KR20170033828A - 파워 인덕터 - Google Patents

파워 인덕터 Download PDF

Info

Publication number
KR20170033828A
KR20170033828A KR1020170032244A KR20170032244A KR20170033828A KR 20170033828 A KR20170033828 A KR 20170033828A KR 1020170032244 A KR1020170032244 A KR 1020170032244A KR 20170032244 A KR20170032244 A KR 20170032244A KR 20170033828 A KR20170033828 A KR 20170033828A
Authority
KR
South Korea
Prior art keywords
substrate
coil patterns
power inductor
magnetic
coil
Prior art date
Application number
KR1020170032244A
Other languages
English (en)
Inventor
김경태
정준호
남기정
이정규
Original Assignee
주식회사 모다이노칩
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 모다이노칩 filed Critical 주식회사 모다이노칩
Priority to KR1020170032244A priority Critical patent/KR20170033828A/ko
Publication of KR20170033828A publication Critical patent/KR20170033828A/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • H01F17/0013Printed inductances with stacked layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2804Printed windings

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

본 발명은 금속 자성 분말 및 폴리머를 포함하는 바디; 상기 바디 내부에 마련된 적어도 하나의 기재; 상기 기재의 적어도 일면 상에 형성된 적어도 하나의 코일 패턴; 및 상기 바디의 외측의 서로 대향되는 두 측면에 형성되며 상기 코일 패턴과 연결된 외부 전극을 포함하며, 상기 기재는 상기 외부 전극이 형성된 길이 방향으로 상기 바디의 길이와 같고, 상기 외부 전극이 형성된 방향과 직교하는 폭 방향으로 상기 바디의 폭보다 작은 파워 인덕터를 제시한다.

