conductors 12a and 12b.
  • stray capacitance generated between the coil conductors 12a and 12b can be suppressed to an extremely low level.
  • the insulating layers 11b and 11c can obtain the common mode noise filters 1001 and 1002 having extremely high frequency characteristics with a high yield without causing structural defects such as cracks after baking heat treatment of the external terminal electrode 17.
  • FIGS. 8 and 9 are a perspective view and an exploded perspective view, respectively, of the common mode noise filter 2001 according to the second embodiment of the present invention.
  • 10 is a cross-sectional view taken along line 10-10 of the common mode noise filter 2001 shown in FIG. 8 to 10, the same reference numerals are assigned to the same portions as those of the common mode noise filter 1001 in the first embodiment shown in FIGS. 1 to 3.
  • the coil conductors 12a and 12b are embedded in the insulating layer 11a so as not to be exposed on the upper surface 111a and the lower surface 211a of the insulating layer 11a.
  • the common mode noise filter 2001 is insulated from the insulating layer 11d disposed on the upper surface 111a of the insulating layer 11a in place of the insulating layers 11b and 11c of the common mode noise filter 1001 in the first embodiment shown in FIGS. And an insulating layer 11e disposed on the lower surface 211a of the layer 11a.
  • the common mode noise filter 2001 includes an insulating layer 11a, an oxide magnetic layer 15a provided above the upper surface 111a of the insulating layer 11a, and an oxide magnetic layer 15b provided below the lower surface 211a of the insulating layer 11a.
  • the coil conductors 12a and 12b embedded in the insulating layer 11a and facing each other, the insulating layer 11d disposed between the upper surface 111a of the insulating layer 11a and the oxide magnetic layer 15a, and the lower surface 211a of the insulating layer 11a And the insulating magnetic layer 15b.
  • the oxide magnetic layer 15a is disposed on the upper surface 111d of the insulating layer 11d.
  • the oxide magnetic layer 15b is disposed on the lower surface 211e of the insulating layer 11e.
  • the common mode noise filter 2001 includes extraction electrodes 13a and 13b that are electrically connected to the coil conductors 12a and 12b, via electrodes 14a and 14b that connect the coil conductors 12a and 12b and the extraction electrodes 13a and 13b, respectively, It further has an external terminal electrode 17 connected to the conductors 12a and 12b and the extraction electrodes 13a and 13b.
  • the insulating layer 11a is made of borosilicate glass and an inorganic filler. Unlike the oxide magnetic layers 15a and 15b, the insulating layers 11a, 11d, and 11e are nonmagnetic layers that have substantially no magnetism.
  • the insulating sheet layers 51a, 61a, 71a are stacked to constitute the insulating layer 11a.
  • the common mode noise filter 2001 includes one or more oxide magnetic layers 15c made of the same material as the oxide magnetic layer 15a and one or more oxide magnetic layers made of the same material as the oxide magnetic layer 15b. 15d, one or more insulating layers 16a, and one or more insulating layers 16b.
  • the insulating layers 16a are alternately stacked with the oxide magnetic layers 15a and 15c.
  • the insulating layers 16b are alternately stacked with the oxide magnetic layers 15b and 15d.
  • the extraction electrode 13a is provided on the upper surface 111a of the insulating layer 11a.
  • the via electrode 14a penetrates the insulating sheet layer 51a of the insulating layer 11a.
  • the insulating layer 11d is disposed on the upper surface 111a of the insulating layer 11a so as to contact the extraction electrode 13a and cover the extraction electrode 13a.
  • the extraction electrode 13b is provided on the lower surface 211a of the insulating layer 11a.
  • the via electrode 14b penetrates the insulating sheet layer 71a of the insulating layer 11a.
  • the insulating layer 11e is disposed on the lower surface 211a of the insulating layer 11a so as to contact the extraction electrode 13b and cover the extraction electrode 13b.
  • the coil conductors 12a and 12b are formed by plating a conductive material such as Ag in a spiral shape, and are embedded in the insulating layer 11a.
  • the extraction electrode 13a is provided between the insulating layers 11a and 11d, and the extraction electrode 13b is provided between the insulation layers 11a and 11e.
  • the coil conductors 12a and 12b are electrically connected via the extraction electrodes 13a and 13b and the via electrodes 14a and 14b, respectively.
  • the insulating layers 11a, 11d, and 11e are made of a glass-based nonmagnetic material made of borosilicate glass and an inorganic filler, and have insulating properties.
  • the oxide magnetic layers 15a and 15b are made of a magnetic material such as ferrite based on Fe 2 O 3 .
  • FIG. 11 is an enlarged sectional view of the common mode noise filter 2001.
  • a plurality of pores 911a are dispersed inside the insulating layer 11a.
  • the insulating layers 11d and 11e substantially do not include pores.
  • the phrase “substantially free of pores” means a state in which a glass-based material to which no additive for forming pores is added is sufficiently sintered, and the porosity is particularly preferably 2% or less. desirable.
  • the glass composition of the borosilicate glass used in the insulating layers 11a, 11d, and 11e includes any one or more additives selected from Al 2 O 3 and alkali metal oxides in addition to SiO 2 and B 2 O 3. It is desirable to consist of materials that Further, in consideration of adverse effects on the environment, it is desirable that the glass composition does not substantially contain PbO.
  • the glass bending point of the borosilicate glass used in the insulating layers 11a, 11d, and 11e is preferably 550 ° C. or higher and 750 ° C. or lower. If the glass bending point is lower than 550 ° C., the deformation during firing is significant, and the chemical resistance is inferior, so problems may occur in processes such as plating. In addition, when the glass bending point exceeds 750 ° C., densification in a temperature range in which the coil conductors 12a and 12b can be fired simultaneously may be insufficient.
  • inorganic fillers such as alumina, diopside, mullite, cordierite, and silica are used as the inorganic filler used in the insulating layers 11a, 11d, and 11e as long as they do not easily react with borosilicate glass during firing. be able to. It is preferable to use cordierite or silica having a low dielectric constant as the inorganic filler because the dielectric constant of the insulating layer 11a can be effectively reduced.
  • FIG. 13 is a diagram illustrating a manufacturing process of the common mode noise filter 2001.
  • the insulating sheet which comprises the insulating sheet layer 51a, 61a, 71a of the insulating layer 11a is produced and prepared.
  • a mixed powder is obtained by blending and mixing 63 wt% of borosilicate glass powder, 4 wt% of SrCO 3 powder and 33 wt% of inorganic filler (step S201).
  • PVB butyral resin
  • an acrylic resin acrylic resin
  • a plasticizer BBP benzyl butyl phthalate
  • this slurry is applied onto a PET (polyethylene terephthalate) film by a doctor blade method to form the slurry to obtain an insulating sheet as a green sheet (step S203).
  • the insulating sheet which comprises the insulating layers 11d and 11e is produced and prepared.
  • a mixed powder is obtained by mixing and mixing 66 wt% of borosilicate glass powder and 34 wt% of inorganic filler. Thereafter, a slurry is prepared from the mixed powder in the same manner as the insulating sheets constituting the insulating sheet layers 51a, 61a, 71a, and the slurry is molded to obtain an insulating sheet.
  • An oxide magnetic sheet that constitutes the oxide magnetic layers 15a to 15d is prepared and prepared. Prepare a powder of ferrite material 100 wt%. Thereafter, a slurry is prepared from this powder in the same manner as the insulating sheets constituting the insulating sheet layers 51a, 61a, 71a, and this slurry is molded to obtain an oxide magnetic sheet.
  • An insulating sheet constituting the insulating layers 16a and 16b is prepared and prepared.
  • a mixed powder is obtained by blending and mixing 69 wt% of borosilicate glass powder and 31 wt% of inorganic filler. Thereafter, a slurry is prepared from the mixed powder in the same manner as the insulating sheets constituting the insulating sheet layers 51a, 61a, 71a, and the slurry is molded to obtain an insulating sheet.
  • the insulating layer 11a that is, the insulating sheet layers 51a, 61a, 71a and the insulating layers 11d, 11e are made of the same material and glass. If a glass-based material is used, the bonding strength between the insulating layers 11d and 11e and the oxide magnetic layers 15a and 15b can be increased, and a bonding layer of glass is formed between the insulating layer 11a and the insulating layers 11d and 11e. The bonding strength of these layers can also be increased.
  • via holes are formed at predetermined positions of the insulating sheets constituting the insulating sheet layers 51a and 71a, and a conductive paste made of Ag powder and glass frit is filled. This conductive paste is baked to form the via electrodes 14a and 14b (step S204).
  • Coil conductors 12a and 12b and extraction electrodes 13a and 13b are formed.
  • Conductor patterns to be coil conductors 12a and 12b made of Ag and lead electrodes 13a and 13b are formed on the base plate by plating in a predetermined pattern shape. Thereafter, these conductor patterns are transferred from the base plate to the insulating sheets constituting the insulating sheet layers 51a, 61a, 71a or the insulating layers 11d, 11e.
  • each layer may be formed by paste printing, and the method for forming the coil conductors 12a and 12b, the extraction electrodes 13a and 13b, and the via electrodes 14a and 14b is particularly preferable. It is not limited to the above.
  • Each insulating sheet including the insulating sheet to which the conductor pattern is transferred is sequentially laminated to produce a sheet laminated body, and the sheet laminated body is cut into a desired size to obtain an individual laminated body 2001A (step S205).
  • a chip component such as the common mode noise filter 2001 is obtained by cutting a sheet laminated body of 50 mm square or more into about 1 to 2 mm square to obtain a laminated body 2001A.
  • the laminated body 2001A is fired at a predetermined temperature and time to advance sintering, and gas is generated from the inorganic foaming agent to obtain a fired body 2001B (step S206).
