WO2013031234A1 - 冷蔵庫及び冷蔵庫用の真空断熱材 - Google Patents

冷蔵庫及び冷蔵庫用の真空断熱材 Download PDF

Info

Publication number
WO2013031234A1
WO2013031234A1 PCT/JP2012/005525 JP2012005525W WO2013031234A1 WO 2013031234 A1 WO2013031234 A1 WO 2013031234A1 JP 2012005525 W JP2012005525 W JP 2012005525W WO 2013031234 A1 WO2013031234 A1 WO 2013031234A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat insulating
insulating material
vacuum heat
refrigerator
vacuum
Prior art date
Application number
PCT/JP2012/005525
Other languages
English (en)
French (fr)
Inventor
堀尾 好正
永幡 真也
小林 俊夫
山口 太郎
修平 杉本
中西 和也
栗田 潤一
浜野 泰樹
真弥 小島
法幸 宮地
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2013511194A priority Critical patent/JP5661175B2/ja
Priority to CN201280007737.5A priority patent/CN103370587B/zh
Priority to US13/983,507 priority patent/US9791202B2/en
Publication of WO2013031234A1 publication Critical patent/WO2013031234A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/06Walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2201/00Insulation
    • F25D2201/10Insulation with respect to heat
    • F25D2201/14Insulation with respect to heat using subatmospheric pressure