Description

파워 인덕터{Power Inductor}
본 발명은 파워 인덕터에 관한 것으로, 특히 인덕턴스(Inductance) 특성이 우수하고 절연 특성 및 열적 안정성이 향상된 파워 인덕터에 관한 것이다.
파워 인덕터는 주로 휴대기기 내의 DC-DC 컨버터 등의 전원 회로에 마련된다. 이러한 파워 인덕터는 전원 회로의 고주파화 및 소형화에 따라 기존의 권선형 초크 코일(Choke Coil)을 대신하여 이용이 증대되고 있다. 또한, 파워 인덕터는 휴대기기의 사이즈 축소와 다기능화에 따라 소형화, 고전류화, 저저항화 등의 방향으로 개발이 진행되고 있다.
종래의 파워 인덕터는 다수의 자성체(ferrite) 또는 저유전율의 유전체로 이루어진 세라믹 시트들이 적층된 형태로 제조되었다. 이때, 세라믹 시트 상에는 코일 패턴이 형성되는데, 각각의 세라믹 시트 상에 형성된 코일 패턴은 세믹 시트에 형성된 도전성 비아에 의해 접속되고, 시트가 적층되는 상하 방향을 따라 중첩되는 구조를 이룰 수 있다. 또한, 세라믹 시트들이 적층되어 구성된 바디는 종래에는 대체로 니켈(Ni)-아연(Zn)-구리(Cu)-철(Fe)의 4 원계로 구성된 자성체 재료를 이용하여 제작하였다.
그런데, 자성체 재료는 포화 자화 값이 금속 재료에 비해 낮아서 최근의 휴대기기가 요구하는 고전류 특성을 구현하지 못할 수 있다. 따라서, 파워 인덕터를 구성하는 바디를 금속 분말을 이용하여 제작함으로써 바디를 자성체로 제작한 경우에 비해 상대적으로 포화 자화 값을 높일 수 있다. 그러나, 금속을 이용하여 바디를 제작할 경우 고주파에서의 와전류 손실 및 히스테리 손실이 높아져 재료의 손실이 심해지는 문제가 발생할 수 있다.
이러한 재료의 손실을 감소시키기 위해 금속 분말 사이를 폴리머로 절연하는 구조를 적용하고 있다. 즉, 금속 분말과 폴리머가 혼합된 시트를 적층하여 파워 인덕터의 바디를 제조한다. 또한, 바디 내부에는 코일 패턴이 형성된 소정의 기재가 마련된다. 즉, 소정의 기재 상에 코일 패턴을 형성하고, 그 상측 및 하측에 복수의 시트를 적층 및 압착하여 파워 인덕터를 제조한다.
그러나, 금속 분말 및 폴리머를 이용한 파워 인덕터는 온도 상승에 따라 인덕턴스가 낮아지는 문제가 있다. 즉, 파워 인덕터가 적용된 휴대기기의 발열에 의해 파워 인덕터의 온도가 상승하고, 그에 따라 파워 인덕터의 바디를 이루는 금속 분말이 가열되면서 인덕턴스가 낮아지는 문제가 발생된다. 또한, 바디 내부에서 코일 패턴과 바디 내부의 금속 분말이 접촉할 수 있는데, 이를 방지하기 위해 코일 패턴과 바디를 절연시켜야 한다.
그리고, 코일 패턴이 형성되는 기재는 구리 클래드 라미네이션(Copper Clad Lamination; CCL) 등의 투자율이 낮은 물질을 이용하는데, 이러한 기재에 의해 파워 인덕터의 투자율이 저하된다.
한국공개특허공보 제2007-0032259호
본 발명은 바디 내의 열을 방출함으로써 온도에 대한 안정성을 향상시키고 그에 따라 인덕턴스의 저하를 방지할 수 있는 파워 인덕터를 제공한다.
본 발명은 코일 패턴과 바디 사이의 절연성을 향상시킬 수 있는 파워 인덕터를 제공한다.
본 발명은 용량 및 투자율을 향상시킬 수 있는 파워 인덕터를 제공한다.
본 발명의 일 양태에 따른 파워 인덕터는 금속 자성 분말 및 폴리머를 포함하는 바디; 상기 바디 내부에 마련된 적어도 하나의 기재; 상기 기재의 적어도 일면 상에 형성된 적어도 하나의 코일 패턴; 및 상기 바디의 외측의 서로 대향되는 두 측면에 형성되며 상기 코일 패턴과 연결된 외부 전극을 포함하며, 상기 기재는 상기 외부 전극이 형성된 길이 방향으로 상기 바디의 길이와 같고, 상기 외부 전극이 형성된 방향과 직교하는 폭 방향으로 상기 바디의 폭보다 작다.
상기 금속 자성 분말은 적어도 일 영역의 함량이 다른 영역과 다르다.
상기 바디는 상기 금속 자성 분말의 열을 외부로 방출하기 위한 열 전도성 필러를 더 포함한다.
상기 폭 방향으로 적어도 일 영역이 상기 기재와 상기 바디의 외면 사이의 거리가 다르다.
상기 폭 방향으로부터 상기 길이 방향으로 상기 기재와 상기 바디의 외면 사이의 거리가 멀어진다.
상기 바디의 수평 단면적에 대하여 상기 기재가 40% 내지 80%의 면적으로 형성된다.
상기 기재의 적어도 일부를 통하여 상기 기재의 상부 및 하부에 형성된 상기 바디가 연결된다.
상기 기재의 일면 및 타면에 각각 형성된 코일 패턴은 적어도 일부가 중첩되도록 형성된다.
상기 기재의 표면과 상기 코일 패턴의 상면 및 측면에 형성된 절연층을 더 포함한다.
상기 외부 전극은 적어도 하나의 층으로 형성되며, 적어도 일부가 상기 코일 패턴과 동일 물질로 형성된다.
본 발명의 실시 예들에 따른 파워 인덕터는 바디가 금속 분말, 폴리머 및 열 전도성 필러를 이용하여 제작된다. 열 전도성 필러가 포함됨으로써 바디의 열을 외부로 잘 방출할 수 있고, 그에 따라 바디의 가열에 따른 인덕턴스의 저하를 방지할 수 있다.
또한, 코일 패턴 상에 파릴렌(parylene)을 코팅함으로써 코일 패턴 상에 파릴렌을 균일한 두께로 형성할 수 있고, 그에 따라 바디와 코일 패턴 사이의 절연성을 향상시킬 수 있다.
그리고, 바디 내부에 마련되어 코일 패턴이 형성된 기재를 금속 자성체로 제작함으로써 파워 인덕터의 투자율 저하를 방지할 수도 있고, 기재의 적어도 일부를 제거하고 그 부분에 바디를 충진함으로써 투자율을 향상시킬 수 있으며, 바디에 적어도 하나의 자성층을 마련함으로써 파워 인덕터의 투자율을 향상시킬 수 있다.
한편, 적어도 일 면에 코일 형상의 코일 패턴이 각각 형성된 적어도 둘 이상의 기재가 바디 내에 마련됨으로써 하나의 바디 내에 복수의 코일을 형성할 수 있고, 그에 따라 파워 인덕터의 용량을 증가시킬 수 있다.
도 1은 본 발명의 제 1 실시 예에 따른 파워 인덕터의 결합 사시도.
도 2는 도 1의 A-A' 라인을 따라 절취한 상태의 단면도.
도 3 및 도 4는 본 발명의 제 1 실시 예에 따른 파워 인덕터의 분해 사시도 및 일부 평면도.
도 5 및 도 6은 절연층 재료에 따른 파워 인덕터의 단면 사진.
도 7 및 도 8은 본 발명의 제 2 실시 예들에 따른 파워 인덕터의 단면도.
도 9는 본 발명의 제 3 실시 예에 따른 파워 인덕터의 사시도.
도 10 및 도 11은 도 9의 A-A' 라인 및 B-B' 라인을 따라 절취한 상태의 단면도.
도 12 및 도 13은 본 발명의 제 3 실시 예의 변형 예에 따른 도 9의 A-A' 라인 및 B-B' 라인을 따라 절취한 상태의 단면도.
도 14는 본 발명의 제 4 실시 예에 따른 파워 인덕터의 사시도.
도 15 및 도 16은 도 14의 A-A' 라인 및 B-B' 라인을 따라 절취한 상태의 단면도.
도 17은 도 14의 내부 평면도.
도 18은 본 발명의 제 5 실시 예에 따른 파워 인덕터의 사시도.
도 19 및 도 20은 도 18의 A-A' 라인 및 B-B' 라인을 따라 절취한 상태의 단면도.
도 21 내지 도 23은 본 발명의 일 실시 예에 따른 파워 인덕터의 제조 방법을 설명하기 위해 순서적으로 도시한 단면도.
이하, 첨부된 도면을 참조하여 본 발명의 실시 예를 상세히 설명하기로 한 다. 그러나, 본 발명은 이하에서 개시되는 실시 예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시 예들은 본 발명의 개시가 완전하도록 하며, 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다.
도 1은 본 발명의 제 1 실시 예에 따른 파워 인덕터의 결합 사시도이고, 도 2는 도 1의 A-A' 라인을 따라 절단한 상태의 단면도이다. 또한, 도 3은 본 발명의 제 1 실시 예에 따른 파워 인덕터의 분해 사시도이고, 도 4는 기재 및 코일 패턴의 평면도이다.
도 1 내지 도 4를 참조하면, 본 발명의 제 1 실시 예에 따른 파워 인덕터는 바디(100a, 100b; 100)와, 바디(100) 내부에 마련된 기재(200)와, 기재(200)의 적어도 일면 상에 형성된 코일 패턴(310, 320; 300)과, 바디(100) 외부에 마련된 외부 전극(410, 420; 400)을 포함할 수 있다. 또한, 코일 패턴(310, 320)과 바디(100) 사이에 형성된 절연층(500)을 더 포함할 수 있다.
바디(100)는 육면체 형상일 수 있다. 물론, 바디(100)는 육면체 이외의 다면체 형상을 가질 수 있다. 이러한 바디(100)는 금속 분말(110), 폴리머(120)를 포함하고, 열 전도성 필러(130)를 더 포함할 수 있다.
금속 분말(110)은 평균 입경이 1㎛ 내지 50㎛일 수 있다. 또한, 금속 분말(110)은 동일 크기의 단일 입자 또는 2종 이상의 입자를 이용할 수도 있고, 복수의 크기를 갖는 단일 입자 또는 2종 이상의 입자를 이용할 수도 있다. 예를 들어, 30㎛의 평균 크기를 갖는 제 1 금속 입자와 3㎛의 평균 크기를 갖는 제 2 금속 입자를 혼합하여 이용할 수 있다. 이때, 제 1 및 제 2 금속 입자는 동일 물질의 입자일 수 있고 다른 물질의 입자일 수 있다. 크기가 서로 다른 2종 이상의 금속 분말(110)을 이용할 경우 바디(100)의 충진율을 높일 수 있어 용량을 최대한으로 구현할 수 있다. 예를 들어, 30㎛의 금속 분말을 이용할 경우 30㎛의 금속 분말 사이에는 공극이 발생할 수 있고, 그에 따라 충진율이 낮아질 수 밖에 없다. 그러나, 30㎛의 금속 분말 사이에 이보다 크기가 작은 3㎛의 금속 분말을 혼합하여 이용함으로써 바디(110) 내의 금속 분말의 충진율을 높일 수 있다. 이러한 금속 분말(110)은 철(Fe)를 포함하는 금속 물질을 이용할 수 있는데, 예를 들어 철-니켈(Fe-Ni), 철-니켈-규소(Fe-Ni-Si), 철-알루미늄-규소(Fe-Al-Si) 및 철-알루미늄-크롬(Fe-Al-Cr)으로 구성된 군으로부터 선택된 하나 이상의 금속을 포함할 수 있다. 즉, 금속 분말(110)은 철을 포함하여 자성 조직을 갖거나 자성을 띄는 금속 합금으로 형성되어 소정의 투자율을 가질 수 있다. 또한, 금속 분말(110)은 표면이 자성체로 코팅될 수 있는데, 금속 분말(110)과 투자율이 상이한 물질로 코팅될 수 있다. 예를 들어, 자성체는 금속 산화물 자성체를 포함할 수 있는데, 니켈 산화물 자성체, 아연 산화물 자성체, 구리 산화물 자성체, 망간 산화물 자성체, 코발트 산화물 자성체, 바륨 산화물 자성체 및 니켈-아연-구리 산화물 자성체로 구성된 군으로부터 선택된 하나 이상의 산화물 자성체를 이용할 수 있다. 즉, 금속 분말(110)의 표면에 코팅되는 자성체는 철을 포함하는 금속 산화물로 형성될 수 있으며, 금속 분말(110)보다 높은 투자율을 갖는 것이 바람직하다. 한편, 금속 분말(110)이 자성을 띄기 때문에 금속 분말(110)이 서로 접촉하면 절연이 파괴되고 쇼트가 발생될 수 있다. 따라서, 금속 분말(110)은 표면이 적어도 하나의 절연체로 코팅될 수 있다. 예를 들어, 금속 분말(110)은 표면이 산화물로 코팅될 수 있고, 파릴렌(parylene) 등의 절연성 고분자 물질로 코팅될 수 있는데, 파릴렌으로 코팅되는 것이 바람직하다. 파릴렌은 1㎛∼10㎛의 두께로 코팅될 수 있다. 여기서, 파릴렌이 1㎛ 미만의 두께로 형성되면 금속 분말(110)의 절연 효과가 저하될 수 있고, 10㎛를 초과하는 두께로 형성하면 금속 분말(110)의 사이즈가 증가하여 바디(100) 내의 금속 분말(110)의 분포가 줄어들어 투자율이 낮아질 수 있다. 또한, 파릴렌 이외에도 다양한 절연성 고분자 물질을 이용하여 금속 분말(110)의 표면을 코팅할 수 있다. 한편, 금속 분말(110)을 코팅하는 산화물은 금속 분말(110)을 산화시켜 형성할 수도 있고, TiO2, SiO2, ZrO2, SnO2, NiO, ZnO, CuO, CoO, MnO, MgO, Al2O3, Cr2O3, Fe2O3, B2O3 및 Bi2O3로부터 선택된 하나가 코팅될 수도 있다. 여기서, 금속 분말(110)은 이중 구조의 산화물로 코팅될 수 있고, 산화물 및 고분자 물질의 이중 구조로 코팅될 수 있다. 물론, 금속 분말(110)은 표면이 자성체로 코팅된 후 절연체로 코팅될 수도 있다. 이렇게 금속 분말(110)의 표면이 절연체로 코팅됨으로써 금속 분말(110) 사이의 접촉에 의한 쇼트를 방지할 수 있다. 이때, 산화물, 절연성 고분자 물질 등으로 금속 분말(110)을 코팅하거나 자성체 및 절연체의 이중으로 코팅되는 경우에도 1㎛∼10㎛의 두께로 코팅될 수 있다.
