WO2013031364A1 - 有機エレクトロルミネッセンス画像表示装置 - Google Patents

有機エレクトロルミネッセンス画像表示装置 Download PDF

Info

Publication number
WO2013031364A1
WO2013031364A1 PCT/JP2012/066568 JP2012066568W WO2013031364A1 WO 2013031364 A1 WO2013031364 A1 WO 2013031364A1 JP 2012066568 W JP2012066568 W JP 2012066568W WO 2013031364 A1 WO2013031364 A1 WO 2013031364A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
image display
display device
plate
range
Prior art date
Application number
PCT/JP2012/066568
Other languages
English (en)
French (fr)
Inventor
理英子 れん
田坂 公志
田代 耕二
Original Assignee
コニカミノルタアドバンストレイヤー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタアドバンストレイヤー株式会社 filed Critical コニカミノルタアドバンストレイヤー株式会社
Priority to JP2013531144A priority Critical patent/JP5975034B2/ja
Publication of WO2013031364A1 publication Critical patent/WO2013031364A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/15Heterocyclic compounds having oxygen in the ring
    • C08K5/151Heterocyclic compounds having oxygen in the ring having one oxygen atom in the ring
    • C08K5/1545Six-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/10Esters of organic acids, i.e. acylates
    • C08L1/12Cellulose acetate
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light