Definitions

  • the present invention relates to a refrigerator to which a vacuum heat insulating material is applied.
  • FIG. 25 is a front sectional view of the refrigerator described in Patent Document 1.
  • the refrigerator includes a refrigerator main body 1 formed in a box shape and a door (not shown) that opens and closes a front opening of the refrigerator main body 1.
  • the refrigerator main body 1 includes a plurality of vacuum heat insulating materials (vacuum heat insulating panels) 39 in a space formed between a synthetic resin inner box 25 and a steel plate outer box 24 covering the inner box 25. 40 and a heat insulating wall formed by filling a hard urethane foam (urethane foam resin) 26.
  • the both side walls of this heat insulating wall are about 30 mm thick at the thin part (the side wall parts of the high temperature storage chambers 2 and 6), and about 50 mm thick at the thick part (the side wall parts of the low temperature storage room 14). have.
  • the plurality of vacuum heat insulating materials 39 and 40 are composed of a vacuum heat insulating material 39 installed in close contact with the outer box surface and a vacuum heat insulating material 40 in close contact with the inner box surface. It has a thickness of about 10 mm.
  • the vacuum heat insulating material 39 is configured and installed in a flat plate shape on the outer box side, and extends to the vicinity of the outer box corner portions 41 on the left and right sides of the bottom surface 40.
  • the vacuum heat insulating material 40 is provided so as to cover the inner box corner portion facing the outer box corner portion 41 installed on the bottom surface of the inner box 25, and further overlaps with the vacuum heat insulating material 39 when viewed from the thickness direction of the side wall. It is installed to extend along the inner box surface.
  • the internal capacity has increased by about 100L with the same external dimensions compared to about 10 years ago. This is because the wall thickness has been reduced while eliminating the ineffective space of the refrigerator and improving the heat insulation performance of the box.
  • a sufficient wall thickness is required. For example, when the thickness of the vacuum heat insulating material is about 10 mm, the wall thickness of the overlapping portion is required to be 40 mm or more in consideration of the filling thickness of the hard urethane foam (50 mm in the above conventional example). For this reason, it has been difficult to further increase the capacity.
  • the present invention provides a high refrigerator that improves the box strength of the refrigerator, prevents external deformation due to air intrusion of the vacuum heat insulating material caused by aging, and has high heat insulating performance.
  • the refrigerator of the present invention includes a heat insulating box body filled with a foam heat insulating material between an inner box and an outer box, It is disposed in the heat insulation box together with the foam heat insulating material, and includes a vacuum heat insulating material that includes at least a core material in a covering material and is sealed under reduced pressure.
  • the vacuum heat insulating material contains a gas adsorbing material, and the vacuum heat insulating material is provided on at least a side wall of the heat insulating box.
  • the present invention is provided with a vacuum heat insulating material having a gas adsorbent on the side wall that is most likely to be loaded among heat insulating walls due to the influence of a door or the like, thereby improving the rigidity of the entire heat insulating box and vacuuming. It is possible to suppress aged deterioration of the heat insulating material and maintain the rigidity of the heat insulating box for a long period of time.
  • the present invention it is possible to improve the box strength of the refrigerator, prevent external deformation due to air intrusion of the vacuum heat insulating material caused by aging deterioration, and provide a high refrigerator having high heat insulation performance.
  • the perspective view of the refrigerator in Embodiment 1 of this invention Front sectional view of the refrigerator according to Embodiment 1 of the present invention.
  • the longitudinal cross-sectional view of the side wall of the refrigerator in Embodiment 1 of this invention Sectional drawing of the 1st vacuum heat insulating material which applied the gas adsorbent in Embodiment 1 of this invention
  • Sectional drawing of the 2nd vacuum heat insulating material which applied the gas adsorbent in Embodiment 1 of this invention The top view of the vacuum heat insulating material in Embodiment 1 of this invention
  • Aged deterioration image diagram of the vacuum heat insulating material to which the gas adsorbent in Embodiment 1 of the present invention is applied Arrangement diagram of gas adsorbent of vacuum heat insulating material in Embodiment 1 of the present invention
  • a heat insulating box filled with a foam heat insulating material between an inner box and an outer box, and at least a side wall of the heat insulating box together with the foam heat insulating material, and at least a core on the outer cover material.
  • a vacuum heat insulating material enclosed in a vacuum and sealed under reduced pressure wherein the vacuum heat insulating material includes a gas adsorbing material.
  • the vacuum heat insulating material has a plate shape, and the vacuum heat insulating material containing the gas adsorbing material is disposed on the side walls on the left and right sides of the heat insulating box.
  • the vacuum heat insulating material containing the gas adsorbing material is disposed on the back wall of the heat insulating box.
  • the vacuum heat insulating material disposed on the side wall has a coreless portion of only the jacket material in which the core material is not included at the lower end portion, and the coreless portion is A folded multilayer part is formed, and the gas adsorbent is located at a location away from the multilayer part.
  • the multilayer portion formed only by the portion of the jacket material having good thermal conductivity tends to increase in temperature, but the gas adsorbent is separated from the multilayer portion. It is possible to suppress the temperature change more by disposing it, and to suppress aged deterioration by obtaining a stable gas adsorption amount.
  • the heat insulating box is provided with a heat generating portion, and the gas adsorbent contained in the vacuum heat insulating material is positioned so as not to be adjacent to the heat generating portion of the heat insulating box. is there.
  • the gas adsorbent provided in the vacuum heat insulating material can be prevented from becoming high temperature, the gas adsorbent can be prevented from being highly activated in a short period of time, and can function for a long period of time. it can.
  • the effect of the gas adsorbing material coming into contact with the air can be reduced, and even when the heat insulating box is used for a long time, the gas adsorbing material mounted on the vacuum heat insulating material Can continuously adsorb air entering from the outside, so that the vacuum degree of the vacuum heat insulating material can be maintained, and deterioration of the thermal conductivity of the vacuum heat insulating material can be suppressed.
  • the heat insulating box is provided with a heat generating portion, and the gas adsorbent contained in the vacuum heat insulating material does not overlap the heat generating portion of the heat insulating box in the thickness direction of the vacuum heat insulating material. It is located as follows.
  • the gas adsorbent provided in the vacuum heat insulating material can be prevented from becoming high temperature, the gas adsorbent can be prevented from being highly activated in a short period of time, and can function for a long period of time. it can.
  • the effect of the gas adsorbing material coming into contact with the air can be reduced, and even when the heat insulating box is used for a long time, the gas adsorbing material mounted on the vacuum heat insulating material Can continuously adsorb air entering from the outside, so that the vacuum degree of the vacuum heat insulating material can be maintained, and deterioration of the thermal conductivity of the vacuum heat insulating material can be suppressed.
  • the heat insulating box is provided with a refrigeration cycle having a compressor, a heat radiating pipe provided in a condenser, a capillary tube, and a cooler, and the heat generating portion is the heat radiating pipe. Is.
  • the surface of the vacuum heat insulating material on the main body box side does not have a convex shape, and the appearance deformation can be prevented.
  • the heat radiating pipe is disposed on a surface of the vacuum heat insulating material, and the gas adsorbing material is disposed between at least two of the heat radiating pipes.
  • the gas adsorbent is disposed on a surface of the vacuum heat insulating material opposite to the surface on which the heat radiating pipe is disposed.
  • the heat insulating box includes a door having a door inner plate and a door outer plate, and a foam heat insulating material is filled between the door inner plate and the door outer plate, and an outer covering material.
  • a vacuum heat insulating material containing at least a core material and sealed under reduced pressure is disposed, and the vacuum heat insulating material includes a gas adsorbing material.
  • the vacuum heat insulating material including the gas adsorbing material can also suppress the deterioration over time of the vacuum heat insulating material, the rigidity of the door can be improved over a long period of time, so that the strength of the door can be improved.
  • the wall thickness can be reduced while maintaining the strength by using a vacuum heat insulating material containing a gas adsorbent, and the internal capacity is increased. It becomes possible to do. Further, by reducing the wall thickness, the amount of rigid urethane foam used can be reduced and the product weight can be reduced.
  • the heat insulating box includes a plurality of the doors, and a vacuum heat insulating material including the gas adsorbent is disposed on a door having the largest area among the plurality of doors. .
  • a door with a large area may be deformed such as warping inside and outside the door when used for a long time, but according to the present invention, the vacuum heat insulating material containing the gas adsorbent also deteriorates over time. Since it can be controlled, the rigidity of the door can be improved over a long period of time, so that the strength of the door can be improved, and the cooling efficiency is not reduced due to cold leakage due to deformation of the door. Can be provided.
  • the door outer plate of the door has a notch, and the vacuum adsorbing the gas adsorbent so as to overlap at least a part of the notch when the door is viewed from the thickness direction.
  • a heat insulating material is provided.
  • the door outer plate with a notch
  • the door strength is reduced, according to the present invention, as seen from the thickness direction, the door overlaps at least a part of the notch,
  • the vacuum heat insulating material containing the gas adsorbent By providing the vacuum heat insulating material containing the gas adsorbent, the strength of the door can be improved, and a highly reliable refrigerator can be provided.
  • the heat insulating box is provided with a plurality of vacuum heat insulating materials having different degrees of vacuum.
  • the degree of vacuum of the vacuum heat insulating material is determined by the amount of gas contained inside the outer cover material of the vacuum heat insulating material or the adsorption performance of the gas adsorbing material.
  • the vacuum degree, rigidity, and thermal conductivity of the vacuum heat insulating material are correlated, and the vacuum heat insulating material having a high degree of vacuum has high rigidity and low thermal conductivity.
  • the opposite is true for vacuum insulation materials with low vacuum. Therefore, the intensity
  • the vacuum heat insulating material having the highest degree of vacuum among the plurality of vacuum heat insulating materials having different degrees of vacuum is a gas adsorption contained in a bag comprising at least a core material including a fiber material and a packaging material.
  • This is a vacuum heat insulating material in which a material is covered with a jacket material having gas barrier properties.
  • the upper surface and the back surface of the heat insulation box are respectively defined by a first top surface portion and a first back surface portion, and a recess is formed in a back side portion of the upper portion of the heat insulation box.
  • a recess is formed in a back side portion of the upper portion of the heat insulation box.
  • a second back surface portion connecting between the top surface portion and the second top surface portion; a compressor is disposed on the second top surface portion of the recess; and the second back surface
  • a vacuum heat insulating material containing the gas adsorbent is disposed on the portion, the second top surface portion, or both.
  • high heat insulation can be achieved by using a vacuum heat insulating material that uses a gas adsorbent around the machine room, including high-temperature compressors. Therefore, the heat insulation to the inner side of the warehouse due to the exhaust heat of the compressor can be suppressed, and the energy saving can be improved while suppressing the rise in the inside temperature.
  • the rigidity of the second top surface that supports the compressor and the machine room fan can be increased to suppress the propagation of noise and vibration.
  • the vacuum heat insulating material containing the gas adsorbing material is disposed on the thinner one of the heat insulating walls constituting the second back surface portion and the second top surface portion.
  • the thickness of the vacuum heat insulating material itself can be reduced, so that the urethane fluidity is not hindered.
  • the center of gravity also lowers, so it is also effective in preventing falls There is.
  • the vacuum heat insulating material including the gas adsorbing material when viewed from the thickness direction of each heat insulating wall among the heat insulating walls constituting the second back surface portion and the second top surface portion. It is arranged on the side where the projected area on the inside is larger.
  • the covering area of the vacuum heat insulating material provided with the gas adsorbent can be increased, it is possible to improve energy saving while suppressing heat transfer to the interior and suppressing an increase in the interior temperature. Further, the strength can be improved, and the effect of attenuating the propagation area of noise and vibration into the cabinet can be enhanced.
  • the vacuum heat insulating material including the gas adsorbing material is disposed closer to the compressor among the heat insulating walls constituting the second back surface portion and the second top surface portion. It is what is done.
  • the temperature of the gas adsorbent itself increases due to the influence of the exhaust heat temperature of the compressor, the activity of the gas adsorbent is improved and the adsorption effect is enhanced.
  • a vacuum heat insulating material with a higher degree of vacuum can be provided, and the thermal conductivity is low and the strength is improved, thereby realizing high energy saving and appearance strength.
  • the nineteenth aspect of the present invention is a vacuum heat insulating material for a refrigerator mounted on the refrigerator according to any one of the first to eighteenth aspects of the invention.
  • FIG. 1 is a perspective view of a refrigerator according to Embodiment 1 of the present invention.
  • FIG. 2 is a front sectional view of the refrigerator according to Embodiment 1 of the present invention.
  • FIG. 3 is a longitudinal sectional view of a side wall of the refrigerator according to the first embodiment of the present invention.
  • the refrigerator main body 101 includes a metal (for example, iron plate) outer box 124 that opens forward, a hard resin (for example, ABS) inner box 125, and an outer box 124. And a hard urethane foam 126 filled with foam between the inner box 125 and the inner box 125.
  • the inside of the main body 101 is divided into a plurality of chambers.
  • the refrigerator compartment 102 provided at the top, the upper freezer compartment 103 provided below the refrigerator compartment 102, and the refrigerator compartment 102.
  • the ice making chamber 104 provided in parallel to the upper freezer 103, the vegetable compartment 106 provided in the lower part of the main body, and the upper freezing chamber 103 and ice making chamber 104 arranged in parallel to the vegetable compartment 106.
  • a lower freezer compartment 105 is provided in parallel to the upper freezer 103, the vegetable compartment 106 provided in the lower part of the main body, and the upper freezing chamber 103 and ice making chamber 104 arranged in parallel to the vegetable compartment 106.
  • a lower freezer compartment 105
  • the refrigerator includes a rotary door 102 a that opens and closes the front opening of the refrigerator compartment 102.
  • the door 102 a is rotatably attached to the main body 101 by an upper hinge holding portion 102 b provided on the top surface portion of the main body 101 and a lower hinge portion 102 c provided on the lower side of the refrigerator compartment 102.
  • At least a part of the upper hinge holding portion 102b is provided so as to be positioned closer to the outer box 124 than the inner box 125 of the side wall 101a when viewed in the vertical direction. In other words, at least a part of the upper hinge holding portion 102b is positioned so as to overlap the side wall 101a formed of a heat insulating material when viewed in the vertical direction.
  • the front opening portions of the upper freezing chamber 103, the ice making chamber 104, the lower freezing chamber 105, and the vegetable chamber 106 are opened and closed freely by corresponding drawer type doors 103a, 104a, 105a, 106a.
  • the refrigerator compartment 102 is normally set to 1 to 5 ° C. so that the temperature at which it does not freeze is the lower limit in order to store food in a refrigerator.
  • the vegetable room 106 is set to 2 ° C. to 7 ° C., which is equal to or slightly higher than the temperature of the refrigerator room 102. If the temperature is lowered, the freshness of leafy vegetables can be maintained for a long time.
  • the upper freezing chamber 103 and the lower freezing chamber 105 are normally set to be ⁇ 22 to ⁇ 18 ° C. in order to store food frozen, but in order to improve the frozen storage state, for example, ⁇ 30 to It may be set to a lower temperature such as -25 ° C.
  • each compartment having such a temperature region is called a refrigerator temperature zone.
  • the inside of the upper freezer compartment 103, the lower freezer compartment 105, and the ice making room 104 is set at a minus temperature, each of the compartments having such a temperature region is called a freezing temperature zone.
  • the upper freezer compartment 103 may be configured as a switching room and may be a room that can be selected from a refrigeration temperature zone to a freezing temperature zone.
  • the top surface portion of the main body 101 of the refrigerator is composed of a first top surface portion 108 and a second top surface portion 109 on the back surface side so as to form a step shape toward the back surface of the refrigerator (see FIG. 3). ).
  • a recess having the bottom surface of the second top surface portion 109 is provided on the back side portion of the top surface portion of the main body 101.
  • This recess serves as a machine room 119 in which the compressor 117 is disposed.
  • a cover is put on this recess.
  • This refrigerator includes a compressor 117, a dryer (not shown) for removing moisture, a condenser (not shown), a heat radiating pipe 143, a capillary tube 118, and a cooler (not shown).
  • a refrigerant coolant is enclosed with this refrigerating cycle, and cooling operation is performed.
  • a flammable refrigerant is often used as the refrigerant for environmental protection.
  • these functional components can be arranged in the machine room.
  • the vacuum heat insulating materials 127, 128, 129, 130, and 131 constitute the main body 101 of the refrigerator together with the hard urethane foam 126. More specifically, among the vacuum heat insulating materials, the vacuum heat insulating materials 127, 128, 129, and 130 are attached in contact with the top surface, the back surface, the left side surface, and the right side surface of the outer box 124, respectively. The vacuum heat insulating material 131 is attached in contact with the bottom surface of the inner box 125.
  • gas adsorbing materials 137 are provided respectively. These gas adsorbents 137 are arranged at positions on the inner side (inner box side) than the center positions in the thickness direction of the vacuum heat insulating materials 129 and 130.
  • the vacuum heat insulating materials 129 and 130 disposed on the side walls 101a on the left and right sides have a plate shape, and their main surfaces have the same area.
  • the vacuum heat insulating materials 129 and 130 provided on the side wall 101a are formed with linear deformation portions extending in the vertical direction.
  • FIG. 3 shows the deformed portion 130a of the vacuum heat insulating material 130 provided on the right side wall surface 101a, but the deformed portion of the left vacuum heat insulating material 129 is the same.
  • These deformed portions are concave portions (or groove portions) that are recessed from the outer surfaces of the vacuum heat insulating materials 129 and 130.
  • a plurality of these deformed portions are formed in each of the vacuum heat insulating materials 129 and 130, and are arranged substantially in parallel in the lateral direction.
  • FIG. 3 shows the deformed portion 130a of the vacuum heat insulating material 130 provided on the right side wall surface 101a, but the deformed portion of the left vacuum heat insulating material 129 is the same.
  • These deformed portions are concave portions (or groove portions) that are recessed from the outer surfaces of the vacuum heat insulating materials 129 and 130.
  • the vacuum heat insulating material 130 has the multilayer part 130b which turned up the coreless part formed only by the jacket material in which the core material is not included.
  • a multi-layered portion 130 b is shown in which a corner portion on the lower back side is folded back. May be.
  • each chamber in the main body 101 is partitioned by a partition.
  • the refrigerator compartment 102 and the ice making chamber 104 and the upper freezer compartment 103 below the compartment are partitioned by a first heat insulating partition 110.
  • the ice making chamber 104 and the upper freezing chamber 103 arranged side by side are partitioned by a second heat insulating partition 111.
  • the ice making chamber 104 and the upper freezing chamber 103 and the lower freezing chamber 105 below them are partitioned by a third heat insulating partition 112.
  • the lower freezer compartment 105 and the vegetable compartment 106 below it are partitioned by a fourth heat insulating partition 113.
  • the 2nd heat insulation partition part 111 and the 3rd heat insulation partition part 112 are components assembled
  • the rigid urethane foam 126 may be used in order to improve the heat insulating performance and rigidity, and further, the partition structure may be further thinned by inserting a highly heat insulating vacuum heat insulating material.
  • the drawer-type doors of the upper freezing chamber 103 and the ice making chamber 104 are provided with a movable part (guide mechanism) including a roller and a guide. Therefore, as long as this movable part is ensured, the shape of the second heat insulating partition part 111 and the third heat insulating partition part 112 can be reduced or eliminated, and a cooling air passage can be secured and the cooling capacity can be improved. Can also be planned. Further, by hollowing out the insides of the second heat insulating partition portion 111 and the third heat insulating partition portion 112, the hollowed portion can be used as an air path, and further, the material can be reduced.
  • a cooling chamber (not shown) formed of aluminum or copper is provided on the back surface of the refrigerator main body 101.
  • a cooler that generates fin-and-tube cold air is disposed.
  • the cooler is arranged vertically in the vertical direction so as to cover the rear region of the second and third partition portions 111 and 112 that are heat insulating partition walls and the rear region of the lower freezing chamber 105. .
  • a cold air blower fan (not shown) for blowing the cool air generated by the cooler to each of the storage chambers 102 to 106 by a forced convection method is arranged.
  • a radiant heater (not shown) made of a glass tube is provided in the lower space of the cooling chamber as a defrosting device that removes frost adhering to the cooler and the cool air blower fan during cooling.
  • the specific configuration of the defroster is not particularly limited to the above, and a pipe heater in close contact with the cooler may be used instead of the radiant heater.
  • the freezer compartment sensor (not shown), which is a temperature sensor, rises due to the intrusion heat from the outside through the wall of the main body 101, the intrusion heat at the time of opening and closing the door, and the like.
  • the compressor 117 is activated and the cooling operation is started.
  • the high-temperature and high-pressure refrigerant discharged from the compressor 117 dissipates heat in the condenser, condenses and liquefies, and finally reaches the dryer disposed in the machine room 119, and in particular, the heat radiating pipe installed in the outer box 124. In 143, it cools and liquefies by heat exchange with the air outside the outer box 124 and the urethane foam 126 in the warehouse.
  • the liquefied refrigerant is depressurized by the capillary tube 118 which is a depressurizer, flows into the cooler, and exchanges heat with the internal air around the cooler.
  • the cool air generated by heat exchange is blown into the cabinet by a nearby cool air blower fan to cool the inside of the cabinet.
  • the refrigerant is heated and gasified to return to the compressor 117.
  • the vacuum heat insulating material 138 includes a core material 132 containing at least a fiber material and a powdered gas adsorbent 137 sealed in a bag made of a packaging material 133 having a gas barrier property. It is configured by covering with an excellent covering material 135, vacuum-sealing the covering material 135, then opening a hole in the packing material 133, and communicating the inside of the packing material with the inside of the covering material.
  • the term “communication” means that a space separated between the inside of the packaging material and the outside of the packaging material is made into a continuous space.
  • the destruction portion 134 provided in the packaging material 133 in advance is covered with the envelope after vacuum sealing.
  • the destruction part 134 is destroyed and a hole is made in the packaging material 133.
  • the internal space of the jacket material 135 communicates with the gas adsorbing material, and the gas remaining in the inner space of the jacket material 135 is further adsorbed by the gas adsorbing material.
  • the degree of vacuum can be further improved.
  • the vacuum heat insulating material of the present embodiment is a two-stage pressure reduction by evacuating and sealing the gas adsorbent container at the time of manufacture, and then destroying the gas adsorbent container by an appropriate method and allowing the container to communicate with each other in the jacket material. I do.
  • This two-stage pressure reduction makes it possible to significantly increase the degree of vacuum, and at the same time, the vacuum heat insulating material containing the gas adsorbent improves the rigidity.
  • the gas adsorbent is provided with an adsorbent made of ZSM-5 type zeolite as a powder having a large surface area. Further, in order to improve the nitrogen adsorption characteristics at room temperature, among ZSM-5 type zeolite, more preferably, at least 60% or more of the copper sites of ZSM-5 type zeolite are monovalent copper sites. Yes, at least 70% or more of the copper monovalent sites are adsorbents that are oxygen tricoordinate copper monovalent sites.
  • the vacuum heat insulating material has a core material inside, and the core material is inserted into an outer cover material in which a vapor deposition layer film and a metal thin layer film are bonded together after drying an inorganic fiber aggregate such as glass wool.
  • the opening is sealed by vacuuming the inside.
  • the fiber aggregate is an aggregate composed only of fibers, and may be molded with a binder, acid, heat, or the like.
  • vapor deposition layer film a composite plastic film in which an aluminum vapor deposition film is sandwiched between a nylon film and a high density polyethylene film can be used.
  • metal foil layer film a composite plastic film in which an aluminum foil is sandwiched between a nylon film and a high density polyethylene film can be used.
  • the sealing surface of the vapor deposition layer film with the metal foil layer film is flat, and the sealing surface of the metal thin layer film with the vapor deposition layer film is three-dimensionally configured.
  • Such a jacket material is disposed so that the vapor deposition layer film is in contact with the outer box 124 or the inner box 125.
  • the packaging material 133 having gas barrier properties a gas adsorbing material is put inside, and a sealing member is disposed in the opening of the packaging material 133.
  • a container made of aluminum, iron, copper, stainless steel or the like is inexpensive and can be easily used.
  • an aluminum container is used as the packaging material 133, and a glass composition is used as the sealing member. This is because the thermal expansion coefficient is large among metals, and the degree of shrinkage is significantly larger than that of the glass composition in the heating process and cooling process when vacuum-sealing the inside of the jacket material 135. This is because a typical stress is expressed and the sealing of the metal container with the glass composition can be further strengthened.
  • the gas adsorbent 137 is capable of adsorbing a non-condensable gas contained in a gas, and an alkali metal or alkaline earth metal oxide, or an alkali metal or alkaline earth metal hydroxide is used.
  • an alkali metal or alkaline earth metal oxide, or an alkali metal or alkaline earth metal hydroxide examples thereof include lithium oxide, lithium hydroxide, barium oxide, and barium hydroxide. Accordingly, nitrogen having approximately 75% in the air can be adsorbed at room temperature, so that a high degree of vacuum can be obtained.
  • the breaking part 134 is also used as a sealing member, and is formed of a glass composition that is more brittle and more fragile than the packaging material 133. That is, while functioning as a sealing portion that seals the gas adsorbent inside the packaging material 133, it is possible to reliably form a through-hole in the packaging material 133 after sealing under reduced pressure by forming it with a brittle and fragile material. Yes, it functions as a destruction part.
  • the outer jacket material 135 having gas barrier properties encloses the core material 132, the packaging material 133, the gas adsorbing material 137, and the destruction portion 134, thereby making them independent from the surrounding space.
  • the gas permeability is preferably 10 4 [cm 3 / m 2 ⁇ day ⁇ atm] or less, and more preferably 10 3 [cm 3 / m 2 ⁇ day ⁇ atm] or less.
  • the destruction portion 134 formed at the end portion is also used as a sealing portion, but the destruction portion 134 is subjected to external force after vacuum sealing of the jacket material 135.
  • Any member capable of destroying the packaging material 133 may be used.
  • a weak portion or a seal portion of the packaging material 133 may be used as the destruction portion and may be destroyed.
  • a hole may be formed by contacting the protrusion with the packaging material 133.
  • a vacuum heat insulating material 138 shown in FIG. 5 is a vacuum heat insulating material 138 using a gas adsorbent 137 and is vacuum-sealed in a bag made of a core material 132 containing at least a fiber material and a packaging material 133 having gas barrier properties.
  • the gas adsorbent 137 was covered with a jacket 135 having a gas barrier property, and after the envelope 135 was vacuum-sealed, a hole was formed in the wrapper 133 so that the interior of the wrapper and the interior of the jacket were communicated. It has a configuration.
  • the protrusion is adjacent to the packaging material 133 in advance.
  • a member 134 having a protrusion is encapsulated in a jacket material 135, and a hole is formed in the packaging material 133 by pressing the member 134 having a protrusion by an external force after vacuum sealing.
  • the thermal conductivity of the vacuum heat insulating material produced using the core material containing the fiber material is lower in the low pressure region than the heat conductivity of the vacuum heat insulating material produced using the core material made only of the powder material. Small and large in high pressure range. Therefore, it is important that the vacuum heat insulating material produced using the core material containing the fiber material keeps the pressure inside the outer jacket material low.
  • the vacuum heat insulating material 138 using the gas adsorbent 137 used in the present embodiment has the gas adsorbent 137 in the jacket material, the pressure inside the jacket material is kept low, and the fiber The thermal conductivity of the vacuum heat insulating material using the core material 132 containing the material is kept low. Therefore, since the pressure inside the jacket material is kept low, the rigidity is also increased.
  • the heat conductivity of the vacuum heat insulating material is determined by the sum of the heat conduction by the core material and the heat conduction by the residual gas in the jacket material.
  • the mean free path of the gas existing inside the core material is short, so that the thermal conductivity by the gas is very small, and the heat conduction by the core material is dominant.
  • the core material is a fiber
  • the thermal conductivity of the core material is very small because there are few contact points between the fibers. The rate becomes dominant. Therefore, when the core material is made of only fibers, such an effect is great. Therefore, keeping the inside of the jacket material at a low pressure is a very effective means for reducing the thermal conductivity of the vacuum heat insulating material. .
  • the layout structure of the refrigerator in which the vegetable compartment 106 is installed below, the freezer compartment 105 is installed in the middle, and the refrigerator compartment 102 is installed above is often used from the viewpoint of usability and energy saving. Yes.
  • a refrigerator having a configuration in which the compressor 117 is disposed at the back of the top surface is also used from the viewpoint of ease of use and the capacity of the refrigerator.
  • vacuum insulation with thermal insulation performance several times to 10 times that of rigid urethane foam 126 is used to the maximum extent within an appropriate range. Refrigerators with improved heat insulation performance and strength have also been released.
  • the vacuum heat insulating materials 129 and 130 provided on the side wall 101a are each provided with a gas adsorbing material 137 therein.
  • the side wall that can be the most strained among the heat insulating walls is equipped with a vacuum heat insulating material having a gas adsorbent, thereby improving the rigidity of the side wall and suppressing the aging of the vacuum heat insulating material. It is possible to maintain the rigidity of the heat insulation box for a long period of time.
  • the vacuum heat insulating material 129 provided on the left side wall 101a and the vacuum heat insulating material 130 provided on the right side wall 101a are respectively formed with linear deformation portions extending in the vertical direction. ing.
  • the deformation portion extending in the vertical direction can improve the rigidity when the load is mainly applied in the vertical direction, and further enhances the rigidity of the side wall in the vertical direction (longitudinal direction).
  • the linearly deformed portion 130a extending in the vertical direction functions as a reinforcing portion in the vertical direction of the side wall 101a. The same applies to the vacuum heat insulating material 129 provided on the left side wall 101a.
  • FIG. 6 is a drawing showing another configuration that can be applied as the vacuum heat insulating material 130 of FIG.
  • the core material 132 is arranged in a rectangular shape, but one of the corners of the four corners is cut out.
  • a coreless portion formed only of the jacket material 135 in which the core material 132 is not included is formed.
  • the multilayer part 130b is formed by folding
  • transformation part 130a shown with the dotted line in a figure is a recessed part in which the heat radiating pipe 143 is embed