폴리머(120)는 금속 분말(110) 사이를 절연시키기 위해 금속 분말(110)과 혼합될 수 있다. 즉, 금속 분말(110)은 고주파에서의 와전류 손실 및 히스테리 손실이 높아져서 재료의 손실이 심해지는 문제점이 발생할 수 있는데, 이러한 재료의 손실을 감소시키기 위해 금속 분말(110) 사이를 절연하는 폴리머(120)를 포함시킬 수 있다. 이러한 폴리머(120)는 에폭시(epoxy), 폴리이미드(polyimide) 및 액정 결정성 폴리머(Liquid Crystalline Polymer, LCP)로 구성된 군으로부터 선택된 하나 이상을 포함할 수 있으나, 이에 제한되는 것은 아니다. 또한, 폴리머(120)는 금속 분말(110) 사이에 절연성을 제공하는 것으로 열경화성 수지로 이루어질 수 있다. 열경화성 수지로는 예를 들어 노볼락 에폭시 수지(Novolac Epoxy Resin), 페녹시형 에폭시 수지(Phenoxy Type Epoxy Resin), 비피에이형 에폭시 수지(BPA Type Epoxy Resin), 비피에프형 에폭시 수지(BPF Type Epoxy Resin), 하이드로네이트 비피에이 에폭시 수지(Hydrogenated BPA Epoxy Resin), 다이머산 개질 에폭시 수지(Dimer Acid Modified Epoxy Resin), 우레탄 개질 에폭시 수지(Urethane Modified Epoxy Resin), 고무 개질 에폭시 수지(Rubber Modified Epoxy Resin) 및 디씨피디형 에폭시 수지(DCPD Type Epoxy Resin)로 이루어진 군으로부터 선택된 하나 이상을 포함할 수 있다. 여기서, 폴리머(120)는 금속 분말 100wt%에 대하여 2.0wt% 내지 5.0wt%의 함량으로 포함될 수 있다. 그런데, 폴리머(120)의 함량이 증가할 경우 금속 분말(110)의 부피 분율이 저하되어 포화자화 값을 높이는 효과가 제대로 구현되지 않을 수 있고, 바디(100)의 투자율을 저하시킬 수 있다. 반대로, 폴리머(120)의 함량이 감소하는 경우 인덕터의 제조 과정에서 사용되는 강산 또는 강염기 용액 등이 내부로 침투하여 인덕턴스 특성을 감소시킬 수 있다. 따라서, 폴리머(120)는 금속 분말(110)의 포화자화 값 및 인덕턴스를 저하시키지 않도록 하는 범위에서 포함될 수 있다.
한편, 바디(100)는 외부의 열에 의해 바디(100)가 가열되는 문제를 해결하기 위해 열 전도성 필러(130)가 포함될 수 있다. 즉, 외부의 열에 의해 바디(100)의 금속 분말(110)이 가열될 수 있는데, 열 전도성 필러(130)가 포함됨으로써 금속 분말(110)의 열을 외부로 방출시킬 수 있다. 이러한 열 전도성 필러(130)는 MgO, AlN, 카본 계열의 물질로 구성된 군으로부터 선택된 하나 이상을 포함할 수 있으나, 이에 제한되는 것은 아니다. 여기서, 카본 계열의 물질은 탄소를 포함하며 다양한 형상을 가질 수 있는데, 예를 들어 흑연, 카본 블랙, 그래핀, 그라파이트 등이 포함될 수 있다. 또한, 열 전도성 필러(130)는 금속 분말(110) 100wt%에 대하여 0.5wt% 내지 3wt%의 함량으로 포함될 수 있다. 열 전도성 필러(130)의 함량이 상기 범위 미만일 경우 열 방출 효과를 얻을 수 없으며, 상기 범위를 초과할 경우 금속 분말(110)의 함량이 낮아져 바디(100)의 투자율을 저하시키게 된다. 그리고, 열 전도성 필러(130)는 예를 들어 0.5㎛ 내지 100㎛의 크기를 가질 수 있다. 즉, 열 전도성 필러(130)는 금속 분말(110)의 크기와 동일하거나, 이보다 크거나 작은 크기를 가질 수 있다. 열 전도성 필러(130)는 크기와 함량에 따라 열 방출 효과가 조절될 수 있다. 예를 들어, 열 전도성 필러(130)의 크기가 크고 함량이 증가할수록 열 방출 효과가 높을 수 있다. 한편, 바디(100)는 금속 분말(110), 폴리머(120) 및 열 전도성 필러(130)를 포함하는 재료로 이루어진 복수 개의 시트를 적층하여 제작될 수 있다. 여기서, 복수의 시트를 적층하여 바디(100)를 제작할 경우 각 시트의 열 전도성 필러(130)의 함량은 다를 수 있다. 예를 들어, 기재(200)를 중심으로 상측 및 하측으로 멀어질수록 시트 내의 열 전도성 필러(130)의 함량은 증가할 수 있다. 또한, 바디(100)는 금속 분말(110), 폴리머(120) 및 열 전도성 필러(130)를 포함하는 재료로 이루어진 페이스트를 일정 두께로 인쇄하여 형성하거나, 이러한 페이스트를 틀에 넣어서 압착하는 방법 등 필요에 따라 다양한 방법이 적용되어 형성될 수 있다. 이때, 바디(100)를 형성하기 위해 적층되는 시트의 개수 또는 일정 두께로 인쇄되는 페이스트의 두께는 파워 인덕터에서 요구되는 인덕턴스 등의 전기적 특성을 고려하여 적정한 수나 두께로 결정될 수 있다. 한편, 기재(200)를 사이에 두고 그 상측 및 하측에 마련된 바디(100a, 100b)는 기재(200)를 통해 서로 연결될 수 있다. 즉, 기재(200)의 적어도 일부가 제거되고 제거된 부분에 바디(100)의 일부가 충진될 수 있다. 이렇게 기재(200)의 적어도 일부가 제거되고 그 부분에 바디(100)가 충진됨으로써 기재(200)의 면적을 줄이고 동일 부피에서 바디(100)의 비율을 증가시킴으로써 파워 인덕터의 투자율을 증가시킬 수 있다.
기재(200)는 바디(100)의 내부에 마련될 수 있다. 예를 들어, 기재(200)는 바디(100) 내부에 바디(100)의 장축 방향, 즉 외부 전극(400) 방향으로 마련될 수 있다. 또한, 기재(200)는 하나 이상으로 마련될 수 있는데, 예를 들어 둘 이상의 기재(200)가 외부 전극(400)이 형성된 방향과 직교하는 방향, 예를 들어 수직 방향으로 소정 간격 이격되어 마련될 수 있다. 물론, 둘 이상의 기재가 외부 전극(400)이 형성된 방향으로 배열될 수도 있다. 이러한 기재(200)는 예를 들어 구리 클래드 라미네이션(Copper Clad Lamination; CCL) 또는 금속 자성체 등으로 제작될 수 있다. 이때, 기재(200)는 금속 자성체로 제작됨으로써 투자율을 증가시키고 용량 구현을 용이하게 할 수 있다. 즉, CCL은 유리강화섬유에 구리 포일(foil)을 접합하여 제작되는데, 이러한 CCL은 투자율을 갖기 않기 때문에 파워 인덕터의 투자율을 저하시킬 수 있다. 그러나, 금속 자성체를 기재(200)로 이용하게 되면 금속 자성체가 투자율을 가지기 때문에 파워 인덕터의 투자율을 저하시키지 않게 된다. 이러한 금속 자성체를 이용한 기재(200)은 철을 함유하는 금속, 예를 들어 철-니켈(Fe-Ni), 철-니켈-규소(Fe-Ni-Si), 철-알루미늄-규소(Fe-Al-Si) 및 철-알루미늄-크롬(Fe-Al-Cr)으로 구성된 군으로부터 선택된 하나 이상의 금속으로 이루어진 소정 두께의 판에 구리 포일을 접합시켜 제작될 수 있다. 즉, 철을 포함하여 적어도 하나의 금속으로 이루어진 합금을 소정 두께의 판 형상으로 제작하고, 금속판의 적어도 일면에 구리 포일을 접합함으로써 기재(200)가 제작될 수 있다.
또한, 기재(200)의 소정 영역에는 적어도 하나의 도전성 비아(210)가 형성될 수 있고, 도전성 비아(210)에 의해 기재(200)의 상측 및 하측에 각각 형성되는 코일 패턴(310, 320)이 전기적으로 연결될 수 있다. 도전성 비아(210)는 기재(200)에 두께 방향을 따라 관통하는 비아(미도시)를 형성한 후 비아에 도전성 페이스트를 충전하는 등의 방법으로 형성할 수 있다. 이때, 도전성 비아(210)로부터 코일 패턴(310, 320)의 적어도 하나가 성장될 수 있고, 그에 따라 도전성 비아(210)와 코일 패턴(310, 320)의 적어도 하나가 일체로 형성될 수 있다. 또한, 기재(200)는 적어도 일부가 제거될 수 있다. 즉, 기재(200)는 적어도 일부가 제거될 수도 있고, 제거되지 않을 수도 있다. 바람직하게, 기재(200)는 도 3 및 도 4에 도시된 바와 같이 코일 패턴(310, 320)과 중첩되는 영역을 제외한 나머지 영역이 제거될 수 있다. 예를 들어, 스파이럴 형상으로 형성되는 코일 패턴(310, 320)의 내측에 기재(200)가 제거되어 관통홀(220)이 형성될 수 있고, 코일 패턴(310, 320) 외측의 기재(200)가 제거될 수 있다. 즉, 기재(200)는 코일 패턴(310, 320)의 외측 형상을 따라 예컨데 레이스트랙(racetrack) 형상을 가지고 외부 전극(400)과 대향되는 영역이 코일 패턴(310, 320) 단부의 형상을 따라 직선 형상으로 형성될 수 있다. 따라서, 기재(200)의 외측은 바디(100)의 가장자리에 대하여 만곡한 형상으로 마련될 수 있다. 이렇게 기재(200)가 제거된 부분에는 도 4에 도시된 바와 같이 바디(100)가 충진될 수 있다. 즉, 기재(200)의 관통홀(220)을 포함한 제거된 영역을 통해 상측 및 하측의 바디(100a, 100b)가 서로 연결된다. 한편, 기재(200)가 금속 자성체로 제작되는 경우 기재(200)가 바디(100)의 금속 분말(110)과 접촉될 수 있다. 이러한 문제를 해결하기 위해 기재(200)의 측면에는 파릴렌 등의 절연층(500)이 형성될 수 있다. 예를 들어, 관통홀(220)의 측면 및 기재(200)의 외측면에 절연층(500)이 형성될 수 있다. 한편, 기재(200)는 코일 패턴(310, 320)보다 넓은 폭으로 마련될 수 있다. 예를 들어, 기재(200)는 코일 패턴(310, 320)의 수직 하방에서 소정의 폭으로 잔류할 수 있는데, 예를 들어 기재(200)는 코일 패턴(310, 320)보다 0.3㎛ 정도 돌출되도록 형성될 수 있다. 한편, 기재(200)는 코일 패턴(310, 320) 내측 영역 및 외측 영역이 제거되어 바디(100)의 횡단면의 면적보다 작을 수 있다. 예를 들어, 바디(100)의 횡단면의 면적을 100으로 할 때, 기재(200)는 40 내지 80의 면적 비율로 마련될 수 있다. 기재(200)의 면적 비율이 높으면 바디(100)의 투자율이 낮아질 수 있고, 기재(200)의 면적 비율이 낮으면 코일 패턴(310, 320)의 형성 면적이 작아질 수 있다. 따라서, 바디(100)의 투자율, 코일 패턴(310, 320)의 선폭 및 턴수 등을 고려하여 기재(200)의 면적 비율을 조절할 수 있다.
코일 패턴(310, 320; 300)은 기재(200)의 적어도 일면, 바람직하게는 양면에 형성될 수 있다. 이러한 코일 패턴(310, 320)은 기재(200)의 소정 영역, 예를 들어 중앙부로부터 외측 방향으로 스파이럴 형태로 형성될 수 있고, 기재(200) 상에 형성된 두 코일 패턴(310, 320)이 연결되어 하나의 코일을 이룰 수 있다. 즉, 코일 패턴(310, 320)은 기재(200)의 중심부에 형성된 관통홀(220) 외측으로부터 스파이럴 형태로 형성될 수 있고, 기재(200)에 형성된 전도성 비아(210)를 통해 서로 연결될 수 있다. 여기서, 상측의 코일 패턴(310)과 하측의 코일 패턴(320)은 서로 동일 형상으로 형성될 수 있고 동일 높이로 형성될 수 있다. 또한, 코일 패턴(310, 320)은 서로 중첩되게 형성될 수도 있고, 코일 패턴(310)이 형성되지 않은 영역에 중첩되도록 코일 패턴(320)이 형성될 수도 있다. 한편, 코일 패턴(310, 320)의 단부는 직선 형상으로 외측으로 연장 형성될 수 있는데, 바디(100)의 단변 중앙부를 따라 연장 형성될 수 있다. 그리고, 코일 패턴(310, 320)의 외부 전극(400)과 접촉되는 영역은 도 3 및 도 4에 도시된 바와 같이 다른 영역에 비해 폭이 넓게 형성될 수 있다. 코일 패턴(310, 320)의 일부, 즉 인출부가 넓은 폭으로 형성됨으로써 코일 패턴(310, 320)과 외부 전극(400)의 접촉 면적을 증가시킬 수 있고 그에 따라 저항을 낮출 수 있다. 물론, 코일 패턴(310, 320)이 외부 전극(400)이 형성되는 일 영역에서 외부 전극(400)의 폭 방향으로 연장 형성될 수도 있다. 이때, 코일 패턴(310, 320)의 말단부, 즉 외부 전극(400)으로 향하여 인출되는 인출부는 바디(100)의 측면 중앙부를 향해 직선 형상으로 형성될 수 있다.
