KR101900879B1 - 파워 인덕터 - Google Patents

파워 인덕터 Download PDF

Info

Publication number
KR101900879B1
KR101900879B1 KR1020160126742A KR20160126742A KR101900879B1 KR 101900879 B1 KR101900879 B1 KR 101900879B1 KR 1020160126742 A KR1020160126742 A KR 1020160126742A KR 20160126742 A KR20160126742 A KR 20160126742A KR 101900879 B1 KR101900879 B1 KR 101900879B1
Authority
KR
South Korea
Prior art keywords
magnetic
power inductor
substrate
layer
insulating layer
Prior art date
Application number
KR1020160126742A
Other languages
English (en)
Other versions
KR20170045113A (ko
Inventor
박인길
김경태
남기정
정준호
조승훈
Original Assignee
주식회사 모다이노칩
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 모다이노칩 filed Critical 주식회사 모다이노칩
Priority to PCT/KR2016/011501 priority Critical patent/WO2017065528A1/ko
Priority to EP16855745.2A priority patent/EP3364427B1/en
Priority to US15/768,830 priority patent/US10943722B2/en
Priority to CN201680060544.4A priority patent/CN108140468A/zh
Priority to JP2018518437A priority patent/JP2018534773A/ja
Priority to CN202211274061.8A priority patent/CN115482989A/zh
Priority to TW105133200A priority patent/TWI706423B/zh
Publication of KR20170045113A publication Critical patent/KR20170045113A/ko
Application granted granted Critical
Publication of KR101900879B1 publication Critical patent/KR101900879B1/ko
Priority to JP2021007884A priority patent/JP7177190B2/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • H01F17/0013Printed inductances with stacked layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15358Making agglomerates therefrom, e.g. by pressing
    • H01F1/15366Making agglomerates therefrom, e.g. by pressing using a binder
    • H01F1/15375Making agglomerates therefrom, e.g. by pressing using a binder using polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/04Fixed inductances of the signal type  with magnetic core
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/25Magnetic cores made from strips or ribbons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/255Magnetic cores made from particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2804Printed windings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/29Terminals; Tapping arrangements for signal inductances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/29Terminals; Tapping arrangements for signal inductances
    • H01F27/292Surface mounted devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/32Insulating of coils, windings, or parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/32Insulating of coils, windings, or parts thereof
    • H01F27/324Insulation between coil and core, between different winding sections, around the coil; Other insulation structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/10Composite arrangements of magnetic circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/041Printed circuit coils
    • H01F41/046Printed circuit coils structurally combined with ferromagnetic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F5/00Coils
    • H01F5/04Arrangements of electric connections to coils, e.g. leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • H01F2017/0066Printed inductances with a magnetic layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/04Fixed inductances of the signal type  with magnetic core
    • H01F2017/048Fixed inductances of the signal type  with magnetic core with encapsulating core, e.g. made of resin and magnetic powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2804Printed windings
    • H01F2027/2809Printed windings on stacked layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/08Cooling; Ventilating
    • H01F27/22Cooling by heat conduction through solid or powdered fillings

Abstract

본 발명은 바디와, 상기 바디 내부에 마련된 적어도 하나의 기재와, 상기 기재의 적어도 일면 상에 형성된 적어도 하나의 코일 패턴과, 상기 코일 패턴과 상기 바디 사이에 형성된 절연막과, 상기 바디의 외부에 형성되며 상기 코일 패턴과 연결되는 외부 전극을 포함하고, 상기 바디는 교대로 적층된 각각 복수 자성층 및 절연층을 포함하는 파워 인덕터가 제시된다.

