WO2013035210A1 - 電池外装用積層体およびその製造方法ならびに二次電池 - Google Patents

電池外装用積層体およびその製造方法ならびに二次電池 Download PDF

Info

Publication number
WO2013035210A1
WO2013035210A1 PCT/JP2012/000432 JP2012000432W WO2013035210A1 WO 2013035210 A1 WO2013035210 A1 WO 2013035210A1 JP 2012000432 W JP2012000432 W JP 2012000432W WO 2013035210 A1 WO2013035210 A1 WO 2013035210A1
Authority
WO
WIPO (PCT)
Prior art keywords
polypropylene layer
laminate
acid
metal plate
battery
Prior art date
Application number
PCT/JP2012/000432
Other languages
English (en)
French (fr)
Inventor
大 平工
紘史 成松
信之 土屋
杉田 修一
Original Assignee
日新製鋼株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日新製鋼株式会社 filed Critical 日新製鋼株式会社
Priority to JP2012507492A priority Critical patent/JP5883379B2/ja
Priority to CN201280043793.4A priority patent/CN103782412B/zh
Priority to KR1020147005102A priority patent/KR101580958B1/ko
Publication of WO2013035210A1 publication Critical patent/WO2013035210A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/124Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/121Organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • B65D65/40Applications of laminates for particular packaging purposes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/102Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure
    • H01M50/105Pouches or flexible bags
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/124Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure
    • H01M50/126Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure comprising three or more layers
    • H01M50/129Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure comprising three or more layers with two or more layers of only organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/131Primary casings, jackets or wrappings of a single cell or a single battery characterised by physical properties, e.g. gas-permeability or size
    • H01M50/133Thickness
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a laminated body for battery exterior having an electrolytic solution resistance, a manufacturing method thereof, and a secondary battery having the laminated body for battery exterior.
  • Secondary batteries such as nickel-cadmium batteries, nickel-hydrogen batteries, and lithium-ion batteries are widely used in electronic devices such as mobile phones, notebook personal computers, digital cameras, and portable music players.
  • lithium ion batteries are excellent in energy density and output characteristics, and thus are widely used in mobile phones and mobile devices that are required to be small and lightweight.
  • secondary batteries have also been adopted in large equipment such as electric vehicles, hybrid vehicles, and solar battery storage batteries.
  • these secondary batteries for large-sized devices, it is necessary to increase the capacity of the electrolytic solution in order to improve the output capacity, and accordingly, the size of the secondary battery is also increased.
  • Such a large secondary battery packaging member is required to have safety (robustness, durability, etc.) higher than that of a small secondary battery packaging member.
  • a laminate having a metal plate and a polypropylene layer formed on the surface of the metal plate has been proposed.
  • This laminated body is formed into a fixed shape from a flat plate state by drawing or overhanging and used as a packaging member.
  • Such a laminate of a metal plate and a polypropylene layer has a problem that cracking occurs in the processed portion of the polypropylene layer when drawing or overhanging is performed.
  • a method for solving this it has been proposed to rapidly cool a metal plate and a polypropylene layer (see, for example, Patent Documents 1 and 2).
  • Polypropylene is known to crystallize when the cooling rate after heat welding is slow. And a crack arises by shape
  • the laminated body after heat welding is rapidly cooled, crystallization of the polypropylene layer can be suppressed, and as a result, generation of cracks can be suppressed.
  • Patent Document 1 describes a laminate for a can (for example, an 18L can or an aerosol can) including a metal plate, an acid-modified polypropylene layer, and a polypropylene layer.
  • the laminated body described in Patent Document 1 is obtained by laminating an acid-modified polypropylene layer and a polypropylene layer on a metal plate and thermally welding them, and then at a rate of 20 ° C./second or more (preferably 100 ° C./second or more) at 55 ° C. or less. It is manufactured by cooling to a temperature (preferably 30 ° C. or less). Thereby, the crystallinity degree of the acid-modified polypropylene layer and the polypropylene layer is suppressed to 55% or less.
  • Patent Document 2 also describes a laminated body for a can including a metal plate, an acid-modified polypropylene layer, and a polypropylene layer.
  • the laminate described in Patent Document 2 is manufactured by laminating acid-modified polypropylene and polypropylene on a metal plate, heat-welding, and then cooling to room temperature at a rate of 200 ° C / second or more. The Thus, it is explained that the crystallization of the acid-modified polypropylene layer and the polypropylene layer is partially suppressed or not generated at all.
  • the present inventors produced a battery case using the laminate produced by the methods described in Patent Documents 1 and 2. Specifically, first, a laminate was prepared by laminating acid-modified polypropylene and polypropylene on a stainless steel plate having a thickness of 100 ⁇ m subjected to chemical conversion treatment of phosphoric acid chromate. Next, the obtained laminate was stretched and molded to a depth of 8 mm by a thin plate molding tester to produce a battery case. And when the secondary battery (lithium ion battery) was produced using the battery case, the battery case (laminated body) of the produced secondary battery had poor electrolytic solution resistance, and the metal plate (stainless steel plate) The resin layer has peeled off.
  • the present inventors observed the resin side surface of the laminate after the molding process with a microscope. As a result, it was found that a large crack did not occur on the resin side surface of the laminate after the molding process, but a fine crack that could cause a decrease in the resistance to electrolytic solution occurred.
  • the present invention has been made in view of the above points, and an object of the present invention is to provide a laminate for a battery exterior having excellent electrolytic solution resistance even after molding and a method for producing the same. Moreover, an object of this invention is to provide the secondary battery which has the said laminated body for battery exteriors.
  • the present inventors not only reduce the crystallinity in the polypropylene layer but also suppress the generation and growth of spherulites in the polypropylene layer, thereby preventing the occurrence of fine cracks during molding.
  • the present invention was completed by adding a headline and further examination.
  • this invention relates to the following laminated bodies for battery exteriors.
  • this invention relates to the manufacturing method of the following laminated bodies for battery exteriors.
  • the present invention it is possible to provide a laminate for a battery exterior that is excellent in electrolytic solution resistance without generating fine cracks even after molding. Moreover, according to this invention, the secondary battery excellent in electrolyte solution resistance can be provided.
  • FIG. 1A is a graph of X-ray diffraction of a polypropylene layer when the laminate is slowly cooled
  • FIG. 1B is an SEM image of the polypropylene layer when the laminate is slowly cooled
  • FIG. It is the photograph by the microscope of the process part when it cools slowly
  • 2A is a graph of the X-ray diffraction of the polypropylene layer when the laminate is rapidly cooled to 30 ° C.
  • FIG. 2B is an SEM image of the polypropylene layer when the laminate is rapidly cooled to 30 ° C.
  • FIG. 3A is an X-ray diffraction graph of the polypropylene layer when the laminate is rapidly cooled to 20 ° C.
  • FIG. 3B is an SEM image of the polypropylene layer when the laminate is rapidly cooled to 20 ° C.
  • FIG. It is the photograph by the microscope of the process part of a polypropylene layer when a laminated body is rapidly cooled to 20 degreeC.
  • 4A and 4B are X-ray diffraction graphs of the polypropylene layer of each laminate. It is the photograph by the microscope of the SEM image of the polypropylene layer of each laminated body, and a process part. It is the photograph by the microscope of the SEM image of the polypropylene layer of each laminated body, and a process part. It is a graph which shows the relationship between cooling completion temperature and the average outer diameter of a spherulite.
  • 8A to 8C are SEM images of the polypropylene layer of the laminate of the comparative example.
  • the laminated body for battery exterior is a laminated body for battery exterior which can be used for the exterior of various batteries, such as a lithium ion battery, Comprising: It arrange
  • Metal plate The type of the metal plate is not particularly limited, and can be appropriately selected according to the weight, strength, processing depth, and the like required for the battery exterior material.
  • metal plate materials include cold-rolled steel sheets, galvanized steel sheets, Zn-Al alloy-plated steel sheets, Zn-Al-Mg alloy-plated steel sheets, aluminum-plated steel sheets, stainless steel sheets (austenitic, ferritic, martensitic) Any of these may be included), an aluminum plate, an aluminum alloy plate, a copper plate, and the like.
  • the metal plate is preferably various plated steel plates or stainless steel plates from the viewpoint of corrosion resistance.
  • the thickness of the metal plate is not particularly limited, and can be appropriately set according to the weight, strength, processing depth, and the like required for the battery exterior material.
  • the thickness of the metal plate is preferably within the range of 15 to 600 ⁇ m, and particularly preferably within the range of 20 to 400 ⁇ m in consideration of the generally required strength and processing depth of the battery exterior material.
  • the thickness of the metal plate used as the battery exterior material is preferably thin from the viewpoint of reducing the weight of the battery. However, when the thickness of the metal plate is reduced to less than 15 ⁇ m, the strength and workability of the battery exterior laminate are lowered and the manufacturing cost is increased. On the other hand, if the plate thickness is 600 ⁇ m, it is sufficient even when deep drawing about 50 mm is performed.
  • the metal plate may have a chemical conversion treatment film formed on the surface thereof from the viewpoint of improving the corrosion resistance and the adhesion with the acid-modified polypropylene layer.
  • the type of chemical conversion treatment is not particularly limited.
  • Examples of the chemical conversion treatment include chromate treatment (chromic acid type), chromium-free treatment (silane type, organic titanium type, organic aluminum type, etc.), and phosphate treatment (chromium phosphate, zinc phosphate, etc.).
  • the adhesion amount of the chemical conversion treatment film formed by chemical conversion treatment is not particularly limited as long as it is within a range effective for improving corrosion resistance and adhesion to the acid-modified polypropylene layer. For example, in the case of a chromate film, the adhesion amount may be adjusted so that the total Cr conversion adhesion amount is 5 to 100 mg / m 2 .
  • the Ti-Mo composite coating has a range of 10 to 500 mg / m 2
  • the fluoroacid-based coating has a fluorine equivalent or total metal element equivalent deposit of 3 to 100 mg / m 2.
  • the adhesion amount may be adjusted. In the case of a phosphate film, the adhesion amount may be adjusted so as to be 5 to 500 mg / m 2 .