Definitions

  • the present invention relates to an organic electroluminescence image display device, and more particularly to an organic electroluminescence image display device including a circularly polarizing plate having a ⁇ / 4 plate and an organic electroluminescence element.
  • a conventionally used liquid crystal image display device has a transparent substrate such as glass on both sides of a liquid crystal layer for the purpose of containing liquid crystal, and further has a retardation plate on both sides of the liquid crystal layer to compensate for light leakage.
  • the transparent substrate and the polarizing plate are stretched and contracted due to the temperature rise in the device, the liquid crystal image display device has a certain balance because the transparent substrate such as glass and two polarizing plates exist on both sides of the liquid crystal layer. The distortion of the liquid crystal image display device was not a big problem.
  • An organic electroluminescence image display device forms a light emitting element (organic electroluminescence element) by laminating a metal electrode, an organic light emitting layer and a transparent electrode on a transparent substrate such as glass and polyimide.
  • a circularly polarizing plate is used on the front surface of the element.
  • Patent Document 1 and Patent Document 2 disclose an organic electroluminescence image display device, a ⁇ / 4 plate containing cellulose acylate, and a circularly polarizing plate.
  • the former is a small-screen image for use in mobile devices.
  • the present invention relates to a display device, and does not solve problems such as panel deflection in the large-screen image display device.
  • an object of the present invention is to provide an organic electroluminescence image display device which is not deflected due to a temperature rise in the device even with a large screen and is excellent in visibility, durability and light resistance.
  • the optimal member as a film having a high elastic modulus
  • the above-mentioned problem is maintained while maintaining cost and film performance by configuring the ⁇ / 4 plate constituting the circularly polarizing plate with a film having a high elastic modulus.
  • cellulose acetate having a degree of acetyl group substitution excellent in stretchability in the range of 2.00 to 2.70 was used as a resin for forming the ⁇ / 4 plate.
  • the maximum in-plane elastic modulus measured in an environment of 23 ° C. and 55 RH% to be 4.0 GPa or more it was found that the deflection of the panel can be remarkably improved, and the present invention has been achieved. It is.
  • An organic electroluminescence image display device comprising a circularly polarizing plate having at least a ⁇ / 4 plate and an organic electroluminescence element,
  • the ⁇ / 4 plate contains cellulose acetate having an acetyl group substitution degree in the range of 2.00 to 2.70, and an in-plane retardation value Ro (550) represented by the following formula (1) is 100.
  • An organic electroluminescence image display device having an in-plane maximum elastic modulus of 4.0 GPa or more measured in a range of ⁇ 180 nm and an environment of 23 ° C. and 55 RH%.
  • Ro (550) (nx ⁇ ny) ⁇ d (unit: nm) [Wherein nx represents a refractive index in the slow axis x direction in the film plane. ny represents the refractive index in the y direction orthogonal to the x direction in the film plane. d represents the film thickness (nm) of the film. Each refractive index is measured at a measurement wavelength of 550 nm in an environment of 23 ° C. and 55% RH. ] 2.
  • the ⁇ / 4 plate comprises cellulose acetate having an acetyl group substitution degree in the range of 2.00 to 2.55, and the following general formula (1) in which the average substitution degree is in the range of 3.0 to 6.0. 2.
  • the organic electroluminescence image display device according to item 1, which contains a compound represented by the formula:
  • R 1 to R 8 each represent a hydrogen atom, a substituted or unsubstituted alkylcarbonyl group, or a substituted or unsubstituted arylcarbonyl group, and R 1 to R 8 may be the same. May be different.
  • Item 1 or Item 2 is characterized in that the direction of the maximum elastic modulus in the plane of the ⁇ / 4 plate has an inclination in the range of 35 to 55 ° with respect to the longitudinal direction of the screen of the image display device. 3.
  • the protective film located on the surface opposite to the ⁇ / 4 plate across the polarizer of the circularly polarizing plate has an in-plane maximum elastic modulus of 4.0 GPa measured in an environment of 23 ° C. and 55 RH%. It is the above, The organic electroluminescent image display apparatus as described in any one of Claim 1 to 3 characterized by the above-mentioned.
  • the direction having the maximum elastic modulus in the plane of the protective film has an inclination in the range of 35 to 55 ° with respect to the longitudinal direction of the screen of the image display device, and the maximum elasticity in the plane of the protective film. 5.
  • the organic electroluminescence image display device according to item 4 wherein the direction of the refractive index and the direction of the maximum elastic modulus in the plane of the ⁇ / 4 plate are parallel to each other.
  • a ⁇ / 4 plate having a high elastic modulus as a circularly polarizing plate of an organic electroluminescence image display device, it is possible to suppress panel deflection due to a temperature rise in the image display device.
  • the direction with the highest elastic modulus in the ⁇ / 4 plate surface can be arranged in the oblique direction of the image display device screen.
  • the schematic diagram which shows an example of a structure of the organic electroluminescent image display apparatus of this invention.
  • Schematic diagram showing the relationship between the direction of the maximum elastic modulus in the plane of the ⁇ / 4 plate and the longitudinal direction of the screen of the image display device
  • Schematic diagram of obliquely stretched tenter used in the present invention Schematic showing the deflection of the panel
  • An organic electroluminescence image display device (hereinafter simply referred to as an organic EL image display device) is an organic EL image display device comprising a circularly polarizing plate having at least a ⁇ / 4 plate and an organic EL element.
  • the ⁇ / 4 plate contains cellulose acetate having an acetyl group substitution degree in the range of 2.00 to 2.70, and has an in-plane retardation value Ro (represented by the following formula (1)): 550) is in the range of 100 to 180 nm, and the maximum in-plane elastic modulus measured in an environment of 23 ° C. and 55 RH% is 4.0 GPa or more.
  • the present invention provides an organic EL image display device in which there is no panel deflection due to a temperature rise in the device.
  • nx the refractive index in the slow axis x direction in the film plane.
  • ny the refractive index in the y direction orthogonal to the x direction in the film plane.
  • d the film thickness (nm) of the film.
  • Each refractive index is measured at a measurement wavelength of 550 nm in an environment of 23 ° C. and 55% RH.
  • the invention according to claim 2 is preferably a cellulose acetate having a degree of acetyl group substitution in the range of 2.00 to 2.55 as means for increasing the in-plane elastic modulus of the ⁇ / 4 plate, Furthermore, the organic EL image display device is characterized in that a compound represented by the general formula (1), which is an additive for further increasing the elastic modulus, is added.
  • a ⁇ / 4 plate containing cellulose acetate having a specific substitution degree of acetyl group and the compound represented by the general formula (1) produces a ⁇ / 4 plate having a high elastic modulus by stretching. It is possible.
  • the invention according to claim 3 is characterized in that the direction of the maximum elastic modulus in the plane of the ⁇ / 4 plate is in a range of 35 to 55 ° with respect to the longitudinal direction of the screen of the image display device.
  • an organic EL image display device is characterized in that the direction of the maximum elastic modulus in the plane of the ⁇ / 4 plate is in a range of 35 to 55 ° with respect to the longitudinal direction of the screen of the image display device.
  • an organic EL image display device is characterized in that the direction of the maximum elastic modulus in the plane of the ⁇ / 4 plate is in a range of 35 to 55 ° with respect to the longitudinal direction of the screen of the image display device.
  • the present inventor arranges the ⁇ / 4 plate so that the maximum elastic modulus direction is oblique to the longitudinal direction of the panel, thereby preventing the ⁇ / 4 plate from being bent. It has been found that the occurrence of deflection can be reduced by acting like a wedge.
  • the protective film located on the surface opposite to the ⁇ / 4 plate across the polarizer of the circularly polarizing plate is measured in an in-plane environment measured at 23 ° C. and 55RH%.
  • the organic EL image display device having a maximum elastic modulus of 4.0 GPa or more, and both the ⁇ / 4 plate sandwiching the circular polarizer of the present invention and the protective film are both high In the case of a film having an elastic modulus, it is possible to further suppress panel deflection.
  • the direction of the maximum elastic modulus in the plane of the protective film has an inclination in the range of 35 to 55 ° with respect to the longitudinal direction of the screen of the image display device, and the protective film
  • the organic EL image display device is characterized in that the direction of the maximum elastic modulus in the plane of the film is parallel to the direction of the maximum elastic modulus in the plane of the ⁇ / 4 plate.
  • the invention according to claim 6 is to provide an organic EL image display device for 3D (stereoscopic) image display which is excellent in display quality without the deflection of the panel by arranging ⁇ / 4 plates on both sides of the polarizer. Can do.
  • FIG. 1 shows an example of the configuration of the organic EL image display device of the present invention, but the present invention is not limited to this.
  • a metal electrode 2 On a transparent substrate 1 using glass, polyimide, or the like, a metal electrode 2, a TFT 3, an organic functional layer 4 including a light emitting layer, a transparent electrode (ITO, etc.) 5, an insulating layer 6, a sealing layer 7, and a film 8 (omitted)
  • a circularly polarizing plate C in which a polarizer 10 is sandwiched between a ⁇ / 4 plate 9 and a protective film 11 is provided on an organic EL element B having an organic EL element B).
  • This protective film 11 may further have an antireflection layer 12.
  • the thickness of the organic EL element B is about 1 ⁇ m except for the transparent substrate 1.
  • the organic functional layer is a laminate of various organic thin films, for example, a laminate of a hole injection layer made of a triphenylamine derivative or the like and an organic light emitting layer made of a fluorescent organic solid such as anthracene.
  • a structure having various combinations such as a laminate of such a light emitting layer and an electron injection layer composed of a perylene derivative, a hole injection layer, an organic light emitting layer, and a laminate of an electron injection layer. It has been.
  • holes and electrons are injected into an organic light emitting layer by applying a voltage to a transparent electrode and a metal electrode, and energy generated by recombination of these holes and electrons is reduced to a fluorescent substance or phosphor.
  • the light-emitting compound is excited and emits light on the principle that light (for example, fluorescence or phosphorescence) is emitted when the excited fluorescent substance returns to the ground state.
  • the mechanism of recombination in the middle is the same as that of a general diode, and as can be predicted from this, the current and the emission intensity show strong nonlinearity with rectification with respect to the applied voltage.
  • the organic EL image display device in order to extract light emitted from the organic light emitting layer, it is preferable that at least one of the electrodes is transparent.
  • ITO indium-tin composite oxide
  • metal electrodes such as Mg—Ag and Al—Li are used.
  • the organic light emitting layer is formed of a very thin film having a thickness of about 10 nm. For this reason, the organic light emitting layer also has the property of transmitting light almost completely, like the transparent electrode. As a result, when not emitting light, light incident from the surface of the transparent substrate is transmitted through the transparent electrode and the organic light emitting layer, reflected by the metal electrode, and then emitted again to the surface side of the transparent substrate. Then, the display surface of the organic EL image display device is observed like a mirror surface.
  • an organic EL image display device including an organic EL element having a configuration in which a transparent electrode is provided on the surface side of an organic light emitting layer that emits light by application of a voltage and a metal electrode is provided on the back surface side of the organic light emitting layer. While providing a polarizing plate on the surface side (viewing side) of the transparent electrode, and providing a retardation plate between the transparent electrode and the polarizing plate, the above-mentioned problems are solved.
  • the phase difference plate and the polarizing plate each have a function of polarizing light (external light) incident from the outside and reflected by the metal electrode, so that the mirror surface of the metal electrode is not visually recognized by the polarization function.
  • An effect can be expressed.
  • the mirror surface of the metal electrode can be completely shielded by configuring the retardation plate with a quarter-wave plate and adjusting the angle formed by the polarization direction of the polarizing plate and the retardation plate to ⁇ / 4. .
  • the external light incident on the organic EL image display device is transmitted only by the linearly polarized light component by the polarizing plate, and this linearly polarized light is generally elliptically polarized light by the phase difference plate.
  • the phase difference plate is a ⁇ / 4 plate.
  • the angle formed by the polarization direction of the polarizing plate and the retardation plate is ⁇ / 4, circular polarization is obtained.
  • This circularly polarized light is transmitted through the transparent substrate, transparent electrode, and organic functional layer, reflected by the metal electrode, transmitted again through the organic functional layer, transparent electrode, and transparent substrate, and returned to the retardation plate as linearly polarized light again. come. And since this linearly polarized light is orthogonal to the polarization direction of a polarizing plate, it cannot permeate
  • ⁇ ⁇ / 4 plate >> The ⁇ / 4 plate used in the circularly polarizing plate according to the present invention will be described.
  • the ⁇ / 4 plate according to the present invention has a function of converting linearly polarized light having a specific wavelength into circularly polarized light (or converting circularly polarized light into linearly polarized light).
  • the ⁇ / 4 plate is designed so that the in-plane retardation value Ro of the layer is about 1 ⁇ 4 of the predetermined wavelength of light (usually in the visible light region).
  • the ⁇ / 4 plate according to the present invention is characterized in that the in-plane retardation value Ro (550) measured at a wavelength of 550 nm is in the range of 100 to 180 nm.
  • the ⁇ / 4 plate according to the present invention gives a quarter-wave phase difference to all light in the visible light region, that is, reverse wavelength dispersion (Ro (450) ⁇ Ro (550) ⁇ Ro ( 650)) is preferred. Even in the case of positive wavelength dispersion, ⁇ / 4 can be achieved by laminating a ⁇ / 4 plate and a ⁇ / 2 plate. However, when laminated, the retardation in the thickness direction (Rth) increases and the visibility decreases due to axial misalignment. happenss. As in the present invention, a ⁇ / 4 plate that uses a material having reverse wavelength dispersion such as cellulose acetate and achieves a wide band with a single layer is preferable from the viewpoint of cost and productivity as well as visibility.
  • the in-plane retardation value measured at a wavelength of 450 nm is Ro (450)
  • the in-plane retardation value measured at a wavelength of 550 nm is Ro (550)
  • the in-plane retardation value measured at a wavelength of 650 nm is Ro. (650)
  • the wavelength dispersion of the ⁇ / 4 plate is such that the ratio value of Ro (450) / Ro (650) is less than 1.00, preferably 0.97 or less, more preferably 0.95. It is as follows. In particular, from green to red with high visual sensitivity, ⁇ / 4 is preferable, and the ratio value of Ro (550) / Ro (650) is preferably 0.98 or less, more preferably 0.96. Hereinafter, it is more preferably 0.94 or less.
  • the retardation value Ro (550) shown above is the retardation value Ro represented by the following formula (1).
  • nx the refractive index in the slow axis x direction in the film plane.
  • ny the refractive index in the y direction orthogonal to the x direction in the film plane.
  • d the film thickness (nm) of the film.
  • Each refractive index is measured at a measurement wavelength of 550 nm in an environment of 23 ° C. and 55% RH.
  • the Ro (550) according to the present invention can be measured using an automatic birefringence meter.
  • Ro (550) is calculated by measuring the birefringence at 550 nm in an environment of 23 ° C. and 55% RH.
  • Ro (450) at a measurement wavelength of 450 nm and Ro (650) at a measurement wavelength of 560 nm can be calculated.
  • a circularly polarizing plate is obtained by laminating so that the angle between the slow axis of the ⁇ / 4 plate and the transmission axis of the polarizer is substantially 45 °. That is, both the ⁇ / 4 plate and the polarizer are in the form of a long film, and the angle of the slow axis with respect to the longitudinal direction of the base film of the ⁇ / 4 plate (that is, the orientation angle ⁇ ) is “substantially 45”.
  • a long circular polarizing plate film with good productivity can be obtained by laminating and bonding a polarizer having a transmission axis or an absorption axis in a direction parallel to the longitudinal direction of the polarizing film and the longitudinal direction. Can be formed.
  • the orientation angle ⁇ of the ⁇ / 4 plate according to the present invention with respect to the longitudinal direction of the base film is preferably “substantially 45 °”.
  • “substantially 45 °” means within a range of 35 to 55 ° with the longitudinal direction as a base point.
  • the orientation angle ⁇ of the ⁇ / 4 plate according to the present invention is preferably in the range of 40 to 50 °, more preferably in the range of 42 to 48 °, and 43 to 47. More preferably, it is within the range of °, and most preferably within the range of 44 to 46 °.
  • the circularly polarizing plate according to the present invention is composed of at least a polarizer and a ⁇ / 4 plate, and exhibits an effect of shielding the specular reflection of the metal electrode of the organic EL luminous body by using it in an organic EL image display device. Can do.
  • the angle of the slow axis (that is, the orientation angle ⁇ ) is “substantially 45 °” with respect to the longitudinal direction by obliquely stretching the ⁇ / 4 plate, the maximum in-plane elastic modulus and
  • the circularly polarizing plate having the ⁇ / 4 plate is mounted on the organic EL image display device with the longitudinal direction aligned, the maximum elasticity of the ⁇ / 4 plate is obtained.
  • the rate direction is 35 ° to 55 ° with respect to the longitudinal direction of the screen, and the ⁇ / 4 plate serves as a wedge for preventing deflection to improve the deflection.
  • FIG. 2 shows the relationship between the direction of the maximum elastic modulus in the plane of the ⁇ / 4 plate and the longitudinal direction of the screen of the image display device.
  • the angle ⁇ formed by the longitudinal direction 32 of the screen of the organic EL image display device 31 and the direction 33 having the maximum elastic modulus in the plane of the ⁇ / 4 plate is in the range of 35 to 55 °. Preferably there is.
  • the circularly polarizing plate according to the present invention is preferably a long circularly polarizing plate obtained by laminating a long and obliquely stretched ⁇ / 4 plate with a roll-to-roll, as shown in FIG. Mounting in such a manner that the longitudinal direction thereof coincides with the longitudinal direction 32 of the screen of the organic EL image display device 31 is a preferred embodiment from the viewpoint of obtaining the effects of the present invention.
  • the circularly polarizing plate according to the present invention preferably has a configuration in which a polarizer is sandwiched between the ⁇ / 4 plate and a protective film, and the protective film also has an in-plane measured in an environment of 23 ° C. and 55 RH%.
  • the maximum elastic modulus is preferably 4.0 GPa or more from the viewpoint of further suppressing panel deflection.
  • the circularly polarizing plate according to the present invention preferably has an ultraviolet absorption function from the viewpoint of preventing deterioration due to ultraviolet rays.
  • the protective film on the viewing side has an ultraviolet absorption function, it is preferable that both the polarizer and the organic EL element can be protected from ultraviolet rays, but when the ⁇ / 4 plate on the light emitter side also has an ultraviolet absorption function, The deterioration of the organic EL element can be further suppressed, which is preferable.
  • the circularly polarizing plate according to the present invention uses a stretched polyvinyl alcohol doped with iodine or a dichroic dye as a polarizer, and is bonded in a configuration of ( ⁇ / 4 plate) / polarizer / protective film. Can be manufactured.
  • Examples of the polarizer preferably used for the circularly polarizing plate according to the present invention include a polyvinyl alcohol polarizing film. These include those obtained by dyeing iodine on a polyvinyl alcohol film and those obtained by dyeing a dichroic dye.
  • a modified polyvinyl alcohol film modified with ethylene is preferably used.
  • a polyvinyl alcohol aqueous solution is formed into a film, and this is uniaxially stretched and dyed, or after being dyed and biaxially stretched, preferably subjected to a durability treatment with a boron compound. Yes. Stretching is preferably performed uniaxially in the film forming direction.
  • the film thickness of the polarizer is in the range of 5 to 40 ⁇ m, preferably in the range of 5 to 30 ⁇ m, and particularly preferably in the range of 5 to 20 ⁇ m.
  • the circularly polarizing plate can be produced by a general method.
  • the ⁇ / 4 plate according to the present invention subjected to alkali saponification treatment is bonded to at least one surface of a polarizer prepared by immersing and stretching a polyvinyl alcohol film in an iodine solution by using a completely saponified polyvinyl alcohol aqueous solution. It is preferable. It is preferable that the protective film is similarly saponified and bonded to the other surface.
  • the circularly polarizing plate can be constructed by further bonding a protective film on one surface of the circularly polarizing plate and a separate film on the other surface.
  • the protective film and the separate film are used for the purpose of protecting the circularly polarizing plate at the time of shipping the polarizing plate or at the time of product inspection.
  • the maximum elastic modulus in the plane of the ⁇ / 4 plate used in the organic EL image display device of the present invention is 4.0 GPa or more, preferably in the range of 4.5 to 8.0 GPa. More preferably, it is in the range of 5.0 to 7.0 GPa.
  • the resin applied to the ⁇ / 4 plate is preferably a cellulose acetate having a low acetyl group substitution degree, and the cellulose acetate has an acetyl group substitution degree of 2.00 to 2.
  • the range is 70, more preferably 2.00 to 2.55, and particularly preferably 2.20 to 2.45.
  • an additive such as a sugar ester represented by the general formula (1) described later is used together with cellulose acetate having a low degree of substitution, and further stretched to orient the molecules of cellulose acetate.
  • a method of increasing the elastic modulus is preferable.
  • the sample was conditioned for 24 hours in an environment of 23 ° C. and 55% RH, and in accordance with the method described in JIS K7127, a tensile tester such as Orientec Co., Ltd.
  • the elastic modulus is obtained using Tensilon RTA-100 manufactured by KK).
  • the shape of the test piece is No. 1 test piece, the test speed is 10 mm / min, measured in the direction of 0 ° to 15 ° with respect to the arbitrary direction, and the maximum elasticity among the obtained elastic modulus is the maximum elasticity And the direction is the direction of the maximum elastic modulus.
  • the ⁇ / 4 plate according to the present invention needs to be a highly elastic optical film in order to prevent the transparent substrate of the organic EL element from being bent in one direction due to expansion or contraction due to heat. Furthermore, even if it is a retardation film having high retardation expression and a high retardation, it can be thinned, and even if high retardation is expressed, the draw ratio can be kept low, From the viewpoint of avoiding failure such as breakage, one of the characteristics is that a film made of cellulose acetate having an acetyl group substitution degree in the range of 2.00 to 2.70 is used.
  • the method for measuring the degree of acetyl group substitution defined in the present invention can be carried out in accordance with ASTM D-817-91, and the preferred degree of acetyl group substitution is in the range of 2.00 to 2.55, More preferably, it is in the range of 2.20 to 2.45.
  • the degree of acetyl group substitution of cellulose acetate is 2.00 or more, it is possible to suppress the occurrence of deterioration in film surface quality due to an increase in dope viscosity and haze-up due to an increase in stretching tension. Moreover, if the degree of acetyl group substitution is 2.70 or less, a desired phase difference can be obtained.
  • the number average molecular weight (Mn) of cellulose acetate is preferably in the range of 30000-300000 from the viewpoint of increasing the mechanical strength of the resulting film. Furthermore, those in the range of 50,000 to 200,000 are preferably used.
  • the ratio of the weight average molecular weight (Mw) to the number average molecular weight (Mn) (Mw / Mn) of the cellulose acetate is preferably in the range of 1.4 to 3.0.
  • the number average molecular weight (Mn) and the weight average molecular weight (Mw) of cellulose acetate are both measured using gel permeation chromatography (GPC).
  • the cellulose that is a raw material of cellulose acetate is not particularly limited, and examples thereof include cotton linter, wood pulp (derived from conifers and hardwoods), kenaf and the like. Moreover, the cellulose acetate obtained from them can each be mixed and used in arbitrary ratios.
  • the cellulose acetate used in the present invention can be produced by a known method. Specifically, for example, it can be synthesized according to the method described in JP-A-10-45804.
  • Examples of commercially available products include L20, L30, L40, and L50 manufactured by Daicel, and Ca398-3, Ca398-6, Ca398-10, Ca398-30, and Ca394-60S manufactured by Eastman Chemical.
  • the ⁇ / 4 plate according to the present invention contains a compound represented by the following general formula (1) (hereinafter referred to as a sugar ester compound according to the present invention), which causes haze by stretching. This is preferable for providing a stable retardation and a high elastic modulus.
  • R 1 to R 8 each represents a hydrogen atom, a substituted or unsubstituted alkylcarbonyl group, or a substituted or unsubstituted arylcarbonyl group, and R 1 to R 8 are the same. Or different.
  • the average substitution degree of the compound represented by the general formula (1) according to the present invention is in the range of 3.0 to 6.0, which gives a high modulus of elasticity and increases the haze even when the stretching treatment is performed. It is effective in suppressing the above and expressing a stable phase difference. More preferably, the average degree of substitution is in the range of 4.5 to 6.0.
  • the degree of substitution of the compound represented by the general formula (1) represents the number substituted with a substituent other than a hydrogen atom among the eight hydroxy groups contained in the general formula (1). That is, among R 1 to R 8 of the structure represented by the general formula (1), the number containing a group other than a hydrogen atom is obtained, and this is used as the substitution degree. Therefore, when all of R 1 to R 8 are substituted with a substituent other than a hydrogen atom, the degree of substitution is 8.0, which is the maximum value, and when R 1 to R 8 are all hydrogen atoms, The degree is zero.
  • the degree of substitution of the compound represented by the general formula (1) in the present invention it is appropriate to use the average degree of substitution. From the area ratio of the chart showing the substitution degree distribution by high performance liquid chromatography by a conventional method. The average degree of substitution can be measured.
  • examples of the raw material sugar used for the synthesis include the following. Is not limited to these.
  • gentiobiose gentiotriose
  • gentiotetraose gentiotetraose
  • xylotriose galactosyl sucrose
  • Examples of preferred aliphatic monocarboxylic acids include acetic acid, propionic acid, butyric acid, isobutyric acid, valeric acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, 2-ethyl-hexanecarboxylic acid, undecylic acid, Saturated lauric acid, tridecylic acid, myristic acid, pentadecylic acid, palmitic acid, heptadecylic acid, stearic acid, nonadecanoic acid, arachidic acid, behenic acid, lignoceric acid, serotic acid, heptacosanoic acid, montanic acid, mellicic acid, and laxaric acid
  • unsaturated fatty acids such as fatty acids, undecylenic acid, oleic acid, sorbic acid, linoleic acid, linolenic acid, arachidonic acid and oc
  • Examples of preferred alicyclic monocarboxylic acids include cyclopentane carboxylic acid, cyclohexane carboxylic acid, cyclooctane carboxylic acid, and derivatives thereof.
  • aromatic monocarboxylic acids examples include aromatic monocarboxylic acids in which 1 to 5 alkyl groups or alkoxy groups are introduced into the benzene ring of benzoic acid such as benzoic acid and toluic acid, cinnamic acid, benzylic acid, An aromatic monocarboxylic acid having two or more benzene rings such as biphenyl carboxylic acid, naphthalene carboxylic acid, tetralin carboxylic acid or the like, or a derivative thereof can be mentioned. Among them, benzoic acid is particularly preferable.
  • the sugar ester compound according to the present invention can be produced by reacting a sugar ester with an acylating agent (eg, an esterifying agent such as an acid halide of acetyl chloride, an anhydride such as acetic anhydride).
  • an acylating agent eg, an esterifying agent such as an acid halide of acetyl chloride, an anhydride such as acetic anhydride.
  • the distribution of the degree of substitution can be appropriately determined by adjusting the amount of acylating agent, the timing of addition, and the time of the esterification reaction, but it is possible to mix sugar ester compounds with different degrees of substitution or to be isolated purely.
  • By appropriately mixing compounds having different degrees of substitution components having a target average degree of substitution and a degree of substitution of 4 or less can be adjusted.