Description

파워 인덕터{Power Inductor}
본 발명은 파워 인덕터에 관한 것으로, 특히 인덕턴스(Inductance) 특성이 우수하고 절연 특성 및 열적 안정성이 향상된 파워 인덕터에 관한 것이다.
파워 인덕터는 주로 휴대기기 내의 DC-DC 컨버터 등의 전원 회로에 마련된다. 이러한 파워 인덕터는 전원 회로의 고주파화 및 소형화에 따라 기존의 권선형 초크 코일(Choke Coil)을 대신하여 이용이 증대되고 있다. 또한, 파워 인덕터는 휴대기기의 사이즈 축소와 다기능화에 따라 소형화, 고전류화, 저저항화 등의 방향으로 개발이 진행되고 있다.
종래의 파워 인덕터는 다수의 자성체(ferrite) 또는 저유전율의 유전체로 이루어진 세라믹 시트들이 적층된 형태로 제조되었다. 이때, 세라믹 시트 상에는 코일 패턴이 형성되는데, 각각의 세라믹 시트 상에 형성된 코일 패턴은 세믹 시트에 형성된 도전성 비아에 의해 접속되고, 시트가 적층되는 상하 방향을 따라 중첩되는 구조를 이룰 수 있다. 또한, 세라믹 시트들이 적층되어 구성된 바디는 종래에는 대체로 니켈(Ni)-아연(Zn)-구리(Cu)-철(Fe)의 4 원계로 구성된 자성체 재료를 이용하여 제작하였다.
그런데, 자성체 재료는 포화 자화 값이 금속 재료에 비해 낮아서 최근의 휴대기기가 요구하는 고전류 특성을 구현하지 못할 수 있다. 따라서, 파워 인덕터를 구성하는 바디를 금속 자성 분말을 이용하여 제작함으로써 바디를 자성체로 제작한 경우에 비해 상대적으로 포화 자화 값을 높일 수 있다. 그러나, 금속을 이용하여 바디를 제작할 경우 고주파에서의 와전류 손실 및 히스테리 손실이 높아져 재료의 손실이 심해지는 문제가 발생할 수 있다.
이러한 재료의 손실을 감소시키기 위해 금속 자성 분말 사이를 폴리머로 절연하는 구조를 적용하고 있다. 즉, 금속 자성 분말과 폴리머가 혼합된 시트를 적층하여 파워 인덕터의 바디를 제조한다. 또한, 바디 내부에는 코일 패턴이 형성된 소정의 기재가 마련된다. 즉, 소정의 기재 상에 코일 패턴을 형성하고, 그 상측 및 하측에 복수의 시트를 적층 및 압착하여 파워 인덕터를 제조한다.
그러나, 금속 자성 분말 및 폴리머를 이용한 파워 인덕터는 금속 자성 분말이 고유의 물성을 그대로 유지하지 못하기 때문에 낮은 투자율을 가질 수 밖에 없고, 또한 폴리머가 금속 자성 분말을 감싸게 되므로 바디의 투자율이 낮게 된다.
한국공개특허공보 제2007-0032259호
본 발명은 투자율을 향상시킬 수 있는 파워 인덕터를 제공한다.
본 발명은 바디의 투자율을 향상시켜 전체적인 투자율을 향상시킬 수 있는 파워 인덕터를 제공한다.
본 발명은 외부 전극의 쇼트를 방지할 수 있는 파워 인덕터를 제공한다.
본 발명의 일 양태에 따른 파워 인덕터는 바디; 상기 바디 내부에 마련된 적어도 하나의 기재; 상기 기재의 적어도 일면 상에 형성된 적어도 하나의 코일 패턴; 상기 코일 패턴과 상기 바디 사이에 형성된 절연막; 및 상기 바디의 외부에 형성되어 상기 코일 패턴과 연결되는 외부 전극을 포함하고, 상기 바디는 교대로 적층된 각각 복수의 자성층 및 절연층을 포함한다.
상기 바디의 상측에 형성된 캐핑 절연층을 더 포함한다.
상기 자성층은 비정질이고, 투자율이 200 이상인 금속 리본을 포함한다.
상기 자성층은 판 형상의 센더스트, Ni계 페라이트 및 Mn계 페라이트의 적어도 어느 하나를 포함한다.
상기 자성층은 상기 절연층보다 작은 크기로 형성된다.
상기 자성층은 동일 평면 상에서 적어도 일부가 상기 외부 전극과 절연된다.
상기 절연층은 금속 자성 분말 및 열 전도성 필러를 함유한다.
상기 열 전도성 필러는 MgO, AlN, 카본 계열의 물질, Ni계 페라이트 및 Mn계 페라이트로 구성된 군으로부터 선택된 하나 이상을 포함한다.
상기 기재는 적어도 일부 영역이 제거되고, 제거된 영역에 바디가 충진된다.
상기 기재의 제거된 영역에 상기 자성층 및 절연층이 수직 방향 또는 수평 방향으로 교대로 형성되거나, 금속 자성 분말 및 열 전도성 필러의 적어도 하나를 함유하는 절연층이 형성되거나, 자성 물질이 형성된다.
상기 기재의 일면 및 타면에 형성된 상기 코일 패턴은 동일 높이로 형성된다.
상기 코일 패턴은 상기 기재 상에 형성된 제 1 도금막과, 상기 제 1 도금막을 덮도록 형성된 제 2 도금막을 포함한다.
상기 코일 패턴은 적어도 일 영역이 다른 폭으로 형성된다.
상기 절연막은 상기 코일 패턴의 상면 및 측면에 균일한 두께로 형성되며, 상기 기재 상에 상기 코일 패턴의 상면 및 측면과 동일 두께로 형성된다.
상기 외부 전극은 적어도 일부가 상기 코일 패턴과 동일 재질으로 형성된다.
상기 코일 패턴은 상기 기재의 적어도 일면 상에 도금 공정으로 형성되고, 상기 외부 전극은 상기 코일 패턴과 접촉되는 영역이 도금 공정으로 형성된다.
본 발명의 다른 양태에 따른 파워 인덕터는 바디; 상기 바디 내부에 마련된 적어도 하나의 기재; 상기 기재의 적어도 일면 상에 형성된 적어도 하나의 코일 패턴; 상기 코일 패턴과 상기 바디 사이에 형성된 절연막; 상기 바디의 외부에 형성되며 상기 코일 패턴과 연결되는 외부 전극을 포함하고, 상기 외부 전극은 상기 코일 패턴과 접촉되는 영역이 상기 코일 패턴과 동일 재질로 형성된다.
상기 코일 패턴은 상기 기재의 적어도 일면 상에 도금 공정으로 형성되고, 상기 외부 전극은 상기 코일 패턴과 접촉되는 영역이 도금 공정으로 형성된다.
상기 바디의 적어도 일면에 형성된 캐핑 절연층을 더 포함한다.
상기 캐핑 절연층은 상기 외부 전극이 인쇄회로기판에 실장되는 영역을 제외한 나머지 영역의 적어도 일부에 형성된다.
상기 외부 전극은 상기 바디의 길이 방향의 제 1 및 제 2 면으로부터 폭 방향 및 높이 방향의 제 3 내지 제 6 면의 일부에 연장 형성되며, 상기 캐핑 절연층은 상기 외부 전극이 상기 인쇄회로기판에 실장되는 영역과 대향되는 영역 상에 형성된다.
본 발명의 실시 예들에 따른 파워 인덕터는 금속 리본(metal ribbon)과 폴리머를 적층하여 바디를 제작한다. 고유의 투자율을 그대로 유지할 수 있는 금속 리본을 이용하여 바디를 제작함으로써 바디의 투자율을 향상시킬 수 있고, 그에 따라 파워 인덕터의 전체적인 투자율을 향상시킬 수 있다.
또한, 코일 패턴 상에 파릴렌(parylene)을 코팅함으로써 코일 패턴 상에 파릴렌을 균일한 두께로 형성할 수 있고, 그에 따라 바디와 코일 패턴 사이의 절연성을 향상시킬 수 있다.
그리고, 바디 내부에 마련되어 코일 패턴이 형성된 기재를 금속 자성체로 제작함으로써 파워 인덕터의 투자율 저하를 방지할 수도 있고, 기재의 적어도 일부를 제거하고 그 부분에 바디를 충진함으로써 투자율을 향상시킬 수 있으며, 바디에 적어도 하나의 자성층을 마련함으로써 파워 인덕터의 투자율을 향상시킬 수 있다.
한편, 외부 전극이 형성된 바디의 상면에 절연 캐핑층을 형성함으로써 외부 전극과 쉴드 캔(shield can), 인접 부품 등의 쇼트(short)를 방지할 수 있다.
도 1은 본 발명의 제 1 실시 예에 따른 파워 인덕터의 결합 사시도.
도 2는 도 1의 A-A' 라인을 따라 절취한 상태의 단면도.
도 3 및 도 4는 본 발명의 제 1 실시 예에 따른 파워 인덕터의 분해 사시도 및 일부 평면도.
도 5 및 도 6은 본 발명의 제 1 실시 예에 따른 파워 인덕터 내부의 코일 패턴의 단면도.
도 7은 본 발명의 제 1 실시 예의 변형 예에 따른 파워 인덕터의 측면도.
도 8 내지 도 16은 본 발명의 제 2 실시 예들에 따른 파워 인덕터의 단면도.
도 17은 본 발명의 제 3 실시 예에 따른 파워 인덕터의 사시도.
도 18 및 도 19는 도 17의 A-A' 라인 및 B-B' 라인을 따라 절취한 상태의 단면도.
도 20 및 도 21은 본 발명의 제 3 실시 예의 변형 예에 따른 도 17의 A-A' 라인 및 B-B' 라인을 따라 절취한 상태의 단면도.
도 22는 본 발명의 제 4 실시 예에 따른 파워 인덕터의 사시도.
도 23 및 도 24은 도 22의 A-A' 라인 및 B-B' 라인을 따라 절취한 상태의 단면도.
도 25은 도 22의 내부 평면도.
도 26은 본 발명의 제 5 실시 예에 따른 파워 인덕터의 사시도.
도 27 및 도 28은 도 26의 A-A' 라인 및 B-B' 라인을 따라 절취한 상태의 단면도.
도 29 내지 도 31은 본 발명의 일 실시 예에 따른 파워 인덕터의 제조 방법을 설명하기 위해 순서적으로 도시한 단면도.
이하, 첨부된 도면을 참조하여 본 발명의 실시 예를 상세히 설명하기로 한 다. 그러나, 본 발명은 이하에서 개시되는 실시 예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시 예들은 본 발명의 개시가 완전하도록 하며, 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다.
도 1은 본 발명의 제 1 실시 예에 따른 파워 인덕터의 결합 사시도이고, 도 2는 도 1의 A-A' 라인을 따라 절단한 상태의 단면도이다. 또한, 도 3은 본 발명의 제 1 실시 예에 따른 파워 인덕터의 분해 사시도이고, 도 4는 기재 및 코일 패턴의 평면도이다. 그리고, 도 5 및 도 6은 코일 패턴의 형상을 설명하기 위한 기재 및 코일 패턴의 단면도이다. 한편, 도 7은 본 발명의 제 1 실시 예의 변형 예에 따른 파워 인덕터의 일 측면도이다.
도 1 내지 도 4를 참조하면, 본 발명의 제 1 실시 예에 따른 파워 인덕터는 자성층(110)과 절연층(120)이 교대로 적층된 바디(100a, 100b; 100)와, 바디(100) 내부에 마련된 기재(200)와, 기재(200)의 적어도 일면 상에 형성된 코일 패턴(310, 320; 300)과, 바디(100) 외부에 마련된 외부 전극(410, 420; 400)을 포함할 수 있다. 또한, 코일 패턴(310, 320)과 바디(100) 사이에 형성된 절연막(500)을 더 포함할 수 있다. 그리고, 도 7에 도시된 바와 같이 바디(100)의 상면에 형성된 캐핑 절연층(550)을 더 포함할 수 있다.
1. 바디
바디(100)는 육면체 형상일 수 있다. 즉, 바디(100)는 X 방향으로 소정의 길이를 갖고, Y 방향으로 소정의 폭을 가지며, Z 방향으로 소정의 높이를 갖는 대략 육면체 형성상으로 마련될 수 있다. 이때, 바디(100)는 길이가 폭 및 높이보다 각각 크고, 폭은 높이와 같거나 다를 수 있다. 물론, 바디(100)는 육면체 이외의 다면체 형상을 가질 수 있다. 이러한 바디(100)는 복수의 자성층(110)과 복수의 절연층(120)을 포함할 수 있으며, 자성층(110)과 절연층(120)이 교대로 복수 적층될 수 있다. 여기서, 자성층(110)은 금속 리본을 포함할 수 있고, 절연층(120)은 폴리머를 포함할 수 있다.
자성층(110)은 소정의 두께를 갖고 바디(100)의 길이 및 폭에 해당하는 크기를 가질 수 있다. 그런데, 자성층(110)은 바디(100)의 길이 및 폭보다 작을 수 있다. 즉, 자성층(110)이 외부로 노출되는 것을 방지하기 위해 자성층(110)의 길이 및 폭은 바디(100)의 길이 및 폭보다 작은 것이 바람직하다. 이때, 바디(100)의 길이 및 폭은 절연층(120)의 길이 및 폭에 해당한다. 따라서, 자성층(110)은 길이 및 폭이 절연층(120)보다 작게 형성된다. 또한, 자성층(110)은 적어도 일부가 외부 전극(400)과 접촉되지 않도록 형성될 수 있다. 즉, 자성층(110)의 일측이 제 1 외부 전극(410)과 접촉되면 타측이 제 2 외부 전극(420)와 이격되도록 형성되고, 일측 및 타측이 제 1 및 제 2 외부 전극(410, 420)과 접촉되면 일 영역이 이격되어 마련될 수 있다. 따라서, 자성층(110)에 의해 두 외부 전극(400)이 도통되지 않도록 한다. 이러한 자성층(110)은 비정질 합금의 금속 리본으로 형성될 수 있다. 비정질 합금의 금속 리본을 형성하기 위해 합금을 용융시킨 용융 금속을 고속으로 회전하는 냉각 휠에 분사하여 형성할 수 있다. 즉, 용용 금속을 냉각 휠에 분사함으로써 용융 금속이 예를 들어 1600의 온도에서 소정 온도로 초당 약 수백만의 온도로 급속 냉각되며, 그에 따라 자성층(110)은 비정질로 형성될 수 있다. 이러한 자성층(110)은 다양한 폭 및 두께로 형성될 수 있는데, 예를 들어 냉각 휠의 회전 속도에 따라 다양한 두께로 형성될 수 있고, 냉각 휠의 폭에 따라 다양한 폭으로 형성될 수 있다. 이렇게 형성된 비정질의 자성층(110)은 바디(100)의 크기에 맞게 절단하여 이용될 수 있다. 또한, 자성층(110)은 동일 평면, 즉 동일 층 상에 적어도 둘 이상 마련될 수 있다. 즉, 수직 방향으로 적층된 두개의 절연층(120) 사이에 수평 방향으로 적어도 둘 이상의 자성층(110)이 마련될 수 있다. 수평 방향으로 마련된 적어도 둘 이상의 자성층(110)은 서로 접촉되지 않도록 소정 간격 이격되어 마련될 수도 있고, 서로 접촉되도록 마련될 수도 있다. 이때, 수평 방향으로 마련된 적어도 둘 이상의 자성층(110)은 서로 다른 크기 및 형상을 가질 수도 있다. 즉, 동일 크기 및 형상을 갖는 둘 이상의 자성층(110)이 동일 평면 상에 마련될 수도 있고, 서로 다른 크기 및 형상을 갖는 둘 이상의 자성층(110)이 동일 평면 상에 마련될 수도 있다. 또한, 자성층(110)은 분쇄되어 동일 층 내에 복수의 조각으로 마련될 수도 있다. 이를 위해 예를 들어 절연 테이프 사이에 자성층(110)을 마련한 후 소정의 압력을 가하여 자성층(110)을 깨뜨린 후 절연층(120) 사이에 마련할 수도 있고, 자성층(110)과 절연층(120)의 적층 공정에서 자성층(110)의 적어도 일부가 깨질 수 있다. 한편, 자성층(110)은 Fe를 기본으로 Si, B, Nb, Cu 등이 첨가된 합금을 이용하여 제조할 수 있다. 예를 들어, 자성층(110)은 철-규소(Fe-Si), 철-니켈-규소(Fe-Ni-Si), 철-실리콘-붕소(Fe-Si-B), 철-실리콘-크롬(Fe-Si-Cr), 철-실리콘-알루미늄(Fe-Si-Al), 철-실리콘-붕소-크롬(Fe-Si-B-Cr), 철-알루미늄-크롬(Fe-Al-Cr), 철-실리콘-붕소-니오븀-구리(Fe-Si-B-Nb-Cu) 및 철-실리콘-크롬-붕소-니오븀-구리(Fe-Si-Cr-B-Nb-Cu)로 구성된 군으로부터 선택된 하나 이상의 금속을 포함할 수 있다. 즉, 자성층(110)은 FeSi계, FeNiSi계, FeSiB계, FeSiCr계, FeSiAl계, FeSiBCr계, FeAlCr계, FeSiBNbCu계 및 FeSiCrBNbCu계 중 적어도 하나 이상의 리본을 이용하여 형성할 수 있다. 이러한 비정질의 자성층(110)은 결정립 및/또는 결정립계가 존재하지 않는 상태가 되며, 많은 독특한 성질을 가지고 있다. 즉, 뛰어난 자기적 특성, 내식성, 내마모성, 고강도, 경도와 인성, 고비저항 등을 가지게 된다. 한편, 이러한 자성층(110)은 자성 시트와는 상이하다. 즉, 자성층(110)은 순수 금속으로 이루어지지만, 자성 시트는 금속 자성 분말과 폴리머를 혼합한 혼합물을 소정의 형상으로 성형하여 형성된다. 또한, 금속 금속 자성 분말은 금속을 가스로 냉각시켜 미세 분말 형태로 제작하므로 고유의 물성을 유지하지 못하기 때문에 낮은 투자율을 가질 수 밖에 없고, 또한 금속 금속 자성 분말이 폴리머에 감싸여지기 때문에 자성 시트의 투자율은 낮을 수 밖에 없다. 그러나, 본 발명의 자성층(110)은 순수 금속으로 이루어지고 급속 냉각에 의해 비정질 상태로 형성되므로 고유의 물성을 그대로 유지할 수 있으며, 그에 따라 높은 투자율을 가질 수 있다. 자성층(110)은 예를 들어 200 이상의 투자율을 가질 수 있는데, 물질에 따라 200부터 14만까지의 투자율을 가질 수 있다. 한편, 자성층(110)은 금속 리본 대신에 센더스트(sendust), 즉 철-알루미늄-규소(Fe-Al-Si)로 형성될 수도 있고, Ni계 또는 Mn계 페라이트로 형성될 수도 있다. Ni계 페라이트로는 NiO·ZnO·CuO-Fe2O3가 있을 수 있고, Mn계 페라이트로는 MnO·ZnO·CuO-Fe2O3가 있을 수 있다. 이들 물질 또한 자성층(110)과 마찬가지로 소정 두께를 갖는 판 형상으로 마련되어 절연층(120)와 교대로 적층될 수 있다. 한편, 이들 물질은 기재(200)의 중앙부에 형성된 관통홀(220)을 매립할 수도 있다. 즉, 이들 물질이 기재(200)의 관통홀(220)을 매립하여 자심으로 기능하고 기재(200)의 상측 및 하측은 자성층(110)과 절연층(120)이 적층되어 형성될 수 있다.
절연층(120)은 자성층(110) 사이를 절연시키기 위해 자성층(110) 사이에 마련될 수 있다. 이때, 바디(100)의 외곽은 절연층(120)이 형성될 수 있다. 즉, 자성층(110)이 외부 전극(400) 및 회로 상에 접촉되는 것을 방지하기 위해 바디(100)의 외부는 절연층(120)이 형성될 수 있다. 이를 위해 상기한 바와 같이 바디(100)의 길이 및 폭을 갖도록 절연층(120)이 마련되고, 자성층(110)은 절연층(120)보다 작은 길이 및 폭을 갖도록 형성될 수 있다. 한편, 절연층(120)은 자성층(110)과 동일 두께로 마련될 수 있고, 자성층(110)보다 두껍거나 얇은 두께로 마련될 수도 있다. 이때, 바디(100)에서 자성층(110)의 비율이 높을수록 투자율이 증가할 수 있으므로 자성층(110)의 두께가 절연층(120)의 두께보다 두꺼운 것이 바람직하다. 예를 들어, 자성층(110)과 절연층(120)의 두께 비율은 1:1 내지 3:1로 형성될 수 있다. 이러한 절연층(120)은 에폭시(epoxy), 폴리이미드(polyimide) 및 액정 결정성 폴리머(Liquid Crystalline Polymer, LCP)로 구성된 군으로부터 선택된 하나 이상을 포함할 수 있으나, 이에 제한되는 것은 아니다. 또한, 절연층(120)은 자성층(110) 사이에 절연성을 제공하는 것으로 열경화성 수지로 이루어질 수 있다. 열경화성 수지로는 예를 들어 노볼락 에폭시 수지(Novolac Epoxy Resin), 페녹시형 에폭시 수지(Phenoxy Type Epoxy Resin), 비피에이형 에폭시 수지(BPA Type Epoxy Resin), 비피에프형 에폭시 수지(BPF Type Epoxy Resin), 하이드로네이트 비피에이 에폭시 수지(Hydrogenated BPA Epoxy Resin), 다이머산 개질 에폭시 수지(Dimer Acid Modified Epoxy Resin), 우레탄 개질 에폭시 수지(Urethane Modified Epoxy Resin), 고무 개질 에폭시 수지(Rubber Modified Epoxy Resin) 및 디씨피디형 에폭시 수지(DCPD Type Epoxy Resin)로 이루어진 군으로부터 선택된 하나 이상을 포함할 수 있다. 한편, 기재(200)를 사이에 두고 그 상측 및 하측에 마련된 바디(100a, 100b)는 기재(200)를 통해 서로 연결될 수 있다. 즉, 기재(200)의 적어도 일부가 제거되어 관통홀(220)이 형성되고, 관통홀(220)에 바디(100)의 일부가 충진될 수 있다. 이렇게 기재(200)의 적어도 일부에 형성된 관통홀(220)에 바디(100)가 충진됨으로써 기재(200)의 면적을 줄이고 동일 부피에서 바디(100)의 비율을 증가시킴으로써 파워 인덕터의 투자율을 증가시킬 수 있다. 이때, 관통홀(220)에 충진되는 바디(100)는 자성층(110)과 절연층(120)이 적층되어 형성될 수 있다. 관통홀(220)에 충진되는 바디(100)는 기재(200)와 수평 방향으로 자성층(110)과 절연층(120)이 적층될 수도 있고, 기재(200)와 수직 방향으로 자성층(110)과 절연층(120)이 적층될 수도 있다. 즉, 관통홀(220)에 충진되는 바디(100)는 자성층(110)과 절연층(120)이 수직 방향으로 적층될 수도 있고, 수평 방향으로 적층될 수도 있다.