  • the gas adsorbent 137 is arranged inside the core 132 near the center of the vacuum heat insulating material 130.
  • the multi-layered portion 130b formed of only the jacket material having high thermal conductivity tends to increase in temperature.
  • the temperature change of the gas adsorbent can be suppressed by disposing the gas adsorbent at a location away from the multilayer portion. For example, by suppressing the gas adsorbent from becoming excessively high in temperature, it is possible to suppress the adsorbent from being activated excessively and to suppress deterioration over time.
  • the vacuum heat insulating material in which the gas adsorbing material is contained has a plate shape on the side walls on both the left and right sides, and the main surfaces of these vacuum heat insulating materials have the same area.
  • the rigidity in the side walls which are the left and right walls of the refrigerator can be made the same, and it is possible to eliminate a bias in rigidity in the heat insulating box and to form a heat insulating box having a balanced and stable strength.
  • the refrigerator according to the present embodiment includes a rotary door 102a for the refrigerator compartment 102 connected to the main body 101 via the upper hinge holding portion 102b described above.
  • a rotary door 102a for the refrigerator compartment 102 connected to the main body 101 via the upper hinge holding portion 102b described above.
  • the side wall is provided with a vacuum heat insulating material provided with a gas adsorbent with high rigidity, even when the door 102a is open, deformation such as inclination of the side wall is suppressed. And the deformation of the entire heat insulating box can be prevented.
  • the vacuum heat insulating material 138 is a gas adsorbing material 137 disposed on the inner side (inner box side) of the refrigerator in the thickness direction of the vacuum heat insulating material.
  • the gas adsorbing material 137 is less likely to come into contact with air, even when the refrigerator is used for a long period of time, it is possible to continuously adsorb air entering the vacuum heat insulating material from the outside. Therefore, the vacuum degree of the vacuum heat insulating material can be maintained over a long period of time, and deterioration of the thermal conductivity of the vacuum heat insulating material can be prevented.
  • the gas adsorbent 137 used in the present embodiment can adsorb nitrogen present at a rate of approximately 75% in the air even at room temperature, residual air inside the vacuum heat insulating material can be reduced. Therefore, the vacuum degree of the vacuum heat insulating material is increased by adsorbing nitrogen contained in the residual air more at room temperature than the vacuum degree of the conventional vacuum heat insulating material.
  • the atmospheric pressure is 100 KPa and the vacuum insulation material has a vacuum degree of about 10 Pa, but the vacuum insulation material using the gas adsorbent 137 used in the present embodiment has a degree of vacuum of about 1 Pa.
  • the degree of vacuum of the vacuum heat insulating material can be improved, and accordingly, the rigidity of the vacuum heat insulating material can be improved and the thermal conductivity can be reduced.
  • the gas adsorbent 137 can continuously adsorb the air that has entered through the jacket material even after vacuum sealing, the deterioration of the thermal conductivity caused by the air intrusion with the passage of time of the vacuum heat insulating material. Suppression is also possible, and high heat insulation can be maintained over a long period of time.
  • FIG. 7 is a drawing showing an image of aged deterioration of the thermal conductivity of the vacuum heat insulating material.
  • the conventional vacuum heat insulating material (C) has air intrusion with the passage of time, so that the thermal conductivity increases with the passage of years from the start of use.
  • the vacuum heat insulating material (D) using the gas adsorbing material 137 is deteriorated over time because the gas adsorbing material 137 adsorbs the intruding air for a long time from the start of use compared to the conventional vacuum heat insulating material (C). It is possible to maintain high performance over approximately 10 years. As a result, the performance in the initial state as a vacuum heat insulating material can be maintained over a long period of time, and therefore a refrigerator having energy saving performance (low running cost performance) with excellent performance can be provided.
  • the content of the gas adsorbent 137 to be used is selected assuming that the user use period of the refrigerator is approximately 10 years in consideration of the result of FIG. That is, the internal capacity per gas adsorbing material is set to about 0.5 g so that the initial performance of the vacuum heat insulating material can be maintained for at least 10 years. In addition, if the internal capacity of the gas adsorbent 137 is increased, the use period can be further extended.
  • the vacuum degree of the vacuum heat insulating material can be maintained. Therefore, deterioration of the thermal conductivity of the vacuum heat insulating material can be prevented. Further, by maintaining the vacuum degree of the vacuum heat insulating material, it is possible to prevent deformation of the vacuum heat insulating material due to air intrusion, and thus it is possible to prevent external deformation of the main body outer box.
  • the amount of the gas adsorbent is 60 g or more per 1 m 3 , air can be adsorbed for a longer period than the example shown in FIG. 7, so that the period during which the degree of vacuum can be maintained can be extended.
  • the amount of the gas adsorbing material is the same, if it is a vacuum heat insulating material with a small area, air adsorption can be performed even for a longer elapsed time, and the period during which the degree of vacuum can be maintained can be extended.
  • the amount of the gas adsorbent 137 affects the manufacturing cost of the vacuum heat insulating material. Therefore, a vacuum heat insulating material with good cost performance can be provided by appropriately selecting the amount of the gas adsorbing material 137 according to the amount of residual air depending on the shape, size, or volume of the vacuum heat insulating material to be used.
  • FIG. 8 is an example of a vacuum heat insulating material that can be used in the refrigerator according to the present embodiment, and particularly shows the arrangement of the gas adsorbing material.
  • the arrangement of the gas adsorbing material 137 mounted on the vacuum heat insulating material is the end position of the jacket material 135 on the side opposite to the opening for vacuuming. This is because air density is generated inside the jacket material 135 of the vacuum heat insulating material in the manufacturing process of the vacuum heat insulating material.
  • suction inside a vacuum heat insulating material is also arrange
  • the vacuum heat insulating material After the vacuum heat insulating material is manufactured (after vacuum sealing), there is a possibility that the internal pressure of the vacuum heat insulating material will increase due to the release of water from the core material, but the above-mentioned reactive water adsorbing material 146 absorbs and removes this water. Therefore, the time required for drying (moisture removal) can be significantly shortened, and the deterioration of the heat insulation performance accompanying the increase in internal pressure due to the released moisture can be suppressed. Therefore, productivity of the vacuum heat insulating material is not reduced.
  • the vacuum heat insulating material is formed, for example, by drying a sheet-like glass wool aggregate having a thickness of 5 mm at 140 ° C. for 1 hour, and then inserting it into the jacket material 135 to evacuate the inside to seal the opening. ing.
  • the outer cover material 135 is formed into a bag shape by sealing three sides of the four sides. And after putting a core material in the inside of this bag-shaped jacket material 135, while exhausting and depressurizing the inside of a vacuum heat insulating material in the environment where the circumference was made into a low pressure from the opening part of the other side, this opening part is changed. Seal.
  • the inside of the vacuum heat insulating material has a low pressure as a whole, but as the pressure is reduced, the viscosity state of the air changes, and the outer cover material inlet portion of the vacuum heat insulating material (opening side in FIG. 8). ) And the sealed end portion (portion on the end side in FIG. 8) differ in the air density state. That is, the air is sparse at the jacket material inlet portion and is dense at the end portion.
  • the vacuum heat insulating material has improved rigidity and reduced thermal conductivity. This is because the degree of vacuum is increased by the gas adsorbent 137.
  • the degree of vacuum of the vacuum heat insulating material is determined by the amount of gas entering from the outside into the outer jacket material of the vacuum heat insulating material and the adsorption performance of the gas adsorbing material 137.
  • the vacuum degree of a vacuum heat insulating material has a correlation with rigidity and thermal conductivity, and a vacuum heat insulating material with a high degree of vacuum has high rigidity and low thermal conductivity. The opposite is true for vacuum insulation materials with low vacuum.
  • the gas adsorbent 137 is attached to the vacuum heat insulating material provided on the heat insulating wall having a large attachment area such as the side wall and the back wall, among the vacuum heat insulating materials attached to the main body 101 of the refrigerator. It is installed. This is because the vacuum heat insulating material having a large area can be expected to have a high heat insulating effect, but forms a main rigid wall that supports the main body 101, and thus is easily affected when the rigidity is lowered due to deterioration over time.
  • gas adsorbing material 137 By providing the gas adsorbing material 137 to the vacuum heat insulating material provided on these heat insulating walls, it is also possible to adsorb air that intrudes over time during use, thereby suppressing performance deterioration during the period of use of the refrigerator for approximately 10 years. Is possible.
  • the vacuum insulation material with a large dimensional area also increases the coverage of the refrigerator.
  • the vacuum degree of the whole heat insulation wall of a refrigerator becomes high, and not only the rigidity improves but also the thermal conductivity is reduced. Therefore, if the vacuum heat insulating material has the same thickness, in the case of using the gas adsorbent as in the present embodiment as compared with the case where the gas adsorbent is not used, the wall thickness is reduced while reducing the wall thickness. UP and energy saving performance can be improved.
  • vacuum heat insulating materials 129 and 130 having a gas adsorbing material 137 with a thickness of approximately 8 to 11.5 mm are used for the side wall, and a gas adsorbing material 137 with a thickness of approximately 15 mm is used for the back wall.
  • the vacuum heat insulating material 128 using is used.
  • a vacuum heat insulating material having a thickness of about 8 to 15 mm and having no gas adsorbing material 137 is used.
  • the vacuum heat insulating material provided with the gas adsorbent is used for the portion having a high contribution regarding strength and energy saving.
  • the temperature in the refrigerator is divided into a refrigerated temperature range of approximately 1 ° C to 5 ° C for storing fresh food and beverages, and a refrigerated temperature range of approximately -18 ° C for storing frozen foods.
  • a refrigerated temperature range of approximately 1 ° C to 5 ° C for storing fresh food and beverages
  • the side wall or the back wall with the most rigid vacuum heat insulating material (that is, having a high degree of vacuum) is provided for the part that becomes the skeleton of the refrigerator main body. Therefore, the strength of the entire refrigerator can be improved, and the wall thickness can be reduced. Therefore, the storage capacity can be increased while maintaining the strength.
  • the gas adsorbent 137 is arrange
  • the vacuum heat insulating material on which the gas adsorbent 137 is mounted is pasted preferentially at a portion of 5% or less in terms of the ratio between the external dimension (for example, width dimension) of the wall surface and the wall thickness.
  • the vacuum heat insulating materials 128, 129 and 130 on the side surface and the back surface are the same.
  • the outer width is 740 mm
  • the wall thickness is 33 mm.
  • the strength (cross section second moment) of a member having a rectangular cross section is expressed by a bending stress formula of (the cube of width) ⁇ height / 12. If this is seen about the wall part of a refrigerator, a width
  • the heat insulation wall thickness of the main body 101 formed by the hard urethane foam 126 surrounding the freezer compartment 105 in the freezing region and the vacuum heat insulating materials 128, 129, 130 is the opening portion except for the door.
  • the thickness is 25 to 50 mm including the thin wall portion.
  • the heat insulation wall thickness of the main body 101 formed by the hard urethane foam 126 and the vacuum heat insulating materials 127 and 131 surrounding the refrigerator compartment 102 and the vegetable compartment 106 in the refrigeration region is a portion where the wall thickness of the opening is thin except for the door. 25 to 40 mm.
  • the fluidity of the rigid urethane foam is hindered and filling becomes difficult.
  • the vacuum heat insulating material provided with the gas adsorbing material 137 has a thickness of about 8 to 11.5 mm, the fluidity of the rigid urethane foam 126 even after the vacuum heat insulating material is attached to the thin heat insulating wall. This can be filled without hindering.
  • the thermal conductivity is drastically reduced, it is not necessary to superimpose a plurality of vacuum heat insulating materials for suppressing heat penetration. Thereby, there is no partial change of the gap filling the rigid urethane foam 126 (can be suppressed), and deformation of the inner and outer surfaces and generation of voids due to a decrease in fluidity can be prevented.
  • the vacuum heat insulating material not provided with the gas adsorbing material 137 is equivalent. In order to obtain good performance, a thickness of 16 mm is required. Therefore, when the equivalent performance is used as a reference, the internal capacity can be increased by 15 L by using the vacuum heat insulating material provided with the gas adsorbent 137. Further, since the amount of the rigid urethane foam 126 used can be reduced, the cost can be reduced and the product weight can be reduced. Therefore, the transportability when the product is carried in is improved.
  • the strength of the main body 101 of the refrigerator is improved by changing the degree of vacuum and using a plurality of vacuum heat insulating materials having different rigidity. That is, while considering the high cost vacuum heat insulating material containing the gas adsorbing material and the low cost vacuum heat insulating material not equipped with the gas adsorbing material in consideration of the heat insulating property, rigidity and cost required for each part of the refrigerator, Adopted to be the right person in the right place.
  • the strength of the main body 101 can be improved by providing a high-rigidity vacuum heat-insulating material among the plurality of vacuum heat-insulating materials on the side wall and the back wall that can greatly increase the coverage of the refrigerator.
  • a vacuum heat insulating material with a highly rigid gas adsorbent is used for the part that contributes to strength, and a vacuum heat insulating material that is more rigid than the rigid urethane foam 126 and has a gas adsorbing material for the hard to contribute part. Use what is not. Thereby, the refrigerator which improved main body intensity
  • the vacuum heat insulating material is about 8 to 15 mm, but if it is the same thickness, the rigidity is higher than that of the rigid urethane foam 126 and the thermal conductivity is low.
  • the dimensions, thickness, and type (necessity of the gas adsorbent) of the vacuum heat insulating material can be determined in consideration of the performance of the refrigerator and costs such as material costs.
  • the vacuum heat insulating material 131 disposed in contact with the bottom surface of the inner box 125 has an area (area of the main surface) as viewed along the thickness direction smaller than the area of the inner box 125.
  • the vacuum heat insulating material 131 disposed in contact with the inner box 125 does not protrude from the inner box disposed in contact with the vacuum heat insulating material 131. Therefore, the vacuum heat insulating material 131 is in a state in which the entire one main surface (adhesion surface) is in contact with the bottom surface of the inner box 125.
  • the refrigerator of the present embodiment is arranged in the inner box 125 when the rigid urethane foam 126 is poured between the outer box 124 and the inner box 125 after the vacuum heat insulating material 131 is disposed at a predetermined position. Since no force is applied to the disposed vacuum heat insulating material 131 in the peeling direction from the inner box 125, the vacuum heat insulating material 131 can be prevented from being peeled off due to the inflow of the hard urethane foam 126. Furthermore, it is possible to easily stabilize the application of the vacuum heat insulating material 131 and does not hinder the fluidity of the rigid urethane foam 126.
  • the intrusion or remaining of an inert gas such as air between the vacuum heat insulating material 131 and the inner box 125 can be suppressed. Therefore, the inner box 125 and the vacuum heat insulating material 131 are in close contact with each other, and there is also an effect that it is possible to suppress the deformation of the inner box such as a dent.
  • the vacuum heat insulating material 127 on the top surface is disposed in contact with the outer box 124, an attachment member or an electric wire for interior lighting can be attached to the top surface of the inner box 125, and Lighting can be attached to the top surface, improving usability.
  • the vacuum heat insulating material is disposed so that the U-shaped bottom reinforcing member 144 and the vacuum heat insulating material overlap with the projection surface on the bottom of the main body.
  • the bottom reinforcing member 144 can be made of a highly rigid material such as iron or stainless steel, and it is preferable to perform a surface treatment that does not rust due to the humidity of the outside air.
  • the U-shaped bottom reinforcing member 144 is used.
  • FIG. 9 is a side sectional view of a refrigerator as a comparative example of the second embodiment.
  • FIG. 10 is a vertical cross-sectional view of the side wall of the refrigerator in the second embodiment.
  • FIG. 11 is a side sectional view of the refrigerator in the second embodiment.
  • FIG. 9 is a cross-sectional view of the heat insulating wall of the refrigerator described in Japanese Patent Application Laid-Open No. 2007-198622.
  • the heat insulating wall includes an outer box 102, an inner box 103, and a urethane heat insulating material 104 filled between the inner box 103 and the outer box 102. Furthermore, a vacuum heat insulating material 105 provided in close contact with the outer box 102 between the outer box 102 and the inner box 103, and a heat radiation pipe 120 configured between the vacuum heat insulating material 105 and the outer box 102, The heat radiating pipe 120 is embedded in the surface of the vacuum heat insulating material 105.
  • the vacuum heat insulating material exists between the outer box and the inner box together with the hard urethane foam, the area of the vacuum heat insulating material that contacts the air is large. Therefore, with the passage of years during use, air is likely to enter the inside of the vacuum heat insulating material, and further, there is a concern that the vacuum heat insulating material in which the air has infiltrated reduces the degree of vacuum inside, leading to deterioration of thermal conductivity. there were. Furthermore, there has been a problem in that the appearance of the dents and the like is deformed by the air that has entered the vacuum heat insulating material whose internal vacuum degree has decreased during long-term use.
  • a heat radiating pipe is disposed in an outer box of the refrigerator, and a vacuum heat insulating material is attached so as to cover the heat radiating pipe.
  • the vacuum heat insulating material is covered with the hard urethane foam, but the heat radiating pipe is extended to the outside of the hard urethane foam, and the air layer is attached to the outer box with the aluminum tape.
  • the external air and the vacuum heat insulating material are in direct contact with each other or indirectly through a hard urethane foam or aluminum tape.
  • the gas adsorbent contained in the vacuum heat insulating material is disposed away from the heat generating portion provided in the refrigerator.
  • the heat generating portion refers to the compressor 117 and the heat radiating pipe 143 (see FIG. 10).
  • FIG. 2 demonstrated in the said Embodiment 1 is also referred to as front sectional drawing of the said refrigerator.
  • the vacuum heat insulating materials 127, 128, 129, and 130 are attached in contact with the top surface, the back surface, the left side surface, and the right side surface of the outer box 124, respectively.
  • the vacuum heat insulating material 131 is attached in contact with the bottom surface of the inner box 125.
  • the vacuum heat insulating materials 128, 129, and 130 are provided with gas adsorbents 137, respectively. These gas adsorbents 137 are disposed on the inner side (inner box side) than the center.
  • the heat radiating pipe 143 is installed on the outer casing 124 side of the vacuum heat insulating materials 128, 129, and 130. As shown in FIG. 10, the heat radiating pipe 143 is meanderingly arranged on the surface of the vacuum heat insulating material 130 provided on the right side wall of the refrigerator. More specifically, the heat radiating pipe 143 has one end of a U-shaped pipe connected to one end of a linear pipe arranged in the vertical direction, and the other end of the U-shaped pipe is similarly One end of another straight pipe disposed along the vertical direction is connected. Thus, the heat radiating pipe 143 is configured by sequentially connecting a straight pipe and a U-shaped pipe.
  • the configuration of the left side wall as the heat insulating wall and the configuration and arrangement of the heat radiating pipe provided on the left side wall are the same as those in the right side wall described above and below.
  • the vacuum heat insulating material 130 provided on the right side wall of the refrigerator includes the gas adsorbing material 137 and is provided in the vacuum heat insulating material 130.
  • a core material 132 is interposed between the gas adsorbing material 137 and the heat radiating pipe 143 which is a heat generating portion.
  • the vacuum heat insulating material 130 is disposed so as to cover the entire right side wall.
  • the extension region 130d of the vacuum heat insulating material 130 is made thinner than the other regions.
  • the gas adsorbing material 137 and the heat radiating pipe 143 are arranged at a certain distance. Moreover, since the core material 132 which is a heat insulating material is interposed between the gas adsorbing material 137 and the heat radiating pipe 143, the heat of the heat radiating pipe 143 is reduced from reaching the gas adsorbing material.
  • the gas adsorbent 137 is arranged in a position where it does not overlap the heat radiating pipe 143 that is a heat generating part in the thickness direction of the vacuum heat insulating material 130. Further, the gas adsorbent 137 is disposed so as not to overlap with the compressor 117 in the thickness direction of the vacuum heat insulating material 130.
  • the gas adsorbent provided in the vacuum heat insulating material can be prevented from becoming high temperature, the gas adsorbent can be prevented from being highly activated in a short period of time, and the function can be demonstrated over a long period of time. Can do. Furthermore, by preventing deterioration of the jacket material around the gas adsorbing material over time, the effect of the gas adsorbing material coming into contact with the air can be reduced, and even when the heat insulating box is used for a long time, the gas provided in the vacuum heat insulating material The adsorbent can continue to adsorb air entering from the outside. Therefore, the vacuum degree of the vacuum heat insulating material can be maintained, and deterioration of the thermal conductivity of the vacuum heat insulating material can be suppressed.
  • the gas adsorbing material 137 is stored in the packaging material 133 made of a metal container, if the container is located near the high temperature portion, the metal packaging material 133 with good thermal conductivity is a heat spot. Thus, the container is always maintained at a high temperature, and the gas adsorbent in the container is highly activated. As a result, there is a possibility that the adsorption characteristics may deteriorate in a short period. Therefore, by separating the gas adsorbent and the heat generating portion as in the present embodiment, the function can be exhibited over a long period of time.
  • the jacket material is caused by the heat of the packaging material of the gas adsorbent. It is possible to suppress deterioration due to temperature rise.
  • the heat insulating wall shown in FIG. 11 includes a vacuum heat insulating material 130 provided with a gas adsorbing material 137, and the gas adsorbing material 137 is disposed inside the heat insulating box body (inner box 125 side) of the vacuum heat insulating material.
  • fever part is arrange
  • the gas adsorbent 137 is disposed inside the main body 101 and the influence of contact with air is reduced. Therefore, the gas adsorbent 137 can continuously adsorb air entering the vacuum heat insulating material from the outside even when the heat insulating box is used for a long time. Therefore, the vacuum degree of the vacuum heat insulating material can be maintained, and deterioration of the thermal conductivity of the vacuum heat insulating material can be prevented.
  • the heat radiating pipe 143 is disposed inside the outer box 124 of the main body 101 of the heat insulating box body, and is fixed by the aluminum tape 145.
  • the aluminum tape 145 is disposed from the inside defined by the outer box 124 and the inner box 125 filled with the hard urethane foam 126 to the outside. That is, the space in the aluminum tape 145 communicates with the outside. This is to prevent the air present in the aluminum tape 145 from being expanded by the heat generated when foaming the rigid urethane foam 126 during the manufacturing process of the refrigerator, and the outer box 124 from being deformed by the pressure. .
  • the vacuum heat insulating material is inside the hard urethane foam 126, the heat radiating pipe 143 is arranged over the inside and outside of the hard urethane foam 126, and the aluminum tape 145 for attaching the heat radiating pipe 143 to the outer box 124. Since the air layer is formed by this, the external air and the vacuum heat insulating material are in direct contact or indirectly through the hard urethane foam 126 and the aluminum tape 145.
  • the vacuum insulation material that is in contact with the air is affected by the air entering from the outside over time. Therefore, in the case of the vacuum heat insulating material that does not include the gas adsorbing material 137, the internal vacuum degree may be reduced and expanded at an early stage, and the appearance of the refrigerator outer box 124 may be deformed.
  • the gas adsorbent 137 in the vacuum heat insulating material is installed at a location away from the heat generating portion such as the compressor 117 and the heat radiating pipe 143.
  • the metal container of the gas adsorbing material 137 is prevented from absorbing heat from the heat generating portion, and a portion (heat spot) that cannot be locally insulated is generated in the vacuum heat insulating material. This prevents the heat dissipation ability to the outside of the refrigerator from deteriorating.
  • the heat radiating pipe 143 is configured by sequentially connecting a straight pipe and a U-shaped pipe. In such a case, it is preferable to embed the gas adsorbing material 137 between the two linear heat radiating pipes constituting the heat radiating pipe 143 so that the distance from each pipe becomes equal. Thereby, heat dissipation capability can be increased and energy-saving property can be improved.
  • the gas adsorbent 137 used in the present embodiment can be manufactured in the same manner as that described in the first embodiment, and one having the same configuration can be adopted. Therefore, this gas adsorbent 137 can adsorb nitrogen, which is present at a rate of about 75% in the air, even at room temperature. Thereby, the residual air inside a vacuum heat insulating material can be reduced, the vacuum degree and rigidity of a vacuum heat insulating material can be improved, and the thermal conductivity can be reduced.
  • the temperature of the heat insulation box is divided into a refrigeration temperature range of approximately 1 ° C to 5 ° C, which stores fresh food and beverages, and a refrigeration temperature range of approximately -18 ° C or less, which stores frozen foods.
  • a refrigeration temperature range of approximately 1 ° C to 5 ° C which stores fresh food and beverages
  • a refrigeration temperature range of approximately -18 ° C or less which stores frozen foods.
  • the gas adsorbent 137 in the vacuum heat insulating material is placed in the horizontal direction of the storage room in the refrigeration temperature zone. You may arrange
  • the gas adsorbent 137 is disposed on the inner side (inner box side) than the center inside the vacuum heat insulating material, but may be disposed on the outer side (outer box side).
  • the vacuum degree of a vacuum heat insulating material can be raised more.
  • the vacuum heat insulating material has high strength and reduced thermal conductivity, so that a refrigerator having high energy saving and high appearance strength can be provided. This is because the temperature of the gas adsorbent 137 increases on the outer box side of the main body 101 of the refrigerator due to the influence of heat from the outside air and the influence of heat from the heat radiating pipe 143 attached to the inside of the outer box.
  • FIG. 12 is a cross-sectional view of the vacuum heat insulating material 11 in which the gas adsorbing material is arranged on the outer side (outer box side) than the center inside the vacuum heat insulating material.
  • the vacuum heat insulating material 11 is configured by covering the core material 132 and the gas adsorption device 15 with an outer covering material 135.
  • the gas adsorbing device 15 is embedded in the core agent 132, and these are enclosed in a jacket material 135 and sealed under reduced pressure.
  • the gas adsorbing device 15 includes a gas adsorbing substance 13, a storage container 16 that stores the gas adsorbing substance 13, and a sealing material 17 that closes an opening of the storage container 16, and is sealed under reduced pressure.
  • the recessed part 20 is provided in the jacket material 135 of the vacuum heat insulating material 11 on the gas adsorption device 15 side.
  • the storage container 16 is made of a metal having good thermal conductivity, the heat of the heat radiating pipe 143 is directly transferred to the gas adsorption device 15 through the outer box and the jacket material. Even if the gas adsorbing device 15 protrudes in the recess 20, it is possible to suppress the appearance of the outer box of the refrigerator from being deformed.
  • the heat of the heat radiating pipe 143 is directly applied to the gas adsorbing material 137 through the outer box and the jacket material. introduce.
  • it is effective to provide a heat insulating material between the gas adsorbent 137 and the jacket material 135 or the outer box.
  • the gas adsorbing material 137 is arranged on the outer box side in the thickness direction of the vacuum heat insulating material, it is embedded in the heat insulating material (core material), and the gas adsorbing material 137 is directly attached to the jacket material 135. It is effective to keep them from touching each other.
  • FIG. 13 is a cross-sectional view of a vacuum heat insulating material using a core material 132 as a heat insulating material.
  • the vacuum heat insulating material 11 is configured by covering a core material 132, a gas adsorption device 15, and a moisture adsorbent 19 with an outer covering material 135.
  • the gas adsorbing device 15 includes a gas adsorbing substance 13, a storage container 16 that stores the gas adsorbing substance 13, and a sealing material 17 that closes an opening of the storage container 16, and is sealed under reduced pressure.
  • the vacuum heat insulating material 11 has the core material 132 inside as described above.
  • This core material 132 is made of an aggregate of inorganic fibers such as glass wool, and after heating and drying, it is inserted into a jacket material 135 in which a vapor deposition layer film and a metal thin layer film are bonded together, and the inside is evacuated to provide an opening. Sealed.
  • the deposited layer film is a composite plastic film in which an aluminum deposited film is sandwiched between a nylon film and a high-density polyethylene film.
  • Aluminum vapor deposited films have the advantages of low thermal conductivity and resistance to bending, but on the other hand they have relatively low gas barrier properties.
  • the metal foil layer film is a composite plastic film in which an aluminum foil is sandwiched between a nylon film and a high-density polyethylene film.
  • Aluminum foil has the advantage of high gas barrier properties, but it has high thermal conductivity.
  • the vacuum heat insulating material 11 is arranged such that the outer jacket material 135 including the aluminum foil is positioned on the outer box 124 side and the outer jacket material 135 including the aluminum vapor deposition film is positioned on the inner box 125 side. Place. And as shown in FIG. 12, the gas adsorption
  • the heat radiating pipe is close to the jacket material 135 having the aluminum foil having high thermal conductivity, but the gas adsorption device 15 is radiated as viewed from the thickness direction of the vacuum heat insulating material.
  • the gas adsorption device 15 is radiated as viewed from the thickness direction of the vacuum heat insulating material.
  • heat conduction from the heat radiating pipe to the gas adsorption device 15 can be made difficult.
  • the high temperature of the gas adsorbing material can be prevented by preventing the aluminum foil and the metal container 16 containing the gas adsorbing material 13 from coming into direct contact with each other via the core member 132.
  • the vacuum heat insulating material so that the outer jacket material 135 including the aluminum vapor deposition film is on the outer box side, and put the adsorbent in the vicinity of the outer jacket material 135 including the aluminum vapor deposition film. Also good.
  • the aluminum vapor deposition film has an advantage that it is difficult to conduct heat, and therefore, the temperature of the adsorbent can be suppressed from being increased due to heat conduction.
  • FIG. 14 is a side sectional view of a refrigerator door as a comparative example of the third embodiment.
  • FIG. 15 is a longitudinal sectional view of the refrigerator in the third embodiment.
  • FIG. 16 is a longitudinal sectional view of a refrigerator door in the third embodiment.
  • FIG. 14 is a cross-sectional view of a refrigerator door described in JP-A-2005-127602.
  • the door body 5 is configured by filling a urethane foam 10 which is a foam heat insulating material in a space formed by a door outer plate 6, a door inner plate 7, a door upper lid 8, a door lower lid 9 and a vacuum heat insulating material 3. .
  • the vacuum heat insulating material 3 is disposed in contact with the door inner plate 7, and a plurality of protrusions 51 are provided in the horizontal direction on the inner side of the door inner plate 7, and the width of the protrusion 51 (vertical width dimension) is 10 mm or less.
  • the height (projection dimension in the horizontal direction) is set to 3 mm or less, and the entire width in the lateral direction along the surface of the door inner plate 7 is formed.
  • the refrigerator of the present embodiment is a door having a door inner plate and a door outer plate, and the foam insulating material is filled between the door inner plate and the door outer plate, and at least a core material is included in the outer cover material to reduce the pressure.
  • a sealed vacuum heat insulating material is disposed, and further, a gas adsorbing material is included in the vacuum heat insulating material.