한편, 이러한 코일 패턴(310, 320)은 기재(200)에 형성된 도전성 비아(210)에 의해 전기적으로 연결될 수 있다. 코일 패턴(310, 320)은 예를 들면 후막 인쇄, 도포, 증착, 도금 및 스퍼터링 등의 방법을 통하여 형성할 수 있는데, 도금으로 형성하는 것이 바람직하다. 또한, 코일 패턴(310, 320) 및 도전성 비아(210)는 은(Ag), 구리(Cu) 및 구리 합금 중 적어도 하나를 포함하는 재료로 형성될 수 있으나, 이에 제한되는 것은 아니다. 한편, 코일 패턴(310, 320)을 도금 공정으로 형성하는 경우 예를 들어 기재(200) 상에 도금 공정으로 금속층, 예를 들어 구리층을 형성하고, 리소그라피 공정으로 패터닝할 수 있다. 즉, 기재(200)의 표면에 형성된 구리 포일을 시드층으로 구리층을 도금 공정으로 형성하고 이를 패터닝함으로써 코일 패턴(310, 320)을 형성할 수 있다. 물론, 기재(200) 상에 소정 형상의 감광막 패턴을 형성한 후 도금 공정을 실시하여 노출된 기재(200) 표면으로부터 금속층을 성장시킨 후 감광막을 제거함으로써 소정 형상의 코일 패턴(310, 320)을 형성할 수도 있다. 한편, 코일 패턴(310, 320)은 다층으로 형성될 수도 있다. 즉, 기재(200)의 상측에 형성된 코일 패턴(310)의 상측으로 복수의 코일 패턴이 더 형성될 수 있고, 기재(200)의 하측에 형성된 코일 패턴(320)의 하측으로 복수의 코일 패턴이 더 형성될 수도 있다. 코일 패턴(310, 320)이 다층으로 형성될 경우 하층과 상층 사이에 절연층이 형성되고, 절연층에 도전성 비아(미도시)가 형성되어 다층 코일 패턴이 연결될 수 있다. 한편, 코일 패턴(310, 320)은 기재(200)의 두께보다 2.5배 이상 높게 형성될 수 있다. 예를 들어, 기재(200)가 10㎛∼50㎛의 두께로 형성되고 코일 패턴(310, 320)이 50㎛∼300㎛의 높이로 형성될 수 있다.
외부 전극(410, 420; 400)은 바디(100)의 서로 대향하는 두 면에 형성될 수 있다. 예를 들어, 외부 전극(400)은 바디(100)의 장축 방향으로 서로 대향되는 두 측면에 형성될 수 있다. 이러한 외부 전극(400)은 바디(100)의 코일 패턴(310, 320)과 전기적으로 연결될 수 있다. 또한, 외부(400)은 바디(100)의 두 측면 전체에 형성되고, 두 측면의 중앙부에서 코일 패턴(310, 320)과 접촉될 수 있다. 즉, 코일 패턴(310, 320)의 단부가 바디(100)의 외측 중앙부로 노출되고 외부 전극(400)이 바디(100)의 측면에 형성되어 코일 패턴(310, 320)의 단부와 연결될 수 있다. 이러한 외부 전극(400)은 도전성 페이스트에 바디(100)를 침지하거나, 인쇄, 증착 및 스퍼터링 등의 다양한 방법을 통하여 바디(100)의 양단에 형성될 수 있다. 외부 전극(400)은 전기 전도성을 가지는 금속으로 형성될 수 있는데, 예를 들어 금, 은, 백금, 구리, 니켈, 팔라듐 및 이들의 합금으로부터 이루어진 군으로부터 선택된 하나 이상의 금속으로 형성될 수 있다. 또한, 외부 전극(400)은 표면에 니켈-도금층(미도시) 또는 주석 도금층(미도시)이 더 형성될 수 있다.
절연층(500)은 코일 패턴(310, 320)과 금속 분말(110)을 절연시키기 위해 코일 패턴(310, 320)과 바디(100) 사이에 형성될 수 있다. 즉, 절연층(500)이 코일 패턴(310, 320)의 상면 및 측면을 덮도록 형성될 수 있다. 또한, 절연층(500)은 코일 패턴(310, 320)의 상면 및 측면 뿐만 아니라 기재(200)를 덮도록 형성될 수도 있다. 즉, 소정 영역이 제거된 기재(200)의 코일 패턴(310, 320)보다 노출된 영역, 즉 기재(200)의 표면 및 측면에도 절연층(500)이 형성될 수 있다. 기재(200) 상의 절연층(500)은 코일 패턴(310, 320) 상의 절연층(500)과 동일 두께로 형성될 수 있다. 이러한 절연층(500)은 코일 패턴(310, 320) 상에 파릴렌을 코팅하여 형성할 수 있다. 예를 들어, 코일 패턴(310, 320)이 형성된 기재(200)를 증착 챔버 내에 마련한 후 파릴렌을 기화시켜 진공 챔버 내부로 공급함으로써 코일 패턴(310, 320) 상에 파릴렌을 증착시킬 수 있다. 예를 들어, 파릴렌을 기화기(Vaporizer)에서 1차 가열하여 기화시켜 다이머(dimer) 상태로 만든 후 2차 가열하여 모노머(Monomer) 상태로 열분해시키고, 증착 챔버에 연결되어 구비된 콜드 트랩(Cold Trap)과 기계적 진공 펌프(Mechanical Vaccum Pump)를 이용하여 파릴렌을 냉각시키면 파릴렌은 모노머 상태에서 폴리머 상태로 변환되어 코일 패턴(310, 320) 상에 증착된다. 물론, 절연층(500)은 파릴렌 이외의 절연성 고분자, 예를 들어 에폭시, 폴리이미드 및 액정 결정성 폴리머로부터 선택된 하나 이상의 물질로 형성될 수 있다. 그러나, 파릴렌을 코팅함으로써 코일 패턴(310, 320) 상에 균일한 두께로 절연층(500)을 형성할 수 있고, 얇은 두께로 형성하더라도 다른 물질에 비해 절연 특성을 향상시킬 수 있다. 즉, 절연층(500)으로서 파릴렌을 코팅하는 경우 폴리이미드를 형성하는 경우에 비해 얇은 두께로 형성하면서 절연 파괴 전압을 증가시켜 절연 특성을 향상시킬 수 있다. 또한, 코일 패턴(310, 320)의 패턴 사이의 간격에 따라 패턴 사이를 매립하여 균일한 두께로 형성되거나 패턴의 단차를 따라 균일한 두께로 형성될 수 있다. 즉, 코일 패턴(310, 320)의 패턴 사이의 간격이 멀 경우 패턴의 단차를 따라 균일한 두께로 파릴렌이 코팅될 수 있고, 패턴 사이의 간격이 가까울 경우 패턴 사이를 매립하여 코일 패턴(310, 320) 상에 소정 두께로 형성될 수 있다. 도 5은 폴리이미드를 절연층으로 형성한 파워 인덕터의 단면 사진이고, 도 6은 파릴렌을 절연층으로 형성한 파워 인덕터의 단면 사진이다. 도 6에 도시된 바와 같이 파릴렌의 경우 코일 패턴(310, 320)의 단차를 따라 얇은 두께로 형성되지만, 도 5에 도시된 바와 같이 폴리이미드는 파릴렌에 비해 두꺼운 두께로 형성된다. 한편, 절연층(500)은 파릴렌을 이용하여 3㎛∼100㎛의 두께로 형성할 수 있다. 파릴렌이 3㎛ 미만의 두께로 형성되면 절연 특성이 저하될 수 있고, 100㎛를 초과하는 두께로 형성하는 경우 동일 사이즈 내에서 절연층(500)이 차지하는 두께가 증가하여 바디(100)의 체적이 작아지고 그에 따라 투자율이 저하될 수 있다. 물론, 절연층(500)은 소정 두께의 시트로 제작된 후 코일 패턴(310, 320) 상에 형성될 수 있다.
상기한 바와 같이 본 발명의 제 1 실시 예에 따른 파워 인덕터는 금속 분말(110) 및 폴리머(120) 뿐만 아니라 열 전도성 필러(130)를 포함하여 바디(100)를 제작함으로써 금속 분말(110)의 가열에 의한 바디(100)의 열을 외부로 방출할 수 있어 바디(100)의 온도 상승을 방지할 수 있고, 그에 따라 인덕턴스 저하 등의 문제를 방지할 수 있다. 또한, 코일 패턴(310, 320)과 바디(100) 사이에 파릴렌을 이용하여 절연층(500)을 형성함으로써 코일 패턴(310, 320)의 측면 및 상면에 얇고 균일한 두께로 절연층(500)을 형성하면서 절연 특성을 향상시킬 수 있다. 그리고, 바디(100) 내부의 기재(200)을 금속 자성체로 형성함으로써 파워 인덕터의 투자율 감소를 방지할 수 있고, 기재(200)의 적어도 일부가 제거되고 그 부분에 바디(100)를 충진함으로써 투자율을 향상시킬 수 있다.
도 7은 본 발명의 제 2 실시 예에 따른 파워 인덕터의 단면도이다.
도 7은 참조하면, 본 발명의 제 2 실시 예에 따른 파워 인덕터는 열 전도성 필러(130)를 포함하는 바디(100)와, 바디(100) 내부에 마련된 기재(200)와, 기재(200)의 적어도 일면 상에 형성된 코일 패턴(310, 320)과, 바디(100) 외부에 마련된 외부 전극(410, 420)과, 코일 패턴(310, 320) 상에 각각 마련된 절연층(500)과, 바디(100)의 상부 및 하부에 각각 마련된 적어도 하나의 자성층(600; 610, 620)을 포함할 수 있다. 즉, 본 발명의 제 1 실시 예에 자성층(600)이 더 구비되어 본 발명의 제 2 실시 예가 구현될 수 있다. 이러한 본 발명의 제 2 실시 예를 본 발명의 제 1 실시 예와 다른 구성을 중심으로 설명하면 다음과 같다.
자성층(600; 610, 620)은 바디(100)의 적어도 일 영역에 마련될 수 있다. 즉, 제 1 자성층(610)이 바디(100)의 상부 표면에 형성되고 제 2 자성층(620)이 바디(100)의 하부 표면에 형성될 수 있다. 여기서, 제 1 및 제 2 자성층(610, 620)은 바디(100)의 투자율을 증가시키기 위해 마련되며, 바디(100)보다 높은 투자율을 갖는 물질로 제작될 수 있다. 예를 들어, 바디(100)의 투자율이 20이고 제 1 및 제 2 자성층(610, 620)은 40 내지 1000의 투자율을 갖도록 마련될 수 있다. 이러한 제 1 및 제 2 자성층(610, 620)은 예를 들어 자성체 분말과 폴리머를 이용하여 제작할 수 있다. 즉, 제 1 및 제 2 자성층(610, 620)은 바디(100)보다 높은 투자율을 갖도록 바디(100)의 자성체보다 높은 자성을 갖는 물질로 형성되거나 자성체의 함유율이 더 높도록 형성될 수 있다. 여기서, 폴리머는 금속 분말 100wt%에 대하여 15wt%로 첨가될 수 있다. 또한, 자성체 분말은 니켈 자성체(Ni Ferrite), 아연 자성체(Zn Ferrite), 구리 자성체(Cu Ferrite), 망간 자성체(Mn Ferrite), 코발트 자성체(Co Ferrite), 바륨 자성체(Ba Ferrite) 및 니켈-아연-구리 자성체(Ni-Zn-Cu Ferrite)로 구성된 군으로부터 선택된 하나 이상 또는 이들의 하나 이상의 산화물 자성체를 이용할 수 있다. 즉, 철을 포함하는 금속 합금 분말 또는 철을 함유하는 금속 합금 산화물을 이용하여 자성층(600)을 형성할 수 있다. 또한, 금속 합금 분말에 자성체를 코팅하여 자성체 분말을 형성할 수도 있다. 예를 들어, 니켈 산화물 자성체, 아연 산화물 자성체, 구리 산화물 자성체, 망간 산화물 자성체, 코발트 산화물 자성체, 바륨 산화물 자성체 및 니켈-아연-구리 산화물 자성체로 구성된 군으로부터 선택된 하나 이상의 산화물 자성체를 예를 들어 철을 포함하는 금속 합금 분말에 코팅하여 자성체 분말을 형성할 수 있다. 즉, 철을 포함하는 금속 산화물을 금속 합금 분말에 코팅하여 자성체 분말을 형성할 수 있다. 물론, 니켈 산화물 자성체, 아연 산화물 자성체, 구리 산화물 자성체, 망간 산화물 자성체, 코발트 산화물 자성체, 바륨 산화물 자성체 및 니켈-아연-구리 산화물 자성체로 구성된 군으로부터 선택된 하나 이상의 산화물 자성체를 예를 들어 철을 포함하는 금속 합금 분말과 혼합하여 자성체 분말을 형성할 수 있다. 즉, 철을 포함하는 금속 산화물을 금속 합금 분말과 혼합하여 자성체 분말을 형성할 수 있다. 한편, 제 1 및 제 2 자성층(610, 620)은 금속 분말 및 폴리머에 열 전도성 필러를 더 포함하여 제작할 수도 있다. 열 전도성 필러는 금속 분말 100wt%에 대하여 0.5wt% 내지 3wt%로 함유될 수 있다. 이러한 제 1 및 제 2 자성층(610, 620)은 시트 형태로 제작되어 복수의 시트가 적층된 바디(100)의 상부 및 하부에 각각 마련될 수 있다. 또한, 금속 분말(110), 폴리머(120) 및 열 전도성 필러(130)를 포함하는 재료로 이루어진 페이스트를 일정 두께로 인쇄하거나 페이스트를 틀에 넣어 압착하는 바디(100)를 형성한 후 바디(100)의 상부 및 하부에 자성층(610, 620)을 각각 형성할 수 있다. 물론, 자성층(610, 620)은 페이스트를 이용하여 형성할 수도 있는데, 바디(100)의 상부 및 하부에 자성 물질을 도포하여 자성층(610, 620)을 형성할 수 있다.
한편, 본 발명의 제 2 실시 예에 따른 파워 인덕터는 도 8에 도시된 바와 같이 제 1 및 제 2 자성층(610, 620)과 기재(200) 사이에 제 3 및 제 4 자성층(630, 640)이 더 마련될 수 있다. 즉, 바디(100) 내에 적어도 하나의 자성층(600)이 마련될 수 있다. 이러한 자성층(600)은 시트 형태로 제작되어 복수의 시트가 적층된 바디(100)의 사이에 마련될 수 있다. 즉, 바디(100)를 제작하기 위한 복수의 시트 사이에 적어도 하나의 자성층(600)을 마련할 수 있다. 또한, 금속 분말(110), 폴리머(120) 및 열 전도성 필러(130)를 포함하는 재료로 이루어진 페이스트를 일정 두께로 인쇄하여 바디(100)를 형성하는 경우 인쇄 도중에 자성층을 형성할 수 있고, 페이스트를 틀에 넣어서 압착하는 경우에도 자성층을 그 사이에 넣고 압착할 수 있다. 물론, 자성층(600)은 페이스트를 이용하여 형성할 수도 있는데, 바디(100)를 인쇄할 때 연자성 물질을 도포하여 바디(100) 내에 자성층(600)을 형성할 수 있다.
상기한 바와 같이 본 발명의 다른 실시 예에 따른 파워 인덕터는 바디(100)에 적어도 하나의 자성층(600)을 마련함으로써 파워 인덕터의 자성률을 향상시킬 수 있다.