  • the inside of the Kolben is depressurized to 4 ⁇ 10 2 Pa or less, excess pyridine is distilled off at 60 ° C., the inside of the Kolben is depressurized to 1.3 ⁇ 10 Pa or less, and the temperature is raised to 120 ° C. Most of the acid and benzoic acid formed are distilled off.
  • 1 L of toluene and 300 g of a 0.5 mass% sodium carbonate aqueous solution are added, and the mixture is stirred at 50 ° C. for 30 minutes and then allowed to stand to separate the toluene layer.
  • the amount of benzoic anhydride used is changed from 135.6 g (0.6 mol) to 158.2 g (0.7 mol), respectively.
  • 146.9 g (0.65 mol) and 124.3 g (0.55 mol) were reacted with this mole of pyridine, each component and average degree of substitution shown in Table 1 were obtained.
  • Each sugar ester compound can be obtained.
  • a part of each mixture obtained above is purified by column chromatography using silica gel to obtain 100% pure A-1, A-2, A-3, A-4, A-5, etc. Can be obtained.
  • A-5 or the like mentioned above means a mixture of all components having a substitution degree of 4 or less, that is, compounds having a substitution degree of 4, 3, 2, 1.
  • the average substitution degree is calculated with A-5 and the like being the substitution degree 4.
  • the average degree of substitution can be adjusted by adding in combination the sugar ester close to the desired degree of average substitution and the isolated A-1 to A-5 etc. by the method prepared here.
  • the ⁇ / 4 plate according to the present invention may be used in combination with a plasticizer in order to improve the fluidity and flexibility of the composition.
  • the plasticizer include phthalate ester, fatty acid ester, trimellitic ester, phosphate ester, polyester, epoxy, and polyhydric alcohol ester plasticizers. Of these, polyester and polyhydric alcohol ester plasticizers are preferably used. Polyester plasticizers are superior in non-migration and extraction resistance compared to other plasticizers. It can be applied to a wide range of uses by selecting or using these plasticizers according to the use.
  • the polyester plasticizer is a reaction product of a monovalent to tetravalent carboxylic acid and a monovalent to hexavalent alcohol, and is mainly obtained by reacting a divalent carboxylic acid and a glycol.
  • Representative divalent carboxylic acids include glutaric acid, itaconic acid, adipic acid, phthalic acid, azelaic acid, sebacic acid and the like.
  • the polyester plasticizer is preferably an aromatic terminal ester plasticizer. Examples of the aromatic terminal ester plasticizer include ester compounds having a structure obtained by reacting phthalic acid, adipic acid, at least one benzene monocarboxylic acid and at least one alkylene glycol having 2 to 12 carbon atoms.
  • the final compound structure may have an adipic acid residue and a phthalic acid residue, and when an ester compound is produced, it may be reacted as an acid anhydride or esterified product of a dicarboxylic acid. .
  • benzene monocarboxylic acid component examples include benzoic acid, para-tert-butylbenzoic acid, orthotoluic acid, metatoluic acid, p-toluic acid, dimethylbenzoic acid, ethylbenzoic acid, normal propylbenzoic acid, aminobenzoic acid, acetoxybenzoic acid and the like. Most preferred is benzoic acid. Moreover, these can be used as a 1 type, or 2 or more types of mixture, respectively.
  • alkylene glycol component having 2 to 12 carbon atoms examples include ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,2-butanediol, 1,3-butanediol, 1,2- Propanediol, 2-methyl-1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 2,2-dimethyl-1,3-propanediol (neopentyl glycol), 2,2- Diethyl-1,3-propanediol (3,3-dimethylolpentane), 2-n-butyl-2-ethyl-1,3propanediol (3,3-dimethylolheptane), 3-methyl-1,5 -Pentanediol 1,6-hexanediol, 2,2,4-trimethyl-1,3-pentanediol, 2-ethyl-1,3-
  • the aromatic terminal ester plasticizer may be either an oligoester type or a polyester type, and the molecular weight is preferably in the range of 100 to 10,000, but is preferably in the range of 350 to 3000.
  • the acid value is 1.5 mgKOH / g or less, the hydroxy group value is 25 mgKOH / g or less, more preferably the acid value is 0.5 mgKOH / g or less, and the hydroxy group value is 15 mgKOH / g or less.
  • the plasticizer is preferably added in the range of 0.5 to 30 parts by mass with respect to 100 parts by mass of the ⁇ / 4 plate.
  • plasticizer applicable to the ⁇ / 4 plate according to the present invention examples include the following exemplified compounds (2-1 to 2-13), but the present invention is not limited thereto.
  • polyhydric alcohol ester preferably used in the present invention comprises an aliphatic polyhydric alcohol having a valence of 2 or more and an ester of a monocarboxylic acid, and has an aromatic ring or a cycloalkyl ring in the molecule. Is preferred.
  • the polyhydric alcohol used in the present invention is represented by the following general formula (a).
  • R 1 represents an n-valent organic group.
  • n represents a positive integer of 2 or more.
  • the OH group represents an alcoholic or phenolic hydroxy group (hydroxyl group).
  • Examples of preferable polyhydric alcohols include the following.
  • triethylene glycol triethylene glycol
  • tetraethylene glycol dipropylene glycol
  • tripropylene glycol tripropylene glycol
  • sorbitol trimethylolpropane
  • xylitol trimethylolpropane
  • monocarboxylic acid used for polyhydric alcohol ester there is no restriction
  • alicyclic monocarboxylic acid or aromatic monocarboxylic acid is preferable in terms of improving moisture permeability and retention.
  • preferred monocarboxylic acids include the following, but the present invention is not limited thereto.
  • aliphatic monocarboxylic acid a fatty acid having a straight chain or a side chain having 1 to 32 carbon atoms can be preferably used.
  • the number of carbons is more preferably in the range of 1-20, and particularly preferably in the range of 1-10.
  • Preferred aliphatic monocarboxylic acids include, for example, acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, 2-ethyl-hexanecarboxylic acid, undecylic acid, lauric acid, Tridecyl acid, myristic acid, pentadecylic acid, palmitic acid, heptadecylic acid, stearic acid, nonadecanoic acid, arachidic acid, behenic acid, lignoceric acid, serotic acid, heptacosanoic acid, montanic acid, mellicic acid, laccellic acid, undecylen
  • unsaturated fatty acids such as acid, oleic acid, sorbic acid, linoleic acid, linolenic acid, and arachidonic acid.
  • use of acetic acid is preferable because
  • Preferred examples of the alicyclic monocarboxylic acid include cyclopentane carboxylic acid, cyclohexane carboxylic acid, cyclooctane carboxylic acid, and derivatives thereof.
  • Preferred aromatic monocarboxylic acids include, for example, those in which an alkyl group is introduced into the benzene ring of benzoic acid such as benzoic acid and toluic acid, and two or more benzene rings such as biphenylcarboxylic acid, naphthalenecarboxylic acid, and tetralincarboxylic acid.
  • benzoic acid such as benzoic acid and toluic acid
  • two or more benzene rings such as biphenylcarboxylic acid, naphthalenecarboxylic acid, and tetralincarboxylic acid.
  • An aromatic monocarboxylic acid possessed by them or a derivative thereof can be mentioned, and benzoic acid is particularly preferred.
  • the molecular weight of the polyhydric alcohol ester is not particularly limited, but the molecular weight is preferably in the range of 300 to 1500, and more preferably in the range of 350 to 750.
  • a larger molecular weight is preferable because it is less likely to volatilize, and a smaller one is preferable from the viewpoint of moisture permeability and compatibility with cellulose acetate.
  • the carboxylic acid used in the polyhydric alcohol ester may be one kind or a mixture of two or more kinds. Moreover, all the hydroxy groups in the polyhydric alcohol may be esterified, or a part of them may be left as they are.
  • the ⁇ / 4 plate according to the present invention or the protective film described later preferably contains an ultraviolet absorber, and examples of the ultraviolet absorber that can be used include benzotriazole-based ultraviolet absorption. Agents, 2-hydroxybenzophenone ultraviolet absorbers, salicylic acid phenyl ester ultraviolet absorbers, and the like.
  • 2- (5-methyl-2-hydroxyphenyl) benzotriazole 2- [2-hydroxy-3,5-bis ( ⁇ , ⁇ -dimethylbenzyl) phenyl] -2H-benzotriazole
  • 2- (3 Triazoles such as 5-di-t-butyl-2-hydroxyphenyl) benzotriazole, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-octoxybenzophenone, 2,2'-dihydroxy-4-methoxybenzophenone
  • Benzophenones such as
  • UV absorbers with a molecular weight of 400 or more are less likely to volatilize at high boiling points and are less likely to disperse during high-temperature molding of the film. It is preferable from the viewpoint that can be performed.
  • Examples of the ultraviolet absorber having a molecular weight of 400 or more include 2- [2-hydroxy-3,5-bis ( ⁇ , ⁇ -dimethylbenzyl) phenyl] -2-benzotriazole, 2,2-methylenebis [4- ( 1,1,3,3-tetrabutyl) -6- (2H-benzotriazol-2-yl) phenol] and other benzotriazole ultraviolet absorbers, bis (2,2,6,6-tetramethyl-4-piperidyl) ) Hindered amine UV absorbers such as sebacate, bis (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate, and further 2- (3,5-di-t-butyl-4-hydroxybenzyl) ) -2-n-butylmalonate bis (1,2,2,6,6-pentamethyl-4-piperidyl), 1- [2- [3- (3,5-di-t-butyl-4-hydroxy) Phenyl) propionyloxy] ethyl
  • 2- [2-hydroxy-3,5-bis ( ⁇ , ⁇ -dimethylbenzyl) phenyl] -2-benzotriazole and 2,2-methylenebis [4- (1,1,3,3- Tetrabutyl) -6- (2H-benzotriazol-2-yl) phenol] is particularly preferred.
  • TINUVIN series such as TINUVIN 109, TINUVIN 171, TINUVIN 234, TINUVIN 326, TINUVIN 327, TINUVIN 328, and TINUVIN 928 sold by BASF Japan are preferable. Can be used.
  • antioxidants can also be added to the ⁇ / 4 plate according to the present invention for the purpose of improving thermal decomposition resistance and thermal coloring resistance during molding.
  • an antistatic function can be imparted to the ⁇ / 4 plate by using an antistatic agent.
  • a flame retardant acrylic resin composition containing a phosphorus flame retardant may be used.
  • the phosphorus-based flame retardant used here include red phosphorus, triaryl phosphate ester, diaryl phosphate ester, monoaryl phosphate ester, aryl phosphonate compound, aryl phosphine oxide compound, condensed aryl phosphate ester, and halogenation. Examples thereof include one or a mixture of two or more selected from alkyl phosphates, halogen-containing condensed phosphates, halogen-containing condensed phosphonates, and halogen-containing phosphites.
  • triphenyl phosphate 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, phenylphosphonic acid, tris ( ⁇ -chloroethyl) phosphate, tris (dichloropropyl) Examples thereof include phosphate and tris (tribromoneopentyl) phosphate.
  • the ⁇ / 4 plate according to the present invention has, for example, silicon dioxide, titanium dioxide, aluminum oxide, zirconium oxide, calcium carbonate, kaolin, talc, calcined calcium silicate, and hydrated silicic acid in order to improve handleability. It is preferable to contain inorganic fine particles such as calcium, aluminum silicate, magnesium silicate and calcium phosphate and organic fine particles such as a crosslinked polymer as a matting agent. Among these, silicon dioxide is preferably used from the viewpoint that the haze of the film can be kept low.
  • the primary average particle diameter of the matting agent fine particles is preferably 20 nm or less, more preferably in the range of 5 to 16 nm, and particularly preferably in the range of 5 to 12 nm.
  • the ⁇ / 4 plate according to the present invention is required to withstand use in a higher temperature environment, and the ⁇ / 4 plate has a sufficient tension softening point in the range of 105 to 145 ° C. It is preferable for exhibiting heat resistance, and it is particularly preferable that the temperature is within a range of 110 to 130 ° C.
  • a sample film is cut out at 120 mm (length) ⁇ 10 mm (width) and pulled with a tension of 10 N.
  • the temperature can be continuously increased at a temperature increase rate of 30 ° C./min, and the temperature at 9 N can be measured three times, and the average value can be obtained.
  • the dimensional change rate (%) of the ⁇ / 4 plate according to the present invention is preferably less than 0.5%, and more preferably less than 0.3%.
  • ⁇ / 4 plate according to the present invention preferably has few defects in the film.
  • the defect here refers to a void in the film (foaming defect) generated due to rapid evaporation of the solvent in the drying step when the film is produced by the solution casting method, or a film-forming stock solution (also referred to as a dope).
  • Foreign matter foreign matter defect
  • Foreign matter defect in the film caused by foreign matter in the film or foreign matter (dust in the atmosphere, etc.) mixed in the film formation.
  • the number of defects having a diameter of 5 ⁇ m or more in the film plane is preferably 1/10 cm square or less. More preferably, it is 0.5 piece / 10 cm square or less, and particularly preferably 0.1 piece / 10 cm square or less.
  • the diameter in the above-mentioned defect indicates the diameter when the defect is circular, and when the defect is not circular, the range of the defect is determined by observing with a microscope according to the following method, and the maximum diameter (diameter of circumscribed circle) is determined. .
  • the range of the defect is the size of the shadow when the defect is observed with the transmitted light of the differential interference microscope when the defect is a bubble or a foreign object. If the defect is a change in surface shape, such as transfer of a roller flaw or an abrasion, the size of the defect is confirmed by observing the defect with reflected light from a differential interference microscope.
  • the film When the number of defects is more than 1/10 cm square, for example, when tension is applied to the film at the time of subsequent processing, the film may be broken starting from the defects and productivity may be reduced. Further, when the diameter of the defect is 5 ⁇ m or more, it is recognized by visual observation such as observation of a polarizing plate and causes a bright spot when used as an optical member.
  • the ⁇ / 4 plate according to the present invention preferably has a breaking elongation in at least one direction of 10% or more, more preferably 20% or more, as measured by a method according to JIS-K7127-1999. is there.
  • the upper limit of the elongation at break is not particularly limited, but is practically about 250%. In order to increase the elongation at break, it is effective to suppress defects in the film caused by foreign matter and foaming.
  • the ⁇ / 4 plate according to the present invention preferably has a total light transmittance of 90% or more, more preferably 93% or more. Moreover, as a realistic upper limit, it is about 99%.
  • the surface smoothness of the contact area with the film during film formation for example, cooling roller, calendar roller, drum, belt, coating substrate in solution film formation, transport roller, etc.
  • the surface roughness of the film surface is increased. It is effective to reduce the diffusion and reflection of light on the film surface by making it small.
  • Method of forming ⁇ / 4 plate Next, a method for forming a ⁇ / 4 plate according to the present invention will be described. However, the method is not limited to the method described here.
  • a production method such as an inflation method, a T-die method, a calendar method, a cutting method, a casting method, an emulsion method, or a hot press method can be used.
  • the ⁇ / 4 plate according to the present invention may be formed by either a solution casting method or a melt casting method.
  • the casting method and further the solution casting method are preferred.
  • melt casting methods by melt casting can be classified into melt extrusion molding methods, press molding methods, inflation methods, injection molding methods, blow molding methods, stretch molding methods, and the like. Among these, the melt extrusion method is preferable from the viewpoint of obtaining a film having excellent mechanical strength and surface accuracy.
  • the organic solvent useful for forming the dope can be used without limitation as long as it dissolves cellulose acetate and other additives simultaneously. it can.
  • Examples of the chlorine-based organic solvent include methylene chloride, and examples of the non-chlorine-based organic solvent include, for example, methyl acetate, ethyl acetate, amyl acetate, acetone, tetrahydrofuran, 1,3-dioxolane, 1,4-dioxane, cyclohexanone, Ethyl formate, 2,2,2-trifluoroethanol, 2,2,3,3-hexafluoro-1-propanol, 1,3-difluoro-2-propanol, 1,1,1,3,3,3- Hexafluoro-2-methyl-2-propanol, 1,1,1,3,3,3-hexafluoro-2-propanol, 2,2,3,3,3-pentafluoro-1-propanol, nitroethane, etc.
  • methylene chloride, methyl acetate, ethyl acetate, and acetone can be preferably used.
  • the dope preferably contains a linear or branched aliphatic alcohol having 1 to 40% by mass and 1 to 4 carbon atoms.
  • a linear or branched aliphatic alcohol having 1 to 40% by mass and 1 to 4 carbon atoms.
  • the dope cast on the metal support hereinafter also referred to as a web
  • gels and becomes easy to peel off from the metal support and when the proportion of alcohol is small It also has a role of promoting dissolution of cellulose acetate in a non-chlorine organic solvent system.
  • One of the preferred compositions is a dope composition dissolved in a range of ⁇ 45 mass%.
  • linear or branched aliphatic alcohols having 1 to 4 carbon atoms examples include methanol, ethanol, n-propanol, iso-propanol, n-butanol, sec-butanol, and tert-butanol. Can be mentioned. Among these, ethanol is preferable because it is effective in stabilizing the dope, has a relatively low boiling point, and has good drying properties.
  • ⁇ Film forming process by solution casting method The step of manufacturing the ⁇ / 4 plate according to the present invention by the solution casting method will be described.
  • a step of preparing a dope by dissolving a resin and an additive in an organic solvent a step of casting the dope on a belt-shaped or drum-shaped metal support, and drying the cast dope as a web. It is manufactured through a process, a process of peeling a web from a metal support, a process of stretching or maintaining the width, a process of drying, a process of winding up a finished film, and the like.
  • the concentration of cellulose acetate in the dope is preferably higher because the drying load after casting on a metal support can be reduced. However, if the concentration of cellulose acetate is too high, the load during filtration increases and the filtration accuracy increases. becomes worse.
  • the concentration for achieving both of these is preferably in the range of 10 to 35% by mass, and more preferably in the range of 15 to 25% by mass.
  • the metal support in the casting (casting) step preferably has a mirror-finished surface, and a stainless steel belt or a drum whose surface is plated with a casting is preferably used as the metal support.
  • the cast width is preferably in the range of 1 to 4 m.
  • the surface temperature of the metal support in the casting step is set in a range from ⁇ 50 ° C. to a temperature at which the solvent boils and does not foam. A higher temperature is preferable because the web can be dried faster, but if it is too high, the web may foam and flatness may deteriorate.
  • a preferable support temperature is appropriately determined within a temperature range of 0 to 100 ° C., and particularly preferably within a range of 5 to 30 ° C.
  • the method for controlling the temperature of the metal support is not particularly limited, and there are a method of blowing warm air or cold air, and a method of bringing hot water into contact with the back side of the metal support. In the method of controlling the temperature using hot water, heat transfer is performed efficiently, so that the time until the temperature of the metal support becomes constant is short.
  • the amount of residual solvent when peeling the web from the metal support is preferably set within the range of 10 to 150% by mass, more preferably 20 to 20%. It is within the range of 40% by mass or 60 to 130% by mass, and particularly preferably within the range of 20 to 30% by mass or 70 to 120% by mass.
  • the residual solvent amount as used in the present invention is defined by the following formula.
  • Residual solvent amount (% by mass) ⁇ (MN) / N ⁇ ⁇ 100 Note that M is the mass of a sample collected during or after the production of the web or film, and N is after heating the M at 115 ° C. for 1 hour to completely remove the contained solvent. Mass.
  • the web is peeled from the metal support and further dried to make the residual solvent amount 1% by mass or less, more preferably 0.1% by mass or less. Particularly preferably, it is in the range of 0 to 0.01% by mass.
  • a roller drying method (a method in which webs are alternately passed through a plurality of rollers arranged above and below) and a method in which the web is dried while being conveyed by a tenter method are employed.
  • the ⁇ / 4 plate according to the present invention is characterized in that the in-plane retardation value Ro (550) measured at a wavelength of 550 nm is in the range of 100 to 180 nm, and the retardation is provided by a film stretching treatment. Is preferred.
  • the ⁇ / 4 plate according to the present invention is also referred to as a cellulose acetate film.
  • the stretching method applicable to the present invention is not particularly limited.
  • Examples include a method of extending in the traveling direction and stretching in the vertical direction, 3) a method of expanding in the horizontal direction and stretching in the horizontal direction, or 4) a method of expanding both in the vertical and horizontal directions and stretching in both the vertical and horizontal directions.
  • these methods may be used alone or in combination. That is, the film may be stretched in the transverse direction, longitudinally, or in both directions with respect to the film-forming direction. Stretching may be used.
  • driving the clip portion by the linear drive method is preferable because smooth stretching can be performed and the risk of breakage and the like can be reduced.
  • stretching is performed in the transport direction using the difference in the peripheral speed of the film transport rollers, or both ends of the web are clipped in a direction orthogonal to the transport direction (also referred to as the width direction or TD direction).
  • TD direction a direction orthogonal to the transport direction
  • the ⁇ / 4 plate according to the present invention is stretched in a stretching process in a direction of 45 ° with respect to the film conveying direction in order to set the orientation angle ⁇ with respect to the longitudinal direction of the film to 35 to 55 ° It is.
  • a roll-shaped polarizing film having a transmission axis in a direction parallel to the longitudinal direction of the slow axis and a ⁇ / 4 plate having an orientation angle of substantially 45 ° are aligned with each other in the longitudinal direction.
  • a roll-shaped long circularly polarizing plate can be easily produced, so that there is little cutting loss of the film, which is advantageous in production.
  • FIG. 3 is a schematic diagram showing oblique stretching by a tenter.
  • the stretched film is manufactured using a tenter.
  • This tenter is a device that widens a film fed from a film roll (feeding roll) in an oblique direction with respect to its traveling direction (moving direction of the middle point in the film width direction) in an oven heating environment.
  • the tenter includes an oven, a pair of rails on the left and right on which a gripping tool for transporting the film travels, and a number of gripping tools that travel on the rails. Both ends of the film fed out from the film roll and sequentially supplied to the entrance portion of the tenter are gripped by a gripping tool, the film is guided into the oven, and the film is released from the gripping tool at the exit portion of the tenter.
  • the film released from the gripping tool is wound around the core.
  • Each of the pair of rails has an endless continuous track, and the gripping tool which has released the grip of the film at the exit portion of the tenter travels outside and is sequentially returned to the entrance portion.
  • the rail shape of the tenter is asymmetrical on the left and right according to the orientation angle, stretch ratio, etc. given to the stretched film to be manufactured, and can be finely adjusted manually or automatically.
  • a long thermoplastic resin film is stretched, and the orientation angle ⁇ can be set to an arbitrary angle within the range of 10 to 80 ° with respect to the winding direction after stretching.
  • the gripping tool of the tenter is configured to travel at a constant speed with a certain distance from the front and rear gripping tools.
  • Fig. 3 shows a rail (rail pattern) of a tenter rail used for oblique stretching.
  • the feeding direction DR1 of the cellulose acetate film is different from the winding direction (MD direction) DR2 of the stretched film, thereby obtaining a wide and uniform optical characteristic even in a stretched film having a relatively large orientation angle. It is possible.
  • the feeding angle ⁇ i is an angle formed by the feeding direction DR1 of the film before stretching and the winding direction DR2 of the film after stretching.
  • the feeding angle ⁇ i is set in the range of 10 ° ⁇ i ⁇ 60 °, preferably 15 ° ⁇ i ⁇ 50 °. Is done.
  • the variation in the optical characteristics in the width direction of the obtained film is preferably reduced.
  • the cellulose acetate film fed from the film roll is gripped in order by the right and left gripping tools at the tenter inlet (position a), and then traveled as the gripping tool travels. .
  • the left and right grips CL and CR that face the direction substantially perpendicular to the film traveling direction (feeding direction DR1) at the tenter entrance (position a) run on a rail that is asymmetrical to the preheating zone. Through an oven having a stretching zone and a heat setting zone.
  • substantially perpendicular indicates that an angle formed by the straight line connecting the above-described gripping tools CL and CR and the film feeding direction DR1 is within 90 ⁇ 1 °.
  • the preheating zone refers to a section in which the vehicle travels at a constant interval at the oven inlet while the interval between the gripping tools gripping both ends is maintained.
  • the stretching zone refers to a section until the interval between the gripping tools gripping both ends starts to become constant again.
  • the cooling zone refers to a section in which the temperature in the zone is set to be equal to or lower than the glass transition temperature Tg ° C. of the thermoplastic resin constituting the film in a period in which the interval between the gripping tools after the stretching zone becomes constant again. .
  • the temperature of each zone is the glass transition temperature Tg of the thermoplastic resin
  • the temperature of the preheating zone is in the range of Tg + 5 to Tg + 20 ° C.
  • the temperature of the stretching zone is in the range of Tg to Tg + 20 ° C.
  • the temperature of the cooling zone is Tg ⁇ It is preferably set in the range of 30 to Tg ° C.
  • the draw ratio R (W / Wo) in the drawing step is preferably in the range of 1.3 to 3.0 times, more preferably in the range of 1.5 to 2.8 times.
  • thickness unevenness in the width direction is preferably reduced.
  • Wo represents the width of the film before stretching
  • W represents the width of the film after stretching.
  • the step of stretching in the oblique direction may be an on-line method performed in the film forming step, or an off-line method in which the film is once wound up and then drawn out and stretched by the tenter.
  • the means for drying the cellulose acetate film is not particularly limited, and can be generally performed with hot air, infrared rays, a heating roller, microwave, or the like, but from the viewpoint of simplicity, a method using hot air is preferable.
  • the drying temperature in the drying step of the cellulose acetate film is preferably in the range of ⁇ 5 ° C. to + 100 ° C. of the glass transition point of the film, and it is effective to perform the heat treatment in the range of 10 to 60 minutes. Drying is performed at a drying temperature in the range of 100 to 200 ° C., more preferably in the range of 110 to 160 ° C.
  • a slitter is provided after the predetermined heat treatment and before the winding, and the end portion is cut off. Furthermore, it is preferable to apply a knurling process to both ends of the width.
  • the knurling process can be formed by pressing a heated embossing roller.
  • a fine concavo-convex structure is formed on the surface of the embossing roller, and by pressing this against the film, the concavo-convex structure can be formed on the film and the end can be made bulky.
  • the height of the knurling at both ends of the width of the cellulose acetate film is preferably in the range of 4 to 20 ⁇ m, and the width is preferably in the range of 5 to 20 mm.
  • the knurling process is provided between the end of drying and the winding portion in the film forming process.
  • the ⁇ / 4 plate according to the present invention may be formed by a melt casting method.
  • the melt casting method is a method in which a composition containing an additive such as a resin and a plasticizer is heated and melted to a temperature exhibiting fluidity, and then a melt containing fluid cellulose acetate is cast.
  • the molding method for heating and melting can be further classified into a melt extrusion molding method, a press molding method, an inflation method, an injection molding method, a blow molding method, a stretch molding method, and the like.
  • the melt extrusion method is preferable from the viewpoint of mechanical strength and surface accuracy. It is preferable that a plurality of raw materials used for melt extrusion are usually kneaded in advance and pelletized.
  • Pelletization may be performed by a known method. For example, dry cellulose acetate, a plasticizer, and other additives are fed to an extruder with a feeder and kneaded using a single-screw or twin-screw extruder, and formed into a strand form from a die. It can be done by extrusion, water cooling or air cooling and cutting.
  • Additives may be mixed before being supplied to the extruder, or may be supplied by individual feeders.
  • a small amount of additives such as particles and antioxidants are preferably mixed in advance in order to mix uniformly.
  • the extruder is preferably processed at as low a temperature as possible so that it can be pelletized so as to suppress the shearing force and prevent the resin from deteriorating (for example, molecular weight reduction, coloring, gel formation, etc.).
  • a twin screw extruder it is preferable to rotate in the same direction using a deep groove type screw. From the uniformity of kneading, the meshing type is preferable.
  • Film formation is performed using the pellets obtained as described above.
  • the raw material powder can be directly fed to the extruder by a feeder without being pelletized to form a film as it is.
  • the melting temperature at the time of extrusion is about 200 to 300 ° C, filtered through a leaf disk type filter, etc. to remove foreign matter, and then formed into a film from the T die.
  • the film is nipped between the cooling roller and the elastic touch roller and solidified on the cooling roller.
  • the extrusion flow rate is preferably carried out stably by introducing a gear pump.
  • a stainless fiber sintered filter is preferably used as a filter used for removing foreign substances.
  • Stainless steel fiber sinter filters are made by compressing the stainless steel fiber body in a complex and intertwined state, and sintering and integrating the contact points. The density changes depending on the thickness of the fiber and the amount of compression, and the filtration accuracy Can be adjusted.
  • Additives such as plasticizers and particles may be mixed with the resin in advance, or may be kneaded in the middle of the extruder. In order to add uniformly, it is preferable to use a mixing apparatus such as a static mixer.