  • the front opening portions of the upper freezing chamber 103, the ice making chamber 104, the lower freezing chamber 105, and the vegetable chamber 106 are drawer-type doors 103 a, 104 a, 105 a, 106 a corresponding to each. Is closed freely. Moreover, the front opening part of the refrigerator compartment 102 can be freely opened and closed by a rotary door 102a that opens on one side and covers the entire opening of the refrigerator compartment 102.
  • the rotary door 102a has the largest area among the plurality of doors of the refrigerator, and is provided with a vacuum heat insulating material 150.
  • the vacuum heat insulating material 150 has a gas adsorbent 137 mounted therein.
  • the door 102a of the refrigerator compartment has a door inner plate 102b and a door outer plate 102c.
  • a vacuum heat insulating material 150 is provided together with a foam heat insulating material 102d made of hard urethane foam. Further, the vacuum heat insulating material 150 is provided in the space close to or in contact with the door inner plate 102b side.
  • the strength of the main body can be obtained by providing a vacuum heat insulating material (particularly, a vacuum heat insulating material containing a gas adsorbing material) on the side wall and the back wall that can increase the coverage of the refrigerator. Can be improved.
  • the door with the largest area provided in the refrigerator compartment 102 is the revolving door 102a as in the present embodiment, a large load is applied to the refrigerator main body (particularly, the side wall) with the door open. For this reason, it is important to increase the strength of the vertical wall surface.
  • a vacuum heat insulating material containing a highly rigid gas adsorbent is used for a portion that contributes to strength, and a normal vacuum heat insulating material that does not include a gas adsorbent is used for a portion that does not easily contribute.
  • the revolving door 102a since the door having the largest area is the revolving door 102a, the revolving door 102a is provided with a vacuum heat insulating material containing a gas adsorbent.
  • the vacuum heat insulating material containing the gas adsorbent can suppress the aging deterioration of the vacuum heat insulating material, so that the rigidity of the door can be improved over a long period of time, and the strength of the door can be maintained high over a long period of time. Moreover, by using the vacuum heat insulating material containing the gas adsorbent, the wall thickness of the door can be reduced while maintaining the strength, and the internal capacity can be increased.
  • the vacuum heat insulating material containing the gas adsorbing material can also suppress the deterioration of the vacuum heat insulating material over time, the rigidity of the door can be maintained high over a long period of time. Therefore, it is possible to improve the strength of the door, to prevent a decrease in cooling efficiency due to cold air leakage due to deformation of the door, and to provide a refrigerator with high energy savings.
  • the degree of vacuum is increased by providing the gas adsorbent 137 in the vacuum heat insulating material. That is, the degree of vacuum is higher than that of the conventional vacuum heat insulating material (vacuum heat insulating material not provided with a gas adsorbing material) by adsorbing nitrogen contained in the residual air at room temperature.
  • the atmospheric pressure is 100 KPa and the vacuum insulation material has a vacuum degree of about 10 Pa, but the vacuum insulation material using the gas adsorbent 137 used in the present embodiment has a degree of vacuum of about 1 Pa.
  • the gas adsorbent 137 used in the third embodiment can be manufactured in the same manner as described in the first embodiment, and one having the same configuration can be adopted.
  • the vacuum insulation material has a high degree of vacuum, the rigidity increases and the thermal conductivity decreases. Therefore, if the vacuum insulation material has the same thickness, the wall thickness of the door is reduced and the storage capacity is increased. Energy saving can be improved.
  • the heat insulation performance can be dramatically improved by using the vacuum heat insulating material 150 using the gas adsorbent 137, it is not necessary to superimpose the vacuum heat insulating materials to suppress heat penetration.
  • the change of the wall thickness of the foam heat insulating material which consists of a rigid urethane foam can be suppressed, and the fluidity
  • the vacuum heat insulating material is provided on the door inner plate side as in the present embodiment, if the area of the covering material 135 or the dimension of the four sides which are the sealing portions is long, the resin inner door plate is interposed. Air easily penetrates, and the vacuum degree of the vacuum heat insulating material decreases, which easily leads to performance deterioration.
  • the refrigerator according to this embodiment by providing the gas adsorbing material 137 to the vacuum heat insulating material provided on the door, air that enters with the passage of time during use can be adsorbed. It is possible to suppress the performance deterioration while using the refrigerator for 10 years.
  • FIG. 17 is a perspective view of the refrigerator according to the fourth embodiment.
  • FIG. 18 is an exploded view of the refrigerator in the fourth embodiment.
  • the refrigerator main body 301 includes a metal (for example, iron plate) outer box 324 that opens forward, a hard resin (for example, ABS) inner box 325, an outer box 324, and an inner box 324. It is a heat insulation box provided with the rigid urethane foam foam-filled between the boxes 325.
  • the main body 301 has a refrigerating room 302 provided on the right side and a freezing room 314 provided on the left side. Refrigerators with such a layout are more prevalent in Europe and America.
  • the right refrigerator compartment 302 has a rotary door 302a whose right end (rotary base end) is connected to the main body 301 by a hinge, and the door outer plate of the door 302a has a notch 302b. More specifically, the notch 302b is provided at a part of the end of the door outer plate that forms the metal outer surface (the end opposite to the rotation base end). The notch 302b is provided with a display plate for changing the set temperature of the refrigerator and the like, and its surface is made of resin.
  • a relatively large cutout 302c is formed near the center of the door 302a, and additional equipment such as an ice dispenser and a water dispenser is provided.
  • the adjacent freezer compartment 314 on the left side also has a rotary door 314a whose left end is hinged.
  • a relatively large notch 314b is formed near the center of the door 314a, and additional devices similar to those described above are provided.
  • These rotary doors 302a and 314a are provided with a foam heat insulating material and a vacuum heat insulating material between the door outer plate and the door inner plate.
  • This vacuum heat insulating material is a vacuum heat insulating material containing the gas adsorbent having high nitrogen adsorption characteristics described in the first embodiment.
  • the rotary doors 302a and 314a are substantially the same size, both doors are the largest doors, and both doors are provided with a vacuum heat insulating material containing a gas adsorbent.
  • a vacuum heat insulating material containing a gas adsorbent for example, when there is a limit due to cost, etc., the refrigeration temperature range of -20 ° C to -40 ° C is set, so the temperature difference between the inside and outside of the door is large and the door is likely to warp and deform. It is also effective to preferentially attach the vacuum heat insulating material containing the gas adsorbing material to the freezer compartment door 314a in which the cold air leakage increases.
  • a vacuum heat insulating material containing a gas adsorbent is disposed so as to overlap at least a part of the notches 302b, 302c and 314b of the door outer plate.
  • the door strength may be reduced by having a door skin having a notch, but the gas adsorbent is included so as to overlap the notch in the thickness direction of the door as in this embodiment.
  • the vacuum heat insulating materials 327, 328, 329, 330, 331, and 342 constitute a refrigerator main body 301 together with the hard urethane foam 326. That is, vacuum heat insulating materials 327, 328, 329, 330, 331, and 342 are interposed in each heat insulating wall of the main body 301, and the hard urethane foam 326 is filled in the gaps.
  • the vacuum heat insulating materials 327, 328, 329, and 330 are attached in contact with the inside of the top surface, the back surface, the left side surface, and the right side surface of the outer box 324, respectively.
  • the vacuum heat insulating material 331 is attached in contact with the bottom surface of the inner box 325.
  • the vacuum heat insulating material 342 is inside the heat insulating partition that partitions the refrigerator compartment 302 and the freezer compartment 314.
  • the gas adsorbent 337 is each provided in the vacuum heat insulating material 328,329,330,342 provided in the back surface, the left side surface, and the right side surface.
  • the inside of the heat insulating partition part that insulates the refrigerator compartment 302 and the freezer compartment 314 is filled with a hard urethane foam 326, and the temperature difference between the refrigerator compartment 302 in the refrigerator temperature zone and the refrigerator compartment 314 in the refrigerator temperature zone is 20K- Insulates 30K.
  • this heat insulation partition part forms the surface of the up-down direction from a top surface to a bottom face in the main body 101, and becomes a middle partition, it becomes a refrigerator with high box strength.
  • the heat insulating partition is assembled in the refrigerator before filling the hard urethane foam 326, but may be assembled after filling the hard urethane foam 326 for ease of manufacturing.
  • the heat insulating material inside the heat insulating partition 315 may be made of foamed polystyrene that can be easily formed, or the rigid urethane foam 326 may be formed as a separate part and configured as a plate-like board.
  • the vacuum heat insulating material 342 is a vacuum heat insulating material using a gas adsorbent 337 and has high rigidity like the vacuum heat insulating materials 328, 329, and 330, so that the strength of the main body 301 can be improved. it can.
  • the heat insulating effect can be improved by sticking the vacuum heat insulating material 342 to the freezer compartment 314 side in the heat insulating partition.
  • the interior lighting attachment member or the electric wire can be attached to the side wall of the refrigerating chamber 302 (the portion on the refrigerating chamber 302 side in the heat insulating partition). Therefore, since lighting can be attached to the side surface of the refrigerator compartment 302, usability can be improved.
  • the vacuum heat insulating material 342 is a vacuum heat insulating material using the gas adsorbent 337, the thermal conductivity can be reduced. Therefore, in addition to the improvement in rigidity, heat transfer between the refrigerator compartment 302 and the freezer compartment 314 can be reduced, so that the heat insulating partition can be thinned. As a result, the storage capacity can be increased while improving the strength and energy saving of the main body. Furthermore, since the heat insulation partition part 315 can be comprised thinly, the refrigerator excellent also in design property can be provided. (Embodiment 5) Embodiment 5 of the present invention will be described below with reference to the drawings. In addition, about the structure similar to Embodiment 1, the same code
  • FIG. 19 is a side sectional view of a refrigerator as a comparative example of the fifth embodiment.
  • FIG. 20 is a longitudinal sectional view of the refrigerator according to the fifth embodiment.
  • FIG. 21 is a machine room configuration diagram of the refrigerator according to the fifth embodiment.
  • FIG. 19 is a side sectional view of the refrigerator described in Japanese Patent Laid-Open No. 6-159922.
  • the main body 1 of the refrigerator covers the entire space constituted by the outer box 24 and the inner box 25 with a formable bag-like paper material 20, and the inorganic porous material is formed inside the paper material 20.
  • a vacuum heat insulating material 22 is disposed along the shape of the space surrounded by the inner and outer boxes 24, 25.
  • the vacuum heat insulating material used has metal foil on both surfaces, and the shape is only a plane.
  • This configuration makes it easy to store the vacuum heat insulating material in the inner and outer boxes 24 and 25, and eliminates the need to close the gap between the inner and outer boxes 24 and 25 and the vacuum heat insulating material 22. Furthermore, since a heat insulation box can be comprised only with the vacuum heat insulating material 22 without using a rigid urethane foam, it is supposed that heat insulation performance improves.
  • the refrigerator as the above comparative example uses only a vacuum heat insulating material that is inferior in strength compared to a hard urethane foam that is in close contact with the outer box and the inner box. There was a problem of becoming very weak.
  • it is effective to use a vacuum heat insulating material using an aluminum vapor deposited film on one plane, but from the aspect that air intrusion tends to occur, the aluminum vapor deposited film It was difficult to use a vacuum heat insulating material.
  • the refrigerator of the present embodiment is intended to solve the above problems by using a plurality of vacuum heat insulating materials having different degrees of vacuum.
  • the structure of the refrigerator of this Embodiment is demonstrated concretely.
  • the top surface of the refrigerator main body 101 has a machine room 119 provided with a step-like recess toward the back of the refrigerator. More specifically, the main body 101 has a first top surface portion 108 and a first back surface portion 147 that form the top surface and the back surface thereof. A recess portion forming the machine room 119 is formed on the back surface portion of the first top surface portion 108 and on the upper end portion of the first back surface portion 147.
  • the recessed portion includes a second top surface portion 109 provided at a position on the back side of the first top surface portion 108 and lower than the first top surface portion 108, and the first top surface portion 108 and the second top surface portion 109. And a second back surface portion 148 connecting between the two.
  • the rear-side end portion of the second top surface portion 109 is connected to the upper end portion of the first back-surface portion 147.
  • the machine room 119 is covered with a machine room cover 151, and the machine room cover 151 is provided with a ventilation hole 154 for cooling the compressor 117 and the condenser 152 by forced convection of the machine room fan 153.
  • the machine room cover 151 is detachably provided with screws or the like above the first top surface portion 108 and the second top surface portion 109.
  • the compressor 117, the condenser 152, the heat radiating pipe (not shown), the dryer 157 for removing moisture, the capillary tube 118, and the cooler 107 are sequentially annularly formed.
  • a refrigerant is enclosed in a connected refrigeration cycle, and a cooling operation is performed.
  • a flammable refrigerant is often used as the refrigerant for environmental protection.
  • these functional components can be disposed in the machine room 119.
  • the condenser 152 is provided with piping for naturally dissipating heat using the peripheral steel plate of the refrigerator, and a partition between the heat insulating doors in each room. You may combine piping for preventing. Further, as the condenser 152, a highly efficient condenser 152 having a thin configuration such as a wire type, a fin coil type, or a spiral fin type may be housed in the machine room 119.
  • the vacuum heat insulating materials 127, 128, 129, 130, 131, 155, and 156 constitute the main body 101 of the refrigerator together with the hard urethane foam 126.
  • the vacuum heat insulating materials 127, 128, 129, and 130 are the first top surface portion 108, the first back surface portion 147, the left side surface of the main body, and the right side surface of the main body. In contact with each other (more specifically, in contact with the outer box in each heat insulating wall).
  • the vacuum heat insulating materials 155 and 156 are attached to the inside of the second back surface portion 148 and the second top surface portion 109 (more specifically, in contact with the outer box within each heat insulating wall).
  • the vacuum heat insulating material 131 is attached in contact with the bottom surface of the inner box 125 (more specifically, in contact with the inner box in the corresponding heat insulating wall).
  • the vacuum heat insulating materials 128, 129, 130, and 156 are each provided with a gas adsorbing material 137, and the other vacuum heat insulating materials are provided with a gas adsorbing material. Not going to be.
  • the rigidity of the vacuum heat insulating material can be made different depending on the presence or absence of the gas adsorbing material.
  • the vacuum heat insulating material containing the gas adsorbing material has high rigidity
  • the vacuum heat insulating material not containing the gas adsorbing material has low rigidity.
  • rigidity means rigidity per unit volume, for example, vacuum insulation material of the same material and manufacturing method, including those whose rigidity of the whole vacuum insulation material varies depending on the size and thickness. Make it not exist.
  • the strength of the main body 101 of the refrigerator is improved by using a plurality of vacuum heat insulating materials having different rigidity.
  • the strength of the main body 101 can be improved by providing the highly rigid vacuum heat insulating materials 128, 129, and 130 on the side wall and the back wall that can take a large coverage of the refrigerator among the plurality of vacuum heat insulating materials. .
  • the vacuum heat insulating material cannot be applied over the entire side and back, at least about the lower portion of the refrigerator main body than 1/2 of the total height of the refrigerator main body. It is preferable that a vacuum heat insulating material provided with a gas adsorbing material is attached to all surfaces of the back surface and both side surfaces. Thereby, the rigidity of the lower part which supports a housing
  • the refrigerator according to the present embodiment has portions common to the refrigerator according to the already described embodiments in the configuration and arrangement of the vacuum heat insulating material, the presence / absence of the gas adsorbent, and the like. And since the common part has the same operational effects as those already described, redundant description thereof is omitted in the present embodiment.
  • a vacuum heat insulating material is disposed on at least one of the second back surface portion 148 that is the front surface of the compressor 117 and the second top surface portion 109 that is the bottom surface of the compressor 117.
  • the vacuum heat insulating material includes a gas adsorbing material.
  • positioned in the 2nd back surface part 148 has shown the structure provided with the gas adsorption material 137 as an example.
  • the structure is further excellent in strength and energy saving, and in addition, it can exhibit high heat insulation against heat generation around the machine room 119 including the compressor 117 having a high temperature. Therefore, it is possible to suppress the exhaust heat of the compressor 117 from being transferred to the inside of the warehouse, and to improve the energy saving performance while suppressing the rise in the inside temperature.
  • the vacuum heat insulating material is provided in the second top surface portion 109 that supports the compressor 117 and the machine room fan 153, the rigidity of the support portion can be increased and the propagation of noise and vibration can be suppressed.
  • the degree of noise and vibration control effect varies depending on the location of the vacuum heat insulating material.
  • the vacuum heat insulating material is disposed on the outer box side in the second back surface portion 148 that is in front of the compressor 117 as in the present embodiment, the propagation of noise components due to vibration of the compressor 117 and the like is suppressed. However, it is possible to suppress the transmission of noise forward (inside the warehouse). Further, when the vacuum heat insulating material is disposed on the outer box side in the second top surface portion 109, the vibration damping effect of the mounting surface of the compressor 117 is high.
  • the vacuum heat insulating material is disposed on the inner box side in the second top surface portion 148, the noise that is once attenuated while passing through the hard urethane foam 126 is further reduced by the inner vacuum heat insulating material. It has an effect of sound insulation and can suppress the propagation of noise to the front (inside of the cabinet).
  • the vacuum heat insulating material provided with the gas adsorbent 137 is the second thin heat insulating wall among the heat insulating walls constituting the second back surface portion 148 and the second top surface portion 109. It is disposed on the back surface portion 148. Thereby, although the wall thickness is thin, the 2nd back surface part 148 can exhibit high heat insulation performance.
  • the inner side of the second back surface portion 148 is located above the refrigerator compartment 102.
  • the cool air in the refrigerator is forcibly circulated and cooled by the cool air blower fan 116, so that the cool air discharged by the cool air blow fan 116 passes through the back surface of the refrigerator compartment 102 (inside the heat insulating wall).
  • the cold air temperature is approximately ⁇ 10 to ⁇ 20 ° C.
  • the machine room temperature is about 33 ° C. when the outside air temperature is 25 ° C.
  • the temperature difference between the cold air and the machine room 119 is approximately 43 to 53K. Also become.
  • the thickness of the vacuum heat insulating material itself can be reduced if the heat insulating performance equivalent to the conventional one is ensured. Therefore, the fluidity of the rigid urethane foam 126 is not hindered even in a place where the wall thickness is thin like the second back surface portion 148.
  • the film thickness of the second back surface portion 148 is 27 mm
  • the thickness of the vacuum heat insulating material provided with the gas adsorbent 137 is approximately 8 mm. For this reason, the wall thickness (gap) of the fluidized portion of the rigid urethane foam 126 can be secured to 19 mm, and there is no factor that hinders fluidity such as generation of voids.
  • the vacuum heat insulating material containing the gas adsorbent can reduce the thermal conductivity, there is a method of reducing the thickness of the rigid urethane foam 126 if it is sufficient to ensure the same heat insulating performance as the conventional heat insulating wall.
  • the internal capacity UP be achieved by reducing the wall thickness, but also the amount of the rigid urethane foam 126 used can be reduced, so that the cost can be reduced and the product weight can be reduced.
  • the weight of the upper part of the main body is reduced and the center of gravity of the main body is lowered, the refrigerator can be prevented from falling.
  • the vacuum heat insulating material provided with the gas adsorbing material 137 is the heat insulating wall of the second back surface portion 148 and the second top surface portion 109 viewed from the thickness direction. Is disposed on the second back surface portion 148 having a large projected area onto the refrigerator compartment.
  • the covering area of the vacuum heat insulating material provided with the gas adsorbing material 137 can be increased, it is possible to suppress heat transfer to the inside of the warehouse and improve energy saving while suppressing an increase in the inside temperature. it can. Further, the strength can be improved, and the effect of reducing the propagation area of noise and vibration into the interior can be enhanced.
  • the vacuum heat insulating material containing the gas adsorbent is disposed on the second back surface portion 148 having a large covering area and a height close to the user's head as in the present embodiment, the compressor 117 and the machine room fan 153 are disposed. It is possible to block the propagation path of noise and vibration from the rear part of the refrigerator where the is placed to the user standing in front of the refrigerator.
  • the vacuum heat insulating material provided with the gas adsorbent 137 is the first heat insulating wall that forms the second back surface portion 148 and the second top surface portion 109 and the distance to the compressor 117 is short.
  • the second back surface portion 148 is disposed.
  • the cold air ( ⁇ The temperature difference between the machine room 119 and the machine room 119 is approximately 43 to 53K.
  • the temperature of the compressor 117 serving as a heating element in the machine room 119 is further higher, and is approximately 45 to 50 ° C., depending on the rotation speed of the compressor 117 and the state of the refrigeration cycle due to the load fluctuation of the refrigerator. Accordingly, at this time, the temperature difference between the cold air and the compressor 117 is as high as 60 to 73K, and the temperature gradient is large.
  • FIG. 22 is a longitudinal sectional view of the refrigerator in the sixth embodiment of the present invention.
  • symbol is attached
  • the main body 201 of the refrigerator includes a metal (for example, iron plate) outer box 224 that opens forward, a hard resin (for example, ABS) inner box 225, an outer box 224, and an inner box 225. It is a heat insulation box provided with the hard urethane foam 226 filled with foam between.
  • the inside of the main body 201 is divided into a plurality of chambers.
  • the refrigerator compartment 202 provided at the top, the upper freezer compartment 203 provided below the refrigerator compartment 202, and the refrigerator compartment 202.
  • the ice making chamber 204 provided in parallel to the upper freezing chamber 203, the vegetable chamber 206 provided in the lower part of the main body, and the upper freezing chamber 203 and ice making chamber 204 provided in parallel with the vegetable chamber 206. And a lower freezer compartment 205 provided.
  • the front opening portions of the upper freezing chamber 203, the ice making chamber 204, the lower freezing chamber 205, and the vegetable chamber 206 are freely opened and closed by a drawer-type door.
  • the front opening part of the refrigerator compartment 202 may be comprised so that it can close
  • the vacuum heat insulating materials 227, 228, 229, and 230 are attached in contact with the first top surface portion 208, the first back surface portion 247, the left side surface of the main body, and the inside of the right side surface of the main body of the outer box 224, respectively. Yes. Further, the vacuum heat insulating material 242 is in contact with the inside of the second back surface portion 248 and the second top surface portion 209 and is bent and pasted together so as to be integrated therewith. That is, the vacuum heat insulating material 242 includes a portion attached to the second back surface portion 248 and a portion attached to the second top surface portion 209.
  • the vacuum heat insulating material 231 is attached in contact with the bottom surface of the inner box 225.
  • the vacuum heat insulating materials 228, 229, 230, and 242 are each provided with a gas adsorbing material 237 therein.
  • the vacuum heat insulating material 242 is provided with a gas adsorbing material 237 at a portion corresponding to the second back surface portion 248.
  • the temperature of the gas adsorbent 237 provided corresponding to the second back surface portion 248 increases moderately and becomes highly active. Accordingly, the vacuum heat insulating material 242 with an increased adsorption effect and a higher degree of vacuum can be provided, and the thermal conductivity is low and the strength is improved, thereby realizing high energy saving and appearance strength.
  • upper surface part 209 of the dent part is made into one as mentioned above. Therefore, it can suppress more effectively that the heat
  • Embodiment 7 of the present invention will be described below with reference to the drawings.
  • symbol is attached
  • FIG. 23 is a rear view of the refrigerator in the seventh embodiment, and schematically shows the arrangement of main pipes constituting the refrigeration cycle circuit.
  • the refrigeration cycle circuit provided in the main body 301 of the refrigerator includes a compressor 117, a condenser 357, a capillary tube as a decompressor, a dryer (not shown) for removing moisture, an evaporator 354, and a suction pipe 362.
  • the capillary 361 is indicated by a broken line and the suction pipe 362 is indicated by a double line in order to clarify the difference from other pipes.
  • the arrangement of the evaporator 54 is indicated by a one-dot chain line.
  • the suction pipe 362 is a pipe that connects the evaporator 354 and the compressor 117
  • the capillary 361 is a pipe that connects the condenser 357 and the evaporator 354 with a diameter smaller than that of the suction pipe 362.
  • the suction pipe 362 and the capillary 361 have substantially the same length, and are provided with a heat exchanging portion 363 soldered to each other so as to be able to exchange heat, leaving the end portion.
  • the heat exchanging portion 363 has a first bent portion 364 and a second bent portion 365 which are bent by meandering in a substantially U shape in the horizontal direction in order to secure the length of the heat exchanging portion.
  • the 1st bending part 364 and the 2nd bending part 365 are arrange
  • the bending part which connects the horizontal crossing parts 368 and 369 is comprised by substantially W shape.
  • the upper ends of the capillary tube 361 and the suction pipe 362 protrude from a notch (not shown) provided in the cage of the machine room, and are connected to the compressor 117 and the condenser 357.
  • the lower end protrudes from the inner box and is connected to the evaporator 354.
  • the vertical length L of the suction pipe 362 between the bottom of the compressor 117 and the first bent portion 364 is configured to be longer than the height H1 of the first bent portion 364. Further, the height H2 of the second bent portion 365 is configured to be larger than H1 of the first bent portion 364.
  • One end of the suction pipe 362 extends from the compressor 117 into the machine room, and extends downward at a position closer to one side in the back wall of the refrigerator.
  • the suction pipe 362 is bent in the middle and becomes a horizontal transverse portion 366 and extends to the other side, and the extending direction is turned to one side by the first bent portion 364. After turning, it becomes a horizontal crossing portion 367 and extends to one side at a position below the horizontal crossing portion 366.
  • the extension direction of the suction pipe 362 is turned again to the other direction by the second bent portion 365, and the horizontal pipe 362 is extended in the other direction.
  • the upward and one side turning, the upward and other direction turning, and the upward and one side turning again are performed by the W-shaped bent portion. Is performed and reaches the evaporator 354 via a horizontal crossing 369 directed to one side. During this time, the W-shaped bent portion and the horizontal crossing portion 369 are arranged between the horizontal crossing portions 367 and 368.
  • the compressor 117 is a reciprocating compressor.
  • the reciprocating direction of the piston of the compressor is the left-right direction substantially parallel to the back surface, that is, the reciprocating direction of the piston is substantially parallel to the horizontal transverse portions 366, 367, 368, 369.
  • FIG. 24 is a surface development view excluding the front portion of the refrigerator according to the seventh embodiment of the present invention, and the embedment position of the vacuum heat insulating material will be described using this.
  • FIG. 24 is an exploded view of each surface of the heat insulation box, the back of the heat insulation box at the center of the drawing, the top of the heat insulation box at the top of the drawing, the bottom of the heat insulation box at the bottom of the drawing, Side portions of the heat insulating box are shown on the left and right, respectively.
  • the side walls 371L and 371R are provided with a vacuum heat insulating material 370 containing a gas adsorbent 337.
  • the first projection portion 372L which is a projection region on the left side of the top surface recess (the recess forming the machine room) is shown above the left side surface portion 371L.
  • a second projection unit 373L that is a projection region to the left side of the entire interior space of the main body 301 is shown on the side surface unit 371L.
  • the vacuum heat insulating material 370 includes at least a part of the first projection part 372L, and is embedded in an area of 80% or more that is substantially the entire side part of the main body 301 across the second projection part 373L. Has been. As shown in the drawing, the same applies to the right side surface portion 371R.
  • a vacuum heat insulating material 375 containing a gas adsorbent 337 is attached to the back wall 374 in a range of 50% to 70% of the entire back surface with a smaller area than the side wall.
  • the vacuum heat insulating material 375 on the back wall 374 is provided at the back of the freezer compartment held at least in the freezing temperature zone.
  • These gas adsorbents 337 are powder ZSM-5 type zeolites having excellent nitrogen adsorption characteristics described in detail in the first embodiment.
  • a suction pipe 362 having horizontal transverse portions 366, 367, 368, 369 is provided between the inner box and the outer box forming the back wall.
  • the rigidity in the left-right direction (horizontal direction) of the back wall is improved.
  • the left and right side walls of the main body 301 are provided with a vacuum heat insulating material having the deforming portion 130a extending in the vertical direction as described in the first embodiment.
  • the suction pipe 362 functions as a horizontal reinforcing member for the back wall
  • the linear deformation portion 130a extending in the vertical direction of the vacuum heat insulating material provided on the side wall 101a has the vertical direction of the side wall 101a. It functions as a reinforcing part.
  • the rigidity in the left-right direction of the back wall contributes to firmly connecting the left and right side walls, and the overall rigidity of the main body 301 is improved.
  • first bent portion 264 connecting the horizontal crossing portion is embedded in the heat insulating wall between the compressor 117 and the evaporator 354, and the second bent portion 265 is provided on the heat insulating wall on the back surface of the evaporator 254.
  • the rear wall of the refrigerator to have improved strength, particularly in the left-right direction, even if no vacuum heat insulating material is provided over a wide range equivalent to the side wall.
  • the rigidity of the main body 301 as the heat insulating box of the refrigerator can be improved by increasing the rigidity of the side walls and increasing the rigidity in the left-right direction among the back walls connecting them.
  • the left and right side walls of the main body 301 are provided with the vacuum heat insulating material having the deforming portions 130a extending in the vertical direction, thereby increasing the rigidity of the side walls. Furthermore, the suction wall 362 is provided on the back wall connecting the left and right side walls, thereby increasing the rigidity in the left-right direction (horizontal direction).
  • the difference in strength between the back surface portion and the side surface portion of the heat insulating box can be reduced, and the rigidity of the entire refrigerator is improved.
  • the vacuum heat insulating material 370 is stuck and affixed on the outer inner surface of the heat insulating box, the thickness of the vacuum heat insulating material 370 is used when foaming and filling hard urethane foam to the heat insulating body. Then, only one side of the vacuum heat insulating material 370 needs to be considered. Thereby, compared with the structure which arrange
  • the vacuum heat insulating material 370 provided on the side wall is at least of the projections 372L and 372R in the left-right direction of the recess provided on the top surface of the heat insulating box where the strength of the heat insulating body is likely to decrease. Buried including part of it. Thereby, especially the rigidity of the upper part of a side part can be improved.
  • the suction pipe 362 includes a first bent part 364 and a second bent part 365.
  • strength of the heat insulation wall of the back surface of the evaporator 354 which repeats thermal contraction and thermal expansion with the cold heat which arises in the evaporator 354 can further be improved.
  • the present invention can be used for household refrigerators that require energy-saving running cost reduction and high quality of finished products in consideration of the environment.