한편, 절연층(120)은 바디(100)의 열을 외부로 방출시키기 위한 열 전도성 필러(미도시)를 더 포함할 수 있다. 즉, 외부의 열에 의해 바디(100)가 가열될 수 있는데, 절연층(120) 내에 열 전도성 필러가 포함됨으로써 바디(100)의 열을 외부로 방출시킬 수 있다. 이러한 열 전도성 필러는 MgO, AlN, 카본 계열의 물질, Ni계 페라이트, Mn계 페라이트 등으로 구성된 군으로부터 선택된 하나 이상을 포함할 수 있으나, 이에 한정되는 것은 아니다. 여기서, 카본 계열의 물질은 탄소를 포함하며 다양한 형상을 가질 수 있는데, 예를 들어 흑연, 카본 블랙, 그래핀, 그라파이트 등이 포함될 수 있다. 또한, Ni계 페라이트로는 NiO·ZnO·CuO-Fe2O3가 있을 수 있고, Mn계 페라이트로는 MnO·ZnO·CuO-Fe2O3가 있을 수 있다. 그런데, 열 전도성 필러는 페라이트 물질로 형성함으로써 투자율을 증대시키거나 투자율 감소를 방지할 수 있으므로 바람직하다. 이러한 열 전도성 필러는 분말 형태로 절연층(120)에 분산되어 함유될 수 있다. 여기서, 열 전도성 필러는 절연층(120)의 폴리머 100wt%에 대하여 5wt% 내지 60wt%의 함량으로 포함될 수 있다. 즉, 절연층(120)을 형성하기 위한 폴리머 100wt%에 대하여 5wt% 내지 60wt%의 함량으로 열 전도성 필러가 함유될 수 있다. 열 전도성 필러의 함량이 상기 범위 미만일 경우 열 방출 효과를 얻을 수 없으며, 상기 범위를 초과할 경우 바디(100) 내의 절연층(120)의 함량이 낮아져 절연 효과가 저하될 수 있다. 그리고, 열 전도성 필러는 예를 들어 0.5㎛ 내지 100㎛의 크기를 가질 수 있다. 열 전도성 필러는 크기와 함량에 따라 열 방출 효과가 조절될 수 있다. 예를 들어, 열 전도성 필러의 크기가 크고 함량이 증가할수록 열 방출 효과가 높을 수 있다. 한편, 바디(100)는 자성층(110)과 절연층(120)을 적층하여 제작할 수 있다. 여기서, 각 절연층(120) 내의 열 전도성 필러의 함량은 다를 수 있다. 예를 들어, 기재(200)를 중심으로 상측 및 하측으로 멀어질수록 절연층(120) 내의 열 전도성 필러의 함량은 증가할 수 있다.
2. 기재
기재(200)는 바디(100)의 내부에 마련될 수 있다. 예를 들어, 기재(200)는 바디(100) 내부에 바디(100)의 X 방향, 즉 외부 전극(400) 방향으로 마련될 수 있다. 또한, 기재(200)는 하나 이상으로 마련될 수 있는데, 예를 들어 둘 이상의 기재(200)가 외부 전극(400)이 형성된 방향과 직교하는 방향, 즉 수직 방향으로 소정 간격 이격되어 마련될 수 있다. 물론, 둘 이상의 기재가 외부 전극(400)이 형성된 방향으로 배열될 수도 있다. 이러한 기재(200)는 예를 들어 구리 클래드 라미네이션(Copper Clad Lamination; CCL) 또는 금속 자성체 등으로 제작될 수 있다. 이때, 기재(200)는 금속 자성체로 제작됨으로써 투자율을 증가시키고 용량 구현을 용이하게 할 수 있다. 즉, CCL은 유리강화섬유에 구리 포일(foil)을 접합하여 제작되는데, 이러한 CCL은 투자율을 갖지 않기 때문에 파워 인덕터의 투자율을 저하시킬 수 있다. 그러나, 금속 자성체를 기재(200)로 이용하게 되면 금속 자성체가 투자율을 가지기 때문에 파워 인덕터의 투자율을 저하시키지 않게 된다. 이러한 금속 자성체를 이용한 기재(200)은 철을 함유하는 금속, 예를 들어 철-니켈(Fe-Ni), 철-니켈-규소(Fe-Ni-Si), 철-알루미늄-규소(Fe-Al-Si) 및 철-알루미늄-크롬(Fe-Al-Cr)으로 구성된 군으로부터 선택된 하나 이상의 금속으로 이루어진 소정 두께의 판에 구리 포일을 접합시켜 제작될 수 있다. 즉, 철을 포함하여 적어도 하나의 금속으로 이루어진 합금을 소정 두께의 판 형상으로 제작하고, 금속판의 적어도 일면에 구리 포일을 접합함으로써 기재(200)가 제작될 수 있다.
또한, 기재(200)의 소정 영역에는 적어도 하나의 도전성 비아(210)가 형성될 수 있고, 도전성 비아(210)에 의해 기재(200)의 상측 및 하측에 각각 형성되는 코일 패턴(310, 320)이 전기적으로 연결될 수 있다. 도전성 비아(210)는 기재(200)에 두께 방향을 따라 관통하는 비아(미도시)를 형성한 후 코일 패턴(300)을 형성하기 위한 도금 공정 시 비아가 매립되도록 하여 형성할 수 있다. 물론, 비아를 형성한 후 비아에 도전성 페이스트를 충진하는 등의 방법으로 형성할 수도 있다. 이때, 도전성 비아(210)로부터 코일 패턴(310, 320)의 적어도 하나가 성장될 수 있고, 그에 따라 도전성 비아(210)와 코일 패턴(310, 320)의 적어도 하나가 일체로 형성될 수 있다. 또한, 기재(200)는 적어도 일부가 제거될 수 있다. 즉, 기재(200)는 적어도 일부가 제거될 수도 있고, 제거되지 않을 수도 있다. 바람직하게, 기재(200)는 도 3 및 도 4에 도시된 바와 같이 코일 패턴(310, 320)과 중첩되는 영역을 제외한 나머지 영역이 제거될 수 있다. 예를 들어, 스파이럴 형상으로 형성되는 코일 패턴(310, 320)의 내측에 기재(200)가 제거되어 관통홀(220)이 형성될 수 있고, 코일 패턴(310, 320) 외측의 기재(200)가 제거될 수 있다. 즉, 기재(200)는 코일 패턴(310, 320)의 외측 형상을 따라 예컨데 레이스트랙(racetrack) 형상을 가지고 외부 전극(400)과 대향되는 영역이 코일 패턴(310, 320) 단부의 형상을 따라 직선 형상으로 형성될 수 있다. 따라서, 기재(200)의 외측은 바디(100)의 가장자리에 대하여 만곡한 형상으로 마련될 수 있다. 이렇게 기재(200)가 제거된 부분에는 도 4에 도시된 바와 같이 바디(100)가 충진될 수 있다. 즉, 기재(200)의 관통홀(220)을 포함한 제거된 영역을 통해 상측 및 하측의 바디(100a, 100b)가 서로 연결된다. 한편, 기재(200)가 금속 자성체로 제작되는 경우 기재(200)가 바디(100)의 자성층(110)과 접촉될 수 있다. 이러한 문제를 해결하기 위해 기재(200)의 측면에는 파릴렌 등의 절연막(500)이 형성될 수 있다. 예를 들어, 관통홀(220)의 측면 및 기재(200)의 외측면에 절연막(500)이 형성될 수 있다. 한편, 기재(200)는 코일 패턴(310, 320)보다 넓은 폭으로 마련될 수 있다. 예를 들어, 기재(200)는 코일 패턴(310, 320)의 수직 하방에서 소정의 폭으로 잔류할 수 있는데, 예를 들어 기재(200)는 코일 패턴(310, 320)보다 0.3㎛ 정도 돌출되도록 형성될 수 있다. 한편, 기재(200)는 코일 패턴(310, 320) 내측 영역 및 외측 영역이 제거되어 바디(100)의 횡단면의 면적보다 작을 수 있다. 예를 들어, 바디(100)의 횡단면의 면적을 100으로 할 때, 기재(200)는 40 내지 80의 면적 비율로 마련될 수 있다. 기재(200)의 면적 비율이 높으면 바디(100)의 투자율이 낮아질 수 있고, 기재(200)의 면적 비율이 낮으면 코일 패턴(310, 320)의 형성 면적이 작아질 수 있다. 따라서, 바디(100)의 투자율, 코일 패턴(310, 320)의 선폭 및 턴수 등을 고려하여 기재(200)의 면적 비율을 조절할 수 있다.
3. 코일 패턴
코일 패턴(310, 320; 300)은 기재(200)의 적어도 일면, 바람직하게는 양면에 형성될 수 있다. 이러한 코일 패턴(310, 320)은 기재(200)의 소정 영역, 예를 들어 중앙부로부터 외측 방향으로 스파이럴 형태로 형성될 수 있고, 기재(200) 상에 형성된 두 코일 패턴(310, 320)이 연결되어 하나의 코일을 이룰 수 있다. 즉, 코일 패턴(310, 320)은 기재(200)의 중심부에 형성된 관통홀(220) 외측으로부터 스파이럴 형태로 형성될 수 있고, 기재(200)에 형성된 전도성 비아(210)를 통해 서로 연결될 수 있다. 여기서, 상측의 코일 패턴(310)과 하측의 코일 패턴(320)은 서로 동일 형상으로 형성될 수 있고 동일 높이로 형성될 수 있다. 또한, 코일 패턴(310, 320)은 서로 중첩되게 형성될 수도 있고, 코일 패턴(310)이 형성되지 않은 영역에 중첩되도록 코일 패턴(320)이 형성될 수도 있다. 한편, 코일 패턴(310, 320)의 단부는 직선 형상으로 외측으로 연장 형성될 수 있는데, 바디(100)의 단변 중앙부를 따라 연장 형성될 수 있다. 그리고, 코일 패턴(310, 320)의 외부 전극(400)과 접촉되는 영역은 도 3 및 도 4에 도시된 바와 같이 다른 영역에 비해 폭이 넓게 형성될 수 있다. 코일 패턴(310, 320)의 일부, 즉 인출부가 넓은 폭으로 형성됨으로써 코일 패턴(310, 320)과 외부 전극(400)의 접촉 면적을 증가시킬 수 있고 그에 따라 저항을 낮출 수 있다. 물론, 코일 패턴(310, 320)이 외부 전극(400)이 형성되는 일 영역에서 외부 전극(400)의 폭 방향으로 연장 형성될 수도 있다. 이때, 코일 패턴(310, 320)의 말단부, 즉 외부 전극(400)으로 향하여 인출되는 인출부는 바디(100)의 측면 중앙부를 향해 직선 형상으로 형성될 수 있다.
한편, 이러한 코일 패턴(310, 320)은 기재(200)에 형성된 도전성 비아(210)에 의해 전기적으로 연결될 수 있다. 코일 패턴(310, 320)은 예를 들면 후막 인쇄, 도포, 증착, 도금 및 스퍼터링 등의 방법을 통하여 형성할 수 있는데, 도금으로 형성하는 것이 바람직하다. 또한, 코일 패턴(310, 320) 및 도전성 비아(210)는 은(Ag), 구리(Cu) 및 구리 합금 중 적어도 하나를 포함하는 재료로 형성될 수 있으나, 이에 제한되는 것은 아니다. 한편, 코일 패턴(310, 320)을 도금 공정으로 형성하는 경우 예를 들어 기재(200) 상에 도금 공정으로 금속층, 예를 들어 구리층을 형성하고, 리소그라피 공정으로 패터닝할 수 있다. 즉, 기재(200)의 표면에 형성된 구리 포일을 시드층으로 구리층을 도금 공정으로 형성하고 이를 패터닝함으로써 코일 패턴(310, 320)을 형성할 수 있다. 물론, 기재(200) 상에 소정 형상의 감광막 패턴을 형성한 후 도금 공정을 실시하여 노출된 기재(200) 표면으로부터 금속층을 성장시킨 후 감광막을 제거함으로써 소정 형상의 코일 패턴(310, 320)을 형성할 수도 있다. 한편, 코일 패턴(310, 320)은 다층으로 형성될 수도 있다. 즉, 기재(200)의 상측에 형성된 코일 패턴(310)의 상측으로 복수의 코일 패턴이 더 형성될 수 있고, 기재(200)의 하측에 형성된 코일 패턴(320)의 하측으로 복수의 코일 패턴이 더 형성될 수도 있다. 코일 패턴(310, 320)이 다층으로 형성될 경우 하층과 상층 사이에 절연층이 형성되고, 절연층에 도전성 비아(미도시)가 형성되어 다층 코일 패턴이 연결될 수 있다. 한편, 코일 패턴(310, 320)은 기재(200)의 두께보다 2.5배 이상 높게 형성될 수 있다. 예를 들어, 기재(200)가 10㎛∼50㎛의 두께로 형성되고 코일 패턴(310, 320)이 50㎛∼300㎛의 높이로 형성될 수 있다.
또한, 본 발명에 따른 코일 패턴(310, 320)은 이중 구조로 형성될 수 있다. 즉, 도 5에 도시된 바와 같이 제 1 도금막(300a)과, 제 1 도금막(300a)을 덮도록 형성된 제 2 도금막(300b)을 포함할 수 있다. 여기서, 제 2 도금막(300b)은 제 1 도금막(300a)의 상면 및 측면을 덮도록 형성되는데, 제 1 도금막(300a)의 측면보다 상면에 더 두껍게 제 2 도금막(300b)이 형성될 수 있다. 한편, 제 1 도금막(300a)은 측면이 소정의 경사를 갖도록 형성되고, 제 2 도금막(300b)은 측면이 제 1 도금막(300a)의 측면보다 적은 경사를 갖도록 형성된다. 즉, 제 1 도금막(300a)은 측면이 제 1 도금막(300a) 외측의 기재(200)의 표면으로부터 둔각을 갖도록 형성되고, 제 2 도금막(300b)은 제 1 도금막(300a)보다 작은 각도, 바람직하게는 직각을 갖도록 형성된다. 제 1 도금막(300a)은 도 6에 도시된 바와 같이 상부면의 폭(a)과 하부면의 폭(b)의 비율이 0.2:1 내지 0.9:1이 되도록 형성될 수 있고, 바람직하게는 a:b가 0.4:1 내지 0.8:1이 되도록 형성될 수 있다. 또한, 제 1 도금막(300a)은 하부면의 폭(b)과 높이(h)의 비율이 1:0.7 내지 1:4가 되도록 형성될 수 있고, 바람직하게는 1:1 내지 1:2가 되도록 형성될 수 있다. 즉, 제 1 도금막(300a)은 하부면으로부터 상부면으로 갈수록 폭이 좁아지도록 형성되고, 그에 따라 측면에 소정의 경사가 형성될 수 있다. 제 1 도금막(300a)이 소정의 경사를 갖도록 하기 위해 1차 도금 공정 후 식각 공정을 실시할 수 있다. 또한, 제 1 도금막(300a)을 덮도록 형성된 제 2 도금막(300b)은 측면이 바람직하게는 수직하고 상부면과 측면 사이에 라운드한 영역이 적은 대략 사각형의 형태를 갖도록 형성된다. 이때, 제 2 도금막(300b)은 제 1 도금막(300a)의 상부면의 폭(a)과 하부면의 폭(b)의 비율, 즉 a:b에 따라 그 형상이 결정될 수 있다. 예를 들어, 제 1 도금막(300a)의 상부면의 폭(a)과 하부면의 폭(b)의 비율(a:b)의 비율이 클수록 제 2 도금막(300b)의 상부면의 폭(c)과 하부면의 폭(d)이 비율이 커진다. 그러나, 제 1 도금막(300a)의 상부면의 폭(a)과 하부면의 폭(b)의 비율(a:b)이 0.9:1을 초과하는 경우 제 2 도금막(300b)은 하부면의 폭보다 상부면의 폭이 더 넓어지고 측면이 기재(200)와 예각을 이룰 수 있다. 또한, 제 1 도금막(300a)의 상부면의 폭과 하부면의 폭의 비율(a:b)이 0.2:1 미만의 경우 제 2 도금막(300b)은 측면의 소정 영역으로부터 상부면이 둥글게 형성될 수 있다. 따라서, 상부면의 폭이 크고 측면이 수직하게 형성될 수 있도록 제 1 도금막(300a)의 상부면과 하부면의 폭의 비율을 조절하는 것이 바람직하다. 한편, 제 1 도금막(300a)의 하부면의 폭(b)과 제 2 도금막(300b)의 하부면의 폭(d)은 1:1.2 내지 1:2의 비율을 가질 수 있고, 제 1 도금막(300a)의 하부면의 폭(b)과 인접한 제 1 도금막(300a) 사이의 간격(e)은 1.5:1 내지 3:1의 비율을 가질 수 있다. 물론, 제 2 도금막(300b)은 서로 접촉되지 않는다. 이렇게 제 1 및 제 2 도금막(300a, 300b)으로 이루어진 코일 패턴(300)은 상부면과 하부면의 폭의 비(c:d)가 0.5:1 내지 0.9:1일 수 있고, 바람직하게는 0.6:1 내지 0.8:1일 수 있다. 즉, 코일 패턴(300)의 외형, 다시 말하면 제 2 도금막(300b)의 외형은 상부면과 하부면의 폭의 비가 0.5 내지 0.9:1일 수 있다. 따라서, 코일 패턴(300)은 상부면의 모서리의 라운드한 영역이 직각을 이루는 이상적인 사각 형태 대비 0.5 미만일 수 있다. 예를 들어, 라운드한 영역이 직각을 이루는 이상적인 사각 형태 대비 0.001 이상 0.5 미만일 수 있다. 또한, 본 발명에 따른 코일 패턴(300)은 이상적인 사각형의 형태에 비해 저항 변화가 크지 않다. 예를 들어, 이상적인 사각형 형태의 코일 패턴의 저항이 100이라면 본 발명에 따른 코일 패턴(300)은 101 내지 110 정도를 유지할 수 있다. 즉, 제 1 도금막(300a)의 형상 및 그에 따라 변화되는 제 2 도금막(300b)의 형상에 따라 본 발명의 코일 패턴(300)의 저항은 사각 형상의 이상적인 코일 패턴의 저항에 비해 101% 내지 110% 정도를 유지할 수 있다. 한편, 제 2 도금막(300b)은 제 1 도금막(300a)과 동일 도금액을 이용하여 형성할 수 있다. 예를 들어, 1차 및 2차 도금막(300a, 300b)은 황산구리와 황산을 기본으로 하는 도금액을 사용하며, ppm 단위의 염소(Cl)와 유기 화합물을 첨가하여 제품의 도금성을 향상시킨 도금액을 이용하여 형성할 수 있다. 유기 화합물은 PEG(PolyEthylene Glycol)을 포함한 캐리어와 광택제를 사용하여 도금막의 균일성과 전착성, 그리고 광택 특성을 개선할 수 있다.
또한, 코일 패턴(300)은 적어도 둘 이상의 도금층이 적층되어 형성될 수 있다. 이때, 각각의 도금층은 측면이 수직하며 동일 형상 및 두께로 적층되어 형성될 수 있다. 즉, 코일 패턴(300)은 시드층 상에 도금 공정으로 형성될 수 있는데, 시드층 상에 예를 들어 세개의 도금층이 적층되어 형성될 수 있다. 이러한 코일 패턴(300)은 이방성 도금 공정으로 형성되며, 종횡비가 2~10 정도로 형성될 수 있다.
또한, 코일 패턴(300)은 최내주로부터 최외주로 갈수록 폭이 증가하는 형상으로 형성될 수도 있다. 즉, 스파이럴 형상의 코일 패턴(300)은 최내주로부터 최외주까지 n개의 패턴이 형성될 수 있는데, 예를 들어 4개의 패턴이 형성될 경우 최내주의 제 1 패턴으로부터 제 2 및 제 3 패턴, 그리고 최외주의 제 4 패턴으로 갈수록 패턴의 폭이 증가하여 형성될 수 있다. 예를 들어, 제 1 패턴의 폭이 1일 경우, 제 2 패턴은 1 내지 1.5의 비율로 형성되고, 제 3 패턴은 1.2 내지 1.7의 비율로 형성되며, 제 4 패턴은 1.3 내지 2의 비율로 형성될 수 있다. 즉, 제 1 내지 제 4 패턴은 1:1∼1.5:1.2∼1.7:1.3∼2의 비율로 형성될 수 있다. 다시 말하면, 제 2 패턴은 제 1 패턴의 폭과 같거나 크게 형성되고, 제 3 패턴은 제 1 패턴의 폭보다 크고 제 2 패턴의 폭과 같거나 크게 형성되며, 제 4 패턴은 제 1 및 제 2 패턴의 폭보다 크고 제 3 패턴의 폭과 같거나 크게 형성될 수 있다. 이렇게 최내주로부터 최외주로 갈수록 코일 패턴의 폭을 증가시키기 위해 시드층의 폭을 최내주로부터 최외주로갈수록 넓게 형성할 수 있다. 또한, 코일 패턴은 수직 방향으로 적어도 일 영역의 폭이 다르게 형성될 수도 있다. 즉, 적어도 일 영역의 하단부, 중단부 및 상단부의 폭이 다르게 형성될 수도 있다.
4. 외부 전극