도 9는 본 발명의 제 3 실시 예에 따른 파워 인덕터의 사시도이고, 도 10은 도 9의 A-A' 라인을 따라 절단한 상태의 단면도이며, 도 11은 도 9의 B-B' 라인을 따라 절단한 상태의 단면도이다.
도 9 내지 도 11을 참조하면, 본 발명의 제 3 실시 예에 따른 파워 인덕터는 바디(100)와, 바디(100) 내부에 마련된 적어도 둘 이상의 기재(200a, 200b; 200)와, 적어도 둘 이상의 기재(200) 각각의 적어도 일면 상에 형성된 코일 패턴(310, 320, 330, 340; 300)과, 바디(100) 외부에 마련된 외부 전극(410, 420)과, 코일 패턴(300) 상에 형성된 절연층(500)과, 바디(100)의 외부에 외부 전극(410, 420)과 이격되어 마련되며 바디(100) 내부의 적어도 둘 이상의 기판(200) 각각에 형성된 적어도 하나의 코일 패턴(300)과 연결된 연결 전극(710, 720; 700)을 포함할 수 있다. 이하의 설명에서는 본 발명의 제 1 실시 예 및 제 2 실시 예의 설명과 중복되는 내용은 생략하기로 한다.
적어도 둘 이상의 기재(200a, 200b; 200)는 바디(100) 내부에 마련되며, 바디(100)의 단축 방향으로 소정 간격 이격되어 마련될 수 있다. 즉, 적어도 둘 이상의 기재(200)는 외부 전극(400)과 직교되는 방향, 즉 바디(100)의 두께 방향으로 소정 간격 이격되어 마련될 수 있다. 또한, 적어도 둘 이상의 기재(200) 각각에는 도전성 비아(210a, 210b; 210)가 형성되고, 적어도 일부가 제거되어 관통홀(220a, 220b; 220)이 각각 형성된다. 이때, 관통홀(220a, 220b)은 동일 위치에 형성될 수 있고, 도전성 비아(210a, 210b)은 동일 위치 또는 다른 위치에 형성될 수도 있다. 물론, 적어도 둘 이상의 기재(200)는 관통홀(220) 뿐만 아니라 코일 패턴(300)이 형성되지 않은 영역이 제거되어 바디(100)가 충진될 수 있다. 또한, 적어도 둘 이상의 기재(200) 사이에는 바디(100)가 마련될 수 있다. 바디(100)가 적어도 둘 이상의 기재(200) 사이에도 마련됨으로써 파워 인덕터의 투자율을 향상시킬 수 있다. 물론, 적어도 둘 이상의 기재(200) 상에 형성된 코일 패턴(300) 상에 절연층(500)이 형성되어 있으므로 기재들(200) 사이에는 바디(100)가 형성되지 않을 수도 있다. 이 경우 파워 인덕터의 두께를 줄일 수 있다.
코일 패턴(310, 320, 330, 340; 300)은 적어도 둘 이상의 기재(200) 각각의 적어도 일면, 바람직하게는 양면에 형성될 수 있다. 여기서, 코일 패턴(310, 320)은 제 1 기판(200a)의 하부 및 상부에 각각 형성되어 제 1 기재(200a)에 형성된 도전성 비아(210a)에 의해 전기적으로 연결될 수 있다. 마찬가지로, 코일 패턴(330, 340)은 제 2 기판(200b)의 하부 및 상부에 각각 형성되어 제 2 기재(200b)에 형성된 도전성 비아(210b)에 의해 전기적으로 연결될 수 있다. 이러한 복수의 코일 패턴(300)은 기재(200)의 소정 영역, 예를 들어 중앙부의 관통홀(220a, 220b)로부터 외측 방향으로 스파이럴 형태로 형성될 수 있고, 기재(200) 상에 형성된 두 코일 패턴이 연결되어 하나의 코일을 이룰 수 있다. 즉, 하나의 바디(100) 내에 두개 이상의 코일이 형성될 수 있다. 여기서, 기재(200) 상측의 코일 패턴(310, 330)과 하측의 코일 패턴(320, 340)은 서로 동일 형상으로 형성될 수 있다. 또한, 복수의 코일 패턴(300)이 서로 중첩되게 형성될 수도 있고, 상측의 코일 패턴(310, 330)이 형성되지 않은 영역에 중첩되도록 하측의 코일 패턴(320, 340)이 형성될 수도 있다.
외부 전극(410, 420; 400)은 바디(100)의 양단부에 형성될 수 있다. 예를 들어, 외부 전극(400)은 바디(100)의 장축 방향으로 서로 대향되는 두 측면에 형성될 수 있다. 이러한 외부 전극(400)은 바디(100)의 코일 패턴(300)과 전기적으로 연결될 수 있다. 즉, 복수의 코일 패턴(300)의 적어도 일 단부가 바디(100)의 외측으로 노출되고 외부 전극(400)이 복수의 코일 패턴(300)의 단부와 연결되도록 형성될 수 있다. 예를 들어, 외부 전극(410)은 코일 패턴(310)과 연결되도록 형성될 수 있고, 외부 패턴(420)는 코일 패턴(340)과 연결되도록 형성될 수 있다. 즉, 외부 전극(400)은 기재(200a, 200b) 상에 형성된 하나의 코일 패턴(310, 340)과 각각 연결된다.
연결 전극(700)은 외부 전극(400)이 형성되지 않은 바디(100)의 적어도 일 측면 상에 형성될 수 있다. 예를 들어. 외부 전극(400)이 서로 대향되는 제 1 및 제 2 측면에 형성되고, 연결 전극(700)은 외부 전극(400)이 형성되지 않은 제 3 및 제 4 측면에 각각 형성될 수 있다. 이러한 연결 전극(700)은 제 1 기재(200a) 상에 형성된 코일 패턴(310, 320)의 적어도 어느 하나와 제 2 기재(200b) 상에 형성된 코일 패턴(330, 340)의 적어도 어느 하나를 연결하기 위해 마련된다. 즉, 연결 전극(710)은 제 1 기재(200a)의 하측에 형성된 코일 패턴(320)과 제 2 기재(200b)의 상측에 형성된 코일 패턴(330)을 바디(100)의 외측에서 연결한다. 즉, 외부 전극(410)이 코일 패턴(310)과 연결되고, 연결 전극(710)이 코일 패턴(320, 330)을 연결시키며, 외부 전극(420)이 코일 패턴(340)과 연결된다. 따라서, 제 1 및 제 2 기재(200a, 200b) 상에 각각 형성된 코일 패턴들(310, 320, 330, 340)이 직렬 연결된다. 한편, 연결 전극(710)은 코일 패턴(320, 330)을 연결시키지만 연결 전극(720)은 코일 패턴들(300)과 연결되지 않는데, 이는 공정 상의 편의에 의해 두개의 연결 전극(710, 720)이 형성되고 하나의 연결 전극(710)만이 코일 패턴(320, 330)과 연결되기 때문이다. 이러한 연결 전극(700)은 도전성 페이스트에 바디(100)를 침지하거나, 인쇄, 증착 및 스퍼터링 등의 다양한 방법을 통하여 바디(100)의 일 측면에 형성될 수 있다. 연결 전극(700)은 전기 전도성을 부여할 수 있는 금속으로, 예컨대 금, 은, 백금, 구리, 니켈, 팔라듐 및 이들의 합금으로부터 이루어진 군으로부터 선택된 하나 이상의 금속을 포함할 수 있다. 이때, 연결 전극(700)의 표면에 필요시 니켈-도금층(미도시) 또는 주석 도금층(미도시)이 더 형성될 수 있다.
도 12 및 도 13은 본 발명의 제 3 실시 예의 변형 예에 따른 파워 인덕터의 단면도이다. 즉, 바디(100) 내부에 세개의 기재(200a, 200b, 200c; 200)를 마련하고, 기재(200) 각각의 일면 및 타면 상에 코일 패턴(310, 320, 330, 340, 350, 360; 300)을 각각 형성하고, 코일 패턴(310, 360)은 외부 전극(410, 420)과 연결되도록 하고, 코일 패턴(320, 330)은 연결 전극(710)과 연결되도록 하며, 코일 패턴(340, 350)은 연결 전극(720)과 연결되도록 한다. 따라서, 세개의 기재(200a, 200b, 200c) 상에 각각 형성된 코일 패턴들(300)이 연결 전극(710, 720)에 의해 직렬 연결될 수 있다.
상기한 바와 같이 본 발명의 제 3 실시 예 및 그 변형 예에 따른 파워 인덕터는 적어도 일 면에 코일 패턴(300)이 각각 형성된 적어도 둘 이상의 기재(200)가 바디(100) 내에 이격되어 마련되고, 서로 다른 기재(200) 상에 형성된 코일 패턴(300)이 바디(100) 외부의 연결 전극(700)에 의해 연결됨으로써 하나의 바디(100) 내에 복수의 코일 패턴을 형성하고, 그에 따라 파워 인덕터의 용량을 증가시킬 수 있다. 즉, 바디(100) 외부의 연결 전극(700)을 이용하여 서로 다른 기재(200) 상에 각각 형성된 코일 패턴(300)을 직렬 연결할 수 있고, 그에 따라 동일 면적 내의 파워 인덕터의 용량을 증가시킬 수 있다.
도 14는 본 발명의 제 4 실시 예에 따른 파워 인덕터의 사시도이고, 도 15 및 도 16은 도 14의 A-A' 및 B-B' 라인을 따라 절취한 상태의 단면도이다. 또한, 도 17은 내부 평면도이다.
도 14 내지 도 17을 참조하면, 본 발명의 제 4 실시 예에 따른 파워 인덕터는 바디(100)와, 바디(100) 내부에 수평 방향으로 마련된 적어도 둘 이상의 기재(200a, 200b, 200c; 200)와, 적어도 둘 이상의 기재(200)의 적어도 일면 상에 각각 형성된 코일 패턴(310, 320, 330, 340, 350, 360; 300)과, 바디(100) 외부에 마련되며 적어도 둘 이상의 기재(200a, 200b, 200c) 상에 형성된 코일 패턴들(300)과 각각 연결되는 외부 전극들(410, 420, 430, 440, 450, 460; 400)과, 코일 패턴(300) 상에 형성된 절연층(500)을 포함할 수 있다. 이하의 설명에서는 이상의 실시 예들의 설명과 중복되는 내용은 생략하기로 한다.
적어도 둘 이상, 예를 들어 세개의 기재(200a, 200b, 200c; 200)는 바디(100)의 내부에 마련될 수 있다. 여기서, 적어도 둘 이상의 기재들(200)은 예를 들어 바디(100)의 두께 방향과 직교하는 장축 방향으로 서로 소정 간격 이격되어 마련될 수 있다. 즉, 본 발명의 제 3 실시 예 및 그 변형 예는 복수의 기재들(200)이 바디(100)의 두께 방향, 예컨데 수직 방향으로 배열되었지만, 본 발명의 제 4 실시 예는 복수의 기재들(200)이 바디(100)의 두께 방향과 직교하는 방향, 예컨데 수평 방향으로 배열될 수 있다. 또한, 복수의 기재들(200)에는 도전성 비아(210a, 210b, 210c; 210)가 각각 형성되고, 적어도 일부가 제거되어 관통홀(220a, 220b, 220c; 220)이 각각 형성된다. 물론, 복수의 기재들(200)은 관통홀(220) 뿐만 아니라 도 17에 도시된 바와 같이 코일 패턴(300)이 형성되지 않은 영역이 제거되어 바디(100)가 충진될 수 있다.
코일 패턴(310, 320, 330, 340, 350, 360; 300)은 복수의 기재(200) 각각의 적어도 일면, 바람직하게는 양면에 형성될 수 있다. 여기서, 코일 패턴(310, 320)은 제 1 기판(200a)의 일면 및 타면에 각각 형성되어 제 1 기재(200a)에 형성된 도전성 비아(210a)에 의해 전기적으로 연결될 수 있다. 또한, 코일 패턴(330, 340)은 제 2 기판(200b)의 일면 및 타면에 각각 형성되어 제 2 기재(200b)에 형성된 도전성 비아(210b)에 의해 전기적으로 연결될 수 있다. 마찬가지로, 코일 패턴(350, 360)은 제 3 기재(300c)의 일면 및 타면에 각각 형성되어 제 3 기재(200c)에 형성된 도전성 비아(210c)에 의해 전기적으로 연결될 수 있다. 이러한 복수의 코일 패턴(300)은 기재(200)의 소정 영역, 예를 들어 중앙부의 관통홀(220a, 220b, 220c)로부터 외측 방향으로 스파이럴 형태로 형성될 수 있고, 기재(200) 상에 각각 형성된 두 코일 패턴이 연결되어 하나의 코일을 이룰 수 있다. 즉, 하나의 바디(100) 내에 두개 이상의 코일이 형성될 수 있다. 여기서, 기재(200) 일측의 코일 패턴(310, 330, 350)과 타측의 코일 패턴(320, 340, 360)은 서로 동일 형상으로 형성될 수 있다. 또한, 동일 기재(200) 상에 형성된 코일 패턴(300)이 서로 중첩되게 형성될 수도 있고, 일측의 코일 패턴(310, 330, 350)이 형성되지 않은 영역에 중첩되도록 타측의 코일 패턴(320, 340, 360)이 형성될 수도 있다.
외부 전극(410, 420, 430, 440, 450, 460; 400)은 바디(100)의 양단부에 서로 소정 간격 이격되어 형성될 수 있다. 이러한 외부 전극(400)은 복수의 기재(200) 상에 각각 형성된 코일 패턴(300)과 전기적으로 연결될 수 있다. 예를 들어, 외부 전극(410, 420)은 코일 패턴(310, 320)과 각각 연결되고, 외부 전극(430, 440)은 코일 패턴(330, 340)과 각각 연결되며, 외부 전극(450, 460)은 코일 패턴(350, 360)과 각각 연결될 수 있다. 즉, 외부 전극(400)은 기재(200a, 200b, 200c) 상에 각각 형성된 코일 패턴(300)과 각각 연결된다.