  • the film temperature on the touch roller side is preferably in the temperature range of Tg to Tg + 110 ° C. of the film.
  • a known roller can be used as the roller having an elastic surface used for such a purpose.
  • the elastic touch roller is also called a pinching rotary body.
  • a commercially available elastic touch roller can also be used.
  • the film obtained as described above is stretched by the stretching operation after passing through the step of contacting the cooling roller.
  • the stretching method a known roller stretching machine or tenter can be preferably used.
  • the stretching temperature is usually preferably in the temperature range of Tg to Tg + 60 ° C. of the resin constituting the film.
  • knurl processing embssing processing
  • the knurling method can process a metal ring having an uneven pattern on its side surface by heating or pressing.
  • the gripped portions of the clips at both ends of the film are cut out and reused.
  • the film thickness of the ⁇ / 4 plate according to the present invention is not particularly limited, but is used in the range of 10 to 250 ⁇ m. Further, the film thickness is preferably in the range of 10 to 100 ⁇ m, particularly preferably in the range of 30 to 60 ⁇ m.
  • ⁇ / 4 plate according to the present invention is used in the range of 1 to 4 m in width. Furthermore, a width of 1.4 to 4 m is preferably used, and a range of 1.6 to 3 m is particularly preferable. If the width exceeds 4 m, the conveyance becomes difficult.
  • the arithmetic average roughness Ra of the ⁇ / 4 plate surface according to the present invention is preferably in the range of 2.0 to 4.0 nm, and more preferably in the range of 2.5 to 3.5 nm.
  • the protective layer 10 of the circularly polarizing plate according to the present invention is preferably a protective film, for example, a cellulose ester type such as a triacetyl cellulose film, a cellulose acetate propionate film, a cellulose diacetate film, or a cellulose acetate butyrate film.
  • a cellulose ester type such as a triacetyl cellulose film, a cellulose acetate propionate film, a cellulose diacetate film, or a cellulose acetate butyrate film.
  • Polyester film such as polyethylene terephthalate, Polyethylene naphthalate, Polycarbonate film, Polyarylate film, Polysulfone (including polyethersulfone) film, Polyethylene film, Polypropylene film, Cellophane, Polyvinylidene chloride film, Polyvinyl alcohol film , Ethylene vinyl alcohol film, syndiotactic polystyrene film, norbornene resin film
  • Polymethyl pentene film, polyether ketone film, polyether ketone imide film, a polyamide film, a fluorine resin film, nylon film can be used cycloolefin polymer film, a polymethylmethacrylate film, or an acrylic film.
  • cellulose ester films for example, Konica Minolta Tack KC8UX, KC4UX, KC5UX, KC8UCR3, KC8UCR4, KC8UCR5, KC8UY, KC4UE, KC4UE, and KC12UR (made by Konica Minolta Advanced Layer Co., Ltd.)
  • a cycloolefin polymer film and a polyester film are preferable, and in the present invention, a cellulose ester film is preferable from the viewpoints of optical properties, productivity, and cost.
  • the protective film preferably has an in-plane maximum elastic modulus of 4.0 GPa or more measured in an environment of 23 ° C. and 55 RH%, and can further suppress panel deflection.
  • the protective film controls the selection of cellulose acetate, the use of the compound represented by the general formula (1), the use of other additives, the stretching conditions, etc., as in the production of the ⁇ / 4 plate according to the present invention.
  • a protective film having a high elastic modulus can be produced.
  • the arrangement of ⁇ / 4 plates on both sides of a polarizer has an effect on improving the quality of a display image.
  • the ⁇ / 4 plate according to the present invention is used as the protective film.
  • the direction of the maximum elastic modulus in the plane of the protective film is preferably in the direction of 35 ° to 55 ° with respect to the longitudinal direction of the screen of the image display device, and in the plane of the ⁇ / 4 plate.
  • Antireflection layer It is also a preferable aspect that an antireflection layer having an external light antireflection function is provided on the protective film of the circularly polarizing plate directly or via another layer.
  • the antireflection layer is preferably laminated in consideration of the refractive index of the constituent layers, the film thickness, the number of constituent layers, the layer order, and the like so that the reflectance is reduced by optical interference.
  • the antireflection layer is preferably composed of a low refractive index layer having a refractive index lower than that of the support, or a combination of a high refractive index layer having a refractive index higher than that of the support and a low refractive index layer.
  • Particularly preferred is an antireflection layer unit composed of three or more refractive index layers. Three layers having different refractive indices from the support side are divided into medium refractive index layers (having a higher refractive index than the support and having a high refractive index.
  • Layers having a refractive index lower than that of the layer) / high refractive index layer / low refractive index layer are preferably used in this order.
  • an antireflection layer unit composed of four or more layers in which two or more high refractive index layers and two or more low refractive index layers are alternately laminated is also preferably used. Examples of the configuration of the antireflection layer include the following configurations, but are not limited thereto.
  • the low refractive index layer essential for the antireflection layer preferably has a structure containing silica-based fine particles, and its refractive index is lower than the refractive index of the substrate film as a support, and is 23 ° C. and a wavelength of 550 nm.
  • the refractive index when measured is preferably in the range of 1.30 to 1.45.
  • the film thickness of the low refractive index layer is preferably in the range of 5 nm to 0.5 ⁇ m, more preferably in the range of 10 nm to 0.3 ⁇ m, and most preferably in the range of 30 nm to 0.2 ⁇ m.
  • the silica-based fine particles include, in particular, at least one particle having an outer shell layer (also referred to as a shell portion) and a porous or hollow interior (also referred to as a core portion). It is preferable to include types.
  • the particles having an outer shell layer and having a porous or hollow interior are preferably hollow silica-based fine particles.
  • composition for forming a low refractive index layer may contain an organosilicon compound represented by the following general formula (OSi-1), a hydrolyzate thereof, or a polycondensate thereof.
  • OSi-1 organosilicon compound represented by the following general formula (OSi-1)
  • hydrolyzate thereof a hydrolyzate thereof
  • polycondensate thereof a polycondensate thereof.
  • R represents an alkyl group having 1 to 4 carbon atoms.
  • organosilicon compound represented by the general formula (OSi-1) include tetramethoxysilane, tetraethoxysilane, and tetraisopropoxysilane.
  • a solvent a silane coupling agent, a curing agent, a surfactant, and the like may be added to the composition for forming a low refractive index layer, if necessary.
  • the refractive index of the high refractive index layer is preferably adjusted to a refractive index in the range of 1.4 to 2.2 as measured at 23 ° C. and a wavelength of 550 nm.
  • the thickness of the high refractive index layer is preferably in the range of 5 nm to 1 ⁇ m, more preferably in the range of 10 nm to 0.2 ⁇ m, and most preferably in the range of 30 nm to 0.1 ⁇ m.
  • the means for adjusting the refractive index can be achieved by adding metal oxide fine particles and the like.
  • the metal oxide fine particles used preferably have a refractive index in the range of 1.80 to 2.60, more preferably in the range of 1.85 to 2.50.
  • the kind of metal oxide fine particles is not particularly limited, and Ti, Zr, Sn, Sb, Cu, Fe, Mn, Pb, Cd, As, Cr, Hg, Zn, Al, Mg, Si, P and A metal oxide having at least one atom selected from S can be used, and these metal oxide fine particles further contain a trace amount of atoms such as Al, In, Sn, Sb, Nb, a halogen atom, and Ta. It may be doped. A mixture of these may also be used.
  • the average particle diameter of primary particles of these metal oxide fine particles is preferably in the range of 10 to 200 nm, particularly preferably in the range of 10 to 150 nm.
  • the average particle diameter of the metal oxide fine particles can be measured from an electron micrograph taken with a scanning electron microscope (SEM) or the like. As another method, measurement may be performed by a particle size distribution meter using a dynamic light scattering method, a static light scattering method, or the like. If the average particle size is 10 nm or more, the dispersion stability is maintained and the particles are less likely to aggregate. Moreover, if an average particle diameter is 200 nm or less, generation
  • the shape of the metal oxide fine particles is preferably a rice grain shape, a spherical shape, a cubic shape, a spindle shape, a needle shape, or an indefinite shape.
  • the metal oxide fine particles may be subjected to a surface treatment with an organic compound.
  • a surface treatment with an organic compound By modifying the surface of the metal oxide fine particles with an organic compound, the dispersion stability in an organic solvent is improved, the control of the dispersed particle size is facilitated, and the fine particles are aggregated when stored for a long period of time. Sedimentation can also be suppressed. Therefore, the surface modification amount with a preferable organic compound is in the range of 0.1 to 5% by mass, more preferably in the range of 0.5 to 3% by mass with respect to the metal oxide particles.
  • the organic compound used for the surface treatment include polyols, alkanolamines, stearic acid, silane coupling agents, and titanate coupling agents.
  • the high refractive index layer may contain a ⁇ -conjugated conductive polymer.
  • the ⁇ -conjugated conductive polymer is an organic polymer compound whose main chain is composed of a ⁇ -conjugated system. Examples thereof include polythiophenes, polypyrroles, polyanilines, polyphenylenes, polyacetylenes, polyphenylene vinylenes, polyacenes, polythiophene vinylenes, and copolymers thereof. From the viewpoint of ease of polymerization and stability, polythiophenes, polyanilines, and polyacetylenes are preferable.
  • the ⁇ -conjugated conductive polymer can provide sufficient conductivity and solubility in a binder resin even if it is not substituted, but from the viewpoint of further improving conductivity and solubility, an alkyl group, a carboxy group, a sulfo group, and an alkoxy group.
  • a functional group such as a group, a hydroxy group, or a cyano group may be introduced.
  • the ionic compound include imidazolium-based, pyridium-based, alicyclic amine-based, aliphatic amine-based, aliphatic phosphonium-based cations and inorganic ion-based compounds such as BF 4 ⁇ and PF 6 ⁇ , CF 3 SO 2 ⁇ , and the like. , (CF 3 SO 2 ) 2 N ⁇ , CF 3 CO 2 —, etc.
  • the ratio of the polymer to the binder is preferably in the range of 10 to 400 parts by weight of the binder with respect to 100 parts by weight of the polymer, and particularly preferably in the range of 100 to 200 parts by weight of the binder with respect to 100 parts by weight of the polymer. is there.
  • Example 1 Preparation of cellulose acetate >> To 100 parts by mass of cellulose, 16 parts by mass of sulfuric acid, 260 parts by mass of acetic anhydride and 420 parts by mass of acetic acid were added, and the temperature was raised from room temperature to 60 ° C. over 60 minutes while stirring, and the temperature was maintained for 15 minutes. The acetylation reaction was carried out. Next, a mixed solution of magnesium acetate in acetic acid-water was added to neutralize the sulfuric acid, and then steam was introduced into the reaction system, and the state was maintained at 60 ° C. for 120 minutes to carry out a saponification aging treatment. . Thereafter, washing was performed with a large amount of water until the odor of acetic acid disappeared, and further drying was performed to obtain cellulose acetate 1 having an acetyl group substitution degree of 2.00.
  • the degree of acetyl group substitution shown in Table 2 is 1.90, 2. except that the addition amount of each acid (sulfuric acid, acetic anhydride, acetic acid) is appropriately adjusted. 20, 2.45, 2.70, 2.80, 2.88 cellulose acetates 2-7 were prepared.
  • the inside of the Kolben is depressurized to 4 ⁇ 10 2 Pa or less, and after excess pyridine is distilled off at 60 ° C., the inside of the Kolben is depressurized to 1.3 ⁇ 10 Pa or less, and then the temperature is raised to 120 ° C. Most of benzoic acid and the produced benzoic acid were distilled off. Finally, 100 g of water was added to the collected toluene layer, and after washing with water at room temperature for 30 minutes, the toluene layer was collected, and toluene was distilled off at 60 ° C. under reduced pressure (4 ⁇ 10 2 Pa or less). A sugar ester compound 1 consisting of a mixture of compounds A-1, A-2, A-3, A-4 and A-5 was prepared. The specific structures of the compounds A-1, A-2, A-3, A-4 and A-5 are as shown in Chemical Formula 6 above.
  • the obtained mixture was analyzed using HPLC and LC-MASS under the following conditions.
  • the sugar ester compound 1 was 1.3% by mass of compound A-1, 13.4% by mass of compound A-2
  • the compound A-3 was composed of 13.1% by mass
  • the compound A-4 was composed of 31.7% by mass
  • the compound A-5 was composed of 40.5% by mass
  • the average degree of substitution was 5.5.
  • Fine particle additive solution 1 The fine particle dispersion 1 was slowly added while sufficiently stirring the methylene chloride in the dissolution tank. Further, the particles were dispersed by an attritor so that the secondary particles had a predetermined particle size. This was filtered through Finemet NF manufactured by Nippon Seisen Co., Ltd. to prepare a fine particle additive solution 1.
  • Main dope 1 was prepared according to the following procedure. First, methylene chloride and ethanol were added to the pressure dissolution tank. To the pressure dissolution tank containing the solvent, the cellulose acetate 2, saccharide ester compound 1 and fine particle additive solution 1 having the acetyl group substitution degree of 1.90 prepared above were sequentially added while stirring. This was dissolved and mixed while heating and stirring. This was designated as Azumi Filter Paper No. manufactured by Azumi Filter Paper Co., Ltd. The main dope 1 was prepared by filtration using 244.
  • the prepared main dope 1 was uniformly cast on a stainless belt support using an endless belt casting apparatus. On the stainless steel belt support, the solvent was evaporated until the amount of residual solvent in the cast (cast) film was 75%, and then peeled off from the stainless steel belt support with a peeling tension of 130 N / m.
  • the peeled film was stretched 1% in the width direction using a tenter while applying heat at 160 ° C.
  • the residual solvent at the start of stretching was 15%.
  • drying was terminated while the drying zone was conveyed by a number of rollers.
  • the drying temperature was 130 ° C. and the transport tension was 100 N / m.
  • the roll-shaped raw film 1 was set in a slidable feeding device and supplied to the oblique stretching tenter device shown in FIG. At that time, the distance between the main shaft of the guide roller (28-1) closest to the inlet portion of the oblique stretching tenter device and the gripping tool (clip gripping portion 22-1 / 22-2) of the oblique stretching device was 80 cm.
  • the clip used had a length of 2 inches (5.08 cm) in the conveying direction, and the guide roller had a diameter of 10 cm.
  • the tenter was stretched in the transverse direction at a stretching temperature of 190 ° C. and a stretching ratio of 80%, and then contracted 0.71 times in the direction perpendicular to the stretching when the rail was bent 45 °.
  • the stretched film is subjected to feedback control that reflects the variation in tension measured by the first roller (28-2) on the outlet side of the obliquely stretched tenter so that the variation in take-up tension is less than 3%. Controlled. Thereafter, both ends of the film were trimmed, the conveyance direction was changed with a conveyance direction changing device composed of an air flow roller, and the film was wound up with a slidable winding device to produce a roll-shaped stretched film 1 having a width of 2000 mm.
  • the orientation angle ⁇ of the stretched film 1 was measured using KOBRA-21ADH manufactured by Oji Scientific Instruments, and as a result, it was in the range of 45 ° ⁇ 1 ° with respect to the film longitudinal direction.
  • Stretched film 15 In the production of the stretched film 5, instead of the oblique stretching method, stretching is performed by stretching 80% in the transport direction while heating at 190 ° C., and simultaneously contracting 30% in the width direction using a tenter. A stretched film 15 was prepared in the same manner except that.
  • the orientation angle ⁇ of the stretched film 15 was measured using KOBRA-21ADH manufactured by Oji Scientific Instruments, and as a result, it was in the range of 0 ° ⁇ 1 ° with respect to the film longitudinal direction.
  • a stretched film 16 was produced according to Example 4 described in JP 2010-134232 A.
  • ester compound 1 251 g of 1,2-propylene glycol, 278 g of phthalic anhydride, 91 g of adipic acid, 610 g of benzoic acid, 0.191 g of tetraisopropyl titanate as an esterification catalyst, each equipped with a thermometer, stirrer and slow cooling tube Into a 2 L four-necked flask, the temperature was gradually raised with stirring until it reached 230 ° C. in a nitrogen stream, and a dehydration condensation reaction took 15 hours. 1,2-propylene glycol was distilled off under reduced pressure to obtain ester compound 1. The ester compound 1 had an acid value of 0.10 mg KOH / g and a number average molecular weight of 450.
  • the prepared main dope 17 was uniformly cast on a stainless steel belt support.
  • the solvent was evaporated until the residual solvent amount reached 100%, and the stainless steel belt support was peeled off.
  • Cellulose ester film web was evaporated at 35 ° C, slit to 1.65m width, 30% in the TD direction (film width direction) with a tenter while applying heat at 160 ° C, MD direction (transport direction)
  • the film was stretched at a stretch ratio of 1%.
  • the residual solvent amount at the start of stretching was 20%. Then, after drying for 15 minutes while transporting the inside of a drying device at 120 ° C.
  • the stretched film 17 was obtained.
  • the residual solvent amount of the stretched film was 0.2%, the film thickness was 40 ⁇ m, and the number of turns was 3900 m.
  • the orientation angle ⁇ of the stretched film 17 was measured using KOBRA-21ADH manufactured by Oji Scientific Instruments, and as a result, it was in the range of 90 ° ⁇ 1 ° with respect to the film longitudinal direction.
  • the orientation angle ⁇ of the stretched film 18 was measured using KOBRA-21ADH manufactured by Oji Scientific Instruments, and as a result, it was in the range of 90 ° ⁇ 1 ° with respect to the film longitudinal direction.
  • nx represents the refractive index in the slow axis x direction in the film plane.
  • ny represents the refractive index in the y direction orthogonal to the x direction in the film plane.
  • nz represents the refractive index in the thickness direction of the film.
  • d represents the film thickness (nm) of the film.
  • Each refractive index was measured at a measurement wavelength of 550 nm in an environment of 23 ° C. and 55% RH.
  • Table 2 shows the results obtained as described above.
  • the stretched films 1 to 16 are all ⁇ / 4 plates based on the retardation value Ro (550), and in particular, the stretched films 1 to 14 have an orientation angle. It turns out that it inclines with respect to the film longitudinal direction. In addition, it can be seen that the stretched films 14, 17 and 18 containing the ultraviolet absorber all have a property of low ultraviolet transmittance and have an ultraviolet blocking effect.
  • Circular Polarizing Plate 101 A 120 ⁇ m-thick polyvinyl alcohol film was uniaxially stretched (temperature: 110 ° C., stretch ratio: 5 times).
  • This film was immersed in an aqueous solution consisting of 0.075 g of iodine, 5 g of potassium iodide, and 100 g of water for 60 seconds. Subsequently, it was immersed in the 68 degreeC aqueous solution which consists of potassium iodide 6g, boric acid 7.5g, and water 100g. This was washed with water and dried to produce a polarizer.
  • the polarizer, the stretched film 1 prepared as a ⁇ / 4 plate on one surface side of the polarizer, and the other surface side (back surface side, viewing side) of the polarizer Produced a circularly polarizing plate 101 by laminating the stretched film 17 as a viewing side protective film with a roll-to-roll (described as RtoR in Table 3) so as to match the longitudinal direction.
  • Step 1 The stretched film 1 and the stretched film 17 are immersed in a 2 mol / L sodium hydroxide solution at 60 ° C. for 90 seconds, then washed with water and dried, and bonded to the polarizer of each stretched film. The surface side was saponified.
  • Step 2 The prepared polarizer was immersed in a polyvinyl alcohol adhesive solution having a solid content of 2% by mass for 1 to 2 seconds.
  • Step 3 Excess adhesive adhered to the polarizer in Step 2 was lightly wiped off and placed on the stretched film 1 treated in Step 1.
  • Step 4 The stretched film 1, the polarizer and the stretched film 17 laminated in Step 3 were bonded under the conditions of a pressure of 20 to 30 N / cm 2 and a transport speed of about 2 m / min.
  • Step 5 A circularly polarizing plate 101 was prepared by drying a sample obtained by bonding the polarizer prepared in Step 4 with the stretched film 1 and the stretched film 17 in a dryer at 80 ° C. for 2 minutes.
  • Circular polarizing plates 102 to 114 were prepared in the same manner except that the stretched film 1 used as the ⁇ / 4 plate in the production of the circular polarizing plate 101 was changed to stretched films 2 to 14, respectively.
  • the stretched film 15 that is a ⁇ / 4 plate, the stretched film 17 that is the viewing-side protective film, and the polarizer are cut into a rectangle of 1296 mm ⁇ 784 mm and then the same as steps 3 to 5 used in the production of the circularly polarizing plate 101.
  • Each film was bonded by the process of, and the circularly-polarizing plate 115 was produced.
  • This production method is referred to as “single wafer bonding” and is shown in Table 3.
  • the stretched film 15 is cut at an angle where the major axis direction (direction of 1296 mm) is 45 ° with the transport direction, and the polarizer and the stretched film 17 are transported in the major axis direction. Cutting was performed at an angle of 90 ° with the direction.
  • Circular Polarizing Plate 116 In the production of the circularly polarizing plate 115, a circularly polarizing plate 116 was produced by sheet-fitting in the same manner except that the stretched film 15 used as the ⁇ / 4 plate was changed to the stretched film 16.
  • Circular Polarizing Plates 117 and 118 In the production of the circularly polarizing plate 105, circularly polarizing plates 117 and 118 were produced in the same manner except that the stretched films 17 and 14 were used in place of the stretched film 17 as the viewing-side protective film.
  • Circular Polarizing Plate 119 In the production of the circularly polarizing plate 114, a circularly polarizing plate 119 was produced in the same manner except that the stretched film 14 was used instead of the stretched film 17 as the viewing side protective film.
  • a glass substrate having an ITO transparent film is fixed in a resistance heating vacuum deposition apparatus, and N, N'-diphenyl-N, N'-bis- (3-methylphenyl) is placed on a molybdenum boat in the vacuum deposition apparatus.
  • N, N'-diphenyl-N, N'-bis- (3-methylphenyl) is placed on a molybdenum boat in the vacuum deposition apparatus.
  • )-[1,1′-biphenyl] -4,4′-diamine hereinafter abbreviated as TPD
  • Alq (8-quinolinol) aluminum
  • the molybdenum boat equipped with Alq was energized and Alq was heated to 275 ° C. to form an Alq film (light emitting layer) having a thickness of 60 nm on the hole transport layer.
  • magnesium mounted on a molybdenum boat and silver mounted on another molybdenum boat are heated on the light emitting layer, respectively, and the vacuum chamber is reduced in pressure to 2 ⁇ 10 ⁇ 4 Pa by a binary co-evaporation method.
  • the light emitting area of the produced organic EL element 1 was 1296 mm ⁇ 784 mm.
  • the front luminance when a DC voltage of 6 V was applied to the organic EL element 1 was 1200 cd / m 2 .
  • the front luminance is measured using a spectral radiance meter CS-1000 manufactured by Konica Minolta Optics Co., Ltd., with the front luminance at 2 ° viewing angle and the optical axis of the spectral radiance meter aligned with the normal from the light emitting surface.
  • the visible light wavelength range of 430 to 480 nm was measured, and the integrated intensity was taken.
  • a circularly polarizing plate 101 is attached to the surface of the organic EL element 1 on the side opposite to the glass substrate so as to have the configuration shown in FIG. Was made.
  • This organic EL image display device 101 is arranged such that the maximum elastic modulus direction of the ⁇ / 4 plate has an angle of 45 ° ⁇ 1 ° with respect to the longitudinal direction of the panel.
  • Organic EL image display devices 102 to 119 were similarly manufactured except that the circularly polarizing plate 101 was changed to the circularly polarizing plates 102 to 119 in the manufacture of the organic EL image display device 101, respectively.
  • A shows a state where the organic EL image display device (panel) after being stored at the high temperature is observed from above.
  • X indicates the position of the front portion of the organic EL image display device (panel) before high-temperature storage, and the total length is 1296 mm.
  • Y represents the amount of deflection at the end caused by the high temperature storage treatment. In the present invention, the amount of deflection Y is used as a measure of deflection resistance.
  • the front luminance is measured using a spectral radiance meter CS-1000 manufactured by Konica Minolta Optics Co., Ltd., with the front luminance at 2 ° viewing angle and the optical axis of the spectral radiance meter aligned with the normal from the light emitting surface.
  • the visible light wavelength range of 430 to 480 nm was measured, and the integrated intensity was taken.
  • the deterioration rate of the front luminance of the front luminance B after the above measured light resistance test with respect to the front luminance A (previously: 1200 cd / m 2 ) when 6 V of the blank organic EL element 1 not subjected to the light resistance test is applied.
  • the deterioration rate of the front luminance was taken as a measure of light resistance.
  • the organic EL image display device of the present invention has less panel deflection than the comparative example, and is excellent in visibility and durability.
  • the organic EL image display device using the circularly polarizing plates 114 and 119 in which the ⁇ / 4 plate or the viewing-side protective film according to the present invention contains an ultraviolet absorber is particularly excellent in light resistance.
  • the ⁇ / 4 plate produced by oblique stretching according to the present invention can produce a polarizing plate by roll-to-roll, and is excellent in productivity.
  • Example 2 Preparation of an organic EL image display device corresponding to a stereoscopic image >> An organic EL display device having the configuration shown in FIG. 6 was manufactured according to the following method.
  • organic EL elements a reflective electrode made of chromium is formed on a glass substrate 1, ITO is formed as an anode on the reflective electrode, and poly (3,4-ethylenedioxythiophene) -polystyrene sulfonate (PEDOT / A hole transport layer was formed using PSS, abbreviated as Baytron P Al 4083), and a light emitting layer for each of RGB was formed on the hole transport layer using a shadow mask.
  • PSS poly (3,4-ethylenedioxythiophene) -polystyrene sulfonate
  • the red light-emitting layer R Alq 3 as a host and DCM [4- (dicyaminomethylene) -2-methyl-6 (p-dimethylaminostyryl) -4H-pyran] as a light-emitting compound were co-evaporated (mass ratio 99: 1). ) To form.
  • the green light emitting layer G was formed by co-evaporation (mass ratio 99: 1) of Alq 3 as a host and coumarin 6 as a light emitting compound.
  • the blue light emitting layer B was formed by co-evaporating BAlq as a host and Perylene as a light emitting compound (mass ratio 90:10).
  • calcium is deposited to a thickness of 4 nm by vacuum deposition as a first cathode having a low work function so that electrons can be efficiently injected onto the light emitting layer, and a second cathode is formed on the first cathode.
  • Aluminum was deposited to a thickness of 2 nm.
  • the aluminum used as the second cathode has a role to prevent calcium as the first cathode from being chemically altered when the transparent electrode formed thereon is formed by sputtering.
  • the organic functional total layer etc. were formed as mentioned above.
  • a transparent conductive film was formed on the cathode by a sputtering method.
  • ITO was used as the transparent conductive film.
  • the insulating layer 6 was formed by depositing 200 nm of silicon nitride on the transparent conductive film by the CVD method.
  • the organic EL element B manufactured as described above and the circularly polarizing plates 102 to 108, 110 to 115, and 117 to 119 on which the ⁇ / 4 plates according to the present invention are mounted on both sides of the polarizer are opposed to each other.
  • the organic EL image display apparatus corresponding to a three-dimensional image was manufactured by using and fixing.
  • the manufactured organic EL image display device of the present invention was visually evaluated for the effect of preventing reflection of external light from the front and crosstalk through 3D glasses TDG-BR100 manufactured by Sony. In any case, the reflection of external light was at a level that was not a concern, and no crosstalk was seen, and it was confirmed that the stereoscopic image display device had excellent visibility.
  • the organic electroluminescence image display device of the present invention has no panel deflection due to temperature rise in the device even in a large screen, and is excellent in visibility, durability and light resistance, flat illumination, light source for optical fiber, liquid crystal display It can be suitably used for various light sources such as a backlight for a liquid crystal display, a backlight for a liquid crystal projector, and a display device.
  • a organic electroluminescence image display device organic electroluminescence element C circularly polarizing plate 1 transparent substrate 2 metal electrode 3 TFT 4 Organic Light-Emitting Layer 5 Transparent Electrode 6 Insulating Layer 7 Sealing Layer 8 Film 9 ⁇ / 4 Plate 10 Polarizer 11 Polarizing Plate Protective Layer (Protective Film) 12 Antireflection layer 13 Adhesive layer DR1 Feeding direction DR2 Winding direction ⁇ i Feeding angle (An angle formed between the feeding direction and the winding direction) CR, CL Gripping tool Wo Width of film before stretching W Width of film after stretching 21 Unstretched film 22-1 Right film holding start point 22-2 Left film holding start point 23-1 Right film holding means Trajectory 23-2 Trajectory of film holding means on left side 24 Tenter 25-1 End point of holding film on right side 25-2 End point of holding film on left side 26 Diagonally stretched film 27-1 Feed direction of film 28-1 Guide on entrance side of tenter Roller 28-2 Guide roller on the tenter exit side 29 Film stretching direction