외부 전극(410, 420; 400)은 바디(100)의 서로 대향하는 두 면에 형성될 수 있다. 예를 들어, 외부 전극(400)은 바디(100)의 X 방향으로 서로 대향되는 두 측면에 형성될 수 있다. 이러한 외부 전극(400)은 바디(100)의 코일 패턴(310, 320)과 전기적으로 연결될 수 있다. 또한, 외부 전극(400)은 바디(100)의 두 측면 전체에 형성되고, 두 측면의 중앙부에서 코일 패턴(310, 320)과 접촉될 수 있다. 즉, 코일 패턴(310, 320)의 단부가 바디(100)의 외측 중앙부로 노출되고 외부 전극(400)이 바디(100)의 측면에 형성되어 코일 패턴(310, 320)의 단부와 연결될 수 있다. 이러한 외부 전극(400)은 도전성 페이스트를 이용하여 형성할 수 있는데, 도전성 페이스트에 바디(100)의 양 측면을 침지하거나 인쇄하여 형성할 수 있다. 또한, 외부 전극(400)은 증착, 스퍼터링, 도금 등의 다양한 방법으로 형성될 수도 있다. 한편, 외부 전극(400)은 형성 방법에 따라 바디(100)의 양 측면 및 하면에만 형성되거나, 바디(100)의 상면 또는 전면 및 후면에도 형성될 수 있다. 예를 들어, 도전성 페이스트에 침지하는 경우 X 방향의 양 측면 뿐만 아니라 Y 방향으로의 전면 및 후면, 그리고 Z 방향으로의 상면 및 하면에도 외부 전극(400)이 형성될 수 있다. 이에 비해, 인쇄, 증착, 스퍼터링, 도금 등의 방법으로 형성할 경우 X 방향의 양 측면 및 Y 방향의 하면에 외부 전극(400)이 형성될 수 있다. 즉, 외부 전극(400)은 X 방향의 양 측면 및 인쇄회로기판에 실장되는 하면 뿐만 아니라 형성 방법 또는 공정 조건에 따라 그 이외의 영역에도 형성될 수 있다. 이러한 외부 전극(400)은 전기 전도성을 가지는 금속으로 형성될 수 있는데, 예를 들어 금, 은, 백금, 구리, 니켈, 팔라듐 및 이들의 합금으로부터 이루어진 군으로부터 선택된 하나 이상의 금속으로 형성될 수 있다. 이때, 코일 패턴(300)과 연결되는 외부 전극(400)의 적어도 일부, 즉 바디(100)의 표면에 형성되어 코일 패턴(300)과 연결되는 외부 전극(400)의 일부는 코일 패턴(300)과 동일 물질로 형성될 수 있다. 예를 들어, 코일 패턴(300)이 구리를 이용하여 도금 공정으로 형성되는 경우 외부 전극(400)의 적어도 일부는 구리를 이용하여 형성할 수 있다. 이때, 구리는 앞서 설명한 바와 같이 도전성 페이스트를 이용한 침지 또는 인쇄 방법으로 형성하거나, 증착, 스퍼터링, 도금 등의 방법으로 형성할 수 있다. 바람직하게는 외부 전극(400)은 도금으로 형성할 수 있다. 도금 공정으로 외부 전극(400)을 형성하기 위해 바디(100)의 양 측면에 시드층을 형성한 후 시드층으로부터 도금층을 형성하여 외부 전극(400)을 형성할 수 있다. 여기서, 외부 전극(400)의 코일 패턴(300)과 연결되는 적어도 일부는 외부 전극(400)이 형성되는 바디(100)의 측면 전체일 수 있고, 일부 영역일 수도 있다. 한편, 외부 전극(400)은 적어도 하나의 도금층을 더 포함할 수 있다. 즉, 외부 전극(400)은 코일 패턴(300)과 연결되는 제1층과, 그 상부에 형성된 적어도 하나의 도금층을 포함할 수 있다. 예를 들어, 외부 전극(400)은 니켈 도금층(미도시) 또는 주석 도금층(미도시)이 더 형성될 수 있다. 즉, 외부 전극(400)은 구리층, Ni 도금층 및 Sn 도금층의 적층 구조로 형성될 수 있고, 구리층, Ni 도금층 및 Sn/Ag 도금층의 적층 구조로 형성될 수 있다. 이때, 도금층은 전해 또는 무전해 도금을 통하여 형성될 수 있다. Sn 도금층은 Ni 도금층과 같거나 두꺼운 두께로 형성될 수 있다. 예를 들어, 외부 전극(400)은 2㎛∼100㎛의 두께로 형성될 수 있으며, Ni 도금층이 1㎛∼10㎛의 두께로 형성되고, Sn 또는 Sn/Ag 도금층은 2㎛∼10㎛의 두께로 형성될 수 있다. 한편, 외부 전극(400)은 예를 들어 0.5%∼20%의 Bi2O3 또는 SiO2를 주성분으로 하는 다성분계의 글래스 프릿(Glass frit)을 금속 분말과 혼합하여 형성할 수 있다. 이때, 글래스 프릿과 금속 분말의 혼합물은 페이스트 형태로 제조되어 바디(100)의 두면에 도포될 수 있다. 즉, 외부 전극(400)의 일부가 도전성 페이스트를 이용하여 형성하는 경우 도전성 페이스트에는 글래스 프릿이 혼합될 수 있다. 이렇게 외부 전극(400)에 글래스 프릿이 포함됨으로써 외부 전극(400)과 바디(100)의 밀착력을 향상시킬 수 있고, 코일 패턴(300)과 외부 전극(400)의 콘택 반응을 향상시킬 수 있다.
5. 절연막
절연막(500)은 코일 패턴(310, 320)과 자성층(110)을 절연시키기 위해 코일 패턴(310, 320)과 바디(100) 사이에 형성될 수 있다. 즉, 절연막(500)이 코일 패턴(310, 320)의 상면 및 측면을 덮도록 형성될 수 있다. 이때, 절연층(500)은 코일 패턴(310, 320)의 상면 및 측면에 거의 동일한 두께로 형성될 수 있다. 예를 들어, 절연층(500)은 코일 패턴(310, 320)의 상면 및 측면에 1∼1.2:1 정도의 두께로 형성될 수 있다. 즉, 코일 패턴(310, 320)은 상면은 측면보다 20% 정도 두껍게 형성되고, 바람직하게는 상면 및 측면은 동일 두께로 형성될 수 있다. 또한, 절연막(500)은 코일 패턴(310, 320)의 상면 및 측면 뿐만 아니라 코일 패턴(310, 320)에 의해 노출된 기재(200)를 덮도록 형성될 수도 있다. 즉, 소정 영역이 제거된 기재(200)의 코일 패턴(310, 320)에 의해 노출된 영역, 즉 기재(200)의 표면 및 측면에도 절연막(500)이 형성될 수 있다. 기재(200) 상의 절연막(500)은 코일 패턴(310, 320) 상의 절연막(500)과 동일 두께로 형성될 수 있다. 즉, 기재(200) 상면의 절연층(500) 두께는 코일 패턴(310, 320) 상면의 절연층(500) 두께와 동일하게 형성되고, 기재(200) 측면의 절연층(500) 두께는 코일 패턴(310, 320) 측면의 절연층(500) 두께와 동일하게 형성될 수 있다. 이렇게 절연층(500)을 코일 패턴(310, 320) 및 기재(200) 상에 거의 균일한 두께로 형성하기 위해 파릴렌을 이용할 수 있다. 예를 들어, 코일 패턴(310, 320)이 형성된 기재(200)를 증착 챔버 내에 마련한 후 파릴렌을 기화시켜 진공 챔버 내부로 공급함으로써 코일 패턴(310, 320) 상에 파릴렌을 증착시킬 수 있다. 예를 들어, 파릴렌을 기화기(Vaporizer)에서 1차 가열하여 기화시켜 다이머(dimer) 상태로 만든 후 2차 가열하여 모노머(Monomer) 상태로 열분해시키고, 증착 챔버에 연결되어 구비된 콜드 트랩(Cold Trap)과 기계적 진공 펌프(Mechanical Vaccum Pump)를 이용하여 파릴렌을 냉각시키면 파릴렌은 모노머 상태에서 폴리머 상태로 변환되어 코일 패턴(310, 320) 상에 증착된다. 물론, 절연막(500)은 파릴렌 이외의 절연성 고분자, 예를 들어 에폭시, 폴리이미드 및 액정 결정성 폴리머로부터 선택된 하나 이상의 물질로 형성될 수 있다. 그러나, 파릴렌을 코팅함으로써 코일 패턴(310, 320) 상에 균일한 두께로 절연막(500)을 형성할 수 있고, 얇은 두께로 형성하더라도 다른 물질에 비해 절연 특성을 향상시킬 수 있다. 즉, 절연막(500)으로서 파릴렌을 코팅하는 경우 폴리이미드를 형성하는 경우에 비해 얇은 두께로 형성하면서 절연 파괴 전압을 증가시켜 절연 특성을 향상시킬 수 있다. 또한, 코일 패턴(310, 320)의 패턴 사이의 간격에 따라 패턴 사이를 매립하여 균일한 두께로 형성되거나 패턴의 단차를 따라 균일한 두께로 형성될 수 있다. 즉, 코일 패턴(310, 320)의 패턴 사이의 간격이 멀 경우 패턴의 단차를 따라 균일한 두께로 파릴렌이 코팅될 수 있고, 패턴 사이의 간격이 가까울 경우 패턴 사이를 매립하여 코일 패턴(310, 320) 상에 소정 두께로 형성될 수 있다. 파릴렌의 경우 코일 패턴(310, 320)의 단차를 따라 얇은 두께로 형성되지만, 폴리이미드는 파릴렌에 비해 두꺼운 두께로 형성된다. 한편, 절연막(500)은 파릴렌을 이용하여 3㎛~100㎛의 두께로 형성할 수 있다. 파릴렌이 3㎛ 미만의 두께로 형성되면 절연 특성이 저하될 수 있고, 100㎛를 초과하는 두께로 형성하는 경우 동일 사이즈 내에서 절연막(500)이 차지하는 두께가 증가하여 바디(100)의 체적이 작아지고 그에 따라 투자율이 저하될 수 있다. 물론, 절연막(500)은 소정 두께의 시트로 제작된 후 코일 패턴(310, 320) 상에 형성될 수 있다.
6. 표면 개질 부재
한편, 바디(100)의 적어도 일 표면에는 표면 개질 부재(미도시)가 형성될 수 있다. 이러한 표면 개질 부재는 외부 전극(400)을 형성하기 이전에 바디(100)의 표면에 예를 들어 산화물을 분포시켜 형성할 수 있다. 여기서, 산화물은 결정 상태 또는 비결정 상태로 바디(100)의 표면에 분산되어 분포될 수 있다. 표면 개질 부재는 도금 공정으로 외부 전극(400)을 형성할 때 도금 공정 이전에 바디(100) 표면에 분포될 수 있다. 즉, 표면 개질 부재는 외부 전극(400)의 일부를 인쇄 공정으로 형성하기 이전에 분포시킬 수도 있고, 인쇄 공정 후 도금 공정을 실시하기 이전에 분포시킬 수도 있다. 물론, 인쇄 공정을 실시하지 않는 경우 표면 개질 부재를 분포시킨 후 도금 공정을 실시할 수 있다. 이때, 표면에 분포된 표면 개질 부재는 적어도 일부가 용융될 수 있다.
한편, 표면 개질 부재는 적어도 일부가 동일한 크기로 바디(100)의 표면에 고르게 분포될 수 있고, 적어도 일부가 서로 다른 크기로 불규칙하게 분포될 수도 있다. 또한, 바디(100)의 적어도 일부 표면에는 오목부가 형성될 수도 있다. 즉, 표면 개질 부재가 형성되어 볼록부가 형성되고 표면 개질 부재가 형성되지 않은 영역의 적어도 일부가 패여 오목부가 형성될 수도 있다. 이때, 표면 개질 부재는 적어도 일부가 바디(100)의 표면보다 깊이 형성될 수 있다. 즉, 표면 개질 부재는 소정 두께가 바디(100)의 소정 깊이로 박히고 나머지 두께가 바디(100)의 표면보다 높게 형성될 수 있다. 이때, 바디(100)에 박히는 두께는 산화물 입자의 평균 직경의 1/20 내지 1일 수 있다. 즉, 산화물 입자는 바디(100) 내부로 모두 함입될 수 있고, 적어도 일부가 함입될 수 있다. 물론, 산화물 입자는 바디(100)의 표면에만 형성될 수 있다. 따라서, 산화물 입자는 바디(100)의 표면에서 반구형으로 형성될 수도 있고, 구 형태로 형성될 수도 있다. 또한, 표면 개질 부재는 상기한 바와 같이 바디(100)의 표면에 부분적으로 분포될 수도 있으며, 적어도 일 영역에 막 형태로 분포될 수도 있다. 즉, 산화물 입자가 바디(100)의 표면에 섬(island) 형태로 분포되어 표면 개질 부재가 형성될 수 있다. 즉, 바디(100) 표면에 결정 상태 또는 비결정 상태의 산화물이 서로 이격되어 섬 형태로 분포될 수 있고, 그에 따라 바디(100) 표면의 적어도 일부가 노출될 수 있다. 또한, 산화물은 표면 개질 부재는 적어도 둘 이상이 연결되어 적어도 일 영역에는 막으로 형성되고, 적어도 일부에는 섬 형태로 형성될 수 있다. 즉, 적어도 둘 이상의 산화물 입자가 응집되거나 인접한 산화물 입자가 연결되어 막 형태를 이룰 수 있다. 그러나, 산화물이 입자 상태로 존재하거나, 둘 이상의 입자가 응집되거나 연결된 경우에도 바디(100) 표면의 적어도 일부는 표면 개질 부재에 의해 외부로 노출된다.
이때, 표면 개질 부재의 총 면적은 바디(100) 표면 전체 면적의 예를 들어 5% 내지 90%일 수 있다. 표면 개질 부재의 면적에 따라 바디(100) 표면의 도금 번짐 현상이 제어될 수 있지만, 표면 개질 부재가 너무 많이 형성되면 바디(100) 내부의 도전 패턴과 외부 전극(400)의 접촉이 어려울 수 있다. 즉, 표면 개질 부재가 바디(100) 표면적의 5% 미만으로 형성될 경우 도금 번짐 현상의 제어가 어렵고, 90%를 초과하여 형성될 경우 바디(100) 내부의 도전 패턴과 외부 전극(400)이 접촉되지 않을 수 있다. 따라서, 표면 개질 부재는 도금 번짐 현상을 제어할 수 있고 바디(100) 내부의 도전 패턴과 외부 전극(400)의 접촉될 수 있는 정도의 면적으로 형성하는 것이 바람직하다. 이를 위해 표면 개질 부재는 바디(100) 표면적의 10% 내지 90%로 형성될 수 있고, 바람직하게는 30% 내지 70%의 면적으로 형성될 수 있으며, 더욱 바람직하게는 40% 내지 50%의 면적으로 형성될 수 있다. 이때, 바디(100)의 표면적은 일 면의 표면적일 수도 있고, 육면체를 이루는 바디(100)의 여섯면의 표면적일 수도 있다. 한편, 표면 개질 부재는 바디(100) 두께의 10% 이하의 두께로 형성될 수 있다. 즉, 표면 개질 부재는 바디(100) 두께의 0.01% 내지 10%의 두께로 형성될 수 있다. 예를 들어, 표면 개질 부재는 0.1㎛∼50㎛의 크기로 존재할 수 있는데, 그에 따라 표면 개질 부재는 바디(100) 표면으로부터 0.1㎛∼50㎛의 두께로 형성될 수 있다. 즉, 표면 개질 부재는 바디(100)의 표면보다 박힌 영역을 제외하고 바디(100) 표면으로부터 0.1㎛∼50㎛의 두께로 형성될 수 있다. 따라서, 바디(100) 내측으로 박힌 두께를 포함하면 표면 개질 부재는 0.1㎛∼50㎛보다 두꺼운 두께를 가질 수 있다. 표면 개질 부재가 바디(100) 두께의 0.01% 미만의 두께로 형성될 경우 도금 번짐 현상의 제어가 어렵고, 바디(100) 두께의 10%를 초과하는 두께로 형성될 경우 바디(100) 내부의 도전 패턴과 외부 전극(400)이 접촉되지 않을 수 있다. 즉, 표면 개질 부재는 바디(100)의 재료 특성(전도성, 반도성, 절연성, 자성체 등)에 따라 다양한 두께를 가질 수 있고, 산화물 분말의 크기, 분포량, 응집 여부에 따라 다양한 두께를 가질 수 있다.
이렇게 바디(100)의 표면에 표면 개질 부재가 형성됨으로써 바디(100)의 표면은 성분이 다른 적어도 두 영역이 존재할 수 있다. 즉, 표면 개질 부재가 형성된 영역과 형성되지 않은 영역은 서로 다른 성분이 검출될 수 있다. 예를 들어, 표면 개질 부재가 형성된 영역은 표면 개질 부재에 따른 성분, 즉 산화물이 존재할 수 있고, 형성되지 않은 영역은 바디(100)에 따른 성분, 즉 시트의 성분이 존재할 수 있다. 이렇게 도금 공정 이전에 바디(100)의 표면에 표면 개질 부재를 분포시킴으로써 바디(100) 표면에 거칠기를 부여하여 개질시킬 수 있다. 따라서, 도금 공정이 균일하게 실시될 수 있고, 그에 따라 외부 전극(400)의 형상을 제어할 수 있다. 즉, 바디(100)의 표면은 적어도 일 영역의 저항이 다른 영역의 저항과 다를 수 있는데, 저항이 불균일한 상태에서 도금 공정을 실시하면 도금층의 성장 불균일이 발생된다. 이러한 문제를 해결하기 위해 바디(100)의 표면에 입자 상태 또는 용융 상태의 산화물을 분산시켜 표면 개질 부재를 형성함으로써 바디(100)의 표면을 개질시킬 수 있고, 도금층의 성장을 제어할 수 있다.
여기서, 바디(100)의 표면 저항을 균일하게 하기 위한 입자 상태 또는 용융 상태의 산화물은 예를 들어 Bi2O3, BO2, B2O3, ZnO, Co3O4, SiO2, Al2O3, MnO, H2BO3, Ca(CO3)2, Ca(NO3)2, CaCO3 중 적어도 하나 이상을 이용할 수 있다. 한편, 표면 개질 부재는 바디(100) 내의 적어도 하나의 시트 상에도 형성될 수 있다. 즉, 시트 상의 다양한 형상의 도전 패턴은 도금 공정으로 형성할 수도 있는데, 표면 개질 부재를 형성함으로써 도전 패턴의 형상을 제어할 수 있다.
7. 절연 캐핑층
도 7에 도시된 바와 같이 외부 전극(400)이 형성된 바디(100)의 상면에 절연 캐핑층(550)이 형성될 수 있다. 즉, 인쇄회로기판Pronted Circuit Board; PCB) 상에 실장되는 바디(100)의 하면과 대향되는 바디(100)의 상면, 예를 들어 Z 방향으로 상면에 절연 캐핑층(550)이 형성될 수 있다. 이러한 절연 캐핑층(550)은 바디(100)의 상면에 연장 형성된 외부 전극(400)과 쉴드 캔 또는 상측의 회로 부품의 쇼트를 방지하기 위해 형성될 수 있다. 즉, 파워 인덕터는 바디(100)의 하면에 형성된 외부 전극(400)이 PMIC(Power Management IC)에 인접하여 인쇄회로기판 상에 실장되는데, PMIC는 약 1㎜의 두께를 갖고, 파워 인덕터 또한 이와 동일한 두께로 제작된다. PMIC는 고주파 노이즈를 발생시켜 주변 회로 또는 소자에 영향을 주기 때문에 PMIC 및 파워 인덕터를 금속 재질, 예를 들어 스테인레스 스틸 재질의 쉴드 캔(shield can)으로 덮게 된다. 그런데, 파워 인덕터는 외부 전극이 상측에도 형성되기 때문에 쉴드 캔과 쇼트(short)된다. 따라서, 바디(100)의 상면에 절연 캐핑층(550)을 형성함으로써 파워 인덕터와 외부 도전체와의 쇼트를 방지할 수 있다. 이때, 절연 캐핑층(550)은 바디(100) 상면에 연장 형성된 외부 전극(400)과 쉴드 캔 등의 절연을 위해 형성되므로 적어도 바디(100) 상면의 외부 전극(400)을 덮도록 형성될 수 있다. 이러한 절연 캐핑층(550)은 절연 물질로 형성될 수 있는데, 예를 들어 에폭시(epoxy), 폴리이미드(polyimide) 및 액정 결정성 폴리머(Liquid Crystalline Polymer, LCP)로 구성된 군으로부터 선택된 하나 이상으로 형성될 수 있다. 또한, 절연 캐핑층(550)은 열경화성 수지로 형성될 수도 있다. 열경화성 수지로는 예를 들어 노볼락 에폭시 수지(Novolac Epoxy Resin), 페녹시형 에폭시 수지(Phenoxy Type Epoxy Resin), 비피에이형 에폭시 수지(BPA Type Epoxy Resin), 비피에프형 에폭시 수지(BPF Type Epoxy Resin), 하이드로네이트 비피에이 에폭시 수지(Hydrogenated BPA Epoxy Resin), 다이머산 개질 에폭시 수지(Dimer Acid Modified Epoxy Resin), 우레탄 개질 에폭시 수지(Urethane Modified Epoxy Resin), 고무 개질 에폭시 수지(Rubber Modified Epoxy Resin) 및 디씨피디형 에폭시 수지(DCPD Type Epoxy Resin)로 이루어진 군으로부터 선택된 하나 이상을 포함할 수 있다. 즉, 절연 캐핑층(550)은 바디(100)의 절연층(120)으로 이용되는 물질로 형성될 수 있다. 이러한 절연 캐핑층(550)은 폴리머, 열경화성 수지 등에 바디(100)의 상면을 침지함으로써 형성될 수 있다. 따라서, 절연 캐핑층(550)은 도 7에 도시된 바와 같이 바디(100)의 상면 뿐만 아니라 바디(100)의 X 방향으로의 양 측면의 일부 및 Y 방향으로의 전면 및 후면의 일부에 형성될 수도 있다. 한편, 절연 캐핑층(550)은 파릴렌으로 형성될 수도 있고, 실리콘 산화막(SiO2), 실리콘 질화막(Si3N4), 실리콘 산화질화막(SiON) 등 다양한 절연 물질을 이용하여 형성될 수 있다. 이들 물질로 형성되는 경우 CVD, PVD 방법 등의 방법을 이용하여 형성할 수 있다. 절연 캐핑층(550)이 CVD, PVD 방법으로 형성되는 경우 바디(100)의 상면에만 형성될 수도 있고, 바디(100) 상면의 외부 전극(400) 상에만 형성할 수도 있다. 한편, 절연 캐핑층(550)은 바디(100) 상면의 외부 전극(400)과 쉴드 캔 등의 쇼트를 방지할 수 있는 두께로 형성될 수 있는데, 예를 들어 10㎛∼100㎛의 두께로 형성될 수 있다. 또한, 절연 캐핑층(550)은 외부 전극(400)과 바디(100) 사이에 단차가 유지되도록 바디(100) 상면에 균일한 두께로 형성될 수도 있고, 외부 전극(400)과 바디(100) 사이의 단차가 제거되도록 바디(100) 상부에서 외부 전극(400) 상부보다 두껍게 형성되어 표면이 평탄할 수도 있다. 물론, 절연 캐핑층(550)은 소정 두께로 별도로 제작한 후 바디(100) 상에 접착제 등을 이용하여 접합하여 형성할 수도 있다.
상기한 바와 같이 본 발명의 제 1 실시 예에 따른 파워 인덕터는 자성층(110)과 절연층(120)을 교대로 적층하여 바디(100)를 제작할 수 있다. 또한, 자성층(110)은 비정질의 금속 리본을 이용하여 형성할 수 있다. 따라서, 자성층(110)이 소정 두께로 형성됨으로써 금속 자성 분말이 폴리머 내에 분산된 종래에 비해 바디(100)의 투자율을 향상시킬 수 있다. 또한, 코일 패턴(310, 320)과 바디(100) 사이에 파릴렌을 이용하여 절연막(500)을 형성함으로써 코일 패턴(310, 320)의 측면 및 상면에 얇고 균일한 두께로 절연막(500)을 형성하면서 절연 특성을 향상시킬 수 있다. 그리고, 바디(100) 내부의 기재(200)을 금속 자성체로 형성함으로써 파워 인덕터의 투자율 감소를 방지할 수 있고, 기재(200)의 적어도 일부가 제거되고 그 부분에 바디(100)를 충진함으로써 투자율을 향상시킬 수 있다.
한편, 본 발명은 바디(100)의 적어도 일부를 자성층(110)을 이용하여 형성하여 다양하게 변형할 수 있다. 이러한 본 발명의 제 2 실시 예들에 따른 파워 인덕터를 도 8 내지 도 16을 이용하여 본 발명의 제 1 실시 예와 다른 구성을 중심으로 설명하면 다음과 같다.