  • the SrCO 3 powder which is an inorganic foaming agent mixed with the raw materials of the insulating sheet layers 51a, 61a, 71a of the insulating layer 11a, is thermally decomposed to generate carbon dioxide inside the laminate 2001A.
  • a plurality of pores 911a are formed in the insulating sheet layers 51a, 61a, 71a, that is, the insulating layer 11a, and the Sr element remains in the insulating layer 11a.
  • CaCO 3 is used as the inorganic foaming agent, a plurality of pores 911a are formed inside the insulating layer 11a and the Ca element remains.
  • step S207 barrel firing is performed on the fired body (step S207). Specifically, about 10,000 fired bodies are put in a planetary mill with media having a diameter of 2 mm, SiC abrasive, and pure water, and are rotated at 150 rpm for 10 minutes. As a result, unevenness on the surface of the fired body is removed and corner portions are chamfered, so that the external terminal electrode 17 can be satisfactorily applied to the fired body.
  • a conductive paste containing Ag powder and glass frit is applied to both sides of the fired body so as to be electrically connected to the coil conductors 12a and 12b or the extraction electrodes 13a and 13b.
  • the external terminal electrode 17 is formed by baking heat treatment (step S208).
  • the insulating layer 11a includes only independent closed pores and hardly generates open pores, sufficient insulation reliability can be obtained without post-treatment such as resin impregnation. Can be secured.
  • the fired body after forming the external terminal electrode 17 may be immersed in a fluorine-based silane coupling agent or the like, and the open pores on the surface may be impregnated with resin.
  • a nickel plating layer and a tin plating layer are formed on the surface of the external terminal electrode 17 by plating to form a common mode noise filter 2001 (step S209).
  • the common mode noise filter 2001 it is possible to obtain strong coupling between the oxide magnetic layers 15a and 15b made of a magnetic material such as ferrite and the insulating layer 11a including the pores 911a. Therefore, delamination near the interface between the oxide magnetic layers 15a and 15b and the insulating layers 11d and 11e can be suppressed by a stress load in a post-process after firing, such as barrel polishing.
  • the common mode noise filter 2001 in the second embodiment is extremely excellent in high-frequency characteristics due to the insulating layer 11a made of a glass-based material having pores 911a.
  • the insulating layer 11a includes a plurality of pores 911a that contain glass and an inorganic filler and are dispersed inside.
  • the coil conductors 12a and 12b are arranged opposite to each other in the insulating layer 11a so as not to be exposed from the upper surface 111a and the lower surface 211a of the insulating layer 11a.
  • An oxide magnetic layer 15a is provided above the upper surface 111a of the insulating layer 11a, and an oxide magnetic layer 15b is provided above the lower surface 211a of the insulating layer 11a.
  • An insulating layer 11d containing glass and an inorganic filler is provided between the upper surface 111a of the insulating layer 11a and the oxide magnetic layer 15a.
  • An insulating layer 11e containing glass and an inorganic filler is provided between the lower surface 211a of the insulating layer 11a and the oxide magnetic layer 15b.
  • the total volume of pores in the insulating layer 11d per unit volume of the insulating layer 11d and the total volume of pores in the insulating layer 11e per unit volume of the insulating layer 11e are the unit volume of the insulating layer 11a. It is smaller than the total volume of the plurality of perforated pores 911a.
  • the insulating layers 11d and 11e may not substantially have pores.
  • the oxide magnetic layers 15a and 15b are formed during firing. A strong bonding is obtained by forming a reaction layer by mutual diffusion with the ferrite material.
  • the reaction layer is not generated, and adhesion is maintained only by the fusing force of the glass.
  • the pores 911a are also present at the interface between the oxide magnetic layers 15a and 15b and the insulating layer 11a.
  • the actual fusion area is reduced, and adhesion is difficult to maintain.
  • the insulating layer 11d is provided between the oxide magnetic layer 15a and the insulating layer 11a, and the insulating layer 11e is provided between the oxide magnetic layer 15b and the insulating layer 11a. Is provided.
  • the insulating layers 11d and 11e have a smaller total volume of pores per unit volume than the insulating layer 11a. As a result, the area where the oxide magnetic layer 15a and the insulating layer 11d are fused and the area where the oxide magnetic layer 15b and the insulating layer 11e are fused can be increased.
  • the layer 15a and the insulating layer 11d are firmly bonded, and the oxide magnetic layer 15b and the insulating layer 11e are firmly bonded.
  • the insulating layers 11d and 11e in contact with the oxide magnetic layers 15a and 15b are made of a glass-based material like the insulating layer 11a. Therefore, although the fusion area is small at the interface between the insulating layer 11d and the insulating layer 11a (the upper surface 111a of the insulating layer 11a) and the interface between the insulating layer 11e and the insulating layer 11a (the lower surface 211a of the insulating layer 11a), Since the individual fused portions viewed microscopically are integrated without an interface, the insulating layers 11a, 11d, and 11e are firmly bonded to each other.
  • FIG. 12 shows an evaluation result of occurrence of delamination of the common mode noise filter 2001 according to the second embodiment.
  • Samples of sample numbers 7 to 12 were prepared by changing the thickness of the insulating layers 11d and 11e, and the samples at the interface between the insulating layer 11d and the oxide magnetic layer 15a and at the interface between the insulating layer 11e and the oxide magnetic layer 15b were prepared. The presence or absence of lamination was confirmed. In these samples, the distance between the coil conductors 12a and 12b, that is, the thickness of the insulating sheet layer 61a of the insulating layer 11a is 25 ⁇ m.
  • the distance between the coil conductor 12a and the insulating layer 11d, that is, the thickness of the insulating sheet layer 51a of the insulating layer 11a is 25 ⁇ m.
  • the distance between the coil conductor 12b and the insulating layer 11e, that is, the thickness of the insulating sheet layer 71a of the insulating layer 11a is also 25 ⁇ m. From about 10,000 samples after firing and barrel polishing, 50 samples were randomly extracted for each sample number, and the four side surfaces of each sample were observed with a scanning electron microscope (SEM), of which at least one side surface Samples for which delamination was confirmed were judged as defective.
  • SEM scanning electron microscope
  • each of the insulating layers 11a, 11d, and 11e is sintered and integrated, when the same material is used for these layers, it is difficult to clearly distinguish the boundaries between the layers even by observation with an SEM. There is a case.
  • the extraction electrode 13a exists between the insulating layers 11a and 11d and the extraction electrode 13b exists between the insulating layers 11a and 11e in the manufacturing process described above, the boundary between the layers is clearly defined as the extraction electrodes 13a and 13b. Can be defined.
  • the volume of the pores 911a per unit volume of the insulating layer 11a measures the volume of the pores 911a between the coil conductors 12a and 12b.
  • the volume of pores in the insulating layer 11d is measured between the oxide magnetic layer 15a and the coil conductor 12a.
  • the volume of pores in the insulating layer 11e is measured between the oxide magnetic layer 15b and the coil conductor 12b.
  • the area SP of the pores in each layer and the area (SB) of the entire cross section of the fired body are calculated by image processing using photographs obtained by photographing any five cross sections of the fired body with the SEM.
  • the total pore volume per unit area, that is, the porosity TV is calculated by the following equation.
  • the porosity of the insulating layer 11a of the sample shown in FIG. 12 is 12%.
  • the incidence of delamination in the sample No. 7 in which the insulating layer 11a and the oxide magnetic layers 15a and 15b are in direct contact without the insulating layers 11d and 11e is 37/50. 70% or more.
  • the incidence of delamination in the sample No. 8 having the insulating layers 11d and 11e is 7/50, which is approximately 15%.
  • the samples Nos. 9 to 12 when the insulating layers 11d and 11e were thickened, the delamination occurrence rate was 0/50 and excellent results were obtained.
  • the occurrence rate of delamination after barrel polishing is lowered.
  • coil conductors 12a and 12b are provided in an insulating layer 11a made of a glass-based material and having a plurality of pores 911a dispersed therein.
  • an insulating layer 11d substantially free of pores is disposed between the insulating layer 11a and the oxide magnetic layer 15a, and an insulating layer substantially free of pores is provided between the insulating layer 11a and the oxide magnetic layer 15b.
  • the insulating layers 11d and 11e of the common mode noise filter 2001 according to the second embodiment may have pores dispersed therein.
  • the oxide magnetic layers 15a and 15b and the insulating layer 11d , 11e can be prevented from delamination.
  • an inorganic foaming agent is further mixed with the mixed powder, which is the material of the insulating sheet, as in the first embodiment.
  • the common mode noise filters 1001, 1002, and 2001 in the first and second embodiments include coil conductors 12a and 12b.
  • the number of coil conductors 12a and 12b is not limited to two.
  • the common mode noise filters 1001, 1002, and 2001 in the first and second embodiments may be an array type filter composed of a plurality of pairs of coil conductors each composed of coil conductors 12a and 12b facing each other.
  • terms indicating directions such as “upper surface”, “lower surface” “upper”, and “lower” refer to the relative positional relationship of components of the common mode noise filter such as the insulating layer and the oxide magnetic layer. It indicates a relative direction that depends only on, and does not indicate an absolute direction such as a vertical direction.
  • the common mode noise filter in the present invention can prevent cracks, it can be used in a high frequency band and can be obtained with a high yield.
  • various electronic devices such as digital devices, AV devices, information communication terminals, etc. This is useful as a noise countermeasure for equipment.