Abstract

 本発明の課題は、大型画面であっても装置内の温度上昇によるパネルのたわみがなく、視認性、耐久性及び耐光性に優れた有機エレクトロルミネッセンス画像表示装置を提供する。本発明の有機エレクトロルミネッセンス画像表示装置は、少なくともλ/4板を有する円偏光板と有機エレクトロルミネッセンス素子とを備える有機エレクトロルミネッセンス画像表示装置であって、該λ/4板が、アセチル基置換度が2.00~2.70の範囲内であるセルロースアセテートを含有し、下式(1)で表される面内リターデーション値Ro(550)が100~180nmの範囲内であり、かつ23℃、55RH%環境下で測定した面内の最大弾性率が、4.0GPa以上であることを特徴とする。 式(1) Ro(550)=(nx-ny)×d(nm)

Description

有機エレクトロルミネッセンス画像表示装置
 本発明は、有機エレクトロルミネッセンス画像表示装置に関し、より詳しくはλ/4板を有する円偏光板と有機エレクトロルミネッセンス素子とを備える有機エレクトロルミネッセンス画像表示装置に関する。
 従来使用されている液晶画像表示装置は、液晶を封じ込める目的で液晶層の両側にガラス等の透明基板があり、更に光漏れを補償すべく該液晶層の両側にそれぞれ位相差板を有する偏光板を有していた。透明基板や偏光板は装置内の温度上昇により伸張や収縮を起こすが、該液晶画像表示装置においては液晶層の両側にガラス等の透明基板と2枚の偏光板が存在していたためある程度バランスが取れ、液晶画像表示装置の歪み等は大きな問題とならなかった。
 それに対し、近年、消費電力が少なく容積が小さい面発光素子を持つ有機エレクトロルミネッセンス画像表示装置のニーズが高まり、特に大型画面化の要求が高まっている。有機エレクトロルミネッセンス画像表示装置は、ガラス、ポリイミド等の透明基板上に金属電極、有機発光層、透明電極を積層して発光体である素子(有機エレクトロルミネッセンス素子)を形成しており、その上に、入射した外部光が反射電極で反射するのを防ぐ目的で、円偏光板を該素子の前面に用いる構成を有している。
 すなわち、上記構成では、薄膜化の観点も踏まえてガラス、ポリイミド等の透明基板、偏光板を、いずれも1枚しか有しておらず、その結果、装置内の温度上昇による伸張や収縮により、有機エレクトロルミネッセンス画像表示装置(以下、パネルともいう。)のたわみが発生するという新たな問題が発生した。特に、大型画面になる程、このたわみの発生量が大きく、特に、パネルの長手方向(画面の横方向)への影響が大きい。よって、有機エレクトロルミネッセンス画像表示装置の大型画面化は困難であった。
 特許文献1及び特許文献2には、有機エレクトロルミネッセンス画像表示装置やセルロースアシレートを含有するλ/4板、円偏光板について開示されているが、特に前者は、モバイル機器用途の小画面の画像表示装置に関するものであり、上記大型画面の画像表示装置におけるパネルのたわみ等の課題を解決するものではない。
特開2009-132136号公報 特開2009-251288号公報
 従って、本発明の課題は、大型画面であっても装置内の温度上昇によるたわみがなく、かつ視認性、耐久性及び耐光性に優れた有機エレクトロルミネッセンス画像表示装置を提供することにある。
 本発明者は、有機エレクトロルミネッセンス画像表示装置におけるたわみの防止方法について鋭意検討した結果、単純にガラス等の透明基板を追加してバランスさせる方法では、コスト上昇、厚膜化/質量の増加、光取出し効率の低下等が起こるため、更に、構成部材の検討を詳細に行った結果、有機エレクトロルミネッセンス素子より視認側に、弾性率の高いフィルムを装着することで、上記たわみを抑制できることを見出した。
 すなわち、弾性率の高いフィルムとして最適な部材を検討する中で、円偏光板を構成するλ/4板を、弾性率の高いフィルムで構成することにより、コスト及びフィルム性能を保ちつつ、上記課題を解決できるものと考え、更に詳細に検討した結果、該λ/4板の形成に、延伸適性に優れるアセチル基置換度が2.00~2.70の範囲にあるセルロースアセテートを樹脂として採用し、かつ23℃、55RH%の環境下で測定した面内の最大弾性率が、4.0GPa以上となるように調整することによって、パネルのたわみを顕著に改良できること見出し、本発明に至ったものである。
 従って、本発明の上記課題は、以下の構成により達成される。
 1.少なくともλ/4板を有する円偏光板と有機エレクトロルミネッセンス素子とを備える有機エレクトロルミネッセンス画像表示装置であって、
 該λ/4板が、アセチル基置換度が2.00~2.70の範囲内であるセルロースアセテートを含有し、下式(1)で表される面内リターデーション値Ro(550)が100~180nmの範囲内であり、かつ23℃、55RH%環境下で測定した面内の最大弾性率が、4.0GPa以上であることを特徴とする有機エレクトロルミネッセンス画像表示装置。
 式(1)
   Ro(550)=(nx-ny)×d(単位:nm)
〔式中、nxは、フィルム面内の遅相軸x方向における屈折率を表す。nyは、フィルム面内のx方向に直交するy方向における屈折率を表す。dは、フィルムの膜厚(nm)を表す。各々の屈折率は、23℃、55%RHの環境下で、測定波長550nmで測定する。〕
 2.前記λ/4板が、アセチル基置換度が2.00~2.55の範囲内であるセルロースアセテートと、平均置換度が3.0~6.0の範囲内である下記一般式(1)で表される化合物とを含有することを特徴とする第1項に記載の有機エレクトロルミネッセンス画像表示装置。
Figure JPOXMLDOC01-appb-C000002
〔式中、R~Rは、各々、水素原子、置換若しくは無置換のアルキルカルボニル基、又は置換若しくは無置換のアリールカルボニル基を表し、R~Rは、各々同じであっても異なっていてもよい。〕
 3.前記λ/4板の面内での最大弾性率となる方向が、画像表示装置の画面の長手方向に対して、35~55°の範囲の傾きを有することを特徴とする第1項又は第2項に記載の有機エレクトロルミネッセンス画像表示装置。
 4.前記円偏光板の偏光子を挟んで、前記λ/4板とは反対側の面に位置する保護フィルムが、23℃、55RH%環境下で測定した面内の最大弾性率が、4.0GPa以上であることを特徴とする第1項から第3項までのいずれか一項に記載の有機エレクトロルミネッセンス画像表示装置。
 5.前記保護フィルムの面内での最大弾性率となる方向が、画像表示装置の画面の長手方向に対して35~55°の範囲の傾きを有し、かつ該保護フィルムの面内での最大弾性率となる方向と、前記λ/4板の面内の最大弾性率の方向とが平行であることを特徴とする第4項に記載の有機エレクトロルミネッセンス画像表示装置。
 6.前記保護フィルムが、前記λ/4板と同一であることを特徴とする第4項又は第5項に記載の有機エレクトロルミネッセンス画像表示装置。
 本発明によれば、有機エレクトロルミネッセンス画像表示装置の円偏光板に、高い弾性率を有するλ/4板を使用することで、画像表示装置内の温度上昇によるパネルのたわみを抑制することができる。特に、長手方向に対して斜め方向に延伸したλ/4板を使用すると、画像表示装置画面の斜め方向に、λ/4板面内の最も弾性率の高い方向を配置することができるため改良効果が大きい。
本発明の有機エレクトロルミネッセンス画像表示装置の構成の一例を示す模式図 λ/4板の面内の最大弾性率となる方向と、画像表示装置の画面の長手方向の関係を示す模式図 テンターによる斜め延伸を示す模式図 本発明に用いる斜め延伸テンターの模式図 パネルのたわみを示す模式図 立体画像に対応した有機エレクトロルミネッセンス画像表示装置の模式図
 以下、本発明を実施するための形態について詳細に説明するが、本発明はこれらに限定されるものではない。
 請求項1に係る本発明の有機エレクトロルミネッセンス画像表示装置(以降、単に有機EL画像表示装置という。)は、少なくともλ/4板を有する円偏光板と有機EL素子とを備える有機EL画像表示装置であって、該λ/4板が、アセチル基置換度が2.00~2.70の範囲内であるセルロースアセテートを含有し、下式(1)で表される面内リターデーション値Ro(550)が100~180nmの範囲内であり、かつ、23℃、55RH%環境下で測定した面内の最大弾性率が、4.0GPa以上であることを特徴とし、係る構成によって大型画面であっても、装置内の温度上昇によるパネルのたわみがない有機EL画像表示装置を提供するものである。
 式(1)
   Ro(550)=(nx-ny)×d(単位:nm)
 上記式(1)において、nxは、フィルム面内の遅相軸x方向における屈折率を表す。nyは、フィルム面内のx方向に直交するy方向における屈折率を表す。dは、フィルムの膜厚(nm)を表す。なお、各々の屈折率は、23℃、55%RHの環境下において、測定波長550nmで測定する。
 請求項2に係る発明は、前記λ/4板の面内の弾性率を高める手段として、より好ましくは、アセチル基置換度が2.00~2.55の範囲内にあるセルロースアセテートを用い、更に弾性率をより高める添加剤である前記一般式(1)で表される化合物を加えることを特徴とする有機EL画像表示装置である。
 特定のアセチル基置換度を有するセルロースアセテートと、前記一般式(1)で表される化合物とを含有するλ/4板は、延伸を行うことにより高い弾性率を有するλ/4板を作製することが可能である。
 請求項3に係る発明は、前記λ/4板の面内の最大弾性率となる方向が、画像表示装置の画面の長手方向に対して、35~55°の傾きの範囲であることを特徴とする有機EL画像表示装置である。
 本発明者は、パネルのたわみを防止するには、λ/4板の最大弾性率方向がパネルの長手方向に対して斜め方向になるように配置することにより、該λ/4板がたわみ防止の楔のような役割を果たすことにより、たわみの発生を低減することができることを見出した。
 請求項4に係る発明は、前記円偏光板の偏光子を挟んで、前記λ/4板とは反対側の面に位置する保護フィルムが、23℃、55RH%環境下で測定した面内の最大弾性率が、4.0GPa以上であることを特徴とする有機EL画像表示装置であり、本発明に係る円偏光板の偏光子を挟持するλ/4板と保護フィルムの両者が、ともに高い弾性率を有するフィルムである場合、パネルのたわみを更に抑制することができる。
 請求項5に係る発明は、前記保護フィルムの面内での最大弾性率となる方向が、画像表示装置の画面の長手方向に対して35~55°の範囲の傾きを有し、かつ該保護フィルムの面内での最大弾性率となる方向と、前記λ/4板の面内の最大弾性率の方向とが平行であることを特徴とする有機EL画像表示装置である。
 前記保護フィルムとλ/4板の面内の最大弾性率となる方向が平行であって、かつ画像表示装置の画面の長手方向に対して35~55°の傾きを有する場合に、パネルのたわみを更に抑制することができる。
 請求項6に係る発明は、偏光子の両面にλ/4板を配置することにより、パネルのたわみがなく、表示品位に優れる3D(立体)画像表示用の有機EL画像表示装置を提供することができる。
 以下、本発明を詳細に説明する。
 《有機エレクトロルミネッセンス画像表示装置》
 図1に、本発明の有機EL画像表示装置の構成の一例を示すが、これに限定されるものではない。
 ガラスやポリイミド等を用いた透明基板1上に、順に金属電極2、TFT3、発光層を含む有機機能層4、透明電極(ITO等)5、絶縁層6、封止層7、フィルム8(省略可)を有する有機EL素子B上に、偏光子10をλ/4板9と保護フィルム11によって挟持した円偏光板Cを設けて、有機EL画像表示装置Aを構成する。この保護フィルム11は、更に反射防止層12を有していてもよい。上記有機EL素子Bの厚さは、透明基板1を除いて約1μm程度である。
 一般に、有機EL画像表示装置は、透明基板上に金属電極と、有機発光層を含む有機機能層と透明電極とを順に積層して発光体である素子(有機EL素子)を形成している。ここで、有機機能層は、種々の有機薄膜の積層体であり、例えば、トリフェニルアミン誘導体等からなる正孔注入層と、アントラセン等の蛍光性の有機固体からなる有機発光層との積層体や、あるいはこのような発光層とペリレン誘導体等からなる電子注入層の積層体や、これらの正孔注入層、有機発光層、及び電子注入層の積層体等、種々の組み合わせを有する構成が知られている。
 有機EL画像表示装置は、透明電極と金属電極に電圧を印加することによって、有機発光層に正孔と電子とが注入され、これら正孔と電子との再結合によって生じるエネルギーが蛍光物質やリン光発光性化合物を励起し、励起された蛍光物質が基底状態に戻るときに光(例えば、蛍光やリン光)を放射する、という原理で発光する。途中の再結合というメカニズムは、一般のダイオードと同様であり、このことからも予想できるように、電流と発光強度は印加電圧に対して整流性を伴う強い非線形性を示す。
 有機EL画像表示装置においては、有機発光層から発光を取り出すため、少なくとも一方の電極が透明であることが好ましい態様であり、通常、インジウム-スズの複合酸化物(以下、ITOと略記する。)などの透明導電体で形成した透明電極を陽極として用いている。一方、電子注入を容易にして発光効率を上げるには、陰極に仕事関数の小さな物質を用いることが重要で、通常、Mg-Ag、Al-Liなどの金属電極を用いている。
 このような構成の有機EL画像表示装置においては、有機発光層は、厚さ10nm程度と極めて薄い膜で形成されている。このため、有機発光層も透明電極と同様、光をほぼ完全に透過する特性を備えている。その結果、非発光時には、透明基板の表面から入射した光は、透明電極と有機発光層とを透過して金属電極で反射し、再び透明基板の表面側へと放射されるため、外部から視認したとき、有機EL画像表示装置の表示面が鏡面のように観察される。
 上記問題に対し、電圧の印加によって発光する有機発光層の表面側に透明電極を備えるとともに、有機発光層の裏面側に金属電極を備える構成の有機EL素子を含む有機EL画像表示装置においては、透明電極の表面側(視認側)に偏光板を設けるとともに、これら透明電極と偏光板との間に位相差板を設けることにより、上記課題を解決している。
 すなわち、位相差板及び偏光板は、各々外部から入射して金属電極で反射してきた光(外光)を偏光する作用を有するため、その偏光作用によって、金属電極の鏡面を外部から視認させないという効果を発現することができる。特に、位相差板を1/4波長板で構成し、かつ偏光板と位相差板との偏光方向のなす角をπ/4に調整すれば、金属電極の鏡面を完全に遮蔽することができる。
 この有機EL画像表示装置に入射する外光は、偏光板により直線偏光成分のみが透過し、この直線偏光は、位相差板により一般に楕円偏光となるが、とくに位相差板がλ/4板で、しかも偏光板と位相差板との偏光方向のなす角がπ/4のときに、円偏光となる。
 この円偏光は、透明基板、透明電極、有機機能層を透過し、金属電極で反射して、再び有機機能層、透明電極、透明基板を透過して、位相差板に再び直線偏光として戻ってくる。そして、この直線偏光は、偏光板の偏光方向と直交しているので、偏光板を透過できない。その結果、金属電極の鏡面を完全に遮蔽することができるものである。
 《λ/4板》
 本発明に係る円偏光板で用いるλ/4板について説明する。
 本発明に係るλ/4板は、特定の波長の直線偏光を円偏光に(又は、円偏光を直線偏光に)変換する機能を有するものをいう。λ/4板は、所定の光の波長(通常、可視光領域)に対して、層の面内位相差値Roが該波長の約1/4となるように設計されている。
 本発明に係るλ/4板は、波長550nmで測定した面内方向のリターデーション値Ro(550)が100~180nmの範囲であることを特徴とする。
 本発明に係るλ/4板は、可視光線領域の波長の全ての光に対して1/4波長の位相差を与えるもの、即ち逆波長分散(Ro(450)<Ro(550)<Ro(650))を有するλ/4板であることが好ましい。正波長分散においてもλ/4板とλ/2板を積層することでλ/4を達成することが可能だが、積層だと厚さ方向の位相差(Rth)上昇や軸ズレによる視認性低下が起こる。本発明のように、セルロースアセテートのような逆波長分散を有する材料を使用し、単層で広帯域を達成したλ/4板は、視認性だけでなくコストや生産性の観点からも好ましい。
 波長450nmで測定した面内方向のリターデーション値をRo(450)、波長550nmで測定した面内方向のリターデーション値をRo(550)、波長650nmで測定した面内方向のリターデーション値をRo(650)としたとき、λ/4板の波長分散は、Ro(450)/Ro(650)の比の値が1.00未満であり、好ましくは0.97以下、より好ましくは0.95以下である。特に、視認感度の高い緑から赤において、λ/4であることが好ましく、Ro(550)/Ro(650)の比の値が0.98以下であることが好ましく、より好ましくは0.96以下、更に好ましくは0.94以下である。
 上記で示したリターデーション値Ro(550)は、下式(1)で表されるリターデーション値Roである。
 式(1)
   Ro(550)=(nx-ny)×d(単位:nm)
 上記式(1)において、nxは、フィルム面内の遅相軸x方向における屈折率を表す。nyは、フィルム面内のx方向に直交するy方向における屈折率を表す。dは、フィルムの膜厚(nm)を表す。なお、各々の屈折率は、23℃、55%RHの環境下において、測定波長550nmで測定する。
 本発明に係るRo(550)は、自動複屈折率計を用いて測定することができる。自動複屈折率計KOBRA-21ADH(王子計測機器(株)製)を用いて、23℃、55%RHの環境下で、550nmでの複屈折率測定によりRo(550)を算出する。同様にして、測定波長450nmにおけるRo(450)及び測定波長560nmにおけるRo(650)も算出することができる。
 λ/4板の遅相軸の角度と偏光子の透過軸との角度が実質的に45°になるように積層することにより、円偏光板が得られる。即ち、λ/4板と偏光子とがいずれも長尺状フィルムの形態であり、λ/4板の基材フィルム長手方向に対する遅相軸の角度(即ち配向角θ)が「実質的に45°」であると、偏光フィルムの長手方向に平行な方向に透過軸、又は吸収軸がある偏光子と長手方向を合わせて積層貼合することで、生産性よく長尺状円偏光板フィルムが形成できる。
 従って、本発明に係るλ/4板の基材フィルム長手方向に対する配向角θは「実質的に45°」であることが好ましい。本発明でいう「実質的に45°」とは、長手方向を基点として、35~55°の範囲内であることを意味する。
 より詳細には、本発明に係るλ/4板の前記配向角θは、40~50°の範囲内であることが好ましく、42~48°の範囲内であることがより好ましく、43~47°の範囲内であることが更に好ましく、44~46°の範囲内であることが最も好ましい。
 〔円偏光板〕
 本発明に係る円偏光板は、少なくとも偏光子とλ/4板で構成され、有機EL画像表示装置に使用することにより、有機EL発光体の金属電極の鏡面反射を遮蔽する効果を発現させることができる。
 また、前記λ/4板を斜め延伸することによって遅相軸の角度(即ち配向角θ)を長手方向に対して「実質的に45°」となるようにすると、面内の最大弾性率となる方向も長手方向に対して「実質的に45°」となり、該λ/4板を有する円偏光板を、長手方向を揃えて有機EL画像表示装置に装着すると、λ/4板の最大弾性率方向が画面の長手方向に対して35°~55°となり、該λ/4板がたわみ防止の楔のような役割を果たしてたわみが改良される。
 図2に、λ/4板の面内の最大弾性率となる方向と、画像表示装置の画面の長手方向の関係を示す。
 図2に示すように、有機EL画像表示装置31の画面の長手方向32と、λ/4板の面内の最大弾性率となる方向33とがなす角度θが、35~55°の範囲であることが好ましい。
 従って、本発明に係る円偏光板は、長尺状の斜め延伸されたλ/4板をロールtoロールで貼合した長尺状の円偏光板であることが好ましく、図2に示すようにその長手方向が有機EL画像表示装置31の画面の長手方向32と一致するように装着することが、本発明の効果を得る観点で好ましい実施態様である。
 また、本発明に係る円偏光板は、偏光子を前記λ/4板と保護フィルムによって挟持する構成をとることが好ましく、該保護フィルムも、23℃、55RH%環境下で測定した面内の最大弾性率が、4.0GPa以上であることが、パネルのたわみを更に抑制することができる観点から好ましい。
 本発明の有機EL画像表示装置は、紫外線による劣化を防止する観点から、本発明に係る円偏光板が紫外線吸収機能を備えていることが好ましい。視認側の保護フィルムが紫外線吸収機能を備えていると、偏光子と有機EL素子の両方を紫外線から保護できて好ましいが、さらに発光体側のλ/4板も紫外線吸収機能を備えていると、より有機EL素子の劣化を抑制できて好ましい。
 本発明に係る円偏光板は、偏光子としてヨウ素、又は二色性染料をドープしたポリビニルアルコールを延伸したものを使用し、(λ/4板)/偏光子/保護フィルムの構成で貼合して製造することができる。
 本発明に係る円偏光板に好ましく用いられる偏光子としては、ポリビニルアルコール系偏光フィルムが挙げられる。これには、ポリビニルアルコール系フィルムに、ヨウ素を染色させたものと、二色性染料を染色させたものがある。ポリビニルアルコール系フィルムとしては、エチレンで変性された変性ポリビニルアルコール系フィルムが好ましく用いられる。偏光子は、ポリビニルアルコール水溶液を製膜し、これを1軸延伸させて染色するか、染色した後、2軸延伸してから、好ましくはホウ素化合物で耐久性処理を施したものが用いられている。延伸は、フィルム製膜方向に1軸延伸を行うことが好ましい。
 偏光子の膜厚は5~40μmの範囲、好ましくは5~30μmの範囲であり、特に好ましくは、5~20μmの範囲である。
 円偏光板は、一般的な方法で作製することができる。アルカリ鹸化処理した本発明に係るλ/4板は、ポリビニルアルコール系フィルムを、ヨウ素溶液中で浸漬延伸して作製した偏光子の少なくとも一方の面に、完全鹸化型ポリビニルアルコール水溶液を用いて貼り合わせることが好ましい。もう一方の面には、前記保護フィルムを、同様に鹸化処理して貼合することが好ましい。
 円偏光板は、更に円偏光板の一方の面にプロテクトフィルムを、反対面にセパレートフィルムを貼合して構成することができる。プロテクトフィルム及びセパレートフィルムは、偏光板出荷時あるいは製品検査時等において、円偏光板を保護する目的で用いられる。
 〔λ/4板の面内の最大弾性率〕
 一般的な液晶表示装置においては、例えば、特開2007-256637号公報では、弾性率が3.4~4.4GPaの範囲にある横延伸セルロースアセテートを用いた偏光板により、カールを改良する技術が開示されている。ただし、ここで開示されている技術は、偏光板のカールを改良することで、液晶パネルの生産性を向上することが目的であり、本発明の有機EL画像表示装置の装置内の温度上昇によるパネルたわみを抑制する目的とは、明らかに異なるものである。
 本発明の有機EL画像表示装置に使用されるλ/4板の面内の最大弾性率は、4.0GPa以上であることを特徴とするが、4.5~8.0GPaの範囲内が好ましく、5.0~7.0GPaの範囲内であることがより好ましい。
 この面内の最大弾性率を得るため、λ/4板に適用する樹脂としては、低アセチル基置換度のセルロースアセテートであること好ましく、セルロースアセテートのアセチル基置換度は、2.00~2.70の範囲であり、更に2.00~2.55の範囲が好ましく、2.20~2.45の範囲が特に好ましい。
 加えて高弾性化手段としては、後述する一般式(1)で表される糖エステル等の添加剤を低置換度のセルロースアセテートと共に用い、更に延伸することによって、セルロースアセテートの分子を配向させて、弾性率を高める方法が好ましい。
 本発明に係る最大弾性率の測定は、試料を、23℃、55%RHの環境下で24時間調湿し、JIS K7127に記載の方法に準じて、引っ張り試験器、例えば、オリエンテック(株)製のテンシロンRTA-100を使用して弾性率を求める。試験片の形状は1号形試験片で、試験速度は10mm/分の条件で、任意方向に対し0°から15°毎の方向に測定し、求めた弾性率のうち最大のものを最大弾性率とし、更に、その方向を最大弾性率の方向とする。
 〔セルロースアセテート〕
 本発明に係るλ/4板では、有機EL素子の透明基板が熱による伸張又は収縮で1方向にたわむのを防ぐため、高弾性の光学フィルムであることが必要である。更に、リターデーション発現性が高く、高いリターデーションを有する位相差フィルムとする場合であっても、薄膜化が可能であること、高いリターデーションを発現させても延伸倍率を低く抑えることができ、破断等の故障を回避できるなどの観点から、アセチル基置換度が、2.00~2.70の範囲内であるセルロースアセテートからなるフィルムが用いることを特徴の一つとする。
 本発明で規定するアセチル基置換度の測定方法は、ASTMのD-817-91に準じて実施することができ、好ましいアセチル基置換度は、2.00~2.55の範囲内であり、更に好ましくは2.20~2.45の範囲である。
 セルロースアセテートのアセチル基置換度が、2.00以上であれば、ドープ粘度の上昇によるフィルム面品質の劣化や延伸張力の上昇によるヘイズアップなどの発生を抑制することができる。また、アセチル基置換度が2.70以下であれば、所望の位相差を得ることができる。
 セルロースアセテートの数平均分子量(Mn)は、30000~300000の範囲であることが、得られるフィルムの機械的強度が強くなる観点から好ましい。更には、50000~200000の範囲のものが好ましく用いられる。
 セルロースアセテートの重量平均分子量(Mw)と数平均分子量(Mn)の比(Mw/Mn)の値は、1.4~3.0の範囲であることが好ましい。
 セルロースアセテートの数平均分子量(Mn)、重量平均分子量(Mw)は、いずれもゲルパーミエーションクロマトグラフィー(GPC)を用いて測定する。
 具体的な測定条件は、以下のとおりである。
 溶媒;メチレンクロライド
 カラム;Shodex K806、K805、K803G(昭和電工(株)製を3本接続して使用した)
 カラム温度;25℃
 試料濃度;0.1質量%
 検出器;RI Model 504(GLサイエンス社製)
 ポンプ;L6000(日立製作所(株)製)
 流量;1.0ml/min
 校正曲線:標準ポリスチレンSTK standard ポリスチレン(東ソー(株)製)Mw=1000000~500の13サンプルによる校正曲線を使用した。13サンプルは、ほぼ等間隔に用いる。
 セルロースアセテートの原料であるセルロースとしては、特に限定はないが、綿花リンター、木材パルプ(針葉樹由来、広葉樹由来)、ケナフ等を挙げることができる。また、それらから得られたセルロースアセテートは、それぞれ任意の割合で混合して使用することができる。
 本発明に用いられるセルロースアセテートは、公知の方法により製造することができる。具体的には、例えば、特開平10-45804号公報に記載の方法に準じて合成することができる。
 市販品としては、ダイセル社製のL20、L30、L40、L50等、イーストマンケミカル社製のCa398-3、Ca398-6、Ca398-10、Ca398-30、Ca394-60S等が挙げられる。
 〔添加剤〕
 (1)糖エステル化合物
 本発明に係るλ/4板においては、下記一般式(1)で表される化合物(以下、本発明に係る糖エステル化合物という。)を含有することが、延伸によるヘイズを防ぎ、安定な位相差発現及び高い弾性率を付与する上で好ましい。
Figure JPOXMLDOC01-appb-C000003
 上記一般式(1)において、R~Rは、各々、水素原子、置換若しくは無置換のアルキルカルボニル基、又は置換若しくは無置換のアリールカルボニル基を表し、R~Rは、各々同じであっても、異なっていてもよい。
 本発明に係る一般式(1)で表される化合物の平均置換度は、3.0~6.0の範囲であることが、高い弾性率を付与し、延伸処理を行っても、ヘイズ上昇を抑制し安定な位相差を発現する上で有効である。平均置換度としてより好ましくは、4.5~6.0の範囲である。
 本発明において、一般式(1)で表される化合物の置換度とは、一般式(1)に含まれる8つのヒドロキシ基のうち、水素原子以外の置換基で置換されている数を表す。すなわち、一般式(1)で示す構造のR~Rのうち、水素原子以外の基を含む数を求め、これを置換度とする。したがって、R~Rが全て水素原子以外の置換基により置換された場合に、置換度は最大値である8.0となり、R~Rが全て水素原子である場合には、置換度は0となる。
 一般式(1)で表される化合物においては、ヒドロキシ基の数、OR基の数が固定された単一種の化合物を合成することは困難であり、式中のヒドロキシ基の数、OR基の数の異なる成分が数種類混合された化合物となることが知られている。従って、本発明における一般式(1)で表される化合物の置換度としては、平均置換度を用いることが適当であり、常法により高速液体クロマトグラフィーによって置換度分布を示すチャートの面積比から平均置換度を測定することができる。
 本発明に係る一般式(1)で表される化合物である糖エステル化合物の合成において、合成に用いる原料の糖の例としては、例えば、以下のようなものを挙げることができるが、本発明はこれらに限定されるものではない。
 グルコース、ガラクトース、マンノース、フルクトース、キシロース、アラビノース、ラクトース、スクロース、ニストース、1F-フラクトシルニストース、スタキオース、マルチトール、ラクチトール、ラクチュロース、セロビオース、マルトース、セロトリオース、マルトトリオース、ラフィノース、ケストース等を挙げることができる。
 この他には、ゲンチオビオース、ゲンチオトリオース、ゲンチオテトラオース、キシロトリオース、ガラクトシルスクロースなども挙げられる。
 本発明に係る一般式(1)で表される化合物である糖エステル化合物の合成において、用いられるモノカルボン酸としては、特に制限はなく、公知の脂肪族モノカルボン酸、脂環族モノカルボン酸、芳香族モノカルボン酸等を用いることができる。用いられるカルボン酸は、1種類でもよいし2種以上の混合であってもよい。
 好ましい脂肪族モノカルボン酸の例としては、酢酸、プロピオン酸、酪酸、イソ酪酸、吉草酸、カプロン酸、エナント酸、カプリル酸、ペラルゴン酸、カプリン酸、2-エチル-ヘキサンカルボン酸、ウンデシル酸、ラウリン酸、トリデシル酸、ミリスチン酸、ペンタデシル酸、パルミチン酸、ヘプタデシル酸、ステアリン酸、ノナデカン酸、アラキン酸、ベヘン酸、リグノセリン酸、セロチン酸、ヘプタコサン酸、モンタン酸、メリシン酸、ラクセル酸等の飽和脂肪酸、ウンデシレン酸、オレイン酸、ソルビン酸、リノール酸、リノレン酸、アラキドン酸、オクテン酸等の不飽和脂肪酸等を挙げることができる。
 好ましい脂環族モノカルボン酸の例としては、シクロペンタンカルボン酸、シクロヘキサンカルボン酸、シクロオクタンカルボン酸、又はそれらの誘導体を挙げることができる。
 好ましい芳香族モノカルボン酸の例としては、安息香酸、トルイル酸等の安息香酸のベンゼン環に1~5個のアルキル基若しくはアルコキシ基を導入した芳香族モノカルボン酸、ケイ皮酸、ベンジル酸、ビフェニルカルボン酸、ナフタリンカルボン酸、テトラリンカルボン酸等のベンゼン環を2個以上有する芳香族モノカルボン酸、又はそれらの誘導体を挙げることができるが、その中でも、特に、安息香酸が好ましい。
 本発明に係る一般式(1)で表される化合物の具体例を以下に示すが、これらは、R~Rを全て同じ置換基Rとした場合であって、本発明はこれらに限定されない。
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
 本発明に係る糖エステル化合物は、糖エステルに、アシル化剤(エステル化剤としては、例えば、アセチルクロライドの酸ハロゲン化物、無水酢酸等の無水物。)を反応させることによって製造することが可能であり、置換度の分布は、アシル化剤の量、添加のタイミング、エステル化反応の時間の調節によって適宜行うことができるが、置換度違いの糖エステル化合物の混合、あるいは純粋に単離した置換度違いの化合物を適宜混合することにより、目的の平均置換度、置換度4以下の成分を調整することができる。
 〈合成例:本発明に係る一般式(1)で表される化合物の合成〉
Figure JPOXMLDOC01-appb-C000007
 撹拌装置、還流冷却器、温度計及び窒素ガス導入管を備えた四頭コルベンに、ショ糖を34.2g(0.1モル)、無水安息香酸を135.6g(0.6モル)、ピリジンを284.8g(3.6モル)仕込み、撹拌下で窒素ガス導入管から窒素ガスをバブリングさせながら昇温し、70℃で5時間のエステル化反応を行う。
 次に、コルベン内を4×10Pa以下に減圧し、60℃で過剰のピリジンを留去した後、コルベン内を1.3×10Pa以下に減圧し、120℃まで昇温させ、無水安息香酸、生成した安息香酸の大部分を留去する。そして、次に、トルエンを1L、0.5質量%の炭酸ナトリウム水溶液を300g添加し、50℃で30分間撹拌後、静置して、トルエン層を分取する。最後に、分取したトルエン層に水を100g添加し、常温で30分間水洗した後、トルエン層を分取し、減圧下(4×10Pa以下)、60℃でトルエンを留去させ、化合物A-1、A-2、A-3、A-4及びA-5等の混合物である糖エステル化合物1を得ることができる。
 得られた混合物を、高速液体クロマトグラフィー-質量分析(HPLC-MS)で解析したところ、化合物A-1が1.2質量%、化合物A-2が13.2質量%、化合物A-3が14.2質量%、化合物A-4が35.4質量%、化合物A-5等が40.0質量%であった。平均置換度は5.2である。
 同様に、上記本発明に係る一般式(1)で表される化合物の合成において、無水安息香酸の使用量を135.6g(0.6モル)から、それぞれ158.2g(0.7モル)、146.9g(0.65モル)、124.3g(0.55モル)と当モルのピリジンとを反応させた以外は同様にして、表1に記載の各構成成分及び平均置換度を有する各糖エステル化合物を得ることができる。
Figure JPOXMLDOC01-appb-T000008
 上記で得られた各混合物の一部を、シリカゲルを用いたカラムクロマトグラフィーにより精製することで、それぞれ純度100%のA-1、A-2、A-3、A-4及びA-5等を得ることができる。
 なお、上記でいうA-5等とは、置換度が4以下の全ての成分、すなわち、置換度4、3、2、1の化合物の混合物であることを意味する。また、平均置換度は、A-5等を置換度4として計算する。
 本発明においては、ここで調製した方法により、所望の平均置換度に近い糖エステル及び単離したA-1~A-5等を組み合わせ添加することにより、平均置換度を調整することができる。
 〈HPLC-MSの測定条件〉
 1)LC部
 装置;日本分光(株)製カラムオーブン(JASCO CO-965)、ディテクター(JASCO UV-970-240nm)、ポンプ(JASCO PU-980)、デガッサ-(JASCO DG-980-50)
 カラム;Inertsil ODS-3 粒子径5μm 4.6×250mm(ジーエルサイエンス(株)製)
 カラム温度;40℃
 流速;1ml/min
 移動相;テトラヒドロフラン(1%酢酸):HO(50:50)
 注入量;3μl
 2)MS部
 装置;LCQ DECA(Thermo Quest(株)製)
 イオン化法;エレクトロスプレーイオン化(ESI)法
 Spray Voltage;5kV
 Capillary温度;180℃
 Vaporizer温度;450℃
 本発明に係るλ/4板においては、上記説明した本発明に係る糖エステル化合物を、λ/4板全質量に対し、1~20質量%の範囲、特には、3~15質量%の範囲で含むことが好ましい。この範囲内であれば、本発明の優れた効果を呈すると共に、原反保管中におけるブリードアウトなどの発生を抑制することができ好ましい。