도 8을 참조하면, 본 발명의 실시 예들에 따른 파워 인덕터는 교대로 적층된 자성층(110)과 절연층(120)을 포함하는 바디(100)와, 바디(100) 내부에 마련된 기재(200)와, 기재(200)의 적어도 일면 상에 형성된 코일 패턴(310, 320)과, 바디(100) 외부에 마련된 외부 전극(410, 420)과, 코일 패턴(310, 320) 상에 각각 마련된 절연막(500)과, 바디(100)의 상부 및 하부에 각각 마련된 적어도 하나의 제 2 자성층(600; 610, 620)을 포함할 수 있다. 즉, 본 발명의 제 1 실시 예에 제 2 제 2 자성층(600)이 더 구비될 수 있다. 이때, 제 2 제 2 자성층(600)은 바디(100) 내부에 적어도 하나 형성될 수도 있다. 또한, 제 2 제 2 자성층(600)은 자성층(110)과는 다른 물질로 형성될 수 있다.
제 2 자성층(600; 610, 620)은 바디(100)의 적어도 일 영역에 마련될 수 있다. 즉, 제 2-1 자성층(610)이 바디(100)의 상부 표면에 형성되고 제 2-2 자성층(620)이 바디(100)의 하부 표면에 형성될 수 있다. 여기서, 제 2 자성층(600)은 바디(100)의 투자율을 더 증가시키기 위해 마련되며, 절연층(120)보다 높은 투자율을 갖는 물질로 제작될 수 있다. 즉, 제 2 자성층(600)은 적어도 하나의 절연층(120) 대신에 형성될 수 있다. 이러한 제 2 자성층(600)은 예를 들어 금속 자성 분말과 폴리머를 이용하여 제작할 수 있다. 여기서, 폴리머는 금속 자성 분말 100wt%에 대하여 15wt%로 첨가될 수 있다. 또한, 금속 자성 분말은 니켈 자성체(Ni Ferrite), 아연 자성체(Zn Ferrite), 구리 자성체(Cu Ferrite), 망간 자성체(Mn Ferrite), 코발트 자성체(Co Ferrite), 바륨 자성체(Ba Ferrite) 및 니켈-아연-구리 자성체(Ni-Zn-Cu Ferrite)로 구성된 군으로부터 선택된 하나 이상 또는 이들의 하나 이상의 산화물 자성체를 이용할 수 있다. 즉, 철을 포함하는 금속 합금 분말 또는 철을 함유하는 금속 합금 산화물을 이용하여 제 2 자성층(600)을 형성할 수 있다. 또한, 금속 합금 분말에 자성체를 코팅하여 자성체 분말을 형성할 수도 있다. 예를 들어, 니켈 산화물 자성체, 아연 산화물 자성체, 구리 산화물 자성체, 망간 산화물 자성체, 코발트 산화물 자성체, 바륨 산화물 자성체 및 니켈-아연-구리 산화물 자성체로 구성된 군으로부터 선택된 하나 이상의 산화물 자성체를 예를 들어 철을 포함하는 금속 합금 분말에 코팅하여 자성체 분말을 형성할 수 있다. 즉, 철을 포함하는 금속 산화물을 금속 합금 분말에 코팅하여 자성체 분말을 형성할 수 있다. 물론, 니켈 산화물 자성체, 아연 산화물 자성체, 구리 산화물 자성체, 망간 산화물 자성체, 코발트 산화물 자성체, 바륨 산화물 자성체 및 니켈-아연-구리 산화물 자성체로 구성된 군으로부터 선택된 하나 이상의 산화물 자성체를 예를 들어 철을 포함하는 금속 합금 분말과 혼합하여 자성체 분말을 형성할 수 있다. 즉, 철을 포함하는 금속 산화물을 금속 합금 분말과 혼합하여 자성체 분말을 형성할 수 있다. 한편, 제 2 자성층(600)은 금속 자성 분말 및 폴리머에 열 전도성 필러를 더 포함하여 제작할 수도 있다. 열 전도성 필러는 금속 자성 분말 100wt%에 대하여 0.5wt% 내지 3wt%로 함유될 수 있다. 이러한 제 2 자성층(600)은 시트 형태로 제작되어 복수의 자성층(110) 및 절연층(120)이 적층된 바디(100)의 상부 및 하부에 각각 마련될 수 있다. 또한, 제 2 자성층(600)은 페이스트를 이용하여 형성할 수도 있는데, 바디(100)의 상부 및 하부에 자성 물질을 도포하여 제 2 자성층(600)을 형성할 수 있다.
상기한 바와 같이 바디(100)에 적어도 하나의 제 2 자성층(600)을 마련함으로써 파워 인덕터의 투자율을 향상시킬 수 있다. 즉, 적어도 하나의 절연층(120) 대신에 제 2 자성층(600)을 형성함으로써 파워 인덕터의 투자율을 더욱 향상시킬 수 있다.
도 9에 도시된 바와 같이, 기재(200)의 중앙부에 형성된 관통홀(220)에 기재(200)와 수직 방향으로 자성층(110) 및 절연층(120)이 교대로 형성될 수 있다. 즉, 도 2 및 도 8에는 수평 방향으로 자성층(110) 및 절연층(120)이 적층되어 관통홀(220)이 매립되었지만, 도 9에 도시된 바와 같이 관통홀(220) 내에는 자성층(110)과 절연층(120)이 수직 방향으로 교대로 형성될 수도 있다.
도 10에 도시된 바와 같이, 바디(100)는 금속 자성 분말(130)이 함유된 절연층(120)로 이루어질 수 있고, 기재(200)의 관통홀(220) 내에는 기재(200)와 수직 방향으로 자성층(110) 및 절연층(120)이 마련될 수 있다. 즉, 절연층(120) 내에 금속 자성 분말(130)이 함유되어 바디(100)를 형성할 수 있다. 절연층(120) 내에 금속 자성 분말(130)이 함유되므로 절연층(120)만을 이용하는 경우에 비해 투자율을 향상시킬 수 있다. 이때, 금속 자성 분말(130)은 평균 입경이 1㎛ 내지 50㎛일 수 있다. 또한, 금속 자성 분말(130)은 동일 크기의 단일 입자 또는 2종 이상의 입자를 이용할 수도 있고, 복수의 크기를 갖는 단일 입자 또는 2종 이상의 입자를 이용할 수도 있다. 예를 들어, 30㎛의 평균 크기를 갖는 제 1 금속 입자와 3㎛의 평균 크기를 갖는 제 2 금속 입자를 혼합하여 이용할 수 있다. 이때, 제 1 및 제 2 금속 입자는 동일 물질의 입자일 수 있고 다른 물질의 입자일 수 있다. 크기가 서로 다른 2종 이상의 금속 자성 분말을 이용할 경우 절연층(120) 내의 금속 자성 분말의 함량을 높일 수 있어 투자율을 향상시킬 수 있다. 이러한 금속 자성 분말은 자성층(110)과 동일 물질을 포함할 수 있다. 예를 들어 철-니켈(Fe-Ni), 철-니켈-규소(Fe-Ni-Si), 철-알루미늄-규소(Fe-Al-Si) 및 철-알루미늄-크롬(Fe-Al-Cr)으로 구성된 군으로부터 선택된 하나 이상의 금속을 포함할 수 있다. 또한, 금속 자성 분말은 표면이 자성체로 코팅될 수 있는데, 금속 자성 분말과 투자율이 상이한 물질로 코팅될 수 있다. 예를 들어, 자성체는 금속 산화물 자성체를 포함할 수 있는데, 니켈 산화물 자성체, 아연 산화물 자성체, 구리 산화물 자성체, 망간 산화물 자성체, 코발트 산화물 자성체, 바륨 산화물 자성체 및 니켈-아연-구리 산화물 자성체로 구성된 군으로부터 선택된 하나 이상의 산화물 자성체를 이용할 수 있다. 즉, 금속 자성 분말의 표면에 코팅되는 자성체는 철을 포함하는 금속 산화물로 형성될 수 있으며, 금속 자성 분말보다 높은 투자율을 갖는 것이 바람직하다. 한편, 금속 자성 분말이 자성을 띄기 때문에 금속 자성 분말이 서로 접촉하면 절연이 파괴되고 쇼트가 발생될 수 있다. 따라서, 금속 자성 분말은 표면이 적어도 하나의 절연체로 코팅될 수 있다. 예를 들어, 금속 자성 분말은 표면이 산화물로 코팅될 수 있고, 파릴렌(parylene) 등의 절연성 고분자 물질로 코팅될 수 있는데, 파릴렌으로 코팅되는 것이 바람직하다. 파릴렌은 1㎛∼10㎛의 두께로 코팅될 수 있다. 여기서, 파릴렌이 1㎛ 미만의 두께로 형성되면 금속 자성 분말의 절연 효과가 저하될 수 있고, 10㎛를 초과하는 두께로 형성하면 금속 자성 분말의 사이즈가 증가하여 절연층(120) 내의 금속 자성 분말의 분포가 줄어들어 투자율이 낮아질 수 있다. 또한, 파릴렌 이외에도 다양한 절연성 고분자 물질을 이용하여 금속 자성 분말의 표면을 코팅할 수 있다. 한편, 금속 자성 분말을 코팅하는 산화물은 금속 자성 분말을 산화시켜 형성할 수도 있고, TiO2, SiO2, ZrO2, SnO2, NiO, ZnO, CuO, CoO, MnO, MgO, Al2O3, Cr2O3, Fe2O3, B2O3 및 Bi2O3로부터 선택된 하나가 코팅될 수도 있다. 여기서, 금속 자성 분말은 이중 구조의 산화물로 코팅될 수 있고, 산화물 및 고분자 물질의 이중 구조로 코팅될 수 있다. 물론, 금속 자성 분말은 표면이 자성체로 코팅된 후 절연체로 코팅될 수도 있다. 이렇게 금속 자성 분말의 표면이 절연체로 코팅됨으로써 금속 자성 분말 사이의 접촉에 의한 쇼트를 방지할 수 있다. 이때, 산화물, 절연성 고분자 물질 등으로 금속 자성 분말을 코팅하거나 자성체 및 절연체의 이중으로 코팅되는 경우에도 1㎛∼10㎛의 두께로 코팅될 수 있다. 한편, 폴리머(12) 내에 금속 자성 분말이 함유되는 경우 절연층(120)은 금속 자성 분말 100wt%에 대하여 2.0wt% 내지 5.0wt%의 함량으로 포함될 수 있다. 그런데, 절연층(120)의 함량이 증가할 경우 금속 자성 분말의 부피 분율이 저하되어 포화자화 값을 높이는 효과가 제대로 구현되지 않을 수 있고, 바디(100)의 투자율을 저하시킬 수 있다. 반대로, 절연층(120)의 함량이 감소하는 경우 인덕터의 제조 과정에서 사용되는 강산 또는 강염기 용액 등이 내부로 침투하여 인덕턴스 특성을 감소시킬 수 있다. 따라서, 절연층(120)은 금속 자성 분말의 포화자화 값 및 인덕턴스를 저하시키지 않도록 하는 범위에서 포함될 수 있다. 한편, 바디(100)는 외부의 열에 의해 바디(100)가 가열되는 문제를 해결하기 위해 절연층(120) 내에 열 전도성 필러(미도시)가 포함될 수 있다. 즉, 외부의 열에 의해 바디(100)의 자성층(110)이 가열될 수 있는데, 열 전도성 필러가 포함됨으로써 열의 외부 방출을 더욱 용이하게 할 수 있다. 또한, 열 전도성 필러는 예를 들어 0.5㎛ 내지 100㎛의 크기를 가질 수 있다. 즉, 열 전도성 필러는 절연층(120) 내에 함유되는 금속 자성 분말(130)의 크기와 동일하거나, 이보다 크거나 작은 크기를 가질 수 있다. 열 전도성 필러는 크기와 함량에 따라 열 방출 효과가 조절될 수 있다. 예를 들어, 열 전도성 필러의 크기가 크고 함량이 증가할수록 열 방출 효과가 높을 수 있다. 한편, 절연층(120)은 금속 자성 분말 또는 열 전도성 필러가 더 포함된 재료로 이루어진 시트 형태로 제작될 수 있다. 이때, 절연층(120)을 적층하는 경우 각 시트의 열 전도성 필러의 함량은 다를 수 있다. 예를 들어, 기재(200)를 중심으로 상측 및 하측으로 멀어질수록 폴리머 시트 내의 열 전도성 필러의 함량은 증가할 수 있다.
도 11에 도시된 바와 같이, 바디(100)는 금속 자성 분말(130)이 함유된 절연층(120)로 이루어질 수 있고, 기재(200)의 관통홀(220) 내에는 기재(200)와 수평 방향으로 자성층(110) 및 절연층(120)이 교대로 마련될 수 있다. 여기서, 관통홀(220) 내에 마련된 절연층(120)에는 금속 자성 분말(130) 및 열 전도성 필러 중 적어도 하나가 더 함유될 수 있다. 물론, 관통홀(220) 내의 절연층(120)은 금속 자성 분말(130) 또는 열 전도성 필러를 함유하지 않는 폴리머로 이루어질 수도 있다.
도 12에 도시된 바와 같이, 바디(100)는 자성층(110)과 절연층(120)이 교대로 적층되어 형성될 수 있고, 절연층(120) 내에는 금속 자성 분말(130)이 함유될 수 있다. 물론, 금속 자성 분말(130) 이외에 열 전도성 필러가 더 함유될 수 있다. 또한, 기재(200)의 관통홀(220) 내에 자성층(110)과 절연층(120)이 기재(200)와 수평 방향으로 교대로 적층될 수 있다. 관통홀(220) 내에 형성된 절연층(120)에도 금속 자성 분말(130)이 함유될 수 있고, 열 전도성 필러가 더 함유될 수도 있다.
도 13에 도시된 바와 같이, 바디(100)는 자성층(110)과 절연층(120)이 교대로 적층되어 형성될 수 있고, 절연층(120) 내에는 금속 자성 분말(130)이 함유될 수 있다. 또한, 기재(200)의 관통홀(220) 내에 자성층(110)과 절연층(120)이 기재(200)와 수직 방향으로 교대로 적층될 수 있다. 관통홀(220) 내에 형성된 절연층(120)에도 금속 자성 분말(130)이 함유될 수 있고, 열 전도성 필러가 더 함유될 수도 있다.
도 14에 도시된 바와 같이, 바디(100)는 자성층(110)과 절연층(120)이 교대로 적층되어 형성될 수 있고, 절연층(120) 내에는 금속 자성 분말(130)이 함유될 수 있다. 또한, 기재(200)의 관통홀(220) 내에 금속 자성 분말(130)이 함유된 절연층(120)이 충진될 수 있다. 이때, 바디(100)의 절연층(120) 및 관통홀(220) 내의 절연층(120)에는 열 전도성 필러가 더 함유될 수 있다.
도 15에 도시된 바와 같이, 바디(100)는 자성층(110)과 절연층(120)이 교대로 적층되어 형성될 수 있고, 절연층(120) 내에는 금속 자성 분말(130)이 함유될 수 있다. 또한, 기재(200)의 관통홀(220) 내에 자성 물질(140)이 매립될 수 있다. 여기서, 자성 물질(140)은 바디(100)의 자성층(110)과 동일 물질일 수 있다. 예를 들어, 금속 리본을 복수 적층하여 자성 물질(140)을 형성하고 이를 바디(100)의 관통홀(220)에 매립할 수 있다. 그런데, 자성 물질(140)은 자성층(110)과 다른 투자율을 가질 수 있다. 예를 들어, 자성 물질(140)은 자성층(110)과 다른 물질로 이루어질 수 있고, 다른 조성을 가질 수도 있다. 이때, 자성 물질(140)은 자성층(110)보다 높은 투자율을 갖는 것이 바람직하다. 즉, 자성 물질(140)이 자성층(110)보다 높은 투자율을 가짐으로써 파워 인덕터의 전체적인 투자율을 증가시키는 것이 바람직하다. 한편, 자성 물질(140)은 FeSiAl계 센더스트 리본 또는 분말, FeSiBCr계 비정질(Amorphous) 리본 또는 분말, FeSiBCr계 결정질 리본 또는 분말, FeSiCr계 리본 또는 분말, FeSiCrBCuNb계 나노크리스탈 리본 또는 분말 중 적어도 어느 하나를 이용할 수 있다. 여기서, 리본은 자성층(110)과 마찬가지로 소정의 두께를 갖는 판 형상을 가질 수 있다. 또한, 자성 물질(140)은 리본 또는 분말이 응집된 형태로 형성될 수도 있고, 리본을 절연층과 적층하여 형성하거나, 금속 자성 분말을 절연 물질과 혼합하여 형성할 수도 있다.
도 16에 도시된 바와 같이, 바디(100)는 금속 자성 분말(130)이 함유된 절연층(120)로 형성될 수 있고, 기재(200)의 관통홀(220) 내에 자성 물질(140)이 매립될 수 있다. 여기서, 자성 물질(140)은 바디(100)의 금속 자성 분말(130)과 동일 물질일 수 있다. 그런데, 자성 물질(140)은 금속 자성 분말(130)과 다른 투자율을 가질 수 있다. 이를 위해, 자성 물질(140)은 금속 자성 분말(130)과 다른 물질로 이루어질 수 있고, 다른 조성을 가질 수도 있다. 예를 들어, FeSiAl계 센더스트 리본 또는 분말, FeSiBCr계 비정질(Amorphous) 리본 또는 분말, FeSiBCr계 결정질 리본 또는 분말, FeSiCr계 리본 또는 분말, FeSiCrBCuNb계 나노크리스탈 리본 또는 분말 중 적어도 어느 하나를 이용하여 자성 물질(140)을 형성하고 이를 바디(100)의 관통홀(220)에 매립할 수 있다. 이때, 자성 물질(140)은 금속 자성 분말(130)이 분산된 바디(100) 또는 금속 자성 분말(130)보다 높은 투자율을 갖는 것이 바람직하다. 즉, 자성 물질(140)이 금속 자성 분말(130)보다 높은 투자율을 가짐으로써 파워 인덕터의 전체적인 투자율을 증가시키는 것이 바람직하다.
도 17은 본 발명의 제 3 실시 예에 따른 파워 인덕터의 사시도이고, 도 18은 도 17의 A-A' 라인을 따라 절단한 상태의 단면도이며, 도 19은 도 17의 B-B' 라인을 따라 절단한 상태의 단면도이다.
도 17 내지 도 19를 참조하면, 본 발명의 제 3 실시 예에 따른 파워 인덕터는 바디(100)와, 바디(100) 내부에 마련된 적어도 둘 이상의 기재(200a, 200b; 200)와, 적어도 둘 이상의 기재(200) 각각의 적어도 일면 상에 형성된 코일 패턴(310, 320, 330, 340; 300)과, 바디(100) 외부에 마련된 외부 전극(410, 420)과, 코일 패턴(300) 상에 형성된 절연막(500)과, 바디(100)의 외부에 외부 전극(410, 420)과 이격되어 마련되며 바디(100) 내부의 적어도 둘 이상의 기판(200) 각각에 형성된 적어도 하나의 코일 패턴(300)과 연결된 연결 전극(710, 720; 700)을 포함할 수 있다. 이하의 설명에서는 본 발명의 제 1 실시 예 및 제 2 실시 예의 설명과 중복되는 내용은 생략하기로 한다.
적어도 둘 이상의 기재(200a, 200b; 200)는 바디(100) 내부에 마련되며, 바디(100)의 단축 방향으로 소정 간격 이격되어 마련될 수 있다. 즉, 적어도 둘 이상의 기재(200)는 외부 전극(400)과 직교되는 방향, 즉 바디(100)의 두께 방향으로 소정 간격 이격되어 마련될 수 있다. 또한, 적어도 둘 이상의 기재(200) 각각에는 도전성 비아(210a, 210b; 210)가 형성되고, 적어도 일부가 제거되어 관통홀(220a, 220b; 220)이 각각 형성된다. 이때, 관통홀(220a, 220b)은 동일 위치에 형성될 수 있고, 도전성 비아(210a, 210b)은 동일 위치 또는 다른 위치에 형성될 수도 있다. 물론, 적어도 둘 이상의 기재(200)는 관통홀(220) 뿐만 아니라 코일 패턴(300)이 형성되지 않은 영역이 제거되어 바디(100)가 충진될 수 있다. 또한, 적어도 둘 이상의 기재(200) 사이에는 바디(100)가 마련될 수 있다. 바디(100)가 적어도 둘 이상의 기재(200) 사이에도 마련됨으로써 파워 인덕터의 투자율을 향상시킬 수 있다. 물론, 적어도 둘 이상의 기재(200) 상에 형성된 코일 패턴(300) 상에 절연막(500)이 형성되어 있으므로 기재들(200) 사이에는 바디(100)가 형성되지 않을 수도 있다. 이 경우 파워 인덕터의 두께를 줄일 수 있다.
코일 패턴(310, 320, 330, 340; 300)은 적어도 둘 이상의 기재(200) 각각의 적어도 일면, 바람직하게는 양면에 형성될 수 있다. 여기서, 코일 패턴(310, 320)은 제 1 기판(200a)의 하부 및 상부에 각각 형성되어 제 1 기재(200a)에 형성된 도전성 비아(210a)에 의해 전기적으로 연결될 수 있다. 마찬가지로, 코일 패턴(330, 340)은 제 2 기판(200b)의 하부 및 상부에 각각 형성되어 제 2 기재(200b)에 형성된 도전성 비아(210b)에 의해 전기적으로 연결될 수 있다. 이러한 복수의 코일 패턴(300)은 기재(200)의 소정 영역, 예를 들어 중앙부의 관통홀(220a, 220b)로부터 외측 방향으로 스파이럴 형태로 형성될 수 있고, 기재(200) 상에 형성된 두 코일 패턴이 연결되어 하나의 코일을 이룰 수 있다. 즉, 하나의 바디(100) 내에 두개 이상의 코일이 형성될 수 있다. 여기서, 기재(200) 상측의 코일 패턴(310, 330)과 하측의 코일 패턴(320, 340)은 서로 동일 형상으로 형성될 수 있다. 또한, 복수의 코일 패턴(300)이 서로 중첩되게 형성될 수도 있고, 상측의 코일 패턴(310, 330)이 형성되지 않은 영역에 중첩되도록 하측의 코일 패턴(320, 340)이 형성될 수도 있다.