Abstract

 コモンモードノイズフィルタは、第一の絶縁層と、第一の絶縁層の上面に配置された第一のコイル導体と、第一の絶縁層の下面に配置された第二のコイル導体と、第一のコイル導体を覆うように第一の絶縁層の上面に配置された、ガラスと無機フィラーを含み内部に分散する複数の気孔を有する第二の絶縁層と、第二のコイル導体を覆うように第二の絶縁層の下面に配置された第三の絶縁層とを備える。第一の絶縁層はガラスと無機フィラーとを含み内部に分散する複数の気孔を有する。第二の絶縁層は、第一のコイル導体を覆い、ガラスと無機フィラーを含み内部に分散する複数の気孔を有する。第三の絶縁層は、第二のコイル導体を覆い、ガラスと無機フィラーを含み内部に分散する複数の気孔を有する。このコモンモードノイズフィルタは、高い歩留まりで極めて優れた高周波特性を得ることができる。

Description

コモンモードノイズフィルタおよびその製造方法
 本発明は、磁性体基板間に配された一対のコイル導体を備えたコモンモードノイズフィルタおよびその製造方法に関する。
 近年、例えばUSB(Universal Serial Bus)やHDMI(High-Definition Multimedia Interface)などの高速インターフェースのさらなる高速化にともない放射ノイズ対策が問題となっている。そこで、この放射ノイズの原因となるといわれているコモンモードノイズを除去するため、高周波対応可能なコモンモードノイズフィルタが望まれている。
 このコモンモードノイズフィルタは同じ向きに巻かれた2本のコイルを備える。通常、電流をコイルに流すと磁場が発生し、自己誘導作用によりブレーキ効果が起こる。
 コモンモードノイズフィルタの2本のコイルは、両者の相互作用を利用してコモンモードノイズの電流の通過を阻止する。具体的には、2本のコイルにディファレンシャルモードの電流を流すと、これらの電流は逆方向に流れるのでその電流から発生する磁束は相殺されて電流はスムーズに流れる。一方、コモンモードノイズの電流は同方向に流れるので、コイルに発生する磁束は合成されて強め合う。その結果、自己誘導作用による起電力により、より強いブレーキ作用が働き、コモンモードノイズ電流の通過を阻止することができる。
 特許文献1は、一対の酸化物磁性体層間に積層された複数のコイル用導体パターンと絶縁層を備えたコモンモードノイズフィルタを開示している。上記一対の酸化物磁性体層はNi-Zn-Cu系フェライトよりなり、絶縁層はCu-Zn系フェライトやZn系フェライトよりなる。
 このコモンモードノイズフィルタにおいては、2本のコイルを近づけることによりコイルに発生する磁束を合成し、強め合うことでより強いブレーキ作用を働かせ、コモンモードノイズフィルタとしての機能をより良好に発揮させることが望まれる。しかしながら、2本のコイルを近づけるとコイル間の浮遊容量が高くなるので、共振現象が発生し、高周波信号電流の通過が阻害される。
 近年の高周波化に伴い、絶縁層としてガラス系材料が用いられるようになってきている。一般的に、フェライト材料が比誘電率10~15程度であるのに対し、低誘電率のシリカ系フィラーを添加したガラス系材料の比誘電率は4~6程度である。特許文献2に記載されたノイズフィルタでは、絶縁層をガラス系材料より形成することでコイル間の浮遊容量を好適に低減でき、結果、従来の非磁性フェライト材料を絶縁層に用いたものよりも、特性良好なノイズフィルタを得ることができる。
 特許文献3は、高周波特性の良好な電子部品を得るために、誘電率の低い気孔を有する材料を用いたセラミック電子部品とその製造方法を記載している。対向する一対のコイル導体間に、ガラス系材料からなり内部に複数の気孔が設けられている絶縁層を積層して得られた積層体ではコイル間の浮遊容量を顕著に低減でき、その結果、高周波特性の極めて優れたコモンモードノイズフィルタが得られる。
 しかしながら、上記積層体の酸化物磁性体層をNi-Zn-Cu系フェライトで形成した場合、酸化物磁性体層、絶縁層およびコイル導体の各々が全く異なる材料からなる。したがって、それらの層間でクラックやデラミネーションといった構造欠陥を生じることなく積層体を一体同時焼成することは困難である。さらに、焼成条件を適切に設定することで積層体の各層の同時焼成による一体化を可能としたとしても、その後、積層体に印刷形成した外部端子電極の焼付け等、焼成後の熱処理工程において、コイル導体間の絶縁層にクラックを生じる場合がある。
特開2003-124028号公報 特開2004-235494号公報 特開平11-067575号公報
 コモンモードノイズフィルタは、第一の絶縁層と、第一の絶縁層の上面に配置された第一のコイル導体と、第一の絶縁層の下面に配置された第二のコイル導体と、第一のコイル導体を覆うように第一の絶縁層の上面に配置された、ガラスと無機フィラーを含み内部に分散する複数の気孔を有する第二の絶縁層と、第二のコイル導体を覆うように第二の絶縁層の下面に配置された第三の絶縁層とを備える。第一の絶縁層はガラスと無機フィラーとを含み内部に分散する複数の気孔を有する。第二の絶縁層は、第一のコイル導体を覆い、ガラスと無機フィラーを含み内部に分散する複数の気孔を有する。第三の絶縁層は、第二のコイル導体を覆い、ガラスと無機フィラーを含み内部に分散する複数の気孔を有する。
 このコモンモードノイズフィルタは、高い歩留まりで極めて優れた高周波特性を得ることができる。
図1は本発明の実施の形態1におけるコモンモードノイズフィルタの斜視図である。 図2は実施の形態1におけるコモンモードノイズフィルタの分解斜視図である。 図3は図1に示すコモンモードノイズフィルタの線3-3における断面図である。 図4は図1に示すコモンモードノイズフィルタの拡大断面図である。 図5は実施の形態1における他のコモンモードノイズフィルタの拡大断面図である。 図6は実施の形態1におけるコモンモードノイズフィルタの製造工程を示す図である。 図7は実施の形態1におけるコモンモードノイズフィルタの評価結果を示す図である。 図8は本発明の実施の形態2におけるコモンモードノイズフィルタの斜視図である。 図9は実施の形態2におけるコモンモードノイズフィルタの分解斜視図である。 図10は図8に示すコモンモードノイズフィルタの線10-10における断面図である。 図11は図8に示すコモンモードノイズフィルタの拡大断面図である。 図12は実施の形態2におけるコモンモードノイズフィルタの評価結果を示す図である。 図13は実施の形態2におけるコモンモードノイズフィルタの製造工程を示す図である。
 (実施の形態1)
 図1と図2はそれぞれ本発明の実施の形態1におけるコモンモードノイズフィルタ1001の斜視図と分解斜視図である。図3は図1に示すコモンモードノイズフィルタ1001の線3-3における断面図である。
 コモンモードノイズフィルタ1001は、絶縁層11aと、絶縁層11aの上面111aに配置されたコイル導体12aと、コイル導体12aに当接してコイル導体12aを覆うように絶縁層11aの上面111aに配置された絶縁層11bと、絶縁層11aの下面211aに配置されたコイル導体12bと、コイル導体12bに当接してコイル導体12bを覆うように絶縁層11aの下面211aに配置された絶縁層11cと、絶縁層11bの上面111bに配置された酸化物磁性体層15aと、絶縁層11cの下面211cに配置された酸化物磁性体層15bと、コイル導体12aと電気的に接続された引出電極13aと、コイル導体12aと引出電極13aを繋ぐビア電極14aと、コイル導体12bと電気的に接続された引出電極13bと、コイル導体12bと引出電極13bを繋ぐビア電極14bと、外部端子電極17とを有している。外部端子電極17はコイル導体12a、12b、引出電極13a、13bに接続されている。コモンモードノイズフィルタ1001は、酸化物磁性体層15aと同じ材料より成る一つ以上の酸化物磁性体層15cと、酸化物磁性体層15bと同じ材料より成る一つ以上の酸化物磁性体層15dと、一つ以上の絶縁層16aと、一つ以上の絶縁層16bとをさらに有する。絶縁層16aは酸化物磁性体層15a、15cと交互に積層されている。絶縁層16bは酸化物磁性体層15b、15dと交互に積層されている。引出電極13aは絶縁層11bの上面111bに設けられている。ビア電極14aは絶縁層11bを上面111bから下面211bまで貫通する。酸化物磁性体層15aは、引出電極13aに当接して引出電極13aを覆うように絶縁層11bの上面111bに配置されている。引出電極13bは絶縁層11cの下面211cに設けられている。ビア電極14bは絶縁層11cを上面111cから下面211cまで貫通する。酸化物磁性体層15bは、引出電極13bに当接して引出電極13bを覆うように絶縁層11cの下面211cに配置されている。
 絶縁層11aはホウ珪酸ガラスと無機フィラーからなる。酸化物磁性体層15a、15bは間に絶縁層11a、11b、11cを挟む。絶縁層16a、16bはガラス成分を含み、内部に分散する気孔を有しない。絶縁層11a、11b、11cは、酸化物磁性体層15a、15b、15c、15dとは異なり、実質的に磁性を有さない非磁性の層である。
 酸化物磁性体層15a、15b、15c、15dはFeをベースとしたフェライトなどの磁性材料により構成されている。実施の形態1においては、酸化物磁性体層15a、15cの数の計は3つであり、絶縁層16aの数は2であり、酸化物磁性体層15b、15dの数の計は3つであり、絶縁層16bの数は2である。酸化物磁性体層15a、15cと交互に絶縁層16aを配置し、酸化物磁性体層15b、15dと交互に絶縁層16bを配置することによって、外部端子電極17との接着強度を高めることができる。また、絶縁層11aとは異なる材料からなる酸化物磁性体層15a、15b、15c、15dの焼成収縮挙動を絶縁層11aにより近づけ、一体同時焼成での層間のクラックや剥がれを防止できる。酸化物磁性体層15a、15cの数の計と酸化物磁性体層15b、15dの数の計は2でもよい。また、コモンモードノイズフィルタ1001はガラス成分を含む絶縁層16a、16bを有していなくてもよい。
 コイル導体12a、12bはAgなどの導電材料を渦巻き状に成型してめっきすることにより形成され、引出電極13a、13bとビア電極14a、14bを介して電気的にそれぞれ接続されている。
 コイル導体12a、12bの形状は渦巻き状に限られるものではなく、螺旋状、蛇行状等の他の形状であっても構わない。コイル導体12a、12bの形成方法はめっきに限定されるものではなく、その他の印刷や蒸着等の方法で形成することも可能である。
 図4はコモンモードノイズフィルタ1001の拡大断面図である。絶縁層11aの内部には複数の気孔911aが分散し、絶縁層11bの内部には複数の気孔911bが分散し、絶縁層11cの内部には複数の気孔911cが分散している。これによって絶縁層11aの実効誘電率を低くすることができるとともに、焼成後の熱処理工程において絶縁層11aへの応力集中を緩和し、コイル導体12a、12b近傍でのクラックの発生を抑制することができる。
 好ましくは、絶縁層11aの体積に対する気孔911aの合計の体積の比である気孔率と、絶縁層11bの体積に対する気孔911bの合計の体積の比である気孔率と絶縁層11cの体積に対する気孔911cの合計の体積の比である気孔率を5~40vol%とすることで、材料強度を保ちつつ好適に絶縁層11aの低誘電率化が図れる。
 絶縁層11a~11cに気孔911a~911cを形成する方法としては、絶縁層11a~11cの原材料の原料粉末であるガラス粉末および無機フィラー粉末に、焼成温度とその近傍を含む焼成温度域で熱分解してガスを発生する無機発泡剤を混合することが望ましい。
 ガラスやセラミックス内部に気孔を形成するには、焼成時に消失する消失粒子や中空粒子を原料粉末へ添加してもよい。消失粒子としてポリエチレン等の樹脂粒子を用いることができる。
 しかしながら、樹脂粒子を消失粒子として用いた気孔形成手法では、樹脂粒子が概ね500℃までに消失する。したがって、気孔率の上記の範囲を確保しようとすると絶縁層11a~11cの面する表面に開口しかつ互いに繋がった開気孔よりなる連通開気孔を生成し易く、吸湿等による信頼性劣化を生じ易い。この連通開気孔を生じないよう、焼結を進めると気孔率が低くなってしまう。
