WO2013038490A1 - 内燃機関の制御装置 - Google Patents

内燃機関の制御装置 Download PDF

Info

Publication number
WO2013038490A1
WO2013038490A1 PCT/JP2011/070806 JP2011070806W WO2013038490A1 WO 2013038490 A1 WO2013038490 A1 WO 2013038490A1 JP 2011070806 W JP2011070806 W JP 2011070806W WO 2013038490 A1 WO2013038490 A1 WO 2013038490A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
fuel ratio
ratio sensor
internal combustion
combustion engine
Prior art date
Application number
PCT/JP2011/070806
Other languages
English (en)
French (fr)
Inventor
和哉 宮地
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2011/070806 priority Critical patent/WO2013038490A1/ja
Priority to CN201180073450.8A priority patent/CN103797236A/zh
Priority to US14/232,394 priority patent/US20140188371A1/en
Priority to DE112011105619.2T priority patent/DE112011105619T5/de
Priority to JP2013533372A priority patent/JP5696789B2/ja
Publication of WO2013038490A1 publication Critical patent/WO2013038490A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/12Introducing corrections for particular operating conditions for deceleration
    • F02D41/123Introducing corrections for particular operating conditions for deceleration the fuel injection being cut-off
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1493Details
    • F02D41/1495Detection of abnormalities in the air/fuel ratio feedback system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1493Details
    • F02D41/1494Control of sensor heater