외부 전극(410, 420; 400)은 바디(100)의 양단부에 형성될 수 있다. 예를 들어, 외부 전극(400)은 바디(100)의 장축 방향으로 서로 대향되는 두 측면에 형성될 수 있다. 이러한 외부 전극(400)은 바디(100)의 코일 패턴(300)과 전기적으로 연결될 수 있다. 즉, 복수의 코일 패턴(300)의 적어도 일 단부가 바디(100)의 외측으로 노출되고 외부 전극(400)이 복수의 코일 패턴(300)의 단부와 연결되도록 형성될 수 있다. 예를 들어, 외부 전극(410)은 코일 패턴(310)과 연결되도록 형성될 수 있고, 외부 패턴(420)는 코일 패턴(340)과 연결되도록 형성될 수 있다. 즉, 외부 전극(400)은 기재(200a, 200b) 상에 형성된 하나의 코일 패턴(310, 340)과 각각 연결된다.
연결 전극(700)은 외부 전극(400)이 형성되지 않은 바디(100)의 적어도 일 측면 상에 형성될 수 있다. 예를 들어. 외부 전극(400)이 서로 대향되는 제 1 및 제 2 측면에 형성되고, 연결 전극(700)은 외부 전극(400)이 형성되지 않은 제 3 및 제 4 측면에 각각 형성될 수 있다. 이러한 연결 전극(700)은 제 1 기재(200a) 상에 형성된 코일 패턴(310, 320)의 적어도 어느 하나와 제 2 기재(200b) 상에 형성된 코일 패턴(330, 340)의 적어도 어느 하나를 연결하기 위해 마련된다. 즉, 연결 전극(710)은 제 1 기재(200a)의 하측에 형성된 코일 패턴(320)과 제 2 기재(200b)의 상측에 형성된 코일 패턴(330)을 바디(100)의 외측에서 연결한다. 즉, 외부 전극(410)이 코일 패턴(310)과 연결되고, 연결 전극(710)이 코일 패턴(320, 330)을 연결시키며, 외부 전극(420)이 코일 패턴(340)과 연결된다. 따라서, 제 1 및 제 2 기재(200a, 200b) 상에 각각 형성된 코일 패턴들(310, 320, 330, 340)이 직렬 연결된다. 한편, 연결 전극(710)은 코일 패턴(320, 330)을 연결시키지만 연결 전극(720)은 코일 패턴들(300)과 연결되지 않는데, 이는 공정 상의 편의에 의해 두개의 연결 전극(710, 720)이 형성되고 하나의 연결 전극(710)만이 코일 패턴(320, 330)과 연결되기 때문이다. 이러한 연결 전극(700)은 도전성 페이스트에 바디(100)를 침지하거나, 인쇄, 증착 및 스퍼터링 등의 다양한 방법을 통하여 바디(100)의 일 측면에 형성될 수 있다. 연결 전극(700)은 전기 전도성을 부여할 수 있는 금속으로, 예컨대 금, 은, 백금, 구리, 니켈, 팔라듐 및 이들의 합금으로부터 이루어진 군으로부터 선택된 하나 이상의 금속을 포함할 수 있다. 이때, 연결 전극(700)의 표면에 필요시 니켈-도금층(미도시) 또는 주석 도금층(미도시)이 더 형성될 수 있다.
도 20 및 도 21은 본 발명의 제 3 실시 예의 변형 예에 따른 파워 인덕터의 단면도이다. 즉, 바디(100) 내부에 세개의 기재(200a, 200b, 200c; 200)를 마련하고, 기재(200) 각각의 일면 및 타면 상에 코일 패턴(310, 320, 330, 340, 350, 360; 300)을 각각 형성하고, 코일 패턴(310, 360)은 외부 전극(410, 420)과 연결되도록 하고, 코일 패턴(320, 330)은 연결 전극(710)과 연결되도록 하며, 코일 패턴(340, 350)은 연결 전극(720)과 연결되도록 한다. 따라서, 세개의 기재(200a, 200b, 200c) 상에 각각 형성된 코일 패턴들(300)이 연결 전극(710, 720)에 의해 직렬 연결될 수 있다.
상기한 바와 같이 본 발명의 제 3 실시 예 및 그 변형 예에 따른 파워 인덕터는 적어도 일 면에 코일 패턴(300)이 각각 형성된 적어도 둘 이상의 기재(200)가 바디(100) 내에 이격되어 마련되고, 서로 다른 기재(200) 상에 형성된 코일 패턴(300)이 바디(100) 외부의 연결 전극(700)에 의해 연결됨으로써 하나의 바디(100) 내에 복수의 코일 패턴을 형성하고, 그에 따라 파워 인덕터의 용량을 증가시킬 수 있다. 즉, 바디(100) 외부의 연결 전극(700)을 이용하여 서로 다른 기재(200) 상에 각각 형성된 코일 패턴(300)을 직렬 연결할 수 있고, 그에 따라 동일 면적 내의 파워 인덕터의 용량을 증가시킬 수 있다.
도 22는 본 발명의 제 4 실시 예에 따른 파워 인덕터의 사시도이고, 도 23 및 도 24는 도 22의 A-A' 및 B-B' 라인을 따라 절취한 상태의 단면도이다. 또한, 도 25는 내부 평면도이다.
도 22 내지 도 25를 참조하면, 본 발명의 제 4 실시 예에 따른 파워 인덕터는 바디(100)와, 바디(100) 내부에 수평 방향으로 마련된 적어도 둘 이상의 기재(200a, 200b, 200c; 200)와, 적어도 둘 이상의 기재(200)의 적어도 일면 상에 각각 형성된 코일 패턴(310, 320, 330, 340, 350, 360; 300)과, 바디(100) 외부에 마련되며 적어도 둘 이상의 기재(200a, 200b, 200c) 상에 형성된 코일 패턴들(300)과 각각 연결되는 외부 전극들(410, 420, 430, 440, 450, 460; 400)과, 코일 패턴(300) 상에 형성된 절연막(500)을 포함할 수 있다. 이하의 설명에서는 이상의 실시 예들의 설명과 중복되는 내용은 생략하기로 한다.
적어도 둘 이상, 예를 들어 세개의 기재(200a, 200b, 200c; 200)는 바디(100)의 내부에 마련될 수 있다. 여기서, 적어도 둘 이상의 기재들(200)은 예를 들어 바디(100)의 두께 방향과 직교하는 장축 방향으로 서로 소정 간격 이격되어 마련될 수 있다. 즉, 본 발명의 제 3 실시 예 및 그 변형 예는 복수의 기재들(200)이 바디(100)의 두께 방향, 예컨데 수직 방향으로 배열되었지만, 본 발명의 제 4 실시 예는 복수의 기재들(200)이 바디(100)의 두께 방향과 직교하는 방향, 예컨데 수평 방향으로 배열될 수 있다. 또한, 복수의 기재들(200)에는 도전성 비아(210a, 210b, 210c; 210)가 각각 형성되고, 적어도 일부가 제거되어 관통홀(220a, 220b, 220c; 220)이 각각 형성된다. 물론, 복수의 기재들(200)은 관통홀(220) 뿐만 아니라 도 22에 도시된 바와 같이 코일 패턴(300)이 형성되지 않은 영역이 제거되어 바디(100)가 충진될 수 있다.
코일 패턴(310, 320, 330, 340, 350, 360; 300)은 복수의 기재(200) 각각의 적어도 일면, 바람직하게는 양면에 형성될 수 있다. 여기서, 코일 패턴(310, 320)은 제 1 기판(200a)의 일면 및 타면에 각각 형성되어 제 1 기재(200a)에 형성된 도전성 비아(210a)에 의해 전기적으로 연결될 수 있다. 또한, 코일 패턴(330, 340)은 제 2 기판(200b)의 일면 및 타면에 각각 형성되어 제 2 기재(200b)에 형성된 도전성 비아(210b)에 의해 전기적으로 연결될 수 있다. 마찬가지로, 코일 패턴(350, 360)은 제 3 기재(300c)의 일면 및 타면에 각각 형성되어 제 3 기재(200c)에 형성된 도전성 비아(210c)에 의해 전기적으로 연결될 수 있다. 이러한 복수의 코일 패턴(300)은 기재(200)의 소정 영역, 예를 들어 중앙부의 관통홀(220a, 220b, 220c)로부터 외측 방향으로 스파이럴 형태로 형성될 수 있고, 기재(200) 상에 각각 형성된 두 코일 패턴이 연결되어 하나의 코일을 이룰 수 있다. 즉, 하나의 바디(100) 내에 두개 이상의 코일이 형성될 수 있다. 여기서, 기재(200) 일측의 코일 패턴(310, 330, 350)과 타측의 코일 패턴(320, 340, 360)은 서로 동일 형상으로 형성될 수 있다. 또한, 동일 기재(200) 상에 형성된 코일 패턴(300)이 서로 중첩되게 형성될 수도 있고, 일측의 코일 패턴(310, 330, 350)이 형성되지 않은 영역에 중첩되도록 타측의 코일 패턴(320, 340, 360)이 형성될 수도 있다.
외부 전극(410, 420, 430, 440, 450, 460; 400)은 바디(100)의 양단부에 서로 소정 간격 이격되어 형성될 수 있다. 이러한 외부 전극(400)은 복수의 기재(200) 상에 각각 형성된 코일 패턴(300)과 전기적으로 연결될 수 있다. 예를 들어, 외부 전극(410, 420)은 코일 패턴(310, 320)과 각각 연결되고, 외부 전극(430, 440)은 코일 패턴(330, 340)과 각각 연결되며, 외부 전극(450, 460)은 코일 패턴(350, 360)과 각각 연결될 수 있다. 즉, 외부 전극(400)은 기재(200a, 200b, 200c) 상에 각각 형성된 코일 패턴(300)과 각각 연결된다.
상기한 바와 같이 본 발명의 제 4 실시 예에 따른 파워 인덕터는 하나의 바디(100) 내에 복수의 인턱터가 구현될 수 있다. 즉, 적어도 둘 이상의 기재(200)가 수평 방향으로 배열되고, 그 상부에 각각 형성된 코일 패턴들(300)이 서로 다른 외부 전극(400)에 의해 연결됨으로써 복수의 인덕터가 병렬로 마련될 수 있고, 그에 따라 하나의 바디(100) 내에 두개 이상이 파워 인덕터가 구현된다.
도 26은 본 발명의 제 5 실시 예에 따른 파워 인덕터의 사시도이고, 도 27 및 도 28은 도 26의 A-A' 라인 및 B-B' 라인을 따라 절단한 상태의 단면도이다.
도 26 내지 도 28을 참조하면, 본 발명의 제 5 실시 예에 따른 파워 인덕터는 바디(100)와, 바디(100) 내부에 마련된 적어도 둘 이상의 기재(200a, 200b; 200)와, 적어도 둘 이상의 기재(200) 각각의 적어도 일면 상에 형성된 코일 패턴(310, 320, 330, 340; 300)과, 바디(100)의 서로 대향되는 두 측면에 마련되며 기재(200a, 200b) 상에 각각 형성된 코일 패턴(310, 320, 330, 340)과 각각 연결된 복수의 외부 전극(410, 420, 430, 440; 400)을 포함할 수 있다. 여기서, 둘 이상의 기재(200)는 바디(100)의 두께 방향, 예컨데 수직 방향으로 소정 간격 이격되어 적층되고 각각의 기재(200) 상에 형성된 코일 패턴들(300)은 서로 다른 방향으로 인출되어 외부 전극(400)과 각각 연결된다. 즉, 본 발명의 제 4 실시 예가 복수의 기재(200)가 수평 방향으로 배열된 것에 비해, 본 발명의 제 5 실시 예는 복수의 기재(200)가 수직 방향으로 배열된다. 따라서, 본 발명의 제 5 실시 예는 적어도 둘 이상의 기재(200)가 바디(100)의 두께 방향으로 배열되고, 기재들(200) 상에 각각 형성된 코일 패턴(300)이 서로 다른 외부 전극(400)에 의해 연결됨으로써 복수의 인덕터가 병렬로 마련되고, 그에 따라 하나의 바디(100) 내에 두개 이상의 파워 인덕터가 구현된다.
상기한 바와 같이 본 발명의 제 3 내지 제 5 실시 예는 바디(100) 내에 적어도 일면 상에 코일 패턴들(300)이 각각 형성된 복수의 기재(200)가 바디(100)의 두께 방향(즉 수직 방향)으로 적층되거나 또는 이와 직교하는 방향(즉 수평 방향)으로 배열될 수 있다. 또한, 복수의 기재(200) 상에 각각 형성된 코일 패턴들(300)은 외부 전극(400)과 직렬 또는 병렬 연결될 수 있다. 즉, 복수의 기재(200) 각각에 형성된 코일 패턴들(300)이 서로 다른 외부 전극(400)에 연결되어 병렬로 연결될 수 있고, 복수의 기재(200) 각각에 형성된 코일 패턴들(300)이 동일한 외부 전극(400)에 연결되어 직렬 연결될 수 있다. 직렬 연결되는 경우 각각의 기재(200) 상에 각각 형성된 코일 패턴들(300)이 바디(100) 외부의 연결 전극(700)에 의해 연결될 수 있다. 따라서, 병렬 연결되는 경우 복수의 기재(200) 각각에 두개의 외부 전극(400)이 필요하고, 직렬 연결되는 경우 기재(200)의 수에 관계없이 두개의 외부 전극(400)이 필요하고 하나 이상의 연결 전극(700)이 필요하다. 예를 들어, 세개의 기재(300) 상에 형성된 코일 패턴(300)이 외부 전극(400)에 병렬로 연결되는 경우 여섯개의 외부 전극(400)이 필요하고, 세개의 기재(300) 상에 형성된 코일 패턴(300)이 직렬로 연결되는 경우 두개의 외부 전극(400)과 적어도 하나의 연결 전극(700)이 필요하다. 또한, 병렬 연결되는 경우 바디(100) 내에 복수의 코일이 마련되고, 직렬 연결되는 경우 바디(100) 내에 하나의 코일이 마련된다.
도 29 내지 도 31은 본 발명의 일 실시 예에 따른 파워 인덕터의 제조 방법을 설명하기 위해 순서적으로 도시한 단면도이다.
도 29를 참조하면, 기재(200)의 적어도 일면, 바람직하게는 일면 및 타면 상에 소정 형상의 코일 패턴(310, 320)을 형성한다. 기재(200)는 CCL 또는 금속 자성체 등으로 제작될 수 있는데, 실효 투자율을 증가시키고 용량 구현을 용이하게 할 수 있는 금속 자성체를 이용하는 것이 바람직하다. 예를 들어, 기재(200)는 철을 함유하는 금속 합금으로 이루어진 소정 두께의 금속판의 일면 및 타면에 구리 포일을 접합함으로써 제작될 수 있다. 여기서, 기재(200)는 예를 들어 중앙부에 관통홀(220)이 형성되고 소정 영역에 도전성 비아(210)가 형성된다. 또한, 기재(200)는 관통홀(220) 이외에 외측 영역이 제거된 형상으로 마련될 수 있다. 예를 들어, 소정 두께를 갖는 사각형의 판 형태의 기재(200) 중앙부에 관통홀(220)이 형성되고 소정 영역에 도전성 비아(210)가 형성되며, 기재(200)의 외측이 적어도 일부 제거된다. 이때, 기재(200)의 제거되는 부분은 스파이럴 형상으로 형성된 코일 패턴(310, 320)의 외측 부분이 될 수 있다. 또한, 코일 패턴(310, 320)은 기재(200)의 소정 영역, 예를 들어 중앙부로부터 원형의 스파이럴 형태로 형성될 수 있다. 이때, 기재(200)의 일면 상에 코일 패턴(310)을 형성한 후 기재(200)의 소정 영역을 관통하고 도전 물질이 매립된 도전성 비아(210)를 형성하고, 기재(200)의 타면 상에 코일 패턴(320)을 형성할 수 있다. 도전성 비아(210)는 레이저 등을 이용하여 기재(200)의 두께 방향으로 비아홀을 형성한 후 비아홀에 도전성 페이스트를 충전하여 형성할 수 있다. 물론, 도전성 비아(210)는 코일 패턴(310, 320) 형성 시 비아홀이 매립되어 형성될 수도 있다. 또한, 코일 패턴(310)은 예를 들어 도금 공정으로 형성할 수 있는데, 이를 위해 기재(200)의 일면 상에 소정 형상의 감광막 패턴을 형성하고 기재(200) 상의 구리 포일을 시드로 이용한 도금 공정을 실시하여 노출된 기재(200)의 표면으로부터 금속층을 성장시킨 후 감광막을 제거함으로써 형성할 수 있다. 물론, 코일 패턴(320)은 기재(200)의 타면 상에 코일 패턴(310)과 동일 방법으로 형성할 수 있다. 한편, 코일 패턴(310, 320)은 다층으로 형성될 수도 있다. 코일 패턴(310, 320)이 다층으로 형성될 경우 하층과 상층 사이에 절연층이 형성되고, 절연층에 제 2 도전성 비아(미도시)가 형성되어 다층 코일 패턴이 연결될 수 있다. 이렇게 기재(200)의 일면 및 타면 상에 코일 패턴(310, 320)을 각각 형성한 후 코일 패턴(310, 320)을 덮도록 절연막(500)을 형성한다. 파릴렌 등의 절연성 고분자 물질을 코팅하여 형성할 수 있다. 바람직하게, 절연막(500)은 파릴렌을 이용하여 코팅함으로써 코일 패턴(310, 320)의 상면 및 측면 뿐만 아니라 기재(200)의 상면 및 측면에도 형성될 수 있다. 이때, 절연막(500)은 코일 패턴(310, 320)의 상면 및 측면, 그리고 기재(200)의 상면 및 측면에 동일한 두께로 형성될 수 있다. 즉, 코일 패턴(310, 320)이 형성된 기재(200)를 증착 챔버 내에 마련한 후 파릴렌을 기화시켜 진공 챔버 내부로 공급함으로써 코일 패턴(310, 320) 및 기재(200) 상에 파릴렌을 증착시킬 수 있다. 예를 들어, 파릴렌을 기화기에서 1차 가열하여 기화시켜 다이머(dimer) 상태로 만든 후 2차 가열하여 모노머(Monomer) 상태로 열분해시키고, 증착 챔버에 연결되어 구비된 콜드 트랩과 기계적 진공 펌프를 이용하여 파릴렌을 냉각시키면 파릴렌은 모노머 상태에서 폴리머 상태로 변환되어 코일 패턴(310, 320) 상에 증착된다. 여기서, 파릴렌을 기화시켜 다이머 상태로 만들기 위한 1차 가열 공정은 100∼~200의 온도와 1.0Torr의 압력으로 진행하고, 기화된 파릴렌을 열분해하여 모노머 상태로 만들기 위한 2차 가열 공정은 400℃∼500℃의 온도와 0.5Torr 이상의 압력으로 진행할 수 있다. 또한, 모노머 상태를 폴리머 상태로 하여 파릴렌을 증착하기 위해 증착 챔버는 상온 예컨대, 25℃의 온도와 0.1Torr의 압력을 유지할 수 있다. 이렇게 코일 패턴(310, 320) 상에 파릴렌을 코팅함으로써 코일 패턴(310, 320) 및 기재(200)의 단차를 따라 절연막(500)이 코팅되고 그에 따라 절연막(500)이 균일한 두께로 형성될 수 있다. 물론, 절연막(500)은 에폭시, 폴리이미드 및 액정 결정성 폴리머로 구성된 군으로부터 선택된 하나 이상의 물질을 포함하는 시트를 코일 패턴(310, 320) 상에 밀착함으로써 형성할 수도 있다.
도 30을 참조하면, 기재(200)의 상부 및 하부에 자성층(110)과 절연층(120)을 교대로 복수 배치한다. 또한, 본 발명의 다른 실시 예에서 제시된 바와 같이 최상층 및 최하층의 상부 및 하부에 제 1 및 제 2 자성층(610, 620)을 각각 마련할 수 있고, 적어도 하나의 절연층(120)을 대신하여 제 2 자성층(600)을 마련할 수도 있다. 물론, 기재(200)의 관통홀(220) 및 기재(200)의 제거된 부분에도 자성층(110)과 절연층(120)을 교대로 배치할 수 있다. 한편, 자성층(110) 대신에 센더스트(sendust), 즉 철-알루미늄-규소(Fe-Al-Si)로 형성될 수도 있고, NiO·ZnO·CuO-Fe2O3로 형성될 수도 있다. 이들 물질 또한 자성층(110)과 마찬가지로 소정 두께를 갖는 판 형상으로 마련되어 절연층(120)와 교대로 적층될 수 있다. 한편, 이들 물질은 기재(200)의 중앙부에 형성된 관통홀(220)을 매립할 수도 있고, 기재(200)의 상측 및 하측은 자성층(110)과 절연층(120)이 적층되어 형성될 수 있다.
도 31을 참조하면, 기재(200)를 사이에 두고 교대로 배치된 자성층(110)과 절연층(120)을 가압한 후 성형하여 바디(100)를 형성한다. 그리고, 도시되지 않았지만 이러한 바디(100) 및 기재(200)를 단위 소자 단위로 절단한 후 단위 소자의 바디(100) 양단부에 코일 패턴(310, 320)의 인출된 부분과 전기적으로 접속되도록 외부 전극(400)을 형성할 수 있다. 외부 전극(400)은 바디(100)의 양 측면에 도금 공정으로 형성할 수 있다. 물론, 외부 전극(400)은 도전성 페이스트에 바디(100)를 침지하거나, 바디(10)의 양단부에 도전성 페이스트를 인쇄하거나, 증착 및 스퍼터링 등의 방법을 이용하여 형성할 수 있다. 여기서, 도전성 페이스트는 외부 전극(400)에 전기 전도성을 부여할 수 있는 금속 물질을 이용할 수 있다. 또한, 외부 전극(400)의 표면에는 니켈 도금층 및 주석 도금층을 더 형성할 수 있다.
본 발명은 상기에서 서술된 실시 예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있다. 즉, 상기의 실시 예는 본 발명의 개시가 완전하도록 하며 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명의 범위는 본원의 특허 청구 범위에 의해서 이해되어야 한다.
100 : 바디 110 : 금속층
120 : 절연층 130 : 금속 자성 분말
200 : 기재 300 : 코일 패턴
400 : 외부 전극 500 : 절연막
550 : 캐핑 절연층