 また、中空粒子を利用した気孔形成手法では、原理上開気孔は形成されない。したがって、電極材が絶縁層の気孔内部に入り込んで食い込まず、コイル導体12a、12bとの接合強度を大きくしづらい。さらに、一般には中空粒子は高価なので、製造コストが高くなる。
 上述の無機発泡剤を添加する手法では、焼成温度域で、絶縁層11a~11cの焼成収縮がある程度進行し、ガラス融液がフィラーおよび無機発泡剤を濡らした後に、発泡剤が熱分解し気体を発生する。これにより、発生した気体がガラス内部に好適にトラップされる。それゆえ、独立閉気孔を高密度に生成させることができ、高い気孔率を得やすい上に、独立開気孔も形成されるため、コイル導体12a、12bとの接合強度を確保し易い。
 開気孔とは、その一部が絶縁層を構成するガラス系材料の外部と通じている気孔を指し、閉気孔とは当該ガラス系材料内部にあって、当該ガラス系材料外部と通じていない気孔を指す。また、連通気孔とは複数の気孔が連なった形態を有する気孔を指し、独立気孔とは当該ガラス系材料内部に単独で存在する気孔を指す。無機発泡剤としては、CaCOまたはSrCOが特に好適に用いられる。
 この無機発泡剤としては、CaCOまたはSrCOが望ましいが、CaCOとSrCOを混合して用いてもかまわない。また、600℃から1000℃で分解するものであれば、各種炭酸塩、硝酸塩、硫酸塩などが無機発泡剤として使用可能であり、例えば、BaCO、Al(SO、Ce(SOが使用できる。そして、この無機発泡剤の分解が完了する分解完了温度は600℃から1000℃、より好ましくは700℃から1000℃である。分解完了温度がこの範囲内であれば、昇温過程で発生したガスが絶縁層11a、11b、11c内部に好適にトラップされる。
 ここで、分解完了温度とは、発泡剤として用いる原料粉末のTG-DTA測定((株)リガク製 TG8120にて測定)を行い、そのTGチャートにおいて減量の完了する温度である。
 なお、無機発泡剤の添加量は1wt%~4wt%が望ましく、5wt%以下であれば、互いに繋がった複数の気孔よりなる連通開気孔がほとんど生成しないので、絶縁層11a、11b、11cの吸水率を0.5%以下とすることができる。これにより、樹脂含浸等の特殊な処理を施さずとも、十分な絶縁信頼性が確保できる。
 絶縁層11a、11b、11cで用いられるホウ珪酸ガラスのガラス組成はSiO、Bに加え、Al、アルカリ金属酸化物より選ばれるいずれか1種類以上を含有する材料からなることが望ましい。また、環境への悪影響を考慮し、このガラス組成はPbOを実質的に含まないことが望ましい。
 絶縁層11a、11b、11cで用いられるホウ珪酸ガラスのガラス屈服点は550℃以上、750℃以下が望ましい。なぜなら、ガラス屈服点が550℃未満の場合、焼成時の変形が著しく、また、耐薬品性が劣るためめっき等のプロセスで問題が生じる場合がある。また、ガラス屈服点が750℃を越えると、コイル導体12a、12bと同時焼成可能な温度域での緻密化が不十分となる場合がある。
 ここで、ガラス屈服点とは、ガラスの棒状サンプルを用い、TMA測定((株)リガク製 TMA8310にて測定)を行った際の膨張から収縮に転じる温度である。
 絶縁層11a、11b、11cで用いられる無機フィラーとしては、焼成時にホウ珪酸ガラスとの反応を起こしにくいものであれば、アルミナ、ディオプサイド、ムライト、コージェライト、シリカ等、種々のものを用いることができる。特に誘電率の低いコージェライトやシリカを無機フィラーとして用いることでコイル導体12a、12b間に配置される絶縁層11aの誘電率と、コイル導体12aと引出電極13aとの間に配置される絶縁層11bの誘電率、及びコイル導体12bと引出電極13bとの間に配置される絶縁層11cの誘電率を効果的に下げることができるため望ましい。
 図5は実施の形態1における他のコモンモードノイズフィルタ1002の拡大断面図である。図5において、図3や図4に示すコモンモードノイズフィルタ1001と同じ部分には同じ参照番号を付す。コモンモードノイズフィルタ1002では、引出電極13aに当接して引出電極13aを覆うように絶縁層11bの上面111bにガラス成分を含む絶縁層16cが配置され、絶縁層16cの上面116cに酸化物磁性体層15aが配置されている。また、引出電極13bに当接して引出電極13bを覆うように絶縁層11cの下面211cにガラス成分を含む絶縁層16dが配置され、絶縁層16dの下面216dに酸化物磁性体層15bが配置されている。このように、酸化物磁性体層15a、15bは引出電極13a、13bにはそれぞれ当接していない。酸化物磁性体層15a、15bはAgとの同時焼成可能な温度域では焼結し難いので、引出電極13a、13bに当接しないことで吸湿に対する信頼性をより高めることができる。絶縁層16c、16dは内部に分散する気孔を有しない。
 コモンモードノイズフィルタ1001(1002)の上記した構成部品を一体化することにより積層体1001Aが構成される。積層体1001Aの両側部にAgからなる4つの外部端子電極17が設けられる。外部端子電極17はコイル導体12a、12bと引出電極13a、13bとそれぞれ接続される。なお、外部端子電極17の表面には、電極の腐食を抑制するためニッケルめっき層、スズめっき層が施されることが望ましい。
 次に、コモンモードノイズフィルタ1001の製造方法について説明する。図6はコモンモードノイズフィルタ1001の製造工程を示す図である。
 まず、絶縁層11aを構成する絶縁シートを作製して準備する。ホウ珪酸ガラス粉末63wt%とSrCO粉末4wt%と無機フィラー33wt%とを配合、混合して混合粉末を得る(ステップS101)。その後有機バインダとしてPVB(ブチラール樹脂)及びアクリル樹脂、可塑剤BBP(フタル酸ベンジルブチル)とを混合し、上記の混合粉末を分散させてスラリーを作製する(ステップS102)。
 次にこのスラリーをドクターブレード法にてPET(ポリエチレンテレフタラート)フィルム上に塗布することによってスラリーを成形してグリーンシートである絶縁シートを得る(ステップS103)。
 絶縁層11b、11cを構成する絶縁シートを作製して準備する。ホウ珪酸ガラス粉末63wt%とSrCO粉末4wt%と無機フィラー33wt%を配合、混合して混合粉末を得る。その後、絶縁層11aを構成する絶縁シートと同様にこの混合粉末からスラリーを作製し、このスラリーを成形して絶縁シートを得る。
 酸化物磁性体層15a~15dを構成する酸化物磁性体シートを作製して準備する。フェライト材料100wt%の粉末を準備する。その後、絶縁層11aを構成する絶縁シートと同様にこの粉末からスラリーを作製し、このスラリーを成形して酸化物磁性体シートを得る。
 絶縁層16a、16bを構成する絶縁シートを作製して準備する。ホウ珪酸ガラス粉末69wt%と無機フィラー31wt%を配合、混合して混合粉末を得る。その後、絶縁層11aを構成する絶縁シートと同様にこの混合粉末からスラリーを作製し、このスラリーを成形して絶縁シートを得る。
 実施の形態1では上述のように絶縁層11aは絶縁層11b、11cと同じ材料よりなる。異なる材料であっても、絶縁層11aと同様に絶縁層11b、11cも内部に分散する複数の気孔を有していれば同様の効果を有する。
 次に、絶縁層11b、11cを構成する絶縁シートの所定位置にビアホールを形成し、Ag粉末とガラスフリットからなる導電ペーストを充填する。この導電ペーストは焼成されてビア電極14a、14bを構成する(ステップS104)。
 次に、コイル導体12a、12bと引出電極13a、13bを形成する。ベース板に所定パターン形状でめっきによりAgからなるコイル導体12a、12bと引出電極13a、13bとなる導体パターンを形成する。その後、絶縁層11a、11b、11cを構成する絶縁シートにベース板からそれらの導体パターンを転写する。
 なお、これらのシートの作製方法は上記の方法に限るものではなく、ペースト印刷により各層を構成しても良く、また、コイル導体12a、12bや引出電極13a、13bおよびビア電極14a、14bの形成方法は特に上記に限定されない。
 その後、導体パターンが転写された絶縁シートを含む各シートを順次積層してシート積層体を作製し、このシート積層体を所望のサイズに切断して個片の積層体1001Aを得る(ステップS105)。通常、コモンモードノイズフィルタ1001のようなチップ部品は50mm角以上のシート積層体を約1~2mm角程度に切断して積層体1001Aを得る。
 次に、積層体1001Aを所定の温度、時間で焼成して焼結を進めるとともに、無機発泡剤からガスを発生させて焼成体1001Bを得る(ステップS106)。このとき、絶縁層11a~11cの原材料に混合された無機発泡剤であるSrCO粉末が熱分解し、積層体1001A内部で炭酸ガスを発生する。これにより、絶縁層11a~11cには複数の気孔911a~911cが形成されるとともに、絶縁層11a~11cにSr元素が残存する。なお、無機発泡剤としてCaCOを用いた場合には、絶縁層11a~11c内部に複数の気孔911a~911cが形成されるとともにCa元素が残存する。
 次に、焼成体にバレル研磨を施す(ステップS107)。具体的には、約1万個の焼成体を、直径2mmのメディアとSiC研磨剤と純水とを遊星ミル内に投入し、150rpmで10分間回転させる。これにより、焼成体の表面の凹凸を取り除くとともに、角部の面取りを行い、外部端子電極17が焼成体に良好に塗布できるようになる。
 バレル研磨後に、焼成体の両側面に、コイル導体12a、12bや引出電極13a、13bと電気的に接続されるようにAg粉末とガラスフリットを含む導電ペーストを塗布し、その後700℃で導電ペーストを焼付け熱処理して外部端子電極17を形成する(ステップS108)。
 実施の形態1におけるコモンモードノイズフィルタ1001では、絶縁層11a~11cは内部に独立閉気孔のみを包含し、連通開気孔がほとんど生成しないので、樹脂含浸等の後処理を施さずとも、十分な絶縁信頼性を確保できる。ただし、更に高い信頼性を確保するために、外部端子電極17を形成した後で焼成体をフッ素系シランカップリング剤等に浸漬し、表面の開気孔内に樹脂を含浸させても良い。
 最後に外部端子電極17の表面にめっき法によってニッケルめっき層、スズめっき層を形成してコモンモードノイズフィルタ1001を形成する(ステップS109)。
 以下、実施の形態1におけるコモンモードノイズフィルタ1001、1002のコイル導体12a、12b間に配置された絶縁層11aに発生するクラックを抑制する効果について図面を用いて説明する。
 絶縁層11aに用いるガラスとしては、例えば熱膨張係数が3~6ppm/K程度のホウ珪酸ガラスを用いることができる。さらにコイル導体12a、12bを形成する金属としてはAgやCuを用いることができる。AgとCuの熱膨張係数はそれぞれ19ppm/K程度、17ppm/K程度とホウ珪酸ガラスの3~6ppm/Kとは大きく異なる。また、絶縁層11aは内部に分散する複数の気孔911aを有するので強度が低いので、絶縁層11aの上面111aに配置されたコイル導体12aの上面や、絶縁層11aの下面211aに配置されたコイル導体12bの下面に、例えばフェライトのような実質的に気孔を含まない強固な層を配置する場合、強固な層より強度の低い絶縁層11aに熱応力が集中しクラックが生じる。
 実施の形態1におけるコモンモードノイズフィルタ1001、1002では、内部に分散する複数の気孔911aを有する絶縁層11bがコイル導体12aの上面に配置され、内部に分散する複数の気孔911cを有する絶縁層11cがコイル導体12bの下面に配置される。これにより、コイル導体12aを介して隣接する絶縁層11a、11bに熱応力が分散分布し、同様に、コイル導体12bを介して隣接する絶縁層11a、11cに熱応力が分散分布することで、絶縁層11aへの応力集中が緩和され、クラックの発生を抑制することができる。