Definitions

  • the present invention relates to a technique for accurately determining whether or not an air-fuel ratio sensor provided in an exhaust passage of an internal combustion engine is abnormal.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2007-315855
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2007-315855
  • a silicon component may be contained as an impurity in the detection element of the air-fuel ratio sensor.
  • the residual amount of the silicon component decreases with the use of the air-fuel ratio sensor.
  • the atmosphere is circulating in the exhaust passage, particularly due to the residual silicon component.
  • the output value of the air-fuel ratio sensor is not stable.
  • it may be erroneously determined whether the air-fuel ratio sensor is abnormal.
  • An object of the present invention is to provide a control device for an internal combustion engine that accurately determines whether or not an air-fuel ratio sensor is abnormal.
  • An internal combustion engine control apparatus includes an air-fuel ratio sensor provided in an internal combustion engine, in which a silicon component remains in a detection element, and a residual amount of the silicon component decreases by use, and an air-fuel ratio sensor And a control unit for determining whether or not the air-fuel ratio sensor is abnormal based on the detection result obtained by the above.
  • the control unit relaxes the abnormality determination when the residual amount of the silicon component is large compared to when the residual amount is small.
  • control unit determines that the air-fuel ratio sensor is abnormal when the abnormality determination condition is satisfied, and relaxes the abnormality determination condition when the residual amount of silicon component is large compared to when the amount is small.
  • control unit relaxes the abnormality determination condition when the cumulative operation time of the internal combustion engine is short compared to when it is long.
  • control unit relaxes the abnormality determination condition when the number of energizations of the air-fuel ratio sensor is small compared to when it is large.
  • control unit estimates the actual second oxygen amount so as to be larger than the first oxygen amount detected by the air-fuel ratio sensor when the residual amount of the silicon component is large compared to when the silicon component is small.
  • control unit estimates the second oxygen amount so as to be larger than the first oxygen amount when the cumulative operation time of the internal combustion engine is short compared to when it is long.
  • control unit estimates the actual second oxygen amount so that when the number of energizations of the air-fuel ratio sensor is small, the actual second oxygen amount is larger than the first oxygen amount detected by the air-fuel ratio sensor as compared with when the air-fuel ratio sensor is large .
  • An internal combustion engine control apparatus is provided in an internal combustion engine, and includes an air-fuel ratio sensor provided with a detection element containing a silicon component in a manufacturing process, and an air-fuel ratio sensor based on a detection result by the air-fuel ratio sensor. And a control unit (200) for determining whether or not the fuel ratio sensor is abnormal.
  • the control unit relaxes the abnormality determination condition when the cumulative operation time of the internal combustion engine is short compared to when it is long.
  • An internal combustion engine control apparatus is provided in an internal combustion engine, an air-fuel ratio sensor in which a silicon component remains in a detection element and a residual amount of the silicon component decreases by use, and an internal combustion engine And a control unit that determines whether or not the silicon component remains beyond the allowable range based on the change width of the output value of the air-fuel ratio sensor during execution of fuel cut control for the engine.
  • control unit determines that the air-fuel ratio sensor is abnormal when the abnormality determination condition is satisfied based on the detection result by the air-fuel ratio sensor, and when the change width during execution of the fuel cut control is large, the Compared to, the abnormality determination conditions are relaxed.
  • control unit has an actual second oxygen amount so that when the change width during execution of the fuel cut control is large, the actual second oxygen amount is larger than the first oxygen amount detected by the air-fuel ratio sensor, compared to when the change width is small. Is estimated.
  • control unit determines that the air-fuel ratio sensor is abnormal when the abnormality determination condition is satisfied based on the detection result by the air-fuel ratio sensor, and the control unit is small when the change width during execution of the fuel cut control is large. Compared to the case, it is determined whether or not the abnormality determination condition is satisfied in a state where the element temperature of the air-fuel ratio sensor is raised.
  • control unit determines that the air-fuel ratio sensor is abnormal when the abnormality determination condition is satisfied based on the detection result by the air-fuel ratio sensor, and the control unit is small when the change width during execution of the fuel cut control is large. As compared with the case, it is determined whether or not the abnormality determination condition is satisfied with the voltage applied to the element of the air-fuel ratio sensor being increased.
  • the abnormality determination of the air-fuel ratio sensor is alleviated as compared to when the residual amount is small. For this reason, when the residual amount of the silicon component in the initial use of the air-fuel ratio sensor is large, it is possible to suppress erroneous determination of whether the air-fuel ratio sensor is abnormal. In addition, as the residual amount of silicon component decreases as a result of use, the relaxation of abnormality determination is resolved. Therefore, it is possible to provide a control device for an internal combustion engine that accurately determines whether or not the air-fuel ratio sensor is abnormal.
  • the engine 10 includes an intake passage 12, an exhaust passage 14, an air cleaner 102, a throttle valve 104, a plurality of cylinders 106, an injector 108, and a spark plug 110.
  • the three-way catalyst 112, the piston 114, the crankshaft 116, the intake valve 118, the exhaust valve 120, the intake side cam 122, the exhaust side cam 124, and a VVT (Variable Valve Timing) mechanism 126 are included.
  • the engine 10 in the present embodiment is an internal combustion engine such as a gasoline engine or a diesel engine.
  • the engine 10 receives air from the air cleaner 102.
  • the air drawn from the air cleaner 102 flows through the intake passage 12.
  • the intake air amount is adjusted by a throttle valve 104 provided in the intake passage 12.
  • the throttle valve 104 is an electronic throttle valve that is driven by a motor.
  • the injector 108 supplies fuel to each of the plurality of cylinders 106 (combustion chambers) under the control of the ECU 200.
  • the injection hole of the injector 108 is provided in the cylinder 106.
  • the injector 108 directly injects fuel into the cylinder.
  • the air that has flowed through the intake passage 12 and the fuel are mixed.
  • the injector 108 injects fuel in the intake stroke. Note that the timing of fuel injection is not limited to the intake stroke.
  • the engine 10 is described as a direct injection engine in which the injection hole of the injector 108 is provided in the cylinder 106.
  • a port injection injector may be provided. Good. Further, only a port injection injector may be provided.
  • the air-fuel mixture in the cylinder 106 formed by the supply of fuel from the injector 108 is ignited by the spark plug 110 and burned.
  • the air-fuel mixture after combustion, that is, exhaust gas flows through the exhaust passage 14.
  • the exhaust gas is purified by a three-way catalyst 112 provided in the middle of the exhaust passage 14 and then discharged outside the vehicle.
  • the piston 114 is pushed down by the combustion of the air-fuel mixture, and the crankshaft 116 rotates. Further, when fuel cut control is executed while the engine 10 is operating, the supply of fuel from the injector 108 is stopped. At this time, air (atmosphere) flowing through the intake passage 12 flows through the cylinder 106 to the exhaust passage 14.
  • An intake valve 118 and an exhaust valve 120 are provided at the top of the cylinder 106.
  • the amount and timing of air introduced into the cylinder 106 are controlled by the intake valve 118.
  • the amount and timing of exhaust gas discharged from the cylinder 106 is controlled by the exhaust valve 120.
  • the intake valve 118 is driven by the intake side cam 122.
  • the exhaust valve 120 is driven by the exhaust side cam 124.
  • the intake valve 118 is changed in opening / closing timing (phase) by the VVT mechanism 126.
  • the opening / closing timing of the exhaust valve 120 may be changed.
  • the camshaft (not shown) provided with the intake cam 122 is rotated by the VVT mechanism 126, whereby the opening / closing timing of the intake valve 118 is controlled.
  • the method for controlling the opening / closing timing is not limited to this.
  • VVT mechanism 126 is operated by hydraulic pressure.
  • the VVT mechanism 126 may be provided on the exhaust side cam 124.
  • the engine 10 is controlled based on a control signal S1 from the ECU 200.
  • the ECU 200 controls the throttle opening, the ignition timing, the fuel injection timing, the fuel injection amount, and the opening / closing timing of the intake valve 118 so that the engine 10 is in a desired operation state.
  • ECU 200 receives signals from engine speed sensor 11, cam angle sensor 254, water temperature sensor 256, air flow meter 258, and air-fuel ratio sensor 262.
  • the engine rotation speed sensor 11 outputs a signal representing the rotation speed NE of the crankshaft 116 (hereinafter referred to as engine rotation speed) NE.
  • the cam angle sensor 254 outputs a signal indicating the position of the intake side cam 122.
  • the water temperature sensor 256 outputs a signal indicating the temperature of the cooling water of the engine 10.
  • Air flow meter 258 outputs a signal representing the amount of air taken into engine 10.
  • the air / fuel ratio sensor 262 outputs a signal representing the air / fuel ratio.
  • ECU 200 controls engine 10 based on signals input from these sensors, a map and a program stored in memory 252.
  • FIG. 2 shows a configuration example of the air-fuel ratio sensor 262.
  • the air-fuel ratio sensor 262 in the present embodiment is a stacked air-fuel ratio sensor. As shown in FIG. 2, the air-fuel ratio sensor 262 protrudes toward the inside of the exhaust passage 14 of the engine 10.
  • Air-fuel ratio sensor 262 includes a cover 61 and a sensor body 63.
  • the sensor body 63 includes a solid electrolyte layer 64, a diffusion resistance layer 65, an exhaust side electrode 66, an atmosphere side electrode 67, a heater 68, and an atmosphere duct 69.
  • the cover 61 has a cup-shaped cross section that houses the sensor body 63 therein.
  • a large number of small holes 62 communicating with the inside and outside of the cover 61 are formed in the peripheral wall of the cover 61.
  • a plurality of covers 61 may be provided.
  • an exhaust-side electrode 66 is fixed to one surface of the plate-like solid electrolyte layer 64.
  • an atmosphere-side electrode 67 is fixed to the other surface of the solid electrolyte layer 64.
  • a diffusion resistance layer 65 is provided on the opposite side of the surface of the exhaust side electrode 66 that is fixed to the solid electrolyte layer 64.
  • An air duct 69 is provided on the opposite side of the surface of the atmosphere side electrode 67 that is fixed to the solid electrolyte layer 64.
  • the solid electrolyte layer 64 is a zirconia element in the present embodiment.
  • the exhaust side electrode 66 and the atmosphere side electrode 67 are, for example, platinum electrodes.
  • the diffusion resistance layer 65 is, for example, a porous ceramic.
  • the heater 68 is a heating element that generates heat when energized from the ECU 200.
  • the heater 68 is operated by duty control by the ECU 200.
  • the heater 68 heats the sensor main body 63 with heat generation energy and activates the solid electrolyte layer 64.
  • the heater 68 has a heat generation capacity sufficient to activate the solid electrolyte layer 64.
  • ECU200 controls the heater 68 so that the admittance value As of the solid electrolyte layer 64 becomes more than the target admittance value Ast, for example.
  • ECU 200 starts duty control on heater 68 such that admittance value As is equal to or greater than target admittance value Ast.
  • the ECU 200 increases the duty ratio when the admittance value As is smaller than the target admittance value As, and decreases the duty ratio when the admittance value As is equal to or higher than the target admittance value As.
  • ECU 200 detects the heater current Ih flowing through the heater 68.
  • ECU 200 may directly detect heater current Ih using a sensor or the like, or may estimate heater current Ih based on a control value for heater 68.
  • the atmosphere side electrode 67 and the exhaust side electrode 66 of the sensor body 63 are connected to the ECU 200.
  • the ECU 200 applies a detection voltage between the atmosphere side electrode 67 and the exhaust side electrode 66. By applying this voltage, a current corresponding to the oxygen concentration in the exhaust gas flows through the air-fuel ratio sensor 262.
  • the ECU 200 detects a current generated by the movement of oxygen ions between the atmosphere side electrode 67 and the exhaust side electrode 66.
  • oxygen in the atmospheric duct 69 receives electrons by an electrode reaction at the atmospheric side electrode 67 and is ionized.
  • the oxygen ions move in the solid electrolyte layer 64 in the direction from the atmosphere side electrode 67 to the exhaust side electrode 66, a catalyst with unburned components HC, CO, and H 2 existing in the diffusion resistance layer 65.
  • Carbon dioxide CO 2 and water H 2 O are purified by the reaction.
  • a current flows in a direction from the exhaust side electrode 66 to the atmosphere side electrode 67.
  • the value detected by the ECU 200 (hereinafter referred to as the output current value Iaf) of the current flowing through the air-fuel ratio sensor 262 changes according to the oxygen concentration of the gas flowing through the exhaust passage 14. Therefore, if the relationship between the output current value Iaf and the air-fuel ratio is obtained by experiments and calculations, the air-fuel ratio can be calculated based on the output current value Iaf.
  • the increase / decrease in the output current value Iaf corresponds to the increase / decrease in the air / fuel ratio (lean / rich), and the output current value Iaf increases as the air / fuel ratio becomes leaner (the oxygen concentration increases).
  • the output current value Iaf decreases as the air-fuel ratio becomes richer (as the oxygen concentration decreases).
  • a silicon component such as SiO 2 may be contained as an impurity in the solid electrolyte layer 64 that is a detection element.
  • Such silicon components are removed using acid or the like in the manufacturing process of the air-fuel ratio sensor 262, but the silicon components may not be completely removed by the removal treatment.
  • the residual amount of the silicon component decreases as the air-fuel ratio sensor 262 is used. Therefore, if the residual amount of the silicon component is large in the initial use of the air-fuel ratio sensor 262, the output current value Iaf of the air-fuel ratio sensor 262 may not be stabilized due to the residual silicon component.
  • the state where the output current value Iaf is unstable may occur particularly in a situation where the atmosphere is circulating in the exhaust passage 14.
  • the output current value Iaf of the air-fuel ratio sensor 262 under the condition where the atmosphere is circulating in the exhaust passage 14 is also referred to as the atmospheric limit current IL.
  • the situation in which the air is circulating in the exhaust passage 14 means, for example, that fuel cut control is being executed.
  • silicon ions are moved when oxygen ions move from the exhaust side electrode 66 to the solid electrolyte layer 64.
  • the component inhibits the movement of oxygen ions.
  • the atmospheric limit current IL of the air-fuel ratio sensor 262 may become unstable due to inhibition of the movement of oxygen ions.
  • FIG. 4 shows the time change of the output current value Iaf of the air-fuel ratio sensor 262. As shown in FIG. 4, the output current value Iaf of the air-fuel ratio sensor 262 rises with the increase in oxygen concentration after the fuel cut control is executed at time Ta, and reaches the atmospheric limit current IL.
  • FIG. 4 indicates a change in which the output current value Iaf of the air-fuel ratio sensor 262 increases when the residual silicon component is eliminated.
  • the broken line in FIG. 4 shows a change in which the output current value Iaf of the air-fuel ratio sensor 262 increases when the silicon component remains.
  • the atmospheric limit current IL when the silicon component indicated by the broken line in FIG. 4 remains is lower than the atmospheric limit current IL when the residual silicon component indicated by the solid line in FIG. 4 is eliminated. It fluctuates so as to respond to on / off of the heater 68.
  • the atmospheric limit current IL is used for abnormality determination of the air-fuel ratio sensor 262. Therefore, if the atmospheric limit current IL of the air-fuel ratio sensor 262 is not stabilized due to the residual silicon component, it may be erroneously determined whether or not the air-fuel ratio sensor 262 is abnormal.
  • the ECU 200 is characterized in that the abnormality determination is eased when the residual amount of the silicon component is large compared to when it is small.
  • the ECU 200 determines that the air-fuel ratio sensor 262 is abnormal when an abnormality determination condition described later is satisfied. ECU 200 relaxes the abnormality determination condition when the residual amount of the silicon component is large compared to when the residual amount is small.
  • ECU 200 determines whether or not aging of air-fuel ratio sensor 262 has been completed by executing an aging determination process.
  • the state in which aging is completed corresponds to a state in which the residual amount of silicon component in the air-fuel ratio sensor 262 is small, that is, a state within an allowable range.
  • the “state in which aging is not completed” corresponds to a state in which the residual amount of silicon component in the air-fuel ratio sensor 262 is large, that is, a state in which the allowable range is exceeded.
  • the ECU 200 relaxes the abnormality determination condition when the aging of the air-fuel ratio sensor 262 is not completed as compared with when the aging is completed.
  • FIG. 5 shows a functional block diagram relating to the aging determination process of ECU 200 included in the control device for an internal combustion engine according to the present embodiment.
  • ECU 200 includes an execution condition determination unit 202, a measurement unit 204, an aging determination unit 206, and a reset unit 208.
  • the execution condition determination unit 202 determines whether an execution condition for the aging determination process is satisfied.
  • the execution conditions of the aging determination process are the first condition that the aging is not completed, the second condition that the air-fuel ratio sensor 262 is active, and the fuel for the engine 10.
  • a third condition that the cut control is being executed and a fourth condition that a predetermined time T (0) has elapsed since the start of the fuel cut control are included.
  • the execution condition determination unit 202 determines that the execution condition of the aging determination process is satisfied when any of the first condition, the second condition, the third condition, and the fourth condition is satisfied.
  • the execution condition determination unit 202 determines that the first condition is satisfied, for example, when an aging completion flag described later is in an off state.
  • the execution condition determination unit 202 determines the second condition when the temperature (hereinafter referred to as element temperature) Taf of the sensor body 63 of the air-fuel ratio sensor 262 is greater than a threshold value Taf (0) at which the air-fuel ratio sensor 262 is activated. Is determined to be true.
  • the execution condition determination unit 202 determines that the element temperature Taf is greater than the threshold value Taf (0). May be.
  • the execution condition determination unit 202 calculates the admittance value As of the solid electrolyte layer 64 from the voltage Va applied to the solid electrolyte layer 64 and the output current value Iaf.
  • the execution condition determination unit 202 determines that the third condition is satisfied when the fuel cut control execution condition is satisfied and the fuel injection is stopped.
  • the execution conditions of the fuel cut control are conditions corresponding to, for example, a fuel cut during deceleration, a fuel cut during high rotation, a fuel cut during maximum speed, and the like.
  • the condition corresponding to the fuel cut during deceleration includes, for example, a condition that the throttle valve is in a fully closed state and the engine rotational speed Ne is equal to or higher than a threshold value Ne (0).
  • the condition corresponding to the fuel cut at the time of high rotation includes, for example, a condition that the engine rotation speed Ne is equal to or higher than a threshold value Ne (1).