  • the chemical conversion treatment film can be formed by a known method.
  • the chemical conversion solution may be applied to the surface of the metal plate by a method such as a roll coating method, a spin coating method, or a spray method, and dried without being washed with water.
  • the drying temperature and drying time are not particularly limited as long as moisture can be evaporated. From the viewpoint of productivity, the drying temperature is preferably in the range of 60 to 150 ° C. as the ultimate plate temperature, and the drying time is preferably in the range of 2 to 10 seconds.
  • Acid-modified polypropylene layer The acid-modified polypropylene layer is located between the metal plate and the polypropylene layer, and improves the adhesion between the metal plate and the polypropylene layer.
  • the kind of the acid-modified polypropylene is not particularly limited and can be appropriately selected from known ones.
  • Examples of acid-modified polypropylene include polypropylene grafted with an unsaturated carboxylic acid such as acrylic acid, methacrylic acid, maleic acid, maleic anhydride, citraconic anhydride, itaconic acid, itaconic anhydride or its anhydride, and propylene. And a copolymer of acrylic acid or methacrylic acid.
  • the acid-modified polypropylene is preferably a polypropylene graft-modified with an unsaturated carboxylic acid such as maleic anhydride-modified polypropylene.
  • the thickness of the acid-modified polypropylene layer is not particularly limited, but is preferably in the range of 10 to 100 ⁇ m.
  • the thickness of the acid-modified polypropylene layer is less than 10 ⁇ m, there is a possibility that sufficient adhesion with the metal plate cannot be ensured.
  • the thickness of the acid-modified polypropylene layer exceeds 100 ⁇ m, no improvement in adhesion is observed, and the production cost increases. Moreover, there exists a possibility that the workability of the laminated body for battery exteriors may fall.
  • the polypropylene layer has a function of blocking the inside of the battery from outside air and sealing the battery. That is, when a battery is manufactured using the laminate of the present invention, the inside of the battery is exposed to the outside air (especially by heat-sealing the polypropylene layer of one laminate with the polypropylene layer or metal electrode of the other laminate). In addition to blocking from water vapor, it prevents electrolyte leakage.
  • the polypropylene layer also has a function of improving the corrosion resistance of the metal plate against the electrolytic solution.
  • the type of polypropylene is not particularly limited and can be appropriately selected from known ones.
  • Examples of polypropylene include homopolymerized polypropylene.
  • the thickness of the polypropylene layer is not particularly limited, but is preferably in the range of 10 to 100 ⁇ m. When the thickness of the polypropylene layer is less than 10 ⁇ m, it may not be possible to heat-seal with sufficient strength when manufacturing a battery. On the other hand, even if the thickness of the polypropylene layer is more than 100 ⁇ m, no improvement in the strength of heat fusion is recognized, and the production cost increases. Moreover, there exists a possibility that the workability of the laminated body for battery exteriors may fall.
  • the laminate for battery exterior according to the present invention is characterized in that the polypropylene layer contains almost no large spherulites. More specifically, the battery exterior laminate of the present invention is exposed when the surface of the polypropylene layer is observed with a scanning electron microscope after selectively etching the amorphous part of the polypropylene layer with an electron beam.
  • the outer diameter of the spherulite is less than 1 ⁇ m.
  • the battery outer laminate of the present invention on which no metal is deposited is scanned at an acceleration voltage of 10 kV and a probe current of 90 eV for 5 minutes in a pressure of 30 Pa.
  • the crystalline part can be selectively etched.
  • the crystal part can be clearly observed by observing the surface of the etched polypropylene layer at a magnification of 500 times.
  • the outer diameter of a spherulite in a polypropylene layer is measured, in the laminated body for battery exteriors of this invention, the outer diameter of a spherulite is less than 1 micrometer (refer an Example).
  • the present inventors have come to the conclusion that not only large cracks but also fine cracks will not occur after molding if the generation and growth of spherulites in the polypropylene layer is suppressed. More specifically, the present inventors have found that if the outer diameter of the spherulites in the polypropylene layer is less than 1 ⁇ m, fine cracks do not occur after processing.
  • the laminate for battery exterior of the present invention has a very low crystallinity in the polypropylene layer, and the outer diameter of the spherulites in the polypropylene layer is less than 1 ⁇ m, so that only large cracks are formed during the molding process. In addition, fine cracks do not occur. Therefore, by using the laminate for battery exterior of the present invention, a battery exterior (battery case) having excellent electrolytic solution resistance can be produced.
  • the method for producing the battery exterior laminate of the present invention is not particularly limited.
  • the laminate for battery exterior of the present invention can be manufactured by the following procedure.
  • the method for producing a laminate for battery exterior includes 1) a first step of preparing a metal plate, 2) a second step of laminating an acid-modified polypropylene layer, and 3 3) a third step of laminating a polypropylene layer, 4) a fourth step of heating the laminate, and 5) a fifth step of cooling the polypropylene layer.
  • the above-mentioned metal plate used as a substrate is prepared.
  • a chemical conversion film may be formed on the surface of the metal plate.
  • Second Step In the second step, an acid-modified polypropylene layer is laminated on a metal plate.
  • the method for disposing the acid-modified polypropylene layer on the metal plate is not particularly limited, and can be appropriately selected from known methods.
  • an acid-modified polypropylene film may be laminated on a metal plate (lamination method), or an acid-modified polypropylene resin composition may be applied on a metal plate (coating method).
  • the lamination method include a thermal lamination method and a sand lamination method.
  • the acid-modified polypropylene film a commercially available one may be used, or a T-die extruder may be used.
  • the acid-modified polypropylene film may be unstretched or uniaxially or biaxially stretched.
  • examples of the coating method include a method in which a resin composition is melted and coated with a T-die extruder, a bar coater, a roll coater or the like, a method in which a metal plate is immersed in the melted resin composition, and the resin composition is a solvent. And a method of coating with a bar coater, roll coater, spin coater, etc.
  • a polypropylene layer is laminated on the acid-modified polypropylene layer.
  • the method for disposing the polypropylene layer on the acid-modified polypropylene layer is not particularly limited, and can be appropriately selected from known methods.
  • a polypropylene film may be laminated on the acid-modified polypropylene layer (lamination method), or a polypropylene resin composition may be applied on the acid-modified polypropylene layer (coating method).
  • a commercially available polypropylene film may be used, or a polypropylene film may be produced using a T-die extruder or the like.
  • the polypropylene film may be unstretched or uniaxially or biaxially stretched.
  • examples of the coating method include a method in which the resin composition is melted and coated with a T-die extruder, a bar coater, a roll coater, or the like, and a metal plate on which an acid-modified polypropylene layer is formed is immersed in the melted resin composition. And a method in which the resin composition is dissolved in a solvent and applied by a bar coater, a roll coater, a spin coater, or the like.
  • the third step may be performed after the second step, but may be performed simultaneously with the second step. That is, after an acid-modified polypropylene layer is disposed on a metal plate, a polypropylene layer may be disposed on the disposed acid-modified polypropylene layer. Moreover, you may arrange
  • the laminate obtained from the first step to the third step is heated to the melting point or higher of the polypropylene (and acid-modified polypropylene) constituting the polypropylene layer. Thereby, the adhesiveness between each layer of a laminated body can be improved.
  • the method for heating the laminate is not particularly limited. Examples of the method of heating the laminated body include a method of putting the laminated body in an oven. Moreover, the temperature which heats a laminated body will not be specifically limited if it is more than melting
  • the polypropylene layer heated in the fourth step is cooled (rapidly cooled) from a temperature of 120 ° C. or higher to a temperature of 20 ° C. or lower at a rate of 100 ° C./second or higher. .
  • the fifth step not only the polypropylene layer but also the whole laminate heated in the fourth step is cooled at a rate of 100 ° C./second or higher from a temperature of 120 ° C. or higher to a temperature of 20 ° C. or lower. .
  • the heated laminated body can be cooled, generating almost no spherulites having a size larger than the predetermined diameter in the polypropylene layer.
  • the method for cooling the laminate is not particularly limited.
  • Examples of the method of cooling the laminate include a method of submerging the laminate, a method of spraying cooling gas, a method of spraying cooling water, and a method of contacting with a chill roll.
  • the cooling start temperature is not particularly limited as long as it is 120 ° C. or higher, but is preferably in the range of 120 to 190 ° C.
  • the cooling start temperature is less than 120 ° C.
  • crystals are generated in the polypropylene layer.
  • the metal plate is rapidly cooled from a temperature exceeding 190 ° C.
  • a cooling strain due to thermal contraction occurs in the metal plate, and the flatness of the polypropylene layer surface may be remarkably deteriorated.
  • the outermost polypropylene layer may be oxidized, and the strength of heat fusion between the battery exterior laminates may be reduced.
  • the cooling rate from the cooling start temperature to the cooling end temperature is not particularly limited as long as it is 100 ° C./second or more. By setting the cooling rate to 100 ° C./second or more, crystallization in the polypropylene layer can be suppressed.
  • the manufacturing method of the present invention is characterized in that the cooling end temperature is 20 ° C. or less.
  • the cooling end temperature is 20 ° C. or less.
  • crystallization in a polypropylene layer does not proceed if the polypropylene layer is cooled below the melting point of polypropylene.
  • fine crystals may be generated in the polypropylene layer.
  • the generation and growth of spherulites in the polypropylene layer can be suppressed, and as a result, the outer diameter of the spherulites in the polypropylene layer can be less than 1 ⁇ m (implementation). See Example 1).
  • the heated laminate was cooled to 55 ° C. (preferably 30 ° C.) or less (see Patent Document 1) or room temperature (see Patent Document 2).
  • the present inventors have found that even when the crystallinity of the polypropylene layer is less than the lower limit of measurement by X-ray diffraction, fine cracks can occur during molding.