 図7は図5に示す実施の形態1におけるコモンモードノイズフィルタ1002のクラックの発生についての評価結果を示す。絶縁層11b、11c、16c、16dの厚みを変えて試料番号1~6の試料を作製し、これらの試料での絶縁層11aで発生するクラックの有無を確認した。これらの試料では、絶縁層11bと絶縁層16cの厚みの合計と絶縁層11cと絶縁層16dの厚みの合計とは25μmと一定とし、絶縁層11aの厚みを25μmとした。各試料番号については外部端子電極17を形成した後の約1万個の焼成体から50個の試料を無作為に抽出し、各試料の四側面部を走査型電子顕微鏡(SEM)で観察し、うち少なくとも一側面にクラックが確認された試料を不良品と判定した。図7は各試料番号について試料の数50に対する不良品の数の比をクラックの発生率として示す。
 また、焼成後に絶縁層11a、11b、11c、16c、16dとは各々が焼結し一体化されるので、SEMでの観察では各々の層の境界を確認しにくい場合がある。実施の形態1では各層の境界を以下のように定義する。絶縁層11aと絶縁層11bとの境界は、コイル導体12aを積層方向に2等分した点を通り、焼成体の上面または下面とおおむね平行な線分と定義する。同様に、絶縁層11aと絶縁層11cとの境界は、コイル導体12bを積層方向に2等分した点を通り、焼成体の上面または下面とおおむね平行な線分と定義する。同様に、絶縁層11bと絶縁層16cとの境界は、引出電極13aを積層方向に2等分した点を通り、焼結体の上面または下面とおおむね平行な線分と定義する。同様に、絶縁層11cと絶縁層16dとの境界は、引出電極13bを積層方向に2等分した点を通り、焼結体の上面または下面とおおむね平行な線分と定義する。また、絶縁層11b、11cを有しない試料番号1の試料では、絶縁層16cと酸化物磁性体層15aとの間に引出電極13aを設け、絶縁層16dと酸化物磁性体層15bとの間に引出電極13bを設けることで、各層の境界を定義する。絶縁層16c、16dを有しない試料番号6の試料では、絶縁層11bと酸化物磁性体層15aとの間に引出電極13aを設けることで各層の境界を定義する。
 なお、試料における絶縁層11a~11cの気孔率はいずれも12%であった。
 図7に示すように、絶縁層11b、11cを有しておらず、絶縁層16c、16dの厚みを25μmとした試料番号1のクラックの発生率は41/50と80%以上である。それに対し、絶縁層11b、11cの厚みが3μmである試料番号2はクラックの発生率は5/50と10%であり、劇的にクラックの発生を抑制している。試料番号3~6のように絶縁層11b、11cの厚みを5μm以上とすることでクラックの発生率は0/50と顕著に低くなっている。
 絶縁層11b、11cを有しておらず、絶縁層16c、16dの厚みを25μmとし、引出電極13a、13bを絶縁層11aから3μm、5μm、10μm、15μm、25μmの距離だけそれぞれ離れた試料のクラックの発生率も検討した。しかし、引出電極13a、13bの絶縁層11aからの距離によりクラックの発生率は変化せず、クラックを抑制する効果は得られなかった。
 従って、絶縁層11b、11cを設けることで、外部端子電極17を形成するための導電ペーストの焼付け熱処理後のクラックの発生率を劇的に抑制することができる。さらには絶縁層11b、11cの厚みを5μm以上とすることでより顕著にその抑制の効果を発揮することができる。
 以上述べたように、実施の形態1におけるコモンモードノイズフィルタ1001、1002では、コイル導体12a、12b間の絶縁層11aを内部に分散する複数の気孔911aを有するガラス系材料で構成していることにより、コイル導体12a、12b間に発生する浮遊容量を極めて低く抑えることができる。さらには絶縁層11b、11cにより、外部端子電極17の焼付け熱処理後のクラック等の構造欠陥を生じることなく、高周波特性の極めて優れたコモンモードノイズフィルタ1001、1002を高い歩留まりで得ることができる。
 (実施の形態2)
 図8と図9はそれぞれ本発明の実施の形態2におけるコモンモードノイズフィルタ2001の斜視図と分解斜視図である。図10は図8に示すコモンモードノイズフィルタ2001の線10-10における断面図である。図8から図10において、図1から図3に示す実施の形態1におけるコモンモードノイズフィルタ1001と同じ部分には同じ参照番号を付す。
 実施の形態2におけるコモンモードノイズフィルタ2001では、絶縁層11aの上面111aや下面211aには露出しないようにコイル導体12a、12bが絶縁層11aの内部に埋設されている。コモンモードノイズフィルタ2001は、図1から図3に示す実施の形態1におけるコモンモードノイズフィルタ1001の絶縁層11b、11cの代りに、絶縁層11aの上面111aに配置された絶縁層11dと、絶縁層11aの下面211aに配置された絶縁層11eとを備える。
 コモンモードノイズフィルタ2001は、絶縁層11aと、絶縁層11aの上面111aの上方に設けられた酸化物磁性体層15aと、絶縁層11aの下面211aの下方に設けられた酸化物磁性体層15bと、絶縁層11aに埋設されて互いに対向するコイル導体12a、12bと、絶縁層11aの上面111aと酸化物磁性体層15aとの間に配置された絶縁層11dと、絶縁層11aの下面211aと酸化物磁性体層15bとの間に配置された絶縁層11eとを有する。酸化物磁性体層15aは絶縁層11dの上面111dに配置されている。酸化物磁性体層15bは絶縁層11eの下面211eに配置されている。コモンモードノイズフィルタ2001は、コイル導体12a、12bとそれぞれ電気的に接続された引出電極13a、13bと、コイル導体12a、12bと引出電極13a、13bとをそれぞれ繋ぐビア電極14a、14bと、コイル導体12a、12bおよび引出電極13a、13bに接続された外部端子電極17とをさらに有する。絶縁層11aはホウ珪酸ガラスと無機フィラーからなる。絶縁層11a、11d、11eは、酸化物磁性体層15a、15bとは異なり実質的に磁性を有さない非磁性の層である。絶縁シート層51a、61a、71aは積層されて絶縁層11aを構成する。
 コモンモードノイズフィルタ2001は、酸化物磁性体層15aと同じ材料より成る一つ以上の酸化物磁性体層15cと、酸化物磁性体層15bと同じ材料より成る一つ以上の酸化物磁性体層15dと、一つ以上の絶縁層16aと、一つ以上の絶縁層16bとをさらに有する。絶縁層16aは酸化物磁性体層15a、15cと交互に積層されている。絶縁層16bは酸化物磁性体層15b、15dと交互に積層されている。引出電極13aは絶縁層11aの上面111aに設けられている。ビア電極14aは絶縁層11aの絶縁シート層51aを貫通する。絶縁層11dは、引出電極13aに当接して引出電極13aを覆うように絶縁層11aの上面111aに配置されている。引出電極13bは絶縁層11aの下面211aに設けられている。ビア電極14bは絶縁層11aの絶縁シート層71aを貫通する。絶縁層11eは、引出電極13bに当接して引出電極13bを覆うように絶縁層11aの下面211aに配置されている。
 コイル導体12a、12bは、Agなどの導電材料を渦巻き状にめっきすることにより形成され、絶縁層11a内に埋設されている。引出電極13aは絶縁層11a、11d間に設けられ、引出電極13bは絶縁層11a、11e間に設けられている。コイル導体12a、12bは、引出電極13a、13bとビア電極14a、14bを介してそれぞれ電気的に接続されている。
 絶縁層11a、11d、11eはホウ珪酸ガラスと無機フィラーからなるガラス系非磁性材料よりなり、絶縁性を有している。
 酸化物磁性体層15a、15bはFeをベースとしたフェライトなどの磁性材料により構成されている。
 図11はコモンモードノイズフィルタ2001の拡大断面図である。絶縁層11aの内部には複数の気孔911aが分散している。
 絶縁層11d、11eは実質的に気孔を含まない。実質的に気孔を含まないとは、気孔を形成するための添加物を添加していないガラス系材料を十分に焼結させた状態を指し、特にその気孔率が2%以下であることがより望ましい。
 絶縁層11a、11d、11eで用いられるホウ珪酸ガラスのガラス組成は、SiO、Bに加え、Al、アルカリ金属酸化物より選ばれるいずれか1種類以上の添加物を含有する材料からなることが望ましい。また、環境への悪影響を考慮し、そのガラス組成はPbOを実質的に含まないことが望ましい。
 絶縁層11a、11d、11eで用いられるホウ珪酸ガラスのガラス屈服点は550℃以上、750℃以下が望ましい。ガラス屈服点が550℃未満の場合、焼成時の変形が著しく、また、耐薬品性が劣るためめっき等のプロセスで問題が生じる場合がある。また、ガラス屈服点が750℃を越えた場合、コイル導体12a、12bと同時焼成可能な温度域での緻密化が不十分となる場合がある。
 絶縁層11a、11d、11eで用いられる無機フィラーとしては、焼成時にホウ珪酸ガラスとの反応を起こしにくいものであれば、アルミナ、ディオプサイド、ムライト、コージェライト、シリカ等、種々のものを用いることができる。無機フィラーとして、特に誘電率の低いコージェライトやシリカを用いることで、絶縁層11aの誘電率を効果的に下げることができるため望ましい。
 次に、実施の形態2におけるコモンモードノイズフィルタ2001の製造方法について説明する。図13はコモンモードノイズフィルタ2001の製造工程を示す図である。
 まず、絶縁層11aの絶縁シート層51a、61a、71aを構成する絶縁シートを作製して準備する。ホウ珪酸ガラス粉末63wt%とSrCO粉末4wt%と無機フィラー33wt%とを配合、混合して混合粉末を得る(ステップS201)。その後、有機バインダとしてPVB(ブチラール樹脂)及びアクリル樹脂、可塑剤BBP(フタル酸ベンジルブチル)とを混合し、上記の混合粉末を分散させてスラリーを作製する(ステップS202)。
 次にこのスラリーをドクターブレード法にてPET(ポリエチレンテレフタラート)フィルム上に塗布することによってスラリーを成形してグリーンシートである絶縁シートを得る(ステップS203)。
 絶縁層11d、11eを構成する絶縁シートを作製して準備する。ホウ珪酸ガラス粉末66wt%と無機フィラー34wt%を配合、混合して混合粉末を得る。その後、絶縁シート層51a、61a、71aを構成する絶縁シートと同様にこの混合粉末からスラリーを作製し、このスラリーを成形して絶縁シートを得る。
 酸化物磁性体層15a~15dを構成する酸化物磁性体シートを作製して準備する。フェライト材料100wt%の粉末を準備する。その後、絶縁シート層51a、61a、71aを構成する絶縁シートと同様にこの粉末からスラリーを作製し、このスラリーを成形して酸化物磁性体シートを得る。
 絶縁層16a、16bを構成する絶縁シートを作製して準備する。ホウ珪酸ガラス粉末69wt%と無機フィラー31wt%を配合、混合して混合粉末を得る。その後、絶縁シート層51a、61a、71aを構成する絶縁シートと同様にこの混合粉末からスラリーを作製し、このスラリーを成形して絶縁シートを得る。
 なお、実施の形態2では上述のように絶縁層11aすなわち絶縁シート層51a、61a、71aおよび絶縁層11d、11eを構成するガラスおよび無機フィラーをそれぞれ同一の材料とする。ガラス系の材料を用いれば絶縁層11d、11eと酸化物磁性体層15a、15bとの接合強度を高められるとともに、絶縁層11aと絶縁層11d、11e間でガラス同士の結合層を形成するので、これらの層の接合強度も高めることができる。
 次に絶縁シート層51a、71aを構成する絶縁シートの所定位置にビアホールを形成し、Ag粉末とガラスフリットからなる導電ペーストを充填する。この導電ペーストは焼成されてビア電極14a、14bを構成する(ステップS204)。
 コイル導体12a、12bと引出電極13a、13bを形成する。ベース板に所定パターン形状でめっきによりAgからなるコイル導体12a、12bと引出電極13a、13bとなる導体パターンを形成する。その後、絶縁シート層51a、61a、71aまたは絶縁層11d、11eを構成する絶縁シートにベース板からこれらの導体パターンを転写する。
 なお、これらのシートの作製方法は上記方法に限るものではなく、ペースト印刷により各層を構成しても良く、コイル導体12a、12bや引出電極13a、13bおよびビア電極14a、14bの形成方法は特に上記に限定されない。