  • the threshold value Ne (1) is larger than the threshold value Ne (0).
  • the threshold value Ne (1) is set so that the engine speed Ne does not exceed a predetermined upper limit value.
  • the conditions corresponding to the fuel cut at the maximum speed are, for example, a state in which the vehicle speed V is equal to or higher than the threshold value V (0) and the engine speed Ne is equal to or higher than the threshold value Ne (2). It includes a condition that the duration exceeds a predetermined time T (1).
  • the predetermined time T (0) of the fourth condition is a time during which it can be determined that the oxygen concentration of the gas flowing through the exhaust passage 14 has converged to the atmospheric oxygen concentration after the execution of the fuel cut control is started.
  • the predetermined time T (0) is adapted by experiments or the like.
  • execution condition determination unit 202 may turn on the execution condition determination flag when determining that the execution condition is satisfied, for example.
  • the measurement unit 204 measures the maximum value Imax and the minimum value Imin of the output current value Iaf of the air-fuel ratio sensor 262 when the execution condition determination unit 202 determines that the execution condition is satisfied. Measuring unit 204 compares output current value Iaf of air-fuel ratio sensor 262 with each of maximum value Imax and minimum value Imin stored in memory 252.
  • the measurement unit 204 rewrites the maximum value Imax stored in the memory 252 to the detected output current value Iaf to maximize the output current value Iaf. Update the value Imax.
  • the measuring unit 204 rewrites the minimum value Imin stored in the memory 252 to the detected output current value Iaf. To update the minimum value Imin.
  • the measurement unit 204 does not update the maximum value Imax and the minimum value Imin, for example, when the detected output current value Iaf is not more than the maximum value Imax and not less than the minimum value Imin.
  • the measuring unit 204 measures the above-described maximum value Imax and minimum value Imin every predetermined calculation cycle.
  • the measuring unit 204 measures the maximum value Imax and the minimum value Imin until the fuel cut control ends.
  • the measuring unit 204 ends the measurement of the maximum value Imax and the minimum value Imin when the fuel cut control is ended. For example, the measurement unit 204 may determine that the fuel cut control has ended when the above-described fuel cut control execution conditions are not satisfied, or determine that the fuel cut control has ended when fuel injection is resumed. May be.
  • the measurement unit 204 may measure the maximum value Imax and the minimum value Imin, for example, when the execution condition determination flag is on.
  • the measurement unit 204 may measure the maximum value Imax when a heater 68 described later is in an on state, and measure the minimum value Imin when the heater 68 is in an off state.
  • the aging determination unit 206 determines whether or not the aging of the air-fuel ratio sensor 262 has been completed based on the measurement result by the measurement unit 204.
  • the aging determination unit 206 determines that the measurement time of the maximum value Imax and the minimum value Imin by the measurement unit 204 is equal to or longer than a predetermined time T (2) and the heater 68 is activated during the measurement by the measurement unit 204. If there is a history, it is determined whether or not the aging of the air-fuel ratio sensor 262 has been completed.
  • the above-mentioned predetermined time T (2) is a time for measuring at least the maximum value Imax and the minimum value Imin, and is adapted by an experiment or the like.
  • the predetermined time T (2) may be, for example, a time including a period during which the heater 68 is turned on and a period during which the heater 68 is turned off. This is because when the aging of the air-fuel ratio sensor 262 is not completed, the output current value Iaf varies depending on whether the heater 68 is on or off.
  • the aging determination unit 206 may determine whether there is an operation history of the heater 68 based on the state of the operation flag of the heater 68, for example.
  • the activation flag of the heater 68 is turned on when the heater 68 is activated during the measurement time by the measurement unit 204.
  • the aging determination unit 206 determines that there is an operation history of the heater 68 when the operation flag of the heater 68 is on.
  • the aging determination unit 206 determines that the aging of the air-fuel ratio sensor 262 has been completed when the maximum value Imax ⁇ minimum value Imin is smaller than the threshold value ⁇ I (0).
  • the threshold value ⁇ I (0) is a value for determining that the fluctuation of the output current value Iaf has converged, that is, the residual amount of the silicon component is within the allowable range, and is adapted by experiment or the like. Value.
  • the aging determination unit 206 determines that the measurement time of the maximum value Imax and the minimum value Imin by the measurement unit 204 is not equal to or longer than the predetermined time T (2) or there is no operation history of the heater 68 during measurement by the measurement unit 204. Therefore, it is not determined whether or not the aging of the air-fuel ratio sensor 262 has been completed.
  • the aging determination flag is turned on. If the aging determination unit 206 determines that the aging of the air-fuel ratio sensor 262 is not completed, the aging determination flag is set to an off state.
  • the reset unit 208 resets each of the maximum value Imax and the minimum value Imin when a predetermined condition is satisfied.
  • the predetermined condition includes a condition that the execution condition determination unit 202 determines that the execution condition is not satisfied, a condition that the aging determination unit 206 does not determine whether or not the aging is completed, and the aging determination unit 206 determines that aging is not performed. This is a condition that at least one of the conditions that it is determined that the state is not completed is satisfied.
  • the reset unit 208 determines the maximum value Imax and the minimum value Imin when a predetermined condition that the execution condition is determined to be satisfied by the execution condition determination unit 202 or before the measurement by the measurement unit 204 is started. Each of these may be reset.
  • the reset unit 208 resets the maximum value Imax and the minimum value Imin to the initial values Imax (0) and Imin (0), respectively, when the above-described predetermined condition is satisfied.
  • the initial values Imax (0) and Imin (0) are, for example, zero.
  • the execution condition determination unit 202, the measurement unit 204, the aging determination unit 206, and the reset unit 208 are all realized by the CPU of the ECU 200 executing a program stored in the memory 252. However, it may be realized by hardware.
  • step (hereinafter, step is referred to as S) 100 ECU 200 determines whether or not aging has been completed. If it is determined that aging has not been completed (YES in S100), the process proceeds to S102. If not (NO in S100), the process proceeds to S116.
  • ECU 200 determines whether or not air-fuel ratio sensor 262 is in an active state and fuel cut control is being executed. If air-fuel ratio sensor 262 is in the active state and fuel cut control is being executed (YES in S102), the process proceeds to S104. If not (NO in S102), the process proceeds to S116.
  • ECU 200 determines whether or not a predetermined time T (0) has elapsed since the fuel cut control was started. If predetermined time T (0) has elapsed since the start of fuel cut control (YES in S104), the process proceeds to S106. If not (NO in S104), the process proceeds to S116.
  • ECU 200 measures maximum value Imax and minimum value Imin of output current value I of air-fuel ratio sensor 262.
  • ECU 200 determines whether or not the fuel cut control is finished. If fuel cut control has been completed (YES in S108), the process proceeds to S110. If not (NO in S108), the process returns to S106.
  • ECU 200 determines whether or not the measurement time of maximum value Imax and minimum value Imin is equal to or longer than predetermined time T (2), and there is an operation history of heater 68 during the measurement time. To do. If the measurement time is equal to or greater than predetermined time T (2) and there is an operation history of heater 68 during the measurement time (YES in S110), the process proceeds to S112. If not (NO in S110), the process proceeds to S116.
  • ECU 200 determines whether or not maximum value Imax ⁇ minimum value Imin is smaller than predetermined value ⁇ I (0). If maximum value Imax ⁇ minimum value Imin is smaller than predetermined value ⁇ I (0) (YES in S112), the process proceeds to S114. If not (NO in S112), the process proceeds to S116.
  • ECU 200 turns on the aging completion flag.
  • ECU 200 resets maximum value Imax and minimum value Imin to initial values Imax (0) and Imin (0), respectively.
  • the element temperature Taf rises due to the operation of the heater 68.
  • the air-fuel ratio sensor 262 is activated. Further, when the execution condition of the fuel cut control is satisfied during the operation of the engine 10, the fuel cut control is executed for the engine 10.
  • the maximum value Imax and the minimum value Imin are measured in a state where the predetermined time T (0) has elapsed from the start of the fuel cut control (YES in S104) and the oxygen concentration of the gas flowing through the exhaust passage 14 has converged. (S106).
  • the measurement time until the fuel cut control ends is equal to or longer than the predetermined time T (2), and there is an operation history of the heater 68 during the measurement ( In S110, it is determined whether or not aging of air-fuel ratio sensor 262 has been completed. That is, it is determined whether or not the maximum value Imax ⁇ minimum value Imin is smaller than the threshold value ⁇ I (0) (S112). If maximum value Imax ⁇ minimum value Imin is smaller than threshold value ⁇ I (0) (YES in S112), the aging completion flag is turned on (S114). That is, it is determined that the aging of the air-fuel ratio sensor 262 has been completed.
  • maximum value Imax and minimum value Imin are reset (S116). Further, when air-fuel ratio sensor 262 is not in an active state (NO in S102) or when fuel cut control is not being performed (NO in S102), maximum value Imax and minimum value Imin are reset (S116). Furthermore, also when predetermined time T (0) has not elapsed since the start of fuel cut control (NO in S104), maximum value Imax and minimum value Imin are reset (S116).
  • maximum value Imax and minimum value Imin is reset (S116). Also, when maximum value Imax ⁇ minimum value Imin is equal to or larger than threshold value ⁇ I (0) (NO in S112), maximum value Imax and minimum value Imin are reset (S116).
  • the ECU 200 determines that the air-fuel ratio sensor 262 is abnormal when the abnormality determination condition is satisfied when the atmospheric limit current IL of the air-fuel ratio sensor 262 is smaller than the threshold value IL_th.
  • the ECU 200 relaxes the abnormality determination condition compared to the case where the aging is completed.
  • the ECU 200 determines the abnormality when the aging is not completed by lowering the threshold value IL_th as compared with the case where the aging is completed. The conditions are relaxed.
  • FIG. 7 shows a functional block diagram relating to abnormality determination processing of ECU 200 included in the control device for an internal combustion engine according to the present embodiment.
  • ECU 200 includes a completion determination unit 212, a threshold value determination unit 214, and an abnormality determination unit 216.
  • the completion determination unit 212 determines whether or not the aging of the air-fuel ratio sensor 262 has been completed. The completion determination unit 212 determines that the aging of the air-fuel ratio sensor 262 has been completed when the aging completion flag is on. The completion determination unit 212 determines that the aging of the air-fuel ratio sensor 262 has not been completed when the aging completion flag is in the off state.
  • the threshold determination unit 214 determines the predetermined value IL_th (0) as an atmospheric limit for determining whether the air-fuel ratio sensor 262 is abnormal. It is determined as the threshold value IL_th of the current IL.
  • the threshold determination unit 214 is based on the correlation between the atmospheric limit current IL of the air-fuel ratio sensor 262 and the heater current Ih. A threshold value IL_th is determined. That is, the threshold value determination unit 214 determines the threshold value IL_th according to the heater current Ih when the aging completion flag is in the off state.
  • the threshold value determination unit 214 determines the threshold value IL_th based on the heater current Ih and the relationship between the heater current Ih and the threshold value IL_th as shown by the one-dot chain line in FIG.
  • the vertical axis in FIG. 8 indicates the atmospheric limit current IL and the threshold value IL_th of the air-fuel ratio sensor 262.
  • the horizontal axis in FIG. 8 indicates the heater current Ih.
  • the heater current Ih shown in FIG. 8 indicates the maximum value of the heater current Ih during measurement of the atmospheric limit current IL, for example.
  • the heater current Ih shown in FIG. 8 may be an average value of the heater current Ih during the measurement of the atmospheric limit current IL, or a predetermined time elapses after the measurement of the atmospheric limit current IL is started. It may be the maximum value of the heater current Ih up to.
  • the atmospheric limit current IL when the aging of the air-fuel ratio sensor 262 is completed is IL (0).
  • the heater current Ih is Ih (0).
  • the threshold value IL_th is a predetermined value IL_th (0).
  • the predetermined value IL_th (0) is set, for example, with reference to the atmospheric limit current IL (0).
  • the predetermined value IL_th (0) may be calculated, for example, by subtracting a predetermined value from the atmospheric limit current IL (0), or a predetermined coefficient ⁇ (0) ( ⁇ It may be calculated by multiplying 1).
  • the atmospheric limit current IL when the aging at the initial stage of production of the air-fuel ratio sensor 262 is not completed is IL (1), and the atmospheric limit current IL (0 when the aging is completed is 0. ).
  • the heater current Ih becomes Ih (1), which is larger than the heater current Ih (0) when the aging is completed.
  • the threshold value IL_th is a predetermined value IL_th (1), which is smaller than the threshold value IL_th (0) when aging is complete.
  • the predetermined value IL_th (1) is also set based on the atmospheric limit current IL (1), similarly to the predetermined value IL_th (0). The details are not repeated.
  • the atmospheric limit current IL is in a state where the aging in the initial stage of production is not completed.
  • the heater current Ih increases from the atmospheric limit current IL (1) and decreases from Ih (1).
  • the threshold value IL_th increases from IL_th (1) as indicated by the one-dot chain line in FIG.
  • threshold value determination unit 214 determines value IL_th (2) derived from the one-dot chain line in FIG. 8 as threshold value IL_th.
  • the abnormality determination unit 216 determines whether the air-fuel ratio sensor 262 is abnormal using the threshold value IL_th determined by the threshold value determination unit 214. That is, abnormality determination unit 216 determines that air-fuel ratio sensor 262 is normal when atmospheric limit current IL is larger than threshold value IL_th.
  • the abnormality determination unit 216 determines that the air-fuel ratio sensor 262 is abnormal when the atmospheric limit current IL is equal to or less than the threshold value IL_th. Note that the abnormality determination unit 216 may turn on the abnormality determination flag when it is determined that the air-fuel ratio sensor 262 is abnormal, for example.
  • ECU 200 determines whether or not the aging completion flag is on. If the aging completion flag is on (YES in S200), the process proceeds to S202. If not (NO in S200), the process proceeds to S204.
  • ECU 200 determines predetermined value IL_th (0) as threshold value IL_th.
  • ECU 200 determines threshold value IL_th according to the aging state of air-fuel ratio sensor 262. Specifically, ECU 200 determines threshold value IL_th from heater current Ih and the relationship between heater current Ih and threshold value IL_th indicated by the one-dot chain line in FIG. In S206, ECU 200 determines whether or not air-fuel ratio sensor 262 is abnormal.
  • the threshold value IL_th is determined from the heater current Ih and the relationship between the heater current Ih and the threshold value IL_th shown by the one-dot chain line in FIG. 8 (S204).
  • the presence / absence of abnormality is determined based on the determined threshold value IL_th (S206). That is, when the atmospheric limit current IL is larger than the threshold value IL_th, it is determined that the air-fuel ratio sensor 262 is normal. When the atmospheric limit current IL is equal to or less than the threshold value IL_th, it is determined that the air-fuel ratio sensor 262 is abnormal.
  • the ECU 200 determines that the air-fuel ratio sensor 262 is abnormal, the ECU 200 informs the vehicle occupant that the air-fuel ratio sensor 262 is abnormal using, for example, a display device, a warning light, or a sound generator. You may be notified.
  • the control apparatus for an internal combustion engine when the residual amount of the silicon component is large, the abnormality determination of the air-fuel ratio sensor 262 is alleviated compared to when the silicon component is small. For this reason, when the residual amount of the silicon component in the initial use of the air-fuel ratio sensor 262 is large, erroneous determination of whether the air-fuel ratio sensor 262 is abnormal is suppressed. In addition, as the residual amount of silicon component decreases as a result of use, the relaxation of abnormality determination is resolved. Therefore, it is possible to provide a control device for an internal combustion engine that accurately determines whether or not the air-fuel ratio sensor is abnormal.
  • the change width is calculated from the difference between the maximum value Imax and the minimum value Imin of the output current value Iaf, and the calculated change width is smaller than the predetermined value ⁇ I (0).
  • the present invention is not particularly limited to this.
  • ECU 200 may determine that aging has been completed when the accumulated operation time of engine 10 is a predetermined time or longer. In the abnormality determination process, the ECU 200 may relax the abnormality determination condition when the accumulated operation time of the engine 10 is short compared to when it is long. For example, in the abnormality determination process, when the accumulated operation time of the engine 10 is equal to or longer than a predetermined time, the ECU 200 determines whether the air-fuel ratio sensor 262 is abnormal with the predetermined value IL_th (0) as the threshold value IL_th. Also good.
  • ECU 200 determines threshold value IL_th so that it is smaller than IL_th (0) when the cumulative operation time of engine 10 is shorter than the predetermined time than when the cumulative operation time is long. Good. ECU 200 may determine threshold value IL_th in proportion to the cumulative operation time.
  • ECU 200 may determine that aging has been completed when the number of energizations of air-fuel ratio sensor 262 is equal to or greater than a predetermined number in the aging determination process. Further, in the abnormality determination process, the ECU 200 may relax the abnormality determination condition when the number of energizations of the air-fuel ratio sensor 262 is small compared to when it is large. For example, in the abnormality determination process, when the number of energizations of the air-fuel ratio sensor 262 is equal to or greater than a predetermined number, the ECU 200 determines whether the air-fuel ratio sensor 262 is abnormal using the predetermined value IL_th (0) as the threshold value IL_th.
  • the ECU 200 sets the threshold value IL_th so as to be smaller than IL_th (0) as compared with the case where the number of energizations of the air-fuel ratio sensor 262 is large. You may decide. ECU 200 may determine threshold value IL_th in proportion to the number of energizations of air-fuel ratio sensor 262.
  • ECU 200 determines whether or not air-fuel ratio sensor 262 is in an active state based on admittance value As of air-fuel ratio sensor 262. For example, ECU 200 determines by using impedance value Is. Also good. For example, ECU 200 may determine that air-fuel ratio sensor 262 is in an active state when impedance value Is is smaller than a predetermined value Is (0).
  • the air-fuel ratio sensor 262 is particularly a plate-like exhaust-side electrode as shown in FIG. 2 as long as the exhaust-side electrode and a solid electrolyte layer containing a silicon component as an impurity are laminated.
  • the air-fuel ratio sensor 262 may have a configuration including a test tubular solid electrolyte layer, an exhaust-side electrode, and an atmosphere-side electrode.