상기한 바와 같이 본 발명의 제 4 실시 예에 따른 파워 인덕터는 하나의 바디(100) 내에 복수의 인턱터가 구현될 수 있다. 즉, 적어도 둘 이상의 기재(200)가 수평 방향으로 배열되고, 그 상부에 각각 형성된 코일 패턴들(300)이 서로 다른 외부 전극(400)에 의해 연결됨으로써 복수의 인덕터가 병렬로 마련될 수 있고, 그에 따라 하나의 바디(100) 내에 두개 이상이 파워 인덕터가 구현된다.
도 18은 본 발명의 제 5 실시 예에 따른 파워 인덕터의 사시도이고, 도 19 및 도 20는 도 18의 A-A' 라인 및 B-B' 라인을 따라 절단한 상태의 단면도이다.
도 18 내지 도 20을 참조하면, 본 발명의 제 5 실시 예에 따른 파워 인덕터는 바디(100)와, 바디(100) 내부에 마련된 적어도 둘 이상의 기재(200a, 200b; 200)와, 적어도 둘 이상의 기재(200) 각각의 적어도 일면 상에 형성된 코일 패턴(310, 320, 330, 340; 300)과, 바디(100)의 서로 대향되는 두 측면에 마련되며 기재(200a, 200b) 상에 각각 형성된 코일 패턴(310, 320, 330, 340)과 각각 연결된 복수의 외부 전극(410, 420, 430, 440; 400)을 포함할 수 있다. 여기서, 둘 이상의 기재(200)는 바디(100)의 두께 방향, 예컨데 수직 방향으로 소정 간격 이격되어 적층되고 각각의 기재(200) 상에 형성된 코일 패턴들(300)은 서로 다른 방향으로 인출되어 외부 전극(400)과 각각 연결된다. 즉, 본 발명의 제 4 실시 예가 복수의 기재(200)가 수평 방향으로 배열된 것에 비해, 본 발명의 제 5 실시 예는 복수의 기재(200)가 수직 방향으로 배열된다. 따라서, 본 발명의 제 5 실시 예는 적어도 둘 이상의 기재(200)가 바디(100)의 두께 방향으로 배열되고, 기재들(200) 상에 각각 형성된 코일 패턴(300)이 서로 다른 외부 전극(400)에 의해 연결됨으로써 복수의 인덕터가 병렬로 마련되고, 그에 따라 하나의 바디(100) 내에 두개 이상의 파워 인덕터가 구현된다.
상기한 바와 같이 도 9 내지 도 20을 이용하여 설명한 본 발명의 제 3 내지 제 5 실시 예는 바디(100) 내에 적어도 일면 상에 코일 패턴들(300)이 각각 형성된 복수의 기재(200)가 바디(100)의 두께 방향(즉 수직 방향)으로 적층되거나 또는 이와 직교하는 방향(즉 수평 방향)으로 배열될 수 있다. 또한, 복수의 기재(200) 상에 각각 형성된 코일 패턴들(300)은 외부 전극(400)과 직렬 또는 병렬 연결될 수 있다. 즉, 복수의 기재(200) 각각에 형성된 코일 패턴들(300)이 서로 다른 외부 전극(400)에 연결되어 병렬로 연결될 수 있고, 복수의 기재(200) 각각에 형성된 코일 패턴들(300)이 동일한 외부 전극(400)에 연결되어 직렬 연결될 수 있다. 직렬 연결되는 경우 각각의 기재(200) 상에 각각 형성된 코일 패턴들(300)이 바디(100) 외부의 연결 전극(700)에 의해 연결될 수 있다. 따라서, 병렬 연결되는 경우 복수의 기재(200) 각각에 두개의 외부 전극(400)이 필요하고, 직렬 연결되는 경우 기재(200)의 수에 관계없이 두개의 외부 전극(400)이 필요하고 하나 이상의 연결 전극(700)이 필요하다. 예를 들어, 세개의 기재(300) 상에 형성된 코일 패턴(300)이 외부 전극(400)에 병렬로 연결되는 경우 여섯개의 외부 전극(400)이 필요하고, 세개의 기재(300) 상에 형성된 코일 패턴(300)이 직렬로 연결되는 경우 두개의 외부 전극(400)과 적어도 하나의 연결 전극(700)이 필요하다. 또한, 병렬 연결되는 경우 바디(100) 내에 복수의 코일이 마련되고, 직렬 연결되는 경우 바디(100) 내에 하나의 코일이 마련된다.
도 21 내지 도 23은 본 발명의 일 실시 예에 따른 파워 인덕터의 제조 방법을 설명하기 위해 순서적으로 도시한 단면도이다.
도 21을 참조하면, 기재(200)의 적어도 일면, 바람직하게는 일면 및 타면 상에 소정 형상의 코일 패턴(310, 320)을 형성한다. 기재(200)는 CCL 또는 금속 자성체 등으로 제작될 수 있는데, 실효 투자율을 증가시키고 용량 구현을 용이하게 할 수 있는 금속 자성체를 이용하는 것이 바람직하다. 예를 들어, 기재(200)는 철을 함유하는 금속 합금으로 이루어진 소정 두께의 금속판의 일면 및 타면에 구리 포일을 접합함으로써 제작될 수 있다. 여기서, 기재(200)는 예를 들어 중앙부에 관통홀(220)이 형성되고 소정 영역에 도전성 비아(210)가 형성된다. 또한, 기재(200)는 관통홀(220) 이외에 외측 영역이 제거된 형상으로 마련될 수 있다. 예를 들어, 소정 두께를 갖는 사각형의 판 형태의 기재(200) 중앙부에 관통홀(220)이 형성되고 소정 영역에 도전성 비아(210)가 형성되며, 기재(200)의 외측이 적어도 일부 제거된다. 이때, 기재(200)의 제거되는 부분은 스파이럴 형상으로 형성된 코일 패턴(310, 320)의 외측 부분이 될 수 있다. 또한, 코일 패턴(310, 320)은 기재(200)의 소정 영역, 예를 들어 중앙부로부터 원형의 스파이럴 형태로 형성될 수 있다. 이때, 기재(200)의 일면 상에 코일 패턴(310)을 형성한 후 기재(200)의 소정 영역을 관통하고 도전 물질이 매립된 도전성 비아(210)를 형성하고, 기재(200)의 타면 상에 코일 패턴(320)을 형성할 수 있다. 도전성 비아(210)는 레이저 등을 이용하여 기재(200)의 두께 방향으로 비아홀을 형성한 후 비아홀에 도전성 페이스트를 충전하여 형성할 수 있다. 또한, 코일 패턴(310)은 예를 들어 도금 공정으로 형성할 수 있는데, 이를 위해 기재(200)의 일면 상에 소정 형상의 감광막 패턴을 형성하고 기재(200) 상의 구리 포일을 시드로 이용한 도금 공정을 실시하여 노출된 기재(200)의 표면으로부터 금속층을 성장시킨 후 감광막을 제거함으로써 형성할 수 있다. 물론, 코일 패턴(320)은 기재(200)의 타면 상에 코일 패턴(310)과 동일 방법으로 형성할 수 있다. 한편, 코일 패턴(310, 320)은 다층으로 형성될 수도 있다. 코일 패턴(310, 320)이 다층으로 형성될 경우 하층과 상층 사이에 절연층이 형성되고, 절연층에 제 2 도전성 비아(미도시)가 형성되어 다층 코일 패턴이 연결될 수 있다. 이렇게 기재(200)의 일면 및 타면 상에 코일 패턴(310, 320)을 각각 형성한 후 코일 패턴(310, 320)을 덮도록 절연층(500)을 형성한다. 파릴렌 등의 절연성 고분자 물질을 코팅하여 형성할 수 있다. 바람직하게, 절연층(500)은 파릴렌을 이용하여 코팅함으로써 코일 패턴(310, 320)의 상면 및 측면 뿐만 아니라 기재(200)의 상면 및 측면에도 형성될 수 있다. 이때, 절연층(500)은 코일 패턴(310, 320)의 상면 및 측면, 그리고 기재(200)의 상면 및 측면에 동일한 두께로 형성될 수 있다. 즉, 코일 패턴(310, 320)이 형성된 기재(200)를 증착 챔버 내에 마련한 후 파릴렌을 기화시켜 진공 챔버 내부로 공급함으로써 코일 패턴(310, 320) 및 기재(200) 상에 파릴렌을 증착시킬 수 있다. 예를 들어, 파릴렌을 기화기에서 1차 가열하여 기화시켜 다이머(dimer) 상태로 만든 후 2차 가열하여 모노머(Monomer) 상태로 열분해시키고, 증착 챔버에 연결되어 구비된 콜드 트랩과 기계적 진공 펌프를 이용하여 파릴렌을 냉각시키면 파릴렌은 모노머 상태에서 폴리머 상태로 변환되어 코일 패턴(310, 320) 상에 증착된다. 여기서, 파릴렌을 기화시켜 다이머 상태로 만들기 위한 1차 가열 공정은 100℃∼200℃의 온도와 1.0Torr의 압력으로 진행하고, 기화된 파릴렌을 열분해하여 모노머 상태로 만들기 위한 2차 가열 공정은 400℃∼500℃의 온도와 0.5Torr 이상의 압력으로 진행할 수 있다. 또한, 모노머 상태를 폴리머 상태로 하여 파릴렌을 증착하기 위해 증착 챔버는 상온 예컨대, 25℃의 온도와 0.1Torr의 압력을 유지할 수 있다. 이렇게 코일 패턴(310, 320) 상에 파릴렌을 코팅함으로써 코일 패턴(310, 320) 및 기재(200)의 단차를 따라 절연층(500)이 코팅되고 그에 따라 절연층(500)이 균일한 두께로 형성될 수 있다. 물론, 절연층(500)은 에폭시, 폴리이미드 및 액정 결정성 폴리머로 구성된 군으로부터 선택된 하나 이상의 물질을 포함하는 시트를 코일 패턴(310, 320) 상에 밀착함으로써 형성할 수도 있다.
도 22를 참조하면, 금속 분말(110), 폴리머(120) 및 열 전도성 필러(130)를 포함하는 재료로 이루어진 복수의 시트(100a 내지 100h)를 마련한다. 여기서, 금속 분말(110)은 철(Fe)를 포함하는 금속 물질을 이용할 수 있고, 폴리머(120)는 금속 분말(110) 사이를 절연할 수 있는 에폭시, 폴리이미드 등을 이용할 수 있으며, 열 전도성 필러(130)는 금속 분말(110)의 열을 외부로 방출시킬 수 있는 MgO, AlN, 카본 계열의 물질 등을 이용할 수 있다. 또한, 금속 분말(110)의 표면이 자성체, 예를 들어 금속 산화물 자성체로 코팅될 수 있고 파릴렌 등의 절연성 물질로 코팅될 수도 있다. 여기서, 폴리머(120)는 금속 분말 100wt%에 대하여 2.0wt% 내지 5.0wt%의 함량으로 포함될 수 있고, 열 전도성 필러(130)는 금속 분말(110) 100wt%에 대하여 0.5wt% 내지 3wt%의 함량으로 포함될 수 있다. 이러한 복수의 시트(100a 내지 100h)를 코일 패턴(310, 320)이 형성된 기재(200)의 상부 및 하부에 각각 배치한다. 한편, 복수의 시트(100a 내지 100h)는 열 전도성 필러(130)의 함량이 서로 다를 수 있다. 예를 들어, 기재(200)의 일면 및 타면으로부터 상측 및 하측으로 갈수록 열 전도성 필러(130)의 함량이 높아질 수 있다. 즉, 기재(200)에 접하는 시트(100a, 100d)의 상측 및 하측에 위치하는 시트(100b, 100e)의 열 전도성 필러(130)의 함량이 시트(100a, 100d)의 열 전도성 필러(130)의 함량보다 높고, 시트(100b, 100e)의 상측 및 하측에 위치하는 시트(100c, 100f)의 열 전도성 필러(130)의 함량이 시트(100b, 100e)의 열 전도성 필러(130)의 함량보다 더 높을 수 있다. 이렇게 기재(200)으로부터 멀어질수록 열 전도성 필러(130)의 함량이 높아짐으로써 열 전달 효율을 더욱 향상시킬 수 있다. 한편, 본 발명의 다른 실시 예에서 제시된 바와 같이 최상층 및 최하층 시트(100a, 100h)의 상부 및 하부에 제 1 및 제 2 자성층(610, 620)을 각각 마련할 수 있다. 제 1 및 제 2 자성층(610, 620)은 시트(100a 내지 100h)보다 높은 투자율을 갖는 물질로 제작될 수 있다. 예를 들어, 제 1 및 제 2 자성층(610, 620)은 시트(100a 내지 100h)의 투자율보다 높은 투자율을 갖도록 자성 분말과 에폭시 수지를 이용하여 제작할 수 있다. 또한, 제 1 및 제 2 자성층(610, 620)에 열 전도성 필러가 더 포함되도록 할 수 있다.
도 23을 참조하면, 기재(200)을 사이에 두고 복수의 시트(100a 내지 100h)를 적층 및 가압한 후 성형하여 바디(100)를 형성한다. 이렇게 함으로써 기재(200)의 관통홀(220) 및 기재(200)의 제거된 부분에 바디(100)가 충진될 수 있다. 그리고, 도시되지 않았지만 이러한 바디(100) 및 기재(200)를 단위 소자 단위로 절단한 후 단위 소자의 바디(100) 양단부에 코일 패턴(310, 320)의 인출된 부분과 전기적으로 접속되도록 외부 전극(400)을 형성할 수 있다. 외부 전극(400)은 도전성 페이스트에 바디(100)를 침지하거나, 바디(10)의 양단부에 도전성 페이스트를 인쇄하거나, 증착 및 스퍼터링 등의 방법을 이용하여 형성할 수 있다. 여기서, 도전성 페이스트는 외부 전극(400)에 전기 전도성을 부여할 수 있는 금속 물질을 이용할 수 있다. 또한, 외부 전극(400)의 표면에는 필요시 니켈 도금층 및 주석 도금층을 더 형성할 수 있다.
본 발명은 상기에서 서술된 실시 예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있다. 즉, 상기의 실시 예는 본 발명의 개시가 완전하도록 하며 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명의 범위는 본원의 특허 청구 범위에 의해서 이해되어야 한다.
100 : 바디 200 : 기재
300 : 코일 패턴 400 : 외부 전극
500 : 절연층 600 : 자성층
700 : 연결 전극