 導体パターンが転写された絶縁シートを含む各絶縁シートを順次積層してシート積層体を作製し、このシート積層体を所望のサイズに切断して個片の積層体2001Aを得る(ステップS205)。通常、コモンモードノイズフィルタ2001のようなチップ部品は50mm角以上のシート積層体を約1~2mm角程度に切断して積層体2001Aを得る。
 次に、積層体2001Aを所定の温度、時間で焼成して焼結を進めるとともに、無機発泡剤からガスを発生させて焼成体2001Bを得る(ステップS206)。このとき、絶縁層11aの絶縁シート層51a、61a、71aの原材料に混合された無機発泡剤であるSrCO粉末が熱分解し、積層体2001A内部で炭酸ガスを発生する。これにより、絶縁シート層51a、61a、71aすなわち絶縁層11aには複数の気孔911aが形成されるとともに、絶縁層11aにはSr元素が残存する。なお、無機発泡剤としてCaCOを用いた場合には、絶縁層11a内部に複数の気孔911aが形成されるとともにCa元素が残存する。
 次に、焼成体にバレル研磨を施す(ステップS207)。具体的には、約1万個の焼成体を、直径2mmのメディアとSiC研磨剤と純水とを遊星ミル内に投入し、150rpmで10分間回転させる。これにより、焼成体の表面の凹凸を取り除くとともに、角部の面取りを行い、外部端子電極17が焼成体に良好に塗布できるようになる。
 バレル研磨後に、焼成体の両側面に、コイル導体12a、12bあるいは引出電極13a、13bと電気的に接続されるようにAg粉末とガラスフリットを含む導電ペーストを塗布し、その後700℃で導電ペーストを焼付け熱処理して外部端子電極17を形成する(ステップS208)。
 実施の形態2におけるコモンモードノイズフィルタ2001では、絶縁層11aは内部に独立閉気孔のみを包含し、連通開気孔がほとんど生成しないので、樹脂含浸等の後処理を施さずとも、十分な絶縁信頼性を確保できる。ただし、更に高い信頼性を確保するために、外部端子電極17を形成した後の焼成体をフッ素系シランカップリング剤等に浸漬し、表面の開気孔内に樹脂を含浸させても良い。
 最後に外部端子電極17の表面にめっき法によってニッケルめっき層、スズめっき層を形成してコモンモードノイズフィルタ2001を形成する(ステップS209)。
 実施の形態2におけるコモンモードノイズフィルタ2001では、フェライト等の磁性体よりなる酸化物磁性体層15a、15bと気孔911aを内在する絶縁層11aとの強固な結合を得ることができる。したがって、バレル研磨等、焼成後の後工程における応力負荷により、酸化物磁性体層15a、15bと絶縁層11d、11eとの界面近傍でのデラミネーションを抑制することができる。
 実施の形態2におけるコモンモードノイズフィルタ2001は、実施の形態1におけるコモンモードノイズフィルタ1001と同様に、気孔911aを内在するガラス系材料を絶縁層11aにより高周波特性に極めて優れる。
 実施の形態2におけるコモンモードノイズフィルタ2001では、絶縁層11aはガラスと無機フィラーとを含み内部に分散する複数の気孔911aを有する。絶縁層11aの上面111aや下面211aから露出しないようにコイル導体12a、12bが絶縁層11a中に互いに対向して配置される。絶縁層11aの上面111aの上方に酸化物磁性体層15aが設けられ、絶縁層11aの下面211aの上方に酸化物磁性体層15bが設けられる。ガラスと無機フィラーとを含む絶縁層11dが絶縁層11aの上面111aと酸化物磁性体層15aの間に設けられている。ガラスと無機フィラーとを含む絶縁層11eが絶縁層11aの下面211aと酸化物磁性体層15bの間に設けられている。絶縁層11dの単位体積当たりの絶縁層11dの内部に占める気孔の合計の体積や、絶縁層11eの単位体積当たりの絶縁層11eの内部に占める気孔の合計の体積は、絶縁層11aの単位体積当たりの複数の気孔911aの合計の体積より小さい。絶縁層11d、11eは実質的に気孔を有していなくてもよい。
 実施の形態2におけるコモンモードノイズフィルタ2001では、以下の理由で絶縁層11d、11eと酸化物磁性体層15a、15bの界面において強固な接合が得られる。
 絶縁層11aとしてCu-Zn系等の非磁性フェライト材料を用いた場合には、絶縁層11aが酸化物磁性体層15a、15bに直接接合しても、焼成時に酸化物磁性体層15a、15bのフェライト材料との間で相互拡散により反応層を形成して強固な接合が得られる。しかしながら、実施の形態2における絶縁層11aとしてガラス系材料を用いた場合は、反応層は生じることなくガラスの融着力のみで密着を保つ。さらに、内部に複数の気孔911aが設けられたガラス系材料を絶縁層11aに用いると、酸化物磁性体層15a、15bと絶縁層11aとの界面にも気孔911aが存在することにより、ガラスの実融着面積が小さくなり、密着が保ち難くなる。
 実施の形態2におけるコモンモードノイズフィルタ2001では、酸化物磁性体層15aと絶縁層11aとの間に絶縁層11dが設けられ、酸化物磁性体層15bと絶縁層11aとの間に絶縁層11eが設けられている。絶縁層11d、11eは絶縁層11aよりも単位体積当たりの気孔の合計の体積が小さい。これにより、酸化物磁性体層15aと絶縁層11dとが融着する面積と、酸化物磁性体層15bと絶縁層11eとが融着する面積とを大きくすることができるので、酸化物磁性体層15aと絶縁層11dとが強固に接合し、酸化物磁性体層15bと絶縁層11eとが強固に接合する。酸化物磁性体層15a、15bと接する絶縁層11d、11eは絶縁層11aと同じくガラス系の材料からなる。したがって、絶縁層11dと絶縁層11aとの界面(絶縁層11aの上面111a)と、絶縁層11eと絶縁層11aとの界面(絶縁層11aの下面211a)とでは融着面積は小さくなるものの、微視的に見た個々の融着部は界面なく一体化するので、絶縁層11a、11d、11eは互いに強固に接合する。
 図12は実施の形態2におけるコモンモードノイズフィルタ2001のデラミネーションの発生についての評価結果を示す。絶縁層11d、11eの厚みを変えて試料番号7~12の試料を作製し、絶縁層11dと酸化物磁性体層15aとの界面と絶縁層11eと酸化物磁性体層15bとの界面におけるデラミネーションの発生の有無を確認した。これらの試料において、コイル導体12a、12b間の距離、すなわち絶縁層11aの絶縁シート層61aの厚みは25μmである。コイル導体12aと絶縁層11dとの間の距離すなわち絶縁層11aの絶縁シート層51aの厚みは25μmである。また、コイル導体12bと絶縁層11eとの間の距離すなわち絶縁層11aの絶縁シート層71aの厚みも25μmである。焼成、バレル研磨後のサンプル約1万個から、各試料番号において50個の試料を無作為に抽出し、各試料の四側面部を走査型電子顕微鏡(SEM)で観察し、うち少なくとも一側面にデラミネーションが確認された試料を不良品と判定した。
 また、絶縁層11a、11d、11eとは各々が焼結し一体化されるので、これらの層に同一材料を用いた場合にはSEMで観察をしても各層の境界を明確に区別し難い場合がある。しかしながら、上述した製造プロセスにおいて絶縁層11a、11d間には引出電極13aが存在し、絶縁層11a、11e間には引出電極13bが存在するので、各層の境界は引出電極13a、13bとして明確に定義できる。
 次に絶縁層11a、11d、11eにおける単位体積当たりの気孔の体積の測定方法について説明する。
 まず各々の層の単位体積当たりの気孔の体積を測定する部位について説明する。絶縁層11aの単位体積当たりの気孔911aの体積はコイル導体12a、12b間において気孔911aの体積を測定する。絶縁層11d内の気孔の体積は、酸化物磁性体層15aとコイル導体12aとの間で測定する。絶縁層11e内の気孔の体積は、酸化物磁性体層15bとコイル導体12bとの間で測定する。焼成体の任意の5つの断面をSEMにより撮影した写真を用いて、各々の層における気孔の面積SPと、焼成体の断面全体の面積(SB)とを画像処理により算出する。単位面積当たり気孔の体積の合計すなわち気孔率TVは以下の式で算出される。
TV=SP3/2/SB3/2
 図12に示す試料の絶縁層11aの気孔率は12%である。
図12に示すように、絶縁層11d、11eを有しておらず絶縁層11aと酸化物磁性体層15a、15bとが直接接する試料番号7の試料のデラミネーションの発生率は37/50と70%以上である。絶縁層11d、11eを有する試料番号8の試料のデラミネーションの発生率は7/50とほぼ15%である。それに対し、試料番号9~12の試料で示すように、絶縁層11d、11eを厚くするとデラミネーションの発生率はすべて50分の0と優れた結果が得られた。
 このように、絶縁層11aと酸化物磁性体層15a、15bとの間に絶縁層11d、11eを配置することで、バレル研磨後のデラミネーションの発生率は低くなる。
 実施の形態2におけるコモンモードノイズフィルタ2001では、ガラス系材料からなり内部に分散する複数の気孔911aを有する絶縁層11a内にコイル導体12a、12bを設ける。これにより、コイル導体12a、12b間に発生する浮遊容量を極めて低く抑えることができるため、高周波特性の極めて優れたコモンモードノイズフィルタ2001が得られる。絶縁層11aと酸化物磁性体層15aとの間に実質的に気孔を含まない絶縁層11dを配置し、絶縁層11aと酸化物磁性体層15bとの間に実質的に気孔を含まない絶縁層11eを配置することで、酸化物磁性体層15aと絶縁層11dとの間のデラミネーションと酸化物磁性体層15bと絶縁層11eとの間のデラミネーションとの発生を抑制し、高い歩留まりを得ることができる。
 実施の形態2におけるコモンモードノイズフィルタ2001の絶縁層11d、11eは内部に分散する気孔を有していてもよい。絶縁層11d、11eの単位体積当たりの気孔の合計体積は絶縁層11aの単位体積当たりの気孔911aの合計体積の比より小さいようにすることで、酸化物磁性体層15a、15bと絶縁層11d、11eとの間のデラミネーションを防止することができる。この場合には、絶縁層11d、11eを構成する絶縁シートを作製して準備する工程において、絶縁シートの材料である混合粉末にさらに実施の形態1と同様に無機発泡剤を混合する。
 なお、実施の形態1、2におけるコモンモードノイズフィルタ1001、1002、2001はコイル導体12a、12bを備える。コイル導体12a、12bの数は2に限ったものではない。実施の形態1、2におけるコモンモードノイズフィルタ1001、1002、2001は、互いに対向するコイル導体12a、12bよりそれぞれなる複数の対のコイル導体よりなるアレイタイプのフィルタであってもよい。
 実施の形態1、2において、「上面」「下面「上方」「下方」等の方向を示す用語は絶縁層や酸化物磁性体層等のコモンモードノイズフィルタの構成部分の相対的な位置関係にのみ依存する相対的な方向を示し、鉛直方向等の絶対的な方向を示すものではない。
 本発明におけるコモンモードノイズフィルタは、クラックの発生を防止することができるので、高周波帯域での使用でありかつ高い歩留まりで得ることができ、特にデジタル機器やAV機器、情報通信端末等の各種電子機器のノイズ対策等の用途として有用である。
11a  絶縁層(第一の絶縁層)
11b  絶縁層(第二の絶縁層)
11c  絶縁層(第三の絶縁層)
11d  絶縁層(第二の絶縁層)
11e  絶縁層(第三の絶縁層)
12a  コイル導体(第一のコイル導体)
12b  コイル導体(第二のコイル導体)
15a  酸化物磁性体層(第一の酸化物磁性体層)
15b  酸化物磁性体層(第二の酸化物磁性体層)
16c  絶縁層(第四の絶縁層)
16d  絶縁層(第五の絶縁層)
17  外部端子電極
51a  絶縁シート層(第一の絶縁シート層)
61a  絶縁シート層(第二の絶縁シート層)
71a  絶縁シート層(第二の絶縁シート層)
911a  気孔(第一の気孔)
911b  気孔(第二の気孔)
911c  気孔(第三の気孔)
1001  コモンモードノイズフィルタ
1002  コモンモードノイズフィルタ
2001  コモンモードノイズフィルタ