  • the present inventors have found that if the outer diameter of the generated spherulites is less than 1 ⁇ m, not only large cracks but also fine cracks do not occur after molding. That is, conventionally, it was thought that crystallization would not proceed if cooled to 55 ° C. (preferably 30 ° C.), which is below the melting point of the polypropylene layer, or to room temperature.
  • the present inventors have determined that the outer diameter of the spherulite is reduced when the cooling start temperature is 120 ° C. or higher, the cooling rate is 100 ° C./second or higher, and the cooling end temperature is 20 ° C. or lower. Was found to be less than 1 ⁇ m.
  • FIG. 1 shows the results when the laminate (polypropylene layer) was taken out of the oven after the heat treatment at an ultimate plate temperature of 180 ° C. and slowly cooled to 25 ° C., which is room temperature, at a rate of 6 ° C./second.
  • FIG. 1A is a graph showing the results of X-ray diffraction of a polypropylene layer.
  • FIG. 1B is an SEM image of the surface of the polypropylene layer (after etching) before the laminate is molded.
  • FIG. 1C is a photograph taken by a microscope of the surface of the polypropylene layer after the laminate was stretched and processed to a depth of 8 mm by a thin plate molding tester.
  • FIG. 2 shows the results when the laminate (polypropylene layer) was cooled (rapidly cooled) from a temperature of 160 ° C. to a temperature of 30 ° C. at a rate of 100 ° C./second or more.
  • FIG. 2A is a graph showing the results of X-ray diffraction of the polypropylene layer.
  • FIG. 2B is an SEM image of the surface of the polypropylene layer (after etching) before the laminate is molded.
  • FIG. 2C is a photograph taken by a microscope of the surface of the polypropylene layer after the laminated body is molded.
  • FIG. 2A no crystallization peak of ⁇ crystal was observed in the X-ray diffraction spectrum of the polypropylene layer when the laminate was rapidly cooled to a temperature of 30 ° C.
  • FIG. 2B fine spherulites (outer diameter of 1 ⁇ m or more) were confirmed in the polypropylene layer.
  • FIG. 2C many fine cracks were generated in the polypropylene layer after the molding process.
  • FIG. 3 shows the results when the laminate (polypropylene layer) was cooled (rapidly cooled) from a temperature of 160 ° C. to a temperature of 20 ° C. at a rate of 100 ° C./second or more.
  • FIG. 3A is a graph showing the results of X-ray diffraction of the polypropylene layer.
  • FIG. 3B is an SEM image of the surface of the polypropylene layer (after etching) before the laminate is molded.
  • FIG. 3C is a microscope photograph of the surface of the polypropylene layer after the laminate is molded.
  • FIG. 3A no ⁇ -crystallized crystallization peak was observed in the X-ray diffraction spectrum of the polypropylene layer when the laminate was rapidly cooled to a temperature of 20 ° C.
  • FIG. 3B fine spherulites were not confirmed in the polypropylene layer.
  • FIG. 3C no fine cracks were observed in the polypropylene layer after the molding process.
  • the mechanism that can reduce the outer diameter of the spherulites to less than 1 ⁇ m by setting the cooling rate to 100 ° C./second or more and the cooling end temperature to 20 ° C. or less is not particularly limited, but is as follows. Is inferred.
  • the polypropylene layer is cooled while repeating generation and dissolution of nuclei serving as spherulites.
  • nuclei serving as spherulites.
  • the polypropylene layer is cooled while repeating generation and dissolution of nuclei serving as spherulites.
  • the number of nuclei generated in the polypropylene layer is small compared to the case of cooling to 20 ° C. or less, and thermal equilibrium is achieved. It is believed that there is time for the nuclei to grow into spherulites until they are frozen and fixed. Therefore, each nucleus grows to such an extent that it can be observed by SEM.
  • the method for producing a laminated body for battery exterior according to the present invention does not generate spherulites having an outer diameter of 1 ⁇ m or more in the polypropylene layer, and the polypropylene layer is not crystallized.
  • a laminate can be manufactured.
  • the laminate of the present invention can be suitably used as an exterior material (case) for a secondary battery.
  • the shape of the secondary battery is not particularly limited, and is, for example, a rectangular parallelepiped square tube shape or a cylindrical shape.
  • the type of the secondary battery is not particularly limited, and examples thereof include a nickel-cadmium battery, a nickel-hydrogen battery, and a lithium ion battery.
  • the laminate of the present invention When the laminate of the present invention is used as a case for a secondary battery, it is preferable that the laminates of the present invention are bonded together and sealed. At this time, the molded laminates may be bonded together, or only one of the laminates may be molded.
  • the method for forming and processing the laminate of the present invention is not particularly limited, and can be appropriately selected from known methods such as pressing, handling, and drawing. As a method for laminating the laminates of the present invention, a method in which the laminates of the present invention are combined and bonded by thermal fusion is preferable.
  • a battery element such as a positive electrode, a negative electrode, a separator, or a battery content part such as an electrolyte is added to a case obtained by molding the laminate of the present invention. What is necessary is just to accommodate and to adhere
  • the secondary battery of the present invention uses a battery case (laminated body) in which not only large cracks but also fine cracks are not generated, and therefore, the secondary battery is excellent in resistance to electrolyte.
  • Example 1 shows the results of examining the relationship between the cooling end temperature and the occurrence of spherulites in the polypropylene layer.
  • a 30 ⁇ m-thick maleic anhydride-modified polypropylene film (QE-060; Mitsui Chemicals, Inc., melting point 139 ° C.) and a 30 ⁇ m-thick unstretched polypropylene film (CP-S) are formed on the surface of the chemically treated stainless steel plate.
  • Mitsui Chemicals Tosero Co., Ltd., melting point 163 ° C. was laminated, and thermocompression bonded with a heated laminating roll heated to 140 ° C. Thereafter, the stainless steel plate, the acid-modified polypropylene film and the polypropylene film were heat-welded by heating for 50 seconds so that the ultimate plate temperature was 180 ° C.
  • the polypropylene layer then goes from 160 ° C. to 80 ° C., 70 ° C., 60 ° C., 50 ° C., 40 ° C., 35 ° C., 30 ° C., 25 ° C., 20 ° C. or 15 ° C. at a cooling rate of 100 ° C./second or more. Until each layered product was cooled by being submerged in hot water or cold water in a water tank controlled to a predetermined cooling end temperature.
  • the temperature of the polypropylene layer was measured using a data logger (Memory Hi Logger 8430; Hioki Electric Co., Ltd.) that can be measured at intervals of 0.01 seconds.
  • a data logger Memory Hi Logger 8430; Hioki Electric Co., Ltd.
  • Each laminate was produced by spot welding a thermocouple at the center of the chemically treated stainless steel plate and then laminating acid-modified polypropylene and polypropylene.
  • the crystallization peak of the polypropylene layer was measured using an X-ray diffractometer (Rint Ultima III; Rigaku Corporation) to confirm the presence or absence of ⁇ crystals.
  • the measurement conditions of the X-ray diffractometer were a copper tube, a rated tube voltage-tube current of 20-60 kV-2-60 mA, and a measurement range of 5 ° ⁇ 2 ⁇ ⁇ 35 °.
  • the average outer diameter of the spherulites was measured.
  • the average outer diameter of the spherulites was calculated as the average value of the outer diameters of 10 spherulites randomly selected from one field of view of the SEM image.
  • FIG. 5 and FIG. 6 are SEM images before processing of the polypropylene layer of each laminate and photographs with a microscope after processing.
  • the cooling end temperature was 35 to 80 ° C.
  • spherulites outer diameter 1 ⁇ m or more
  • cracks were generated after processing.
  • the cooling end temperature was 30 ° C.
  • no crystallization peak of ⁇ -crystal was observed by X-ray diffraction, but spherulites (outer diameter 1 ⁇ m or more) could be confirmed by SEM images, and cracks were observed after processing. It occurred.
  • FIG. 7 is a graph showing the cooling end temperature and the average outer diameter of the spherulites in the polypropylene layer.
  • the upper end of the error bar in the figure indicates the maximum value of the measured outer diameter, and the lower end indicates the minimum value of the measured outer diameter.
  • the cooling end temperature was 25 ° C. or higher, spherulites having an outer diameter of 1 ⁇ m or more were generated.
  • the average outer diameter of the spherulites increased as the cooling end temperature increased.
  • the cooling end temperature was 20 ° C. or lower, spherulites having a size that can be observed in the SEM image were not generated.
  • Example 2 shows the results of examining the relationship between the cooling start temperature and the occurrence of spherulites in the polypropylene layer, and the electrolytic solution resistance of the battery exterior laminate of the present invention.
  • a maleic anhydride-modified polypropylene film (QE-060; Mitsui Chemical Tosero Co., Ltd.) having a thickness of 30 ⁇ m and an unstretched polypropylene film (CP-S; Mitsui) having a thickness of 30 ⁇ m are formed.
  • CP-S unstretched polypropylene film
  • each laminated body was cooled on the conditions shown in Table 1.
  • each laminate was submerged in hot water or cold water controlled to a predetermined cooling end temperature and cooled.
  • the cooling start temperature was 180 ° C., it was cooled by being submerged immediately after taking out from the oven.
  • the cooling method was a spray gun, the cooling rate was changed by adjusting the temperature and discharge rate of the cooling water.
  • the temperature of the polypropylene layer was measured in the same manner as in Example 1.
  • Electrolyte Resistance Test Each laminate that was deep-drawn in the same procedure as in Example 1 was placed in a sealed container. The electrolytic solution was poured into the recesses (where a polypropylene layer was formed) of each laminate so as to have a depth of 5 mm, and left in a heating furnace at 85 ° C. for 28 days. The electrolytic solution was prepared by adding lithium hexafluorophosphate (LiPF 6 ) to 1 mol / L to a mixed solution (1: 1) of ethylene carbonate and diethyl carbonate. Thereafter, the inside of the concave portion of each laminate was washed with ethanol and dried.
  • LiPF 6 lithium hexafluorophosphate
  • the cellophane tape was peeled off to evaluate the adhesion state of the resin layers (polypropylene layer and acid-modified polypropylene layer).
  • the evaluation of the adhesion state of the resin layer was “ ⁇ ” when the resin layer was not peeled off, and “ ⁇ ” when the resin layer was peeled off after the cellophane tape was peeled off.
  • the case where the resin layer was peeled off before application was designated as “x”.
  • Evaluation Results Table 2 shows the cooling conditions for each laminate and the results of each evaluation test.
  • FIG. It is a SEM image of the polypropylene layer of 10 laminated bodies (comparative example).
  • FIG. It is a SEM image of the polypropylene layer of 11 laminated bodies (comparative example).
  • FIG. It is a SEM image of the polypropylene layer of 14 laminated bodies (comparative example).
  • the battery exterior laminate of the present invention is excellent in electrolytic solution resistance even after molding.
  • the laminate of the present invention is useful as a battery exterior material because of its excellent resistance to electrolytic solution.