Claims (21)

  1. 바디;
    상기 바디 내부에 마련된 적어도 하나의 기재;
    상기 기재의 적어도 일면 상에 형성된 적어도 하나의 코일 패턴;
    상기 코일 패턴과 상기 바디 사이에 형성된 절연막; 및
    상기 바디의 외부에 형성되어 상기 코일 패턴과 연결되는 외부 전극을 포함하고,
    상기 바디는 교대로 적층된 각각 복수의 자성층 및 절연층을 포함하며,
    상기 자성층은 판 형상의 자성 금속으로 이루어지고,
    상기 자성층은 동일 평면 상에서 적어도 일부가 상기 외부 전극과 절연된 파워 인덕터.
  2. 청구항 1에 있어서, 상기 바디의 상측에 형성된 캐핑 절연층을 더 포함하는 파워 인덕터.
  3. 청구항 1 또는 청구항 2에 있어서, 상기 자성층은 비정질이고, 투자율이 200 이상인 금속 리본을 포함하는 파워 인덕터.
  4. 청구항 1 또는 청구항 2에 있어서, 상기 자성층은 판 형상의 센더스트, Ni계 페라이트 및 Mn계 페라이트의 적어도 어느 하나를 포함하는 파워 인덕터.
  5. 청구항 3에 있어서, 상기 자성층은 상기 절연층보다 작은 크기로 형성된 파워 인덕터.
  6. 삭제
  7. 청구항 1 또는 청구항 2에 있어서, 상기 절연층은 금속 자성 분말 및 열 전도성 필러를 함유하는 파워 인덕터.
  8. 청구항 7에 있어서, 상기 열 전도성 필러는 MgO, AlN, 카본 계열의 물질, Ni계 페라이트 및 Mn계 페라이트로 구성된 군으로부터 선택된 하나 이상을 포함하는 파워 인덕터.
  9. 청구항 7에 있어서, 상기 기재는 적어도 일부 영역이 제거되고, 제거된 영역에 바디가 충진된 파워 인덕터.
  10. 청구항 9에 있어서, 상기 기재의 제거된 영역에 상기 자성층 및 절연층이 수직 방향 또는 수평 방향으로 교대로 형성되거나, 금속 자성 분말 및 열 전도성 필러의 적어도 하나를 함유하는 절연층이 형성되거나, 자성 물질이 형성된 파워 인덕터.
  11. 청구항 1 또는 청구항 2에 있어서, 상기 기재의 일면 및 타면에 형성된 상기 코일 패턴은 동일 높이로 형성된 파워 인덕터.
  12. 청구항 11에 있어서, 상기 코일 패턴은 상기 기재 상에 형성된 제 1 도금막과, 상기 제 1 도금막을 덮도록 형성된 제 2 도금막을 포함하는 파워 인덕터.
  13. 청구항 11에 있어서, 상기 코일 패턴은 적어도 일 영역이 다른 폭으로 형성된 파워 인덕터.
  14. 청구항 11에 있어서, 상기 절연막은 상기 코일 패턴의 상면 및 측면에 균일한 두께로 형성되며, 상기 기재 상에 상기 코일 패턴의 상면 및 측면과 동일 두께로 형성된 파워 인덕터.
  15. 청구항 1 또는 청구항 2에 있어서, 상기 외부 전극은 적어도 일부가 상기 코일 패턴과 동일 재질으로 형성된 파워 인덕터.
  16. 청구항 15에 있어서, 상기 코일 패턴은 상기 기재의 적어도 일면 상에 도금 공정으로 형성되고, 상기 외부 전극은 상기 코일 패턴과 접촉되는 영역이 도금 공정으로 형성된 파워 인덕터.
  17. 삭제
  18. 삭제
  19. 삭제
  20. 청구항 2에 있어서, 상기 캐핑 절연층은 상기 외부 전극이 인쇄회로기판에 실장되는 영역을 제외한 나머지 영역의 적어도 일부에 형성되는 파워 인덕터.
  21. 청구항 20에 있어서, 상기 외부 전극은 상기 바디의 길이 방향의 제 1 및 제 2 면으로부터 폭 방향 및 높이 방향의 제 3 내지 제 6 면의 일부에 연장 형성되며, 상기 캐핑 절연층은 상기 외부 전극이 상기 인쇄회로기판에 실장되는 영역과 대향되는 영역 상에 형성된 파워 인덕터.
KR1020160126742A 2015-10-16 2016-09-30 파워 인덕터 KR101900879B1 (ko)