Claims (14)

  1. ガラスと無機フィラーとを含み内部に分散する複数の気孔を有する第一の絶縁層と、
    前記第一の絶縁層の上面に配置された第一のコイル導体と、
    前記第一の絶縁層の下面に配置されて、前記第一の絶縁層を介して前記第一のコイル導体に対向する第二のコイル導体と、
    前記第一のコイル導体を覆うように前記第一の絶縁層の前記上面に配置された、ガラスと無機フィラーを含み内部に分散する複数の気孔を有する第二の絶縁層と、
    前記第二のコイル導体を覆うように前記第二の絶縁層の前記下面に配置された、ガラスと無機フィラーを含み内部に分散する複数の気孔を有する第三の絶縁層と、
    前記第二の絶縁層の上面の上方に配置された第一の酸化物磁性体層と、
    前記第一の絶縁層と前記第二の絶縁層と前記第三の絶縁層とを第一の酸化物磁性体層とで間に挟むように前記第三の絶縁層の下面の下方に配置された第二の酸化物磁性体層と、
    を備えたコモンモードノイズフィルタ。
  2. 前記第一の酸化物磁性体層は前記第二の絶縁層の前記上面に配置されている、請求項1に記載のコモンモードノイズフィルタ。
  3. 前記第二の酸化物磁性体層は前記第三の絶縁層の前記下面に配置されている、請求項2に記載のコモンモードノイズフィルタ。
  4. 前記第二の絶縁層の前記上面に配置されて、前記第一のコイル導体と前記第二のコイル導体のうちの少なくとも一つに電気的に接続された第一の引出電極と、
    前記第一の引出電極を覆うように前記第二の絶縁層の前記上面に配置された、ガラス成分を含む第四の絶縁層をさらに備え、
    前記第一の酸化物磁性体層は前記第四の絶縁層の上面に配置されている、請求項1に記載のコモンモードノイズフィルタ。
  5. 前記第三の絶縁層の前記下面に配置されて、前記第一のコイル導体と前記第二のコイル導体のうちの少なくとも一つに電気的に接続された第二の引出電極と、
    前記第二の引出電極を覆うように前記第三の絶縁層の前記下面に配置された、ガラス成分を含む第五の絶縁層をさらに備え、
    前記第二の酸化物磁性体層は前記第五の絶縁層の下面に配置されている、請求項4に記載のコモンモードノイズフィルタ。
  6. ガラスと無機フィラーとを含み内部に分散する複数の第一の気孔を有する第一の絶縁層と、
    前記第一の絶縁層の上面と下面とから露出しないように前記第一の絶縁層の内部に配置された第一のコイル導体と、
    前記第一の絶縁層の上面と下面とから露出しないように前記第一の絶縁層の内部に配置され、前記第一の絶縁層の一部を介して前記第一のコイル導体に対向する第二のコイル導体と、
    前記第一の絶縁層の前記上面に設けられた、ガラスと無機フィラーとを含む第二の絶縁層と、
    前記第一の絶縁層を前記第二の絶縁層とで間に挟むように前記第一の絶縁層の前記下面に設けられた、ガラスと無機フィラーとを含む第三の絶縁層と、
    前記第二の絶縁層の上面の上方に配置された第一の酸化物磁性体層と、
    前記第三の絶縁層の下面の下方に配置された第二の酸化物磁性体層と、
    を備え、
    前記第二の絶縁層の単位体積当たりの前記複数の第二の絶縁層内の気孔の合計体積と前記第三の絶縁層の単位体積当たりの前記第三の絶縁層内の気孔の合計体積とは前記第一の絶縁層の単位体積当たりの前記第一の気孔の合計体積の比より小さい、コモンモードノイズフィルタ。
  7. 前記第二の絶縁層は内部に分散する気孔を実質的に有しておらず、
    前記第三の絶縁層は内部に分散する気孔を実質的に有していない、請求項6に記載のコモンモードノイズフィルタ。
  8. 前記第二の絶縁層および第三の絶縁層の厚みが5μm以上である、請求項1または請求項6に記載のコモンモードノイズフィルタ。
  9. 前記第一の絶縁層、前記第二の絶縁層および前記第三の絶縁層にはアルカリ土類金属元素を含む、請求項1または請求項6に記載のコモンモードノイズフィルタ。
  10. 前記第一の絶縁層の前記ガラスと前記第二の絶縁層の前記ガラスとは同じ材料よりなり、
    前記第一の絶縁層の前記ガラスと前記第三の絶縁層の前記ガラスとは同じ材料よりなり、
    前記第一の絶縁層の前記無機フィラーと前記第二の絶縁層の前記無機フィラーとは同じ材料よりなり
    前記第一の絶縁層の前記無機フィラーと前記第三の絶縁層の前記無機フィラーとは同じ材料よりなる、請求項1または請求項6に記載のコモンモードノイズフィルタ。
  11. 前記第一の絶縁層と前記第二の絶縁層および前記第三の絶縁層はホウ珪酸ガラスとシリカフィラーからなる、請求項1または請求項6に記載のコモンモードノイズフィルタ。
  12. ガラスと無機フィラーと無機発泡剤と有機バインダとを含む第一の絶縁シートを準備するステップと、
    ガラスと無機フィラーと無機発泡剤と有機バインダを含む第二の絶縁シートを準備するステップと、
    ガラスと無機フィラーと無機発泡剤と有機バインダを含む第三の絶縁シートを準備するステップと、
    磁性材料を主成分とし、有機バインダを含む第一の酸化物磁性体シートを準備するステップと、
    磁性材料を主成分とし、有機バインダを含む第二の酸化物磁性体シートを準備するステップと、
    前記第一の絶縁シートの上面に第一のコイル導体を配置し、前記第一のコイル導体を覆うように前記第一の絶縁シートの前記上面に前記第二の絶縁シートを配置し、前記第一の絶縁シートの下面に第二のコイル導体を配置し、前記第二のコイル導体を覆うように第一の絶縁シートの前記下面に前記第三の絶縁シートを配置し、前記第二の絶縁シートの上面の上方に前記第一の酸化物磁性体シートを配置し、前記第一の絶縁シートと前記第二の絶縁シートと前記第三の絶縁シートとを前記第一の酸化物磁性体シートとで挟むように前記第三の絶縁層の下面の下方に前記第二の酸化物磁性体シートを配置することにより積層体を形成するステップと、
    前記積層体を焼成して前記第一の絶縁シートの前記無機発泡剤と前記第二の絶縁シートの前記無機発泡剤と前記第三の絶縁シートの前記無機発泡剤からガス発生させて前記第一の絶縁シートと前記第二の絶縁シートと前記第三の絶縁シートの内部に複数の気孔を形成することにより焼成体を得るステップと、
    前記焼成体に外部端子電極を設けるステップと、
    を含む、コモンモードノイズフィルタの製造方法。
  13. ガラスと無機フィラーと無機発泡剤と有機バインダを含みかつ積層されて第一の絶縁シートとなる第一の絶縁シート層と第二の絶縁シート層と第三の絶縁シート層とを準備するステップと、
    ガラスと無機フィラーと有機バインダを含む第二の絶縁シートを準備するステップと、
    ガラスと無機フィラーと有機バインダを含む第三の絶縁シートを準備するステップと、
    磁性材料を主成分とし、有機バインダを含む第一の酸化物磁性体シートを準備するステップと、
    磁性材料を主成分とし、有機バインダを含む第二の酸化物磁性体シートを準備するステップと、
    前記第一の絶縁シート層の上面に第一のコイル導体を配置し、前記第一のコイル導体を覆うように前記第一の絶縁シート層の前記上面に前記第二の絶縁シート層を配置し、前記第一の絶縁シート層の下面に第二のコイル導体を配置し、前記第二のコイル導体を覆うように前記第一の絶縁シート層の前記下面に前記第三の絶縁シート層を配置し、前記第二の絶縁シート層の上面に前記第二の絶縁シートを配置し、前記第一の絶縁シート層と前記第二の絶縁シート層と前記第三の絶縁シート層を前記第二の絶縁シートとで挟むように前記第三の絶縁シート層の下面に前記第二の絶縁シートを配置し、前記第二の絶縁シートの上面の上方に前記第一の酸化物磁性体シートを配置し、前記第一の絶縁シート層と前記第二の絶縁シート層と前記第三の絶縁シート層と前記第二の絶縁シートと前記第三の絶縁シートとを前記第一の酸化物磁性体シートとで挟むように前記第三の絶縁層の下面の下方に前記第二の酸化物磁性体シートを配置することにより積層体を形成するステップと、
    前記積層体を焼成して前記第一の絶縁シート層と前記第二の絶縁シート層と前記第三の絶縁シート層の前記無機発泡剤からガスを発生させて前記第一の絶縁シート層と前記第二の絶縁シート層と前記第三の絶縁シート層の内部に複数の気孔を形成することにより焼成体を得るステップと、
    前記焼成体に外部端子電極を設けるステップと、
    を含む、コモンモードノイズフィルタの製造方法。
  14. 前記無機発泡剤はアルカリ土類炭酸塩を含む、請求項12または請求項13に記載のコモンモードノイズフィルタの製造方法。
PCT/JP2012/005829 2011-09-15 2012-09-13 コモンモードノイズフィルタおよびその製造方法 WO2013038671A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/238,181 US9269487B2 (en) 2011-09-15 2012-09-13 Common mode noise filter and production method therefor
CN201280044971.5A CN103814419B (zh) 2011-09-15 2012-09-13 共模噪声滤波器以及其制造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-201437 2011-09-15
JP2011201438A JP5974263B2 (ja) 2011-09-15 2011-09-15 コモンモードノイズフィルタおよびその製造方法
JP2011201437A JP5974262B2 (ja) 2011-09-15 2011-09-15 コモンモードノイズフィルタおよびその製造方法
JP2011-201438 2011-09-15