  • the ECU 200 reduces the abnormality determination of the air-fuel ratio sensor 262 when the residual amount of silicon component is large, and the air-fuel ratio sensor 262 based on the detection result by the air-fuel ratio sensor 262 compared to when the amount is small. And determining whether the air-fuel ratio sensor is abnormal by executing an abnormality determination method for the air-fuel ratio sensor, including the step of determining whether the air-fuel ratio is abnormal.
  • ECU 200 in the control apparatus for an internal combustion engine according to the present embodiment is different in operation of ECU 200 from the configuration of ECU 200 in the control apparatus for the internal combustion engine according to the first embodiment described above.
  • Other configurations are the same as the configuration of the control device for the internal combustion engine according to the first embodiment described above. They are given the same reference numerals. Their functions are the same. Therefore, detailed description thereof will not be repeated here.
  • the ECU 200 causes the air-fuel ratio when the change width (maximum value Imax-minimum value Imin) of the output current value Iaf of the air-fuel ratio sensor 262 during execution of the fuel cut control is large compared to when it is small.
  • the presence or absence of abnormality is determined in a state where the element temperature Taf of the sensor 262 is increased.
  • FIG. 10 shows a functional block diagram relating to abnormality determination processing of the ECU 200 included in the control device for an internal combustion engine according to the present embodiment.
  • ECU 200 includes a precondition determining unit 222, a completion determining unit 224, a target value changing unit 226, and an abnormality determining unit 228.
  • the precondition determining unit 222 determines whether a precondition for executing the abnormality determination of the air-fuel ratio sensor 262 is satisfied.
  • the precondition is a condition under which the atmospheric limit current IL can be estimated to be stable. Preconditions include, for example, a condition that fuel cut control is being executed, a condition that a predetermined time T (0) has elapsed since the start of fuel cut control, and the air-fuel ratio sensor 262 is in an active state. A condition that a predetermined time T (3) has elapsed since the EGR valve provided in the engine 10 is closed, and a condition that an abnormality determination is not performed during the current trip. Including. Note that the precondition determination unit 222 may turn on the precondition determination flag when the precondition is satisfied.
  • the trip means a period from when IG is turned on to when IG is turned off.
  • the completion determination unit 224 determines whether or not the aging of the air-fuel ratio sensor 262 has been completed. The completion determination unit 224 determines that the aging has been completed when the aging completion flag is on. Further, the completion determination unit 224 determines that the aging is not completed when the aging completion flag is in the off state.
  • the state of the aging completion flag is changed based on the result of the aging determination process. Since the aging determination process is as described in the first embodiment, detailed description thereof will not be repeated.
  • the target value changing unit 226 increases the target admittance value As from the initial value Ast (0) when the aging of the air-fuel ratio sensor 262 is not completed.
  • the initial value Ast (0) is an admittance value that makes the element temperature Taf within the temperature range corresponding to the active state on the premise that the aging is completed.
  • the target value changing unit 226 determines the target admittance value As by adding the increase amount ⁇ Ast to the initial value Ast (0).
  • the increase amount ⁇ Ast may be a predetermined value. Alternatively, the increase amount ⁇ Ast may be an increase amount corresponding to the progress of aging.
  • the target value changing unit 226 may determine the increase amount ⁇ Ast to be smaller when the degree of progress of aging is large (when it is close to the state where aging is completed) compared to when it is small. Note that the target value changing unit 226 may calculate the degree of progress of aging based on, for example, the maximum value Imax ⁇ minimum value Imin.
  • the target value changing unit 226 may increase the applied voltage Va when, for example, the precondition determination flag is on and the aging completion flag is off.
  • the abnormality determination unit 228 determines whether the air-fuel ratio sensor 262 is abnormal using the threshold value IL_th of the atmospheric limit current IL. That is, abnormality determination unit 228 determines that air-fuel ratio sensor 262 is normal when atmospheric limit current IL is greater than threshold value IL_th.
  • the abnormality determination unit 228 determines that the air-fuel ratio sensor 262 is abnormal when the atmospheric limit current IL is equal to or less than the threshold value IL_th. Note that the abnormality determination unit 228 may turn on the abnormality determination flag when it is determined that the air-fuel ratio sensor 262 is abnormal, for example.
  • ECU 200 determines whether or not the precondition is satisfied. Since the precondition is as described above, detailed description thereof will not be repeated. If the precondition is satisfied (YES in S300), the process proceeds to S302. If not (NO in S300), this process ends.
  • ECU 200 determines whether or not the aging completion flag is on. If the aging completion flag is on (YES in S302), the process proceeds to S306. If not (NO in S302), the process proceeds to S304.
  • ECU 200 changes target admittance value Ast. Since the change contents of the target admittance value As are as described above, detailed description thereof will not be repeated. In S306, ECU 200 determines whether air-fuel ratio sensor 262 is abnormal or not.
  • ECU 200 included in the control apparatus for an internal combustion engine according to the present embodiment based on the above-described structure and flowchart will be described. Note that the operation of ECU 200 related to the aging determination process is as described in the first embodiment, and therefore the detailed description thereof will not be repeated.
  • the aging completion flag is turned off.
  • FIG. 12 shows the relationship between the output current value Iaf and the applied voltage Va according to the element temperature Taf.
  • the horizontal axis in FIG. 12 indicates the applied voltage Va, and the vertical axis in FIG. 12 indicates the output current value Iaf.
  • the solid line in FIG. 12 shows the relationship between the atmospheric limit current IL and the applied voltage Va when the aging of the air-fuel ratio sensor 262 is completed and the element temperature Taf is the normal value Taf (1).
  • ECU 200 controls heater 68 so that element temperature Taf converges to normal value Taf (1) within the temperature range corresponding to the active state. In this case, when the applied voltage Va is Va (0), the value of the atmospheric limit current IL is IL (0).
  • the one-dot chain line in FIG. 12 shows a state where the aging of the air-fuel ratio sensor 262 is not completed, and the atmospheric limit current IL and the applied voltage Va when the element temperature Taf is the normal value Taf (1). Show the relationship. In this case, when the applied voltage Va is Va (0), the value of the atmospheric limit current IL is IL (2).
  • the target admittance value Ast is increased so that the ECU 200 converges the element temperature Taf to the temperature Taf (2) higher than the normal value Taf (1).
  • the heater 68 is controlled.
  • the relationship between the atmospheric limit current IL and the applied voltage Va is as shown by the broken line in FIG.
  • the value of the atmospheric limit current IL is IL (3).
  • IL (3) is a larger value than IL (2). That is, by increasing the target admittance value Ast, the value of the atmospheric limit current IL can be brought close to the value IL (0) of the atmospheric limit current IL when the aging is completed. Therefore, when it is determined whether there is an abnormality (S306), erroneous determination is suppressed.
  • the ECU 200 may notify the driver to that effect using voice, a display device, a warning light, or the like.
  • the control apparatus for an internal combustion engine when the variation range of the output current value Iaf of the air-fuel ratio sensor 262 during execution of the fuel cut control is large, it is less than when it is small. It is determined whether or not an abnormality determination condition is satisfied in a state where the element temperature Taf of the fuel ratio sensor 262 is increased.
  • the value of the atmospheric limit current IL of the air-fuel ratio sensor 262 in the state where aging is not completed is changed to the value of the atmospheric limit current IL of the air-fuel ratio sensor 262 in the state where aging is completed. It can be close to the value.
  • ECU 200 in the control apparatus for an internal combustion engine according to the present embodiment is different in operation of ECU 200 from the configuration of ECU 200 in the control apparatus for the internal combustion engine according to the first embodiment described above.
  • Other configurations are the same as the configuration of the control device for the internal combustion engine according to the first embodiment described above. They are given the same reference numerals. Their functions are the same. Therefore, detailed description thereof will not be repeated here.
  • the ECU 200 causes the air-fuel ratio when the change width (maximum value Imax-minimum value Imin) of the output current value Iaf of the air-fuel ratio sensor 262 during execution of the fuel cut control is large compared to when it is small.
  • the presence or absence of abnormality is determined in a state where the applied voltage Va applied to the solid electrolyte layer 64 which is a detection element of the sensor 262 is increased.
  • FIG. 13 shows a functional block diagram relating to abnormality determination processing of ECU 200 included in the control device for an internal combustion engine according to the present embodiment.
  • ECU 200 includes a precondition determination unit 222, a completion determination unit 224, a boost control unit 236, and an abnormality determination unit 228.
  • the functions and operations of the precondition determining unit 222, the completion determining unit 224, and the abnormality determining unit 228 are the precondition determining unit 222 in the functional block diagram of the ECU 200 shown in FIG. 10 described in the second embodiment.
  • the functions and operations of the completion determination unit 224 and the abnormality determination unit 228 are the same. Therefore, the detailed description is not repeated.
  • the boost control unit 236 increases the applied voltage Va from the initial value Va (0).
  • the initial value Va (0) is a voltage at which the element temperature Taf falls within the temperature range corresponding to the active state when the target admittance value As is the initial value Ast (0) on the assumption that aging has been completed.
  • the boost control unit 236 determines the applied voltage Va by adding the amount of increase ⁇ Va to the initial value Va (0).
  • the increase amount ⁇ Va may be a predetermined value. Alternatively, the increase amount ⁇ Va may be an increase amount according to the progress of aging.
  • the method for determining the increase amount ⁇ Va according to the progress of aging is the same as the method for determining the increase amount ⁇ Ast in the second embodiment. Therefore, the detailed description is not repeated.
  • the boost control unit 236 may increase the applied voltage Va by switching a switch inside and selecting a circuit that outputs a voltage higher than the initial value Va (0).
  • the boost control unit 236 may increase the applied voltage Va by controlling a booster circuit that boosts the voltage of the applied voltage Va linearly or stepwise.
  • the boost control unit 236 may increase the applied voltage Va when, for example, the precondition determination flag is in an on state and the aging completion flag is in an off state.
  • FIG. 14 a control structure of a program for abnormality determination processing of air-fuel ratio sensor 262 executed by ECU 200 included in the control device for an internal combustion engine according to the present embodiment will be described.
  • ECU 200 increases applied voltage Va in S404. Note that the details of the increase in the applied voltage are as described above, and therefore detailed description thereof will not be repeated.
  • ECU 200 included in the control apparatus for an internal combustion engine according to the present embodiment based on the above-described structure and flowchart will be described. Note that the operation of ECU 200 related to the aging determination process is as described in the first embodiment, and therefore the detailed description thereof will not be repeated.
  • the aging completion flag is turned off.
  • the predetermined time T (0) has elapsed since the fuel cut control was started in accordance with the running state of the vehicle, the air-fuel ratio sensor 262 is activated, and the predetermined time T (3) after the EGR valve is opened. Has elapsed and no abnormality determination is made after IG is turned on, it is determined that the precondition is satisfied (YES in S300).
  • FIG. 15 shows the relationship between the atmospheric limit current IL and the applied voltage Va depending on whether or not aging is completed.
  • the horizontal axis in FIG. 15 indicates the applied voltage Va, and the vertical axis in FIG. 15 indicates the atmospheric limit current IL.
  • the solid line in FIG. 15 shows the relationship between the atmospheric limit current IL and the applied voltage Va when the aging of the air-fuel ratio sensor 262 is completed.
  • the applied voltage Va is Va (0)
  • the value of the atmospheric limit current IL is IL (0).
  • the 15 indicates the relationship between the atmospheric limit current IL and the applied voltage Va when the aging of the air-fuel ratio sensor 262 is not completed.
  • the applied voltage Va is Va (0)
  • the value of the atmospheric limit current IL is IL (2).
  • the ECU 200 may notify the driver to that effect using voice, a display device, a warning light, or the like.
  • ECU 200 in the control apparatus for an internal combustion engine according to the present embodiment is different in operation of ECU 200 from the configuration of ECU 200 in the control apparatus for the internal combustion engine according to the first embodiment described above.
  • Other configurations are the same as the configuration of the control device for the internal combustion engine according to the first embodiment described above. They are given the same reference numerals. Their functions are the same. Therefore, detailed description thereof will not be repeated here.
  • the ECU 200 determines that the actual second oxygen amount is larger when the residual amount of silicon component is larger than when the residual amount is smaller than the first oxygen amount detected by the air-fuel ratio sensor 262. It is characterized by the point that is estimated.
  • the ECU 200 determines that the air-fuel ratio sensor when the change width (maximum value Imax ⁇ minimum value Imin) of the output current value Iaf of the air-fuel ratio sensor 262 during execution of the fuel cut control is large compared to when it is small.
  • the actual second oxygen amount is estimated to be larger than the first oxygen amount detected by H.262.
  • FIG. 16 shows a functional block diagram relating to abnormality determination processing of the ECU 200 included in the control device for an internal combustion engine according to the present embodiment.
  • ECU 200 includes a precondition determination unit 222, a completion determination unit 224, a detection value correction unit 246, and an abnormality determination unit 228.
  • the functions and operations of the precondition determining unit 222, the completion determining unit 224, and the abnormality determining unit 228 are the precondition determining unit 222 in the functional block diagram of the ECU 200 shown in FIG. 10 described in the second embodiment.
  • the functions and operations of the completion determination unit 224 and the abnormality determination unit 228 are the same. Therefore, the detailed description is not repeated.
  • the detection value correction unit 246 corrects the output current value Iaf that is the detection value of the air-fuel ratio sensor 262 when the aging of the air-fuel ratio sensor 262 is not completed. That is, the detection value correction unit 246 calculates a value obtained by adding the correction value ⁇ Iaf to the detection value Iaf (0) as the output current value Iaf.
  • the correction value ⁇ Iaf may be a predetermined value.
  • the correction value ⁇ Iaf may be a correction amount according to the progress of aging. Note that the method for determining the correction amount according to the progress of aging is the same as the method for determining the increase amount ⁇ Ast in the second embodiment described above. Therefore, the detailed description is not repeated.
  • the detection value correction unit 246 may correct the detection value of the air-fuel ratio sensor 262 when the precondition determination flag is on and the aging completion flag is off, for example.
  • ECU 200 corrects the detected value of air-fuel ratio sensor 262 and calculates output current value Iaf in S504. Since the correction contents are as described above, detailed description thereof will not be repeated.
  • ECU 200 included in the control apparatus for an internal combustion engine according to the present embodiment based on the above-described structure and flowchart will be described. Note that the operation of ECU 200 related to the aging determination process is as described in the first embodiment, and therefore the detailed description thereof will not be repeated.
  • the aging completion flag is turned off.
  • the predetermined time T (0) has elapsed since the fuel cut control was started in accordance with the running state of the vehicle, the air-fuel ratio sensor 262 is activated, and the predetermined time T (3) after the EGR valve is opened. Has elapsed and no abnormality determination is made after IG is turned on, it is determined that the precondition is satisfied (YES in S300).
  • the detection value of the air-fuel ratio sensor 262 is corrected (S504). That is, the output current value Iaf of the air-fuel ratio sensor 262 is corrected to a value obtained by adding the correction amount ⁇ Iaf to the detected value Iaf (0). Based on the corrected output current value Iaf of the air-fuel ratio sensor 262, it is determined whether there is an abnormality (S306). As a result, it is possible to suppress erroneous determination of whether the air-fuel ratio sensor 262 is abnormal.
  • the air-fuel ratio sensor 262 is normal.
  • the atmospheric limit current IL is equal to or less than the threshold value IL_th, it is determined that the air-fuel ratio sensor 262 is abnormal.
  • the ECU 200 may notify the driver to that effect using voice, a display device, a warning light, or the like.
  • ECU 200 may determine that aging has been completed when the accumulated operation time of engine 10 is a predetermined time or longer.
  • ECU 200 estimates the actual second oxygen amount so that it is larger than the first oxygen amount detected by air-fuel ratio sensor 262 when the cumulative operation time of engine 10 is short compared to when it is long. May be.
  • ECU 200 may determine whether or not there is an abnormality in air-fuel ratio sensor 262 using the value detected by air-fuel ratio sensor 262 when the accumulated operation time of engine 10 is equal to or longer than a predetermined time in the abnormality determination process. .
  • the ECU 200 increases the first oxygen amount detected by the air-fuel ratio sensor 262 compared to when the cumulative operation time is long.
  • the actual second oxygen amount may be estimated, and the presence / absence of abnormality of the air-fuel ratio sensor 262 may be determined using the estimated second oxygen amount. That is, ECU 200 may determine the presence or absence of abnormality using a value obtained by adding a correction amount corresponding to the aging state to the detection value of air-fuel ratio sensor 262.
  • ECU 200 may determine that aging has been completed when the number of energizations of air-fuel ratio sensor 262 is equal to or greater than a predetermined number in the aging determination process. In the abnormality determination process, the ECU 200 sets the actual second oxygen amount so that when the number of energizations of the air-fuel ratio sensor 262 is small, the actual second oxygen amount is larger than the first oxygen amount detected by the air-fuel ratio sensor 262 compared to when the air-fuel ratio sensor 262 is large. It may be estimated.
  • the ECU 200 determines whether the air-fuel ratio sensor 262 is abnormal using the detection value of the air-fuel ratio sensor 262 when the number of energizations of the air-fuel ratio sensor 262 is equal to or greater than a predetermined number. Good.
  • the ECU 200 is more than the first oxygen amount detected by the air-fuel ratio sensor 262 compared to when the number of energizations of the air-fuel ratio sensor 262 is large.
  • the actual second oxygen amount may be estimated so as to increase, and the presence or absence of abnormality of the air-fuel ratio sensor 262 may be determined using the estimated second oxygen amount. That is, ECU 200 may determine the presence or absence of abnormality using a value obtained by adding a correction amount corresponding to the aging state to the detection value of air-fuel ratio sensor 262.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