Abstract

 本発明は、成形加工後であっても優れた耐電解液性を有する電池外装用積層体に関する。本発明の電池外装用積層体は、金属板と、金属板の上に配置された酸変性ポリプロピレン層と、酸変性ポリプロピレン層の上に配置されたポリプロピレン層と、を有する。電子線によりポリプロピレン層の非晶質部を選択的にエッチングした後に、ポリプロピレン層表面を走査型電子顕微鏡で観察した場合において、露出している球晶の外径は1μm未満である。

Description

電池外装用積層体およびその製造方法ならびに二次電池
 本発明は、耐電解液性を有する電池外装用積層体およびその製造方法、ならびに前記電池外装用積層体を有する二次電池に関する。
 ニッケル-カドミウム電池やニッケル-水素電池、リチウムイオン電池などの二次電池は、携帯電話機やノート型パーソナルコンピューター、デジタルカメラ、携帯用音楽プレーヤーなどの電子機器に幅広く使用されている。特に、リチウムイオン電池は、エネルギー密度および出力特性に優れているため、小型化および軽量性が求められる携帯電話機やモバイル機器などに多用されている。
 また、近年、二次電池は、電気自動車やハイブリッド自動車、太陽電池用蓄電池などの大型機器においても採用されている。これら大型機器用の二次電池では、出力容量を向上させるために電解液の容量を増やす必要があり、これに伴って二次電池のサイズも大型化している。このような大型の二次電池の包装部材には、小型の二次電池の包装部材以上の安全性(堅牢性や耐久性など)が求められる。
 このような包装部材の材料として、金属板と、金属板の表面に形成されたポリプロピレン層を有する積層体が提案されている。この積層体は、平板の状態から絞り加工や張り出し加工により一定の形に成形されて包装部材として使用される。
 このような金属板とポリプロピレン層との積層体は、絞り加工や張り出し加工などを施されると、ポリプロピレン層の加工部分にクラック(亀裂)が生じてしまうという問題があった。これを解決する方法として、金属板とポリプロピレン層とを熱溶着した後、急速に冷却することが提案されている(例えば、特許文献1および2参照)。ポリプロピレンは、熱溶着した後の冷却速度が遅い場合に結晶化することが知られている。そして、このように結晶化度が高いポリプロピレン層を有する積層体を成形加工することで、クラックが生じる。一方、熱溶着した後の積層体を急速に冷却すれば、ポリプロピレン層の結晶化を抑制することができ、結果的にクラックの発生を抑制することができる。
 特許文献1には、金属板、酸変性ポリプロピレン層およびポリプロピレン層を含む、缶(例えば、18L缶やエアゾール缶など)用の積層体が記載されている。特許文献1に記載の積層体は、金属板に酸変性ポリプロピレン層およびポリプロピレン層を積層し、熱溶着した後、20℃/秒以上(好ましくは100℃/秒以上)の速度で、55℃以下(好ましくは30℃以下)の温度になるまで冷却することで製造される。これにより、酸変性ポリプロピレン層およびポリプロピレン層の結晶化度は、55%以下に抑制されている。
 また、特許文献2にも、金属板、酸変性ポリプロピレン層およびポリプロピレン層を含む、缶用の積層体が記載されている。特許文献2に記載の積層体は、金属板に酸変性ポリプロピレンおよびポリプロピレンを積層し、熱溶着した後、200℃/秒以上の速度で、室温(room temperature)になるまで冷却することで製造される。これにより、酸変性ポリプロピレン層およびポリプロピレン層の結晶化は、部分的に抑制されているか、全く生じていないと説明されている。
特開平06-008368号公報 特表平02-501642号公報
 本発明者らは、特許文献1および2に記載の方法で作製した積層体を使用して電池ケースを作製した。具体的には、まず、リン酸クロメートの化成処理を施した100μmの厚みのステンレス鋼板に、酸変性ポリプロピレンおよびポリプロピレンを積層して積層体を作製した。次いで、薄板成形試験機により、得られた積層体を、8mmの深さに張り出し成形加工して電池ケースを作製した。そして、その電池ケースを用いて、二次電池(リチウムイオン電池)を作製したところ、作製した二次電池の電池ケース(積層体)は、耐電解液性が悪く、金属板(ステンレス鋼板)と樹脂層が剥離してしまった。
 そこで、本発明者らは、金属板と樹脂層の剥離の原因を明らかにするため、成形加工後の積層体の樹脂側表面をマイクロスコープによって観察した。その結果、成形加工後の積層体の樹脂側表面には、大きなクラックは発生していなかったが、耐電解液性低下の原因となりうる微細なクラックが発生していることがわかった。
 本発明は、かかる点に鑑みてなされたものであり、成形加工後であっても優れた耐電解液性を有する電池外装用積層体およびその製造方法を提供することを目的とする。また、本発明は、前記電池外装用積層体を有する二次電池を提供することを目的とする。
 本発明者らは、単にポリプロピレン層中の結晶化度を低減させるだけではなく、ポリプロピレン層中における球晶の発生および成長を抑制することで、成形加工時における微細なクラックの発生を防止できることを見出し、さらに検討を加えて本発明を完成させた。
 すなわち、本発明は、以下の電池外装用積層体に関する。
 [1]金属板と、前記金属板の上に配置された酸変性ポリプロピレン層と、前記酸変性ポリプロピレン層の上に配置されたポリプロピレン層と、を有し、電子線により前記ポリプロピレン層の非晶質部を選択的にエッチングした後に、前記ポリプロピレン層表面を走査型電子顕微鏡で観察した場合において、露出している球晶の外径は1μm未満である、電池外装用積層体。
 [2]前記金属板の厚みは、15~600μmの範囲内である、[1]に記載の電池外装用積層体。
 [3]前記金属板は、ステンレス鋼板である、[1]または[2]に記載の電池外装用積層体。
 また、本発明は、以下の電池外装用積層体の製造方法に関する。
 [4]金属板を準備する工程と、前記金属板の上に酸変性ポリプロピレン層を配置する工程と、前記酸変性ポリプロピレン層の上にポリプロピレン層を配置する工程と、前記金属板、前記酸変性ポリプロピレン層および前記ポリプロピレン層を、前記ポリプロピレン層の融点以上に加熱する工程と、前記ポリプロピレン層を100℃/秒以上の速度で、120℃以上の温度から20℃以下の温度に冷却する工程と、を有する電池外装用積層体の製造方法。
 さらに、本発明は、以下の二次電池に関する。
 [5][1]~[3]のいずれか一項に記載の電池外装用積層体の成形品を熱融着して形成されたケースを有する、二次電池。
 本発明によれば、成形加工後も微細なクラックが発生することがなく、耐電解液性に優れた電池外装用積層体を提供することができる。また、本発明によれば、耐電解液性に優れた二次電池を提供することができる。
図1Aは、積層体を徐冷したときのポリプロピレン層のX線回折のグラフであり、図1Bは、積層体を徐冷したときのポリプロピレン層のSEM画像であり、図1Cは、積層体を徐冷したときの加工部のマイクロスコープによる写真である。 図2Aは、積層体を30℃まで急冷したときのポリプロピレン層のX線回折のグラフであり、図2Bは、積層体を30℃まで急冷したときのポリプロピレン層のSEM画像であり、図2Cは、積層体を30℃まで急冷したときのポリプロピレン層の加工部のマイクロスコープによる写真である。 図3Aは、積層体を20℃まで急冷したときのポリプロピレン層のX線回折のグラフであり、図3Bは、積層体を20℃まで急冷したときのポリプロピレン層のSEM画像であり、図3Cは、積層体を20℃まで急冷したときのポリプロピレン層の加工部のマイクロスコープによる写真である。 図4Aおよび図4Bは、各積層体のポリプロピレン層のX線回折のグラフである。 各積層体のポリプロピレン層のSEM画像および加工部のマイクロスコープによる写真である。 各積層体のポリプロピレン層のSEM画像および加工部のマイクロスコープによる写真である。 冷却終了温度と球晶の平均外径との関係を示すグラフである。 図8A~図8Cは、比較例の積層体のポリプロピレン層のSEM画像である。
 1.電池外装用積層体
 本発明の積層体は、リチウムイオン電池などの様々な電池の外装に用いられうる電池外装用積層体であって、1)金属板と、2)前記金属板の上に配置された酸変性ポリプロピレン層と、3)前記酸変性ポリプロピレン層の上に配置されたポリプロピレン層と、を有する。
 以下、本発明の電池外装用積層体の各要素について説明する。
 1)金属板
 金属板の種類は、特に限定されず、電池外装材に要求される重量や強度、加工深さなどに応じて適宜選択することができる。金属板の材料の例には、冷延鋼板、亜鉛めっき鋼板、Zn-Al合金めっき鋼板、Zn-Al-Mg合金めっき鋼板、アルミニウムめっき鋼板、ステンレス鋼板(オーステナイト系、フェライト系、マルテンサイト系のいずれであってもよい。)、アルミニウム板、アルミニウム合金板、銅板などが含まれる。金属板は、耐食性の観点から、各種めっき鋼板またはステンレス鋼板であることが好ましい。
 金属板の厚みは、特に限定されず、電池外装材に要求される重量や強度、加工深さなどに応じて適宜設定することができる。金属板の厚みは、15~600μmの範囲内が好ましく、一般的に求められる電池外装材の強度および加工深さを考慮すると、20~400μmの範囲内であることが特に好ましい。電池外装材として使用する金属板の板厚は、電池を軽量化する観点からは薄いほうが好ましい。しかしながら、金属板の板厚を15μm未満まで薄くすると、電池外装用積層体の強度および加工性が低下すると共に製造コストが上昇してしまう。一方、板厚が600μmもあれば、50mm程度の深絞り加工を行う場合であっても十分である。