Abstract

 本発明は、冷蔵庫の箱体強度を向上し、経年劣化によって起こる真空断熱材の空気侵入による外観変形も防止し、高い断熱性能を有する高い冷蔵庫を提供する。本発明は、内箱と外箱の間に発泡断熱材が充填された断熱箱体と、前記断熱箱体の少なくとも側面壁に前記発泡断熱材と共に配設され、外被材に少なくとも芯材を内包し減圧密封した真空断熱材とを備え、前記真空断熱材には気体吸着材が内包されている。断熱壁の中で歪みの大きくなる側面壁に気体吸着材を有する真空断熱材を備えたことで、側面壁の剛性を向上させるとともに真空断熱材の経年劣化を抑制し、長期間に渡って断熱箱体の剛性を維持することが可能となり、本体外箱の外観変形も防止できる。

Description

冷蔵庫及び冷蔵庫用の真空断熱材
 本発明は、真空断熱材を適用した冷蔵庫に関するものである。
 近年、冷蔵庫の省エネルギー化や省スペース化を図るために、冷蔵庫の断熱性能を高めるのが有効であり、その一手段として、高断熱性能を有する真空断熱材を利用する方法が提案されている。特に、省エネルギーの要請が益々高まる今日では、硬質ウレタンフォームと比較して数倍から10倍程度の断熱性能を有する真空断熱材を、適切な範囲内で最大限に利用することにより断熱性能を向上させていくことが急務であるといえる。
 その中で、真空断熱材を備えた従来の冷蔵庫が、例えば特許文献1~4に開示されている。図25は、特許文献1に記載されている冷蔵庫の正面断面図である。冷蔵庫は、箱状に形成された冷蔵庫の本体1と、冷蔵庫の本体1の前面開口を開閉する扉(図示せず)とを備えている。冷蔵庫の本体1は、合成樹脂製の内箱25と、この内箱25を覆う鋼板製の外箱24との間に構成される空間内に、複数の真空断熱材(真空断熱パネル)39,40を配設すると共に、硬質ウレタンフォーム(ウレタン発泡樹脂)26を充填することで形成した断熱壁を有している。
 この断熱壁の両側面壁は、薄い部分(温度の高い貯蔵室2,6の両側面壁部分)で厚さ30mm程度、厚い部分(温度の低い貯蔵室14の両側面壁部分)で50mm程度の厚さを有している。
 複数の真空断熱材39,40は、外箱面に密着して設置した真空断熱材39と、内箱面に密着した真空断熱材40とから構成されており、真空断熱材39,40は、10mm程度の厚さで構成されている。真空断熱材39は、外箱側で平板状に構成されて設置されると共に、底面40の左右両側の外箱コーナー部41の近傍まで延びている。真空断熱材40は、内箱25の底面に設置された外箱コーナー部41に対向した内箱コーナー部を覆って設けられ、さらに、側面壁の厚み方向から見て真空断熱材39と重なる位置まで、内箱面に沿って延びるように設置されている。
特開2006-242439号公報 特開2007-198622号公報 特開2005-127602号公報 特開平6-159922号公報
 しかしながら、上記従来例に記載されている冷蔵庫では、外箱と内箱とに密着してなる硬質ウレタンフォームと比較して強度的に劣る真空断熱材のみを使用した冷蔵庫であるため、断熱性能は高いものの強度的には非常に弱くなるといった問題があった。
 また、近年の冷蔵庫業界の省スペース化及び大容量化の傾向では、約10年前と比べて同等の外形寸法で、庫内容量は100L程度増加している。これは冷蔵庫の無効スペースを無くす取り組みや箱体の断熱性能を向上させつつ壁厚の薄壁化をしているためである。上記従来例のように内箱側と外箱側の真空断熱材を互いに重なるように設置するには、十分な壁厚が必要である。例えば、真空断熱材の厚みを10mm程度とした場合、重ね合わせる部分の壁厚は、硬質ウレタンフォームの充填厚みを考慮すると40mm以上は必要となる(上記従来例では50mm)。このため、更なる大容量化を行うことは難しかった。
 本発明は、上記課題に鑑み、冷蔵庫の箱体強度を向上し、経年劣化によって起こる真空断熱材の空気侵入による外観変形も防止し、高い断熱性能を有する高い冷蔵庫を提供するものである。
 上記従来の課題を解決するために、本発明の冷蔵庫は、内箱と外箱の間に発泡断熱材が充填された断熱箱体と、
 前記断熱箱体に前記発泡断熱材と共に配設され、外被材に少なくとも芯材を内包し減圧密封した真空断熱材とを備え、
 前記真空断熱材には気体吸着材が内包されているとともに前記真空断熱材は前記断熱箱体の少なくとも側面壁に備えられている。
 これによって、本発明は、扉等の影響によって断熱壁の中で最も負荷のかかりやすい側面壁に気体吸着材を有する真空断熱材を備えたことで、断熱箱体全体の剛性を向上させるとともに真空断熱材の経年劣化を抑制し、長期間に渡って断熱箱体の剛性を維持することが可能となる。
 本発明によれば、冷蔵庫の箱体強度を向上し、経年劣化によって起こる真空断熱材の空気侵入による外観変形も防止し、高い断熱性能を有する高い冷蔵庫を提供することができる。
本発明の実施の形態1における冷蔵庫の斜視図 本発明の実施の形態1における冷蔵庫の正面断面図 本発明の実施の形態1における冷蔵庫の側面壁の縦断面図 本発明の実施の形態1における気体吸着材を適用した第1の真空断熱材の断面図 本発明の実施の形態1における気体吸着材を適用した第2の真空断熱材の断面図 本発明の実施の形態1における真空断熱材の平面図 本発明の実施の形態1における気体吸着材を適用した真空断熱材の経年劣化イメージ図 本発明の実施の形態1における真空断熱材の気体吸着材配置図 本発明の実施の形態2の比較例としての冷蔵庫の側面断面図 本発明の実施の形態2における冷蔵庫の側面壁の縦断面図 本発明の実施の形態2における冷蔵庫の側面断面図 本発明の実施の形態2における第1の真空断熱材の断面図 本発明の実施の形態2における第2の真空断熱材の断面図 本発明の実施の形態3の比較例としての冷蔵庫の扉の側面断面図 本発明の実施の形態3における冷蔵庫の縦断面図 本発明の実施の形態3における冷蔵庫の扉の縦断面図 本発明の実施の形態4における冷蔵庫の斜視図 本発明の実施の形態4における冷蔵庫の分解図 本発明の実施の形態5の比較例としての冷蔵庫の側面断面図 本発明の実施の形態5における冷蔵庫の縦断面図 本発明の実施の形態5における冷蔵庫の機械室構成図 本発明の実施の形態6における冷蔵庫の縦断面図 本発明の実施の形態7における冷蔵庫の背面図 本発明の実施の形態7における冷蔵庫の面展開図 従来技術による冷蔵庫の正面断面図
 第1の発明は、内箱と外箱の間に発泡断熱材が充填された断熱箱体と、前記断熱箱体の少なくとも側面壁に前記発泡断熱材と共に配設され、外被材に少なくとも芯材を内包し減圧密封した真空断熱材とを備え、前記真空断熱材には気体吸着材が内包されている冷蔵庫である。
 これにより、断熱壁の中で歪みの大きくなる側面壁に気体吸着材を有する真空断熱材を前記発泡断熱材と共に備えたことで、側面壁の剛性を向上させるとともに真空断熱材の経年劣化を抑制し、長期間に渡って断熱箱体の剛性を維持することが可能となる。
 第2の発明は、前記真空断熱材は板形状を成し、前記断熱箱体の左右両側の側面壁には、前記気体吸着材が内包された前記真空断熱材が配設されるとともに、前記左右両側の側面壁に配設された前記真空断熱材は、夫々の主面が互いに同じ面積を有している。
 これにより、冷蔵庫の左右壁である側面壁における剛性を同一にすることができ、断熱箱体における剛性の偏りをなくし、バランスよく安定した強度の断熱箱体を形成することが可能となる。
 第3の発明は、前記断熱箱体の背面壁には、前記気体吸着材が内包された前記真空断熱材が配設されるものである。
 これにより、冷蔵庫の側面壁に加えて、それら左右の側面壁を繋ぐ背面壁においても剛性を高めることで、断熱箱体の剛性をさらに高めることが可能となる。
 第4の発明は、前記側面壁に配設された前記真空断熱材は、その下端部に前記芯材が内包されていない前記外被材のみの無芯部を有し、前記無芯部は折り返された複層部を形成し、前記気体吸着材は、前記複層部から離れた箇所に位置するものである。
 これにより、真空断熱材の中でも熱伝導性の良い外被材の部分のみで形成された複層部は、温度変化が大きくなる傾向があるが、気体吸着材をこの複層部から離れた箇所に配設することで、温度変化をより抑制することができ、安定した気体吸着量を得ることで、経年劣化を抑制することができる。
 第5の発明は、前記断熱箱体には発熱部が設けられ、前記真空断熱材に内包された前記気体吸着材は、前記断熱箱体の発熱部とは、隣接しないように位置するものである。
 これにより、真空断熱材に備えられた気体吸着材が高温となることを避けることができ、気体吸着材が短期間に高活性化するのを避け、長期間に渡って機能を発揮することができる。更に、気体吸着材周辺の外被材の経年劣化を防ぐことで気体吸着材が空気に触れる影響が低減でき、断熱箱体を長期に渡り使用した場合でも、真空断熱材に搭載した気体吸着材は外部から侵入してくる空気の吸着を継続して行えるので、真空断熱材の真空度維持を図り、真空断熱材の熱伝導率の劣化を抑制することができる。
 第6の発明は、前記断熱箱体には発熱部が設けられ、前記真空断熱材に内包された前記気体吸着材は、前記真空断熱材の厚み方向において前記断熱箱体の発熱部と重ならないように位置するものである。
 これにより、真空断熱材に備えられた気体吸着材が高温となることを避けることができ、気体吸着材が短期間に高活性化するのを避け、長期間に渡って機能を発揮することができる。更に、気体吸着材周辺の外被材の経年劣化を防ぐことで気体吸着材が空気に触れる影響が低減でき、断熱箱体を長期に渡り使用した場合でも、真空断熱材に搭載した気体吸着材は外部から侵入してくる空気の吸着を継続して行えるので、真空断熱材の真空度維持を図り、真空断熱材の熱伝導率の劣化を抑制することができる。
 第7の発明は、前記断熱箱体には、圧縮機と、コンデンサに備えられた放熱パイプと、キャピラリーチューブと、冷却器とを有する冷凍サイクルが設けられ、前記発熱部は前記放熱パイプであるものである。
 これにより、冷凍サイクルの中で高温となる放熱パイプにおいて発生する外気温度よりも高い熱が、気体吸着材に熱伝達することを抑制することができ、気体吸着材がヒートスポットになることを避けることが可能となる。
 さらに、気体吸着材が真空断熱材よりも出っ張る場合でも、本体箱側の真空断熱材の表面が凸形状とならず、外観変形も防止できる。
 また、低真空度に維持される真空断熱材の空気侵入による変形も防止できるため、本体外箱の外観変形も防止できる。
 第8の発明は、前記放熱パイプは、前記真空断熱材の表面に配設されるとともに、少なくとも2本の前記放熱パイプの間に前記気体吸着材が配設されるものである。
 これにより、真空断熱材に局所的に断熱できない箇所がないため、放熱能力を増加し、省エネ性を向上させることができる。
 第9の発明は、前記気体吸着材は、前記真空断熱材における前記放熱パイプが配設される面とは反対側の面に配設されるものである。
 これにより、放熱パイプと気体吸着材とは、必ず真空断熱材の芯材を介して逆側の面に位置するため、放熱パイプからの熱影響を受けることを低減することが可能となる。
 第10の発明は、前記断熱箱体は、扉内板と扉外板とを有する扉を備え、前記扉内板と前記扉外板の間には、発泡断熱材が充填されると共に、外被材に少なくとも芯材を内包し減圧密封した真空断熱材が配設され、前記真空断熱材には気体吸着材が内包されているものである。
 これにより、気体吸着材を内包した真空断熱材は、真空断熱材の経年劣化も抑制できることから、扉の剛性向上を長期間に渡って図ることができるため、扉の強度を向上させることができる。
 また、十分な強度が得られている場合には、気体吸着材を内包した真空断熱材を用いることで強度を維持したままで壁厚の薄壁化を行うことができ、庫内容量を大きくすることが可能となる。また、壁厚の薄壁化によって、使用する硬質ウレタンフォームの使用量が低減できるとともに製品重量も低減することができる。
 第11の発明は、前記断熱箱体は複数の前記扉を備え、前記複数の扉の中で最も面積の大きい扉に、前記気体吸着材を内包した真空断熱材が配設されるものである。
 一般に、面積の大きいドアは長期間使用することで、ドア内外の反りといった変形が生じる可能性があるが、本発明により、気体吸着材を内包した真空断熱材は、真空断熱材の経年劣化も抑制できることから、扉の剛性向上を長期間に渡って図ることができるため、扉の強度を向上させることができ、扉の変形による冷気もれ等による冷却効率の低下を防止し、省エネルギーの冷蔵庫を提供することができる。
 第12の発明は、前記扉の前記扉外板は切欠部を有し、前記扉をその厚み方向から見て、前記切欠部の少なくとも一部に重なるように、前記気体吸着材を内包した真空断熱材が配設されるものである。
 一般に、切欠部を備えた扉外板を有することで、扉強度の低下する懸念があるが、本発明により、前記扉をその厚み方向から見て、切欠部の少なくとも一部に重なるように、気体吸着材を内包した真空断熱材を備えることで、扉の強度を向上させることができ、信頼性の高い冷蔵庫を提供することが可能となる。
 第13の発明は、前記断熱箱体には、真空度の異なる複数の真空断熱材が備えるものである。
 一般に、真空断熱材の真空度は、真空断熱材の外被材内部に含まれる気体が外部から吸引される量、若しくは、気体吸着材の吸着性能によって決定される。真空断熱材の真空度と剛性および熱伝導率は相関があり、真空度が高い真空断熱材は、剛性が高く、且つ、熱伝導率は低い。真空度の低い真空断熱材はこの逆である。よって、真空度の高い真空断熱材を、強度を高めたい部分に用いることで冷蔵庫の本体自身の強度を高めることができる。
 第14の発明は、前記真空度の異なる複数の真空断熱材の中で、最も真空度の大きい真空断熱材は、少なくとも繊維材料を含む芯材と、包材からなる袋に内包された気体吸着材とを、ガスバリア性を有する外被材で被った真空断熱材である。
 これによって、空気中の概ね75%程度の割合で存在する窒素を、常温でも吸着することが出来るため、真空断熱材内部の残留空気を低減でき、真空断熱材の真空度の向上や剛性の向上が図れ、熱伝導率の低減を行える。また、気体吸着材は真空封止後も外被からの空気侵入分を継続して吸着することができるため、真空断熱材の時間経過による内部への空気侵入で起こる熱伝導率の経年劣化に対する性能低下の抑制も可能となり、長期にわたり高断熱性能を維持することができる。
 第15の発明は、前記断熱箱体の上面及び背面はそれぞれ第一の天面部及び第一の背面部によって画定され、前記断熱箱体の上部の背面側部分には凹部が形成され、前記凹部は、前記第一の天面部の背面側にて前記第一の天面部より低い位置に設けられ、かつ前記第一の背面部の上部に接続された第二の天面部と、前記第一の天面部と前記第二の天面部との間を接続する第二の背面部とを有し、前記凹部が有する第二の天面部には圧縮機が配設されており、前記第二の背面部または前記第二の天面部、もしくはこれらの両方に、前記気体吸着材を内包した真空断熱材が配設されるものである。
 これにより、強度が高く、且つ、省エネ性に優れた冷蔵庫であることに加え、温度の高い圧縮機を含めた機械室周囲部に気体吸着材を用いた真空断熱材を使うことで高い断熱性を有するため、圧縮機の排熱による庫内側への断熱を抑え、庫内温度の上昇を抑制しつつ省エネ向上を図ることができる。
 更に、圧縮機や機械室ファンを支持する第二の天面部の剛性を高めて騒音、振動の伝播を抑えることができる。
 第16の発明は、前記気体吸着材を内包した真空断熱材は、前記第二の背面部と前記第二の天面部を構成する断熱壁のうち、厚みが薄いほうに配設される。
 これにより、気体吸着材による熱伝導率の低減した真空断熱材を断熱壁の厚みが薄いほうに貼り付けることで、断熱性能として高い効果を得ることが出来る。
 また、熱伝導率の低減により従来と同等の断熱性能であれば真空断熱材自体の厚みを薄くできるため、ウレタン流動性も阻害しない。一方、熱伝導率低減により従来と同等の断熱性能であれば、硬質ウレタンフォームの厚みを薄くする方法もある。この場合は、庫内容量UPが図れるだけでなく、壁厚の薄壁化によって、使用する硬質ウレタンフォームの使用量も低減できコストダウンが図れるとともに製品重量も低減することができるため、搬入時の運搬性も向上する。
 また、本体上部の重量が低減されるため、剛性および真空度が異なる真空断熱材を複数で使い分けして配置して剛性強度を向上させた本体に加えて、重心も下がるため転倒防止にも効果がある。
 第17の発明は、前記気体吸着材を内包した真空断熱材は、前記第二の背面部と前記第二の天面部を構成する断熱壁のうち、各断熱壁を厚み方向から見たときに庫内への投影面積が大きいほうに配設されるものである。
 これにより、気体吸着材を備えた真空断熱材の被覆面積を大きくとることができるため、庫内への伝熱を抑え、庫内温度の上昇を抑制しつつ省エネ向上を図ることができる。更に、強度の向上が図れるとともに、庫内への騒音・振動の伝播面積の減衰効果も高められる。
 第18の発明は、前記気体吸着材を内包した真空断熱材は、前記第二の背面部と前記第二の天面部を構成する断熱壁のうち、圧縮機への距離が近いほうに配設されるものである。
 これにより、温度差の大きい部分に気体吸着材を備えた真空断熱材を配置することで、断熱性能として高い効果が得られ、圧縮機の排熱による庫内側への伝熱を抑え、庫内温度の上昇を抑制しつつ省エネ向上を図ることができる。
 また、圧縮機の排熱温度の影響を受け気体吸着材自身も温度が高まるため、気体吸着材の活性度が向上し、吸着効果が高まる。その結果、より真空度の高まった真空断熱材を提供することができ、熱伝導率が低く、強度も向上するので高い省エネ性や外観強度が実現する。
 第19の発明は、第1の発明から第18の発明のいずれかの冷蔵庫に搭載する冷蔵庫用の真空断熱材である。
 以下、本発明の実施の形態について、図面を参照しながら説明する。また、この実施の形態によってこの発明が限定されるものではない。
 なお、従来と同一構成及び差異がない部分については、詳細な説明を省略する。また、この実施の形態によってこの発明が限定されるものではない。
 (実施の形態1)
 以下、本発明の実施の形態について図面を用いて詳細に説明する。
 図1は本発明の実施の形態1による冷蔵庫の斜視図である。図2は本発明の実施の形態1による冷蔵庫の正面断面図である。図3は本発明の実施の形態1による冷蔵庫の側面壁の縦断面図である。
 図1から図3に示すように、冷蔵庫の本体101は、前方に開口する金属製(例えば鉄板製)の外箱124と、硬質樹脂製(例えばABS製)の内箱125と、外箱124と内箱125の間に発泡充填された硬質ウレタンフォーム126とを備える断熱箱体である。本体101は、その内部が複数の室に区分けされており、本実施の形態では、上部に設けられた冷蔵室102と、冷蔵室102の下に設けられた上段冷凍室103と、冷蔵室102の下で上段冷凍庫103に並列に設けられた製氷室104と、本体下部に設けられや野菜室106と、並列に配置された上段冷凍室103及び製氷室104と野菜室106の間に設けられた下段冷凍室105とを有している。
 冷蔵庫は、冷蔵室102の前面開口部分を開閉する回転式の扉102aを備えている。この扉102aは、本体101の天面部に備えられた上部ヒンジ保持部102bと冷蔵室102の下方側に備えられた下部ヒンジ部102cとによって、回動自在に本体101に取り付けられている。
 また、上部ヒンジ保持部102bの少なくとも一部は、上下方向に沿って見た場合に、側面壁101aの内箱125よりも外箱124側に位置するように備えられている。言い換えると、上部ヒンジ保持部102bの少なくとも一部は、上下方向に沿って見た場合に、断熱材で形成された側面壁101a上に重なるように位置している。
 上段冷凍室103と製氷室104と下段冷凍室105と野菜室106の前面開口部分は、それぞれに対応した引き出し式の扉103a,104a,105a,106aにより開閉自由に閉塞される。また、冷蔵室102の前面開口部分は、例えば観音開き式で回転式の扉102aにより開閉自由に閉塞するように構成してもよい。
 冷蔵室102は、食品を冷蔵保存するために、凍らない温度を下限とするよう、通常は1~5℃となるように設定されている。野菜室106は、冷蔵室102と同等もしくは若干高い温度設定の2℃~7℃に設定することが多い。低温にすれば葉野菜の鮮度を長時間維持することが可能である。上段冷凍室103と下段冷凍室105は、食品を冷凍保存するために、通常は-22~-18℃となるように設定されているが、冷凍保存状態の向上のために、たとえば-30~-25℃などのように、より低温に設定されることもある。
 上記のように、冷蔵室102や野菜室106は、庫内がプラス温度に設定されるので、このような温度領域を有する上記各庫内は冷蔵温度帯と呼ばれる。また、上段冷凍室103や下段冷凍室105や製氷室104は、庫内がマイナス温度で設定されるので、このような温度領域を有する上記各庫内は冷凍温度帯と呼ばれる。また、上段冷凍室103は切替室として構成し、冷蔵温度帯から冷凍温度帯まで選択可能な部屋としてもよい。
 冷蔵庫の本体101の天面部は、冷蔵庫の背面方向に向かって階段状を成すように、第一の天面部108とその背面側の第二の天面部109とで構成されている(図3参照)。換言すれば、本体101の天面部の背面側部分には、第二の天面部109を底面とする凹みが設けられている。この凹みは、圧縮機117を配置する機械室119となっている。なお、図1に示すようにこの凹みにはカバーが被せられている。
 この冷蔵庫は、圧縮機117と、水分除去を行うドライヤ(図示せず)と、コンデンサ(図示せず)と、放熱用の放熱パイプ143と、キャピラリーチューブ118と、冷却器(図示せず)とを順次環状に接続してなる冷凍サイクルを備えている。そして、この冷凍サイクルに冷媒を封入し、冷却運転を行う。前記冷媒には近年、環境保護のために可燃性冷媒を用いることが多い。なお、三方弁や切替弁を用いる冷凍サイクルの場合は、それらの機能部品を機械室内に配設することもできる。
 ここで、真空断熱材127,128,129,130,131は、硬質ウレタンフォーム126とともに冷蔵庫の本体101を構成している。具体的に説明すると、上記真空断熱材のうち真空断熱材127,128,129,130は、外箱124の天面、背面、左側面、右側面の内側に接してそれぞれ貼り付けられている。また、真空断熱材131は、内箱125の底面に接して貼り付けられている。
 側面壁101aに備えられた真空断熱材129,130には、気体吸着材137がそれぞれ内部に備えられている。これらの気体吸着材137は、真空断熱材129,130それぞれの厚み方向の中心位置よりも、庫内側(内箱側)の位置に配設されている。左右両側の側面壁101aに配設された真空断熱材129,130は、板形状を成し、夫々の主面が互いに同じ面積を有している。
 また、側面壁101aに備えられた真空断熱材129,130には、上下方向に延びる直線状の変形部が形成されている。図3には、右側の側壁面101aに備えられた真空断熱材130が有する変形部130aを示しているが、左側の真空断熱材129の変形部も同様である。これらの変形部は、真空断熱材129,130の外側表面から窪んだ凹状部(あるいは、溝状部)となっている。また、これらの変形部は、真空断熱材129,130の夫々において複数形成されており、横方向にほぼ平行に並んでいる。また、図3に示すように、真空断熱材130は、芯材が内包されていない外被材のみで形成された無芯部を折り返した複層部130bを有している。図3では、側面視で長方形状を成す真空断熱材130の四隅のうち、下部背面側の角部を折り返した複層部130bを示しているが、他の角部にも複層部を形成してもよい。また、真空断熱材129についても同様に複層部を形成してもよい。
 図2に示すように、本体101内の各室は仕切り部によって区画されている。具体的には、冷蔵室102と、その下方の製氷室104および上段冷凍室103とは、第一の断熱仕切り部110によって区画されている。また、左右に並設された製氷室104と上段冷凍室103とは、第二の断熱仕切り部111によって区画されている。また、製氷室104および上段冷凍室103と、それらの下方の下段冷凍室105とは、第三の断熱仕切り部112によって区画されている。更に、下段冷凍室105とその下方の野菜室106とは、第四の断熱仕切り部113によって区画されている。
 なお、第二の断熱仕切り部111および第三の断熱仕切り部112は、硬質ウレタンフォーム126を充填した後の本体101に対して組み付けられる部品であるため、断熱材として発泡ポリスチレンを使用することが考えられる。しかしながら、断熱性能や剛性を向上させるために硬質ウレタンフォーム126を用いてもよく、更には、高断熱性の真空断熱材を挿入することにより、仕切り構造のさらなる薄型化を図ってもよい。
 また、上段冷凍室103及び製氷室104の引き出し式の扉は、ローラ及びガイドなどから成る可動部(ガイド機構)を備えている。従って、この可動部を確保しさえしておけば、第二の断熱仕切り部111および第三の断熱仕切り部112の形状の薄型化や廃止を行って、冷却風路を確保でき冷却能力の向上を図ることもできる。また、第二の断熱仕切り部111および第三の断熱仕切り部112の内部をくりぬくことで、くりぬいた部分を風路とすることができ、更には材料の低減を図ることもできる。
 冷蔵庫の本体101の背面には、アルミニウムや銅を用いて形成された冷却室(図示せず)が設けられている。この冷却室内には、代表的なものとして、フィンアンドチューブ式の冷気を生成する冷却器が配設されている。一例として該冷却器は、断熱仕切壁である第二および第三の仕切り部111,112の後方領域と下段冷凍室105の背面領域とにわたるようにして、上下方向に縦長に配設されている。
 冷却器の近傍(例えば、冷却室の上部空間)には、強制対流方式により各貯蔵室102~106に冷却器で生成した冷気を送風する冷気送風ファン(図示せず)が配置されている。また、冷却室の下部空間には、冷却時に冷却器や冷気送風ファンに付着する霜を取り除く除霜装置としてのガラス管製のラジアントヒーター(図示せず)が設けられている。除霜装置の具体的な構成は特に上記のものに限定するものではなく、ラジアントヒーターに換えて、冷却器に密着したパイプヒータを用いてもよい。
 次に、上記のような冷蔵庫の冷却運転について説明する。例えば、本体101の壁部を通じた外部からの侵入熱や、ドアの開閉時の侵入熱などにより、冷凍室106の庫内温度が上昇して温度センサである冷凍室センサ(図示せず)が所定の起動温度以上を検出した場合に、圧縮機117が起動して冷却運転が開始される。圧縮機117から吐出された高温高圧の冷媒は、凝縮器にて放熱して凝縮液化し、最終的に機械室119に配置されたドライヤまで到達する間、特に外箱124に設置される放熱パイプ143において、外箱124の外側の空気や庫内のウレタンフォーム126との熱交換により、冷却されて液化する。
 次に、液化した冷媒は減圧器であるキャピラリーチューブ118で減圧されて、冷却器に流入し冷却器周辺の庫内空気と熱交換する。熱交換により生成された冷気は、近傍の冷気送風ファンにより庫内へ送風され庫内を冷却する。この後、冷媒は加熱されガス化して圧縮機117に戻る。庫内が冷却されて冷凍室センサの温度が停止温度以下になった場合に圧縮機117の運転が停止する。
 次に、本実施の形態で使用した気体吸着材137を用いた真空断熱材について説明する。
 図4のように、真空断熱材138は、少なくとも繊維材料を含む芯材132と、ガスバリア性を有する包材133からなる袋に真空封止された粉末状の気体吸着材137とを、ガスバリア性に優れた外被材135で被い、外被材135を真空封止後に、包材133に穴を開け、包材内部と外被材内部を連通させて構成される。尚、連通とは、包材内部と包材外部で隔てられていた空間を一続きの空間にすることである。
 上記のように外被材135の真空封止後に包材133に穴を開ける際に、本実施の形態においては、予め包材133に備えられた破壊部134に対し、真空封止後に外被材135の外部から外力を加えることで当該破壊部134を破壊し、包材133に穴を開けている。
 このように、穴が開いた状態では、外被材135の内部空間と気体吸着材とが連通し、気体吸着材により外被材135の内部空間に残存していた気体がさらに吸着されるので、真空度をより向上させることが可能となる。
 このように、本実施の形態の真空断熱材は、製造時に真空引きをして密封した後に、気体吸着材の容器を適当な方法で破壊して外被材内で連通させることで二段減圧を行う。この二段減圧によって、真空度を大幅に高めることが可能となり、併せて、気体吸着材を内包する真空断熱材は剛性が向上する。
 なお、気体吸着材は、ZSM-5型ゼオライトからなる吸着材を、表面積が大きい粉末状として備えている。また、常温での窒素吸着特性を向上させるため、ZSM-5型ゼオライトの中でも、さらに望ましくは、ZSM-5型ゼオライトの銅サイトのうち、少なくとも60%以上の銅サイトが、銅1価サイトであり、銅1価サイトのうち、少なくとも70%以上が酸素三配位の銅1価サイトである吸着材としている。
 このように酸素三配位の銅1価サイトの率を高めた気体吸着材を備えることで、空気の吸着量を大幅に向上させることが可能となる。
 また、真空断熱材は、内部に芯材を有しており、芯材はグラスウールなどの無機繊維集合体を加熱乾燥後、蒸着層フィルムと金属薄層フィルムを貼り合わせた外被材中に挿入し、内部を真空引きして開口部を封止することにより形成されている。ここで、繊維集合体とは、繊維のみからなる集合体であって、バインダーや酸、熱等で成形されていてもよい。
 蒸着層フィルムとしては、アルミ蒸着フィルムをナイロンフィルムと高密度ポリエチレンフィルムとで挟み込んだ複合プラスチックフィルムを用いることができる。また、金属箔層フィルムとしては、アルミ箔をナイロンフィルムと高密度ポリエチレンフィルムとで挟み込んだ複合プラスチックフィルムを用いることができる。
 また、蒸着層フィルムの金属箔層フィルムとのシール面は平面状とし、金属薄層フィルムの蒸着層フィルムとのシール面は立体的に構成している。そして、このような外被材は、蒸着層フィルムを外箱124もしくは内箱125に接するようにして配置している。
 ガスバリア性を有する包材133は、内部に気体吸着材を入れた上で、包材133の開口部に封止部材を配設したものを用いる。包材133としては、アルミニウム、鉄、銅、ステンレス等の容器が安価であり、容易に利用できる。本実施の形態では、包材133としてアルミニウムの容器を使用し、封止部材としてガラス組成物を用いた。これは、金属の中でも熱膨張係数が大きく、外被材135の内部を真空封止する際の加熱過程および冷却過程においてガラス組成物より収縮度合いが顕著に大きくなるため、ガラス組成物を挟み込む物理的な応力を発現し、ガラス組成物による金属製容器の封止をより強固にすることができるためである。
 また、アルミニウムは他の金属と比較して柔軟性が高いため、収縮の際にガラス組成物を破壊することなく、自身が延伸してガラス組成物を適切な応力にて挟み込むことが可能である。このため、減圧密封後に金属製の包材133を開封して、気体吸着材がその機能を発揮するような用途に用いる場合、アルミニウムの柔軟性により開封が容易である。
 気体吸着材137とは、気体中に含まれる非凝縮性気体を吸着できるものであり、アルカリ金属やアルカリ土類金属の酸化物、あるいは、アルカリ金属やアルカリ土類金属の水酸化物等が利用でき、例えば、酸化リチウム、水酸化リチウム、酸化バリウム、水酸化バリウム等がある。これによって、空気中の概ね75%を有する窒素を常温状態で吸着できるため、高い真空度を得ることが出来る。
 破壊部134は、封止部材と兼用しており、包材133よりも脆く壊れやすい材料であるガラス組成物によって形成されている。即ち、包材133の内部に気体吸着材を密封する封止部として機能するとともに、脆く壊れやすい材料で形成することで、減圧密封後に包材133に貫通孔を確実に形成することが可能であり、破壊部としても機能する。
 ガスバリア性を有する外被材135とは、芯材132、包材133、気体吸着材137、破壊部134を包み込むことにより、これらを周囲の空間から独立させるものである。また、気体透過度が10[cm/m・day・atm]以下であることが好ましく、より望ましくは10[cm/m・day・atm]以下となるものである。
 なお、穴を開ける方法として、本実施の形態では端部に封止部と兼用して形成した破壊部134を用いたが、破壊部134は、外被材135の真空封止後に外力によって、包材133を破壊できる部材であればよく、例えば包材133の剛性の弱い箇所やシール部を破壊部とし、これを破壊してもよい。
 また、その他の方法として、突起物を包材133に接触することにより穴を開けてもよい。図5に示す真空断熱材138は、気体吸着材137を用いた真空断熱材138であって、少なくとも繊維材料を含む芯材132と、ガスバリア性を有する包材133からなる袋に真空封止された気体吸着材137とを、ガスバリア性を有する外被材135で被い、外被材135の真空封止後に、包材133に穴を開け、包材内部と外被材内部を連通させた構成となっている。
 上記のように図5に示す真空断熱材138では、外被材135の真空封止後に包材133に穴を開ける際に、本実施の形態においては、予め包材133に隣接して突起物を有する部材134を外被材135に内包しておき、真空封止後に外力によって突起物を有する部材134を押すことで包材133に穴を開けている。
 なお、繊維材料を含む芯材を用いて作製した真空断熱材の熱伝導率は、粉末材料のみからなる芯材を用いて作製した真空断熱材の熱伝導率に比較して、低圧力領域では小さく、高圧力領域では大きい。従って、繊維材料を含む芯材を用いて作製した真空断熱材はその外被材内部の圧力を低く維持することが重要である。
 なお、本実施の形態で使用した気体吸着材137を用いた真空断熱材138は、外被材内に気体吸着材137を有しているため、外被材内部は圧力が低く維持され、繊維材料を含む芯材132を用いた真空断熱材の熱伝導率は低く維持される。よって、外被材内部の圧力が低く維持されるため、剛性も高くなる。
 一般に、真空断熱材の熱伝導率は、芯材による熱伝導と、外被材内の残留気体による熱伝導の和により決定する。例えば、芯材が粉末を含む場合は、芯材内部に存在する気体の平均自由工程が短いため、気体による熱伝導率は非常に小さく、芯材による熱伝導が支配的である。一方、芯材が繊維の場合は、繊維同士の接点が少ないため、芯材の熱伝導率は非常に小さくなるが、気体の平均自由工程が大きいため、わずかな圧力上昇で、気体による熱伝導率が支配的になってしまう。従って、芯材が繊維のみからなるときは、このような効果が大きいため、外被材内部を低圧に保つことが、真空断熱材の熱伝導率を低減するために非常に有効な手段となる。
 以上のように構成された冷蔵庫について、以下、その動作、作用について説明する。
 本実施の形態のように、野菜室106が下方に設置され、真ん中に冷凍室105が設置され、冷蔵室102が上方に設置された冷蔵庫のレイアウト構成が使い勝手と省エネの観点からよく用いられている。また、圧縮機117を天面奥部に配設した構成の冷蔵庫も、使い勝手の観点と庫内容量UPの点から用いられる。近年では更に、省エネの観点から環境へ配慮した取り組みの中で、硬質ウレタンフォーム126と比較して数倍から10倍程度の断熱性能を有する真空断熱材を、適切な範囲内で最大限に利用することにより、断熱性能や強度を向上させている冷蔵庫も発売されている。
 その中で、本実施の形態では、側面壁101aに備えられた真空断熱材129,130には、気体吸着材137がそれぞれ内部に備えられている。このように、断熱壁の中で最も歪みの大きくなり得る側面壁に、気体吸着材を有する真空断熱材を備えたことで、側面壁の剛性を向上させるとともに真空断熱材の経年劣化を抑制し、長期間に渡って断熱箱体の剛性を維持することが可能となる。