 ECUは、エイジング完了フラグがオン状態である場合には(S200にてYES)、異常判定しきい値として所定値を決定するステップ(S202)と、エイジング完了フラグがオフ状態である場合には(S200にてNO)、エイジングの進行の程度に応じて異常判定しきい値を決定するステップ(S204)と、決定されたしきい値を用いて空燃比センサが異常であるか否かを判定するステップ(S206)とを含む、プログラムを実行する。

Description

内燃機関の制御装置
 本発明は、内燃機関の排気通路に設けられる空燃比センサが異常であるか否かを精度高く判定する技術に関する。
 たとえば、特開2007-315855号公報(特許文献1)に開示されているように、従来より、空燃比センサにより空燃比を検出し、内燃機関が所望の空燃比で運転するように制御する技術が知られている。
特開2007-315855号公報
 ところで、空燃比センサの製造時には、空燃比センサの検出素子内にシリコン成分が不純物として含まれる場合がある。シリコン成分は、空燃比センサの使用によってその残留量は減少していくが、空燃比センサの使用初期においては、残留するシリコン成分に起因して特に、排気通路に大気が流通している状況下での空燃比センサの出力値が安定しないという問題がある。その結果、空燃比センサの使用初期においては、空燃比センサの異常の有無を誤判定する場合がある。
 本発明の目的は、空燃比センサが異常であるか否かを精度高く判定する内燃機関の制御装置を提供することである。
 この発明のある局面に係る内燃機関の制御装置は、内燃機関に設けられ、検出素子内にシリコン成分が残留し、使用によってシリコン成分の残留量が減少していく空燃比センサと、空燃比センサによる検出結果に基づいて空燃比センサが異常であるか否かを判定するための制御ユニットとを含む。制御ユニットは、シリコン成分の残留量が多いときには、少ないときに比べて異常判定を緩和する。
 好ましくは、制御ユニットは、異常判定条件が成立した場合に空燃比センサが異常であると判定し、シリコン成分の残留量が多いときには、少ないときに比べて異常判定条件を緩和する。
 さらに好ましくは、制御ユニットは、内燃機関の累積運転時間が短いときには、長いときに比べて異常判定条件を緩和する。
 さらに好ましくは、制御ユニットは、空燃比センサの通電回数が少ないときには、多いときに比べて異常判定条件を緩和する。
 さらに好ましくは、制御ユニットは、シリコン成分の残留量が多いときには、少ないときに比べて、空燃比センサによって検出される第1酸素量よりも多くなるように実際の第2酸素量を推定する。
 さらに好ましくは、制御ユニットは、内燃機関の累積運転時間が短いときには、長いときに比べて、第1酸素量よりも多くなるように第2酸素量を推定する。
 さらに好ましくは、制御ユニットは、空燃比センサの通電回数が少ないときには、多いときに比べて、空燃比センサによって検出される第1酸素量よりも多くなるように実際の第2酸素量を推定する。
 この発明の他の局面に係る内燃機関の制御装置は、内燃機関に設けられ、製造過程でシリコン成分が含有される検出素子を備えた空燃比センサと、空燃比センサによる検出結果に基づいて空燃比センサが異常であるか否かを判定するための制御ユニット(200)とを含む。制御ユニットは、内燃機関の累積運転時間が短いときには、長いときに比べて異常判定条件を緩和する。
 この発明のさらに他の局面に係る内燃機関の制御装置は、内燃機関に設けられ、検出素子内にシリコン成分が残留し、使用によってシリコン成分の残留量が減少していく空燃比センサと、内燃機関に対するフューエルカット制御の実行中における空燃比センサの出力値の変化幅に基づいてシリコン成分が許容範囲を超えて残留しているか否かを判定する制御ユニットとを含む。
 好ましくは、制御ユニットは、空燃比センサによる検出結果に基づいて異常判定条件が成立した場合に空燃比センサが異常であると判定し、フューエルカット制御の実行中における変化幅が大きいときには、小さいときに比べて、異常判定条件を緩和する。
 さらに好ましくは、制御ユニットは、フューエルカット制御の実行中における変化幅が大きいときには、小さいときに比べて、空燃比センサによって検出される第1酸素量よりも多くなるように実際の第2酸素量を推定する。
 さらに好ましくは、制御ユニットは、空燃比センサによる検出結果に基づいて異常判定条件が成立した場合に空燃比センサが異常であると判定し、フューエルカット制御の実行中における変化幅が大きいときには、小さいときに比べて、空燃比センサの素子温を上昇させた状態で異常判定条件が成立するか否かを判定する。
 さらに好ましくは、制御ユニットは、空燃比センサによる検出結果に基づいて異常判定条件が成立した場合に空燃比センサが異常であると判定し、フューエルカット制御の実行中における変化幅が大きいときには、小さいときに比べて、空燃比センサの素子に印加する電圧を上昇させた状態で異常判定条件が成立するか否かを判定する。
 この発明によると、シリコン成分の残留量が多いときには、少ないときに比べて空燃比センサの異常判定が緩和される。そのため、空燃比センサの使用初期におけるシリコン成分の残留量が多い場合に、空燃比センサの異常の有無が誤判定されることが抑制される。また、使用によってシリコン成分の残留量が少なくなるほど、異常判定の緩和が解消されていく。したがって、空燃比センサが異常であるか否かを精度高く判定する内燃機関の制御装置を提供することができる。
第1の実施の形態における内燃機関の構成を示す図である。 空燃比センサの構成を示す図である。 空燃比センサに含まれるシリコン成分を説明するための図である。 エイジングの進行状態に応じた大気下における空燃比センサの限界電流の変化を示すタイミングチャートである。 第1の実施の形態におけるECUのエイジング判定処理に関する機能ブロック図である。 第1の実施の形態におけるECUで実行されるエイジング判定処理に関するプログラムの制御構造を示すフローチャートである。 第1の実施の形態におけるECUの異常判定処理に関する機能ブロック図である。 エイジングの進行状態に応じた大気限界電流および異常判定しきい値とヒータ電流との関係を示す図である。 第1の実施の形態におけるECUで実行される異常判定処理に関するプログラムの制御構造を示すフローチャートである。 第2の実施の形態におけるECUの異常判定処理に関する機能ブロック図である。 第2の実施の形態におけるECUで実行される異常判定処理に関するプログラムの制御構造を示すフローチャートである。 空燃比センサの素子温に応じた大気限界電流と印加電圧との関係を示す図である。 第3の実施の形態におけるECUの異常判定処理に関する機能ブロック図である。 第3の実施の形態におけるECUで実行される異常判定処理に関するプログラムの制御構造を示すフローチャートである。 エイジングの進行状態に応じた大気限界電流と印加電圧との関係を示す図である。 第4の実施の形態におけるECUの異常判定処理に関する機能ブロック図である。 第4の実施の形態におけるECUで実行される異常判定処理に関するプログラムの制御構造を示すフローチャートである。
 以下、図面を参照しつつ、本発明の実施の形態について説明される。以下の説明では、同一の部品には同一の符号が付されている。それらの名称および機能も同じである。したがってそれらについての詳細な説明は繰り返されない。
 図1に示すように、本実施の形態において、エンジン10は、吸気通路12と、排気通路14と、エアクリーナ102と、スロットルバルブ104と、複数の気筒106と、インジェクタ108と、点火プラグ110と、三元触媒112と、ピストン114と、クランク軸116と、吸気バルブ118と、排気バルブ120と、吸気側カム122と、排気側カム124と、VVT(Variable Valve Timing)機構126とを含む。
 本実施の形態におけるエンジン10は、たとえば、ガソリンエンジンやディーゼルエンジン等の内燃機関である。
 エンジン10には、エアクリーナ102から空気が吸入される。エアクリーナ102から吸入された空気は、吸気通路12を流通する。吸入空気量は、吸気通路12の途中に設けられたスロットルバルブ104により調整される。スロットルバルブ104はモータにより駆動される電子スロットルバルブである。
 インジェクタ108は、ECU200からの制御により複数の気筒106(燃焼室)の各々に燃料を供給する。インジェクタ108の噴射孔は気筒106内に設けられている。インジェクタ108は、燃料を気筒内に直接噴射する。気筒106内において吸気通路12を流通した空気と燃料とが混合される。インジェクタ108は、吸気行程において燃料を噴射する。なお、燃料が噴射される時期は、吸気行程に限らない。
 本実施の形態においては、インジェクタ108の噴射孔が気筒106内に設けられた直噴エンジンとしてエンジン10を説明するが、直噴用のインジェクタ108に加えて、ポート噴射用のインジェクタを設けてもよい。さらに、ポート噴射用のインジェクタのみを設けるようにしてもよい。
 インジェクタ108からの燃料の供給により形成される気筒106内の混合気は、点火プラグ110により着火され、燃焼する。燃焼後の混合気、すなわち排気ガスは、排気通路14を流通する。排気ガスは、排気通路14の途中に設けられた三元触媒112により浄化された後、車外に排出される。混合気の燃焼によりピストン114が押し下げられ、クランク軸116が回転する。また、エンジン10の作動中にフューエルカット制御が実行されると、インジェクタ108からの燃料の供給が停止される。このとき、吸気通路12を流通した空気(大気)は、気筒106を経由して排気通路14に流通することとなる。
 気筒106の頭頂部には、吸気バルブ118および排気バルブ120が設けられる。気筒106に導入される空気の量および時期は吸気バルブ118により制御される。気筒106から排出される排気ガスの量および時期は排気バルブ120により制御される。吸気バルブ118は吸気側カム122により駆動される。排気バルブ120は排気側カム124により駆動される。
 吸気バルブ118は、VVT機構126により、開閉タイミング(位相)が変更される。なお、排気バルブ120の開閉タイミングを変更するようにしてもよい。
 本実施の形態においては、吸気側カム122が設けられたカムシャフト(図示せず)がVVT機構126により回転されることにより、吸気バルブ118の開閉タイミングが制御される。なお、開閉タイミングを制御する方法はこれに限らない。本実施の形態において、VVT機構126は、油圧により作動する。VVT機構126は、排気側カム124に設けられてもよい。
 エンジン10は、ECU200からの制御信号S1に基づいて制御される。ECU200は、エンジン10が所望の運転状態になるように、スロットル開度、点火時期、燃料噴射時期、燃料噴射量、吸気バルブ118の開閉タイミングを制御する。ECU200には、エンジン回転速度センサ11、カム角センサ254、水温センサ256、エアフローメータ258および空燃比センサ262からの信号が入力される。
 エンジン回転速度センサ11は、クランク軸116の回転速度(以下、エンジン回転速度と記載する)NEを表す信号を出力する。カム角センサ254は、吸気側カム122の位置を表す信号を出力する。水温センサ256は、エンジン10の冷却水の温度を表す信号を出力する。エアフローメータ258は、エンジン10に吸入される空気量表す信号を出力する。空燃比センサ262は、空燃比を表す信号を出力する。
 ECU200は、これらのセンサから入力された信号、メモリ252に記憶されたマップおよびプログラムに基づいて、エンジン10を制御する。
 図2に、空燃比センサ262の一構成例が示される。本実施の形態における空燃比センサ262は、積層型の空燃比センサである。図2に示すように、空燃比センサ262は、エンジン10の排気通路14の内部に向けて突き出して設けられている。空燃比センサ262は、カバー61と、センサ本体63とを含む。センサ本体63は、固体電解質層64と、拡散抵抗層65と、排気側電極66と、大気側電極67と、ヒータ68と、大気ダクト69とを含む。
 カバー61は、センサ本体63を内部に収納するカップ形状の断面を有する。カバー61の周壁にはカバー61の内外を連通する多数の小孔62が形成されている。なお、カバー61は、複数枚設けられてもよい。
 センサ本体63において、板状の固体電解質層64の一方の表面には排気側電極66が固着される。一方、固体電解質層64の他方の表面には大気側電極67が固着されている。また、排気側電極66の固体電解質層64に固着する面の反対側には、拡散抵抗層65が設けられる。また、大気側電極67の固体電解質層64に固着する面の反対側には、大気ダクト69が設けられる。
 固体電解質層64は、本実施の形態においては、ジルコニア素子である。排気側電極66および大気側電極67は、たとえば、白金電極である。拡散抵抗層65は、たとえば、多孔質のセラミックである。
 ヒータ68は、ECU200からの通電により発熱する発熱体である。ヒータ68は、ECU200によるデューティ制御によって作動される。ヒータ68は、発熱エネルギーによってセンサ本体63を加熱し、固体電解質層64を活性化させる。ヒータ68は、固体電解質層64を活性化するのに十分な発熱容量を有している。
 ECU200は、たとえば、固体電解質層64のアドミタンス値Asが目標アドミタンス値Ast以上になるようにヒータ68を制御する。ECU200は、たとえば、エンジン10が始動すると、アドミタンス値Asが目標アドミタンス値Ast以上になるようにヒータ68に対するデューティ制御を開始する。ECU200は、アドミタンス値Asが目標アドミタンス値Astよりも小さい場合には、デューティ比を上昇させ、アドミタンス値Asが目標アドミタンス値Ast以上になる場合には、デューティ比を減少させる。
 ECU200は、ヒータ68に流れるヒータ電流Ihを検出する。ECU200は、ヒータ電流Ihをセンサ等を用いて直接的に検出してもよいし、あるいは、ヒータ68に対する制御値に基づいてヒータ電流Ihを推定してもよい。
 図2に示されるように、センサ本体63の大気側電極67および排気側電極66は、ECU200に接続される。ECU200は、大気側電極67と排気側電極66との間に検出用電圧を印加する。この電圧印加によって空燃比センサ262に、排気ガス中の酸素濃度に応じた電流が流れる。ECU200は、大気側電極67と排気側電極66との間での酸素イオンの移動によって生じる電流を検出する。
 たとえば、排気ガスの空燃比がリーンである場合、排気ガス中の余剰酸素が排気側電極66での電極反応により電子を受け取ってイオン化される。その酸素イオンが固体電解質層64の内部を排気側電極66から大気側電極67の向きに移動し、大気側電極67に到達すると、そこで電子が離脱され、酸素に戻って大気ダクト69に排出される。このような酸素イオンの移動によって、大気側電極67から排気側電極66への向きに電流が流れる。
 一方、排気ガスの空燃比がリッチである場合、リーンの場合とは逆に、大気ダクト69内の酸素が大気側電極67での電極反応により電子を受け取ってイオン化される。その酸素イオンが、固体電解質層64の内部を大気側電極67から排気側電極66への向きに移動した後に、拡散抵抗層65の内部に存在する未燃成分HC、CO、Hとの触媒反応により二酸化炭素COや水HOが精製される。このような酸素イオンの移動によって、排気側電極66から大気側電極67への向きに電流が流れる。
 そのため、空燃比センサ262に流れる電流のECU200による検出値(以下、出力電流値Iafと記載する)は、排気通路14を流通する気体の酸素濃度に応じて変化する。そのため、出力電流値Iafと空燃比との関係を実験・計算等によって求めておけば、出力電流値Iafに基づいて空燃比を算出することができる。また、出力電流値Iafの増減は、空燃比の増減(リーン・リッチの程度)に対応しており、空燃比がリーン側になるほど(酸素濃度が上昇するほど)出力電流値Iafは増大し、空燃比がリッチ側になるほど(酸素濃度が減少するほど)出力電流値Iafは減少する。
 以上のような構成を有する空燃比センサ262においては、検出素子である固体電解質層64内にSiO等のシリコン成分が不純物として含まれる場合がある。このようなシリコン成分については空燃比センサ262の製造工程において酸等を用いた除去処理が行われるが、除去処理によりシリコン成分が完全に除去されない場合がある。シリコン成分は、空燃比センサ262の使用によってその残留量は減少していく。そのため、空燃比センサ262の使用初期においてシリコン成分の残留量が多いと、残留するシリコン成分に起因して、空燃比センサ262の出力電流値Iafが安定しない場合がある。出力電流値Iafが不安定な状態は、特に、排気通路14に大気が流通している状況下で発生する場合がある。以下の説明において、排気通路14に大気が流通している状況下での空燃比センサ262の出力電流値Iafを大気限界電流ILとも記載する。また、排気通路14に大気が流通している状況下とは、たとえば、フューエルカット制御の実行中をいう。
 図3に示すように、たとえば、排気側電極66と、固体電解質層64との間にシリコン成分が介在する場合には、排気側電極66から固体電解質層64に酸素イオンが移動する際にシリコン成分によって酸素イオンの移動が阻害されることとなる。
 特に、排気通路14に大気が流通している場合には、排気側電極66における余剰酸素は多い。このような場合に、酸素イオンの移動が阻害されることにより、空燃比センサ262の大気限界電流ILが不安定となる場合がある。
 図4に、空燃比センサ262の出力電流値Iafの時間変化が示される。図4に示すように、空燃比センサ262の出力電流値Iafは、時間Taにて、フューエルカット制御が実行されてから酸素濃度の増加にともなって上昇し、大気限界電流ILに到達する。
 図4の実線は、シリコン成分の残留が解消された場合の空燃比センサ262の出力電流値Iafが上昇する変化を示す。図4の破線は、シリコン成分が残留している場合の空燃比センサ262の出力電流値Iafが上昇する変化を示す。
 図4の破線に示されるシリコン成分が残留している場合の大気限界電流ILは、図4の実線に示されるシリコン成分の残留が解消された場合の大気限界電流ILよりも低い値になるとともにヒータ68のオンオフに応答するように変動する。
 大気限界電流ILは、空燃比センサ262の異常判定に用いられる。そのため、このようにシリコン成分の残留に起因して、空燃比センサ262の大気限界電流ILが安定しないと、空燃比センサ262が異常であるか否かが誤判定される場合がある。
 そこで、本実施の形態においては、ECU200は、シリコン成分の残留量が多いときには、少ないときに比べて異常判定を緩和する点を特徴とする。
 具体的には、ECU200は、後述する異常判定条件が成立した場合に空燃比センサ262が異常であると判定する。ECU200は、シリコン成分の残留量が多いときには、少ないときに比べて当該異常判定条件を緩和する。
 さらに、本実施の形態において、ECU200は、エイジング判定処理を実行することによって、空燃比センサ262のエイジングが完了した状態であるか否かを判定する。
 「エイジングが完了した状態」は、空燃比センサ262にシリコン成分の残留量が少ない状態、すなわち、許容範囲内である状態に対応する。「エイジングが完了していない状態」は、空燃比センサ262にシリコン成分の残留量が多い状態、すなわち、許容範囲を超えた状態に対応する。
 したがって、ECU200は、空燃比センサ262のエイジングが完了していない状態である場合には、エイジングが完了した状態である場合に比べて異常判定条件を緩和するものである。
 <エイジング判定処理について>
 以下の説明において、空燃比センサ262のエイジング判定処理について説明される。図5に、本実施の形態に係る内燃機関の制御装置に含まれるECU200のエイジング判定処理に関する機能ブロック図が示される。ECU200は、実行条件判定部202と、計測部204と、エイジング判定部206と、リセット部208とを含む。
 実行条件判定部202は、エイジング判定処理の実行条件が成立しているか否かを判定する。本実施の形態において、エイジング判定処理の実行条件は、エイジングが完了していない状態であるという第1条件と、空燃比センサ262が活性状態であるという第2条件と、エンジン10に対してフューエルカット制御が実行中であるという第3条件と、フューエルカット制御の実行が開始されてから所定時間T(0)が経過しているという第4条件とを含む。実行条件判定部202は、第1条件、第2条件、第3条件および第4条件のうちのいずれもが成立している場合に、エイジング判定処理の実行条件が成立していると判定する。
 実行条件判定部202は、たとえば、後述するエイジング完了フラグがオフ状態である場合に、第1条件が成立していると判定する。
 また、実行条件判定部202は、空燃比センサ262のセンサ本体63の温度(以下、素子温と記載する)Tafが活性状態となるしきい値Taf(0)よりも大きくなる場合に第2条件が成立していると判定する。
 実行条件判定部202は、たとえば、固体電解質層64のアドミタンス値Asが上述の目標アドミタンス値Astよりも大きい場合に、素子温Tafがしきい値Taf(0)よりも大きい状態であると判定してもよい。実行条件判定部202は、固体電解質層64への印加電圧Vaと出力電流値Iafとから固体電解質層64のアドミタンス値Asを算出する。
 実行条件判定部202は、フューエルカット制御の実行条件が成立しており、かつ、燃料噴射が停止している場合に、第3条件が成立していると判定する。フューエルカット制御の実行条件とは、たとえば、減速時フューエルカット、高回転時フューエルカット、最高速時フューエルカット等に対応する条件である。
 減速時フューエルカットに対応する条件とは、たとえば、スロットルバルブが全閉状態であって、かつ、エンジン回転速度Neがしきい値Ne(0)以上であるという条件を含む。
 高回転時フューエルカットに対応する条件とは、たとえば、エンジン回転速度Neがしきい値Ne(1)以上であるという条件を含む。なお、しきい値Ne(1)は、しきい値Ne(0)よりも大きい値である。しきい値Ne(1)は、エンジン回転速度Neが所定の上限値を超えないように設定される。
 最高速時フューエルカットに対応する条件とは、たとえば、車両の速度Vがしきい値V(0)以上であって、かつ、エンジン回転速度Neがしきい値Ne(2)以上となる状態の継続時間が所定時間T(1)を超えるという条件を含む。
 第4条件の所定時間T(0)は、フューエルカット制御の実行が開始されてから排気通路14を流通する気体の酸素濃度が大気の酸素濃度に収束していると判定できる時間である。所定時間T(0)は、実験等によって適合される。
 なお、実行条件判定部202は、たとえば、実行条件が成立していると判定した場合には、実行条件判定フラグをオン状態にしてもよい。
 計測部204は、実行条件判定部202によって実行条件が成立していると判定された場合に、空燃比センサ262の出力電流値Iafの最大値Imaxと最小値Iminを計測する。計測部204は、空燃比センサ262の出力電流値Iafと、メモリ252に記憶される最大値Imaxおよび最小値Iminの各々とを比較する。
 計測部204は、たとえば、出力電流値Iafがメモリ252に記憶される最大値Imaxよりも大きい場合には、メモリ252に記憶された最大値Imaxを検出された出力電流値Iafに書き換えることによって最大値Imaxを更新する。
 また、計測部204は、たとえば、出力電流値Iafがメモリ252に記憶される最小値Iminよりも小さい場合には、メモリ252に記憶された最小値Iminを検出された出力電流値Iafに書き換えることによって最小値Iminを更新する。