 金属板は、耐食性および酸変性ポリプロプピレン層との密着性を向上させる観点から、その表面に化成処理皮膜を形成されていてもよい。
 化成処理の種類は、特に限定されない。化成処理の例には、クロメート処理(クロム酸系)、クロムフリー処理(シラン系、有機チタン系、有機アルミ系など)、リン酸塩処理(リン酸クロム、リン酸亜鉛など)が含まれる。化成処理によって形成される化成処理皮膜の付着量は、耐食性および酸変性ポリプロプピレン層との密着性の向上に有効な範囲内であれば特に限定されない。たとえば、クロメート皮膜の場合、全Cr換算付着量が5~100mg/mとなるように付着量を調整すればよい。また、クロムフリー皮膜の場合、Ti-Mo複合皮膜では10~500mg/m、フルオロアシッド系皮膜ではフッ素換算付着量または総金属元素換算付着量が3~100mg/mの範囲内となるように付着量を調整すればよい。また、リン酸塩皮膜の場合、5~500mg/mとなるように付着量を調整すればよい。
 化成処理皮膜は、公知の方法で形成されうる。たとえば、ロールコート法、スピンコート法、スプレー法などの方法により金属板の表面に化成処理液を塗布し、水洗せずに乾燥させればよい。乾燥温度および乾燥時間は、水分を蒸発させることができれば特に限定されない。生産性の観点からは、乾燥温度は到達板温で60~150℃の範囲内が好ましく、乾燥時間は2~10秒の範囲内が好ましい。
 2)酸変性ポリプロピレン層
 酸変性ポリプロピレン層は、金属板とポリプロピレン層との間に位置して、金属板とポリプロピレン層との密着性を向上させる。
 酸変性ポリプロピレンの種類は、特に限定されず、公知のものから適宜選択することができる。酸変性ポリプロピレンの例には、アクリル酸、メタアクリル酸、マレイン酸、無水マレイン酸、無水シトラコン酸、イタコン酸、無水イタコン酸などの不飽和カルボン酸またはその無水物でグラフト変性したポリプロピレンや、プロピレンとアクリル酸またはメタクリル酸との共重合体などが含まれる。これらの中では、耐熱性の観点から、酸変性ポリプロピレンは、無水マレイン酸変性ポリプロピレンなどの、不飽和カルボン酸でグラフト変性したポリプロピレンが好ましい。
 酸変性ポリプロピレン層の厚みは、特に限定されないが、10~100μmの範囲内が好ましい。酸変性ポリプロピレン層の厚みが10μm未満の場合、金属板との密着性を十分に確保できないおそれがある。一方、酸変性ポリプロピレン層の厚みを100μm超としても、密着性の向上は認められず、製造コストが高くなる。また、電池外装用積層体の加工性が低下するおそれもある。
 3)ポリプロピレン層
 ポリプロピレン層は、電池内部を外気から遮断して、電池を密封する機能を担う。すなわち、本発明の積層体を用いて電池を製造する際に、一方の積層体のポリプロピレン層を他方の積層体のポリプロピレン層または金属製電極と熱融着することにより、電池内部を外気(特に水蒸気)から遮断するとともに、電解液の液漏れを防止する。また、ポリプロピレン層は、電解液に対する金属板の耐腐食性を向上させる機能も担っている。
 ポリプロピレンの種類は、特に限定されず、公知のものから適宜選択することができる。ポリプロピレンの例には、単独重合ポリプロピレンが含まれる。ポリプロピレン層の厚みは、特に限定されないが、10~100μmの範囲内が好ましい。ポリプロピレン層の厚みが10μm未満の場合、電池を製造する場合に、十分な強度で熱融着させることができないおそれがある。一方、ポリプロピレン層の厚みを100μm超としても、熱融着の強度の向上は認められず、製造コストが高くなる。また、電池外装用積層体の加工性が低下するおそれもある。
 本発明の電池外装用積層体は、ポリプロピレン層中に大きな球晶をほとんど含まないことを特徴とする。より具体的には、本発明の電池外装用積層体は、電子線によりポリプロピレン層の非晶質部を選択的にエッチングした後に、ポリプロピレン層表面を走査型電子顕微鏡で観察した場合において、露出している球晶の外径が1μm未満であることを特徴とする。たとえば、低真空SEMを用いて、金属を蒸着していない本発明の電池外装用積層体を30Paの圧力中において、加速電圧10kV、プローブ電流90eVにて5分間スキャンすることにより、ポリプロピレン層の非晶質部を選択的にエッチングすることができる。この後、エッチングされたポリプロピレン層の表面を倍率500倍で観察することで、結晶部を明瞭に観察することができる。このようにしてポリプロピレン層中の球晶の外径を測定した場合、本発明の電池外装用積層体では、球晶の外径は1μm未満である(実施例参照)。
 特許文献1および2に記載の積層体では、ポリプロピレン層の結晶化度を低減させることにより、成形加工時における大きなクラックの発生を抑制していた。また、これらの積層体の結晶化度は、X線回折により測定されていた(特許文献1参照)。しかしながら、本発明者らは、X線回折により測定される結晶化度が測定下限値未満の場合であっても、成形加工時に微細なクラックが生じることを見出した。本発明者らは、微細なクラックが生じる原因を追及すべく鋭意研究を重ねた結果、1)X線回折により測定される結晶化度が測定下限値未満の場合であっても、ポリプロピレン層中に球晶が存在しうること、および2)ポリプロピレン層中に所定径以上の大きさの球晶が存在する場合、成形加工時に球晶間に微細なクラックが発生することを解明した。
 そして、本発明者らは、ポリプロピレン層中における球晶の発生および成長を抑制すれば、成形加工後に大きなクラックのみならず、微細なクラックも発生しないという結論に至った。より具体的には、本発明者らは、ポリプロピレン層中の球晶の外径が1μm未満であれば、加工後に微細なクラックが生じないことを見出した。
 以上のように、本発明の電池外装用積層体は、ポリプロピレン層中の結晶化度が非常に低く、かつポリプロピレン層中における球晶の外径が1μm未満であるため、成形加工時に大きなクラックのみならず微細なクラックも生じることがない。したがって、本発明の電池外装用積層体を使用することで、耐電解液性に優れた電池の外装(電池ケース)を作製することができる。
 本発明の電池外装用積層体の製造方法は、特に限定されない。たとえば、本発明の電池外装用積層体は、以下の手順により製造されうる。
 2.電池外装用積層体の製造方法
 本発明の電池外装用積層体の製造方法は、1)金属板を準備する第1の工程と、2)酸変性ポリプロピレン層を積層する第2の工程と、3)ポリプロピレン層を積層する第3の工程と、4)積層体を加熱する第4の工程と、5)ポリプロピレン層を冷却する第5の工程と、を有する。
 1)第1の工程
 第1の工程では、基材となる前述の金属板を準備する。前述の通り、金属板の表面には化成処理皮膜を形成してもよい。
 2)第2の工程
 第2の工程では、酸変性ポリプロピレン層を金属板の上に積層する。
 金属板の上に酸変性ポリプロピレン層を配置する方法は、特に限定されず、公知の方法から適宜選択することができる。たとえば、金属板の上に酸変性ポリプロピレンフィルムを積層してもよいし(積層法)、金属板の上に酸変性ポリプロピレン樹脂組成物を塗布してもよい(塗布法)。積層法の例には、熱ラミネーション法、サンドラミネーション法などが含まれる。また、酸変性ポリプロピレンフィルムは、市販のものを使用してもよいし、Tダイ押し出し機などを用いて作製してもよい。また、酸変性ポリプロピレンフィルムは、未延伸のものでもよいし、一軸または二軸延伸されたものでもよい。一方、塗布法の例には、樹脂組成物を溶融してTダイ押し出し機やバーコーター、ロールコーターなどで塗布する方法、溶融した樹脂組成物に金属板を浸漬する方法、樹脂組成物を溶媒に溶解してバーコーターやロールコーター、スピンコーターなどで塗布する方法などが含まれる。
 3)第3の工程
 第3の工程では、ポリプロピレン層を酸変性ポリプロピレン層の上に積層する。
 酸変性ポリプロピレン層の上にポリプロピレン層を配置する方法は、特に限定されず、公知の方法から適宜選択することができる。たとえば、酸変性ポリプロピレン層の上にポリプロピレンフィルムを積層してもよいし(積層法)、酸変性ポリプロピレン層の上にポリプロピレン樹脂組成物を塗布してもよい(塗布法)。ポリプロピレンフィルムは、市販のものを使用してもよいし、Tダイ押し出し機などを用いて作製してもよい。また、ポリプロピレンフィルムは、未延伸のものでもよいし、一軸または二軸延伸されたものでもよい。一方、塗布法の例には、樹脂組成物を溶融してTダイ押し出し機やバーコーター、ロールコーターなどで塗布する方法、溶融した樹脂組成物に酸変性ポリプロピレン層を形成した金属板を浸漬する方法、樹脂組成物を溶媒に溶解してバーコーターやロールコーター、スピンコーターなどで塗布する方法などが含まれる。
 第3の工程は、第2の工程の後に行ってもよいが、第2の工程と同時に行ってもよい。すなわち、金属板の上に酸変性ポリプロピレン層を配置した後に、配置した酸変性ポリプロピレン層の上にポリプロピレン層を配置してもよい。また、金属板の上に酸変性ポリプロピレン層およびポリプロピレン層を同時に配置してもよい。
 4)第4の工程
 第4の工程では、第1の工程から第3の工程により得られた積層体を、ポリプロピレン層を構成するポリプロピレン(および酸変性ポリプロピレン)の融点以上に加熱する。これにより、積層体の各層間の密着性を向上させることができる。
 積層体を加熱する方法は、特に限定されない。積層体を加熱する方法の例には、積層体をオーブンに入れる方法などが含まれる。また、積層体を加熱する温度は、ポリプロピレンおよび酸変性ポリプロピレンの融点以上であれば、特に限定されない。たとえば、加熱する温度は、165~190℃の範囲内であることが好ましい。加熱温度が165℃未満である場合、ポリプロピレンおよび酸変性ポリプロピレンが十分に溶融せず、各層間の密着性を十分に向上させることができないおそれがある。一方、加熱温度が190℃超の場合、ポリプロピレンおよび酸変性ポリプロピレンが熱分解してしまうおそれがある。