 また、前述したように、左側の側面壁101aに備えられた真空断熱材129及び右側の側面壁101aに備えられた真空断熱材130には、上下方向に延びる直線状の変形部が夫々形成されている。このように上下方向に延びる変形部によって、主に上下方向の荷重を受けた場合の剛性を向上させることができ、側面壁の上下方向(長手方向)における剛性をさらに高めている。このように、右側面壁101aに備えられた真空断熱材において、上下方向に延びる直線状の変形部130aが、側面壁101aの上下方向における補強部として機能している。左側面壁101aに備えられた真空断熱材129についても同様である。
 図6は、図3の真空断熱材130として適用することのできる他の構成を示す図面である。図6に示すように、この真空断熱材130は、芯材132が長方形状に配置されており、但し、その四隅の角部のうち1箇所は切り欠かれたようになっている。このような芯材132の周囲には、当該芯材132が内包されていない外被材135のみで形成された無芯部が形成されている。そして、特に芯材132の四隅のうち上記切欠部分に対応する無芯部を折り返すことで、複層部130bが形成されている。また、図中の点線で示した変形部130aは放熱パイプ143が埋設される凹部であり、気体吸着材137は、2つの変形部130aの間(即ち、並設される放熱パイプ143の間)であって、複層部130bから離れた位置に配設される。図6に示す例では、気体吸着材137は真空断熱材130の中央近辺の芯材132内部に配置されている。
 このように、真空断熱材の中でも熱伝導性の高い外被材のみで形成された複層部130bは、温度変化が大きくなる傾向がある。しかしながら、気体吸着材をこの複層部から離れた箇所に配設することで、気体吸着剤の温度変化を抑制することができる。例えば、気体吸着剤が過剰に高温になるのを抑制することで、吸着剤が過剰に活性化されるのを抑制し、経年劣化を抑制することができる。
 さらに、気体吸着材が内包されている真空断熱材は左右両側の側面壁において板形状を成し、これらの真空断熱材のそれぞれの主面が互いに同じ面積である。これにより、冷蔵庫の左右壁である側面壁における剛性を同一にすることができ、断熱箱体における剛性の偏りをなくし、バランスよく安定した強度の断熱箱体を形成することが可能となる。
 また、本実施の形態に係る冷蔵庫は、前述した上部ヒンジ保持部102bを介して本体101に接続された冷蔵室102用の回転式の扉102aを備える。このような扉102aの接続形態の場合、扉102aを開放している状態においては、一般的に、側壁に大きな負荷がかかって変形して傾きやすくなる。しかしながら、本実施の形態では、側壁に剛性が高い気体吸着材を備えた真空断熱材を備えることとしているため、扉102aが開放している状態においても、側壁の傾き等の変形を抑制することが可能となり、断熱箱体全体の変形を防止することができる。
 また、本実施の形態に係る真空断熱材138は、気体吸着材137を、真空断熱材の厚み方向において冷蔵庫の庫内側(内箱側)に配設したものである。これにより、気体吸着材137は空気に触れる可能性が低くなるため、冷蔵庫を長期に渡り使用した場合でも、真空断熱材に外部から侵入してくる空気の吸着を継続して行える。従って、長期にわたって真空断熱材の真空度維持を図ることができ、真空断熱材の熱伝導率の劣化を防止することができる。
 本実施の形態に用いた気体吸着材137は、空気中の概ね75%程度の割合で存在する窒素を、常温でも吸着することが出来るため、真空断熱材内部の残留空気を低減できる。そのため、従来の真空断熱材の真空度よりも、残留空気中に多く含まれる窒素を常温吸着することで真空断熱材の真空度を高めている。通常、大気圧は100KPa、真空断熱材の真空度は10Pa程度であるが、本実施の形態に用いた気体吸着材137を用いた真空断熱材は1Pa程度の真空度である。このように、真空断熱材の真空度の向上を図ることができ、これに伴って真空断熱材の剛性の向上や、熱伝導率の低減を実現できる。
 また、気体吸着材137は、真空封止後も外被材を通じて侵入した空気を継続して吸着することができるため、真空断熱材の時間経過に伴う空気侵入によって起こる熱伝導率の経年劣化の抑制も可能となり、長期に亘り高断熱性を維持することができる。
 図7は真空断熱材の熱伝導率の経年劣化のイメージを示す図面である。図7のように、従来の真空断熱材(C)は時間経過に伴って空気の侵入があるため、使用開始時から年数の経過に伴って熱伝導率が上昇していく。一方、気体吸着材137を用いた真空断熱材(D)は、従来の真空断熱材(C)に比べ、使用開始時から長期に亘って侵入空気を気体吸着材137が吸着するため、経年劣化が抑えられ、概ね10年間にわたって高性能を維持することが可能となる。これによって、真空断熱材として初期状態での性能を長期にわたり維持することができるため、非常にパフォーマンスの優れた省エネ性能(低ランニングコスト性能)を有する冷蔵庫を提供できる。
 本実施の形態では、図7の結果を考慮し、冷蔵庫のユーザー使用期間が概ね10年間と想定して、使用する気体吸着材137の内容量を選定している。即ち、気体吸着材1つ当たり内容量を0.5g程度とし、少なくとも10年間は真空断熱材の初期性能を維持できるようにしている。なお、気体吸着材137の内容量を多くすれば、使用期間を更に延ばすことができる。
 本実施の形態では、各所に設けた気体吸着材137を用いた真空断熱材のうち、最大寸法を有するものは側面壁101aに設けた真空断熱材(側面)129,130であり、その寸法は、縦×横×厚み=510×1505×10.5mmである。この体積は、8.06×10-3(m)である。本実施の形態では、気体吸着材137の量を1mあたり、60gとしている。
 上記の量であれば、面積が大きく空気に触れる面積の大きい真空断熱材においても、冷蔵庫の平均使用期間である10年間は、真空断熱材に搭載した気体吸着材が外部から侵入してくる空気の吸着を継続して行えるので、真空断熱材の真空度維持を図ることができる。よって、真空断熱材の熱伝導率の劣化を防止することができる。また、真空断熱材の真空度維持によって、真空断熱材の空気侵入による変形も防止できるため、本体外箱の外観変形も防止できる。
 なお、気体吸着材の量を1mあたり60g以上とすれば、図7に示す例よりも更に長い期間、空気の吸着を行えるため、真空度を維持できる期間を延ばすことができる。同様に、気体吸着材が同量であっても面積の小さい真空断熱材であれば、更に長い経過年数においても空気吸着を行うことができ、真空度を維持できる期間を延ばすことができる。
 この気体吸着材137の量は、真空断熱材の製造コストにも影響を及ぼす。従って、使用する真空断熱材の形状、寸法、あるいは体積によって異なる残留空気量に応じて、気体吸着材137の量を適切に選定することにより、コストパフォーマンスの良い真空断熱材を提供できる。
 図8は、本実施の形態に係る冷蔵庫に使用可能な真空断熱材の一例であって、特に、気体吸着材の配置を示す図である。図8のように、本実施の形態では、真空断熱材に搭載される気体吸着材137の配置を、真空引きをする開口部とは反対側の外被材135の末端位置としている。これは真空断熱材の製造工程において、真空断熱材の外被材135内部に空気の粗密が発生するためである。また、図8に示す真空断熱材では、真空断熱材の内部の水分吸着を行うための反応型水分吸着材146も配設されている。
 真空断熱材の製造後(真空封止後)、芯材からの水分放出により真空断熱材の内圧が上昇する可能性があるが、上記の反応型水分吸着材146がこの水分を吸着除去する。そのため、乾燥(水分除去)に要する時間を大幅に短縮でき、放出された水分による内圧増加に伴う断熱性能の劣化を抑制できる。よって、真空断熱材の生産性を低下させることはない。
 真空断熱材は、例えば厚さ5mmのシート状グラスウール集合体を140℃で1時間乾燥した後、外被材135中に挿入し、内部を真空引きして開口部を封止することにより形成されている。真空断熱材の製造過程で、外被材135は、四辺のうち三辺が封止されて袋状とされる。そして、この袋状の外被材135の内部に芯材を入れた後、残る一辺の開口部分から、周囲を低圧にした環境下で真空断熱材内部を排気及び減圧すると共に、この開口部分を封止する。このとき、真空断熱材の内部は全体的に低圧となっているが、低圧化するのに伴って空気の粘性状態が変化し、真空断熱材の外被材入口部分(図8の開口部側の部分)と封止されている末端部分(図8の末端側の部分)とでは、空気の粗密状態が異なる。即ち、外被材入口部分では空気が疎となり、末端部分では密の状態となる。
 図8に示すように、気体吸着材137を外被材135の末端位置に配置することで、残留空気も効果的に吸着できるため、より真空度の高い真空断熱材を製造することができる。
 なお、気体吸着材137の効果により、真空断熱材は、剛性が向上し、熱伝導率が低減する。これは、気体吸着材137によって、真空度が高くなるためである。真空断熱材の真空度は、真空断熱材の外被材内部へ外部から侵入する気体の量、及び、気体吸着材137の吸着性能によって決定される。また、真空断熱材の真空度と、剛性および熱伝導率とは相関があり、真空度が高い真空断熱材は、剛性が高く、且つ、熱伝導率は低い。真空度の低い真空断熱材はこの逆である。
 本実施の形態では、冷蔵庫の本体101に貼り付けて設けた真空断熱材の中で、側面壁や背面壁のように貼り付け面積の大きい断熱壁に設けた真空断熱材に気体吸着材137を搭載している。これは、面積の大きい真空断熱材は高い断熱効果が期待できるものの、本体101を支える主要な剛性壁を成すので、経年劣化によって剛性が低下した場合に大きな影響を受けやすいためである。
 これらの断熱壁に設けた真空断熱材に気体吸着材137を備えることで、使用の際に経年侵入する空気も吸着できるため、概ね10年間の冷蔵庫の使用期間での性能劣化を抑制することが可能である。
 更に、寸法面積の大きい真空断熱材は、冷蔵庫の被覆率も大きくなる。これにより、冷蔵庫の断熱壁全体の真空度が高くなり、剛性が向上するだけでなく熱伝導率も低減される。従って、真空断熱材が同一厚みであれば、気体吸着材を使用しないものに比べて本実施の形態のように気体吸着材を使用したものでは、壁厚の薄壁化をしつつ庫内容量UPと省エネ性能の向上とを図ることができる。本実施の形態では、側面壁には、概ね8~11.5mmの厚みで気体吸着材137を備えた真空断熱材129,130を用い、背面壁には、概ね15mmの厚みで気体吸着材137を用いた真空断熱材128を用いている。これに対し、天面と底面の真空断熱材127,131は、概ね8~15mmの厚みで気体吸着材137を備えていない真空断熱材を用いている。このように、強度と省エネ性とに関して寄与度が高い部分には、気体吸着材を備えた真空断熱材を使用している。
 なお、冷蔵庫内の温度は生鮮食品や飲料を貯蔵する概ね1℃~5℃のプラス温度の冷蔵温度帯から、冷凍食品を貯蔵する概ね-18℃以下のマイナス温度の冷凍温度帯に区分けされている。本実施の形態のように、冷蔵庫の側面もしくは背面に上記真空断熱材を備えることで、先述の温度帯に設定されている各貯蔵室102~106を広範囲にわたり被覆できる。従って、真空断熱材の高断熱性により、外部からの熱侵入を広範囲にわたり抑制でき、省エネ性に優れた箱体を実現できる。
 また、最も剛性の高い(即ち、真空度の高い)真空断熱材を側面壁もしくは背面壁に備えることは、冷蔵庫本体の骨格となる部分に備えることとなる。そのため、冷蔵庫全体の強度の向上を図ることができ、壁厚の薄壁化も可能となる。よって、強度を維持しつつ庫内容量UPも図ることができる。
 さらに、本実施の形態では、気体吸着材137を、真空断熱材のうち冷蔵庫の庫内側(内箱側)に配設しているため、真空断熱材の表面のうち気体吸着材137を配設した部分が他の部分よりも出っ張る場合でも、本体101の外箱へは凸形状とならず、外観変形も防止できる。
 なお、本実施の形態では、壁面の外形寸法(例えば、幅寸法)と壁厚の比率で5%以下の部分を優先的に、気体吸着材137を搭載した真空断熱材を貼り付けている。具体的には、側面と背面の真空断熱材128,129,130がそれである。例えば、側面の場合は、外形の幅寸法が740mmであり、壁厚は33mmである。この場合の比率は、33/740×100%=4.8%である。
 一般的に、断面が矩形を成す部材の強度(断面二次モーメント)は、(幅の三乗)×高さ/12の曲げ応力の式で表される。これを冷蔵庫の壁部についてみれば、幅は壁厚であり、高さは冷蔵庫の高さ(概ね1800mm)とすることができる。先述の算出式によると、強度は幅の三乗に比例することから、概ね35mm程度の厚みから強度が加速度的に増していくことになる。そこで、本実施の形態では、概ね比率を5%以下、すなわち壁厚が35mm以下の部分を中心に強度を高めるようにしている。
 なお、外形寸法と壁厚の比率を上げていくと強度は増すが、庫内容量が減少していく。これは、外形寸法を固定した場合である。冷蔵庫はその商品展開において様々な外形寸法、および、レイアウトの設計開発がなされる。開発段階において、十分な試験データを収集し、外形寸法と壁厚の比率が庫内容量と強度において最も効果的に働く比率となるように設計することで、コストパフォーマンスが高くなる。
 なお、本実施の形態の冷蔵庫において、冷凍領域の冷凍室105を囲む硬質ウレタンフォーム126と真空断熱材128,129,130とで形成される本体101の断熱壁厚は、扉を除き、開口部の壁厚の薄い部分を含めて25~50mmである。また、冷蔵領域の冷蔵室102や野菜室106を囲む硬質ウレタンフォーム126と真空断熱材127,131とで形成される本体101の断熱壁厚は、扉を除き、開口部の壁厚の薄い部分を含めて25~40mmである。
 庫内容量UPの為には、庫内壁厚の薄壁化が有効であるが、一般的には薄壁化すると硬質ウレタンフォームの流動性が阻害されて充填が困難になる。しかしながら、気体吸着材137を備えた真空断熱材は、概ね8~11.5mm程度の厚みであるため、薄壁化した断熱壁に真空断熱材の貼り付け後も、硬質ウレタンフォーム126の流動性を阻害することなくこれを充填可能である。さらに、熱伝導率も飛躍的に低減されるため、熱侵入抑制の為に複数の真空断熱材を重ね合わせる必要もない。これにより、硬質ウレタンフォーム126を充填する隙間の部分的な変化も無く(抑制でき)、流動性の低下に基づく内外面の変形やボイドの発生も防止することができる。
 なお、本実施の形態において、冷蔵庫の左右の側面に備えた気体吸着材137を内包した真空断熱材の厚さを11.5mmとした場合、気体吸着材137を備えていない真空断熱材で同等な性能を得るためには厚みが16mm必要となる。よって、同等な性能を基準とした場合には、気体吸着材137を備えた真空断熱材を用いることで、庫内容量を15L増やすことが可能となる。更に、硬質ウレタンフォーム126の使用量を低減できるのでコストダウンが図れるとともに製品重量を低減することができる。よって、製品を搬入する時の運搬性が向上する。
 また、本実施の形態では、真空度を変えて剛性の異なる複数の真空断熱材を使い分けることで、冷蔵庫の本体101の強度を向上させている。即ち、気体吸着材を内包する高価格の真空断熱材と、気体吸着材を備えない低価格の真空断熱材とを、冷蔵庫の各部に要求される断熱性や剛性とコストとを考慮しつつ、適材適所となるように採用している。特に複数の真空断熱材のうち、剛性の高い真空断熱材を、冷蔵庫の被覆率を大きく取れる側面壁や背面壁に備えることで、本体101の強度の向上を図ることができる。
 これは一般的なタンスや住宅の壁面において、上下方向の面(側面や背面)の強度を高めることで、全体の強度を高めることと同様である。強度として寄与する部分には剛性の高い気体吸着材を備えた真空断熱材を用い、寄与しにくい部分には硬質ウレタンフォーム126よりも剛性の高い程度の真空断熱材であって気体吸着材を備えないものを用いる。これにより、断熱性能を向上し省エネ性を向上させつつ、本体強度を高めた冷蔵庫を提供することができる。特に壁厚の薄い部分には剛性の高い真空断熱材を用い、壁厚の厚い部分には硬質ウレタンフォーム126よりは強いが相対的に剛性の弱い真空断熱材を用いることで、箱体強度のバランスを高めて箱体全体の強度を維持することができる。真空断熱材の厚みは、概ね8~15mm程度であるが、同一厚みであれば硬質ウレタンフォーム126よりも剛性が高く、熱伝導率も低い。
 なお、冷蔵庫に要求される性能(寸法や断熱性能)を実現するための、従来の真空断熱材や、気体吸着材137を用いた真空断熱材138の組み合わせは、多数考えられるが、組み合わせに応じてコストも異なってくる。よって、冷蔵庫の性能と材料費等のコストとを考慮し、真空断熱材の寸法、厚み、及び種類(気体吸着材の要否)を決定することができる。
 また、内箱125の底面に接して配設される真空断熱材131は、その厚み方向に沿って見たときの面積(主面の面積)が内箱125の面積より小さい。換言すれば、内箱125に接して配設された真空断熱材131は、真空断熱材131が接して配設される内箱からはみ出ていない。従って、この真空断熱材131は、その一方の主面(接着面)の全体が内箱125の底面に接した状態になっている。
 これにより、本実施の形態の冷蔵庫は、真空断熱材131を所定箇所に配設した後で、外箱124と内箱125との間に硬質ウレタンフォーム126を流し込んだ場合に、内箱125に配設された真空断熱材131に対して、内箱125から剥がす方向に力が加わらないため、硬質ウレタンフォーム126の流入による真空断熱材131の剥がれを防止できる。さらに、真空断熱材131の貼付けの安定を容易に図ることができると共に、硬質ウレタンフォーム126の流動性を阻害しない。これによって、真空断熱材131と内箱125との間における、空気などの不活性ガスの侵入もしくは残留を抑制することができる。従って、内箱125と真空断熱材131とが密着し、内箱に凹み等の変形が生じるのを抑制できる効果もある。
 また、天面の真空断熱材127は、外箱124に接して配設しているので、庫内照明用の取り付け部材あるいは電線を、内箱125の天面に取り付け可能となり、冷蔵室102の天面に照明を貼り付けることができ、使い勝手の向上が図れる。
 なお、本実施の形態では、本体底部にコの字状の底部補強部材144と真空断熱材とが投影面で重なるように、真空断熱材を配設している。これによって、冷蔵庫本体101の強度が足元においても向上し、本体101全体の更なる強度向上が図れる。底部補強部材144には剛性の高い鉄やステンレス等の材料を用いることができ、また、外気の湿度によって錆びないような表面処理を施しておくとよい。また、本実施の形態では、コの字状の底部補強部材144としているが、コスト低減の観点や、本体強度の測定の結果、強度的に適切であれば、例えばLの字状の底部補強部材としてもよい。
(実施の形態2)
 以下、本発明の実施の形態2について図面を用いて説明する。なお、実施の形態1と同様の構成については、同一符号を付して詳細な説明を省略する。図9は、本実施の形態2の比較例としての冷蔵庫の側面断面図である。図10は本実施の形態2における冷蔵庫の側面壁の縦断面図である。図11は、本実施の形態2における冷蔵庫の側面断面図である。
 まず、本実施の形態2の冷蔵庫の比較例について説明する。近年では、省エネとして環境への取り組みの中で、硬質ウレタンフォーム126と比較して数倍から10倍程度の断熱性能を有する真空断熱材を、適切な範囲内で最大限に利用することにより、断熱性能や強度を向上させている冷蔵庫も発売されている。
 図9は、特開2007-198622号公報に記載された冷蔵庫の断熱壁の断面図である。この断熱壁は、外箱102と、内箱103と、内箱103と外箱102の間に充填されるウレタン断熱材104とを備えている。更に、外箱102と内箱103との間で外箱102に密着して備えられた真空断熱材105と、真空断熱材105と外箱102の間に構成された放熱パイプ120とを備え、放熱パイプ120は真空断熱材105の表面に埋設されている。
 しかしながら、上記比較例としての冷蔵庫では、真空断熱材が硬質ウレタンフォームと共に外箱及び内箱の間に存在するものの、真空断熱材の空気に触れる面積が大きい。従って、使用時の年数経過に伴って真空断熱材内部に空気が侵入し易く、更に、空気が侵入した真空断熱材は内部の真空度が低下するため、熱伝導率の劣化を招くという懸念があった。更に、長期使用時に内部の真空度が低下した真空断熱材に入った空気によって、外観的には凹み等の変形を招くという問題があった。
 より詳しく説明する。冷蔵庫は、放熱用パイプが冷蔵庫の外箱に配設され、放熱用パイプを覆うように真空断熱材が貼り付けられる。このとき、真空断熱材は硬質ウレタンフォームに被われるが、放熱用パイプは硬質ウレタンフォーム外部へと延設されていることと、放熱用パイプ自身をアルミテープにより外箱に貼り付ける際に空気層が形成されることとによって、外部空気と真空断熱材が直接的、もしくは硬質ウレタンフォームやアルミテープを介して間接的に接触する。
 そこで、本実施の形態の冷蔵庫は、真空断熱材に内包された気体吸着材を、当該冷蔵庫が備える発熱部から離して配設している。本実施の形態では、発熱部とは圧縮機117や放熱パイプ143を指す(図10参照)。
 以下、図10および図11を参照して本実施の形態2に係る冷蔵庫について説明する。なお、当該冷蔵庫の正面断面図として、以下では、上記実施の形態1で説明した図2も参照する。
 図2に示すように、真空断熱材127、128,129,130は、外箱124の天面、背面、左側面、右側面の内側にそれぞれ接して貼り付けられている。また、真空断熱材131は、内箱125の底面に接して貼り付けられている。
 真空断熱材128,129,130には、気体吸着剤137がそれぞれ内部に備えられている。これらの気体吸着剤137は、中心よりも庫内側(内箱側)に配設されている。
 放熱パイプ143は、真空断熱材128,129,130の外箱124側に設置されている。図10に示すように、放熱パイプ143は冷蔵庫の右側面壁に備えられた真空断熱材130の表面に蛇行配置されている。より詳しく言えば、放熱パイプ143は、上下方向に沿って配設された直線状のパイプの一端にU字状のパイプの一端が接続され、該U字状のパイプの他端に、同様に上下方向に沿って配設された別の直線状のパイプの一端が接続される。このように、放熱パイプ143は、直線状のパイプとU字状のパイプとが順次繋ぎ合わされることで構成されている。なお、左側面壁の断熱壁としての構成や左側面壁に設けられた放熱パイプの構成及び配置は、上記及び下記に説明する右側面壁におけるものと同様である。
 その中で、本実施の形態では、図10及び図11に示すように、冷蔵庫の右側面壁に備えられた真空断熱材130は気体吸着材137を内包するとともに、真空断熱材130に備えられた気体吸着材137と、発熱部である放熱パイプ143との間には芯材132が介在している。本実施の形態では、真空断熱材130は右側面壁全体を覆うように配設されている。そして、放熱パイプ143のU字状の折曲部143dに対応する真空断熱材130の上部の延伸領域130dでは、芯材132の量を少なくするとともに芯材132内部に気体吸着剤137を配設していない。このように、真空断熱材130の延伸領域130dでは、他の領域と比べて厚みを薄くしている。
 このように、本実施の形態に係る真空断熱材130は、図10に示すように、気体吸着材137と放熱パイプ143とが一定の距離を離れて配設されたものとなっている。また、気体吸着材137と放熱パイプ143との間に断熱材である芯材132を介していることで、放熱パイプ143の熱が気体吸着材に到達するのを低減している。
 また、図11に示すように、気体吸着材137は、真空断熱材130の厚み方向において、発熱部である放熱パイプ143と重ならない位置に配設している。更に、真空断熱材130の厚み方向において、気体吸着材137は圧縮機117とも重ならないように配設している。
 上記構成によって、真空断熱材に備えられた気体吸着材が高温となることを避けることができ、気体吸着材が短期間に高活性化するのを避け、長期間に亘って機能を発揮させることができる。更に、気体吸着材周辺の外被材の経年劣化を防ぐことで、気体吸着材が空気に触れる影響が低減でき、断熱箱体を長期に亘り使用した場合でも、真空断熱材に備えられた気体吸着材は外部から侵入してくる空気の吸着を継続して行える。従って、真空断熱材の真空度維持を図り、真空断熱材の熱伝導率の劣化を抑制することができる。
 また、気体吸着材137を金属製の容器からなる包材133に収納した場合には、仮に高温部付近に容器が位置した場合には、熱伝導性の良い金属製の包材133がヒートスポットとなり、容器は常に高温で維持され、容器内の気体吸着材が高活性化してしまう。その結果、短期間で吸着特性が低下する可能性があった。そこで、本実施の形態のように気体吸着材と発熱部を離間させることで、長期間にわたって機能を発揮することが可能となる。
 また、真空断熱材の外被材として蒸着層フィルムを用いた場合には、温度の上昇により劣化が加速されるので、長期間の使用時において、外被材が劣化することで空気の侵入量が増加するという懸念があった。そこで、本実施の形態のように気体吸着材と発熱部を離間させて、気体吸着材周辺が高温となることを避けることで、気体吸着材の包材の熱に起因して外被材が昇温して劣化するのを抑制することができる。
 また、図11に示す断熱壁は、気体吸着材137を備えた真空断熱材130を備え、気体吸着材137を真空断熱材のうち断熱箱体の庫内側(内箱125側)に配設し、且つ、発熱部である放熱パイプを庫外側(外箱124側)に配置したものである。
 これにより、確実に気体吸着材と発熱部を離間させることができ、気体吸着材周辺が高温となることを避けて、真空断熱材の長期的な信頼性を向上することができる。
 また、この気体吸着材137は、本体101の内側に配設されて空気に触れる影響が低減される。そのため、該気体吸着材137は、断熱箱体を長期に亘り使用した場合でも、真空断熱材に外部から侵入してくる空気の吸着を継続して行うことができる。従って、真空断熱材の真空度維持を図ることができ、真空断熱材の熱伝導率の劣化を防止することができる。
 放熱パイプ143は、図11のように、断熱箱体の本体101の外箱124の内側に配置され、アルミテープ145により固定される。アルミテープ145は、硬質ウレタンフォーム126の充填される外箱124と内箱125とで区画された内部から外部へと配設される。つまり、アルミテープ145内の空間は外部と連通している。これは、冷蔵庫の製造過程で、硬質ウレタンフォーム126を発泡する際に発生する熱によりアルミテープ145内に存在する空気が膨張し、その圧力によって外箱124が変形するのを防止するためである。
 そのため、真空断熱材は硬質ウレタンフォーム126の内部にあるが、放熱用パイプ143が硬質ウレタンフォーム126の内外にわたって配設されていることと、放熱用パイプ143を外箱124に貼り付けるアルミテープ145により空気層が形成されることとから、外部空気と真空断熱材が、直接的もしくは硬質ウレタンフォーム126やアルミテープ145を介して間接的にも接触する。
 その結果、冷蔵庫を長期に亘り使用した際に、少なからず空気に触れている真空断熱材は、時間経過とともに外部から侵入してくる空気の影響を受ける。従って、気体吸着材137を備えない真空断熱材の場合、早期に内部真空度が低下して膨張するとともに、冷蔵庫外箱124への外観変形を及ぼす可能性がある。
 上記のように、真空断熱材中の気体吸着材137は、圧縮機117や放熱パイプ143といった発熱部からは離れた箇所に設置している。これによって、気体吸着材137の金属製の容器が発熱部からの熱を吸収するのを抑制し、真空断熱材に局所的に断熱できない箇所(ヒートスポット)が生じて、放熱能力(放熱パイプから冷蔵庫外部への放熱能力)が低下してしまうことを防止している。
 特に、冷蔵庫に少なくとも2本の放熱パイプが真空断熱材の表面に埋設されている場合、気体吸着材は2本の放熱パイプの間に埋設されることが望ましい。本実施の形態では、図10に示すように、放熱パイプ143は、直線状のパイプとU字状のパイプとが順次繋ぎ合わされることで構成されている。このような場合には、気体吸着材137を、放熱パイプ143を構成する2本の直線状の放熱パイプの間にて、各パイプからの距離が等しくなるようにして埋設するのが好ましい。これにより、放熱能力を増加し、省エネ性を向上させることができる。
 本実施の形態に用いた気体吸着材137は、実施の形態1で説明したものと同様に製造でき、同様の構成を備えるものを採用することができる。従って、この気体吸着材137は、空気中の概ね75%程度の割合で存在する窒素を、常温でも吸着することが出来る。これにより、真空断熱材内部の残留空気を低減でき、真空断熱材の真空度の向上や剛性の向上が図れ、熱伝導率の低減を行える。
 なお、断熱箱体の温度は、生鮮食品や飲料を貯蔵する概ね1℃~5℃のプラス温度の冷蔵温度帯から、冷凍食品を貯蔵する概ね-18℃以下のマイナス温度の冷凍温度帯に区分けされている。この場合に、気体吸着材137が低温になりすぎることなく、使用の初期段階において十分な吸着特性を発揮させるために、真空断熱材中の気体吸着材137を冷蔵温度帯の貯蔵室の水平方向の対応位置に配置してもよい。
 なお、本実施の形態では、気体吸着材137を真空断熱材内部の中心よりも庫内側(内箱側)に配設したが、庫外側(外箱側)に配置してもよい。これにより、気体吸着材137の活性度が向上するため、真空断熱材の真空度をより高めることができる。その結果、真空断熱材は強度も高くなり熱伝導率も低減するので、高い省エネ性や高い外観強度を備えた冷蔵庫を提供できる。これは、冷蔵庫の本体101の外箱側は、外気からの熱の影響や外箱の内側に貼り付けている放熱パイプ143による熱の影響で、気体吸着材137の温度が高まるからである。
 図12は、気体吸着材を真空断熱材内部の中心よりも庫外側(外箱側)に配置した真空断熱材11の断面図である。この真空断熱材11は、芯材132と気体吸着デバイス15を外被材135で覆って構成されている。気体吸着デバイス15を、芯剤132の内部に埋設し、これらを外被材135に内包して減圧密封している。また、気体吸着デバイス15は、気体吸着物質13、これを収納する収納容器16、及び、収納容器16の開口部を閉塞する封止材17で構成され、減圧密封されている。ここでは真空断熱材11の気体吸着デバイス15側の外被材135に凹み部20を設けている。
 これにより、収納容器16が熱伝導性の良い金属製である場合に、たとえ外箱と外被材を介して、放熱パイプ143の熱が気体吸着デバイス15に直接伝達した結果、真空断熱材11において気体吸着デバイス15が凹み部20内で出っ張ったとしても、冷蔵庫の外箱の外観が変形するのを抑制することができる。
 また、本実施に形態のように熱伝導性の良い金属材料からなる包材を用いている場合には、外箱と外被材を介して、放熱パイプ143の熱が気体吸着材137に直接伝達する。このような熱伝達を緩和するために気体吸着材137と外被材135または外箱との間に断熱材を備えることが有効である。例えば、気体吸着材137を真空断熱材の厚み方向において外箱側に配置する場合であっても、断熱材(芯材)中に埋設しておき、気体吸着材137が外被材135に直接的に接触しないようにしておくのが有効である。
 このように、断熱材として真空断熱材に備えられている芯材132を用い、気体吸着材137の外被材135側に芯材132を配置してもよい。図13は、断熱材として芯材132を用いた真空断熱材の断面図である。この真空断熱材11は、芯材132と気体吸着デバイス15と水分吸着剤19とを外被材135で覆って構成されている。即ち、三方閉めの移動抑制部である内袋18に内包された気体吸着デバイス15と、水分吸収剤19とを、芯剤132の内部に埋設し、これらを外被材135に内包して減圧密封している。また、気体吸着デバイス15は、気体吸着物質13、これを収納する収納容器16、及び、収納容器16の開口部を閉塞する封止材17で構成され、減圧密封されている。このように、芯材132の中に気体吸着材を埋設して、外被材135に対して断熱材(芯材)を介して配置することで、気体吸着材への熱伝導、及び気体吸着剤から外被材への熱伝導を抑制することが可能となる。
 また、本実施の形態では、真空断熱材11は、上述したように内部に芯材132を有している。この芯材132は、グラスウールなどの無機繊維集合体から成り、加熱乾燥後、蒸着層フィルムと金属薄層フィルムを貼り合わせた外被材135中に挿入され、内部を真空引きして開口部が封止される。
 蒸着層フィルムは、アルミ蒸着フィルムをナイロンフィルムと高密度ポリエチレンフィルムとで挟み込んだ複合プラスチックフィルムである。アルミ蒸着フィルムは、熱伝導性が低く、曲げに強いという長所があるが、その反面、ガスバリア性が比較的低い。
 一方、金属箔層フィルムは、アルミ箔をナイロンフィルムと高密度ポリエチレンフィルムとで挟み込んだ複合プラスチックフィルムである。アルミ箔はガスバリア性が高いという長所があるが、その反面、熱伝導性が高い。
 そこで、本実施の形態では、外箱124側にアルミ箔を含んだ外被材135が位置し、内箱125側にアルミ蒸着フィルムを含んだ外被材135が位置するように真空断熱材11を配置する。そして、図12に示すように、アルミ箔を含んだ外被材135の近傍に気体吸着デバイス15を配設する。これにより、アルミ箔が有する高いガスバリア性により、外部から真空断熱材11内への空気の侵入を抑制する。ここで、上記のように配置した場合、熱伝導性の高いアルミ箔を有する外被材135に対して放熱パイプが近接するが、真空断熱材の厚み方向から見て、気体吸着デバイス15を放熱パイプと重ならないように配置することで、放熱パイプから気体吸着デバイス15へ熱伝導しにくくすることができる。さらに、芯材132を介し、アルミ箔と気体吸着物質13が入った金属製の収納容器16とが直接接しないようにすることで、気体吸着物質の高温化を防ぐことができる。
 その他の形態として、アルミ蒸着フィルムを含んだ外被材135が外箱側になるように真空断熱材を配置し、アルミ蒸着フィルムを含んだ外被材135の近傍に吸着材を入れるようにしてもよい。上記のとおりアルミ蒸着フィルムは熱伝導しにくいという長所を有するので、熱伝導による吸着材の高温化を抑制することができる。
 なお、本実施の形態では、冷凍温度帯に掛かるように真空断熱材を貼り付けている。これにより、外気あるいは庫内他室との温度差の大きい部分を効果的に断熱でき、真空断熱材の性能を生かすことができる。
(実施の形態3)
 以下、本発明の実施の形態3について図面を用いて説明する。なお、実施の形態1と同様の構成については、同一符号を付して詳細な説明を省略する。図14は、本実施の形態3の比較例としての冷蔵庫の扉の側面断面図である。図15は、本実施の形態3における冷蔵庫の縦断面図である。図16は、本実施の形態3における冷蔵庫の扉の縦断面図である。
 まず、本実施の形態3の冷蔵庫の比較例について説明する。
 図14は、特開2005-127602号公報に記載された冷蔵庫の扉の断面図である。扉本体5は、扉外板6と扉内板7と扉上蓋8と扉下蓋9と真空断熱材3から形成される空間に発泡断熱材であるウレタンフォーム10を充填して構成されている。