 なお、計測部204は、たとえば、検出された出力電流値Iafが最大値Imax以下であって、かつ、最小値Imin以上である場合には、最大値Imaxおよび最小値Iminを更新しない。計測部204は、所定の計算サイクル毎に上述の最大値Imaxおよび最小値Iminを計測する。計測部204は、フューエルカット制御が終了するまで最大値Imaxおよび最小値Iminを計測する。
 計測部204は、フューエルカット制御が終了した場合に最大値Imaxおよび最小値Iminの計測を終了する。計測部204は、たとえば、上述したフューエルカット制御の実行条件が成立しない場合にフューエルカット制御が終了したと判定してもよいし、燃料噴射が再開された場合にフューエルカット制御が終了したと判定してもよい。
[規則91に基づく訂正 10.05.2012] 
 なお、計測部204は、たとえば、実行条件判定フラグがオン状態である場合に最大値Imaxおよび最小値Iminを計測してもよい。また、計測部204は、後述するヒータ68がオン状態である場合に最大値Imaxを計測し、ヒータ68がオフ状態である場合に最小値Iminを計測してもよい。
 エイジング判定部206は、計測部204による計測結果に基づいて空燃比センサ262のエイジングが完了した状態であるか否か判定する。
 具体的には、エイジング判定部206は、計測部204による最大値Imaxおよび最小値Iminの計測時間が所定時間T(2)以上であって、かつ、計測部204による計測中にヒータ68の作動履歴がある場合に、空燃比センサ262のエイジングが完了した状態であるか否かを判定する。
 上述の所定時間T(2)は、少なくとも最大値Imaxと最小値Iminとを計測するための時間であって、実験等により適合される。所定時間T(2)は、たとえば、ヒータ68がオンされる期間とヒータ68がオフされる期間とを含む時間であってもよい。これは、空燃比センサ262のエイジングが完了していない状態である場合には、出力電流値Iafは、ヒータ68のオンおよびオフに応じた変動するためである。
 エイジング判定部206は、たとえば、ヒータ68の作動フラグの状態に基づいてヒータ68の作動履歴があるか否かを判定してもよい。ヒータ68の作動フラグは、計測部204による計測時間中にヒータ68が作動した場合にオン状態にされる。エイジング判定部206は、ヒータ68の作動フラグがオン状態である場合にヒータ68の作動履歴があると判定する。
 エイジング判定部206は、最大値Imax-最小値Iminがしきい値ΔI(0)よりも小さい場合に、空燃比センサ262のエイジングが完了した状態であると判定する。しきい値ΔI(0)は、出力電流値Iafの変動が収束している、すなわち、シリコン成分の残留量が許容範囲内であると判定するための値であって、実験等によって適合される値である。
 なお、エイジング判定部206は、計測部204による最大値Imaxおよび最小値Iminの計測時間が所定時間T(2)以上でない場合、あるいは、計測部204による計測中にヒータ68の作動履歴がない場合には、空燃比センサ262のエイジングが完了した状態であるか否かを判定しない。
 エイジング判定部206は、空燃比センサ262のエイジングが完了した状態であると判定した場合に、エイジング完了フラグをオン状態にする。エイジング判定部206は、空燃比センサ262のエイジングが完了していない状態であると判定した場合には、エイジング完了フラグをオフ状態にする。
 リセット部208は、所定条件が成立した場合に、最大値Imaxおよび最小値Iminの各々をリセットする。所定条件とは、実行条件判定部202によって実行条件が成立しないと判定されるという条件と、エイジング判定部206によってエイジングが完了したか否かが判定されないという条件と、エイジング判定部206によってエイジングが完了していない状態であると判定されるという条件とのうちの少なくともいずれか一つの条件が成立するという条件である。
 なお、リセット部208は、実行条件判定部202によって実行条件が成立すると判定されたという所定条件が成立した場合に、あるいは計測部204によって計測が開始される前に、最大値Imaxおよび最小値Iminの各々をリセットしてもよい。
 リセット部208は、上述の所定条件が成立した場合に、最大値Imaxおよび最小値Iminをそれぞれ初期値Imax(0)およびImin(0)にリセットする。なお、初期値Imax(0)およびImin(0)は、たとえば、ゼロである。
 本実施の形態において、実行条件判定部202と、計測部204と、エイジング判定部206と、リセット部208とは、いずれもECU200のCPUがメモリ252に記憶されたプログラムを実行することにより実現される、ソフトウェアとして機能するものとして説明するが、ハードウェアにより実現されるようにしてもよい。
 図6を参照して、本実施の形態に係る内燃機関の制御装置に含まれるECU200で実行されるエイジング判定処理についてのプログラムの制御構造について説明される。
 ステップ(以下、ステップをSと記載する)100にて、ECU200は、エイジングが未完了の状態であるか否かを判定する。エイジングが未完了の状態であると判定された場合(S100にてYES)、処理はS102に移される。もしそうでない場合(S100にてNO)、処理はS116に移される。
 S102にて、ECU200は、空燃比センサ262が活性状態であって、かつ、フューエルカット制御が実行中であるか否かを判定する。空燃比センサ262が活性状態であって、かつ、フューエルカット制御が実行中である場合(S102にてYES)、処理はS104に移される。もしそうでない場合(S102にてNO)、処理はS116に移される。
 S104にて、ECU200は、フューエルカット制御が開始されてから所定時間T(0)が経過しているか否かを判定する。フューエルカット制御が開始されてから所定時間T(0)が経過している場合(S104にてYES)、処理はS106に移される。もしそうでない場合(S104にてNO)、処理はS116に移される。
 S106にて、ECU200は、空燃比センサ262の出力電流値Iの最大値Imaxと最小値Iminとを計測する。
 S108にて、ECU200は、フューエルカット制御が終了したか否かを判定する。フューエルカット制御が終了した場合(S108にてYES)、処理はS110に移される。もしそうでない場合(S108にてNO)、処理はS106に戻される。
 S110にて、ECU200は、最大値Imaxおよび最小値Iminの計測時間が所定時間T(2)以上であって、かつ、計測時間中にヒータ68の作動履歴がある状態であるか否かを判定する。計測時間が所定時間T(2)以上であって、かつ、計測時間中にヒータ68の作動履歴がある場合(S110にてYES)、処理はS112に移される。もしそうでない場合(S110にてNO)、処理はS116に移される。
 S112にて、ECU200は、最大値Imax-最小値Iminが所定値ΔI(0)よりも小さいか否かを判定する。最大値Imax-最小値Iminが所定値ΔI(0)よりも小さい場合(S112にてYES)、処理はS114に移される。もしそうでない場合(S112にてNO)、処理はS116に移される。
 S114にて、ECU200は、エイジング完了フラグをオン状態にする。S116にて、ECU200は、最大値Imaxおよび最小値Iminを初期値Imax(0)およびImin(0)にそれぞれリセットする。
 以上のような構造およびフローチャートに基づく本実施の形態に係る内燃機関の制御装置に含まれるECU200のエイジング判定処理に関する動作について説明される。
 たとえば、空燃比センサ262の使用初期において、エイジングが完了していない状態である場合を想定する(S100にてYES)。
 エンジン10の始動後においては、ヒータ68の作動によって素子温Tafが上昇する。素子温Tafがしきい値Taf(0)よりも大きくなることによって、空燃比センサ262が活性状態になる。また、エンジン10の作動中にフューエルカット制御の実行条件が成立する場合に、エンジン10に対してフューエルカット制御が実行される。
 空燃比センサ262が活性状態になり、かつ、フューエルカット制御が実行される場合(S102にてYES)、フューエルカット制御の開始から所定時間T(0)が経過したか否かが判定される(S104)。
 フューエルカット制御の開始から所定時間T(0)が経過して(S104にてYES)、排気通路14を流通する気体の酸素濃度が収束した状態で、最大値Imaxおよび最小値Iminが計測される(S106)。
 フューエルカット制御が終了して(S108にてYES)、フューエルカット制御が終了するまでの計測時間が所定時間T(2)以上であって、かつ、計測中にヒータ68の作動履歴がある場合(S110にてYES)に、空燃比センサ262のエイジングが完了した状態であるか否かが判定される。すなわち、最大値Imax-最小値Iminがしきい値ΔI(0)よりも小さいか否かが判定される(S112)。最大値Imax-最小値Iminがしきい値ΔI(0)よりも小さい場合(S112にてYES)、エイジング完了フラグがオン状態にされる(S114)。すなわち、空燃比センサ262のエイジングが完了した状態であると判定される。
 なお、エイジングが完了した状態である場合には(S100にてNO)、最大値Imaxおよび最小値Iminがリセットされる(S116)。また、空燃比センサ262が活性状態でない場合(S102にてNO)、あるいは、フューエルカット制御中でない場合にも(S102にてNO)、最大値Imaxおよび最小値Iminがリセットされる(S116)。さらに、フューエルカット制御の開始から所定時間T(0)が経過していない場合にも(S104にてNO)、最大値Imaxおよび最小値Iminがリセットされる(S116)。
 さらに、計測時間が所定時間T(2)よりも短い場合(S110にてNO)、あるいは、計測中にヒータ68が作動履歴がない場合にも(S110にてNO)、最大値Imaxおよび最小値Iminがリセットされる(S116)。また、最大値Imax-最小値Iminがしきい値ΔI(0)以上である場合にも(S112にてNO)、最大値Imaxおよび最小値Iminがリセットされる(S116)。
 <空燃比センサの異常判定処理について>
 次に、ECU200によってエイジング判定処理の判定結果に基づいて実行される空燃比センサ262の異常判定処理について説明される。
 本実施の形態において、ECU200は、空燃比センサ262の大気限界電流ILがしきい値IL_thよりも小さい場合に異常判定条件が成立したとして空燃比センサ262が異常であると判定する。ECU200は、エイジングが完了していない状態である場合には、エイジングが完了している状態である場合に比べて、異常判定条件を緩和する。
 本実施の形態において、ECU200は、エイジングが完了していない状態である場合には、エイジングが完了している状態である場合に比べて、上述のしきい値IL_thを低下させることによって、異常判定条件を緩和するものである。
 図7に、本実施の形態に係る内燃機関の制御装置に含まれるECU200の異常判定処理に関する機能ブロック図が示される。ECU200は、完了判定部212と、しきい値決定部214と、異常判定部216とを含む。
 完了判定部212は、空燃比センサ262のエイジングが完了した状態であるか否かを判定する。完了判定部212は、エイジング完了フラグがオン状態である場合に空燃比センサ262のエイジングが完了した状態であると判定する。また、完了判定部212は、エイジング完了フラグがオフ状態である場合に空燃比センサ262のエイジングが完了していない状態であると判定する。
 しきい値決定部214は、完了判定部212によってエイジングが完了した状態であると判定された場合には、所定値IL_th(0)を空燃比センサ262の異常の有無を判定するための大気限界電流ILのしきい値IL_thとして決定する。
 しきい値決定部214は、完了判定部212によってエイジングが完了していない状態であると判定された場合には、空燃比センサ262の大気限界電流ILとヒータ電流Ihとの相関性に基づいてしきい値IL_thを決定する。すなわち、しきい値決定部214は、エイジング完了フラグがオフ状態である場合には、ヒータ電流Ihに応じてしきい値IL_thを決定する。
 具体的には、しきい値決定部214は、ヒータ電流Ihと、図8の一点鎖線に示すようなヒータ電流Ihとしきい値IL_thとの関係とに基づいてしきい値IL_thを決定する。図8の縦軸は、空燃比センサ262の大気限界電流ILとしきい値IL_thとを示す。図8の横軸は、ヒータ電流Ihを示す。
 なお、図8に示すヒータ電流Ihは、たとえば、大気限界電流ILの計測中のヒータ電流Ihの極大値を示すものとする。なお、図8に示すヒータ電流Ihは、大気限界電流ILの計測中のヒータ電流Ihの平均値であってもよいし、あるいは、大気限界電流ILの計測が開始されてから所定時間が経過するまでのヒータ電流Ihの最大値であってもよいものとする。
 図8に示すように、空燃比センサ262のエイジングが完了した状態である場合の大気限界電流ILは、IL(0)となる。このとき、ヒータ電流Ihは、Ih(0)となる。また、しきい値IL_thは、所定値IL_th(0)である。所定値IL_th(0)は、たとえば、大気限界電流IL(0)を基準として設定される。所定値IL_th(0)は、たとえば、大気限界電流IL(0)から所定値を減算して算出されてもよいし、あるいは、大気限界電流IL(0)に所定の係数α(0)(<1)を乗じて算出されてもよい。
 一方、空燃比センサ262の生産初期におけるエイジングが完了していない状態である場合の大気限界電流ILは、IL(1)となり、エイジングが完了している状態である場合の大気限界電流IL(0)よりも小さい値となる。
 このとき、ヒータ電流Ihは、Ih(1)となり、エイジングが完了している状態である場合のヒータ電流Ih(0)よりも大きい値となる。
 さらに、しきい値IL_thは、所定値IL_th(1)となり、エイジングが完了している状態である場合のしきい値IL_th(0)よりも小さい値となる。なお、所定値IL_th(1)も所定値IL_th(0)と同様に、大気限界電流IL(1)を基準として設定される。その詳細については繰り返されない。
 図8の実線に示すように、空燃比センサ262のエイジングが進行するにしたがって(シリコン成分の残留量が減少していくほど)、大気限界電流ILは、生産初期におけるエイジングが完了していない状態である場合の大気限界電流IL(1)よりも上昇していき、ヒータ電流Ihは、Ih(1)よりも減少していく。図8の一点鎖線に示すように、空燃比センサ262のエイジングが進行するにしたがって、しきい値IL_thは、図8の一点鎖線に示すようにIL_th(1)よりも上昇していく。
[規則91に基づく訂正 10.05.2012] 
 しきい値決定部214は、たとえば、ヒータ電流IhがIh(2)である場合には、図8の一点鎖線から導き出される値IL_th(2)をしきい値IL_thとして決定する。
 異常判定部216は、しきい値決定部214によって決定されたしきい値IL_thを用いて空燃比センサ262が異常であるか否かを判定する。すなわち、異常判定部216は、大気限界電流ILがしきい値IL_thよりも大きい場合には、空燃比センサ262が正常であると判定する。
 また、異常判定部216は、大気限界電流ILがしきい値IL_th以下である場合には、空燃比センサ262が異常であると判定する。なお、異常判定部216は、たとえば、空燃比センサ262が異常であると判定された場合に、異常判定フラグをオン状態にしてもよい。
 図9を参照して、本実施の形態に係る内燃機関の制御装置に含まれるECU200で実行される空燃比センサ262の異常判定処理についてのプログラムの制御構造について説明される。
 S200にて、ECU200は、エイジング完了フラグがオン状態であるか否かを判定する。エイジング完了フラグがオン状態である場合(S200にてYES)、処理はS202に移される。もしそうでない場合(S200にてNO)、処理はS204に移される。
 S202にて、ECU200は、所定値IL_th(0)をしきい値IL_thとして決定する。S204にて、ECU200は、空燃比センサ262のエイジングの状態に応じてしきい値IL_thを決定する。具体的には、ECU200は、ヒータ電流Ihと図8の一点鎖線に示されるヒータ電流Ihとしきい値IL_thとの関係とからしきい値IL_thを決定する。S206にて、ECU200は、空燃比センサ262が異常であるか否かを判定する。
 以上のような構造およびフローチャートに基づく本実施の形態に係る内燃機関の制御装置に含まれるECU200の異常判定処理に関する動作について説明される。
 たとえば、空燃比センサ262の使用初期において、エイジングが完了していない状態である場合を想定する。このとき、エイジング完了フラグはオフ状態となる(S200にてNO)。そのため、ヒータ電流Ihと、図8の一点鎖線に示されるヒータ電流Ihとしきい値IL_thとの関係とからしきい値IL_thが決定される(S204)。
 そして、決定されたしきい値IL_thに基づいて異常の有無が判定される(S206)。すなわち、大気限界電流ILがしきい値IL_thよりも大きい場合には、空燃比センサ262が正常であると判定される。大気限界電流ILがしきい値IL_th以下である場合には、空燃比センサ262が異常であると判定される。
 なお、ECU200は、空燃比センサ262が異常であると判定した場合には、たとえば、表示装置、警告灯あるいは音発生装置等を用いて、空燃比センサ262が異常である旨を車両の乗員に通知してもよい。
 以上のようにして、本実施の形態に係る内燃機関の制御装置によると、シリコン成分の残留量が多いときは、少ないときに比べて空燃比センサ262の異常判定が緩和される。そのため、空燃比センサ262の使用初期におけるシリコン成分の残留量が多い場合に、空燃比センサ262の異常の有無が誤判定されることが抑制される。また、使用によってシリコン成分の残留量が少なくなるほど、異常判定の緩和が解消されていく。したがって、空燃比センサが異常であるか否かを精度高く判定する内燃機関の制御装置を提供することができる。
 本実施の形態においては、エイジング判定処理において、出力電流値Iafの最大値Imaxと最小値Iminとの差から変化幅を算出して、算出された変化幅が所定値ΔI(0)よりも小さい場合に、エイジングが完了した状態であると判定するものとして説明したが、特にこれに限定されるものではない。
[規則91に基づく訂正 10.05.2012] 
 たとえば、ECU200は、エイジング判定処理において、エンジン10の累積運転時間が所定時間以上である場合にエイジングが完了した状態であると判定してもよい。ECU200は、異常判定処理において、エンジン10の累積運転時間が短いときには、長いときに比べて異常判定条件を緩和してもよい。たとえば、ECU200は、異常判定処理において、エンジン10の累積運転時間が所定時間以上である場合には、所定値IL_th(0)をしきい値IL_thとして空燃比センサ262の異常の有無を判定してもよい。また、ECU200は、エンジン10の累積運転時間が所定時間よりも短い場合には、累積運転時間が長いときと比べて、IL_th(0)よりもより小さくなるようにしきい値IL_thを決定してもよい。ECU200は、累積運転時間に比例してしきい値IL_thを決定してもよい。
[規則91に基づく訂正 10.05.2012] 
 あるいは、ECU200は、エイジング判定処理において、空燃比センサ262の通電回数が所定回数以上である場合にエイジングが完了した状態であると判定してもよい。さらに、ECU200は、異常判定処理において、空燃比センサ262の通電回数が少ないときには、多いときに比べて異常判定条件を緩和してもよい。たとえば、ECU200は、異常判定処理において、空燃比センサ262の通電回数が所定回数以上である場合には、所定値IL_th(0)をしきい値IL_thとして空燃比センサ262の異常の有無を判定してもよい。また、ECU200は、空燃比センサ262の通電回数が所定回数よりも少ない場合には、空燃比センサ262の通電回数が多いときに比べてIL_th(0)よりもより小さくなるようにしきい値IL_thを決定してもよい。ECU200は、空燃比センサ262の通電回数に比例してしきい値IL_thを決定してもよい。
 また、本実施の形態において、ECU200は、空燃比センサ262が活性状態であるか否かを空燃比センサ262のアドミタンス値Asに基づいて判定したが、たとえば、インピーダンス値Isを用いて判定してもよい。たとえば、ECU200は、インピーダンス値Isが所定値Is(0)よりも小さくなる場合に空燃比センサ262が活性状態であると判定してもよい。
[規則91に基づく訂正 10.05.2012] 
 本実施の形態において、空燃比センサ262は、排気側電極とシリコン成分を不純物として含む固体電解質層とが積層されたものであれば、特に、図2に示したように板状の排気側電極と板状の固体電解質層とを含む積層型の空燃比センサ262の構成に限定されるものではない。たとえば、空燃比センサ262は、試験管状の固体電解質層と排気側電極と大気側電極とを含む構成を有していてもよい。
 本実施の形態において、ECU200は、シリコン成分の残留量が多いときには、少ないときに比べて空燃比センサ262の異常判定を緩和するステップと、空燃比センサ262による検出結果に基づいて空燃比センサ262が異常であるか否かを判定するステップと含む、空燃比センサの異常判定方法を実行することによって、空燃比センサが異常であるか否かを精度高く判定する。
 <第2の実施の形態>
 以下、第2の実施の形態に係る内燃機関の制御装置について説明される。本実施の形態に係る内燃機関の制御装置におけるECU200は、上述の第1の実施の形態に係る内燃機関の制御装置におけるECU200の構成と比較して、ECU200の動作が異なる。それ以外の構成については、上述の第1の実施の形態に係る内燃機関の制御装置の構成と同じ構成である。それらについては同じ参照符号が付されている。それらの機能も同じである。したがって、それらについての詳細な説明はここでは繰り返されない。
 本実施の形態においては、ECU200は、フューエルカット制御の実行中における空燃比センサ262の出力電流値Iafの変化幅(最大値Imax-最小値Imin)が大きいときには、小さいときに比べて、空燃比センサ262の素子温Tafを上昇させた状態で異常の有無を判定することを特徴とする。
 図10に、本実施の形態に係る内燃機関の制御装置に含まれるECU200の異常判定処理に関する機能ブロック図が示される。ECU200は、前提条件判定部222と、完了判定部224と、目標値変更部226と、異常判定部228とを含む。
 前提条件判定部222は、空燃比センサ262の異常判定を実行するための前提条件が成立しているか否かを判定する。前提条件は、大気限界電流ILが安定していると推定できる条件である。前提条件は、たとえば、フューエルカット制御が実行中であるという条件と、フューエルカット制御が開始されてから所定時間T(0)が経過しているという条件と、空燃比センサ262が活性状態であるという条件と、エンジン10に設けられるEGRバルブが閉弁状態となってから所定時間T(3)が経過しているという条件と、今回のトリップ中に異常判定が行われていないという条件とを含む。なお、前提条件判定部222は、前提条件が成立している場合には、前提条件判定フラグをオン状態にしてもよい。また、トリップとは、IGオンされてからIGオフされるまでの期間をいう。
 完了判定部224は、空燃比センサ262のエイジングが完了した状態であるか否かを判定する。完了判定部224は、エイジング完了フラグがオン状態である場合にエイジングが完了した状態であると判定する。また、完了判定部224は、エイジング完了フラグがオフ状態である場合にエイジングが完了していない状態であると判定する。