 5)第5の工程
 第5の工程では、第4の工程で加熱されたポリプロピレン層を、100℃/秒以上の速度で、120℃以上の温度から20℃以下の温度に冷却(急冷)する。通常、第5の工程では、ポリプロピレン層だけでなく、第4の工程で加熱された積層体全体を、100℃/秒以上の速度で、120℃以上の温度から20℃以下の温度に冷却する。これにより、ポリプロピレン層中に所定径以上の大きさの球晶をほとんど発生させずに、加熱された積層体を冷却することができる。
 積層体を冷却する方法は、特に限定されない。積層体を冷却する方法の例には、積層体を水没する方法、冷却ガスを吹き付ける方法、冷却水をスプレーする方法、チルロールと接触させる方法などが含まれる。
 冷却開始温度は、120℃以上であれば特に限定されないが、120~190℃の範囲内が好ましい。冷却開始温度が120℃未満の温度の場合、ポリプロピレン層中に結晶が発生してしまう。一方、190℃超の温度から急冷した場合、金属板に熱収縮による冷却歪が発生し、ポリプロピレン層表面の平坦度が著しく劣るおそれがある。また、最表面のポリプロピレン層が酸化して、電池外装用積層体同士の熱融着の強度が低下するおそれがある。
 冷却開始温度から冷却終了温度までの冷却速度は、100℃/秒以上であれば特に限定されない。冷却速度を100℃/秒以上とすることで、ポリプロピレン層中の結晶化を抑制することができる。
 本発明の製造方法は、冷却終了温度が20℃以下であることを特徴とする。一般的には、ポリプロピレン層中の結晶化は、ポリプロピレンの融点以下にポリプロピレン層を冷却すれば進行しないと考えられている。しかしながら、実際には、ポリプロピレン層全体が熱平衡に達するまで時間を要することから、ポリプロピレンの融点以下にポリプロピレン層を冷却しても、ポリプロピレン層中に微細な結晶が発生することがある。冷却終了温度を20℃以下とすることで、ポリプロピレン層中における球晶の発生および成長を抑制することができ、その結果ポリプロピレン層中における球晶の外径を1μm未満とすることができる(実施例1参照)。
 従来は、加熱した積層体を55℃(好ましくは30℃)以下(特許文献1参照)、または室温(特許文献2参照)にまで冷却していた。本発明者らは、前述したように、ポリプロピレン層の結晶化度がX線回折による測定下限値未満であっても、成形加工時に微細なクラックが発生しうることを見出した。また、本発明者らは、発生した球晶の外径が1μm未満であれば、成形加工後に大きなクラックだけでなく微細なクラックも生じないことを見出した。すなわち、従来、結晶化は、ポリプロピレン層の融点以下である55℃(好ましくは30℃)、または室温まで冷却すれば進行しないと考えられていた。しかしながら、実際には、ポリプロピレン層全体が完全に熱平衡に達するまで時間を要するために、X線回折では測定できない微細な球晶が成長すると考えられる。そして、本発明者らは、鋭意研究を重ねた結果、冷却開始温度を120℃以上、冷却速度を100℃/秒以上とし、かつ冷却終了温度を20℃以下とすれば、球晶の外径が1μm未満になることを突き止めた。
 図1は、積層体(ポリプロピレン層)を、到達板温180℃の加熱処理後にオーブンから取り出し、室温である25℃まで6℃/秒の速度で徐冷したときの結果である。図1Aは、ポリプロピレン層のX線回折の結果を示すグラフである。図1Bは、積層体を成形加工する前のポリプロピレン層表面(エッチング後)のSEM画像である。図1Cは、積層体を薄板成形試験機により8mmの深さに張出し成形加工した後のポリプロピレン層表面のマイクロスコープによる写真である。
 図1Aに示されるように、積層体を徐冷したときのポリプロピレン層のX線回折スペクトル中には、α晶の結晶化ピーク(2θ=14,17)が観察された。また、図1Bに示されるように、ポリプロピレン層中には、大きな球晶(外径20μm以上)が確認された。さらに、図1Cに示されるように、成形加工後のポリプロピレン層中には、大きなクラックが多数発生していた。
 図2は、積層体(ポリプロピレン層)を、100℃/秒以上の速度で、160℃の温度から30℃の温度に冷却(急冷)したときの結果である。図2Aは、ポリプロピレン層のX線回折の結果を示すグラフである。図2Bは、積層体を成形加工する前のポリプロピレン層表面(エッチング後)のSEM画像である。図2Cは、積層体を成形加工した後のポリプロピレン層表面のマイクロスコープによる写真である。
 図2Aに示されるように、積層体を30℃の温度まで急冷したときのポリプロピレン層のX線回折スペクトル中には、α晶の結晶化ピークは観察されなかった。しかしながら、図2Bに示されるように、ポリプロピレン層中には、微細な球晶(外径1μm以上)が確認された。また、図2Cに示されるように、成形加工後のポリプロピレン層中には、微細なクラックが多数発生していた。
 図3は、積層体(ポリプロピレン層)を、100℃/秒以上の速度で、160℃の温度から20℃の温度に冷却(急冷)したときの結果である。図3Aは、ポリプロピレン層のX線回折の結果を示すグラフである。図3Bは、積層体を成形加工する前のポリプロピレン層表面(エッチング後)のSEM画像である。図3Cは、積層体を成形加工した後のポリプロピレン層表面のマイクロスコープによる写真である。
 図3Aに示されるように、積層体を20℃の温度まで急冷したときのポリプロピレン層のX線回折スペクトル中には、α晶の結晶化ピークが観察されなかった。また、図3Bに示されるように、ポリプロピレン層中には、微細な球晶も確認されなかった。さらに、図3Cに示されるように、成形加工後のポリプロピレン層中には、微細なクラックも確認されなかった。
 第5の工程において、冷却速度を100℃/秒以上とし、かつ冷却終了温度を20℃以下とすることで、球晶の外径を1μm未満にできるメカニズムは、特に限定されないが、以下のように推察される。
 第5の工程において、ポリプロピレン層は、球晶の基となる核の生成と溶解を繰り返しながら冷却される。本発明のように、100℃/秒以上の速度で20℃以下まで急速に冷却すると、多数の微細な核が生成され、凍結固定される。このようにポリプロピレン層中に多数の微細な核が生成した場合、それぞれの核は、隣接する核により成長が妨げられるため、SEMにより観察することができる程度(外径が1μm以上)まで成長することができない。一方、100℃/秒の速度で30℃程度までしか冷却しなかった場合は、20℃以下まで冷却した場合と比較して、ポリプロピレン層中に生成される核の数が少数であり、熱平衡に達して凍結固定するまで核が球晶に成長する時間があると考えられる。よって、それぞれの核は、SEMにより観察することができる程度まで成長する。
 以上のように、本発明の電池外装用積層体の製造方法は、ポリプロピレン層中に外径が1μm以上の球晶を発生させることなく、ポリプロピレン層が結晶化していない、本発明の電池外装用積層体を製造することができる。
 3.二次電池
 本発明の積層体は、二次電池の外装材(ケース)として好適に使用されうる。二次電池の形状は、特に限定されず、例えば直方体の角筒形状や円筒形状などである。二次電池の種類も、特に限定されず、例えばニッケル-カドミウム電池やニッケル-水素電池、リチウムイオン電池などである。
 本発明の積層体を二次電池のケースとして使用する際には、本発明の積層体同士を貼り合わせて密閉することが好ましい。このとき、成形加工された積層体同士を貼り合わせてもよいし、一方の積層体のみが成形加工されていてもよい。本発明の積層体を成形加工する方法は、特に限定されず、プレス加工や扱き加工、絞り加工などの公知の方法から適宜選択することができる。本発明の積層体を貼り合わせる方法としては、本発明の積層体同士を合わせて、熱融着で接着する方法が好ましい。
 本発明の積層体を用いて二次電池を製造するには、本発明の積層体を成形加工して得られるケースに、正極や負極、セパレーターなどの電池素子、電解液などの電池内容部を収容し、熱融着により接着すればよい。
 以上のように、本発明の二次電池は、大きなクラックだけではなく微細なクラックも発生していない電池ケース(積層体)を使用しているため、耐電解液性に優れている。
 以下、本発明について実施例を参照して詳細に説明するが、本発明はこれらの実施例により限定されない。
 [実施例1]
 実施例1では、冷却終了温度とポリプロピレン層中における球晶の発生との関係について調べた結果を示す。
 1.電池外装用積層体の作製
 ステンレス鋼板(SUS304:厚さ0.1mm)の表面を脱脂洗浄した後、乾燥させ、市販の塗布型リン酸クロメート処理液(ZMR1320;日本パーカライジング株式会社)を全Cr換算付着量が25mg/mとなるようにロールコーターで塗布した。クロメート処理液を塗布した鋼板を到達板温120℃になるように10秒間加熱して、化成処理皮膜を形成した。
 次いで、化成処理されたステンレス鋼板の表面に、膜厚30μmの無水マレイン酸変性ポリプロピレンフィルム(QE-060;三井化学東セロ株式会社、融点139℃)および膜厚30μmの無延伸ポリプロピレンフィルム(CP-S;三井化学東セロ株式会社、融点163℃)を積層し、140℃に加熱した加熱ラミネートロールで加熱圧着した。その後、到達板温180℃になるように50秒間加熱して、ステンレス鋼板、酸変性ポリプロピレンフィルムおよびポリプロピレンフィルムを熱溶着した。