 真空断熱材3は、扉内板7に接して配置し、扉内板7の庫内側には水平方向に複数の突起51を設け、突起51の幅(上下方向の幅寸法)を10mm以下、高さ(水平方向への突出寸法)を3mm以下とし、扉内板7の表面に沿った横方向の全幅にわたって形成している。上記構成により、扉内板7に複数設けた突起51により扉内板7の構造強度を高く保つことができ、変形や外力による凹みなどを防ぐことができる、とされている。しかしながら、扉の内側には飲料水等の重量物が収納されることもあり、さらなる剛性の向上が望ましい。
 そこで、本実施の形態の冷蔵庫は、扉内板と扉外板とを有する扉において、扉内板と扉外板の間に発泡断熱材を充填すると共に、外被材に少なくとも芯材を内包し減圧密封した真空断熱材を配設し、更に、前記真空断熱材には気体吸着材を内包したものである。
 図15に示すように、冷蔵庫の本体において、上段冷凍室103と製氷室104と下段冷凍室105と野菜室106の前面開口部分は、それぞれに対応した引き出し式の扉103a、104a、105a、106aにより開閉自由に閉塞される。また、冷蔵室102の前面開口部分は、片側開きで冷蔵室102の全開口部を覆う回転式の扉102aにより開閉自由に閉塞する。
 回転式の扉102aは、冷蔵庫の複数の扉の中で最も面積が大きく、また真空断熱材150が備えられており、この真空断熱材150は気体吸着剤137が内部に搭載されている。
 また、図16に示すように、冷蔵室の扉102aは、扉内板102bと扉外板102cとを有する。扉内板102bと扉外板102cとの間の空間には、硬質ウレタンフォームからなる発泡断熱材102dと共に真空断熱材150が備えられている。また、この真空断熱材150は、前記空間において扉内板102b側に近接又は接触して設けられている。
 また、既に実施の形態1でも説明したように、冷蔵庫の被覆率を大きくとれる側面壁や背面壁に真空断熱材(特に、気体吸着材を内包する真空断熱材)を備えることで、本体の強度の向上を図ることができる。
 特に、本実施の形態のように、冷蔵室102に備えられた面積の最も大きい扉が回転扉102aである場合には、扉が開いた状態で冷蔵庫本体(特に、側面壁)に大きな負荷がかかるため、上下方向の壁面の強度を高めることが重要である。
 よって、本実施の形態のような冷蔵庫においては、全体の強度を高めるためには上下方向の強度を高めることが有効である。このように、強度として寄与する部分には剛性の高い気体吸着剤を内包した真空断熱材を用い、寄与しにくい部分には気体吸着剤を備えない通常の真空断熱材を用いる。これにより、断熱性能を向上し省エネ性能を向上させつつ、本体全体の強度を高めた冷蔵庫を提供することができる。
 従って、冷蔵庫の本体全体の強度を高める際に、側面と背面の全てに亘って貼付ができない場合には、少なくとも冷蔵庫全体の全高の1/2より下方側の背面および両側面のすべての面に、気体吸着剤を備えた真空断熱材を貼り付けることによって、筐体(断熱箱体)を支える下方部の剛性を大幅に向上させることができる。
 例えば、本実施の形態のように最上部に回転式の扉102aがある場合、扉102aを開けた状態では、冷蔵庫本体において扉102aのヒンジが付いている側に大きな荷重がかかり、冷蔵庫本体が傾くことにより左右方向に歪が生じる。これに対し、特に冷蔵庫本体の下方部の剛性を高めることにより、この傾きおよび歪を低減することが可能となる。
 また、本実施の形態では最も面積の大きい扉が回転扉102aであるので、この回転扉102aに、気体吸着剤を内包した真空断熱材を備えている。
 これによって、気体吸着剤を内包した真空断熱材は、真空断熱材の経年劣化を抑制できることから、扉の剛性向上を長期間にわたって図ることができ、扉の強度を長期にわたって高く維持することができる。また、気体吸着剤を内包した真空断熱材を用いることで、強度を維持したままで扉の壁厚の薄壁化を図ることができ、庫内容量を大きくすることが可能となる。
 一般的に、面積の大きいドアは長期間使用することで、ドア内外に反りといった変形が生じる可能性がある。しかしながら、気体吸着材を内包した真空断熱材は、真空断熱材の経年劣化も抑制できることから、扉の剛性を長期間に亘って高く維持することができる。従って、扉の強度を向上させることができ、扉の変形による冷気もれ等による冷却効率の低下を防止し、省エネルギー性の高い冷蔵庫を提供することができる。
 また、本実施の形態では、気体吸着剤137を真空断熱材に備えることで、真空度を高めている。即ち、残留空気中に多く含まれる窒素を常温吸着することで、従来の真空断熱材(気体吸着材を備えない真空断熱材)よりも真空度を高めている。通常、大気圧は100KPa、真空断熱材の真空度は10Pa程度であるが、本実施の形態に用いた気体吸着材137を用いた真空断熱材は1Pa程度の真空度である。ここで、本実施の形態3で用いる気体吸着材137は、実施の形態1で説明したものと同様に製造でき、同様の構成を備えるものを採用することができる。
 なお、真空断熱材の真空度が高くなると、剛性は高くなり熱伝導率は低減するため、真空断熱材が同一厚みであれば、扉の壁厚の薄壁化をしつつ収納容量のUPと省エネ向上を図ることができる。
 さらに、気体吸着剤137を用いた真空断熱材150を用いることで、断熱性能も飛躍的に向上できるため、熱侵入抑制のために真空断熱材を重ね合わせる必要がない。これによって、硬質ウレタンフォームからなる発泡断熱材の壁厚の変化を抑制でき、発泡断熱材の充填時に流動性が阻害されて内外面の変形やボイドが発生することも防止することができる。
 また、本実施の形態のように扉内板側に真空断熱材を備える場合は、外被材135の面積又は封止部分である四辺の寸法が長いと、樹脂製の扉内板を介して空気が侵入し易く、真空断熱材の真空度が低下し、性能劣化を導きやすい。これに対し、本実施の形態に係る冷蔵庫のように、扉に設けた真空断熱材に気体吸着材137を備えることで、使用の際に時間経過に伴って侵入する空気も吸着できるため、概ね10年間の冷蔵庫使用中での性能劣化を抑制することが可能である。
 これによって、真空断熱材としての初期状態での性能を概ね10年間維持することができるため、省エネランニングコストとして非常にパフォーマンスの優れた省エネ性能を提供できる。
(実施の形態4)
 以下、本発明の実施の形態について図面を用いて説明する。なお、実施の形態1と同様の構成については、同一符号を付して詳細な説明を省略する。図17は、本実施の形態4における冷蔵庫の斜視図である。図18は、本実施の形態4における冷蔵庫の分解図である。
 図17および図18に示すように、冷蔵庫本体301は、前方に開口する金属製(例えば鉄板)の外箱324と、硬質樹脂製(例えばABS製)の内箱325と、外箱324と内箱325の間に発泡充填された硬質ウレタンフォームと、を備える断熱箱体である。この本体301は、右部に設けられた冷蔵室302と、左部に設けられた冷凍室314を有している。このようなレイアウトの冷蔵庫は、欧米などで以前より普及している。
 右側の冷蔵室302は、その右側端部(回転基端)がヒンジにより本体301に連結された回転式の扉302aを有し、扉302aの扉外板は切欠部302bを有している。より詳しくは、切欠部302bは、金属製の外側表面を形成する扉外板の端部(回転基端とは反対側の端部)の一部に設けられている。この切欠部302bには、冷蔵庫の設定温度等を変更する表示板が設けられ、樹脂によってその表面部が形成されている。
 また、扉302aの中央付近には、比較的大きな切欠部302cが形成されており、アイスディスペンサや、ウォーターディスペンサ等の付加機器が備えられている。
 隣接する左側の冷凍室314もまた、その左側端部がヒンジ連結された回転式の扉314aを有している。この扉314aの中央付近には、比較的大きな切欠部314bが形成されており、上記と同様な付加機器が備えられている。
 これらの回転式の扉302a,314aは、扉外板と扉内板の間に発泡断熱材と真空断熱材とを備えたものである。この真空断熱材は、実施の形態1で説明した窒素の吸着特性の高い気体吸着剤を内包した真空断熱材である。
 なお、本実施の形態においては回転式の扉302a,314aは、ほぼ同様の大きさであり、両方の扉が最も大きな扉となり、両方の扉に気体吸着材を内包した真空断熱材が備えられている。但し、例えばコスト等によって制限がある場合には、-20℃から-40℃程度の冷凍温度帯に設定されることで扉の内外温度差が大きく扉の反り等が生じやすく、変形が生じた場合の冷気漏れが大きくなる冷凍室の扉314aに対し、気体吸着材を内包した真空断熱材を優先的に取り付けることも有効である。
 扉302a、314aをその厚み方向から見て、扉外板の切欠部302b、302c、314bの少なくとも一部に重なるようにして、気体吸着剤を内包した真空断熱材が配設される。
 一般的に、切欠部を備えた扉外板を有することで、扉強度の低下する懸念があるが、本実施形態のように、扉の厚み方向において切欠部に重なるように気体吸着材を内包した真空断熱材を備えることで、扉の強度を向上させることができ、信頼性の高い冷蔵庫を提供することが可能となる。
 また、上記のような大きな回転扉を備えた冷蔵庫においては、扉を支える本体301の剛性向上が必要となる。ここで、図18に示すように、真空断熱材327,328,329,330,331,342は、硬質ウレタンフォーム326とともに冷蔵庫本体301を構成している。即ち、本体301の各断熱壁には、真空断熱材327,328,329,330,331,342が介装されていると共に、硬質ウレタンフォーム326が隙間に充填されている。
 具体的に説明すると、上記真空断熱材のうち、真空断熱材327,328,329,330は、外箱324の天面、背面、左側面、右側面の内側に接してそれぞれ貼り付けられている。また、真空断熱材331は、内箱325の底面に接して貼り付けられている。また、真空断熱材342は、冷蔵室302と冷凍室314を仕切る断熱仕切り部の内部にある。そして、背面、左側面、及び右側面に設けられた真空断熱材328,329,330、342には、気体吸着剤337がそれぞれ内部に備えられている。
 また、冷蔵室302と冷凍室314を断熱区画する断熱仕切り部の内部は、硬質ウレタンフォーム326が充填されており、冷蔵温度帯の冷蔵室302と冷凍温度帯の冷凍室314の温度差20K~30Kを断熱している。また、この断熱仕切り部は、本体101内で天面から底面に至る上下方向の面を形成し、中仕切りとなっているため、箱体強度の高い冷蔵庫となる。断熱仕切り部は、硬質ウレタンフォーム326の充填前に冷蔵庫に組み付けられるが、製造上の作り易さから硬質ウレタンフォーム326の充填後に組み付けてもよい。この場合は、断熱仕切り部315の内部の断熱材は、形状の作り易い発泡ポリスチレンを用いてもよいし、硬質ウレタンフォーム326を別部品として作成し板状のボードとして構成してもよい。
 上記構成の冷蔵庫において、真空断熱材342は、気体吸着剤337を用いた真空断熱材であり、真空断熱材328,329,330と同様に剛性が高いため、本体301の強度向上を図ることができる。
 また、真空断熱材342を、断熱仕切り部の中で冷凍室314側に貼り付けることで、断熱効果の向上を図ることができる。またこの場合、冷蔵室302の側壁(断熱仕切り部における冷蔵室302側の部分)には庫内照明用取り付け部材、あるいは電線を取り付け可能となる。従って、冷蔵室302の側面に照明を取り付けることができるため、使い勝手の向上が図れる。
 また、真空断熱材342は、気体吸着剤337を用いた真空断熱材であるため熱伝導率を低減できる。よって、剛性の向上に加え、冷蔵室302と冷凍室314との熱移動を低減できるため、断熱仕切り部の薄壁化が可能となる。これによって、本体強度と省エネ性を向上しながら庫内容量UPを行うことができる。更に断熱仕切り部315を薄く構成できるのでデザイン性にも優れた冷蔵庫を提供することができる。
(実施の形態5)
 以下、本発明の実施の形態5について図面を用いて説明する。なお、実施の形態1と同様の構成については、同一符号を付して詳細な説明を省略する。
 図19は、本実施の形態5の比較例としての冷蔵庫の側面断面図である。図20は、本実施の形態5における冷蔵庫の縦断面図である。図21は、本実施の形態5における冷蔵庫の機械室構成図である。
 まず、本実施の形態5の冷蔵庫の比較例について説明する。
 図19は、特開平6-159922号公報に記載された冷蔵庫の側面断面図である。図19に示すように、冷蔵庫の本体1は、外箱24と内箱25とで構成される空間全体を、成形可能な袋状の紙材20で覆い、この紙材20内部に無機多孔質からなる充填剤21を充填し、内外箱24,25で囲まれた空間の形状に沿って真空断熱材22が配設されている。また、使用される真空断熱材は両面ともに金属箔を有し、形状は平面のみとなっている。
 本構成により、内外箱24,25への真空断熱材の収納作業が容易に行えると共に、内外箱24,25と真空断熱材22との隙間を塞ぐ作業が不要となる。更に、硬質ウレタンフォームを使用せず真空断熱材22のみで断熱箱体を構成できるため、断熱性能が向上する、とされている。
 しかしながら、上記比較例としての冷蔵庫は、外箱と内箱とに密着してなる硬質ウレタンフォームと比較して強度的に劣る真空断熱材のみを使用するため、断熱性能は高いものの強度的には非常に弱くなるといった問題があった。また、真空断熱材の断熱性能の更なる向上のためには、一平面にアルミ蒸着フィルムを用いた真空断熱材の使用が効果的であるが、空気侵入が発生しやすいという面からアルミ蒸着フィルムを用いた真空断熱材の使用は困難であった。
 そこで、本実施の形態の冷蔵庫は、真空度の異なる複数の真空断熱材を使用することにより、上記課題の解決を図るものである。以下、本実施の形態の冷蔵庫の構成について具体的に説明する。
 図20及び図21に示すように、冷蔵庫の本体101の天面部は、冷蔵庫の背面方向に向かって階段状に凹みを設けて機械室119がある。より詳しく説明すると、本体101は、その天面及び背面を成す第一の天面部108と第一の背面部147とを有している。機械室119を成す凹み部は、この第一の天面部108の背面部分であって、且つ第一の背面部147の上端部分に形成されている。この凹み部は、第一の天面部108より背面側でかつ第一の天面部108より低い位置に設けられた第二の天面部109と、第一の天面部108と第二の天面部109との間を接続する第二の背面部148とで構成されている。なお、第二の天面部109の背面側端部は第一の背面部147の上端部に接続されている。凹み部の機械室119には、圧縮機117と、凝縮器152と、放熱用の放熱パイプ(図示せず)と、水分除去を行うドライヤ157と、機械室ファン153と、キャピラリーチューブ118入口とが配置される。
 機械室119は機械室カバー151で覆われ、この機械室カバー151には、機械室ファン153の強制対流によって圧縮機117と凝縮器152を冷却するべく通風孔154が設けられてある。また機械室カバー151は、第一の天面部108と第二の天面部109の上部にビスなどで取り外し可能に設けられている。
 そして、冷蔵庫は、上記の圧縮機117と、凝縮器152と、放熱用の放熱パイプ(図示せず)と、水分除去を行うドライヤ157と、キャピラリーチューブ118と、冷却器107とを順次環状に接続してなる冷凍サイクルに冷媒が封入され、冷却運転を行う。前記冷媒には近年、環境保護のために可燃性冷媒を用いることが多い。なお、三方弁や切替弁を用いる冷凍サイクルの場合は、それらの機能部品を機械室119内に配設することもできる。
 また、凝縮器152には、強制対流方式のものに加えて、冷蔵庫の周囲鋼板を利用して自然放熱するための配管や、各室の断熱扉体の間の仕切りに配設して防滴防止を行うための配管を組み合わせてもよい。また、凝縮器152としては、ワイヤータイプやフィンコイルタイプやスパイラルフィンタイプなどの薄型構成で高効率な凝縮器152を、機械室119内に収めるとよい。
 ここで、真空断熱材127,128,129,130,131,155,156は、硬質ウレタンフォーム126とともに冷蔵庫の本体101を構成している。具体的に説明すると、上記真空断熱材のうち、真空断熱材127,128,129,130は、外箱124の第一の天面部108、第一の背面部147、本体左側面、本体右側面の内側に接して(より詳しくは、各断熱壁内において外箱に接して)それぞれ貼り付けられている。また、真空断熱材155,156は、第二の背面部148、第二の天面部109の内側に接して(より詳しくは、各断熱壁内において外箱に接して)それぞれ貼り付けられている。また、真空断熱材131は、内箱125の底面に接して(より詳しくは、対応する断熱壁内において内箱に接して)貼り付けられている。
 また、図20に示すように、上記のうち真空断熱材128,129,130,156には、気体吸着材137がそれぞれ内部に備えられており、その他の真空断熱材には気体吸着材を設けないこととしている。
 このように、気体吸着材の有無で真空断熱材の剛性を異なるものとすることができる。具体的には、気体吸着材が入っている真空断熱材は、剛性が高く、気体吸着材が入っていない真空断熱材は剛性が低くなる。ここで剛性とは、単位体積当たりの剛性を意味し、例えば同素材、同製法の真空断熱材であっても大きさや厚さが異なることによって真空断熱材全体の剛性が異なるようなものは含まないものとする。
 本実施の形態では、剛性の異なる複数の真空断熱材を使い分けることで、冷蔵庫の本体101の強度を向上させている。特に、複数の真空断熱材のうち、冷蔵庫の被覆率を大きく取れる側面壁や背面壁に剛性の高い真空断熱材128,129,130を備えることで、本体101の強度の向上を図ることが出来る。
 このように、冷蔵庫の本体101全体の強度を高める際に、側面と背面のすべてに亘って真空断熱材の貼付が出来ない場合には、少なくとも冷蔵庫本体の全高の1/2より下方側部分について、背面および両側面のすべての面に気体吸着材を備えた真空断熱材を貼り付けるのが好ましい。これによって、筐体を支える下方部の剛性を大幅に向上させることができる。
 なお、本実施の形態に係る冷蔵庫では、真空断熱材の構成や配置、気体吸着材の有無等において、既に説明した実施の形態に係る冷蔵庫と共通する部分を有している。そして、当該共通部分については、既に説明したのと同様の作用効果を奏するため、本実施の形態ではその重複する説明は省略する。
 ところで、本実施の形態では、圧縮機117の前面である第二の背面部148、および圧縮機117の下面である第二の天面部109のうち、少なくとも一方に真空断熱材を配設する。そして、この真空断熱材には気体吸着材を内包させる。図20では、一例として第二の背面部148に配設した真空断熱材が気体吸着材137を備えた構成を示している。
 これにより、更に強度および省エネ性に優れた構成となり、加えて、温度の高い圧縮機117を含めた機械室119周囲部での発熱に対し、高い断熱性を発揮することができる。従って、圧縮機117の排熱が庫内側へ伝熱するのを抑え、庫内温度の上昇を抑制しつつ省エネ性の向上を図ることが出来る。
 更に、圧縮機117や機械室ファン153を支持する第二の天面部109に真空断熱材を備えているので、支持部の剛性を高めて騒音、振動の伝播を抑えることができる。
 ここで、静音、制振効果は真空断熱材の配設部位によってもその効果の度合いが異なる。本実施の形態のように、圧縮機117前方である第二の背面部148の中の外箱側に真空断熱材を配設した場合は、圧縮機117などの振動による騒音成分の伝播を抑えながら前方(庫内側)へ騒音が透過するのを抑えることができる。また、第二の天面部109の中の外箱側に真空断熱材を配設した場合は、圧縮機117の載置面の制振効果が高い。一方、第二の天面部148の中の内箱側に真空断熱材を配設した場合には、一旦、硬質ウレタンフォーム126を通過中に減衰されつつある騒音を、更に内側の真空断熱材で遮音する効果を有し、前方(庫内側)への騒音の伝搬を抑えることができる。
 また、本実施の形態では、気体吸着材137を備えた真空断熱材は、第二の背面部148と第二の天面部109を構成する断熱壁のうち、断熱壁の厚みが薄い第二の背面部148に配設されている。これにより、壁厚が薄いにもかかわらず、第二の背面部148は、高い断熱性能を発揮することができる。
 第二の背面部148の庫内側は、冷蔵室102の上部に位置する。本実施例では、庫内の冷気を、冷気送風ファン116によって強制循環冷却するため、冷蔵室102の背面部(断熱壁の内部)には、冷気送風ファン116によって吐出された冷気が通過するダクトが配置されており、冷蔵室背面の上部には冷蔵室内へ冷気を吐出する吐出口がある。この冷気温度は概ね-10~-20℃であり、例えば外気温25℃の場合に機械室温度が33℃程度になると想定すれば、冷気と機械室119との温度差は概ね43~53Kにもなる。このため、断熱壁の薄く、且つ温度差の大きい第二の背面部148に、気体吸着材137を備えた断熱性能の高い真空断熱材を貼り付けることで、吐出冷気の温度上昇が抑えられ、省エネ性も向上する。
 なお、気体吸着材137を備えた真空断熱材の配設する場合、従来と同等の断熱性能を確保するのであれば、真空断熱材自体の厚みを薄くできる。従って、第二の背面部148のように壁厚が薄い場所でも硬質ウレタンフォーム126の流動性を阻害しない。本実施の場合では、第二の背面部148の膜厚は27mmとし、気体吸着材137を備えた真空断熱材の厚みを概ね8mmとしている。このため、硬質ウレタンフォーム126の流動部分の壁厚(隙間)は19mm確保でき、ボイドの発生などの流動性を阻害する要因が生じない。
 一方、気体吸着材入りの真空断熱材が熱伝導率を低減できるため、断熱壁として従来同等の断熱性能を確保できればよい場合は、硬質ウレタンフォーム126の厚みを薄くする方法もある。この場合は、壁厚の薄壁化によって庫内容量UPが図れるだけでなく、硬質ウレタンフォーム126の使用量も低減できるため、コストダウンが図れるとともに製品重量も低減することができる。また、本体上部の重量が低減され、本体の重心も下がるため、冷蔵庫の転倒防止も効果がある。
 また、本実施の形態では、気体吸着材137を備えた真空断熱材を、第二の背面部148と第二の天面部109を構成する各断熱壁のうち、各断熱壁を厚み方向から見たときに庫内である冷蔵室への投影面積が大きい第二の背面部148に配設している。
 これにより、気体吸着材137を備えた真空断熱材の被覆面積を大きくとることが出来るため、庫内への伝熱を抑え、庫内温度の上昇を抑制しつつ省エネ性の向上を図ることができる。更に、強度の向上が図れると共に、庫内への騒音及び振動の伝播面積の削減効果も高められる。本実施の形態のように、被覆面積が大きく使用者の頭部に近い高さの第二の背面部148に気体吸着材入りの真空断熱材を配設すると、圧縮機117や機械室ファン153が配置された冷蔵庫の後方部分から冷蔵庫の前方に立つ使用者への騒音や振動の伝播経路を遮ることができる。
 一方、第二の天面部109の方が庫内である冷蔵室102への投影面積が大きい場合には、当該第二の天面部109に気体吸着材入りの真空断熱材を設けることが考えられる。この場合、圧縮機117や機械室ファン153を支持する第二の天面部109の剛性が高まるため制振効果が高い。
 また、本実施の形態では、気体吸着材137を備えた真空断熱材を、第二の背面部148と第二の天面部109を構成する断熱壁のうち、圧縮機117への距離が近い第二の背面部148に配設している。
 例えば機械室温度が33℃であれば、上述したように冷凍庫102へ送られる冷気(-
10~-20℃)と機械室119との温度差は概ね43~53Kにもなる。しかし、機械室119内の発熱体となる圧縮機117の温度は更に高く、圧縮機117の回転数や冷蔵庫の負荷変動による冷凍サイクルの状態にもよるが、概ね45から50℃となる。従って、このときは上述した冷気と圧縮機117との温度差は60~73Kにもなり、温度勾配が大きい。このように温度差の大きい部分に気体吸着材137を備えた熱伝導率の低い真空断熱材を配置することで、断熱性能として高い効果が得られ、圧縮機117自身の熱や排熱が庫内側へ伝搬するのを抑え、庫内温度の上昇を抑制しつつ省エネ性の向上を図ることができる。
 また、圧縮機117の排熱温度の影響を受け、気体吸着材137自身も温度が適度に高まるため、気体吸着材137の活性度が向上し、気体吸着効果が高まる。その結果、第二の背面部148の真空断熱材は真空度が更に高まる。従って、第二の背面部148は、熱伝導率が低くなって強度も向上するので、高い省エネ性や外観強度が実現する。
(実施の形態6)
 図22は、本発明の実施の形態6における冷蔵庫の縦断面図である。なお、実施の形態1と同様の構成については、同一符号を付して詳細な説明を省略する。
 図22に示すように、冷蔵庫の本体201は、前方に開口する金属製(例えば鉄板)の外箱224と、硬質樹脂製(例えばABS製)の内箱225と、外箱224と内箱225の間に発泡充填された硬質ウレタンフォーム226とを備える断熱箱体である。本体201は、その内部が複数の室に区分けされており、本実施の形態では、上部に設けられた冷蔵室202と、冷蔵室202の下に設けられた上段冷凍室203と、冷蔵室202の下で上段冷凍室203に並列に設けられた製氷室204と、本体下部に設けられた野菜室206と、並列に設置された上段冷凍室203及び製氷室204と野菜室206との間に設けられた下段冷凍室205とを有している。
 上段冷凍室203と製氷室204と下段冷凍室205と野菜室206の前面開口部分は、引き出し式の扉により開閉自由に閉塞される。また、冷蔵室202の前面開口部分は、例えば観音開き式の扉により開閉自由に閉塞するように構成されていてもよい。
 ここで、真空断熱材227,228,229,230は、外箱224の第一の天面部208、第一の背面部247、本体左側面、本体右側面の内側に接してそれぞれ貼り付けられている。また、真空断熱材242は、第二の背面部248及び第二の天面部209の内側に接して、一体となってこれらに沿うように折り曲げて貼り付けられている。即ち、真空断熱材242は、第二の背面部248に貼り付けられた部分と、第二の天面部209に貼り付けられた部分とを有する。そして、これら2つの部分は、第二の背面部248と第二の天面部209の接続箇所にて接続され、図22に示すように側面視でL字状を成している。また、真空断熱材231は、内箱225の底面に接して貼り付けられている。
 真空断熱材228,229,230,242には、気体吸着材237がそれぞれ内部に備えられている。特に、真空断熱材242については、第二の背面部248に対応する部分に気体吸着材237が設けられている。
 これにより、大きい温度差を生じさせる機械室219を下方及び前方から被うように、気体吸着材237を備えた熱伝導率の低い真空断熱材242を配置することで、断熱性能としてより高い効果が得られる。従って、圧縮機217自身の熱や排熱が庫内側へ伝搬するのを抑え、庫内温度の上昇を抑制しつつ省エネ性の向上を図ることができる。
 また、実施の形態5で説明したのと同様に、第二の背面部248に対応して設けられた気体吸着材237の温度は適度に高まり、高活性化する。従って、吸着効果が高まり、より真空度の高まった真空断熱材242を提供することができると共に、熱伝導率が低く、強度も向上するので、高い省エネ性や外観強度が実現する。
 更に、冷蔵庫の後方部分から冷蔵庫の前方に立つ使用者への騒音や振動の伝播経路を遮る効果がある点も、実施の形態5で説明したのと同様である。
 また、本実施の形態では、上述したように凹み部の第二の背面部248及び第二の天面部209に設けた真空断熱材242を一体のものとしている。従って、圧縮機217等、凹み部に設けられた発熱体の熱が庫内へ伝搬するのを、より効果的に抑制することができる。
(実施の形態7)
 以下、本発明の実施の形態7について図面を用いて説明する。なお、実施の形態1と同様の構成については、同一符号を付して詳細な説明を省略する。
 図23は、本実施の形態7における冷蔵庫の背面図であり、冷凍サイクル回路を構成する主要な配管の配置を概略的に示している。冷蔵庫の本体301に備えられた冷凍サイクル回路は、圧縮機117と、凝縮器357と、減圧器である毛細管と、水分除去を行うドライヤ(図示せず)と、蒸発器354と、吸入配管362とを、環状に接続して構成されている。なお、図23において、他の配管との違いを明確にするため、毛細管361は破線で示し、吸入配管362は二重線で示している。また、蒸発器54は一点鎖線でその配置を示している。
 吸入配管362は、蒸発器354と圧縮機117を接続する配管であり、毛細管361は、径が吸入配管362の径より小さく、凝縮器357と蒸発器354とを接続する配管である。
 吸入配管362と毛細管361とはほぼ同じ長さであり、端部を残して、熱交換可能に互いにはんだ付けされた熱交換部363を備えている。そして、熱交換部363は熱交換する部分の長さを確保するために、水平方向に略U字状に蛇行して折れ曲げられた第1の折曲部364と第二の折曲部365とを備えている。第1の折曲部364、第2の折曲部365は、水平横断部366,367,368を繋ぐように配置されている。また、水平横断部368,369を繋ぐ折曲部は略W字状に構成されている。
 毛細管361と吸入配管362の上方の端部は、機械室の淵に設けた切欠部(図示せず)から突出し、圧縮機117や凝縮器357と接続されている。また、下方の端部は、内箱から突き出し、蒸発器354と接続されている。
 圧縮機117の底部と第1の折曲部364との間の吸入配管362の垂直方向の長さLは、第1の折曲部364の高さH1より長くなるように構成されている。また、第2の折曲部365の高さH2は、第1の折曲部364のH1より大きくなるように構成されている。
 以上の吸入配管362の圧縮機117から蒸発器354へ至る経路について換言する。吸入配管362の一端は、圧縮機117から機械室内を延設され、冷蔵庫の背面壁内にて一側方寄りの位置を下方へ延設されている。この吸入配管362は途中で屈曲し、水平横断部366となって他側方へ延設され、第1の折曲部364により延設方向が一側方へ転向される。転向後は、水平横断部367となって、上記水平横断部366の下方位置にて一側方へ延設される。次に、この吸入配管362は第2の折曲部365によって延設方向が再び他方向へ転向され、水平横断部368となって他方向へ延設される。その後、水平横断部368の端部からは、上方且つ一側方への転向、上方且つ他方向への転向、そして再び上方且つ一側方への転向が、上記W字状の折曲部によって行われ、一側方へ向かう水平横断部369を経て蒸発器354へ至る。この間、W字状の折曲部と水平横断部369とは、水平横断部367,368の間に配置されている。
 圧縮機117は、レシプロ式の圧縮機である。ここで圧縮機のピストンの往復方向は、背面と略平行な左右方向であり、すなわち、ピストンの往復方向は、水平横断部366,367,368,369と略平行となっている。
 図24は、本発明の実施の形態7における冷蔵庫の正面部を除く面展開図であり、これを用いて真空断熱材の埋設位置を説明する。図24は、断熱箱体の各面を展開して、図面の中央部に断熱箱体の背面部、図面の上部に断熱箱体の天面、図面の下部に断熱箱体の底面、図面の左右に断熱箱体の側面部がそれぞれ示されている。
 側面壁371L,371Rには、気体吸着剤337を内包した真空断熱材370が備えられている。図24では、左側の側面部371Lの上部に、天面の凹み(機械室を形成する凹み)の左側への投影領域である第1の投影部372Lを示している。また、側面部371Lに、本体301の庫内全空間の左側への投影領域である第2の投影部373Lを示している。そして上記真空断熱材370は、第1の投影部372Lの少なくとも一部を含み、且つ、第2の投影部373Lにまたがって、本体301の側面部のほぼ全体である80%以上の領域に埋設されている。図示するように、右側の側面部371Rについても同様である。
 また、背面壁374には、側面壁よりも少ない面積でおよそ背面部全体の50%以上70%以下の範囲に、気体吸着剤337を内包した真空断熱材375を貼り付けている。背面壁374の真空断熱材375は、少なくとも冷凍温度帯で保持される冷凍室の背面に備えられている。なお、これらの気体吸着剤337は、実施の形態1で詳細に説明した窒素吸着特性に優れた粉末のZSM-5型ゼオライトである。
 以上のように構成された冷蔵庫について、以下、作用を説明する。
 本実施の形態では、背面壁を形成する内箱と外箱の間に、水平横断部366,367,368,369を有した吸入配管362を備える。これにより、背面壁の左右方向(水平方向)における剛性を向上させている。一方、本体部301の左右の側面壁には、実施の形態1で説明したような、上下方向に延びる変形部130aを有する真空断熱材が備えられている。このように、背面壁の水平方向の補強部材として吸入配管362が機能しており、側面壁101aに備えられた真空断熱材の上下方向に延びる直線状の変形部130aが側面壁101aの上下方向における補強部として機能している。また、背面壁の左右方向の剛性は、左右の側面壁を強固に接続するのに貢献し、本体部301の全体的な剛性が向上している。
 また、水平横断部を繋ぐ第1の折曲部264を、圧縮機117と蒸発器354との間の断熱壁に埋設し、第2の折曲部265を蒸発器254の背面の断熱壁に埋設することにより、背面壁のそれぞれの箇所の断熱壁の強度(剛性)が向上する。
 これにより、冷蔵庫の背面壁は、側面壁と同等程度の広い範囲で真空断熱材が設けられていなくても、特に左右方向の強度が向上する。このように、側面壁の剛性を高くした上で、それらを繋ぐ背面壁の中でも特に左右方向の剛性を高めることで、冷蔵庫の断熱箱体である本体301全体の剛性を向上することができる。
 以上のように、本体部301の左右の側面壁には上下方向に延びる変形部130aを有する真空断熱材を備えることで、側面壁の剛性を高める。更に、左右の側面壁を繋ぐ背面壁には吸入配管362を備えることで、左右方向(水平方向)の剛性を高める。
 このように、側面壁の剛性を高める構成と背面壁の剛性を高める構成を組み合わせることで、断熱箱体の背面部と、側面部との強度の差を低減でき冷蔵庫全体の剛性が向上する。
 また、本実施の形態では、真空断熱材370を断熱箱体の外側の内面に密着して貼り付けているので、断熱体に硬質ウレタンフォームを発泡充填する際には、真空断熱材370の厚みと、真空断熱材370の片側のみを考慮すればよい。これにより、真空断熱材を中間部に配置する構成に比べて左右の側面部を薄壁化することができ、貯蔵室の容量を大きくすることができる。よって、断熱性と剛性を高めた冷蔵庫を提供することが可能となる。
 さらに、本実施の形態では、側面壁に備えられた真空断熱材370は、断熱体の強度が低下しやすい断熱箱体の天面に設けられた凹みの左右方向における投影部372L,372Rの少なくとも一部を含んで埋設する。これにより、特に側面部の上部の剛性を向上させることができる。
 さらに、吸入配管362は、第1の折曲部364と第二の折曲部365とを備えている。これにより、蒸発器354で生じる冷熱により熱収縮と熱膨張を繰り返す蒸発器354の背面の断熱壁の強度をさらに向上することができる。
 本発明は、環境を配慮し省エネランニングコスト低減や製品仕上りの質感の高さが要求される家庭用冷蔵庫に利用できる。
101、201、301  本体
108、208  第一の天面部
109、209  第二の天面部
110、111,112,113  断熱仕切り部
127,128,129,130,131,38,155  真空断熱材
227,228,231,242 真空断熱材
132  芯材
133  包材
134  部材
135  外被材
137,237  気体吸着材
147,247  第一の背面部
148,248  第二の背面部