Claims (10)

  1. 금속 자성 분말 및 폴리머를 포함하는 바디;
    상기 바디 내부에 마련된 적어도 하나의 기재;
    상기 기재의 적어도 일면 상에 형성된 적어도 하나의 코일 패턴; 및
    상기 바디의 외측의 서로 대향되는 두 측면에 형성되며 상기 코일 패턴과 연결된 외부 전극을 포함하며,
    상기 기재는 상기 외부 전극이 형성된 길이 방향으로 상기 바디의 길이와 같고, 상기 외부 전극이 형성된 방향과 직교하는 폭 방향으로 상기 바디의 폭보다 작은 파워 인덕터.
  2. 청구항 1에 있어서, 상기 금속 자성 분말은 적어도 일 영역의 함량이 다른 영역과 다른 파워 인덕터.
  3. 청구항 1에 있어서, 상기 바디는 상기 금속 자성 분말의 열을 외부로 방출하기 위한 열 전도성 필러를 더 포함하는 파워 인덕터.
  4. 청구항 1에 있어서, 상기 폭 방향으로 적어도 일 영역이 상기 기재와 상기 바디의 외면 사이의 거리가 다른 파워 인덕터.
  5. 청구항 1에 있어서, 상기 폭 방향으로부터 상기 길이 방향으로 상기 기재와 상기 바디의 외면 사이의 거리가 멀어지는 파워 인덕터.
  6. 청구항 1에 있어서, 상기 바디의 수평 단면적에 대하여 상기 기재가 40% 내지 80%의 면적으로 형성된 파워 인덕터.
  7. 청구항 1에 있어서, 상기 기재의 적어도 일부를 통하여 상기 기재의 상부 및 하부에 형성된 상기 바디가 연결된 파워 인덕터.
  8. 청구항 1에 있어서, 상기 기재의 일면 및 타면에 각각 형성된 코일 패턴은 적어도 일부가 중첩되도록 형성된 파워 인덕터.
  9. 청구항 1에 있어서, 상기 기재의 표면과 상기 코일 패턴의 상면 및 측면에 형성된 절연층을 더 포함하는 파워 인덕터.
  10. 청구항 1에 있어서, 상기 외부 전극은 적어도 하나의 층으로 형성되며, 적어도 일부가 상기 코일 패턴과 동일 물질로 형성된 파워 인덕터.
KR1020170032244A 2017-03-15 2017-03-15 파워 인덕터 KR20170033828A (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170032244A KR20170033828A (ko) 2017-03-15 2017-03-15 파워 인덕터