Priority Applications (8)

Application Number Priority Date Filing Date Title
PCT/KR2016/011501 WO2017065528A1 (ko) 2015-10-16 2016-10-13 파워 인덕터
EP16855745.2A EP3364427B1 (en) 2015-10-16 2016-10-13 Power inductor
US15/768,830 US10943722B2 (en) 2015-10-16 2016-10-13 Power inductor
CN201680060544.4A CN108140468A (zh) 2015-10-16 2016-10-13 功率电感器
JP2018518437A JP2018534773A (ja) 2015-10-16 2016-10-13 パワーインダクター
CN202211274061.8A CN115482989A (zh) 2015-10-16 2016-10-13 功率电感器
TW105133200A TWI706423B (zh) 2015-10-16 2016-10-14 功率電感器
JP2021007884A JP7177190B2 (ja) 2015-10-16 2021-01-21 パワーインダクター

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20150144935 2015-10-16
KR1020150144935 2015-10-16

Publications (2)

Publication Number Publication Date
KR20170045113A KR20170045113A (ko) 2017-04-26
KR101900879B1 true KR101900879B1 (ko) 2018-09-21

Family

ID=58705003

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160126742A KR101900879B1 (ko) 2015-10-16 2016-09-30 파워 인덕터

Country Status (6)

Country Link
US (1) US10943722B2 (ko)
EP (1) EP3364427B1 (ko)
JP (2) JP2018534773A (ko)
KR (1) KR101900879B1 (ko)
CN (2) CN115482989A (ko)
TW (1) TWI706423B (ko)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11116081B2 (en) * 2012-09-11 2021-09-07 Ferric Inc. Laminated magnetic core inductor with magnetic flux closure path parallel to easy axes of magnetization of magnetic layers
US10593449B2 (en) * 2017-03-30 2020-03-17 International Business Machines Corporation Magnetic inductor with multiple magnetic layer thicknesses
US10607759B2 (en) 2017-03-31 2020-03-31 International Business Machines Corporation Method of fabricating a laminated stack of magnetic inductor
US10597769B2 (en) 2017-04-05 2020-03-24 International Business Machines Corporation Method of fabricating a magnetic stack arrangement of a laminated magnetic inductor
US10347411B2 (en) 2017-05-19 2019-07-09 International Business Machines Corporation Stress management scheme for fabricating thick magnetic films of an inductor yoke arrangement
JP7052238B2 (ja) * 2017-07-18 2022-04-12 Tdk株式会社 コイル装置
WO2019036830A1 (en) * 2017-08-21 2019-02-28 Huawei Technologies Co., Ltd. INDUCTOR STRUCTURE AND METHOD OF MANUFACTURING
KR20190042225A (ko) * 2017-10-16 2019-04-24 삼성전기주식회사 코일 전자 부품
TWI638152B (zh) * 2017-10-24 2018-10-11 泰鋒精密科技股份有限公司 功率檢測機
KR20190076587A (ko) 2017-12-22 2019-07-02 삼성전기주식회사 코일 전자부품
KR102029582B1 (ko) * 2018-04-19 2019-10-08 삼성전기주식회사 코일부품 및 그 제조방법
DE102018110222A1 (de) * 2018-04-27 2019-10-31 Semikron Elektronik Gmbh & Co. Kg Schaltungsanordnung zur Ansteuerung einer Leistungshalbleitereinrichtung mit zwei Schaltungsträgern und einem Kunststoffformkörper und Anordnung hiermit
KR102102710B1 (ko) * 2018-07-18 2020-04-21 삼성전기주식회사 코일 부품 및 그 제조방법
GB201816833D0 (en) * 2018-10-16 2018-11-28 Univ College Cork National Univ Of Ireland Cork A vertical magnetic structure for integrated power conversion
KR102122925B1 (ko) * 2018-11-02 2020-06-15 삼성전기주식회사 코일 전자부품
JP2020141041A (ja) * 2019-02-28 2020-09-03 Tdk株式会社 コイル部品
JP7334425B2 (ja) * 2019-02-28 2023-08-29 Tdk株式会社 コイル部品
KR102208281B1 (ko) * 2019-05-15 2021-01-27 삼성전기주식회사 코일 부품
KR102244565B1 (ko) 2019-07-24 2021-04-26 삼성전기주식회사 코일 전자 부품
KR102172639B1 (ko) * 2019-07-24 2020-11-03 삼성전기주식회사 코일 전자 부품
KR20210037966A (ko) * 2019-09-30 2021-04-07 삼성전기주식회사 인쇄회로기판
JP7306219B2 (ja) * 2019-10-24 2023-07-11 株式会社村田製作所 インダクタアレイ部品およびインダクタアレイ部品内蔵基板
KR20210073162A (ko) * 2019-12-10 2021-06-18 삼성전기주식회사 인쇄회로기판
JP7184063B2 (ja) * 2020-03-30 2022-12-06 株式会社村田製作所 コイル部品およびその製造方法
CA3196669A1 (en) * 2020-11-18 2022-05-27 Roberto Bernardo Benedicto OVANDO Multi-layer parallel plane inductor with field control pockets
KR102450601B1 (ko) * 2020-11-23 2022-10-07 삼성전기주식회사 코일 부품
WO2022181187A1 (ja) * 2021-02-26 2022-09-01 株式会社村田製作所 インダクタ部品
CN113421750A (zh) * 2021-06-16 2021-09-21 奇力新电子股份有限公司 薄膜电感
WO2023124582A1 (zh) * 2021-12-30 2023-07-06 Oppo广东移动通信有限公司 电路板集成电感、电感及电子设备
CN114302558A (zh) * 2021-12-30 2022-04-08 Oppo广东移动通信有限公司 集成电感、其制备方法、电感、电源管理芯片及电子设备
CN114300232A (zh) * 2021-12-30 2022-04-08 Oppo广东移动通信有限公司 电感、电路板集成电感、电源管理芯片及电子设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014183307A (ja) * 2013-03-15 2014-09-29 Samsung Electro-Mechanics Co Ltd インダクタ及びその製造方法
JP2015032625A (ja) * 2013-07-31 2015-02-16 新光電気工業株式会社 コイル基板及びその製造方法、インダクタ

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4117878C2 (de) * 1990-05-31 1996-09-26 Toshiba Kawasaki Kk Planares magnetisches Element
JP3382215B2 (ja) * 1990-05-31 2003-03-04 株式会社東芝 平面型磁気素子及びその製造方法並びに平面型磁気素子を備えた半導体装置
JPH0955316A (ja) * 1995-08-17 1997-02-25 Toshiba Corp 平面型磁気素子およびその製造方法
US6768409B2 (en) * 2001-08-29 2004-07-27 Matsushita Electric Industrial Co., Ltd. Magnetic device, method for manufacturing the same, and power supply module equipped with the same
JP3807438B2 (ja) * 2002-10-31 2006-08-09 松下電器産業株式会社 インダクタンス部品とそれを用いた電子機器
WO2005020254A2 (en) * 2003-08-26 2005-03-03 Philips Intellectual Property & Standards Gmbh Ultra-thin flexible inductor
KR20070032259A (ko) 2003-08-26 2007-03-21 코닌클리즈케 필립스 일렉트로닉스 엔.브이. 인덕터 및 인덕터 제조 방법
JP4736526B2 (ja) * 2005-05-11 2011-07-27 パナソニック株式会社 コモンモードノイズフィルタ
JP5286645B2 (ja) * 2006-04-17 2013-09-11 パナソニック株式会社 インダクタンス部品とその製造方法
US8248200B2 (en) * 2006-03-24 2012-08-21 Panasonic Corporation Inductance component
US20090140383A1 (en) 2007-11-29 2009-06-04 Taiwan Semiconductor Manufacturing Co., Ltd. Method of creating spiral inductor having high q value
JP2010087030A (ja) * 2008-09-29 2010-04-15 Taiyo Yuden Co Ltd コイル部品の製造方法およびコイル部品
JP5168234B2 (ja) * 2009-05-29 2013-03-21 Tdk株式会社 積層型コモンモードフィルタ
JP5359842B2 (ja) * 2009-12-11 2013-12-04 Tdk株式会社 積層型コモンモードフィルタ
WO2012053439A1 (ja) * 2010-10-21 2012-04-26 Tdk株式会社 コイル部品及びその製造方法
KR101219003B1 (ko) * 2011-04-29 2013-01-04 삼성전기주식회사 칩형 코일 부품
JP5382064B2 (ja) 2011-05-26 2014-01-08 Tdk株式会社 コイル部品及びその製造方法
JP5974262B2 (ja) 2011-09-15 2016-08-23 パナソニックIpマネジメント株式会社 コモンモードノイズフィルタおよびその製造方法
WO2013038671A1 (ja) 2011-09-15 2013-03-21 パナソニック株式会社 コモンモードノイズフィルタおよびその製造方法
TWM435032U (en) 2012-04-05 2012-08-01 Darfon Materials Corp Multi-layer inductor
KR20130123252A (ko) * 2012-05-02 2013-11-12 삼성전기주식회사 적층형 인덕터 및 그 제조방법
KR101792281B1 (ko) * 2012-12-14 2017-11-01 삼성전기주식회사 파워 인덕터 및 그 제조 방법
KR101983136B1 (ko) 2012-12-28 2019-09-10 삼성전기주식회사 파워 인덕터 및 그 제조방법
KR20150002172A (ko) * 2013-06-28 2015-01-07 삼성전기주식회사 복합재 및 그 제조 방법, 그리고 상기 복합재를 이용하여 제조된 인덕터
JP2015026812A (ja) 2013-07-29 2015-02-05 サムソン エレクトロ−メカニックス カンパニーリミテッド. チップ電子部品及びその製造方法
KR101994730B1 (ko) * 2014-01-02 2019-07-01 삼성전기주식회사 인덕터
KR101565673B1 (ko) 2014-01-02 2015-11-03 삼성전기주식회사 칩 전자부품의 제조방법
KR102080660B1 (ko) * 2014-03-18 2020-04-14 삼성전기주식회사 칩 전자부품 및 그 제조방법
KR102004787B1 (ko) * 2014-04-02 2019-07-29 삼성전기주식회사 적층형 전자부품 및 그 제조방법
KR20160093425A (ko) * 2015-01-29 2016-08-08 삼성전기주식회사 파워 인덕터

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014183307A (ja) * 2013-03-15 2014-09-29 Samsung Electro-Mechanics Co Ltd インダクタ及びその製造方法
JP2015032625A (ja) * 2013-07-31 2015-02-16 新光電気工業株式会社 コイル基板及びその製造方法、インダクタ

Also Published As

Publication number Publication date
US20180308612A1 (en) 2018-10-25
CN108140468A (zh) 2018-06-08
EP3364427B1 (en) 2022-12-07
US10943722B2 (en) 2021-03-09
TWI706423B (zh) 2020-10-01
TW201721674A (zh) 2017-06-16
EP3364427A1 (en) 2018-08-22
EP3364427A4 (en) 2019-06-19
CN115482989A (zh) 2022-12-16
JP2018534773A (ja) 2018-11-22
KR20170045113A (ko) 2017-04-26
JP2021073710A (ja) 2021-05-13
JP7177190B2 (ja) 2022-11-22

Similar Documents

Publication Publication Date Title
KR101900879B1 (ko) 파워 인덕터
KR101981466B1 (ko) 파워 인덕터
KR101900880B1 (ko) 파워 인덕터
KR101718343B1 (ko) 파워 인덕터
KR102019921B1 (ko) 파워 인덕터 및 그 제조 방법
JP6880195B2 (ja) パワーインダクター
KR101830329B1 (ko) 파워 인덕터
KR20170112522A (ko) 코일 패턴 및 그 형성 방법, 이를 구비하는 칩 소자
WO2017065528A1 (ko) 파워 인덕터
KR101898112B1 (ko) 코일 패턴 및 그 형성 방법, 이를 구비하는 칩 소자
KR20170033828A (ko) 파워 인덕터

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right