Claims (19)

  1.  内箱と外箱の間に発泡断熱材が充填された断熱箱体と、
     前記断熱箱体に前記発泡断熱材と共に配設され、外被材に少なくとも芯材を内包し減圧密封した真空断熱材とを備え、
     前記真空断熱材には気体吸着材が内包されているとともに前記真空断熱材は前記断熱箱体の少なくとも側面壁に備えられている、冷蔵庫。
  2.  前記真空断熱材は板形状を成し、
     前記断熱箱体の左右両側の側面壁には、前記気体吸着剤が内包された前記真空断熱材が配設されるとともに、
     前記左右両側の側面壁に配設された前記真空断熱材は、夫々の主面が互いに同じ面積を有している、請求項1に記載の冷蔵庫。
  3.  前記断熱箱体の背面壁には、前記気体吸着剤が内包された前記真空断熱材が配設される、請求項1または2に記載の冷蔵庫。
  4.  前記側面壁に配設された前記真空断熱材は、その下端部に前記芯材が内包されていない前記外被材のみの無芯部を有し、
     前記無芯部は折り返された複層部を形成し、前記気体吸着材は、前記複層部から離れた箇所に位置する、請求項1から3のいずれか一項に記載の冷蔵庫。
  5.  前記断熱箱体には発熱部が設けられ、
     前記真空断熱材に内包された前記気体吸着材は、前記断熱箱体の発熱部とは、隣接しないように位置する、請求項1から4のいずれか一項に記載の冷蔵庫。
  6.  前記断熱箱体には発熱部が設けられ、
     前記真空断熱材に内包された前記気体吸着材は、前記真空断熱材の厚み方向において前記断熱箱体の発熱部と重ならないように位置する、請求項1から4のいずれか一項に記載の冷蔵庫。
  7.  前記断熱箱体には、圧縮機と、コンデンサに備えられた放熱パイプと、キャピラリーチューブと、冷却器とを有する冷凍サイクルが設けられ、
     前記発熱部は前記放熱パイプである、請求項5または6に記載の冷蔵庫。
  8.  前記放熱パイプは、前記真空断熱材の表面に配設されるとともに、
     少なくとも2本の前記放熱パイプの間に前記気体吸着材が配設される、請求項7に記載の冷蔵庫。
  9.  前記気体吸着材は、前記真空断熱材における前記放熱パイプが配設される面とは反対側の面に配設される、請求項8に記載の冷蔵庫。
  10.  前記断熱箱体は、扉内板と扉外板とを有する扉を備え、
     前記扉内板と前記扉外板の間には、発泡断熱材が充填されると共に、外被材に少なくとも芯材を内包し減圧密封した真空断熱材が配設され、
     前記真空断熱材には気体吸着材が内包されている、請求項1に記載の冷蔵庫。
  11.  前記断熱箱体は複数の前記扉を備え、
     前記複数の扉の中で最も面積の大きい扉に、前記気体吸着材を内包した真空断熱材が配設される、請求項10に記載の冷蔵庫。
  12.  前記扉の前記扉外板は切欠部を有し、
     前記扉をその厚み方向から見て、前記切欠部の少なくとも一部に重なるように、前記気体吸着材を内包した真空断熱材が配設される、請求項10または11に記載の冷蔵庫。
  13.  前記断熱箱体には、真空度の異なる複数の真空断熱材が備えられている、請求項1に記載の冷蔵庫。
  14.  前記真空度の異なる複数の真空断熱材の中で、最も真空度の大きい真空断熱材は、少なくとも繊維材料を含む芯材と、包材からなる袋に内包された気体吸着材とを、ガスバリア性を有する外被材で被った真空断熱材である、請求項13に記載の冷蔵庫。
  15.  前記断熱箱体の上面及び背面はそれぞれ第一の天面部及び第一の背面部によって画定され、前記断熱箱体の上部の背面側部分には凹部が形成され、
     前記凹部は、前記第一の天面部の背面側にて前記第一の天面部より低い位置に設けられ、かつ前記第一の背面部の上部に接続された第二の天面部と、前記第一の天面部と前記第二の天面部との間を接続する第二の背面部とを有し、
     前記凹部が有する第二の天面部には圧縮機が配設されており、
     前記第二の背面部または前記第二の天面部、もしくはこれらの両方に、前記気体吸着材を内包した真空断熱材が配設される、請求項13または14に記載の冷蔵庫。
  16.  前記気体吸着材を内包した真空断熱材は、前記第二の背面部と前記第二の天面部を構成する断熱壁のうち、厚みが薄いほうに配設される、請求項15に記載の冷蔵庫。
  17.  前記気体吸着材を内包した真空断熱材は、前記第二の背面部と前記第二の天面部を構成する断熱壁のうち、各断熱壁を厚み方向から見たときに庫内への投影面積が大きいほうに配設される、請求項15または16に記載の冷蔵庫。
  18.  前記気体吸着材を内包した真空断熱材は、前記第二の背面部と前記第二の天面部を構成する断熱壁のうち、圧縮機への距離が近いほうに配設される、請求項15から17のいずれか一項に記載の冷蔵庫。
  19.  請求項1から18のいずれか一項に記載の冷蔵庫に搭載する冷蔵庫用の真空断熱材。
PCT/JP2012/005525 2011-08-31 2012-08-31 冷蔵庫及び冷蔵庫用の真空断熱材 WO2013031234A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013511194A JP5661175B2 (ja) 2011-08-31 2012-08-31 冷蔵庫及び冷蔵庫用の真空断熱材
CN201280007737.5A CN103370587B (zh) 2011-08-31 2012-08-31 冷藏库和冷藏库用的真空隔热材料
US13/983,507 US9791202B2 (en) 2011-08-31 2012-08-31 Refrigerator and vacuum heat insulating material for use in refrigerator

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP2011188411 2011-08-31
JP2011-188411 2011-08-31
JP2011192672 2011-09-05
JP2011-192672 2011-09-05
JP2011-192684 2011-09-05
JP2011192674 2011-09-05
JP2011-192674 2011-09-05
JP2011192684 2011-09-05
JP2011228597 2011-10-18
JP2011-228599 2011-10-18
JP2011228599 2011-10-18
JP2011-228597 2011-10-18

Publications (1)

Publication Number Publication Date
WO2013031234A1 true WO2013031234A1 (ja) 2013-03-07

Family

ID=47755762

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/005525 WO2013031234A1 (ja) 2011-08-31 2012-08-31 冷蔵庫及び冷蔵庫用の真空断熱材

Country Status (4)

Country Link
US (1) US9791202B2 (ja)
JP (2) JP5661175B2 (ja)
CN (1) CN103370587B (ja)
WO (1) WO2013031234A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015025477A1 (ja) * 2013-08-23 2015-02-26 パナソニックIpマネジメント株式会社 冷蔵庫
JP2015040674A (ja) * 2013-08-23 2015-03-02 パナソニックIpマネジメント株式会社 冷蔵庫
JP2020122631A (ja) * 2019-01-31 2020-08-13 東芝ライフスタイル株式会社 冷蔵庫、及び真空断熱パネル
JP2020122632A (ja) * 2019-01-31 2020-08-13 東芝ライフスタイル株式会社 冷蔵庫、及び真空断熱パネル
CN113007956A (zh) * 2019-12-20 2021-06-22 东芝生活电器株式会社 隔热材料、冰箱、以及隔热材料的制造方法

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9528771B2 (en) 2014-10-27 2016-12-27 Hussmann Corporation Heat exchanger with non-linear coil
CN104728600B (zh) * 2015-03-27 2016-11-23 中国科学院电工研究所 一种低温真空容器气体吸附装置
US9599581B2 (en) 2015-04-22 2017-03-21 Saudi Arabian Oil Company Nuclear magnetic resonance gas isotherm technique to evaluate reservoir rock wettability
US10533933B2 (en) 2015-04-22 2020-01-14 Saudi Arabian Oil Company Nuclear magnetic resonance gas isotherm technique to evaluate reservoir rock wettability
CN104896848B (zh) * 2015-06-03 2017-07-18 广州美的华凌冰箱有限公司 冰箱的箱体及冰箱
US9441779B1 (en) * 2015-07-01 2016-09-13 Whirlpool Corporation Split hybrid insulation structure for an appliance
KR102466469B1 (ko) * 2015-08-03 2022-11-11 엘지전자 주식회사 진공단열체 및 냉장고
KR102529853B1 (ko) 2015-08-03 2023-05-08 엘지전자 주식회사 진공단열체, 진공단열체의 제조방법, 다공성물질패키지, 및 냉장고
KR102502160B1 (ko) 2015-08-03 2023-02-21 엘지전자 주식회사 진공단열체 및 냉장고
KR102498210B1 (ko) 2015-08-03 2023-02-09 엘지전자 주식회사 진공단열체 및 냉장고
KR102525550B1 (ko) * 2015-08-03 2023-04-25 엘지전자 주식회사 진공단열체 및 냉장고
KR102525551B1 (ko) 2015-08-03 2023-04-25 엘지전자 주식회사 진공단열체 및 냉장고
JP6667072B2 (ja) * 2016-08-10 2020-03-18 パナソニックIpマネジメント株式会社 冷蔵庫
KR102655773B1 (ko) * 2017-02-17 2024-04-09 엘지전자 주식회사 진공단열체, 냉온장고, 및 차량
JP6975699B2 (ja) * 2018-10-18 2021-12-01 日立グローバルライフソリューションズ株式会社 冷蔵庫
WO2020157825A1 (ja) * 2019-01-29 2020-08-06 三菱電機株式会社 冷蔵庫
US11460235B1 (en) 2021-04-01 2022-10-04 Whirlpool Corporation Support assembly for an insulated structure
US11614417B2 (en) 2021-07-06 2023-03-28 Saudi Arabian Oil Company Determining saturation in low resistivity pay zones

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01102288A (ja) * 1987-10-16 1989-04-19 Matsushita Refrig Co Ltd 断熱箱体
JP2000128256A (ja) * 1998-10-26 2000-05-09 Mitsubishi Electric Corp 断熱箱体の製造方法
JP2006125804A (ja) * 2004-11-01 2006-05-18 Matsushita Electric Ind Co Ltd 断熱箱体及び冷蔵庫
JP2011149624A (ja) * 2010-01-22 2011-08-04 Hitachi Appliances Inc 冷蔵庫

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2524124A1 (fr) * 1982-03-24 1983-09-30 Phenol Eng Procede de stockage et de restitution calorifique, et dispositif pour sa mise en oeuvre, constituant un element porteur de batiment
JPH06159922A (ja) 1992-11-26 1994-06-07 Sanyo Electric Co Ltd 断熱箱体及びその製造方法
IT1271207B (it) * 1994-07-07 1997-05-27 Getters Spa Dispositivo per il mantenimento del vuoto in intercapedini termicamente isolanti e procedimento per la sua produzione
JPH08159377A (ja) 1994-12-02 1996-06-21 Matsushita Refrig Co Ltd 真空断熱体
JPH11108547A (ja) 1997-10-09 1999-04-23 Hitachi Ltd 冷蔵庫
TW470837B (en) * 2000-04-21 2002-01-01 Matsushita Refrigeration Vacuum heat insulator
AU2001222296B2 (en) * 2000-04-21 2004-09-02 Matsushita Refrigeration Company Heat insulation box, and vacuum heat insulation material used therefor
US6405556B1 (en) * 2000-10-27 2002-06-18 Frederick S. Bucholz Insulated container
JP3478810B2 (ja) 2001-01-15 2003-12-15 松下冷機株式会社 断熱箱体、原料製造方法、および冷蔵庫
KR100574807B1 (ko) 2001-06-04 2006-04-27 마쓰시타 레키 가부시키가이샤 단열 상자체와 이것을 갖는 냉장고 및 단열 상자체용재료의 재활용 방법
TW593919B (en) * 2002-05-31 2004-06-21 Matsushita Refrigeration Vacuum heat insulating material and method for producing the same, and refrigerator using the vacuum heat insulating material
JP2004308691A (ja) * 2003-04-02 2004-11-04 Nisshinbo Ind Inc 真空断熱材及びその製造方法
JP2005127602A (ja) 2003-10-23 2005-05-19 Matsushita Electric Ind Co Ltd 冷蔵庫
JP2006046512A (ja) 2004-08-05 2006-02-16 Matsushita Electric Ind Co Ltd 断熱体
JP4576196B2 (ja) * 2004-10-12 2010-11-04 日立アプライアンス株式会社 冷蔵庫
JP2006189207A (ja) 2005-01-07 2006-07-20 Hitachi Home & Life Solutions Inc 冷蔵庫
TW200632245A (en) * 2005-01-28 2006-09-16 Matsushita Electric Ind Co Ltd A thermal insulator
JP2006242439A (ja) 2005-03-02 2006-09-14 Hitachi Home & Life Solutions Inc 冷蔵庫及びその製造方法
JP2006336722A (ja) * 2005-06-01 2006-12-14 Hitachi Appliances Inc 真空断熱材及びこれを用いた冷蔵庫
JP2006342852A (ja) * 2005-06-08 2006-12-21 Hitachi Appliances Inc 真空断熱材及びこれを用いた冷蔵庫
WO2007034906A1 (ja) * 2005-09-26 2007-03-29 Matsushita Electric Industrial Co., Ltd. 気体吸着デバイス、気体吸着デバイスを用いた真空断熱体および真空断熱体の製造方法
JP4696906B2 (ja) 2005-12-28 2011-06-08 パナソニック株式会社 冷蔵庫
JP2007198622A (ja) 2006-01-24 2007-08-09 Matsushita Electric Ind Co Ltd 冷蔵庫
JP2008128516A (ja) * 2006-11-17 2008-06-05 Matsushita Electric Ind Co Ltd 冷蔵庫
JP2009257715A (ja) * 2008-04-21 2009-11-05 Hitachi Appliances Inc 冷蔵庫及び真空断熱材
JP5198167B2 (ja) * 2008-06-30 2013-05-15 パナソニック株式会社 真空断熱箱体
JP5162377B2 (ja) * 2008-08-28 2013-03-13 日立アプライアンス株式会社 真空断熱材およびこれを用いた断熱箱体並びに冷蔵庫
JP5458562B2 (ja) * 2008-12-11 2014-04-02 パナソニック株式会社 気体吸着デバイス
DE102008054590A1 (de) * 2008-12-12 2010-06-17 BSH Bosch und Siemens Hausgeräte GmbH Kältegerät mit einer Eis- und/oder Flüssigkeitsausgabevorrichtung
CN201487481U (zh) 2009-03-30 2010-05-26 成都思摩纳米技术有限公司 真空隔热板
JP5236550B2 (ja) * 2009-03-30 2013-07-17 三菱電機株式会社 真空断熱材とその製造方法、及びこの真空断熱材を備えた断熱箱

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01102288A (ja) * 1987-10-16 1989-04-19 Matsushita Refrig Co Ltd 断熱箱体
JP2000128256A (ja) * 1998-10-26 2000-05-09 Mitsubishi Electric Corp 断熱箱体の製造方法
JP2006125804A (ja) * 2004-11-01 2006-05-18 Matsushita Electric Ind Co Ltd 断熱箱体及び冷蔵庫
JP2011149624A (ja) * 2010-01-22 2011-08-04 Hitachi Appliances Inc 冷蔵庫

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015025477A1 (ja) * 2013-08-23 2015-02-26 パナソニックIpマネジメント株式会社 冷蔵庫
JP2015040674A (ja) * 2013-08-23 2015-03-02 パナソニックIpマネジメント株式会社 冷蔵庫
JP2020122631A (ja) * 2019-01-31 2020-08-13 東芝ライフスタイル株式会社 冷蔵庫、及び真空断熱パネル
JP2020122632A (ja) * 2019-01-31 2020-08-13 東芝ライフスタイル株式会社 冷蔵庫、及び真空断熱パネル
CN113007956A (zh) * 2019-12-20 2021-06-22 东芝生活电器株式会社 隔热材料、冰箱、以及隔热材料的制造方法
CN113007956B (zh) * 2019-12-20 2022-08-23 东芝生活电器株式会社 隔热材料、冰箱、以及隔热材料的制造方法

Also Published As

Publication number Publication date
JP6074817B2 (ja) 2017-02-08
US9791202B2 (en) 2017-10-17
JP2015017801A (ja) 2015-01-29
JPWO2013031234A1 (ja) 2015-03-23
CN103370587B (zh) 2016-01-20
JP5661175B2 (ja) 2015-01-28
US20130313267A1 (en) 2013-11-28
CN103370587A (zh) 2013-10-23

Similar Documents

Publication Publication Date Title
JP6074817B2 (ja) 冷蔵庫
JP5903567B2 (ja) 冷蔵庫
KR100980175B1 (ko) 냉장고
JP5492685B2 (ja) 真空断熱材及びそれを用いた冷蔵庫
CN104696669B (zh) 真空绝热板
JP2008116161A (ja) 冷蔵庫
JP2008116126A (ja) 冷蔵庫
JP2011099566A (ja) 真空断熱パネル及び冷蔵庫
JP5401258B2 (ja) 冷蔵庫
JP2009299764A (ja) 真空断熱材及びこれを用いた断熱容器
CN111503962B (zh) 冰箱及真空隔热板
JP2006329482A (ja) 冷蔵庫
CN206001789U (zh) 冰箱
JP5945708B2 (ja) 冷蔵庫
JP2008128516A (ja) 冷蔵庫
JP3488229B2 (ja) 断熱箱体および冷蔵庫
JP6225324B2 (ja) 断熱箱体
JP2013142498A (ja) 冷蔵庫
JP2012229849A (ja) 冷蔵庫および冷凍庫
CN111503961B (zh) 冰箱及真空隔热板
JP2013053819A (ja) 冷蔵庫
JP2013087806A (ja) 断熱壁および断熱箱体
JP6830408B2 (ja) 真空断熱材
JP2005201505A (ja) 冷蔵庫
JP2013185734A (ja) 冷蔵庫

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280007737.5

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2013511194

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12828147

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13983507

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12828147

Country of ref document: EP

Kind code of ref document: A1