 (2)可塑剤
 本発明に係るλ/4板には、組成物の流動性や柔軟性を向上するため、可塑剤を併用することもできる。可塑剤としては、例えば、フタル酸エステル系、脂肪酸エステル系、トリメリット酸エステル系、リン酸エステル系、ポリエステル系、エポキシ系、多価アルコールエステル系等の各可塑剤が挙げられる。この中で、ポリエステル系と多価アルコールエステル系の可塑剤が好ましく用いられる。ポリエステル系可塑剤は、他の可塑剤に比べて非移行性や耐抽出性に優れる。用途に応じてこれらの可塑剤を選択、あるいは併用することによって、広範囲の用途に適用できる。
 ポリエステル系可塑剤は、1~4価のカルボン酸と、1~6価のアルコールとの反応物であるが、主に2価カルボン酸とグリコールとを反応させて得られたものが用いられる。代表的な2価カルボン酸としては、グルタル酸、イタコン酸、アジピン酸、フタル酸、アゼライン酸、セバシン酸などが挙げられる。また、ポリエステル系可塑剤としては、好ましくは芳香族末端エステル系可塑剤である。芳香族末端エステル系可塑剤としては、例えば、フタル酸、アジピン酸、少なくとも1種のベンゼンモノカルボン酸及び少なくとも1種の炭素数2~12のアルキレングリコールとを反応させた構造を有するエステル化合物が好ましく、最終的な化合物の構造としてアジピン酸残基及びフタル酸残基を有していればよく、エステル化合物を製造する際には、ジカルボン酸の酸無水物又はエステル化物として反応させてもよい。
 ベンゼンモノカルボン酸成分としては、例えば、安息香酸、パラターシャリブチル安息香酸、オルソトルイル酸、メタトルイル酸、パラトルイル酸、ジメチル安息香酸、エチル安息香酸、ノルマルプロピル安息香酸、アミノ安息香酸、アセトキシ安息香酸等があり、安息香酸であることが最も好ましい。また、これらは、それぞれ1種又は2種以上の混合物として使用することができる。
 炭素数が2~12のアルキレングリコール成分としては、例えば、エチレングリコール、1,2-プロピレングリコール、1,3-プロピレングリコール、1,2-ブタンジオール、1,3-ブタンジオール、1,2-プロパンジオール、2-メチル-1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、2,2-ジメチル-1,3-プロパンジオール(ネオペンチルグリコール)、2,2-ジエチル-1,3-プロパンジオール(3,3-ジメチロールペンタン)、2-n-ブチル-2-エチル-1,3プロパンジオール(3,3-ジメチロールヘプタン)、3-メチル-1,5-ペンタンジオール1,6-ヘキサンジオール、2,2,4-トリメチル-1,3-ペンタンジオール、2-エチル-1,3-ヘキサンジオール、2-メチル-1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール、1,12-オクタデカンジオール等が挙げられる。これらの中では、特に、1,2-プロピレングリコールが好ましい。これらのグリコールは、1種又は2種以上の混合物として使用してもよい。
 芳香族末端エステル系可塑剤は、オリゴエステル、ポリエステルの型のいずれでもよく、分子量は100~10000の範囲が良いが、好ましくは350~3000の範囲である。また酸価は、1.5mgKOH/g以下、ヒドロキシ基価は25mgKOH/g以下、より好ましくは酸価0.5mgKOH/g以下、ヒドロキシ基価は15mgKOH/g以下のものである。
 可塑剤は、λ/4板100質量部に対して、0.5~30質量部の範囲で添加することが好ましい。
 本発明に係るλ/4板に適用可能な可塑剤の一例として、以下に示す例示化合物(2-1~2-13)が挙げられるが、本発明では、これらに限定されない。
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
 (3)多価アルコールエステル
 本発明で好ましく用いられる多価アルコールエステルは、2価以上の脂肪族多価アルコールとモノカルボン酸のエステルより構成され、分子内に芳香環又はシクロアルキル環を有することが好ましい。
 本発明に用いられる多価アルコールは、下記一般式(a)で表される。
 一般式(a)
   R-(OH)
 上記一般式(a)において、Rは、n価の有機基を表す。nは、2以上の正の整数を表す。OH基は、アルコール性又はフェノール性のヒドロキシ基(水酸基)を表す。
 好ましい多価アルコールとしては、例えば、以下のようなものを挙げることができる。
 アドニトール、アラビトール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、ジプロピレングリコール、トリプロピレングリコール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、ジブチレングリコール、1,2,4-ブタントリオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、ヘキサントリオール、ガラクチトール、マンニトール、3-メチルペンタン-1,3,5-トリオール、ピナコール、ソルビトール、トリメチロールプロパン、トリメチロールエタン、キシリトールなどを挙げることができる。
 中でも、トリエチレングリコール、テトラエチレングリコール、ジプロピレングリコール、トリプロピレングリコール、ソルビトール、トリメチロールプロパン、キシリトールが好ましい。
 多価アルコールエステルに用いられるモノカルボン酸としては、特に制限はなく、公知の脂肪族モノカルボン酸、脂環族モノカルボン酸、芳香族モノカルボン酸などを用いることができる。
 脂環族モノカルボン酸、芳香族モノカルボン酸を用いると、透湿性、保留性を向上させる点で好ましい。好ましいモノカルボン酸の例としては、以下のようなものを挙げることができるが、本発明はこれに限定されるものではない。
 脂肪族モノカルボン酸としては、炭素数が1~32の直鎖又は側鎖を有する脂肪酸を好ましく用いることができる。
 炭素数としては、1~20の範囲であることがさらに好ましく、炭素数が1~10の範囲であることが特に好ましい。
 好ましい脂肪族モノカルボン酸としては、例えば、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、エナント酸、カプリル酸、ペラルゴン酸、カプリン酸、2-エチル-ヘキサンカルボン酸、ウンデシル酸、ラウリン酸、トリデシル酸、ミリスチン酸、ペンタデシル酸、パルミチン酸、ヘプタデシル酸、ステアリン酸、ノナデカン酸、アラキン酸、ベヘン酸、リグノセリン酸、セロチン酸、ヘプタコサン酸、モンタン酸、メリシン酸、ラクセル酸などの飽和脂肪酸、ウンデシレン酸、オレイン酸、ソルビン酸、リノール酸、リノレン酸、アラキドン酸などの不飽和脂肪酸などを挙げることができる。その中でも、酢酸を用いると、セルロースエステルとの相溶性が増すため好ましく、酢酸と他のモノカルボン酸を混合して用いることも好ましい。
 好ましい脂環族モノカルボン酸としては、例えば、シクロペンタンカルボン酸、シクロヘキサンカルボン酸、シクロオクタンカルボン酸、又はそれらの誘導体を挙げることができる。
 好ましい芳香族モノカルボン酸としては、例えば、安息香酸、トルイル酸などの安息香酸のベンゼン環にアルキル基を導入したもの、ビフェニルカルボン酸、ナフタリンカルボン酸、テトラリンカルボン酸などのベンゼン環を2個以上持つ芳香族モノカルボン酸、又はそれらの誘導体を挙げることができ、特に、安息香酸が好ましい。
 多価アルコールエステルの分子量は、特に制限はないが、分子量としては、300~1500の範囲であることが好ましく、350~750の範囲であることが更に好ましい。
 分子量が大きい方が、揮発し難くなるため好ましく、透湿性やセルロースアセテートとの相溶性の観点からは小さい方が好ましい。
 多価アルコールエステルに用いられるカルボン酸は、1種類でもよいし、2種以上の混合であってもよい。また、多価アルコール中のヒドロキシ基は、全てエステル化してもよいし、一部をヒドロキシ基のままで残してもよい。
 以下に、多価アルコールエステルの具体的化合物を示すが、これに限定されるものではない。
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
 (4)紫外線吸収剤
 本発明に係るλ/4板、あるいは後述する保護フィルムには、紫外線吸収剤を含有することが好ましく、用いることのできる紫外線吸収剤としては、例えば、ベンゾトリアゾール系紫外線吸収剤、2-ヒドロキシベンゾフェノン系紫外線吸収剤又はサリチル酸フェニルエステル系紫外線吸収剤等が挙げられる。例えば、2-(5-メチル-2-ヒドロキシフェニル)ベンゾトリアゾール、2-[2-ヒドロキシ-3,5-ビス(α,α-ジメチルベンジル)フェニル]-2H-ベンゾトリアゾール、2-(3,5-ジ-t-ブチル-2-ヒドロキシフェニル)ベンゾトリアゾール等のトリアゾール類、2-ヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-オクトキシベンゾフェノン、2,2′-ジヒドロキシ-4-メトキシベンゾフェノン等のベンゾフェノン類等を挙げることができる。
 なお、紫外線吸収剤のうちでも、分子量が400以上の紫外線吸収剤は、高沸点で揮発しにくく、フィルムの高温成形時にも飛散しにくいため、比較的少量の添加で効果的に耐候性を改良することができる観点から好ましい。
 分子量が400以上の紫外線吸収剤としては、例えば、2-[2-ヒドロキシ-3,5-ビス(α,α-ジメチルベンジル)フェニル]-2-ベンゾトリアゾール、2,2-メチレンビス[4-(1,1,3,3-テトラブチル)-6-(2H-ベンゾトリアゾール-2-イル)フェノール]等のベンゾトリアゾール系紫外線吸収剤、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケート等のヒンダードアミン系紫外線吸収剤、更には、2-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-2-n-ブチルマロン酸ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)、1-[2-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ]エチル]-4-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ]-2,2,6,6-テトラメチルピペリジン等の分子内にヒンダードフェノールとヒンダードアミンの構造を共に有するハイブリッド系紫外線吸収剤等が挙げられ、これらは単独で、あるいは2種以上を併用して使用することができる。これらの中でも、2-[2-ヒドロキシ-3,5-ビス(α,α-ジメチルベンジル)フェニル]-2-ベンゾトリアゾールや、2,2-メチレンビス[4-(1,1,3,3-テトラブチル)-6-(2H-ベンゾトリアゾール-2-イル)フェノール]が、特に好ましい。
 これら紫外線吸収剤は、市販品を用いてもよく、例えば、BASFジャパン社から販売されているチヌビン109、チヌビン171、チヌビン234、チヌビン326、チヌビン327、チヌビン328、チヌビン928等のチヌビンシリーズを好ましく使用できる。
 (5)その他の添加剤
 更に、本発明に係るλ/4板には、成形加工時の熱分解耐性や熱着色耐性を改良する目的で、各種酸化防止剤を添加することもできる。また、帯電防止剤を用いて、λ/4板に帯電防止機能を付与することもできる。
 本発明に係るλ/4板には、リン系難燃剤を配合した難燃アクリル系樹脂組成物を用いても良い。ここで用いられるリン系難燃剤としては、例えば、赤リン、トリアリールリン酸エステル、ジアリールリン酸エステル、モノアリールリン酸エステル、アリールホスホン酸化合物、アリールホスフィンオキシド化合物、縮合アリールリン酸エステル、ハロゲン化アルキルリン酸エステル、含ハロゲン縮合リン酸エステル、含ハロゲン縮合ホスホン酸エステル、含ハロゲン亜リン酸エステル等から選ばれる1種、あるいは2種以上の混合物を挙げることができる。
 具体的な例としては、トリフェニルホスフェート、9,10-ジヒドロ-9-オキサ-10-ホスファフェナンスレン-10-オキシド、フェニルホスホン酸、トリス(β-クロロエチル)ホスフェート、トリス(ジクロロプロピル)ホスフェート、トリス(トリブロモネオペンチル)ホスフェート等が挙げられる。
 また、本発明に係るλ/4板には、取扱性を向上させるため、例えば、二酸化ケイ素、二酸化チタン、酸化アルミニウム、酸化ジルコニウム、炭酸カルシウム、カオリン、タルク、焼成ケイ酸カルシウム、水和ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウム、リン酸カルシウム等の無機微粒子や架橋高分子などの有機微粒子をマット剤として含有させることが好ましい。中でも、二酸化ケイ素は、フィルムのヘイズを低く抑えることができる観点から、好ましく用いられる。
 マット剤微粒子の一次平均粒子径としては、20nm以下が好ましく、更に好ましくは、5~16nmの範囲であり、特に好ましくは、5~12nmの範囲である。
 (λ/4板の各特性値)
 本発明に係るλ/4板は、より高温の環境下での使用に耐えられることが求められており、λ/4板の張力軟化点は、105~145℃の範囲内であれば十分な耐熱性を示すため好ましく、特に110~130℃の温度範囲内であることが好ましい。
 張力軟化点の具体的な測定方法としては、例えば、テンシロン試験機(ORIENTEC社製、RTC-1225A)を用いて、試料フィルムを120mm(縦)×10mm(幅)で切り出し、10Nの張力で引っ張りながら30℃/minの昇温速度で昇温を続け、9Nになった時点での温度を3回測定し、その平均値により求めることができる。
 本発明に係るλ/4板を本発明の有機EL画像表示装置に用いた場合、吸湿による寸法変化による厚さムラ、位相差値の変化、及びコントラストの低下や色ムラといった問題を発生させないため、本発明に係るλ/4板の寸法変化率(%)は、0.5%未満であることが好ましく、更には、0.3%未満であることが好ましい。
 本発明に係るλ/4板は、フィルム中の欠点が少ないことが好ましい。ここでいう欠点とは、溶液製膜法でフィルムを作製する際の乾燥工程において、溶媒の急激な蒸発に起因して発生するフィルム中の空洞(発泡欠点)や、製膜原液(ドープともいう)中の異物や製膜中に混入する異物(大気中のごみ等)に起因するフィルム中の異物(異物欠点)をいう。
 本発明に係るλ/4板においては、フィルム面内における直径が5μm以上の欠点の数が、1個/10cm四方以下であることが好ましい。更に好ましくは0.5個/10cm四方以下、特に好ましくは0.1個/10cm四方以下である。
 上記欠点における直径とは、欠点が円形の場合にはその直径を示し、円形でない場合は、欠点の範囲を下記方法により顕微鏡で観察して決定し、その最大径(外接円の直径)とする。
 欠点の範囲は、欠点が気泡や異物の場合は、欠点を微分干渉顕微鏡の透過光で観察したときの影の大きさである。欠点が、ローラ傷の転写や擦り傷など、表面形状の変化の場合は、欠点を微分干渉顕微鏡の反射光で観察して大きさを確認する。
 なお、反射光で観察する場合、欠点の大きさが不明瞭であれば、表面にアルミや白金を蒸着して観察する。かかる欠点頻度にて表される品位に優れたフィルムを、生産性よく得るには、ポリマー溶液を流延直前に高精度で濾過することや、流延機周辺のクリーン度を高くすること、また、流延後の乾燥条件を段階的に設定し、効率よくかつ発泡を抑えて乾燥させることが有効である。
 欠点の個数が1個/10cm四方より多い場合には、例えば、後工程の加工時などでフィルムに張力がかかると、欠点を起点としてフィルムが破断し、生産性が低下する場合がある。また、欠点の直径が5μm以上になると、偏光板観察などの目視で認識され、光学部材として用いたとき輝点が生じる原因となる。
 また、本発明に係るλ/4板は、JIS-K7127-1999に準拠した方法による測定において、少なくとも一方向の破断伸度が、10%以上であることが好ましく、より好ましくは20%以上である。
 破断伸度の上限は、特に限定されるものではないが、現実的には250%程度である。破断伸度を大きくするには、異物や発泡に起因するフィルム中の欠点を抑制することが有効である。
 本発明に係るλ/4板は、その全光線透過率が90%以上であることが好ましく、より好ましくは93%以上である。また、現実的な上限としては、99%程度である。上記で規定する全光線透過率で表される優れた透明性を達成するには、可視光を吸収する添加剤や共重合成分を導入しないようにすることや、ポリマー中の異物を高精度濾過により除去し、フィルム内部の光の拡散や吸収を低減させることが有効である。また、製膜時のフィルムとの接触部位(例えば、冷却ローラ、カレンダーローラ、ドラム、ベルト、溶液製膜における塗布基材、搬送ローラ等)の表面平滑度を高め、フィルム表面の表面粗さを小さくすることにより、フィルム表面の光の拡散や反射を低減させることが有効である。
 〔λ/4板の製膜方法〕
 次に、本発明に係るλ/4板の製膜方法について説明するが、ここで説明する製膜方法に限定されるものではない。λ/4板の製膜方法としては、インフレーション法、T-ダイ法、カレンダー法、切削法、流延法、エマルジョン法、ホットプレス法等の製造方法が使用できる。
 本発明に係るλ/4板は、溶液流延法、溶融流延法のいずれの方法で製膜してもよい。
 フィルムの着色抑制、異物欠点の抑制、あるいはダイラインなどの光学欠点の抑制などの観点からは、流延法、更には、溶液流延法が好ましい。
 また、セルロースアセテートの溶解に用いた溶媒の残留抑制の観点からは、溶融流延法で作製する方法も好ましい。溶融流延によって製膜する方法は、溶融押出成形法、プレス成形法、インフレーション法、射出成形法、ブロー成形法、延伸成形法などに分類できる。これらの中で、機械的強度及び表面精度などに優れるフィルムが得られる観点から、溶融押出し法が好ましい。
 (溶液流延法による製膜)
 〈溶液流延法で用いる有機溶媒〉
 本発明に係るλ/4板を溶液流延法で製造する場合、ドープを形成するのに有用な有機溶媒は、セルロースアセテート、その他の添加剤を同時に溶解するものであれば制限なく用いることができる。
 塩素系有機溶媒としては、例えば、塩化メチレン等、非塩素系有機溶媒としては、例えば、酢酸メチル、酢酸エチル、酢酸アミル、アセトン、テトラヒドロフラン、1,3-ジオキソラン、1,4-ジオキサン、シクロヘキサノン、ギ酸エチル、2,2,2-トリフルオロエタノール、2,2,3,3-ヘキサフルオロ-1-プロパノール、1,3-ジフルオロ-2-プロパノール、1,1,1,3,3,3-ヘキサフルオロ-2-メチル-2-プロパノール、1,1,1,3,3,3-ヘキサフルオロ-2-プロパノール、2,2,3,3,3-ペンタフルオロ-1-プロパノール、ニトロエタン等を挙げることができ、その中でも、塩化メチレン、酢酸メチル、酢酸エチル、アセトンを好ましく使用することができる。
 ドープには、上記有機溶媒の他に、1~40質量%の範囲で、炭素原子数が1~4の範囲にある直鎖若しくは分岐鎖状の脂肪族アルコールを含有させることが好ましい。ドープ中のアルコールの比率が高くなると、金属支持体上に流延したドープ(以下、ウェブともいう。)がゲル化し、金属支持体からの剥離が容易となり、また、アルコールの割合が少ない時は、非塩素系有機溶媒系でのセルロースアセテートの溶解を促進する役割も有している。
 特に、メチレンクロライド、及び炭素数が1~4の範囲の直鎖若しくは分岐鎖状の脂肪族アルコールを含有する溶媒に、アクリル樹脂と、セルロースエステル樹脂と、アクリル粒子の3種を、総計として15~45質量%の範囲で溶解させたドープ組成物であることが好ましい組成の1つである。
 炭素原子数が1~4の範囲にある直鎖若しくは分岐鎖状の脂肪族アルコールとしては、例えば、メタノール、エタノール、n-プロパノール、iso-プロパノール、n-ブタノール、sec-ブタノール、tert-ブタノールを挙げることができる。これらの中でも、ドープの安定化に効果があり、沸点も比較的低く、乾燥性も良いこと等から、エタノールが好ましい。
 〈溶液流延法による製膜工程〉
 本発明に係るλ/4板を溶液流延法によって製造するステップを説明する。溶液流延法では、樹脂及び添加剤を有機溶媒に溶解させてドープを調製する工程、ドープをベルト状若しくはドラム状の金属支持体上に流延する工程、流延したドープをウェブとして乾燥する工程、金属支持体からウェブを剥離する工程、延伸又は幅保持する工程、更に乾燥する工程、仕上がったフィルムを巻き取る工程等を経て、製造される。
 ドープ中のセルロースアセテートの濃度は、濃度が高い方が金属支持体に流延した後の乾燥負荷が低減できて好ましいが、セルロースアセテートの濃度が高過ぎると濾過時の負荷が増えて、濾過精度が悪くなる。これらを両立する濃度としては、10~35質量%の範囲が好ましく、更に好ましくは、15~25質量%の範囲である。流延(キャスト)工程における金属支持体は、表面を鏡面仕上げしたものが好ましく、金属支持体としては、ステンレススチールベルト若しくは鋳物で表面をメッキ仕上げしたドラムが好ましく用いられる。
 キャストの幅は、1~4mの範囲内とすることが好ましい。流延工程の金属支持体の表面温度は、-50℃から溶媒が沸騰して発泡しない温度の範囲で設定される。温度が高い方がウェブの乾燥速度が速くできるので好ましいが、余り高すぎるとウェブが発泡し、平面性が劣化する場合がある。
 好ましい支持体温度としては、0~100℃の温度範囲内で適宜決定され、特には、5~30℃の範囲内が好ましい。又は、冷却することによって、ウェブをゲル化させ、残留溶媒を多く含んだ状態でドラムから剥離することも好ましい方法である。金属支持体の温度を制御する方法は、特に制限されないが、温風又は冷風を吹きかける方法や、温水を金属支持体の裏側に接触させる方法がある。温水を用いて温度制御する方法では、熱の伝達が効率的に行われるため、金属支持体の温度が一定になるまでの時間が短く好ましい。
 温風を用いる場合は、溶媒の蒸発潜熱によるウェブの温度低下を考慮して、溶媒の沸点以上の温風を使用しつつ、発泡も防ぎながら目的の温度よりも高い温度の風を使う場合がある。
 特に、流延から剥離するまでの間で、金属支持体の温度及び乾燥風の温度を変更し、効率的に乾燥を行うことが好ましい。
 λ/4板が良好な平面性を示すためには、金属支持体からウェブを剥離する際の残留溶媒量は、10~150質量%の範囲内に設定することが好ましく、更に好ましくは20~40質量%又は60~130質量%の範囲内であり、特に好ましくは、20~30質量%又は70~120質量%の範囲内である。
 なお、本発明でいう残留溶媒量は、下式で定義される。
   残留溶媒量(質量%)={(M-N)/N}×100
 なお、Mはウェブ又はフィルムを製造中又は製造後の任意の時点で採取した試料の質量で、NはMを115℃で1時間の加熱し、含有している溶媒を完全に除いた後の質量である。
 また、λ/4板の乾燥工程においては、ウェブを金属支持体より剥離し、更に乾燥し、残留溶媒量を1質量%以下にすることが好ましく、更に好ましくは0.1質量%以下であり、特に好ましくは0~0.01質量%の範囲である。
 フィルム乾燥工程では、一般に、ローラ乾燥方式(上下に配置した多数のローラにウェブを交互に通し乾燥させる方式)やテンター方式でウェブを搬送させながら乾燥する方式が採られる。
 〈延伸工程〉
 本発明に係るλ/4板は、波長550nmで測定した面内方向のリターデーション値Ro(550)が100~180nmの範囲内であることを特徴とし、該リターデーションは、フィルム延伸処理により付与する方法が好ましい。以下、本発明に係るλ/4板を、セルロースアセテートフィルムともいう。
 本発明に適用可能な延伸方法としては、特に限定はない。例えば、1)複数のローラに周速差をつけ、その間でローラ周速差を利用して縦方向に延伸する方法、2)ウェブの両端をクリップやピンで固定し、クリップやピンの間隔を進行方向に広げて縦方向に延伸する方法、同様に3)横方向に広げて横方向に延伸する方法、あるいは4)縦横同時に広げて縦横両方向に延伸する方法などが挙げられる。もちろんこれらの方法は、単独で用いても、あるいは組み合わせて用いてもよい。すなわち、製膜方向に対して横方向に延伸しても、縦方向に延伸しても、両方向に延伸してもよく、更には、両方向に延伸する場合は、同時延伸であっても、逐次延伸であってもよい。なお、いわゆるテンター方式の場合、リニアドライブ方式でクリップ部分を駆動すると滑らかな延伸が行うことができ、破断等の危険性が減少できるので好ましい。
 本発明においては、特に、延伸は、フィルム搬送ローラの周速差を利用して搬送方向に行うか、若しくは搬送方向と直交方向(幅手方向又はTD方向ともいう)にウェブの両端をクリップ等で把持するテンター方式で行うことが好ましく、更に左右把持手段によってウェブの把持長(把持開始から把持終了までの距離)を左右で独立に制御できるテンターを用いることも好ましい。
 また、本発明に係るλ/4板を、延伸工程でフィルム搬送方向に対して45°の方向に延伸することが、フィルムの長手方向に対する配向角θを35~55°とする上で好ましい方法である。
 前記のように、遅相軸が長手方向と平行な方向に透過軸があるロール状の偏光フィルムと、配向角が実質的に45°であるλ/4板とを長手方向を合わせてロールtoロールで貼合すると、ロール状長尺状の円偏光板を容易に製造できるので、フィルムの断裁ロスが少なく、生産上有利である。
 以下、延伸方法の一例として、45°の方向に斜め延伸する方法を説明する。
 セルロースアセテートフィルム(λ/4板)を、長手方向に対して実質的に45°の方向に斜め延伸する方法では、図3で示す様なテンターを用いる方法が好ましい。図3は、テンターによる斜め延伸を示す模式図である。
 延伸フィルムの製造は、テンターを用いて行う。このテンターは、フィルムロール(繰出しロール)から繰り出されるフィルムを、オーブンによる加熱環境下で、その進行方向(フィルム幅方向の中点の移動方向)に対して、斜め方向に拡幅する装置である。このテンターは、オーブンと、フィルムを搬送するための把持具が走行する左右で一対のレールと、該レール上を走行する多数の把持具とを備えている。フィルムロールから繰り出され、テンターの入口部に順次供給されるフィルムの両端を、把持具で把持し、オーブン内にフィルムを導き、テンターの出口部で把持具からフィルムを開放する。把持具から開放されたフィルムは、巻芯に巻き取られる。一対のレールは、それぞれ無端状の連続軌道を有し、テンターの出口部でフィルムの把持を開放した把持具は、外側を走行して順次入口部に戻されるようになっている。
 なお、テンターのレール形状は、製造すべき延伸フィルムに与える配向角、延伸倍率等に応じて、左右で非対称な形状となっており、手動で又は自動で微調整できるようになっている。本発明においては、長尺の熱可塑性樹脂フィルムを延伸し、配向角θが延伸後の巻取り方向に対して、10~80°の範囲内で、任意の角度に設定できるようになっている。本発明において、テンターの把持具は、前後の把持具と一定間隔を保って、一定速度で走行するようになっている。
 図3では、斜め延伸するために用いるテンターのレールの軌道(レールパターン)を示している。セルロースアセテートフィルムの繰出し方向DR1は、延伸後のフィルムの巻取り方向(MD方向)DR2と異なっており、これにより、比較的大きな配向角をもつ延伸フィルムにおいても、広幅で均一な光学特性を得ることが可能となっている。繰出し角度θiとは、延伸前のフィルムの繰出し方向DR1と延伸後のフィルムの巻取り方向DR2とのなす角度である。本発明においては、例えば、40~80°の範囲で配向角を持つフィルムを製造するため、繰出し角度θiは、10°<θi<60°、好ましくは15°<θi<50°の範囲で設定される。繰出し角度θiを、上記で示す範囲とすることにより、得られるフィルムの幅方向の光学特性のバラツキが小さくなり好ましい。
 フィルムロール(繰出しロール)から繰出されたセルロースアセテートフィルムは、テンター入口(符号aの位置)において、その両端(両側)を左右の把持具によって順次把持されて、把持具の走行に伴い走行される。テンター入口(符号aの位置)で、フィルム進行方向(繰り出し方向DR1)に対して略垂直な方向に相対している左右の把持具CL及びCRは、左右非対称なレール上を走行し、予熱ゾーン、延伸ゾーン及び熱固定ゾーンを有するオーブンを通過する。ここで、略垂直とは、前述の向かい合う把持具CL及びCRを結んだ直線と、フィルム繰出し方向DR1とがなす角度が、90±1°以内にあることを示す。
 予熱ゾーンとは、オーブン入口部において、両端を把持した把持具の間隔が一定の間隔を保ったまま走行する区間を指す。延伸ゾーンとは、両端を把持した把持具の間隔が開きだし、再び一定となるまでの区間を指す。また、冷却ゾーンとは、延伸ゾーンより後の把持具の間隔が再び一定となる期間において、ゾーン内の温度がフィルムを構成する熱可塑性樹脂のガラス転移温度Tg℃以下に設定される区間を指す。
 各ゾーンの温度は、熱可塑性樹脂のガラス転移温度Tgに対し、予熱ゾーンの温度はTg+5~Tg+20℃の範囲に、延伸ゾーンの温度はTg~Tg+20℃の範囲に、冷却ゾーンの温度はTg-30~Tg℃の範囲に設定することが好ましい。
 延伸工程における延伸倍率R(W/Wo)は、好ましくは1.3~3.0倍の範囲であり、より好ましくは1.5~2.8倍の範囲である。延伸倍率がこの範囲にあると、幅方向での厚さムラが小さくなるので好ましい。テンター延伸機の延伸ゾーンにおいて、幅方向で延伸温度に差を付けると、幅方向における厚さムラを、更に良好なレベルにすることが可能になる。なお、Woは延伸前のフィルムの幅、Wは延伸後のフィルムの幅を表す。
 上記斜め方向に延伸する工程は、製膜工程内で行うオンライン方式でも、また一度フィルムを巻き取った後に繰り出して、上記テンターにて延伸を行うオフライン方式であっても良い。
 セルロースアセテートフィルムを乾燥させる手段は、特に制限なく、一般的に熱風、赤外線、加熱ローラ、マイクロ波等で行うことができるが、簡便さの点で、熱風で行う方法が好ましい。
 セルロースアセテートフィルムの乾燥工程における乾燥温度は、好ましくはフィルムのガラス転移点の-5℃~+100℃の範囲で、10~60分の範囲で熱処理を行うことが効果的である。乾燥温度は、100~200℃の範囲、更に好ましくは110~160℃の範囲で乾燥が行われる。
 所定の熱処理の後、巻き取り前にスリッターを設けて端部を切り落とすことが良好な巻姿を得る観点から好ましい。更に、幅手両端部には、ナーリング加工を施すことが好ましい。
 ナーリング加工は、加熱されたエンボスローラを押し当てることにより形成することができる。エンボスローラ表面には、細かな凹凸構造が形成されており、これをフィルムに押し当てることで、フィルムに凹凸構造を形成し、端部を嵩高くすることができる。
 セルロースアセテートフィルムの幅手両端部のナーリングの高さは、4~20μmの範囲、幅は5~20mmの範囲が好ましい。
 また、本発明においては、上記のナーリング加工は、フィルムの製膜工程において、乾燥終了した後から巻き取り部までの間に設けることが好ましい。
 (溶融流延法による製膜)
 本発明に係るλ/4板は、溶融流延法により製膜しても良い。溶融流延法は、樹脂及び可塑剤などの添加剤を含む組成物を、流動性を示す温度まで加熱溶融し、その後、流動性のセルロースアセテートを含む溶融物を流延する方法である。
 加熱溶融する成形法は、更に詳細には、溶融押出成形法、プレス成形法、インフレーション法、射出成形法、ブロー成形法、延伸成形法などに分類できる。これらの成形法の中では、機械的強度及び表面精度などの点から、溶融押出し法が好ましい。溶融押出しに用いる複数の原材料は、通常予め混錬してペレット化しておくことが好ましい。
 ペレット化は、公知の方法でよく、例えば、乾燥セルロースアセテートや可塑剤、その他添加剤をフィーダーで押出し機に供給し1軸や2軸の押出し機を用いて混錬し、ダイからストランド状に押出し、水冷又は空冷し、カッティングすることでできる。
 添加剤は、押出し機に供給する前に混合しておいてもよいし、それぞれ個別のフィーダーで供給してもよい。
 粒子や酸化防止剤等少量の添加剤は、均一に混合するため、事前に混合しておくことが好ましい。
 押出し機は、剪断力を抑え、樹脂が劣化(例えば、分子量低下、着色、ゲル生成等。)しないようにペレット化可能でなるべく低温で加工することが好ましい。例えば、2軸押出し機の場合、深溝タイプのスクリューを用いて、同方向に回転させることが好ましい。混錬の均一性から、噛み合いタイプが好ましい。
 以上のようにして得られたペレットを用いてフィルム製膜を行う。もちろんペレット化せず、原材料の粉末をそのままフィーダーで押出し機に供給し、そのままフィルム製膜することも可能である。
 上記ペレットを1軸や2軸タイプの押出し機を用いて、押出す際の溶融温度を200~300℃程度とし、リーフディスクタイプのフィルターなどで濾過し異物を除去した後、Tダイからフィルム状に流延し、冷却ローラと弾性タッチローラでフィルムをニップされ、冷却ローラ上で固化させる。
 供給ホッパーから押出し機へ導入する際は、真空下又は減圧下や不活性ガス雰囲気下にして酸化分解等を防止することが好ましい。
 押出し流量は、ギヤポンプを導入するなどして安定に行うことが好ましい。また、異物の除去に用いるフィルターは、ステンレス繊維焼結フィルターが好ましく用いられる。ステンレス繊維焼結フィルターは、ステンレス繊維体が複雑に絡み合った状態を作り出した上で圧縮し、接触箇所を焼結し一体化したもので、その繊維の太さと圧縮量により密度を変え、濾過精度を調整できる。
 可塑剤や粒子などの添加剤は、予め樹脂と混合しておいてもよいし、押出し機の途中で練り込んでもよい。均一に添加するために、スタチックミキサーなどの混合装置を用いることが好ましい。
 冷却ローラと弾性タッチローラでフィルムをニップする際、タッチローラ側のフィルム温度は、フィルムのTg~Tg+110℃の温度範囲にすることが好ましい。このような目的で使用する弾性体表面を有するローラは、公知のローラが使用できる。
 弾性タッチローラは、挟圧回転体ともいう。弾性タッチローラとしては、市販されているものを用いることもできる。
 冷却ローラからフィルムを剥離する際、張力を制御してフィルムの変形を防止することが好ましい。
 また、上記のようにして得られたフィルムは、冷却ローラに接する工程を通過した後、前記延伸操作により延伸することが好ましい。
 延伸する方法は、公知のローラ延伸機やテンターなどを好ましく用いることができる。延伸温度は、通常フィルムを構成する樹脂のTg~Tg+60℃の温度範囲で行われることが好ましい。
 巻き取る前に、製品となる幅になるように端部をスリットして裁ち落とし、ロール状に積層した状態での貼り付きや擦り傷防止のために、ナール加工(エンボッシング加工)を両端に施してもよい。ナール加工の方法は、凸凹のパターンを側面に有する金属リングを加熱や加圧により加工することができる。なお、フィルム両端部のクリップの把持部分は、通常フィルムが変形しており製品として使用できないので切除されて、再利用される。
 〔λ/4板の物性〕
 本発明に係るλ/4板の膜厚は、特に限定はされないが、10~250μmの範囲で用いられる。更には、膜厚としては、10~100μmの範囲が好ましく、特に好ましくは、30~60μmの範囲である。
 本発明に係るλ/4板は、幅として1~4mの範囲で用いられる。更には、幅が1.4~4mの範囲が好ましく用いられ、特に好ましくは1.6~3mの範囲である。幅が4mを超えると、搬送が困難となる。
 また、本発明に係るλ/4板表面の算術平均粗さRaは、2.0~4.0nmの範囲であることが好ましく、より好ましくは2.5~3.5nmの範囲である。
 《円偏光板保護層》