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170032244A KR20170033828A (ko) 2017-03-15 2017-03-15 파워 인덕터

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020150109871A Division KR101718343B1 (ko) 2014-08-07 2015-08-04 파워 인덕터

Publications (1)

Publication Number Publication Date
KR20170033828A true KR20170033828A (ko) 2017-03-27

Family

ID=58497015

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170032244A KR20170033828A (ko) 2017-03-15 2017-03-15 파워 인덕터

Country Status (1)

Country Link
KR (1) KR20170033828A (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220076875A1 (en) * 2020-09-08 2022-03-10 Chilisin Electronics Corp. Thin film inductor and manufacturing method thereof
KR20230025821A (ko) * 2017-10-16 2023-02-23 삼성전기주식회사 코일 전자 부품

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070032259A (ko) 2003-08-26 2007-03-21 코닌클리즈케 필립스 일렉트로닉스 엔.브이. 인덕터 및 인덕터 제조 방법

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070032259A (ko) 2003-08-26 2007-03-21 코닌클리즈케 필립스 일렉트로닉스 엔.브이. 인덕터 및 인덕터 제조 방법

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230025821A (ko) * 2017-10-16 2023-02-23 삼성전기주식회사 코일 전자 부품
US20220076875A1 (en) * 2020-09-08 2022-03-10 Chilisin Electronics Corp. Thin film inductor and manufacturing method thereof

Similar Documents

Publication Publication Date Title
KR101718343B1 (ko) 파워 인덕터
KR101981466B1 (ko) 파워 인덕터
JP7177190B2 (ja) パワーインダクター
KR101900880B1 (ko) 파워 인덕터
KR101681201B1 (ko) 파워 인덕터
KR102019921B1 (ko) 파워 인덕터 및 그 제조 방법
KR101662206B1 (ko) 파워 인덕터
JP2019508905A (ja) コイルパターン及びその形成方法、並びにこれを備えるチップ素子
KR20170033828A (ko) 파워 인덕터
KR20160136267A (ko) 파워 인덕터

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application