 なお、エイジング完了フラグは、エイジング判定処理の結果に基づいて状態が変更される。エイジング判定処理については、上述の第1の実施の形態において説明したとおりであるため、その詳細な説明は繰り返されない。
 目標値変更部226は、空燃比センサ262のエイジングが完了していない状態である場合に、目標アドミタンス値Astを初期値Ast(0)よりも上昇させる。初期値Ast(0)は、エイジングが完了した状態を前提として素子温Tafが活性状態に対応した温度範囲内となるアドミタンス値である。目標値変更部226は、初期値Ast(0)に上昇量ΔAstを加算して目標アドミタンス値Astを決定する。上昇量ΔAstは、所定値であってもよい。あるいは、上昇量ΔAstは、エイジングの進行の程度に応じた上昇量としてもよい。たとえば、目標値変更部226は、エイジングの進行の程度が大きいときには(エイジングが完了した状態に近いときには)、小さいときに比べて、小さくなるように上昇量ΔAstを決定してもよい。なお、目標値変更部226は、たとえば、最大値Imax-最小値Iminの値に基づいてエイジングの進行の程度を算出してもよい。
 なお、目標値変更部226は、たとえば、前提条件判定フラグがオン状態であって、かつ、エイジング完了フラグがオフ状態である場合に、印加電圧Vaを上昇させるようにしてもよい。
 異常判定部228は、大気限界電流ILのしきい値IL_thを用いて空燃比センサ262が異常であるか否かを判定する。すなわち、異常判定部228は、大気限界電流ILが、しきい値IL_thよりも大きい場合には、空燃比センサ262が正常であると判定する。
 また、異常判定部228は、大気限界電流ILがしきい値IL_th以下である場合には、空燃比センサ262が異常であると判定する。なお、異常判定部228は、たとえば、空燃比センサ262が異常であると判定された場合に、異常判定フラグをオン状態にしてもよい。
 図11を参照して、本実施の形態に係る内燃機関の制御装置に含まれるECU200で実行される空燃比センサ262の異常判定処理についてのプログラムの制御構造について説明される。
 S300にて、ECU200は、前提条件が成立するか否かを判定する。前提条件については、上述したとおりであるため、その詳細な説明については繰り返されない。前提条件が成立する場合(S300にてYES)、処理はS302に移される。もしそうでない場合(S300にてNO)、この処理は終了する。
 S302にて、ECU200は、エイジング完了フラグがオン状態であるか否かを判定する。エイジング完了フラグがオン状態である場合(S302にてYES)、処理はS306に移される。もしそうでない場合(S302にてNO)、処理はS304に移される。
 S304にて、ECU200は、目標アドミタンス値Astを変更する。目標アドミタンス値Astの変更内容については上述したとおりであるため、その詳細な説明については繰り返されない。S306にて、ECU200は、空燃比センサ262が異常であるか否かを判定する。
 以上のような構造およびフローチャートに基づく本実施の形態に係る内燃機関の制御装置に含まれるECU200の異常判定処理に関する動作について説明される。なお、ECU200のエイジング判定処理に関する動作については、上述の第1の実施の形態において説明したとおりであるため、その詳細な説明は繰り返されない。
 たとえば、空燃比センサ262の使用初期において、エイジングが完了していない状態である場合を想定する。このとき、エイジング完了フラグはオフ状態となる。
 車両の走行状態に応じてフューエルカット制御が開始されてから所定時間T(0)が経過し、空燃比センサ262が活性状態となり、EGRバルブが閉弁状態となってから所定時間T(3)が経過しており、かつ、IGオン後に異常判定が行なわれていない場合に、前提条件が成立したと判定される(S300にてYES)。
 エイジング完了フラグはオフ状態であるため(S302にてNO)、目標アドミタンス値Astが変更される(S304)。そのため、空燃比センサ262の素子温Tafが上昇する。
 図12に素子温Tafに応じた出力電流値Iafと印加電圧Vaとの関係が示される。図12の横軸は、印加電圧Vaを示し、図12の縦軸は、出力電流値Iafを示す。
 図12の実線は、空燃比センサ262のエイジングが完了した状態である場合であって、素子温Tafが通常値Taf(1)である場合の大気限界電流ILと印加電圧Vaとの関係を示す。ECU200は、素子温Tafが活性状態に対応した温度範囲内の通常値Taf(1)に収束するようにヒータ68を制御する。この場合、印加電圧VaがVa(0)であるときには、大気限界電流ILの値は、IL(0)となる。
 図12の一点鎖線は、空燃比センサ262のエイジングが完了していない状態である場合であって、素子温Tafが通常値Taf(1)である場合の大気限界電流ILと印加電圧Vaとの関係を示す。この場合、印加電圧VaがVa(0)であるときには、大気限界電流ILの値は、IL(2)となる。
 エイジングが完了していない状態である場合に、目標アドミタンス値Astが上昇されることによって、ECU200は、素子温Tafが、通常値Taf(1)よりも高い温度Taf(2)に収束するようにヒータ68を制御する。その結果、大気限界電流ILと印加電圧Vaとの関係は、図12の破線に示すような関係になる。この場合、図12の破線に示すように、印加電圧VaがVa(0)であるときには、大気限界電流ILの値は、IL(3)となる。IL(3)は、IL(2)よりも大きい値である。すなわち、目標アドミタンス値Astが上昇されることによって、大気限界電流ILの値を、エイジングが完了した状態である場合の大気限界電流ILの値IL(0)に近づけることができる。そのため、異常の有無が判定されたときに(S306)、誤判定が抑制される。
[規則91に基づく訂正 10.05.2012] 
 また、エイジング完了フラグがオン状態である場合には(S302にてYES)、目標アドミタンス値Astが変更されることなく、異常の有無が判定される(S306)。すなわち、大気限界電流ILがしきい値IL_thよりも大きい場合には、空燃比センサ262が正常であると判定される。大気限界電流ILがしきい値IL_th以下である場合には、空燃比センサ262が異常であると判定される。
 なお、ECU200は、空燃比センサ262が異常であると判定した場合には、音声、表示装置あるいは警告灯等を用いて運転者にその旨を通知してもよい。
 以上のようにして、本実施の形態に係る内燃機関の制御装置によると、フューエルカット制御の実行中における空燃比センサ262の出力電流値Iafの変化幅が大きいときには、小さいときに比べて、空燃比センサ262の素子温Tafを上昇させた状態で異常判定条件が成立するか否かを判定する。空燃比センサ262の素子温Tafを上昇させることによって、エイジングが完了していない状態の空燃比センサ262の大気限界電流ILの値をエイジングが完了した状態の空燃比センサ262の大気限界電流ILの値に近づけることができる。そのため、空燃比センサ262の使用初期におけるシリコン成分の残留量が多い場合に、空燃比センサ262の異常の有無が誤判定されることが抑制される。したがって、空燃比センサが異常であるか否かを精度高く判定する内燃機関の制御装置を提供することができる。
 <第3の実施の形態>
 以下、第3の実施の形態に係る内燃機関の制御装置について説明される。本実施の形態に係る内燃機関の制御装置におけるECU200は、上述の第1の実施の形態に係る内燃機関の制御装置におけるECU200の構成と比較して、ECU200の動作が異なる。それ以外の構成については、上述の第1の実施の形態に係る内燃機関の制御装置の構成と同じ構成である。それらについては同じ参照符号が付されている。それらの機能も同じである。したがって、それらについての詳細な説明はここでは繰り返されない。
 本実施の形態においては、ECU200は、フューエルカット制御の実行中における空燃比センサ262の出力電流値Iafの変化幅(最大値Imax-最小値Imin)が大きいときには、小さいときに比べて、空燃比センサ262の検出素子である固体電解質層64に印加する印加電圧Vaを上昇させた状態で異常の有無を判定することを特徴とする。
 図13に、本実施の形態に係る内燃機関の制御装置に含まれるECU200の異常判定処理に関する機能ブロック図が示される。ECU200は、前提条件判定部222と、完了判定部224と、昇圧制御部236と、異常判定部228とを含む。
 なお、前提条件判定部222、完了判定部224および異常判定部228の機能および動作は、上述の第2の実施の形態において説明した図10に示されるECU200の機能ブロック図における前提条件判定部222、完了判定部224および異常判定部228の機能および動作と同様である。そのため、その詳細な説明は繰り返されない。
 昇圧制御部236は、空燃比センサ262のエイジングが完了していない状態である場合に、印加電圧Vaを初期値Va(0)よりも上昇させる。初期値Va(0)は、エイジングが完了した状態を前提として目標アドミタンス値Astが初期値Ast(0)である場合に、素子温Tafが活性状態に対応した温度範囲内となる電圧である。昇圧制御部236は、初期値Va(0)に上昇量ΔVaを加算して印加電圧Vaを決定する。上昇量ΔVaは、所定値であってもよい。あるいは、上昇量ΔVaは、エイジングの進行の程度に応じた上昇量としてもよい。なお、エイジングの進行の程度に応じた上昇量ΔVaの決定方法については、上述の第2の実施の形態における上昇量ΔAstの決定方法と同様である。そのため、その詳細な説明は繰り返されない。
 昇圧制御部236は、内部のスイッチを切り換えて初期値Va(0)よりも高い電圧を出力する回路を選択することによって印加電圧Vaを上昇させてもよい。あるいは、昇圧制御部236は、印加電圧Vaの電圧を線形的あるいは段階的に昇圧する昇圧回路を制御することによって印加電圧Vaを上昇させてもよい。
 なお、昇圧制御部236は、たとえば、前提条件判定フラグがオン状態であって、かつ、エイジング完了フラグがオフ状態である場合に、印加電圧Vaを上昇させるようにしてもよい。
 図14を参照して、本実施の形態に係る内燃機関の制御装置に含まれるECU200で実行される空燃比センサ262の異常判定処理についてのプログラムの制御構造について説明される。
 なお、図14に示したフローチャートの中で、前述の図12に示したフローチャートと同じ処理については同じステップ番号が付されている。それらについての処理も同じである。したがって、それらについての詳細な説明はここでは繰り返されない。
 エイジング完了フラグがオフ状態である場合(S302にてNO)、S404にて、ECU200は、印加電圧Vaを上昇させる。なお、印加電圧の上昇内容については上述したとおりであるためその詳細な説明は繰り返されない。
 以上のような構造およびフローチャートに基づく本実施の形態に係る内燃機関の制御装置に含まれるECU200の異常判定処理に関する動作について説明される。なお、ECU200のエイジング判定処理に関する動作については、上述の第1の実施の形態において説明したとおりであるため、その詳細な説明は繰り返されない。
 たとえば、空燃比センサ262の使用初期において、エイジングが完了していない状態である場合を想定する。このとき、エイジング完了フラグはオフ状態となる。
 車両の走行状態に応じてフューエルカット制御が開始されてから所定時間T(0)が経過し、空燃比センサ262が活性状態となり、EGRバルブが開弁状態となってから所定時間T(3)が経過しており、かつ、IGオン後に異常判定が行なわれていない場合に、前提条件が成立したと判定される(S300にてYES)。
 エイジング完了フラグはオフ状態であるため(S302にてNO)、印加電圧VaがVa(0)からV(1)に上昇される(S404)。
 図15にエイジングの完了の有無に応じた大気限界電流ILと印加電圧Vaとの関係が示される。図15の横軸は、印加電圧Vaを示し、図15の縦軸は、大気限界電流ILを示す。
 図15の実線は、空燃比センサ262のエイジングが完了した状態である場合の大気限界電流ILと印加電圧Vaとの関係を示す。この場合、印加電圧VaがVa(0)であるときには、大気限界電流ILの値は、IL(0)となる。
 図15の破線は、空燃比センサ262のエイジングが完了していない状態である場合の大気限界電流ILと印加電圧Vaとの関係を示す。この場合、印加電圧VaがVa(0)であるときには、大気限界電流ILの値は、IL(2)となる。
 エイジングが完了していない状態である場合に、印加電圧VaがVa(0)からVa(1)に上昇されることによって、大気限界電流ILの値は、IL(2)からIL(4)に上昇する。その結果、エイジングが完了していない状態である場合の大気限界電流ILの値をエイジングが完了した状態である場合の大気限界電流IL(0)に近づけることができる。そのため、異常の有無が判定されたときに(S306)、誤判定が抑制される。
[規則91に基づく訂正 10.05.2012] 
 また、エイジング完了フラグがオン状態である場合には(S302にてYES)、印加電圧Vaが上昇されることなく、異常の有無が判定される(S306)。すなわち、大気限界電流ILがしきい値IL_thよりも大きい場合には、空燃比センサ262が正常であると判定される。大気限界電流ILがしきい値IL_th以下である場合には、空燃比センサ262が異常であると判定される。
 なお、ECU200は、空燃比センサ262が異常であると判定した場合には、音声、表示装置あるいは警告灯等を用いて運転者にその旨を通知してもよい。
[規則91に基づく訂正 10.05.2012] 
 以上のようにして、本実施の形態に係る内燃機関の制御装置によると、フューエルカット制御の実行中における空燃比センサ262の出力電流値Iafの変化幅が大きいときには、小さいときに比べて、空燃比センサ262の印加電圧Vaを上昇させた状態で異常判定条件が成立するか否かを判定する。空燃比センサ262の印加電圧Vaを上昇させることによって、エイジングが完了していない状態の空燃比センサ262の大気限界電流ILをエイジングが完了した状態の空燃比センサ262の大気限界電流ILに近づけることができる。そのため、空燃比センサ262の使用初期におけるシリコン成分の残留量が多い場合に、空燃比センサ262の異常の有無が誤判定されることが抑制される。したがって、空燃比センサが異常であるか否かを精度高く判定する内燃機関の制御装置を提供することができる。
 <第4の実施の形態>
 以下、第4の実施の形態に係る内燃機関の制御装置について説明される。本実施の形態に係る内燃機関の制御装置におけるECU200は、上述の第1の実施の形態に係る内燃機関の制御装置におけるECU200の構成と比較して、ECU200の動作が異なる。それ以外の構成については、上述の第1の実施の形態に係る内燃機関の制御装置の構成と同じ構成である。それらについては同じ参照符号が付されている。それらの機能も同じである。したがって、それらについての詳細な説明はここでは繰り返されない。
[規則91に基づく訂正 10.05.2012] 
 本実施の形態においては、ECU200は、シリコン成分の残留量が多いときには、少ないときに比べて、空燃比センサ262によって検出される第1酸素量よりもより多くなるように実際の第2酸素量を推定する点を特徴とする。
[規則91に基づく訂正 10.05.2012] 
 より具体的には、ECU200は、フューエルカット制御の実行中における空燃比センサ262の出力電流値Iafの変化幅(最大値Imax-最小値Imin)が大きいときには、小さいときに比べて、空燃比センサ262によって検出される第1酸素量よりもより多くなるように実際の第2酸素量を推定するものである。
 図16に、本実施の形態に係る内燃機関の制御装置に含まれるECU200の異常判定処理に関する機能ブロック図が示される。ECU200は、前提条件判定部222と、完了判定部224と、検出値補正部246と、異常判定部228とを含む。
 なお、前提条件判定部222、完了判定部224および異常判定部228の機能および動作は、上述の第2の実施の形態において説明した図10に示されるECU200の機能ブロック図における前提条件判定部222、完了判定部224および異常判定部228の機能および動作と同様である。そのため、その詳細な説明は繰り返されない。
 検出値補正部246は、空燃比センサ262のエイジングが完了していない状態である場合に、空燃比センサ262の検出値である出力電流値Iafを補正する。すなわち、検出値補正部246は、検出値Iaf(0)に補正値ΔIafを加算した値を出力電流値Iafとして算出する。
 補正値ΔIafは、所定値であってもよい。あるいは、補正値ΔIafは、エイジングの進行の程度に応じた補正量としてもよい。なお、エイジングの進行の程度に応じた補正量の決定方法については、上述の第2の実施の形態における上昇量ΔAstの決定方法と同様である。そのため、その詳細な説明は繰り返されない。
 なお、検出値補正部246は、たとえば、前提条件判定フラグがオン状態であって、かつ、エイジング完了フラグがオフ状態である場合に、空燃比センサ262の検出値を補正してもよい。
 図17を参照して、本実施の形態に係る内燃機関の制御装置に含まれるECU200で実行される空燃比センサ262の異常判定処理についてのプログラムの制御構造について説明される。
 なお、図17に示したフローチャートの中で、前述の図12に示したフローチャートと同じ処理については同じステップ番号が付されている。それらについての処理も同じである。したがって、それらについての詳細な説明はここでは繰り返されない。
 エイジング完了フラグがオフ状態である場合(S302にてNO)、S504にて、ECU200は、空燃比センサ262の検出値を補正して出力電流値Iafを算出する。なお、補正内容については上述したとおりであるためその詳細な説明は繰り返されない。
 以上のような構造およびフローチャートに基づく本実施の形態に係る内燃機関の制御装置に含まれるECU200の異常判定処理に関する動作について説明される。なお、ECU200のエイジング判定処理に関する動作については、上述の第1の実施の形態において説明したとおりであるため、その詳細な説明は繰り返されない。
 たとえば、空燃比センサ262の使用初期において、エイジングが完了していない状態である場合を想定する。このとき、エイジング完了フラグはオフ状態となる。
 車両の走行状態に応じてフューエルカット制御が開始されてから所定時間T(0)が経過し、空燃比センサ262が活性状態となり、EGRバルブが開弁状態となってから所定時間T(3)が経過しており、かつ、IGオン後に異常判定が行なわれていない場合に、前提条件が成立したと判定される(S300にてYES)。
 エイジング完了フラグはオフ状態であるため(S302にてNO)、空燃比センサ262の検出値が補正される(S504)。すなわち、空燃比センサ262の出力電流値Iafは、検出値Iaf(0)に補正量ΔIafが加算された値に補正される。補正された空燃比センサ262の出力電流値Iafに基づいて異常の有無が判定される(S306)。その結果、空燃比センサ262の異常の有無が誤判定されることが抑制される。
 また、エイジング完了フラグがオン状態である場合には(S304にてNO)、空燃比センサ262の検出値である出力電流値Iafが補正されることなく、異常の有無が判定される(S306)。
 すなわち、大気限界電流ILがしきい値IL_thよりも大きい場合には、空燃比センサ262が正常であると判定される。大気限界電流ILがしきい値IL_th以下である場合には、空燃比センサ262が異常であると判定される。
 なお、ECU200は、空燃比センサ262が異常であると判定した場合には、音声、表示装置あるいは警告灯等を用いて運転者にその旨を通知してもよい。
[規則91に基づく訂正 10.05.2012] 
 以上のようにして、本実施の形態に係る内燃機関の制御装置によると、シリコン成分の残留量が多いときには、少ないときに比べて、空燃比センサ262によって検出される第1酸素量よりもより多くなるように実際の第2酸素量が推定される。そのため、空燃比センサ262の使用初期におけるシリコン成分の残留量が多い場合に、空燃比センサ262の異常の有無が誤判定されることが抑制される。したがって、空燃比センサが異常であるか否かを精度高く判定する内燃機関の制御装置を提供することができる。
[規則91に基づく訂正 10.05.2012] 
 また、ECU200は、エイジング判定処理において、エンジン10の累積運転時間が所定時間以上である場合にエイジングが完了した状態であると判定してもよい。ECU200は、異常判定処理において、エンジン10の累積運転時間が短いときには、長いときに比べて空燃比センサ262によって検出される第1酸素量よりもより多くなるように実際の第2酸素量を推定してもよい。たとえば、ECU200は、異常判定処理において、エンジン10の累積運転時間が所定時間以上である場合には、空燃比センサ262による検出値を用いて空燃比センサ262の異常の有無を判定してもよい。また、ECU200は、エンジン10の累積運転時間が所定時間よりも短い場合には、累積運転時間が長いときと比べて、空燃比センサ262によって検出される第1酸素量よりもより多くなるように実際の第2酸素量を推定して、推定された第2酸素量を用いて空燃比センサ262の異常の有無を判定してもよい。すなわち、ECU200は、空燃比センサ262の検出値にエイジングの状態に応じた補正量を加算した値を用いて異常の有無を判定してもよい。
[規則91に基づく訂正 10.05.2012] 
 あるいは、ECU200は、エイジング判定処理において、空燃比センサ262の通電回数が所定回数以上である場合にエイジングが完了した状態であると判定してもよい。ECU200は、異常判定処理において、空燃比センサ262の通電回数が少ないときには、多いときに比べて空燃比センサ262によって検出される第1酸素量よりもより多くなるように実際の第2酸素量を推定してもよい。たとえば、ECU200は、異常判定処理において、空燃比センサ262の通電回数が所定回数以上である場合には、空燃比センサ262による検出値を用いて空燃比センサ262の異常の有無を判定してもよい。また、ECU200は、空燃比センサ262の通電回数が所定回数よりも少ない場合には、空燃比センサ262の通電回数が多いときに比べて空燃比センサ262によって検出される第1酸素量よりもより多くなるように実際の第2酸素量を推定して、推定された第2酸素量を用いて空燃比センサ262の異常の有無を判定してもよい。すなわち、ECU200は、空燃比センサ262の検出値にエイジングの状態に応じた補正量を加算した値を用いて異常の有無を判定してもよい。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 10 エンジン、11 エンジン回転速度センサ、12 吸気通路、14 排気通路、61 カバー、62 小孔、63 センサ本体、64 固体電解質層、65 拡散抵抗層、66 排気側電極、67 大気側電極、68 ヒータ、69 大気ダクト、102 エアクリーナ、104 スロットルバルブ、106 気筒、108 インジェクタ、110 点火プラグ、112 三元触媒、114 ピストン、116 クランク軸、118 吸気バルブ、120 排気バルブ、122 吸気側カム、124 排気側カム、126 VVT機構、200 ECU、202 実行条件判定部、204 計測部、206 エイジング判定部、208 リセット部、212,224 完了判定部、214 しきい値決定部、216,228 異常判定部、222 前提条件判定部、226 目標値変更部、236 昇圧制御部、246 検出値補正部、252 メモリ、254 カム角センサ、256 水温センサ、258 エアフローメータ、262 空燃比センサ。