Publications (1)

Publication Number Publication Date
WO2013038671A1 true WO2013038671A1 (ja) 2013-03-21

Family

ID=47882920

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/005829 WO2013038671A1 (ja) 2011-09-15 2012-09-13 コモンモードノイズフィルタおよびその製造方法

Country Status (3)

Country Link
US (1) US9269487B2 (ja)
CN (1) CN103814419B (ja)
WO (1) WO2013038671A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014192425A (ja) * 2013-03-28 2014-10-06 Panasonic Corp コモンモードノイズフィルタ
JP2016207939A (ja) * 2015-04-27 2016-12-08 株式会社村田製作所 電子部品及びその製造方法

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105122394A (zh) * 2013-04-18 2015-12-02 松下知识产权经营株式会社 共模噪声滤波器及其制造方法
WO2015093098A1 (ja) * 2013-12-19 2015-06-25 株式会社村田製作所 ガラスセラミック材料および積層セラミック電子部品
CN107155366B (zh) * 2014-11-18 2019-08-16 松下知识产权经营株式会社 共模噪声滤波器
US9525924B2 (en) * 2015-03-16 2016-12-20 Microsoft Technology Licensing, Llc Magnetic shielding and communication coil
KR101693749B1 (ko) 2015-04-06 2017-01-06 삼성전기주식회사 인덕터 소자 및 그 제조방법
CN105098300A (zh) * 2015-09-11 2015-11-25 禾邦电子(中国)有限公司 共模滤波器及其制造方法
KR101900879B1 (ko) * 2015-10-16 2018-09-21 주식회사 모다이노칩 파워 인덕터
JP2017103359A (ja) * 2015-12-02 2017-06-08 Tdk株式会社 コイル部品及び電源回路ユニット
JP6668723B2 (ja) * 2015-12-09 2020-03-18 株式会社村田製作所 インダクタ部品
US10062505B1 (en) * 2015-12-30 2018-08-28 Hrl Laboratories, Llc Laminated conductors
JP6558302B2 (ja) * 2016-05-26 2019-08-14 株式会社村田製作所 電子部品
JP6720945B2 (ja) * 2017-09-12 2020-07-08 株式会社村田製作所 コイル部品
JP6642544B2 (ja) * 2017-09-12 2020-02-05 株式会社村田製作所 コイル部品
JP7168307B2 (ja) * 2017-10-30 2022-11-09 太陽誘電株式会社 磁気結合型コイル部品
JP6828673B2 (ja) * 2017-12-15 2021-02-10 株式会社村田製作所 積層型インダクタ部品及び積層型インダクタ部品の製造方法
US20190311842A1 (en) * 2018-04-09 2019-10-10 Murata Manufacturing Co., Ltd. Coil component
JP2019186371A (ja) * 2018-04-09 2019-10-24 株式会社村田製作所 コイル部品
JP7021599B2 (ja) * 2018-04-18 2022-02-17 株式会社村田製作所 コモンモードチョークコイル
JP6962297B2 (ja) * 2018-08-31 2021-11-05 株式会社村田製作所 積層コイル部品
JP7092070B2 (ja) * 2019-03-04 2022-06-28 株式会社村田製作所 積層型コイル部品
JP7107285B2 (ja) * 2019-07-12 2022-07-27 株式会社村田製作所 磁性構造体および磁性構造体の製造方法
JP7453758B2 (ja) * 2019-07-31 2024-03-21 株式会社村田製作所 コイル部品
CN112103059B (zh) * 2020-09-15 2022-02-22 横店集团东磁股份有限公司 一种薄膜功率电感器的制作方法以及薄膜功率电感器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004235494A (ja) * 2003-01-31 2004-08-19 Toko Inc 積層型電子部品
JP2006303209A (ja) * 2005-04-21 2006-11-02 Matsushita Electric Ind Co Ltd コモンモードノイズフィルタ
WO2008093669A1 (ja) * 2007-01-30 2008-08-07 Murata Manufacturing Co., Ltd. 感光性ガラスペーストおよび多層配線チップ部品
JP2008300432A (ja) * 2007-05-29 2008-12-11 Hitachi Metals Ltd コモンモードフィルタ
JP2010098199A (ja) * 2008-10-18 2010-04-30 Taiyo Yuden Co Ltd インダクタンス素子及びその製造方法
JP2010206089A (ja) * 2009-03-05 2010-09-16 Murata Mfg Co Ltd 電子部品
JP2011003567A (ja) * 2009-06-16 2011-01-06 Tokai Denshi Kogyo Kk 多層基板の製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3204933B2 (ja) 1997-08-20 2001-09-04 太陽誘電株式会社 セラミック電子部品とその製造方法
JP2003124028A (ja) 2001-10-15 2003-04-25 Toko Inc 積層型トランス
JP2005038904A (ja) * 2003-07-15 2005-02-10 Murata Mfg Co Ltd 積層セラミック電子部品およびその製造方法
JP4736526B2 (ja) * 2005-05-11 2011-07-27 パナソニック株式会社 コモンモードノイズフィルタ
JP4657808B2 (ja) * 2005-05-24 2011-03-23 東京応化工業株式会社 感光性組成物および該感光性組成物から形成されたカラーフィルタ
JP5195758B2 (ja) * 2007-09-14 2013-05-15 株式会社村田製作所 積層コイル部品およびその製造方法
CN103950249B (zh) * 2008-10-14 2016-09-28 松下知识产权经营株式会社 陶瓷层叠部件及其制造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004235494A (ja) * 2003-01-31 2004-08-19 Toko Inc 積層型電子部品
JP2006303209A (ja) * 2005-04-21 2006-11-02 Matsushita Electric Ind Co Ltd コモンモードノイズフィルタ
WO2008093669A1 (ja) * 2007-01-30 2008-08-07 Murata Manufacturing Co., Ltd. 感光性ガラスペーストおよび多層配線チップ部品
JP2008300432A (ja) * 2007-05-29 2008-12-11 Hitachi Metals Ltd コモンモードフィルタ
JP2010098199A (ja) * 2008-10-18 2010-04-30 Taiyo Yuden Co Ltd インダクタンス素子及びその製造方法
JP2010206089A (ja) * 2009-03-05 2010-09-16 Murata Mfg Co Ltd 電子部品
JP2011003567A (ja) * 2009-06-16 2011-01-06 Tokai Denshi Kogyo Kk 多層基板の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014192425A (ja) * 2013-03-28 2014-10-06 Panasonic Corp コモンモードノイズフィルタ
JP2016207939A (ja) * 2015-04-27 2016-12-08 株式会社村田製作所 電子部品及びその製造方法

Also Published As

Publication number Publication date
US20140191838A1 (en) 2014-07-10
CN103814419B (zh) 2017-12-08
CN103814419A (zh) 2014-05-21
US9269487B2 (en) 2016-02-23

Similar Documents

Publication Publication Date Title
WO2013038671A1 (ja) コモンモードノイズフィルタおよびその製造方法
JP5974262B2 (ja) コモンモードノイズフィルタおよびその製造方法
JP6508126B2 (ja) コイル部品
JP5195758B2 (ja) 積層コイル部品およびその製造方法
JP6683183B2 (ja) 積層コイル部品
JP4736526B2 (ja) コモンモードノイズフィルタ
KR101646801B1 (ko) 세라믹 적층 부품과 그 제조 방법
KR101570459B1 (ko) 세라믹 전자부품의 제조방법 및 세라믹 전자부품
KR101648392B1 (ko) 세라믹 전자부품 및 유리 페이스트
JP5799948B2 (ja) セラミック電子部品及びその製造方法
US20150028988A1 (en) Laminated coil
KR101678103B1 (ko) 세라믹 전자부품
KR20140100434A (ko) 유전체 자기 조성물, 전자 부품 및 복합 전자 부품
WO2007004415A1 (ja) 多層セラミック基板およびその製造方法ならびに多層セラミック基板作製用複合グリーンシート
US20140253276A1 (en) Laminated inductor
CN109243761B (zh) 线圈部件
JP7235088B2 (ja) 積層型電子部品
JP2010040860A (ja) 積層コイル部品およびその製造方法
JP2010080930A (ja) ガラスセラミック基板およびコイル内蔵ガラスセラミック配線基板ならびにガラスセラミック基板の製造方法
CN111009395A (zh) 层叠型电子部件
KR101215923B1 (ko) 적층 코일 부품 및 그 제조 방법
JP6493560B2 (ja) 多層セラミック基板及び電子部品
JP5974263B2 (ja) コモンモードノイズフィルタおよびその製造方法
JP2015125914A (ja) 静電気保護部品
JP2006352018A (ja) 積層型電子部品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12831475

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14238181

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12831475

Country of ref document: EP

Kind code of ref document: A1