 熱溶着後、冷却開始温度の160℃になるまで放冷した(冷却速度:6℃/秒)。次いで、ポリプロピレン層が、100℃/秒以上の冷却速度で、160℃から80℃、70℃、60℃、50℃、40℃、35℃、30℃、25℃、20℃または15℃になるまで、各積層体を所定の冷却終了温度に制御した水槽中の温水または冷水に水没させて冷却した。ポリプロピレン層の温度は、0.01秒間隔で測定可能なデータロガー(メモリハイロガー 8430;日置電機株式会社)を用いて測定した。各積層体は、化成処理されたステンレス鋼板の中央に熱電対をスポット溶接後、酸変性ポリプロピレンおよびポリプロピレンを積層して作製した。
 2.X線回折法による結晶化ピークの測定
 各積層体について、X線回折装置(Rint Ultima III;株式会社リガク)を用いて、ポリプロピレン層の結晶化ピークを測定し、α晶の有無を確認した。X線回折装置の測定条件は、銅管球を使用し、定格管電圧-管電流は20~60kV-2~60mAとし、測定範囲は5°≦2θ≦35°とした。
 3.低真空SEMによる球晶の外径の測定
 低真空SEM(S-3700N;株式会社日立ハイテクフィールディング)を用いて、30Paの圧力中において、加速電圧10kV、プローブ電流90eVにて5分間スキャンすることにより、各積層体(金属未蒸着)のポリプロピレン層の非晶質部を選択的にエッチングした。この後、各積層体について、エッチングされたポリプロピレン層の表面を倍率500倍で観察した。
 また、各積層体について、球晶が観察された場合は、球晶の平均外径を測定した。球晶の平均外径は、SEM画像の一視野内から無作為に選んだ10個の球晶の外径の平均値として算出した。
 4.成形加工後のクラックの評価
 各積層体について、薄板成形試験機(1420-20型;ERICHSEN社)を用いて、ポリプロピレン層側にパンチを押し当てて深絞り加工を行い、凹部のコーナー部のポリプロピレン層におけるクラックの発生状況を観察した。深絞り加工の条件は、以下に示すとおりである。
 ブランク  :80mm角
 ビード高さ :1.5mm
 ビード幅  :3mm
 張り出し高さ:8mm
 張り出し速度:280mm/min
 パンチ   :40×40×Rc10
 ダイ    :42×42×Rc11
 シワ押さえ :30kN
 5.評価結果
 図4Aおよび図4Bは、各積層体のポリプロピレン層のX線回折の結果を示すグラフである。図4Aおよび図4Bに示されるように、α晶の結晶化ピーク(2θ=14,17)は、冷却終了温度が35℃以上の場合に観察された(矢印)。
 図5および図6は、各積層体のポリプロピレン層の加工前のSEM画像および加工後のマイクロスコープによる写真である。図5および図6に示されるように、冷却終了温度が35~80℃の場合、SEM画像で球晶(外径1μm以上)を確認することができ、加工後にクラックが発生していた。また、冷却終了温度が30℃の場合、X線回折でα晶の結晶化ピークは観察されなかったが、SEM画像で球晶(外径1μm以上)を確認することができ、加工後にクラックが発生していた。冷却終了温度が25℃の場合、SEM画像で微細な球晶(外径1μm以上)を確認することができたが、加工後にクラックはほとんど発生していなかった。一方、冷却終了温度が20℃以下であった場合、SEM画像で球晶を観察することもできず、また、加工後にクラックも発生していなかった。
 図7は、冷却終了温度とポリプロピレン層中の球晶の平均外径を示したグラフである。図中のエラーバーの上端は測定した外径の最大値を示しており、下端は測定した外径の最小値を示している。図7に示されるように、冷却終了温度が25℃以上であった場合には、外径が1μm以上の球晶が生じていた。また、冷却終了温度が高くなるほど、球晶の平均外径が大きくなった。一方、冷却終了温度が20℃以下であった場合、SEM画像において観察できるサイズの球晶は、生じていなかった。
 [実施例2]
 実施例2では、冷却開始温度とポリプロピレン層中における球晶の発生の関係、ならびに本発明の電池外装用積層体の耐電解液性について調べた結果を示す。
 1.電池外装用積層体の作製
 実施例1と同様に、ステンレス鋼板(SUS304:厚さ0.1mm)の表面を脱脂洗浄した後、乾燥させ、市販の塗布型リン酸クロメート処理液(ZMR1320;日本パーカライジング株式会社)を全Cr換算付着量が25mg/mとなるようにロールコーターで塗布した。クロメート処理液を塗布した鋼板を到達板温120℃になるように10秒間加熱して、化成処理皮膜を形成した。
 次いで、化成処理されたステンレス鋼板の表面に、膜厚が30μmの無水マレイン酸変性ポリプロピレンフィルム(QE-060;三井化学東セロ株式会社)および膜厚が30μmの無延伸ポリプロピレンフィルム(CP-S;三井化学東セロ株式会社)を積層し、140℃に加熱した加熱ラミネートロールで加熱圧着した。その後、到達板温180℃になるように50秒間加熱して、ステンレス鋼板、酸変性ポリプロピレンフィルムおよびポリプロピレンフィルムを熱溶着した。
 熱溶着後、冷却開始温度(100~180℃)まで放冷した(6℃/秒)。そして、表1に示した条件で各積層体を冷却した。冷却方法が水没の場合、各積層体を所定の冷却終了温度に制御した温水または冷水に水没せて冷却した。なお、冷却開始温度が180℃の場合、オーブンから取り出した直後に水没させて冷却した。冷却方法がスプレーガンの場合、冷却水の温度および吐出量を調整することにより、冷却速度を変化させた。ポリプロピレン層の温度は、実施例1と同様に測定した。
Figure JPOXMLDOC01-appb-T000001
 2.走査型電子顕微鏡(SEM)による球晶の測定
 実施例1と同様の手順で、ポリプロピレン層中の球晶の外径を測定した。
 3.加工後のクラックの評価
 実施例1と同様の手順で、加工後の積層体においてポリプロピレン層中にクラックが発生しているかどうかを評価した。
 4.耐電解液性試験
 実施例1と同様の手順で深絞り加工した各積層体を、密閉容器内に配置した。各積層体の凹部(ポリプロピレン層が形成されている)に、深さ5mmとなるように電解液を注ぎ、85℃の加熱炉内に28日間静置した。電解液は、エチレンカーボネートおよびジエチルカーボネートの混合液(1:1)に6フッ化リン酸リチウム(LiPF)を1mol/Lとなるように添加して調製した。その後、各積層体の凹部の内側をエタノールで洗浄して、乾燥させた。
 次いで、セロハンテープを各積層体の凹部内側のコーナー部のポリプロピレン層表面に貼り付けた後、セロハンテープを剥がして、樹脂層(ポリプロピレン層および酸変性ポリプロピレン層)の密着状態を評価した。樹脂層の密着状態の評価は、セロハンテープの剥離後も樹脂層が剥離しなかったものを「○」とし、セロハンテープの剥離後に樹脂層が剥離したものを「△」とし、セロハンテープを貼り付ける前に樹脂層が剥離していたものを「×」とした。
 5.評価結果
 各積層体の冷却条件と各評価試験の結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 図8Aは、No.10の積層体(比較例)のポリプロピレン層のSEM画像である。図8Bは、No.11の積層体(比較例)のポリプロピレン層のSEM画像である。図8Cは、No.14の積層体(比較例)のポリプロピレン層のSEM画像である。
 冷却終了温度が30℃であるNo.9の積層体(比較例)では、X線回折によるα晶の結晶化ピークが確認されなかった(図4Aの30℃参照)。しかし、SEM画像から平均粒径1μmの球晶が確認され(図6の30℃を参照)、加工後に微細なクラックが生じていた。このため、No.9の積層体の耐電解液性は、わずかに不良であった。
 冷却速度が100℃/秒未満であるNo.10の積層体(比較例)およびNo.11の積層体(比較例)では、X線回折によるα晶の結晶化ピークが確認された。また、SEM画像から平均粒径5μmおよび10μmの球晶が確認され(図8AおよびB参照)、加工後に微細なクラックが生じていた。このため、No.10の積層体およびNo.11の積層体の耐電解液性は、わずかに不良であった。
 冷却開始温度が120℃未満(100℃)であるNo.12の積層体(比較例)では、X線回折によるα晶の結晶化ピークが観察された。また、SEM画像から平均粒径2μmの球晶が確認され、加工後に微細なクラックが生じていた。このため、No.12の積層体の耐電解液性は、わずかに不良であった。
 冷却速度が83℃/秒であり、かつ冷却終了温度が80℃であるNo.13の積層体(比較例)では、X線回折によるα晶の結晶化ピークが観察された。また、SEM画像から平均粒径20μmの球晶が確認され、加工後にクラックが生じていた。このため、No.13の積層体の耐電解液性は、不良であった。
 冷却速度が6℃/秒であるNo.14(比較例)の積層体では、X線回折によるα晶の結晶化ピークが観察された。また、SEM画像から平均粒径35μmの球晶が確認され(図8C参照)、加工後にクラックが生じていた。このため、No.14の積層体の耐電解液性は、不良であった。
 一方、No.1~8の積層体(実施例)では、X線回折によるα晶の結晶化ピークが観察されず、SEM画像において球晶が確認されなかった。また、加工後にクラックも生じていなかった。このため、No.1~8の積層体の耐電解液性は、良好であった。
 以上の結果から、本発明の電池外装用積層体は、成形加工後であっても、耐電解液性に優れていることがわかる。
 本出願は、2011年9月8日出願の特願2011-196095に基づく優先権を主張する。当該出願明細書および図面に記載された内容は、すべて本願明細書に援用される。
 本発明の積層体は、耐電解液性に優れているため、電池外装用材として有用である。