 本発明に係る円偏光板の保護層10は、保護フィルムであることが好ましく、例えば、トリアセチルセルロースフィルム、セルロースアセテートプロピオネートフィルム、セルロースジアセテートフィルム、セルロースアセテートブチレートフィルム等のセルロースエステル系フィルム、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系フィルム、ポリカーボネート系フィルム、ポリアリレート系フィルム、ポリスルホン(ポリエーテルスルホンも含む)系フィルム、ポリエチレンフィルム、ポリプロピレンフィルム、セロファン、ポリ塩化ビニリデンフィルム、ポリビニルアルコールフィルム、エチレンビニルアルコールフィルム、シンジオタクティックポリスチレン系フィルム、ノルボルネン樹脂系フィルム、ポリメチルペンテンフィルム、ポリエーテルケトンフィルム、ポリエーテルケトンイミドフィルム、ポリアミドフィルム、フッ素樹脂フィルム、ナイロンフィルム、シクロオレフィンポリマーフィルム、ポリメチルメタクリレートフィルム又はアクリルフィルム等を使用することができる。
 これらの中でも、セルロースエステルフィルム(例えば、コニカミノルタタックKC8UX、KC4UX、KC5UX、KC8UCR3、KC8UCR4、KC8UCR5、KC8UY、KC4UY、KC4UE、及びKC12UR(以上、コニカミノルタアドバンストレイヤー(株)製))、ポリカーボネートフィルム、シクロオレフィンポリマーフィルム、ポリエステルフィルムが好ましく、本発明においては、セルロースエステルフィルムが、光学特性、生産性及びコスト面から好ましい。
 上記保護フィルムは、23℃、55RH%の環境下で測定した面内の最大弾性率が4.0GPa以上であることが好ましく、パネルのたわみを更に抑制することができ好ましい。該保護フィルムは、本発明に係るλ/4板の作製と同様に、セルロースアセテートの選択、一般式(1)で表される化合物の使用、その他添加剤の使用、延伸条件などを制御して、高い弾性率を有する保護フィルムを作製することができる。
 また、3D(立体)画像表示用の有機EL画像表示装置の場合は、偏光子の両面にλ/4板を配置することが、表示画像の品質向上に効果を有するため、本発明においても、保護フィルムとして、本発明に係るλ/4板を用いることが好ましい態様である。その際、好ましくは保護フィルムの面内の最大弾性率となる方向が、画像表示装置の画面の長手方向に対して35°~55°の方向にあり、かつ前記λ/4板の面内の最大弾性率の方向と平行にすることによって、パネルのたわみがなく、高品位な3D画像表示用の有機エレクトロルミネッセンス画像表示装置を得ることができる。
 〔反射防止層〕
 上記円偏光板の保護フィルムには、直接又は他の層を介して、外光反射防止機能を有する反射防止層を設けることも好ましい態様である。
 反射防止層は、光学干渉によって反射率が減少するように、構成層の屈折率、膜厚、構成層の数、層順等を考慮して積層されていることが好ましい。反射防止層は、支持体よりも屈折率の低い低屈折率層、若しくは支持体よりも屈折率の高い高屈折率層と低屈折率層を組み合わせて構成されていることが好ましい。特に好ましくは、3層以上の屈折率層から構成される反射防止層ユニットであり、支持体側から屈折率の異なる3層を、中屈折率層(支持体よりも屈折率が高く、高屈折率層よりも屈折率の低い層)/高屈折率層/低屈折率層の順に積層されているものが好ましく用いられる。又は、2層以上の高屈折率層と、2層以上の低屈折率層とを交互に積層した4層以上の層から構成される反射防止層ユニットも好ましく用いられる。反射防止層の構成例としては、下記のような構成が挙げられるが、これに限定されるものではない。
 (1)保護フィルム/低屈折率層
 (2)保護フィルム/中屈折率層/低屈折率層
 (3)保護フィルム/中屈折率層/高屈折率層/低屈折率層
 (4)保護フィルム/高屈折率層(導電性層)/低屈折率層
 (低屈折率層)
 反射防止層には必須である低屈折率層は、シリカ系微粒子を含有する構成であることが好ましく、その屈折率は、支持体である基材フィルムの屈折率より低く、23℃、波長550nm測定したときの屈折率が、1.30~1.45の範囲であることが好ましい。
 低屈折率層の膜厚は、5nm~0.5μmの範囲であることが好ましく、10nm~0.3μmの範囲であることが更に好ましく、30nm~0.2μmの範囲であることが最も好ましい。
 低屈折率層を形成する組成物については、シリカ系微粒子としては、特に、外殻層(シェル部ともいう)を有し、内部(コア部ともいう)が多孔質又は空洞の粒子を少なくとも1種類を含むことが好ましい。特に、外殻層を有し、内部が多孔質又は空洞である粒子が、中空シリカ系微粒子であることが好ましい。
 なお、低屈折率層形成用組成物には、下記一般式(OSi-1)で表される有機珪素化合物若しくはその加水分解物、あるいはその重縮合物を併せて含有させても良い。
 一般式(OSi-1)
   Si(OR)
 上記一般式(OSi-1)において、Rは、炭素数が1~4の範囲のアルキル基を表す。一般式(OSi-1)で表される有機珪素化合物としては、例えば、テトラメトキシシラン、テトラエトキシシラン、テトライソプロポキシシラン等が挙げられる。
 低屈折率層形成用組成物には、その他にも、必要に応じて、溶媒、シランカップリング剤、硬化剤、界面活性剤等を添加してもよい。
 (高屈折率層)
 高屈折率層の屈折率は、23℃、波長550nmでの測定で、屈折率が1.4~2.2の範囲に調整することが好ましい。また、高屈折率層の厚さは5nm~1μmの範囲が好ましく、10nm~0.2μmの範囲であることが更に好ましく、30nm~0.1μmの範囲であることが最も好ましい。屈折率を調整する手段としては、金属酸化物微粒子等を添加することにより達成できる。用いる金属酸化物微粒子としては、屈折率が1.80~2.60の範囲であるものが好ましく、1.85~2.50の範囲であるものが更に好ましい。
 金属酸化物微粒子の種類は、特に限定されるものではなく、Ti、Zr、Sn、Sb、Cu、Fe、Mn、Pb、Cd、As、Cr、Hg、Zn、Al、Mg、Si、P及びSから選択される少なくとも1種の原子を有する金属酸化物を用いることができ、これらの金属酸化物微粒子は、更にAl、In、Sn、Sb、Nb、ハロゲン原子、Taなどの微量の原子をドープしてあっても良い。また、これらの混合物でもよい。本発明においては、これらの中でも、酸化ジルコニウム、酸化アンチモン、酸化錫、酸化亜鉛、酸化インジウム-スズ(ITO)、アンチモンドープ酸化スズ(ATO)、及びアンチモン酸亜鉛から選ばれる少なくとも1種の金属酸化物微粒子を、主成分として用いることが好ましい。その中でも、特に、アンチモン酸亜鉛粒子を含有することが好ましい。
 これら金属酸化物微粒子の一次粒子の平均粒子径は、10~200nmの範囲であることが好ましく、10~150nmの範囲であることが特に好ましい。金属酸化物微粒子の平均粒子径は、走査型電子顕微鏡(SEM)等による電子顕微鏡写真から計測することができる。そのほかの方法としては、動的光散乱法や静的光散乱法等を利用する粒度分布計等によって計測してもよい。平均粒子径は10nm以上であれば、分散安定性が維持され、粒子が凝集しにくくなる。また、平均粒子径が200nm以下であれば、ヘイズの発生を抑え、十分な透明性を得ることができる。金属酸化物微粒子の形状は、米粒状、球形状、立方体状、紡錘形状、針状あるいは不定形状であることが好ましい。
 金属酸化物微粒子は、有機化合物により表面処理を施してもよい。金属酸化物微粒子の表面を有機化合物で表面修飾することによって、有機溶媒中での分散安定性が向上し、分散粒径の制御が容易になるとともに、長期間にわたり保存した際の微粒子の凝集や沈降を抑えることもできる。このため、好ましい有機化合物での表面修飾量は、金属酸化物粒子に対して0.1~5質量%の範囲であり、より好ましくは0.5~3質量%の範囲である。表面処理に用いる有機化合物としては、例えば、ポリオール、アルカノールアミン、ステアリン酸、シランカップリング剤及びチタネートカップリング剤が含まれる。この中でも、シランカップリング剤が好ましい。また、必要に応じて、2種以上の表面処理剤を組み合わせてもよい。また、高屈折率層では、π共役系導電性ポリマーを含有しても良い。π共役系導電性ポリマーとは、主鎖がπ共役系で構成されている有機高分子化合物である。例えば、ポリチオフェン類、ポリピロール類、ポリアニリン類、ポリフェニレン類、ポリアセチレン類、ポリフェニレンビニレン類、ポリアセン類、ポリチオフェンビニレン類、及びこれらの共重合体が挙げられる。重合の容易さ、安定性点からは、ポリチオフェン類、ポリアニリン類、ポリアセチレン類が好ましい。
 π共役系導電性ポリマーは、無置換のままでも十分な導電性やバインダー樹脂への溶解性が得られるが、導電性や溶解性をより高める観点から、アルキル基、カルボキシ基、スルホ基、アルコキシ基、ヒドロキシ基、シアノ基等の官能基を導入してもよい。
 また、イオン性化合物を含有しても良い。イオン性化合物としては、イミダゾリウム系、ピリジウム系、脂環式アミン系、脂肪族アミン系、脂肪族ホスホニウム系の陽イオンとBF 、PF 等の無機イオン系、CFSO 、(CFSO、CFCO 等のフッ素系の陰イオンとからなる化合物等が挙げられる。該ポリマーとバインダーの比率は、ポリマー100質量部に対して、バインダーが10~400質量部の範囲が好ましく、特に好ましくは、ポリマー100質量部に対して、バインダーが100~200質量部の範囲である。
 以下に実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」あるいは「%」の表示を用いるが、特に断りがない限り「質量部」あるいは「質量%」を表す。
 実施例1
 《セルロースアセテートの調製》
 セルロースの100質量部に、硫酸16質量部、無水酢酸260質量部、酢酸420質量部をそれぞれ添加し、攪拌しながら室温から60℃まで60分かけて昇温し、15分間その温度を保持しながら酢化反応を行った。次に、酢酸マグネシウムの酢酸-水混合溶液を添加して硫酸を中和した後、反応系内に水蒸気を導入して、60℃でその状態を120分間維持して、鹸化熟成処理を行った。その後、多量の水により酢酸臭がなくなるまで洗浄を行い、更に乾燥して、アセチル基置換度が2.00のセルロースアセテート1を得た。
 次いで、上記セルロースアセテート1の調製において、各酸(硫酸、無水酢酸、酢酸)の添加量を適宜調整した以外は同様にして、表2に記載のアセチル基置換度が、1.90、2.20、2.45、2.70、2.80、2.88のセルロースアセテート2~7を調製した。
 《糖エステル化合物の調製》
 撹拌装置、還流冷却器、温度計及び窒素ガス導入管を備えた四頭コルベンに、ショ糖を34.2g(0.1モル)、無水安息香酸を180.8g(0.6モル)、ピリジンを379.7g(4.8モル)仕込み、撹拌下で窒素ガス導入管から窒素ガスをバブリングさせながら昇温し、70℃で5時間エステル化反応を行った。次に、コルベン内を4×10Pa以下に減圧し、60℃で過剰のピリジンを留去した後、コルベン内を1.3×10Pa以下に減圧した後、120℃まで昇温させ、無水安息香酸、生成した安息香酸の大部分を留去した。最後に、分取したトルエン層に水100gを添加し、常温で30分間水洗した後、トルエン層を分取し、減圧下(4×10Pa以下)、60℃でトルエンを留去させ、化合物A-1、A-2、A-3、A-4及びA-5の混合物からなる糖エステル化合物1を調製した。なお、化合物A-1、A-2、A-3、A-4及びA-5の具体的な構造は、前述の化6に示したとおりである。
 得られた混合物を、下記の条件によりHPLC及びLC-MASSを用いて解析した結果、糖エステル化合物1は、化合物A-1が1.3質量%、化合物A-2が13.4質量%、化合物A-3が13.1質量%、化合物A-4が31.7質量%、化合物A-5が40.5質量%で構成され、平均置換度は5.5であった。
 〔HPLC-MSの測定条件〕
 1)LC部
 装置;日本分光(株)製カラムオーブン(JASCO CO-965)、ディテクター(JASCO UV-970-240nm)、ポンプ(JASCO PU-980)、デガッサ-(JASCO DG-980-50)
 カラム;Inertsil ODS-3 粒子径5μm 4.6×250mm(ジーエルサイエンス(株)製)
 カラム温度;40℃
 流速;1ml/min
 移動相;テトラヒドロフラン(1%酢酸):HO=50:50
 注入量;3μl
 2)MS部
 装置;LCQ DECA(Thermo Quest(株)製)
 イオン化法;エレクトロスプレーイオン化(ESI)法
 Spray Voltage;5kV
 Capillary温度;180℃
 Vaporizer温度;450℃
 上記糖エステル化合物1(平均置換度=5.5)の調製において、無水安息香酸の仕込み量を適宜変更した以外は同様にして、平均置換度が、それぞれ6.5、3.5、2.5の糖エステル化合物2~4を調製した。
 《延伸フィルムの作製》
 〔延伸フィルム1の作製〕
 (微粒子分散液1の調製)
 微粒子(アエロジル R812 日本アエロジル(株)製)11質量部
 エタノール                      89質量部
 上記微粒子及びエタノールを、ディゾルバーで50分間攪拌及び混合した後、マントンゴーリンで分散を行って、微粒子分散液1を調製した。
 (微粒子添加液1の調製)
 溶解タンクに入れたメチレンクロライドを十分攪拌しながら、上記微粒子分散液1をゆっくりと添加した。更に、二次粒子の粒径が所定の大きさとなるようにアトライターにて分散を行った。これを、日本精線(株)製のファインメットNFで濾過し、微粒子添加液1を調製した。
 メチレンクロライド                   5質量部
 微粒子分散液1                     5質量部
 (主ドープ1の調製)
 下記の手順に従って、主ドープ1を調製した。はじめに、加圧溶解タンクにメチレンクロライドとエタノールを添加した。溶媒の入った加圧溶解タンクに、上記調製したアセチル基置換度1.90のセルロースアセテート2、糖エステル化合物1、微粒子添加液1を、順次攪拌しながら投入した。これを加熱及び攪拌しながら、溶解及び混合した。これを、安積濾紙(株)製の安積濾紙No.244を使用して濾過し、主ドープ1を調製した。
 〈主ドープ1の組成〉
 メチレンクロライド                 340質量部
 エタノール                      64質量部
 セルロースアセテート2(アセチル基置換度1.90、重量平均分子量:約18万)                      100質量部
 糖エステル化合物1:平均置換度5.5のベンジルサッカロース
                            12質量部
 微粒子添加液1                     2質量部
 (フィルム製膜)
 上記調製した主ドープ1を、無端ベルト流延装置を用い、ステンレスベルト支持体上に均一に流延した。ステンレスベルト支持体上で、流延(キャスト)したフィルム中の残留溶媒量が75%になるまで溶媒を蒸発させ、次いで、剥離張力130N/mで、ステンレスベルト支持体上から剥離した。
 剥離したフィルムを、160℃の熱をかけながらテンターを用いて幅方向に1%延伸した。延伸開始時の残留溶媒は15%であった。
 次いで、乾燥ゾーンを多数のローラで搬送させながら乾燥を終了させた。乾燥温度は130℃で、搬送張力は100N/mとした。
 以上のようにして、乾燥膜厚102μmのロール状の原反フィルム1を得た。
 ロール状の原反フィルム1を、スライド可能な繰出装置にセットし、図4に示す斜め延伸テンター装置に供給した。そのとき、斜め延伸テンター装置の入口部に最も近いガイドローラ(28-1)の主軸と斜め延伸装置の把持具(クリップつかみ部22-1/22-2)との距離を80cmとした。クリップは搬送方向の長さが2インチ(5.08cm)のものを、上記ガイドローラは直径10cmのものを使用した。テンターで延伸温度190℃、延伸倍率80%で巾手方向に延伸を行い、その後、レールが45°屈曲する際に延伸と垂直方向に0.71倍に収縮した。延伸後のフィルムは、斜め延伸テンター出口側第一ローラ(28-2)で測定した張力の変動を引取モーター回転数に反映させるフィードバック制御を行って、引取張力の変動が3%未満となるように制御した。その後、フィルム両端をトリミングして、エアーフローローラからなる搬送方向変更装置で搬送方向を変更し、スライド可能な巻取装置で巻き取り、2000mm幅のロール状の延伸フィルム1を作製した。
 延伸フィルム1の配向角θは、王子計測器社製のKOBRA-21ADHを用いて測定した結果、フィルム長手方向に対して45°±1°の範囲にあった。
 〔延伸フィルム2~13の作製〕
 上記延伸フィルム1の作製において、セルロースアセテートの種類(アセチル基置換度変化)及び糖エステル化合物の種類(平均置換度変化、延伸フィルム13は未添加)と、膜厚(μm)、延伸温度(℃)及び延伸倍率(%)などの製造条件を、表2に記載の組み合わせに変更した以外は同様にして、最大弾性率(GPa)の異なる延伸フィルム2~13を作製した。
 〔延伸フィルム14の作製〕
 上記延伸フィルム5の作製において、主ドープ5に、更に、紫外線吸収剤として、チヌビン928(BASFジャパン(株)製)を1.9質量部添加した以外は同様にして、延伸フィルム14を作製した。
 〔延伸フィルム15の作製〕
 上記延伸フィルム5の作製において、延伸処理として、斜め延伸法に代えて、テンターを用いて、190℃で加熱しながら、搬送方向に80%延伸し、同時に幅方向に30%収縮させて延伸処理を施した以外は同様にして、延伸フィルム15を作製した。
 延伸フィルム15の配向角θは、王子計測器社製のKOBRA-21ADHを用いて測定した結果、フィルム長手方向に対して0°±1°の範囲にあった。
 〔延伸フィルム16の作製〕
 特開2010-134232号公報に記載の実施例4に従って、延伸フィルム16を作製した。
 〔延伸フィルム17の作製〕
 (エステル化合物1の調製)
 1,2-プロピレングリコールを251g、無水フタル酸を278g、アジピン酸を91g、安息香酸を610g、エステル化触媒としてテトライソプロピルチタネートを0.191g、それぞれを温度計、撹拌器及び緩急冷却管を備えた2Lの四つ口フラスコに仕込み、窒素気流中で230℃になるまで、撹拌しながら徐々に昇温し、15時間を要して脱水縮合反応をさせ、反応終了後、200℃で未反応の1,2-プロピレングリコールを減圧留去することにより、エステル化合物1を得た。エステル化合物1は、酸価が0.10mgKOH/gで、数平均分子量が450であった。
 (主ドープ17の調製)
 セルロースアセテート(アセチル基置換度2.88、重量平均分子量:約18万)                        90質量部
 エステル化合物1                   10質量部
 チヌビン928(BASFジャパン(株)製)     2.5質量部
 微粒子添加液1(前出)                 4質量部
 メチレンクロライド                 432質量部
 エタノール                      38質量部
 上記各添加剤を密閉容器に投入し、加熱及び撹拌しながら、完全に溶解し、安積濾紙(株)製の安積濾紙No.24を使用して濾過し、主ドープ17を調製した。
 (フィルム製膜)
 次に、ベルト流延装置を用い、ステンレスベルト支持体に、上記調製した主ドープ17を均一に流延した。ステンレスベルト支持体で、残留溶媒量が100%になるまで溶媒を蒸発させ、ステンレスベルト支持体上から剥離した。セルロースエステルフィルムのウェブを35℃で溶媒を蒸発させ、1.65m幅にスリットし、160℃の熱をかけながらテンターでTD方向(フィルムの幅手方向)に30%、MD方向(搬送方向)に延伸倍率1%で延伸した。延伸を始めたときの残留溶媒量は20%であった。その後、120℃の乾燥装置内を多数のローラで搬送させながら15分間乾燥させた後、1.49m幅にスリットし、フィルム両端に幅15mm、高さ10μmのナーリング加工を施し、巻芯に巻き取り、延伸フィルム17を得た。延伸フィルムの残留溶媒量は0.2%であり、膜厚は40μm、巻数は3900mであった。
 延伸フィルム17の配向角θは、王子計測器社製のKOBRA-21ADHを用いて測定した結果、フィルム長手方向に対して90°±1°の範囲にあった。
 〔延伸フィルム18の作製〕
 上記延伸フィルム17の作製において、主ドープの調製として、エステル化合物1に代えて、トリフェニルホスフェート8質量部とエチルフタリルエチルグリコレート2質量部を添加し、更に延伸時のテンター温度を115℃、TD方向の延伸倍率を10%に変更した以外は同様にして、延伸フィルム18を作製した。
 延伸フィルム18の配向角θは、王子計測器社製のKOBRA-21ADHを用いて測定した結果、フィルム長手方向に対して90°±1°の範囲にあった。
 《延伸フィルムの特性値の測定》
 〔リターデーションと波長分散性〕
 上記作製した各延伸フィルムについて、23℃、55%RHの環境下で、株式会社オプトサイエンス社製のAxoScan OPMFを用いて、下式に従って、550nmにおける面内リターデーション値Ro(550)と、膜厚方向のリターデーション値Rth(550)を測定した。
 加えて、650nmにおける面内リターデーション値Ro(650)を測定し、Ro(550)/Ro(650)で求めた比の値で、波長分散性を表した。
 Ro(550)=(nx-ny)×d(単位:nm)
 Rth(550)={(nx+ny)/2-nz}×d(単位:nm)
 式中、nxは、フィルム面内の遅相軸x方向における屈折率を表す。nyは、フィルム面内のx方向に直交するy方向における屈折率を表す。nzは、フィルムの厚さ方向における屈折率を表す。dは、フィルムの膜厚(nm)を表す。各々の屈折率は、23℃、55%RHの環境下で、測定波長550nmで測定した。
 〔紫外線透過率の測定〕
 Spectrophotometer U-3200(日立製作所製)を用い、各延伸フィルムの分光吸収スペクトルを測定し、380nmにおける透過率(%)を求めた。
 〔最大弾性率の測定〕
 23℃、55%RHの環境下で、各延伸フィルムを24時間調湿し、JIS K7127に記載の方法に準じて、引っ張り試験器としてオリエンテック(株)製のテンシロンRTA-100を用いて、弾性率を求めた。試験片の形状は1号形試験片で、試験速度は10mm/分の条件で、任意方向に対し0°から15°毎の方向に測定し、求めた弾性率のうち最大のものを最大弾性率として求めた。なお、全ての延伸フィルムの最大弾性率の方向は、延伸方向と一致した。
 以上により得られた結果を、表2に示す。
Figure JPOXMLDOC01-appb-T000015
 表2に記載の結果より明らかなように、延伸フィルム1~16は、リターデーション値Ro(550)の値から、全てλ/4板であり、特に、延伸フィルム1~14では、配向角がフィルム長手方向に対して傾斜していることが分かる。また、紫外線吸収剤を含有させた延伸フィルム14、17及び18は、いずれも紫外線透過率が低い特性を備えており、紫外線遮断効果を備えていることが分かる。
 《円偏光板の作製》
 〔円偏光板101の作製〕
 厚さ120μmのポリビニルアルコールフィルムを、1軸延伸(温度110℃、延伸倍率5倍)した。
 このフィルムを、ヨウ素0.075g、ヨウ化カリウム5g、水100gからなる水溶液に60秒間浸漬した。次いで、ヨウ化カリウム6g、ホウ酸7.5g、水100gからなる68℃の水溶液に浸漬した。これを水洗、乾燥して、偏光子を作製した。
 次いで、下記工程1~5に従って、偏光子と、偏光子の一方の面側にはλ/4板として上記作製した延伸フィルム1と、偏光子の他方の面側(裏面側、視認側)には、視認側保護フィルムとして延伸フィルム17を、それぞれ長手方向を合わせるようにロールtoロール(表3には、RtoRと記載。)で貼り合わせて、円偏光板101を作製した。
 工程1:延伸フィルム1と延伸フィルム17とを、60℃の2モル/Lの水酸化ナトリウム溶液に90秒間浸漬し、次いで、水洗及び乾燥して、それぞれの延伸フィルムの偏光子と貼合する面側を鹸化した。
 工程2:上記作製した偏光子を、固形分が2質量%のポリビニルアルコール接着剤溶液中に1~2秒浸漬した。
 工程3:工程2で偏光子に付着した過剰の接着剤を軽く拭き取り、これを工程1で処理した延伸フィルム1上に、配置した。
 工程4:工程3で積層した延伸フィルム1と偏光子と、延伸フィルム17とを圧力が20~30N/cm、搬送スピードが約2m/分の条件で貼合した。
 工程5:80℃の乾燥機中に、工程4で作製した偏光子と延伸フィルム1と延伸フィルム17とを貼り合わせた試料を、2分間乾燥して円偏光板101を作製した。
 〔円偏光板102~114の作製〕
 上記円偏光板101の作製において、λ/4板として用いた延伸フィルム1を、それぞれ延伸フィルム2~14に変更した以外は同様にして、円偏光板102~114を作製した。
 〔円偏光板115の作製〕
 上記円偏光板101の作製において、λ/4板として用いた延伸フィルム1を延伸フィルム15に変更し、更に、工程3以降の操作を、下記の方法に変更し、枚葉貼合により、円偏光板115を作製した。
 予め、λ/4板である延伸フィルム15、視認側保護フィルムである延伸フィルム17及び偏光子を、1296mm×784mmの長方形に切り出してから、円偏光板101作製に用いた工程3~5と同様の工程により、各フィルムを貼合して、円偏光板115を作製した。この作製方法を、「枚葉貼合」と称し、表3に記載。なお、各フィルムを断裁する際、延伸フィルム15は、長軸方向(長さ1296mmの方向)が搬送方向と45°になる角度で断際し、偏光子と延伸フィルム17は長軸方向が搬送方向と90°になる角度で断裁した。
 〔円偏光板116の作製〕
 上記円偏光板115の作製において、λ/4板として用いた延伸フィルム15を延伸フィルム16に変更した以外は同様にして、枚葉貼合により、円偏光板116を作製した。
 〔円偏光板117及び118の作製〕
 上記円偏光板105の作製において、視認側保護フィルムを、延伸フィルム17に代えて、それぞれ延伸フィルム18、14を用いた以外は同様にして、円偏光板117及び118を作製した。
 〔円偏光板119の作製〕
 上記円偏光板114の作製において、視認側保護フィルムを、延伸フィルム17に代えて、延伸フィルム14を用いた以外は同様にして、円偏光板119を作製した。
 《有機EL画像表示装置の作製》
 〔有機EL画像表示装置101の作製〕
 (有機EL素子1の作製)
 ガラス基板の一方の面上に、ITOセラミックターゲット(In:SnO=90質量%:10質量%)を用い、DCスバッタリング法により、厚さ120nmのITO透明膜からなる陽極を形成した。その後、超音波洗浄を行った後、紫外線オゾン方式で洗浄した。
 次に、ITO透明膜を有するガラス基板を抵抗加熱式真空蒸着装置内に固定し、真空蒸着装置内のモリブデン製ボートにN,N′-ジフェニル-N,N′-ビス-(3-メチルフェニル)-[1,1′-ビフェニル]-4,4′-ジアミン(以下、TPDと略記する。)を装着し、別のモリブデン製ボートに、トリス(8-キノリノール)アルミニウム(以下、Alqと略記する)を装着した。真空チャンバー内を1×10-4Paの減圧状態として、モリブデン製ボートに通電してTPDを220℃に加熱し、ITO透明膜上に、厚さ60nmのTPD膜からなる正孔輸送層を形成した後、Alqを装着したモリブデン製ボートに通電してAlqを275℃に加熱し、正孔輸送層上に厚さ60nmのAlq膜(発光層)を形成した。
 次いで、発光層上にモリブデン製ボートに装着したマグネシウムと、別のモリブデン製ボートに装着した銀をそれぞれ加熱し、真空チャンバー内を2×10-4Paの減圧状態として2元同時蒸着方式により、Mg・Ag合金(Mg/Ag=9/1)からなる厚さ100nmの陰極を形成して、緑色(主波長513nm)に発光する有機EL素子1を作製した。
 作製した有機EL素子1の発光面積は1296mm×784mmとした。また、この有機EL素子1に6Vの直流電圧を印加した際の正面輝度は、1200cd/mであった。正面輝度の測定は、コニカミノルタオプティクス社製分光放射輝度計CS-1000を用いて、2°視野角正面輝度を、発光面からの法線に分光放射輝度計の光軸が一致するようにして、可視光波長430~480nmの範囲を測定し、積分強度をとった。
 (有機EL画像表示装置の組み立て)
 上記作製した有機EL素子1のガラス基板とは反対側の面に、図1の記載の構成となるように、円偏光板101を、アクリル系粘着剤を介して貼付け、有機EL画像表示装置101を作製した。
 この有機EL画像表示装置101は、λ/4板の最大弾性率方向がパネルの長尺方向に対して、45°±1°の角度を持って配置されている。
 〔有機EL画像表示装置102~119の作製〕
 上記有機EL画像表示装置101の作製において、円偏光板101を、それぞれ円偏光板102~119に変更した以外は同様にして、有機EL画像表示装置102~119を作製した。
 《有機EL画像表示装置の評価》
 上記作製した各有機EL画像表示装置について、下記の各評価を行った。
 〔外光反射防止効果の評価:視認性の評価〕
 上記作製した各有機EL画像表示装置を、23℃、55%RHの環境下で48時間保存して安定化させた後、電圧を印加せず、発光させない状態で、外部照明(蛍光灯)の照度が約1000lxの観察環境下で、正面の方向から反射色の黒味レベルを目視評価し、下記の基準に従って、外光反射防止効果を評価した。
 ◎:全く外光反射は、認められない
 ○:僅かに外光反射は認められるが、ほぼ気にならないレベルである
 △:外光反射がやや認められ、気になるレベルである
 ×:明らかな外光反射が認められ、極めて気になるレベルである
 〔たわみ耐性の評価:耐久性の評価〕
 上記作製した各有機EL画像表示装置を、40℃の環境下で1000時間保管した後、有機EL画像表示装置(パネル)のたわみの度合いを評価した。
 具体的は、図5に示す方法で測定した。図5において、Aは上記高温保存した後の有機EL画像表示装置(パネル)を上部から観察した状態を示してある。Xは、高温保存を行う前の有機EL画像表示装置(パネル)の前面部の位置を示しており、全長は1296mmである。Yは高温保存処理により生じた端部のたわみ量を表す。本発明においては、このたわみ量Yを、たわみ耐性の尺度とした。
 〔耐光試験後の輝度劣化耐性の評価:耐光性の評価〕
 上記作製した各有機EL画像表示装置の視認面側より、耐光フェードメーター(キセノンアーク灯500W)を用いて、紫外線を4日間連続して照射した後、表面部にある円偏光板Cを剥がし、有機EL素子1を取り出し、この有機EL素子1に6Vの直流電圧を印加した際の正面輝度Bを測定した。正面輝度の測定は、コニカミノルタオプティクス社製分光放射輝度計CS-1000を用いて、2°視野角正面輝度を、発光面からの法線に分光放射輝度計の光軸が一致するようにして、可視光波長430~480nmの範囲を測定し、積分強度をとった。
 次いで、耐光試験を行っていないブランクの有機EL素子1の6Vを印加したときの正面輝度A(前出:1200cd/m)に対する上記測定した耐光試験後の正面輝度Bの正面輝度の劣化率を下式により求め、この正面輝度の劣化率を、耐光性の尺度とした。
   正面輝度の劣化率(%)=〔(正面輝度B-正面輝度A)/正面輝度A〕×100
 以上により得られた各評価結果を、表3に示す。
Figure JPOXMLDOC01-appb-T000016
 表3に記載の結果より明らかなように、本発明の有機EL画像表示装置は、比較例に対しパネルのたわみが小さく、視認性、耐久性にも優れていることが分かる。
 また、本発明に係るλ/4板又は視認側保護フィルムに紫外線吸収剤を含有させた円偏光板114及び119を用いた有機EL画像表示装置は、特に耐光性に優れていることが分かる。
 また、本発明に係る斜め延伸で作製したλ/4板は、ロールtoロールでの偏光板作製が可能であり、生産性に優れていることが分かる。
 実施例2
 《立体画像に対応した有機EL画像表示装置の作製》
 下記の方法に従って、図6に記載の構成からなる有機EL表示装置を製造した。
 〔有機EL素子の作製〕
 有機EL素子Bは、ガラス基板1上にクロムからなる反射電極、反射電極上に陽極としてITOを成膜し、陽極上に、ポリ(3,4-エチレンジオキシチオフェン)-ポリスチレンスルホネート(PEDOT/PSSと略記、Bayer製、Baytron P Al 4083)を用いて正孔輸送層を形成し、正孔輸送層上にシャドーマスクを用いて、RGBそれぞれの発光層を形成した。赤色発光層Rとしては、ホストとしてAlqと、発光性化合物としてDCM[4-(dicyanomethylene)-2-methyl-6(p-dimethylaminostyryl)-4H-pyran]とを共蒸着(質量比99:1)して形成した。緑色発光層Gとしては、ホストとしてAlqと、発光性化合物としてクマリン6とを共蒸着(質量比99:1)して形成した。青色発光層Bとしては、ホストとしてBAlqと、発光性化合物としてPeryleneを共蒸着(質量比90:10)して形成した。
Figure JPOXMLDOC01-appb-C000017
 さらに、発光層上に電子が効率的に注入できるような仕事関数の低い第1の陰極としてカルシウムを真空蒸着法により4nmの厚さで成膜し、第1の陰極上に第2の陰極としてアルミニウムを2nmの厚さで成膜した。ここで、第2の陰極として用いたアルミニウムはその上に形成される透明電極をスパッタリング法により成膜する際に、第1の陰極であるカルシウムが化学的変質をすることを防ぐ役割がある。以上のようにして、有機機能総層等を形成した。
 次に、陰極上にスパッタリング法によって透明導電膜を成膜した。ここで透明導電膜としてはITOを用いた。さらに、透明導電膜上にCVD法によって窒化珪素を200nm成膜することで、絶縁層6を形成した。
 上記のように製作した有機EL素子Bと、偏光子の両側に本発明に係るλ/4板を搭載した円偏光板102~108、110~115、117~119とを対向して接着層を用いて固定化することで、立体画像に対応した有機EL画像表示装置を製造した。
 製造した本発明の有機EL画像表示装置を、SONY社製の3DメガネTDG-BR100をかけて正面からの外光反射防止効果とクロストークを視認評価した。いずれも外光反射は気にならないレベルであり、クロストークも見られず優れた視認性を有する立体画像表示装置であることを確認することができた。
 本発明の有機エレクトロルミネッセンス画像表示装置は、大型画面であっても装置内の温度上昇によるパネルのたわみがなく、視認性、耐久性及び耐光性に優れ、平面型照明、光ファイバー用光源、液晶ディスプレイ用バックライト、液晶プロジェクタ用バックライト、ディスプレイ装置等の各種光源に好適に利用できる。
 A 有機エレクトロルミネッセンス画像表示装置
 B 有機エレクトロルミネッセンス素子
 C 円偏光板
 1 透明基板
 2 金属電極
 3 TFT
 4 有機発光層
 5 透明電極
 6 絶縁層
 7 封止層
 8 フィルム
 9 λ/4板
 10 偏光子
 11 偏光板保護層(保護フィルム)
 12 反射防止層
 13 接着層
 DR1 繰出し方向
 DR2 巻取り方向
 θi 繰出し角度(繰出し方向と巻取り方向のなす角度)
 CR,CL 把持具
 Wo 延伸前のフィルムの幅
 W 延伸後のフィルムの幅
 21 未延伸フィルム
 22-1 右側のフィルム保持開始点
 22-2 左側のフィルム保持開始点
 23-1 右側のフィルム保持手段の軌跡
 23-2 左側のフィルム保持手段の軌跡
 24 テンター
 25-1 右側のフィルム保持終了点
 25-2 左側のフィルム保持終了点
 26 斜め延伸フィルム
 27-1 フィルムの送り方向
 28-1 テンター入り口側のガイドローラ
 28-2 テンター出口側のガイドローラ
 29 フィルムの延伸方向