Claims (13)

  1.  内燃機関(10)に設けられ、検出素子(64)内にシリコン成分が残留し、使用によって前記シリコン成分の残留量が減少していく空燃比センサ(262)と、
     前記空燃比センサによる検出結果に基づいて前記空燃比センサが異常であるか否かを判定するための制御ユニット(200)とを含み、
     前記制御ユニットは、前記シリコン成分の残留量が多いときには、少ないときに比べて異常判定を緩和する、内燃機関の制御装置。
  2.  前記制御ユニットは、異常判定条件が成立した場合に前記空燃比センサが異常であると判定し、前記シリコン成分の残留量が多いときには、少ないときに比べて前記異常判定条件を緩和する、請求項1に記載の内燃機関の制御装置。
  3.  前記制御ユニットは、前記内燃機関の累積運転時間が短いときには、長いときに比べて前記異常判定条件を緩和する、請求項2に記載の内燃機関の制御装置。
  4.  前記制御ユニットは、前記空燃比センサへの通電回数が少ないときは、多いときに比べて前記異常判定条件を緩和する、請求項2に記載の内燃機関の制御装置。
  5. [規則91に基づく訂正 10.05.2012] 
     前記制御ユニットは、前記シリコン成分の残留量が多いときには、少ないときに比べて、前記空燃比センサによって検出される第1酸素量よりもより多くなるように実際の第2酸素量を推定する、請求項1に記載の内燃機関の制御装置。
  6. [規則91に基づく訂正 10.05.2012] 
     前記制御ユニットは、前記内燃機関の累積運転時間が短いときには、長いときに比べて、前記第1酸素量よりもより多くなるように前記第2酸素量を推定する、請求項5に記載の内燃機関の制御装置。
  7. [規則91に基づく訂正 10.05.2012] 
     前記制御ユニットは、前記空燃比センサへの通電回数が少ないときは、多いときに比べて、前記第1酸素量よりもより多くなるように前記第2酸素量を推定する、請求項5に記載の内燃機関の制御装置。
  8.  内燃機関(10)に設けられ、製造過程でシリコン成分が含有される検出素子(64)を備えた空燃比センサ(262)と、
     前記空燃比センサによる検出結果に基づいて前記空燃比センサが異常であるか否かを判定するための制御ユニット(200)とを含み、
     前記制御ユニットは、前記内燃機関の累積運転時間が短いときには、長いときに比べて異常判定条件を緩和する、内燃機関の制御装置。
  9.  内燃機関(10)に設けられ、検出素子(64)内にシリコン成分が残留し、使用によって前記シリコン成分の残留量が減少していく空燃比センサ(262)と、
     前記内燃機関に対するフューエルカット制御の実行中における前記空燃比センサの出力値の変化幅に基づいて前記シリコン成分が許容範囲を超えて残留しているか否かを判定する制御ユニット(200)とを含む、内燃機関の制御装置。
  10.  前記制御ユニットは、前記空燃比センサによる検出結果に基づいて異常判定条件が成立した場合に前記空燃比センサが異常であると判定し、前記フューエルカット制御の実行中における前記変化幅が大きいときには、小さいときに比べて、前記異常判定条件を緩和する、請求項9に記載の内燃機関の制御装置。
  11. [規則91に基づく訂正 10.05.2012] 
     前記制御ユニットは、前記フューエルカット制御の実行中における前記変化幅が大きいときには、小さいときに比べて、前記空燃比センサによって検出される第1酸素量よりもより多くなるように実際の第2酸素量を推定する、請求項9に記載の内燃機関の制御装置。
  12.  前記制御ユニットは、前記空燃比センサによる検出結果に基づいて異常判定条件が成立した場合に前記空燃比センサが異常であると判定し、前記フューエルカット制御の実行中における前記変化幅が大きいときには、小さいときに比べて、前記空燃比センサの素子温を上昇させた状態で前記異常判定条件が成立するか否かを判定する、請求項9に記載の内燃機関の制御装置。
  13.  前記制御ユニットは、前記空燃比センサによる検出結果に基づいて異常判定条件が成立した場合に前記空燃比センサが異常であると判定し、前記フューエルカット制御の実行中における前記変化幅が大きいときには、小さいときに比べて、前記空燃比センサの素子に印加する電圧を上昇させた状態で前記異常判定条件が成立するか否かを判定する、請求項9に記載の内燃機関の制御装置。
PCT/JP2011/070806 2011-09-13 2011-09-13 内燃機関の制御装置 WO2013038490A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2011/070806 WO2013038490A1 (ja) 2011-09-13 2011-09-13 内燃機関の制御装置
CN201180073450.8A CN103797236A (zh) 2011-09-13 2011-09-13 内燃机的控制装置
US14/232,394 US20140188371A1 (en) 2011-09-13 2011-09-13 Control device for internal combustion engine
DE112011105619.2T DE112011105619T5 (de) 2011-09-13 2011-09-13 Steuervorrichtung für Maschine mit interner Verbrennung
JP2013533372A JP5696789B2 (ja) 2011-09-13 2011-09-13 内燃機関の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/070806 WO2013038490A1 (ja) 2011-09-13 2011-09-13 内燃機関の制御装置

Publications (1)

Publication Number Publication Date
WO2013038490A1 true WO2013038490A1 (ja) 2013-03-21

Family

ID=47882755

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/070806 WO2013038490A1 (ja) 2011-09-13 2011-09-13 内燃機関の制御装置

Country Status (5)

Country Link
US (1) US20140188371A1 (ja)
JP (1) JP5696789B2 (ja)
CN (1) CN103797236A (ja)
DE (1) DE112011105619T5 (ja)
WO (1) WO2013038490A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016031055A (ja) * 2014-07-29 2016-03-07 トヨタ自動車株式会社 空燃比センサの異常診断装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9255538B1 (en) * 2012-09-27 2016-02-09 Brunswick Corporation Control systems and methods for marine engines emitting exhaust gas
JP6323281B2 (ja) * 2014-09-26 2018-05-16 トヨタ自動車株式会社 内燃機関の制御装置
US10202945B2 (en) * 2015-08-24 2019-02-12 Ford Global Technologies, Llc Method and device for controlling a motor-vehicle internal combustion engine fitted with a fuel injection system and an exhaust gas recirculation system
JP6989282B2 (ja) * 2017-04-24 2022-01-05 日本特殊陶業株式会社 異常判定装置および制御システム
JP7460489B2 (ja) * 2020-09-10 2024-04-02 リンナイ株式会社 燃焼装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0320655A (ja) * 1989-06-16 1991-01-29 Ngk Spark Plug Co Ltd 酸素センサの異常検出装置
JP2003020989A (ja) * 2001-07-09 2003-01-24 Nissan Motor Co Ltd 空燃比センサの異常診断装置
JP2006258566A (ja) * 2005-03-16 2006-09-28 Fujitsu Ten Ltd 空燃比センサ異常検出装置及びその判定方法

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5265417A (en) * 1993-01-07 1993-11-30 Ford Motor Company Method and apparatus for determining the hydrocarbon conversion efficiency of a catalytic converter
JPH09291844A (ja) * 1996-04-30 1997-11-11 Sanshin Ind Co Ltd 内燃機関の燃料噴射制御装置
US6055972A (en) * 1996-07-04 2000-05-02 Denso Corporation Air fuel ratio control apparatus having air-fuel ratio control point switching function
JP3760558B2 (ja) * 1997-04-23 2006-03-29 株式会社デンソー 酸素センサのヒータ制御装置
DE19752965C2 (de) * 1997-11-28 2002-06-13 Siemens Ag Verfahren zur Überwachung des Abgasreinigungssystems einer fremdgezündeten Brennkraftmaschine
EP0994345B1 (en) * 1998-10-13 2014-02-26 Denso Corporation Power supply control system for heater used in gas concentration sensor
EP1154263A4 (en) * 1999-10-27 2006-08-30 Ngk Spark Plug Co OXYGEN DETECTOR AND METHOD FOR MANUFACTURING DETECTION ELEMENT
DE10330742A1 (de) * 2003-07-07 2005-01-27 Daimlerchrysler Ag Abgassensor zur Detektion einer Gaskomponente im Abgas einer Brennkraftmaschine und Verfahren zum Betreiben eines Abgassensors
JP2005273636A (ja) * 2004-03-26 2005-10-06 Mitsubishi Electric Corp 酸素センサ劣化診断装置
JP4109214B2 (ja) * 2004-03-31 2008-07-02 日本特殊陶業株式会社 ガスセンサ
JP4325641B2 (ja) * 2006-05-24 2009-09-02 トヨタ自動車株式会社 空燃比センサの制御装置
US8211281B2 (en) * 2006-10-10 2012-07-03 Delphi Technologies, Inc. Catalyst anneal for durable stoichiometric shift corrected protective coating for oxygen sensors
EP1961942B1 (en) * 2007-02-21 2018-10-24 NGK Spark Plug Co., Ltd. Diagnostic method and control apparatus for gas sensor
DE102007025234A1 (de) * 2007-05-31 2008-12-04 Robert Bosch Gmbh Sensorelement zur Bestimmung einer physikalischen Eigenschaft eines Messgases
JP4430100B2 (ja) * 2007-12-25 2010-03-10 本田技研工業株式会社 制御装置
JP4835703B2 (ja) * 2009-02-23 2011-12-14 トヨタ自動車株式会社 酸素センサの異常判定装置
WO2011111156A1 (ja) * 2010-03-09 2011-09-15 トヨタ自動車 株式会社 触媒劣化検出装置
WO2012093480A1 (ja) * 2011-01-06 2012-07-12 イビデン株式会社 排ガス処理装置
JP5346989B2 (ja) * 2011-05-31 2013-11-20 本田技研工業株式会社 空燃比センサの異常判定装置
JP5862292B2 (ja) * 2011-12-28 2016-02-16 マツダ株式会社 ディーゼルエンジンの制御装置
US9133785B2 (en) * 2012-04-27 2015-09-15 Michael L. Kociba Oxygen sensor output correction systems and methods
AU2013376228B2 (en) * 2013-01-29 2016-01-14 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine
DE102014200481A1 (de) * 2014-01-14 2015-07-16 Robert Bosch Gmbh Breitbandlambdasonde und Herstellungsverfahren für eine Breitbandlambdasonde

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0320655A (ja) * 1989-06-16 1991-01-29 Ngk Spark Plug Co Ltd 酸素センサの異常検出装置
JP2003020989A (ja) * 2001-07-09 2003-01-24 Nissan Motor Co Ltd 空燃比センサの異常診断装置
JP2006258566A (ja) * 2005-03-16 2006-09-28 Fujitsu Ten Ltd 空燃比センサ異常検出装置及びその判定方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016031055A (ja) * 2014-07-29 2016-03-07 トヨタ自動車株式会社 空燃比センサの異常診断装置

Also Published As

Publication number Publication date
DE112011105619T5 (de) 2014-07-31
JPWO2013038490A1 (ja) 2015-03-23
CN103797236A (zh) 2014-05-14
US20140188371A1 (en) 2014-07-03
JP5696789B2 (ja) 2015-04-08

Similar Documents

Publication Publication Date Title
JP5696789B2 (ja) 内燃機関の制御装置
US10422292B2 (en) Methods and systems for an exhaust oxygen sensor operation
US8401766B2 (en) Inter-cylinder air-fuel ratio imbalance determination apparatus for internal combustion engine
EP1788229A1 (en) Combustion state determination method for internal combustion engine
JP2010281732A (ja) ガス濃度湿度検出装置
KR101442391B1 (ko) 내연 기관의 배출 제어 시스템
JP2008267230A (ja) 内燃機関の制御装置
KR101399192B1 (ko) 내연 기관의 배출 제어 시스템
US7013214B2 (en) Air-fuel ratio feedback control apparatus and method for internal combustion engine
JP5817581B2 (ja) 内燃機関の排出ガス浄化装置
US8401765B2 (en) Inter-cylinder air-fuel ratio imbalance determination apparatus for internal combustion engine
JP4726663B2 (ja) 内燃機関の空燃比制御装置
JP6551314B2 (ja) ガスセンサ制御装置
JP2008064007A (ja) 内燃機関の制御装置
JP2018189068A (ja) 内燃機関の燃料噴射制御装置
JP5459513B2 (ja) 内燃機関の空燃比制御装置
US20190136738A1 (en) Sensor system
JP4780465B2 (ja) 酸素センサの故障診断装置
JP5285474B2 (ja) 内燃機関の排気ガス再循環制御方法
WO2014129108A1 (ja) 内燃機関の制御装置
WO2014181512A1 (ja) 内燃機関の空燃比制御装置
JP4466868B2 (ja) 排ガス検出装置
JP2010053758A (ja) 内燃機関の燃料噴射量制御装置
JP2024132120A (ja) 濃度情報取得装置、及び濃度情報取得方法
JP4726541B2 (ja) 内燃機関の空燃比制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11872236

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013533372

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14232394

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120111056192

Country of ref document: DE

Ref document number: 112011105619

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11872236

Country of ref document: EP

Kind code of ref document: A1