Claims (5)

  1.  金属板と、
     前記金属板の上に配置された酸変性ポリプロピレン層と、
     前記酸変性ポリプロピレン層の上に配置されたポリプロピレン層と、を有し、
     電子線により前記ポリプロピレン層の非晶質部を選択的にエッチングした後に、前記ポリプロピレン層表面を走査型電子顕微鏡で観察した場合において、露出している球晶の外径は1μm未満である、
     電池外装用積層体。
  2.  前記金属板の厚みは、15~600μmの範囲内である、請求項1に記載の電池外装用積層体。
  3.  前記金属板は、ステンレス鋼板である、請求項1に記載の電池外装用積層体。
  4.  金属板を準備する工程と、
     前記金属板の上に酸変性ポリプロピレン層を配置する工程と、
     前記酸変性ポリプロピレン層の上にポリプロピレン層を配置する工程と、
     前記金属板、前記酸変性ポリプロピレン層および前記ポリプロピレン層を、前記ポリプロピレン層の融点以上に加熱する工程と、
     前記ポリプロピレン層を100℃/秒以上の速度で、120℃以上の温度から20℃以下の温度に冷却する工程と、
     を有する、電池外装用積層体の製造方法。
  5.  請求項1に記載の電池外装用積層体の成形品を熱融着して形成されたケースを有する、二次電池。
PCT/JP2012/000432 2011-09-08 2012-01-24 電池外装用積層体およびその製造方法ならびに二次電池 WO2013035210A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012507492A JP5883379B2 (ja) 2011-09-08 2012-01-24 電池外装用積層体およびその製造方法ならびに二次電池
CN201280043793.4A CN103782412B (zh) 2011-09-08 2012-01-24 电池外壳用层叠体及其制造方法以及二次电池
KR1020147005102A KR101580958B1 (ko) 2011-09-08 2012-01-24 전지 외장용 적층체 및 그 제조 방법 및 2차 전지

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011196095 2011-09-08
JP2011-196095 2011-09-08

Publications (1)

Publication Number Publication Date
WO2013035210A1 true WO2013035210A1 (ja) 2013-03-14

Family

ID=47831692

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/000432 WO2013035210A1 (ja) 2011-09-08 2012-01-24 電池外装用積層体およびその製造方法ならびに二次電池

Country Status (5)

Country Link
JP (1) JP5883379B2 (ja)
KR (1) KR101580958B1 (ja)
CN (1) CN103782412B (ja)
TW (1) TWI622201B (ja)
WO (1) WO2013035210A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016013572A1 (ja) * 2014-07-22 2016-01-28 新日鐵住金株式会社 蓄電デバイス容器用鋼箔、蓄電デバイス用容器及び蓄電デバイス、並びに蓄電デバイス容器用鋼箔の製造方法
JP5850120B1 (ja) * 2014-09-30 2016-02-03 大日本印刷株式会社 積層フィルム
JP5850119B1 (ja) * 2014-09-30 2016-02-03 大日本印刷株式会社 積層フィルム
JP2020030958A (ja) * 2018-08-22 2020-02-27 株式会社豊田自動織機 蓄電モジュール、蓄電装置及び蓄電装置の製造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101628993B1 (ko) 2015-03-18 2016-06-09 주식회사 탑앤씨 이차전지용 스테인레스 스틸 파우치 필름, 이를 포함하는 포장재 및 이를 포함하는 이차전지
KR101581454B1 (ko) 2015-03-18 2015-12-30 주식회사 탑앤씨 이차전지용 스테인레스 스틸 파우치 필름, 이를 포함하는 포장재 및 이를 포함하는 이차전지
CN113381101A (zh) * 2021-05-07 2021-09-10 厦门大学 一种散热性良好的电池软包装材料及其制备方法
KR20230162288A (ko) 2022-05-20 2023-11-28 주식회사 에스비티엘첨단소재 이차전지용 스테인레스 스틸 파우치 필름 및 이의 제조방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02501642A (ja) * 1987-10-15 1990-06-07 カヌードメタルボックス パブリック リミテド カンパニー 積層材料の製造法
JP2001213976A (ja) * 2000-02-01 2001-08-07 Idemitsu Petrochem Co Ltd 低結晶性ポリプロピレンシート
JP2002321324A (ja) * 2001-04-26 2002-11-05 Toyobo Co Ltd 金属貼り合わせ用ポリプロピレンフィルム
JP2005022336A (ja) * 2003-07-04 2005-01-27 Showa Denko Packaging Co Ltd 成形性に優れた包装用材料及びそれを用いて成形された包装容器
JP2011076956A (ja) * 2009-09-30 2011-04-14 Dainippon Printing Co Ltd 電気化学セル用包装材料

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2733589B2 (ja) 1992-01-17 1998-03-30 新日本製鐵株式会社 ポリプロピレンラミネート鋼板及びその製造方法
US6346350B1 (en) * 1999-04-20 2002-02-12 Celgard Inc. Structurally stable fusible battery separators and method of making same
DE60133133T2 (de) * 2001-04-06 2009-06-25 Idemitsu Kosan Co. Ltd. Polypropylenfolie mit geringer kristallinität

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02501642A (ja) * 1987-10-15 1990-06-07 カヌードメタルボックス パブリック リミテド カンパニー 積層材料の製造法
JP2001213976A (ja) * 2000-02-01 2001-08-07 Idemitsu Petrochem Co Ltd 低結晶性ポリプロピレンシート
JP2002321324A (ja) * 2001-04-26 2002-11-05 Toyobo Co Ltd 金属貼り合わせ用ポリプロピレンフィルム
JP2005022336A (ja) * 2003-07-04 2005-01-27 Showa Denko Packaging Co Ltd 成形性に優れた包装用材料及びそれを用いて成形された包装容器
JP2011076956A (ja) * 2009-09-30 2011-04-14 Dainippon Printing Co Ltd 電気化学セル用包装材料

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016013572A1 (ja) * 2014-07-22 2016-01-28 新日鐵住金株式会社 蓄電デバイス容器用鋼箔、蓄電デバイス用容器及び蓄電デバイス、並びに蓄電デバイス容器用鋼箔の製造方法
JP5909606B1 (ja) * 2014-07-22 2016-04-26 新日鐵住金株式会社 蓄電デバイス容器用鋼箔、蓄電デバイス用容器及び蓄電デバイス、並びに蓄電デバイス容器用鋼箔の製造方法
US10418601B2 (en) 2014-07-22 2019-09-17 Nippon Steel Corporation Steel foil for power storage device container, power storage device container, power storage device, and manufacturing method of steel foil for power storage device container
JP5850120B1 (ja) * 2014-09-30 2016-02-03 大日本印刷株式会社 積層フィルム
JP5850119B1 (ja) * 2014-09-30 2016-02-03 大日本印刷株式会社 積層フィルム
JP2016068496A (ja) * 2014-09-30 2016-05-09 大日本印刷株式会社 積層フィルム
JP2016068495A (ja) * 2014-09-30 2016-05-09 大日本印刷株式会社 積層フィルム
JP2020030958A (ja) * 2018-08-22 2020-02-27 株式会社豊田自動織機 蓄電モジュール、蓄電装置及び蓄電装置の製造方法
JP7067362B2 (ja) 2018-08-22 2022-05-16 株式会社豊田自動織機 蓄電モジュール、蓄電装置及び蓄電装置の製造方法

Also Published As

Publication number Publication date
CN103782412B (zh) 2016-04-13
CN103782412A (zh) 2014-05-07
TWI622201B (zh) 2018-04-21
JP5883379B2 (ja) 2016-03-15
JPWO2013035210A1 (ja) 2015-03-23
KR101580958B1 (ko) 2015-12-30
TW201312825A (zh) 2013-03-16
KR20140051365A (ko) 2014-04-30

Similar Documents

Publication Publication Date Title
JP5883379B2 (ja) 電池外装用積層体およびその製造方法ならびに二次電池
JP6188009B2 (ja) 電池外装用積層体
JP4620202B2 (ja) ポリマー電池用包装材料の製造方法
WO2001045183A1 (fr) Materiau d'emballage d'une cellule polymere et procede de production associe
JP4940496B2 (ja) リチウムイオン電池用包装材料およびその製造方法
JP2012212512A (ja) 電池外装用積層体および二次電池
JP2017224618A (ja) 電池外装用積層体
JP4736189B2 (ja) リチウムイオン電池用包装材料
JP4993051B2 (ja) リチウムイオン電池用包装材料およびその製造方法
JP4736188B2 (ja) リチウムイオン電池用包装材料およびその製造方法
JP6096540B2 (ja) 電池外装用積層体の製造方法
KR101854487B1 (ko) 전지 외장용 적층체 및 2차 전지
JP2012212511A (ja) 電池外装用積層体および二次電池
JP5187370B2 (ja) ポリマー電池用包装材料
CN113950769B (zh) 电池用壳体及其制造方法
JP4620203B2 (ja) ポリマー電池用包装材料の製造方法
JP6422195B2 (ja) アルミ箔と、シーラントフィルムとの接着方法
JP4968419B2 (ja) リチウムイオン電池用包装材料およびその製造方法
JP2019021638A (ja) 電池外装用積層体の製造方法
JP2006261033A (ja) リチウム電池外装体の熱封緘方法
JP2001229886A (ja) ポリマー電池用包装材料およびその製造方法
JP2011198557A (ja) 電池外装用積層体および二次電池
JP4620232B2 (ja) リチウム電池用包装材料の製造方法
WO2023277100A1 (ja) 蓄電デバイス、及び、蓄電デバイスの製造方法
JP5413341B2 (ja) ポリマー電池用包装材料

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012507492

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12829402

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147005102

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12829402

Country of ref document: EP

Kind code of ref document: A1