Claims (6)

  1.  少なくともλ/4板を有する円偏光板と有機エレクトロルミネッセンス素子とを備える有機エレクトロルミネッセンス画像表示装置であって、
     該λ/4板が、アセチル基置換度が2.00~2.70の範囲内であるセルロースアセテートを含有し、下式(1)で表される面内リターデーション値Ro(550)が100~180nmの範囲内であり、かつ23℃、55RH%環境下で測定した面内の最大弾性率が、4.0GPa以上であることを特徴とする有機エレクトロルミネッセンス画像表示装置。
     式(1)
       Ro(550)=(nx-ny)×d(単位:nm)
    〔式中、nxは、フィルム面内の遅相軸x方向における屈折率を表す。nyは、フィルム面内のx方向に直交するy方向における屈折率を表す。dは、フィルムの膜厚(nm)を表す。各々の屈折率は、23℃、55%RHの環境下で、測定波長550nmで測定する。〕
  2.  前記λ/4板が、アセチル基置換度が2.00~2.55の範囲内であるセルロースアセテートと、平均置換度が3.0~6.0の範囲内である下記一般式(1)で表される化合物とを含有することを特徴とする請求項1に記載の有機エレクトロルミネッセンス画像表示装置。
    Figure JPOXMLDOC01-appb-C000001
    〔式中、R~Rは、各々、水素原子、置換若しくは無置換のアルキルカルボニル基、又は置換若しくは無置換のアリールカルボニル基を表し、R~Rは、各々同じであっても異なっていてもよい。〕
  3.  前記λ/4板の面内での最大弾性率となる方向が、画像表示装置の画面の長手方向に対して、35~55°の範囲の傾きを有することを特徴とする請求項1又は請求項2に記載の有機エレクトロルミネッセンス画像表示装置。
  4.  前記円偏光板の偏光子を挟んで、前記λ/4板とは反対側の面に位置する保護フィルムが、23℃、55RH%環境下で測定した面内の最大弾性率が、4.0GPa以上であることを特徴とする請求項1から請求項3までのいずれか一項に記載の有機エレクトロルミネッセンス画像表示装置。
  5.  前記保護フィルムの面内での最大弾性率となる方向が、画像表示装置の画面の長手方向に対して35~55°の範囲の傾きを有し、かつ該保護フィルムの面内での最大弾性率となる方向と、前記λ/4板の面内の最大弾性率の方向とが平行であることを特徴とする請求項4に記載の有機エレクトロルミネッセンス画像表示装置。
  6.  前記保護フィルムが、前記λ/4板と同一であることを特徴とする請求項4又は請求項5に記載の有機エレクトロルミネッセンス画像表示装置。
PCT/JP2012/066568 2011-08-31 2012-06-28 有機エレクトロルミネッセンス画像表示装置 WO2013031364A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013531144A JP5975034B2 (ja) 2011-08-31 2012-06-28 有機エレクトロルミネッセンス画像表示装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011188454 2011-08-31
JP2011-188454 2011-08-31

Publications (1)

Publication Number Publication Date
WO2013031364A1 true WO2013031364A1 (ja) 2013-03-07

Family

ID=47755874

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/066568 WO2013031364A1 (ja) 2011-08-31 2012-06-28 有機エレクトロルミネッセンス画像表示装置

Country Status (2)

Country Link
JP (2) JP5975034B2 (ja)
WO (1) WO2013031364A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014141734A1 (ja) * 2013-03-12 2014-09-18 コニカミノルタ株式会社 有機エレクトロルミネッセンス表示装置及びその製造方法
JP2014240906A (ja) * 2013-06-12 2014-12-25 コニカミノルタ株式会社 偏光板とその製造方法、及びそれを具備した有機エレクトロルミネッセンス表示装置
WO2015040959A1 (ja) * 2013-09-19 2015-03-26 コニカミノルタ株式会社 長尺光学フィルム、該長尺光学フィルムを備える円偏光板ならびに有機エレクトロルミネッセンス表示装置
JP2017097217A (ja) * 2015-11-26 2017-06-01 大日本印刷株式会社 光学フィルム及び画像表示装置
JP2017207596A (ja) * 2016-05-17 2017-11-24 日東電工株式会社 光学積層体
US10809433B2 (en) 2015-07-13 2020-10-20 Nitto Denko Corporation Circularly polarizing plate for organic EL display device, and organic EL display device
JP2021036346A (ja) * 2020-12-03 2021-03-04 大日本印刷株式会社 光学フィルム及び画像表示装置
CN112750368A (zh) * 2019-10-31 2021-05-04 株式会社日本有机雷特显示器 显示装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017058444A (ja) * 2015-09-15 2017-03-23 住友化学株式会社 偏光板及び液晶パネル
JP2017058445A (ja) * 2015-09-15 2017-03-23 住友化学株式会社 偏光板及び液晶パネル
JP6702530B2 (ja) * 2016-03-09 2020-06-03 大日本印刷株式会社 有機el表示装置
US10147772B2 (en) * 2016-08-23 2018-12-04 3M Innovative Properties Company Foldable OLED device with compatible flexural stiffness of layers

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002022959A (ja) * 2000-07-12 2002-01-23 Fuji Photo Film Co Ltd 位相差板および円偏光板
JP2007009193A (ja) * 2005-06-02 2007-01-18 Fujifilm Holdings Corp セルロースアシレートフィルム、セルロースアシレートフィルムの製造方法、光学補償シート、偏光板および液晶表示装置
WO2008136266A1 (ja) * 2007-04-26 2008-11-13 Konica Minolta Opto, Inc. 光学補償フィルムとそれを用いた偏光板及び液晶表示装置
JP2010212184A (ja) * 2009-03-12 2010-09-24 Konica Minolta Opto Inc 有機el素子、及びそれを用いた有機elディスプレイ、有機el照明装置
JP2012181318A (ja) * 2011-03-01 2012-09-20 Konica Minolta Advanced Layers Inc λ/4板、λ/4板の製造方法、円偏光板、液晶表示装置、及び立体映像表示装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013111672A1 (ja) * 2012-01-26 2013-08-01 コニカミノルタアドバンストレイヤー株式会社 タッチパネル付き液晶表示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002022959A (ja) * 2000-07-12 2002-01-23 Fuji Photo Film Co Ltd 位相差板および円偏光板
JP2007009193A (ja) * 2005-06-02 2007-01-18 Fujifilm Holdings Corp セルロースアシレートフィルム、セルロースアシレートフィルムの製造方法、光学補償シート、偏光板および液晶表示装置
WO2008136266A1 (ja) * 2007-04-26 2008-11-13 Konica Minolta Opto, Inc. 光学補償フィルムとそれを用いた偏光板及び液晶表示装置
JP2010212184A (ja) * 2009-03-12 2010-09-24 Konica Minolta Opto Inc 有機el素子、及びそれを用いた有機elディスプレイ、有機el照明装置
JP2012181318A (ja) * 2011-03-01 2012-09-20 Konica Minolta Advanced Layers Inc λ/4板、λ/4板の製造方法、円偏光板、液晶表示装置、及び立体映像表示装置

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014141734A1 (ja) * 2013-03-12 2014-09-18 コニカミノルタ株式会社 有機エレクトロルミネッセンス表示装置及びその製造方法
JP2014240906A (ja) * 2013-06-12 2014-12-25 コニカミノルタ株式会社 偏光板とその製造方法、及びそれを具備した有機エレクトロルミネッセンス表示装置
WO2015040959A1 (ja) * 2013-09-19 2015-03-26 コニカミノルタ株式会社 長尺光学フィルム、該長尺光学フィルムを備える円偏光板ならびに有機エレクトロルミネッセンス表示装置
CN105593714A (zh) * 2013-09-19 2016-05-18 柯尼卡美能达株式会社 长尺寸光学膜、具备该长尺寸光学膜的圆偏振片以及有机电致发光显示装置
JPWO2015040959A1 (ja) * 2013-09-19 2017-03-02 コニカミノルタ株式会社 長尺光学フィルム、該長尺光学フィルムを備える円偏光板ならびに有機エレクトロルミネッセンス表示装置
US10809433B2 (en) 2015-07-13 2020-10-20 Nitto Denko Corporation Circularly polarizing plate for organic EL display device, and organic EL display device
TWI738657B (zh) * 2015-07-13 2021-09-11 日商日東電工股份有限公司 有機el顯示裝置用圓偏光板及有機el顯示裝置
JP2017097217A (ja) * 2015-11-26 2017-06-01 大日本印刷株式会社 光学フィルム及び画像表示装置
JP2017207596A (ja) * 2016-05-17 2017-11-24 日東電工株式会社 光学積層体
CN112750368A (zh) * 2019-10-31 2021-05-04 株式会社日本有机雷特显示器 显示装置
JP2021036346A (ja) * 2020-12-03 2021-03-04 大日本印刷株式会社 光学フィルム及び画像表示装置

Also Published As

Publication number Publication date
JP5975034B2 (ja) 2016-08-23
JPWO2013031364A1 (ja) 2015-03-23
JP2015163998A (ja) 2015-09-10
JP5979283B2 (ja) 2016-08-24

Similar Documents

Publication Publication Date Title
JP5979283B2 (ja) 有機エレクトロルミネッセンス画像表示装置
KR101677866B1 (ko) 위상차 필름, 원편광판 및 화상 표시 장치
WO2014061215A1 (ja) 位相差フィルム、該位相差フィルムを用いて作製した円偏光板および有機elディスプレイ
JP6102738B2 (ja) 有機エレクトロルミネッセンス表示装置、円偏光板の製造方法及び長尺状のλ/4板
JP2013097279A (ja) 円偏光板、円偏光板の製造方法及び円偏光板が用いられた有機エレクトロルミネッセンス表示装置
TWI507418B (zh) A retardation film, an elongated circularly polarizing plate and an organic EL display fabricated using the retardation film
KR101662920B1 (ko) λ/4 위상차 필름과 그의 제조 방법, 원 편광판 및 유기 일렉트로루미네센스 표시 장치
JP6056758B2 (ja) 有機el表示装置
JP6136929B2 (ja) 有機エレクトロルミネッセンス画像表示装置
JP5601433B2 (ja) λ/4位相差フィルム及び有機エレクトロルミネッセンス画像表示装置
JP6539242B2 (ja) 有機エレクトロルミネッセンス表示装置用円偏光板、それを有する有機エレクトロルミネッセンス表示装置及び有機エレクトロルミネッセンス表示装置用円偏光板の製造方法
JP2013089329A (ja) 有機エレクトロルミネッセンス表示装置用円偏光板、及びそれを有する有機エレクトロルミネッセンス表示装置
KR101636189B1 (ko) λ/4 위상차 필름, 원편광판 및 유기 일렉트로루미네센스 표시 장치
JP5724847B2 (ja) 有機エレクトロルミネッセンス立体画像表示システム
JP5970781B2 (ja) 有機エレクトロルミネッセンス表示装置
WO2014087593A1 (ja) 位相差フィルム、円偏光板、及び画像表示装置
JP2016018021A (ja) 円偏光板、有機エレクトロルミネッセンス表示装置及び円偏光板の製造方法
WO2013054894A1 (ja) 有機エレクトロルミネッセンス表示装置及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12826970

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013531144

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12826970

Country of ref document: EP

Kind code of ref document: A1